1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * Copyright 2013-2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <errno.h> 37 #include <stdio.h> 38 #include <string.h> 39 #include <stdint.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 #include <sys/types.h> 44 #include <sys/stat.h> 45 #include <fcntl.h> 46 #include <unistd.h> 47 48 #include <rte_common.h> 49 #include <rte_byteorder.h> 50 #include <rte_debug.h> 51 #include <rte_log.h> 52 #include <rte_memory.h> 53 #include <rte_memcpy.h> 54 #include <rte_memzone.h> 55 #include <rte_launch.h> 56 #include <rte_eal.h> 57 #include <rte_per_lcore.h> 58 #include <rte_lcore.h> 59 #include <rte_atomic.h> 60 #include <rte_branch_prediction.h> 61 #include <rte_mempool.h> 62 #include <rte_mbuf.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_string_fns.h> 68 #include <rte_cycles.h> 69 #include <rte_flow.h> 70 #include <rte_errno.h> 71 #ifdef RTE_LIBRTE_IXGBE_PMD 72 #include <rte_pmd_ixgbe.h> 73 #endif 74 #ifdef RTE_LIBRTE_I40E_PMD 75 #include <rte_pmd_i40e.h> 76 #endif 77 #ifdef RTE_LIBRTE_BNXT_PMD 78 #include <rte_pmd_bnxt.h> 79 #endif 80 #include <rte_gro.h> 81 82 #include "testpmd.h" 83 84 static char *flowtype_to_str(uint16_t flow_type); 85 86 static const struct { 87 enum tx_pkt_split split; 88 const char *name; 89 } tx_split_name[] = { 90 { 91 .split = TX_PKT_SPLIT_OFF, 92 .name = "off", 93 }, 94 { 95 .split = TX_PKT_SPLIT_ON, 96 .name = "on", 97 }, 98 { 99 .split = TX_PKT_SPLIT_RND, 100 .name = "rand", 101 }, 102 }; 103 104 struct rss_type_info { 105 char str[32]; 106 uint64_t rss_type; 107 }; 108 109 static const struct rss_type_info rss_type_table[] = { 110 { "ipv4", ETH_RSS_IPV4 }, 111 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 112 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 113 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 114 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 115 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 116 { "ipv6", ETH_RSS_IPV6 }, 117 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 118 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 119 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 120 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 121 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 122 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 123 { "ipv6-ex", ETH_RSS_IPV6_EX }, 124 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 125 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 126 { "port", ETH_RSS_PORT }, 127 { "vxlan", ETH_RSS_VXLAN }, 128 { "geneve", ETH_RSS_GENEVE }, 129 { "nvgre", ETH_RSS_NVGRE }, 130 131 }; 132 133 static void 134 print_ethaddr(const char *name, struct ether_addr *eth_addr) 135 { 136 char buf[ETHER_ADDR_FMT_SIZE]; 137 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 138 printf("%s%s", name, buf); 139 } 140 141 void 142 nic_stats_display(portid_t port_id) 143 { 144 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 145 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 146 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 147 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 148 uint64_t mpps_rx, mpps_tx; 149 struct rte_eth_stats stats; 150 struct rte_port *port = &ports[port_id]; 151 uint8_t i; 152 portid_t pid; 153 154 static const char *nic_stats_border = "########################"; 155 156 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 157 printf("Valid port range is [0"); 158 RTE_ETH_FOREACH_DEV(pid) 159 printf(", %d", pid); 160 printf("]\n"); 161 return; 162 } 163 rte_eth_stats_get(port_id, &stats); 164 printf("\n %s NIC statistics for port %-2d %s\n", 165 nic_stats_border, port_id, nic_stats_border); 166 167 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 168 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 169 "%-"PRIu64"\n", 170 stats.ipackets, stats.imissed, stats.ibytes); 171 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 172 printf(" RX-nombuf: %-10"PRIu64"\n", 173 stats.rx_nombuf); 174 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 175 "%-"PRIu64"\n", 176 stats.opackets, stats.oerrors, stats.obytes); 177 } 178 else { 179 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 180 " RX-bytes: %10"PRIu64"\n", 181 stats.ipackets, stats.ierrors, stats.ibytes); 182 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 183 printf(" RX-nombuf: %10"PRIu64"\n", 184 stats.rx_nombuf); 185 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 186 " TX-bytes: %10"PRIu64"\n", 187 stats.opackets, stats.oerrors, stats.obytes); 188 } 189 190 if (port->rx_queue_stats_mapping_enabled) { 191 printf("\n"); 192 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 193 printf(" Stats reg %2d RX-packets: %10"PRIu64 194 " RX-errors: %10"PRIu64 195 " RX-bytes: %10"PRIu64"\n", 196 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 197 } 198 } 199 if (port->tx_queue_stats_mapping_enabled) { 200 printf("\n"); 201 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 202 printf(" Stats reg %2d TX-packets: %10"PRIu64 203 " TX-bytes: %10"PRIu64"\n", 204 i, stats.q_opackets[i], stats.q_obytes[i]); 205 } 206 } 207 208 diff_cycles = prev_cycles[port_id]; 209 prev_cycles[port_id] = rte_rdtsc(); 210 if (diff_cycles > 0) 211 diff_cycles = prev_cycles[port_id] - diff_cycles; 212 213 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 214 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 215 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 216 (stats.opackets - prev_pkts_tx[port_id]) : 0; 217 prev_pkts_rx[port_id] = stats.ipackets; 218 prev_pkts_tx[port_id] = stats.opackets; 219 mpps_rx = diff_cycles > 0 ? 220 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 221 mpps_tx = diff_cycles > 0 ? 222 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 223 printf("\n Throughput (since last show)\n"); 224 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 225 mpps_rx, mpps_tx); 226 227 printf(" %s############################%s\n", 228 nic_stats_border, nic_stats_border); 229 } 230 231 void 232 nic_stats_clear(portid_t port_id) 233 { 234 portid_t pid; 235 236 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 237 printf("Valid port range is [0"); 238 RTE_ETH_FOREACH_DEV(pid) 239 printf(", %d", pid); 240 printf("]\n"); 241 return; 242 } 243 rte_eth_stats_reset(port_id); 244 printf("\n NIC statistics for port %d cleared\n", port_id); 245 } 246 247 void 248 nic_xstats_display(portid_t port_id) 249 { 250 struct rte_eth_xstat *xstats; 251 int cnt_xstats, idx_xstat; 252 struct rte_eth_xstat_name *xstats_names; 253 254 printf("###### NIC extended statistics for port %-2d\n", port_id); 255 if (!rte_eth_dev_is_valid_port(port_id)) { 256 printf("Error: Invalid port number %i\n", port_id); 257 return; 258 } 259 260 /* Get count */ 261 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 262 if (cnt_xstats < 0) { 263 printf("Error: Cannot get count of xstats\n"); 264 return; 265 } 266 267 /* Get id-name lookup table */ 268 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 269 if (xstats_names == NULL) { 270 printf("Cannot allocate memory for xstats lookup\n"); 271 return; 272 } 273 if (cnt_xstats != rte_eth_xstats_get_names( 274 port_id, xstats_names, cnt_xstats)) { 275 printf("Error: Cannot get xstats lookup\n"); 276 free(xstats_names); 277 return; 278 } 279 280 /* Get stats themselves */ 281 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 282 if (xstats == NULL) { 283 printf("Cannot allocate memory for xstats\n"); 284 free(xstats_names); 285 return; 286 } 287 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 288 printf("Error: Unable to get xstats\n"); 289 free(xstats_names); 290 free(xstats); 291 return; 292 } 293 294 /* Display xstats */ 295 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 296 if (xstats_hide_zero && !xstats[idx_xstat].value) 297 continue; 298 printf("%s: %"PRIu64"\n", 299 xstats_names[idx_xstat].name, 300 xstats[idx_xstat].value); 301 } 302 free(xstats_names); 303 free(xstats); 304 } 305 306 void 307 nic_xstats_clear(portid_t port_id) 308 { 309 rte_eth_xstats_reset(port_id); 310 } 311 312 void 313 nic_stats_mapping_display(portid_t port_id) 314 { 315 struct rte_port *port = &ports[port_id]; 316 uint16_t i; 317 portid_t pid; 318 319 static const char *nic_stats_mapping_border = "########################"; 320 321 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 322 printf("Valid port range is [0"); 323 RTE_ETH_FOREACH_DEV(pid) 324 printf(", %d", pid); 325 printf("]\n"); 326 return; 327 } 328 329 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 330 printf("Port id %d - either does not support queue statistic mapping or" 331 " no queue statistic mapping set\n", port_id); 332 return; 333 } 334 335 printf("\n %s NIC statistics mapping for port %-2d %s\n", 336 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 337 338 if (port->rx_queue_stats_mapping_enabled) { 339 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 340 if (rx_queue_stats_mappings[i].port_id == port_id) { 341 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 342 rx_queue_stats_mappings[i].queue_id, 343 rx_queue_stats_mappings[i].stats_counter_id); 344 } 345 } 346 printf("\n"); 347 } 348 349 350 if (port->tx_queue_stats_mapping_enabled) { 351 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 352 if (tx_queue_stats_mappings[i].port_id == port_id) { 353 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 354 tx_queue_stats_mappings[i].queue_id, 355 tx_queue_stats_mappings[i].stats_counter_id); 356 } 357 } 358 } 359 360 printf(" %s####################################%s\n", 361 nic_stats_mapping_border, nic_stats_mapping_border); 362 } 363 364 void 365 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 366 { 367 struct rte_eth_rxq_info qinfo; 368 int32_t rc; 369 static const char *info_border = "*********************"; 370 371 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 372 if (rc != 0) { 373 printf("Failed to retrieve information for port: %u, " 374 "RX queue: %hu\nerror desc: %s(%d)\n", 375 port_id, queue_id, strerror(-rc), rc); 376 return; 377 } 378 379 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 380 info_border, port_id, queue_id, info_border); 381 382 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 383 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 384 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 385 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 386 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 387 printf("\nRX drop packets: %s", 388 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 389 printf("\nRX deferred start: %s", 390 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 391 printf("\nRX scattered packets: %s", 392 (qinfo.scattered_rx != 0) ? "on" : "off"); 393 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 394 printf("\n"); 395 } 396 397 void 398 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 399 { 400 struct rte_eth_txq_info qinfo; 401 int32_t rc; 402 static const char *info_border = "*********************"; 403 404 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 405 if (rc != 0) { 406 printf("Failed to retrieve information for port: %u, " 407 "TX queue: %hu\nerror desc: %s(%d)\n", 408 port_id, queue_id, strerror(-rc), rc); 409 return; 410 } 411 412 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 413 info_border, port_id, queue_id, info_border); 414 415 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 416 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 417 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 418 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 419 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 420 printf("\nTX flags: %#x", qinfo.conf.txq_flags); 421 printf("\nTX deferred start: %s", 422 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 423 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 424 printf("\n"); 425 } 426 427 void 428 port_infos_display(portid_t port_id) 429 { 430 struct rte_port *port; 431 struct ether_addr mac_addr; 432 struct rte_eth_link link; 433 struct rte_eth_dev_info dev_info; 434 int vlan_offload; 435 struct rte_mempool * mp; 436 static const char *info_border = "*********************"; 437 portid_t pid; 438 uint16_t mtu; 439 440 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 441 printf("Valid port range is [0"); 442 RTE_ETH_FOREACH_DEV(pid) 443 printf(", %d", pid); 444 printf("]\n"); 445 return; 446 } 447 port = &ports[port_id]; 448 rte_eth_link_get_nowait(port_id, &link); 449 memset(&dev_info, 0, sizeof(dev_info)); 450 rte_eth_dev_info_get(port_id, &dev_info); 451 printf("\n%s Infos for port %-2d %s\n", 452 info_border, port_id, info_border); 453 rte_eth_macaddr_get(port_id, &mac_addr); 454 print_ethaddr("MAC address: ", &mac_addr); 455 printf("\nDriver name: %s", dev_info.driver_name); 456 printf("\nConnect to socket: %u", port->socket_id); 457 458 if (port_numa[port_id] != NUMA_NO_CONFIG) { 459 mp = mbuf_pool_find(port_numa[port_id]); 460 if (mp) 461 printf("\nmemory allocation on the socket: %d", 462 port_numa[port_id]); 463 } else 464 printf("\nmemory allocation on the socket: %u",port->socket_id); 465 466 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 467 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 468 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 469 ("full-duplex") : ("half-duplex")); 470 471 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 472 printf("MTU: %u\n", mtu); 473 474 printf("Promiscuous mode: %s\n", 475 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 476 printf("Allmulticast mode: %s\n", 477 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 478 printf("Maximum number of MAC addresses: %u\n", 479 (unsigned int)(port->dev_info.max_mac_addrs)); 480 printf("Maximum number of MAC addresses of hash filtering: %u\n", 481 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 482 483 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 484 if (vlan_offload >= 0){ 485 printf("VLAN offload: \n"); 486 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 487 printf(" strip on \n"); 488 else 489 printf(" strip off \n"); 490 491 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 492 printf(" filter on \n"); 493 else 494 printf(" filter off \n"); 495 496 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 497 printf(" qinq(extend) on \n"); 498 else 499 printf(" qinq(extend) off \n"); 500 } 501 502 if (dev_info.hash_key_size > 0) 503 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 504 if (dev_info.reta_size > 0) 505 printf("Redirection table size: %u\n", dev_info.reta_size); 506 if (!dev_info.flow_type_rss_offloads) 507 printf("No flow type is supported.\n"); 508 else { 509 uint16_t i; 510 char *p; 511 512 printf("Supported flow types:\n"); 513 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 514 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 515 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 516 continue; 517 p = flowtype_to_str(i); 518 if (p) 519 printf(" %s\n", p); 520 else 521 printf(" user defined %d\n", i); 522 } 523 } 524 525 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 526 printf("Maximum configurable length of RX packet: %u\n", 527 dev_info.max_rx_pktlen); 528 if (dev_info.max_vfs) 529 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 530 if (dev_info.max_vmdq_pools) 531 printf("Maximum number of VMDq pools: %u\n", 532 dev_info.max_vmdq_pools); 533 534 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 535 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 536 printf("Max possible number of RXDs per queue: %hu\n", 537 dev_info.rx_desc_lim.nb_max); 538 printf("Min possible number of RXDs per queue: %hu\n", 539 dev_info.rx_desc_lim.nb_min); 540 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 541 542 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 543 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 544 printf("Max possible number of TXDs per queue: %hu\n", 545 dev_info.tx_desc_lim.nb_max); 546 printf("Min possible number of TXDs per queue: %hu\n", 547 dev_info.tx_desc_lim.nb_min); 548 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 549 } 550 551 void 552 port_offload_cap_display(portid_t port_id) 553 { 554 struct rte_eth_dev_info dev_info; 555 static const char *info_border = "************"; 556 557 if (port_id_is_invalid(port_id, ENABLED_WARN)) 558 return; 559 560 rte_eth_dev_info_get(port_id, &dev_info); 561 562 printf("\n%s Port %d supported offload features: %s\n", 563 info_border, port_id, info_border); 564 565 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 566 printf("VLAN stripped: "); 567 if (ports[port_id].dev_conf.rxmode.offloads & 568 DEV_RX_OFFLOAD_VLAN_STRIP) 569 printf("on\n"); 570 else 571 printf("off\n"); 572 } 573 574 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 575 printf("Double VLANs stripped: "); 576 if (ports[port_id].dev_conf.rxmode.offloads & 577 DEV_RX_OFFLOAD_VLAN_EXTEND) 578 printf("on\n"); 579 else 580 printf("off\n"); 581 } 582 583 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 584 printf("RX IPv4 checksum: "); 585 if (ports[port_id].dev_conf.rxmode.offloads & 586 DEV_RX_OFFLOAD_IPV4_CKSUM) 587 printf("on\n"); 588 else 589 printf("off\n"); 590 } 591 592 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 593 printf("RX UDP checksum: "); 594 if (ports[port_id].dev_conf.rxmode.offloads & 595 DEV_RX_OFFLOAD_UDP_CKSUM) 596 printf("on\n"); 597 else 598 printf("off\n"); 599 } 600 601 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 602 printf("RX TCP checksum: "); 603 if (ports[port_id].dev_conf.rxmode.offloads & 604 DEV_RX_OFFLOAD_TCP_CKSUM) 605 printf("on\n"); 606 else 607 printf("off\n"); 608 } 609 610 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) { 611 printf("RX Outer IPv4 checksum: "); 612 if (ports[port_id].dev_conf.rxmode.offloads & 613 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 614 printf("on\n"); 615 else 616 printf("off\n"); 617 } 618 619 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 620 printf("Large receive offload: "); 621 if (ports[port_id].dev_conf.rxmode.offloads & 622 DEV_RX_OFFLOAD_TCP_LRO) 623 printf("on\n"); 624 else 625 printf("off\n"); 626 } 627 628 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 629 printf("VLAN insert: "); 630 if (ports[port_id].dev_conf.txmode.offloads & 631 DEV_TX_OFFLOAD_VLAN_INSERT) 632 printf("on\n"); 633 else 634 printf("off\n"); 635 } 636 637 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) { 638 printf("HW timestamp: "); 639 if (ports[port_id].dev_conf.rxmode.offloads & 640 DEV_RX_OFFLOAD_TIMESTAMP) 641 printf("on\n"); 642 else 643 printf("off\n"); 644 } 645 646 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 647 printf("Double VLANs insert: "); 648 if (ports[port_id].dev_conf.txmode.offloads & 649 DEV_TX_OFFLOAD_QINQ_INSERT) 650 printf("on\n"); 651 else 652 printf("off\n"); 653 } 654 655 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 656 printf("TX IPv4 checksum: "); 657 if (ports[port_id].dev_conf.txmode.offloads & 658 DEV_TX_OFFLOAD_IPV4_CKSUM) 659 printf("on\n"); 660 else 661 printf("off\n"); 662 } 663 664 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 665 printf("TX UDP checksum: "); 666 if (ports[port_id].dev_conf.txmode.offloads & 667 DEV_TX_OFFLOAD_UDP_CKSUM) 668 printf("on\n"); 669 else 670 printf("off\n"); 671 } 672 673 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 674 printf("TX TCP checksum: "); 675 if (ports[port_id].dev_conf.txmode.offloads & 676 DEV_TX_OFFLOAD_TCP_CKSUM) 677 printf("on\n"); 678 else 679 printf("off\n"); 680 } 681 682 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 683 printf("TX SCTP checksum: "); 684 if (ports[port_id].dev_conf.txmode.offloads & 685 DEV_TX_OFFLOAD_SCTP_CKSUM) 686 printf("on\n"); 687 else 688 printf("off\n"); 689 } 690 691 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 692 printf("TX Outer IPv4 checksum: "); 693 if (ports[port_id].dev_conf.txmode.offloads & 694 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 695 printf("on\n"); 696 else 697 printf("off\n"); 698 } 699 700 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 701 printf("TX TCP segmentation: "); 702 if (ports[port_id].dev_conf.txmode.offloads & 703 DEV_TX_OFFLOAD_TCP_TSO) 704 printf("on\n"); 705 else 706 printf("off\n"); 707 } 708 709 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 710 printf("TX UDP segmentation: "); 711 if (ports[port_id].dev_conf.txmode.offloads & 712 DEV_TX_OFFLOAD_UDP_TSO) 713 printf("on\n"); 714 else 715 printf("off\n"); 716 } 717 718 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 719 printf("TSO for VXLAN tunnel packet: "); 720 if (ports[port_id].dev_conf.txmode.offloads & 721 DEV_TX_OFFLOAD_VXLAN_TNL_TSO) 722 printf("on\n"); 723 else 724 printf("off\n"); 725 } 726 727 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 728 printf("TSO for GRE tunnel packet: "); 729 if (ports[port_id].dev_conf.txmode.offloads & 730 DEV_TX_OFFLOAD_GRE_TNL_TSO) 731 printf("on\n"); 732 else 733 printf("off\n"); 734 } 735 736 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 737 printf("TSO for IPIP tunnel packet: "); 738 if (ports[port_id].dev_conf.txmode.offloads & 739 DEV_TX_OFFLOAD_IPIP_TNL_TSO) 740 printf("on\n"); 741 else 742 printf("off\n"); 743 } 744 745 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 746 printf("TSO for GENEVE tunnel packet: "); 747 if (ports[port_id].dev_conf.txmode.offloads & 748 DEV_TX_OFFLOAD_GENEVE_TNL_TSO) 749 printf("on\n"); 750 else 751 printf("off\n"); 752 } 753 754 } 755 756 int 757 port_id_is_invalid(portid_t port_id, enum print_warning warning) 758 { 759 if (port_id == (portid_t)RTE_PORT_ALL) 760 return 0; 761 762 if (rte_eth_dev_is_valid_port(port_id)) 763 return 0; 764 765 if (warning == ENABLED_WARN) 766 printf("Invalid port %d\n", port_id); 767 768 return 1; 769 } 770 771 static int 772 vlan_id_is_invalid(uint16_t vlan_id) 773 { 774 if (vlan_id < 4096) 775 return 0; 776 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 777 return 1; 778 } 779 780 static int 781 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 782 { 783 uint64_t pci_len; 784 785 if (reg_off & 0x3) { 786 printf("Port register offset 0x%X not aligned on a 4-byte " 787 "boundary\n", 788 (unsigned)reg_off); 789 return 1; 790 } 791 pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; 792 if (reg_off >= pci_len) { 793 printf("Port %d: register offset %u (0x%X) out of port PCI " 794 "resource (length=%"PRIu64")\n", 795 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 796 return 1; 797 } 798 return 0; 799 } 800 801 static int 802 reg_bit_pos_is_invalid(uint8_t bit_pos) 803 { 804 if (bit_pos <= 31) 805 return 0; 806 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 807 return 1; 808 } 809 810 #define display_port_and_reg_off(port_id, reg_off) \ 811 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 812 813 static inline void 814 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 815 { 816 display_port_and_reg_off(port_id, (unsigned)reg_off); 817 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 818 } 819 820 void 821 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 822 { 823 uint32_t reg_v; 824 825 826 if (port_id_is_invalid(port_id, ENABLED_WARN)) 827 return; 828 if (port_reg_off_is_invalid(port_id, reg_off)) 829 return; 830 if (reg_bit_pos_is_invalid(bit_x)) 831 return; 832 reg_v = port_id_pci_reg_read(port_id, reg_off); 833 display_port_and_reg_off(port_id, (unsigned)reg_off); 834 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 835 } 836 837 void 838 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 839 uint8_t bit1_pos, uint8_t bit2_pos) 840 { 841 uint32_t reg_v; 842 uint8_t l_bit; 843 uint8_t h_bit; 844 845 if (port_id_is_invalid(port_id, ENABLED_WARN)) 846 return; 847 if (port_reg_off_is_invalid(port_id, reg_off)) 848 return; 849 if (reg_bit_pos_is_invalid(bit1_pos)) 850 return; 851 if (reg_bit_pos_is_invalid(bit2_pos)) 852 return; 853 if (bit1_pos > bit2_pos) 854 l_bit = bit2_pos, h_bit = bit1_pos; 855 else 856 l_bit = bit1_pos, h_bit = bit2_pos; 857 858 reg_v = port_id_pci_reg_read(port_id, reg_off); 859 reg_v >>= l_bit; 860 if (h_bit < 31) 861 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 862 display_port_and_reg_off(port_id, (unsigned)reg_off); 863 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 864 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 865 } 866 867 void 868 port_reg_display(portid_t port_id, uint32_t reg_off) 869 { 870 uint32_t reg_v; 871 872 if (port_id_is_invalid(port_id, ENABLED_WARN)) 873 return; 874 if (port_reg_off_is_invalid(port_id, reg_off)) 875 return; 876 reg_v = port_id_pci_reg_read(port_id, reg_off); 877 display_port_reg_value(port_id, reg_off, reg_v); 878 } 879 880 void 881 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 882 uint8_t bit_v) 883 { 884 uint32_t reg_v; 885 886 if (port_id_is_invalid(port_id, ENABLED_WARN)) 887 return; 888 if (port_reg_off_is_invalid(port_id, reg_off)) 889 return; 890 if (reg_bit_pos_is_invalid(bit_pos)) 891 return; 892 if (bit_v > 1) { 893 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 894 return; 895 } 896 reg_v = port_id_pci_reg_read(port_id, reg_off); 897 if (bit_v == 0) 898 reg_v &= ~(1 << bit_pos); 899 else 900 reg_v |= (1 << bit_pos); 901 port_id_pci_reg_write(port_id, reg_off, reg_v); 902 display_port_reg_value(port_id, reg_off, reg_v); 903 } 904 905 void 906 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 907 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 908 { 909 uint32_t max_v; 910 uint32_t reg_v; 911 uint8_t l_bit; 912 uint8_t h_bit; 913 914 if (port_id_is_invalid(port_id, ENABLED_WARN)) 915 return; 916 if (port_reg_off_is_invalid(port_id, reg_off)) 917 return; 918 if (reg_bit_pos_is_invalid(bit1_pos)) 919 return; 920 if (reg_bit_pos_is_invalid(bit2_pos)) 921 return; 922 if (bit1_pos > bit2_pos) 923 l_bit = bit2_pos, h_bit = bit1_pos; 924 else 925 l_bit = bit1_pos, h_bit = bit2_pos; 926 927 if ((h_bit - l_bit) < 31) 928 max_v = (1 << (h_bit - l_bit + 1)) - 1; 929 else 930 max_v = 0xFFFFFFFF; 931 932 if (value > max_v) { 933 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 934 (unsigned)value, (unsigned)value, 935 (unsigned)max_v, (unsigned)max_v); 936 return; 937 } 938 reg_v = port_id_pci_reg_read(port_id, reg_off); 939 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 940 reg_v |= (value << l_bit); /* Set changed bits */ 941 port_id_pci_reg_write(port_id, reg_off, reg_v); 942 display_port_reg_value(port_id, reg_off, reg_v); 943 } 944 945 void 946 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 947 { 948 if (port_id_is_invalid(port_id, ENABLED_WARN)) 949 return; 950 if (port_reg_off_is_invalid(port_id, reg_off)) 951 return; 952 port_id_pci_reg_write(port_id, reg_off, reg_v); 953 display_port_reg_value(port_id, reg_off, reg_v); 954 } 955 956 void 957 port_mtu_set(portid_t port_id, uint16_t mtu) 958 { 959 int diag; 960 961 if (port_id_is_invalid(port_id, ENABLED_WARN)) 962 return; 963 diag = rte_eth_dev_set_mtu(port_id, mtu); 964 if (diag == 0) 965 return; 966 printf("Set MTU failed. diag=%d\n", diag); 967 } 968 969 /* Generic flow management functions. */ 970 971 /** Generate flow_item[] entry. */ 972 #define MK_FLOW_ITEM(t, s) \ 973 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 974 .name = # t, \ 975 .size = s, \ 976 } 977 978 /** Information about known flow pattern items. */ 979 static const struct { 980 const char *name; 981 size_t size; 982 } flow_item[] = { 983 MK_FLOW_ITEM(END, 0), 984 MK_FLOW_ITEM(VOID, 0), 985 MK_FLOW_ITEM(INVERT, 0), 986 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 987 MK_FLOW_ITEM(PF, 0), 988 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 989 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 990 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 991 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 992 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 993 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 994 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 995 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 996 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 997 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 998 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 999 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 1000 MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), 1001 MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), 1002 MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 1003 MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 1004 MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), 1005 MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), 1006 MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), 1007 MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), 1008 }; 1009 1010 /** Compute storage space needed by item specification. */ 1011 static void 1012 flow_item_spec_size(const struct rte_flow_item *item, 1013 size_t *size, size_t *pad) 1014 { 1015 if (!item->spec) { 1016 *size = 0; 1017 goto empty; 1018 } 1019 switch (item->type) { 1020 union { 1021 const struct rte_flow_item_raw *raw; 1022 } spec; 1023 1024 case RTE_FLOW_ITEM_TYPE_RAW: 1025 spec.raw = item->spec; 1026 *size = offsetof(struct rte_flow_item_raw, pattern) + 1027 spec.raw->length * sizeof(*spec.raw->pattern); 1028 break; 1029 default: 1030 *size = flow_item[item->type].size; 1031 break; 1032 } 1033 empty: 1034 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1035 } 1036 1037 /** Generate flow_action[] entry. */ 1038 #define MK_FLOW_ACTION(t, s) \ 1039 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 1040 .name = # t, \ 1041 .size = s, \ 1042 } 1043 1044 /** Information about known flow actions. */ 1045 static const struct { 1046 const char *name; 1047 size_t size; 1048 } flow_action[] = { 1049 MK_FLOW_ACTION(END, 0), 1050 MK_FLOW_ACTION(VOID, 0), 1051 MK_FLOW_ACTION(PASSTHRU, 0), 1052 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1053 MK_FLOW_ACTION(FLAG, 0), 1054 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 1055 MK_FLOW_ACTION(DROP, 0), 1056 MK_FLOW_ACTION(COUNT, 0), 1057 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 1058 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 1059 MK_FLOW_ACTION(PF, 0), 1060 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1061 }; 1062 1063 /** Compute storage space needed by action configuration. */ 1064 static void 1065 flow_action_conf_size(const struct rte_flow_action *action, 1066 size_t *size, size_t *pad) 1067 { 1068 if (!action->conf) { 1069 *size = 0; 1070 goto empty; 1071 } 1072 switch (action->type) { 1073 union { 1074 const struct rte_flow_action_rss *rss; 1075 } conf; 1076 1077 case RTE_FLOW_ACTION_TYPE_RSS: 1078 conf.rss = action->conf; 1079 *size = offsetof(struct rte_flow_action_rss, queue) + 1080 conf.rss->num * sizeof(*conf.rss->queue); 1081 break; 1082 default: 1083 *size = flow_action[action->type].size; 1084 break; 1085 } 1086 empty: 1087 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1088 } 1089 1090 /** Generate a port_flow entry from attributes/pattern/actions. */ 1091 static struct port_flow * 1092 port_flow_new(const struct rte_flow_attr *attr, 1093 const struct rte_flow_item *pattern, 1094 const struct rte_flow_action *actions) 1095 { 1096 const struct rte_flow_item *item; 1097 const struct rte_flow_action *action; 1098 struct port_flow *pf = NULL; 1099 size_t tmp; 1100 size_t pad; 1101 size_t off1 = 0; 1102 size_t off2 = 0; 1103 int err = ENOTSUP; 1104 1105 store: 1106 item = pattern; 1107 if (pf) 1108 pf->pattern = (void *)&pf->data[off1]; 1109 do { 1110 struct rte_flow_item *dst = NULL; 1111 1112 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1113 !flow_item[item->type].name) 1114 goto notsup; 1115 if (pf) 1116 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1117 off1 += sizeof(*item); 1118 flow_item_spec_size(item, &tmp, &pad); 1119 if (item->spec) { 1120 if (pf) 1121 dst->spec = memcpy(pf->data + off2, 1122 item->spec, tmp); 1123 off2 += tmp + pad; 1124 } 1125 if (item->last) { 1126 if (pf) 1127 dst->last = memcpy(pf->data + off2, 1128 item->last, tmp); 1129 off2 += tmp + pad; 1130 } 1131 if (item->mask) { 1132 if (pf) 1133 dst->mask = memcpy(pf->data + off2, 1134 item->mask, tmp); 1135 off2 += tmp + pad; 1136 } 1137 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1138 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1139 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1140 action = actions; 1141 if (pf) 1142 pf->actions = (void *)&pf->data[off1]; 1143 do { 1144 struct rte_flow_action *dst = NULL; 1145 1146 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1147 !flow_action[action->type].name) 1148 goto notsup; 1149 if (pf) 1150 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1151 off1 += sizeof(*action); 1152 flow_action_conf_size(action, &tmp, &pad); 1153 if (action->conf) { 1154 if (pf) 1155 dst->conf = memcpy(pf->data + off2, 1156 action->conf, tmp); 1157 off2 += tmp + pad; 1158 } 1159 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1160 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1161 if (pf != NULL) 1162 return pf; 1163 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1164 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1165 pf = calloc(1, tmp + off1 + off2); 1166 if (pf == NULL) 1167 err = errno; 1168 else { 1169 *pf = (const struct port_flow){ 1170 .size = tmp + off1 + off2, 1171 .attr = *attr, 1172 }; 1173 tmp -= offsetof(struct port_flow, data); 1174 off2 = tmp + off1; 1175 off1 = tmp; 1176 goto store; 1177 } 1178 notsup: 1179 rte_errno = err; 1180 return NULL; 1181 } 1182 1183 /** Print a message out of a flow error. */ 1184 static int 1185 port_flow_complain(struct rte_flow_error *error) 1186 { 1187 static const char *const errstrlist[] = { 1188 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1189 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1190 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1191 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1192 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1193 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1194 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1195 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1196 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1197 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1198 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1199 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1200 }; 1201 const char *errstr; 1202 char buf[32]; 1203 int err = rte_errno; 1204 1205 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1206 !errstrlist[error->type]) 1207 errstr = "unknown type"; 1208 else 1209 errstr = errstrlist[error->type]; 1210 printf("Caught error type %d (%s): %s%s\n", 1211 error->type, errstr, 1212 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1213 error->cause), buf) : "", 1214 error->message ? error->message : "(no stated reason)"); 1215 return -err; 1216 } 1217 1218 /** Validate flow rule. */ 1219 int 1220 port_flow_validate(portid_t port_id, 1221 const struct rte_flow_attr *attr, 1222 const struct rte_flow_item *pattern, 1223 const struct rte_flow_action *actions) 1224 { 1225 struct rte_flow_error error; 1226 1227 /* Poisoning to make sure PMDs update it in case of error. */ 1228 memset(&error, 0x11, sizeof(error)); 1229 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1230 return port_flow_complain(&error); 1231 printf("Flow rule validated\n"); 1232 return 0; 1233 } 1234 1235 /** Create flow rule. */ 1236 int 1237 port_flow_create(portid_t port_id, 1238 const struct rte_flow_attr *attr, 1239 const struct rte_flow_item *pattern, 1240 const struct rte_flow_action *actions) 1241 { 1242 struct rte_flow *flow; 1243 struct rte_port *port; 1244 struct port_flow *pf; 1245 uint32_t id; 1246 struct rte_flow_error error; 1247 1248 /* Poisoning to make sure PMDs update it in case of error. */ 1249 memset(&error, 0x22, sizeof(error)); 1250 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1251 if (!flow) 1252 return port_flow_complain(&error); 1253 port = &ports[port_id]; 1254 if (port->flow_list) { 1255 if (port->flow_list->id == UINT32_MAX) { 1256 printf("Highest rule ID is already assigned, delete" 1257 " it first"); 1258 rte_flow_destroy(port_id, flow, NULL); 1259 return -ENOMEM; 1260 } 1261 id = port->flow_list->id + 1; 1262 } else 1263 id = 0; 1264 pf = port_flow_new(attr, pattern, actions); 1265 if (!pf) { 1266 int err = rte_errno; 1267 1268 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1269 rte_flow_destroy(port_id, flow, NULL); 1270 return -err; 1271 } 1272 pf->next = port->flow_list; 1273 pf->id = id; 1274 pf->flow = flow; 1275 port->flow_list = pf; 1276 printf("Flow rule #%u created\n", pf->id); 1277 return 0; 1278 } 1279 1280 /** Destroy a number of flow rules. */ 1281 int 1282 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1283 { 1284 struct rte_port *port; 1285 struct port_flow **tmp; 1286 uint32_t c = 0; 1287 int ret = 0; 1288 1289 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1290 port_id == (portid_t)RTE_PORT_ALL) 1291 return -EINVAL; 1292 port = &ports[port_id]; 1293 tmp = &port->flow_list; 1294 while (*tmp) { 1295 uint32_t i; 1296 1297 for (i = 0; i != n; ++i) { 1298 struct rte_flow_error error; 1299 struct port_flow *pf = *tmp; 1300 1301 if (rule[i] != pf->id) 1302 continue; 1303 /* 1304 * Poisoning to make sure PMDs update it in case 1305 * of error. 1306 */ 1307 memset(&error, 0x33, sizeof(error)); 1308 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1309 ret = port_flow_complain(&error); 1310 continue; 1311 } 1312 printf("Flow rule #%u destroyed\n", pf->id); 1313 *tmp = pf->next; 1314 free(pf); 1315 break; 1316 } 1317 if (i == n) 1318 tmp = &(*tmp)->next; 1319 ++c; 1320 } 1321 return ret; 1322 } 1323 1324 /** Remove all flow rules. */ 1325 int 1326 port_flow_flush(portid_t port_id) 1327 { 1328 struct rte_flow_error error; 1329 struct rte_port *port; 1330 int ret = 0; 1331 1332 /* Poisoning to make sure PMDs update it in case of error. */ 1333 memset(&error, 0x44, sizeof(error)); 1334 if (rte_flow_flush(port_id, &error)) { 1335 ret = port_flow_complain(&error); 1336 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1337 port_id == (portid_t)RTE_PORT_ALL) 1338 return ret; 1339 } 1340 port = &ports[port_id]; 1341 while (port->flow_list) { 1342 struct port_flow *pf = port->flow_list->next; 1343 1344 free(port->flow_list); 1345 port->flow_list = pf; 1346 } 1347 return ret; 1348 } 1349 1350 /** Query a flow rule. */ 1351 int 1352 port_flow_query(portid_t port_id, uint32_t rule, 1353 enum rte_flow_action_type action) 1354 { 1355 struct rte_flow_error error; 1356 struct rte_port *port; 1357 struct port_flow *pf; 1358 const char *name; 1359 union { 1360 struct rte_flow_query_count count; 1361 } query; 1362 1363 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1364 port_id == (portid_t)RTE_PORT_ALL) 1365 return -EINVAL; 1366 port = &ports[port_id]; 1367 for (pf = port->flow_list; pf; pf = pf->next) 1368 if (pf->id == rule) 1369 break; 1370 if (!pf) { 1371 printf("Flow rule #%u not found\n", rule); 1372 return -ENOENT; 1373 } 1374 if ((unsigned int)action >= RTE_DIM(flow_action) || 1375 !flow_action[action].name) 1376 name = "unknown"; 1377 else 1378 name = flow_action[action].name; 1379 switch (action) { 1380 case RTE_FLOW_ACTION_TYPE_COUNT: 1381 break; 1382 default: 1383 printf("Cannot query action type %d (%s)\n", action, name); 1384 return -ENOTSUP; 1385 } 1386 /* Poisoning to make sure PMDs update it in case of error. */ 1387 memset(&error, 0x55, sizeof(error)); 1388 memset(&query, 0, sizeof(query)); 1389 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1390 return port_flow_complain(&error); 1391 switch (action) { 1392 case RTE_FLOW_ACTION_TYPE_COUNT: 1393 printf("%s:\n" 1394 " hits_set: %u\n" 1395 " bytes_set: %u\n" 1396 " hits: %" PRIu64 "\n" 1397 " bytes: %" PRIu64 "\n", 1398 name, 1399 query.count.hits_set, 1400 query.count.bytes_set, 1401 query.count.hits, 1402 query.count.bytes); 1403 break; 1404 default: 1405 printf("Cannot display result for action type %d (%s)\n", 1406 action, name); 1407 break; 1408 } 1409 return 0; 1410 } 1411 1412 /** List flow rules. */ 1413 void 1414 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1415 { 1416 struct rte_port *port; 1417 struct port_flow *pf; 1418 struct port_flow *list = NULL; 1419 uint32_t i; 1420 1421 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1422 port_id == (portid_t)RTE_PORT_ALL) 1423 return; 1424 port = &ports[port_id]; 1425 if (!port->flow_list) 1426 return; 1427 /* Sort flows by group, priority and ID. */ 1428 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1429 struct port_flow **tmp; 1430 1431 if (n) { 1432 /* Filter out unwanted groups. */ 1433 for (i = 0; i != n; ++i) 1434 if (pf->attr.group == group[i]) 1435 break; 1436 if (i == n) 1437 continue; 1438 } 1439 tmp = &list; 1440 while (*tmp && 1441 (pf->attr.group > (*tmp)->attr.group || 1442 (pf->attr.group == (*tmp)->attr.group && 1443 pf->attr.priority > (*tmp)->attr.priority) || 1444 (pf->attr.group == (*tmp)->attr.group && 1445 pf->attr.priority == (*tmp)->attr.priority && 1446 pf->id > (*tmp)->id))) 1447 tmp = &(*tmp)->tmp; 1448 pf->tmp = *tmp; 1449 *tmp = pf; 1450 } 1451 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1452 for (pf = list; pf != NULL; pf = pf->tmp) { 1453 const struct rte_flow_item *item = pf->pattern; 1454 const struct rte_flow_action *action = pf->actions; 1455 1456 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1457 pf->id, 1458 pf->attr.group, 1459 pf->attr.priority, 1460 pf->attr.ingress ? 'i' : '-', 1461 pf->attr.egress ? 'e' : '-'); 1462 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1463 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1464 printf("%s ", flow_item[item->type].name); 1465 ++item; 1466 } 1467 printf("=>"); 1468 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1469 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1470 printf(" %s", flow_action[action->type].name); 1471 ++action; 1472 } 1473 printf("\n"); 1474 } 1475 } 1476 1477 /** Restrict ingress traffic to the defined flow rules. */ 1478 int 1479 port_flow_isolate(portid_t port_id, int set) 1480 { 1481 struct rte_flow_error error; 1482 1483 /* Poisoning to make sure PMDs update it in case of error. */ 1484 memset(&error, 0x66, sizeof(error)); 1485 if (rte_flow_isolate(port_id, set, &error)) 1486 return port_flow_complain(&error); 1487 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1488 port_id, 1489 set ? "now restricted" : "not restricted anymore"); 1490 return 0; 1491 } 1492 1493 /* 1494 * RX/TX ring descriptors display functions. 1495 */ 1496 int 1497 rx_queue_id_is_invalid(queueid_t rxq_id) 1498 { 1499 if (rxq_id < nb_rxq) 1500 return 0; 1501 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1502 return 1; 1503 } 1504 1505 int 1506 tx_queue_id_is_invalid(queueid_t txq_id) 1507 { 1508 if (txq_id < nb_txq) 1509 return 0; 1510 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1511 return 1; 1512 } 1513 1514 static int 1515 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1516 { 1517 if (rxdesc_id < nb_rxd) 1518 return 0; 1519 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1520 rxdesc_id, nb_rxd); 1521 return 1; 1522 } 1523 1524 static int 1525 tx_desc_id_is_invalid(uint16_t txdesc_id) 1526 { 1527 if (txdesc_id < nb_txd) 1528 return 0; 1529 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1530 txdesc_id, nb_txd); 1531 return 1; 1532 } 1533 1534 static const struct rte_memzone * 1535 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 1536 { 1537 char mz_name[RTE_MEMZONE_NAMESIZE]; 1538 const struct rte_memzone *mz; 1539 1540 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1541 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1542 mz = rte_memzone_lookup(mz_name); 1543 if (mz == NULL) 1544 printf("%s ring memory zoneof (port %d, queue %d) not" 1545 "found (zone name = %s\n", 1546 ring_name, port_id, q_id, mz_name); 1547 return mz; 1548 } 1549 1550 union igb_ring_dword { 1551 uint64_t dword; 1552 struct { 1553 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1554 uint32_t lo; 1555 uint32_t hi; 1556 #else 1557 uint32_t hi; 1558 uint32_t lo; 1559 #endif 1560 } words; 1561 }; 1562 1563 struct igb_ring_desc_32_bytes { 1564 union igb_ring_dword lo_dword; 1565 union igb_ring_dword hi_dword; 1566 union igb_ring_dword resv1; 1567 union igb_ring_dword resv2; 1568 }; 1569 1570 struct igb_ring_desc_16_bytes { 1571 union igb_ring_dword lo_dword; 1572 union igb_ring_dword hi_dword; 1573 }; 1574 1575 static void 1576 ring_rxd_display_dword(union igb_ring_dword dword) 1577 { 1578 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1579 (unsigned)dword.words.hi); 1580 } 1581 1582 static void 1583 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1584 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1585 portid_t port_id, 1586 #else 1587 __rte_unused portid_t port_id, 1588 #endif 1589 uint16_t desc_id) 1590 { 1591 struct igb_ring_desc_16_bytes *ring = 1592 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1593 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1594 struct rte_eth_dev_info dev_info; 1595 1596 memset(&dev_info, 0, sizeof(dev_info)); 1597 rte_eth_dev_info_get(port_id, &dev_info); 1598 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1599 /* 32 bytes RX descriptor, i40e only */ 1600 struct igb_ring_desc_32_bytes *ring = 1601 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1602 ring[desc_id].lo_dword.dword = 1603 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1604 ring_rxd_display_dword(ring[desc_id].lo_dword); 1605 ring[desc_id].hi_dword.dword = 1606 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1607 ring_rxd_display_dword(ring[desc_id].hi_dword); 1608 ring[desc_id].resv1.dword = 1609 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1610 ring_rxd_display_dword(ring[desc_id].resv1); 1611 ring[desc_id].resv2.dword = 1612 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1613 ring_rxd_display_dword(ring[desc_id].resv2); 1614 1615 return; 1616 } 1617 #endif 1618 /* 16 bytes RX descriptor */ 1619 ring[desc_id].lo_dword.dword = 1620 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1621 ring_rxd_display_dword(ring[desc_id].lo_dword); 1622 ring[desc_id].hi_dword.dword = 1623 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1624 ring_rxd_display_dword(ring[desc_id].hi_dword); 1625 } 1626 1627 static void 1628 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1629 { 1630 struct igb_ring_desc_16_bytes *ring; 1631 struct igb_ring_desc_16_bytes txd; 1632 1633 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1634 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1635 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1636 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1637 (unsigned)txd.lo_dword.words.lo, 1638 (unsigned)txd.lo_dword.words.hi, 1639 (unsigned)txd.hi_dword.words.lo, 1640 (unsigned)txd.hi_dword.words.hi); 1641 } 1642 1643 void 1644 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1645 { 1646 const struct rte_memzone *rx_mz; 1647 1648 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1649 return; 1650 if (rx_queue_id_is_invalid(rxq_id)) 1651 return; 1652 if (rx_desc_id_is_invalid(rxd_id)) 1653 return; 1654 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1655 if (rx_mz == NULL) 1656 return; 1657 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1658 } 1659 1660 void 1661 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1662 { 1663 const struct rte_memzone *tx_mz; 1664 1665 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1666 return; 1667 if (tx_queue_id_is_invalid(txq_id)) 1668 return; 1669 if (tx_desc_id_is_invalid(txd_id)) 1670 return; 1671 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1672 if (tx_mz == NULL) 1673 return; 1674 ring_tx_descriptor_display(tx_mz, txd_id); 1675 } 1676 1677 void 1678 fwd_lcores_config_display(void) 1679 { 1680 lcoreid_t lc_id; 1681 1682 printf("List of forwarding lcores:"); 1683 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1684 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1685 printf("\n"); 1686 } 1687 void 1688 rxtx_config_display(void) 1689 { 1690 portid_t pid; 1691 1692 printf(" %s packet forwarding%s packets/burst=%d\n", 1693 cur_fwd_eng->fwd_mode_name, 1694 retry_enabled == 0 ? "" : " with retry", 1695 nb_pkt_per_burst); 1696 1697 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1698 printf(" packet len=%u - nb packet segments=%d\n", 1699 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1700 1701 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1702 nb_fwd_lcores, nb_fwd_ports); 1703 1704 RTE_ETH_FOREACH_DEV(pid) { 1705 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf; 1706 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf; 1707 1708 printf(" port %d:\n", (unsigned int)pid); 1709 printf(" CRC stripping %s\n", 1710 (ports[pid].dev_conf.rxmode.offloads & 1711 DEV_RX_OFFLOAD_CRC_STRIP) ? 1712 "enabled" : "disabled"); 1713 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1714 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1715 printf(" RX threshold registers: pthresh=%d hthresh=%d " 1716 " wthresh=%d\n", 1717 rx_conf->rx_thresh.pthresh, 1718 rx_conf->rx_thresh.hthresh, 1719 rx_conf->rx_thresh.wthresh); 1720 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1721 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1722 printf(" TX threshold registers: pthresh=%d hthresh=%d " 1723 " wthresh=%d\n", 1724 tx_conf->tx_thresh.pthresh, 1725 tx_conf->tx_thresh.hthresh, 1726 tx_conf->tx_thresh.wthresh); 1727 printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"" 1728 " - TXQ offloads=0x%"PRIx64"\n", 1729 tx_conf->tx_rs_thresh, tx_conf->txq_flags, 1730 tx_conf->offloads); 1731 } 1732 } 1733 1734 void 1735 port_rss_reta_info(portid_t port_id, 1736 struct rte_eth_rss_reta_entry64 *reta_conf, 1737 uint16_t nb_entries) 1738 { 1739 uint16_t i, idx, shift; 1740 int ret; 1741 1742 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1743 return; 1744 1745 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1746 if (ret != 0) { 1747 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1748 return; 1749 } 1750 1751 for (i = 0; i < nb_entries; i++) { 1752 idx = i / RTE_RETA_GROUP_SIZE; 1753 shift = i % RTE_RETA_GROUP_SIZE; 1754 if (!(reta_conf[idx].mask & (1ULL << shift))) 1755 continue; 1756 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1757 i, reta_conf[idx].reta[shift]); 1758 } 1759 } 1760 1761 /* 1762 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1763 * key of the port. 1764 */ 1765 void 1766 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1767 { 1768 struct rte_eth_rss_conf rss_conf; 1769 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1770 uint64_t rss_hf; 1771 uint8_t i; 1772 int diag; 1773 struct rte_eth_dev_info dev_info; 1774 uint8_t hash_key_size; 1775 1776 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1777 return; 1778 1779 memset(&dev_info, 0, sizeof(dev_info)); 1780 rte_eth_dev_info_get(port_id, &dev_info); 1781 if (dev_info.hash_key_size > 0 && 1782 dev_info.hash_key_size <= sizeof(rss_key)) 1783 hash_key_size = dev_info.hash_key_size; 1784 else { 1785 printf("dev_info did not provide a valid hash key size\n"); 1786 return; 1787 } 1788 1789 rss_conf.rss_hf = 0; 1790 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1791 if (!strcmp(rss_info, rss_type_table[i].str)) 1792 rss_conf.rss_hf = rss_type_table[i].rss_type; 1793 } 1794 1795 /* Get RSS hash key if asked to display it */ 1796 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1797 rss_conf.rss_key_len = hash_key_size; 1798 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1799 if (diag != 0) { 1800 switch (diag) { 1801 case -ENODEV: 1802 printf("port index %d invalid\n", port_id); 1803 break; 1804 case -ENOTSUP: 1805 printf("operation not supported by device\n"); 1806 break; 1807 default: 1808 printf("operation failed - diag=%d\n", diag); 1809 break; 1810 } 1811 return; 1812 } 1813 rss_hf = rss_conf.rss_hf; 1814 if (rss_hf == 0) { 1815 printf("RSS disabled\n"); 1816 return; 1817 } 1818 printf("RSS functions:\n "); 1819 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1820 if (rss_hf & rss_type_table[i].rss_type) 1821 printf("%s ", rss_type_table[i].str); 1822 } 1823 printf("\n"); 1824 if (!show_rss_key) 1825 return; 1826 printf("RSS key:\n"); 1827 for (i = 0; i < hash_key_size; i++) 1828 printf("%02X", rss_key[i]); 1829 printf("\n"); 1830 } 1831 1832 void 1833 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1834 uint hash_key_len) 1835 { 1836 struct rte_eth_rss_conf rss_conf; 1837 int diag; 1838 unsigned int i; 1839 1840 rss_conf.rss_key = NULL; 1841 rss_conf.rss_key_len = hash_key_len; 1842 rss_conf.rss_hf = 0; 1843 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1844 if (!strcmp(rss_type_table[i].str, rss_type)) 1845 rss_conf.rss_hf = rss_type_table[i].rss_type; 1846 } 1847 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1848 if (diag == 0) { 1849 rss_conf.rss_key = hash_key; 1850 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1851 } 1852 if (diag == 0) 1853 return; 1854 1855 switch (diag) { 1856 case -ENODEV: 1857 printf("port index %d invalid\n", port_id); 1858 break; 1859 case -ENOTSUP: 1860 printf("operation not supported by device\n"); 1861 break; 1862 default: 1863 printf("operation failed - diag=%d\n", diag); 1864 break; 1865 } 1866 } 1867 1868 /* 1869 * Setup forwarding configuration for each logical core. 1870 */ 1871 static void 1872 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1873 { 1874 streamid_t nb_fs_per_lcore; 1875 streamid_t nb_fs; 1876 streamid_t sm_id; 1877 lcoreid_t nb_extra; 1878 lcoreid_t nb_fc; 1879 lcoreid_t nb_lc; 1880 lcoreid_t lc_id; 1881 1882 nb_fs = cfg->nb_fwd_streams; 1883 nb_fc = cfg->nb_fwd_lcores; 1884 if (nb_fs <= nb_fc) { 1885 nb_fs_per_lcore = 1; 1886 nb_extra = 0; 1887 } else { 1888 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1889 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1890 } 1891 1892 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1893 sm_id = 0; 1894 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1895 fwd_lcores[lc_id]->stream_idx = sm_id; 1896 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1897 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1898 } 1899 1900 /* 1901 * Assign extra remaining streams, if any. 1902 */ 1903 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1904 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1905 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1906 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1907 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1908 } 1909 } 1910 1911 static void 1912 simple_fwd_config_setup(void) 1913 { 1914 portid_t i; 1915 portid_t j; 1916 portid_t inc = 2; 1917 1918 if (port_topology == PORT_TOPOLOGY_CHAINED || 1919 port_topology == PORT_TOPOLOGY_LOOP) { 1920 inc = 1; 1921 } else if (nb_fwd_ports % 2) { 1922 printf("\nWarning! Cannot handle an odd number of ports " 1923 "with the current port topology. Configuration " 1924 "must be changed to have an even number of ports, " 1925 "or relaunch application with " 1926 "--port-topology=chained\n\n"); 1927 } 1928 1929 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1930 cur_fwd_config.nb_fwd_streams = 1931 (streamid_t) cur_fwd_config.nb_fwd_ports; 1932 1933 /* reinitialize forwarding streams */ 1934 init_fwd_streams(); 1935 1936 /* 1937 * In the simple forwarding test, the number of forwarding cores 1938 * must be lower or equal to the number of forwarding ports. 1939 */ 1940 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1941 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1942 cur_fwd_config.nb_fwd_lcores = 1943 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1944 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1945 1946 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { 1947 if (port_topology != PORT_TOPOLOGY_LOOP) 1948 j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); 1949 else 1950 j = i; 1951 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1952 fwd_streams[i]->rx_queue = 0; 1953 fwd_streams[i]->tx_port = fwd_ports_ids[j]; 1954 fwd_streams[i]->tx_queue = 0; 1955 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 1956 fwd_streams[i]->retry_enabled = retry_enabled; 1957 1958 if (port_topology == PORT_TOPOLOGY_PAIRED) { 1959 fwd_streams[j]->rx_port = fwd_ports_ids[j]; 1960 fwd_streams[j]->rx_queue = 0; 1961 fwd_streams[j]->tx_port = fwd_ports_ids[i]; 1962 fwd_streams[j]->tx_queue = 0; 1963 fwd_streams[j]->peer_addr = fwd_streams[j]->tx_port; 1964 fwd_streams[j]->retry_enabled = retry_enabled; 1965 } 1966 } 1967 } 1968 1969 /** 1970 * For the RSS forwarding test all streams distributed over lcores. Each stream 1971 * being composed of a RX queue to poll on a RX port for input messages, 1972 * associated with a TX queue of a TX port where to send forwarded packets. 1973 * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" 1974 * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two 1975 * following rules: 1976 * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd 1977 * - TxQl = RxQj 1978 */ 1979 static void 1980 rss_fwd_config_setup(void) 1981 { 1982 portid_t rxp; 1983 portid_t txp; 1984 queueid_t rxq; 1985 queueid_t nb_q; 1986 streamid_t sm_id; 1987 1988 nb_q = nb_rxq; 1989 if (nb_q > nb_txq) 1990 nb_q = nb_txq; 1991 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1992 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1993 cur_fwd_config.nb_fwd_streams = 1994 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1995 1996 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1997 cur_fwd_config.nb_fwd_lcores = 1998 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1999 2000 /* reinitialize forwarding streams */ 2001 init_fwd_streams(); 2002 2003 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2004 rxp = 0; rxq = 0; 2005 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2006 struct fwd_stream *fs; 2007 2008 fs = fwd_streams[sm_id]; 2009 2010 if ((rxp & 0x1) == 0) 2011 txp = (portid_t) (rxp + 1); 2012 else 2013 txp = (portid_t) (rxp - 1); 2014 /* 2015 * if we are in loopback, simply send stuff out through the 2016 * ingress port 2017 */ 2018 if (port_topology == PORT_TOPOLOGY_LOOP) 2019 txp = rxp; 2020 2021 fs->rx_port = fwd_ports_ids[rxp]; 2022 fs->rx_queue = rxq; 2023 fs->tx_port = fwd_ports_ids[txp]; 2024 fs->tx_queue = rxq; 2025 fs->peer_addr = fs->tx_port; 2026 fs->retry_enabled = retry_enabled; 2027 rxq = (queueid_t) (rxq + 1); 2028 if (rxq < nb_q) 2029 continue; 2030 /* 2031 * rxq == nb_q 2032 * Restart from RX queue 0 on next RX port 2033 */ 2034 rxq = 0; 2035 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2036 rxp = (portid_t) 2037 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2038 else 2039 rxp = (portid_t) (rxp + 1); 2040 } 2041 } 2042 2043 /** 2044 * For the DCB forwarding test, each core is assigned on each traffic class. 2045 * 2046 * Each core is assigned a multi-stream, each stream being composed of 2047 * a RX queue to poll on a RX port for input messages, associated with 2048 * a TX queue of a TX port where to send forwarded packets. All RX and 2049 * TX queues are mapping to the same traffic class. 2050 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 2051 * the same core 2052 */ 2053 static void 2054 dcb_fwd_config_setup(void) 2055 { 2056 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 2057 portid_t txp, rxp = 0; 2058 queueid_t txq, rxq = 0; 2059 lcoreid_t lc_id; 2060 uint16_t nb_rx_queue, nb_tx_queue; 2061 uint16_t i, j, k, sm_id = 0; 2062 uint8_t tc = 0; 2063 2064 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2065 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2066 cur_fwd_config.nb_fwd_streams = 2067 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2068 2069 /* reinitialize forwarding streams */ 2070 init_fwd_streams(); 2071 sm_id = 0; 2072 txp = 1; 2073 /* get the dcb info on the first RX and TX ports */ 2074 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2075 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2076 2077 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2078 fwd_lcores[lc_id]->stream_nb = 0; 2079 fwd_lcores[lc_id]->stream_idx = sm_id; 2080 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2081 /* if the nb_queue is zero, means this tc is 2082 * not enabled on the POOL 2083 */ 2084 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2085 break; 2086 k = fwd_lcores[lc_id]->stream_nb + 2087 fwd_lcores[lc_id]->stream_idx; 2088 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2089 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2090 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2091 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2092 for (j = 0; j < nb_rx_queue; j++) { 2093 struct fwd_stream *fs; 2094 2095 fs = fwd_streams[k + j]; 2096 fs->rx_port = fwd_ports_ids[rxp]; 2097 fs->rx_queue = rxq + j; 2098 fs->tx_port = fwd_ports_ids[txp]; 2099 fs->tx_queue = txq + j % nb_tx_queue; 2100 fs->peer_addr = fs->tx_port; 2101 fs->retry_enabled = retry_enabled; 2102 } 2103 fwd_lcores[lc_id]->stream_nb += 2104 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2105 } 2106 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2107 2108 tc++; 2109 if (tc < rxp_dcb_info.nb_tcs) 2110 continue; 2111 /* Restart from TC 0 on next RX port */ 2112 tc = 0; 2113 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2114 rxp = (portid_t) 2115 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2116 else 2117 rxp++; 2118 if (rxp >= nb_fwd_ports) 2119 return; 2120 /* get the dcb information on next RX and TX ports */ 2121 if ((rxp & 0x1) == 0) 2122 txp = (portid_t) (rxp + 1); 2123 else 2124 txp = (portid_t) (rxp - 1); 2125 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2126 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2127 } 2128 } 2129 2130 static void 2131 icmp_echo_config_setup(void) 2132 { 2133 portid_t rxp; 2134 queueid_t rxq; 2135 lcoreid_t lc_id; 2136 uint16_t sm_id; 2137 2138 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2139 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2140 (nb_txq * nb_fwd_ports); 2141 else 2142 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2143 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2144 cur_fwd_config.nb_fwd_streams = 2145 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2146 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2147 cur_fwd_config.nb_fwd_lcores = 2148 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2149 if (verbose_level > 0) { 2150 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2151 __FUNCTION__, 2152 cur_fwd_config.nb_fwd_lcores, 2153 cur_fwd_config.nb_fwd_ports, 2154 cur_fwd_config.nb_fwd_streams); 2155 } 2156 2157 /* reinitialize forwarding streams */ 2158 init_fwd_streams(); 2159 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2160 rxp = 0; rxq = 0; 2161 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2162 if (verbose_level > 0) 2163 printf(" core=%d: \n", lc_id); 2164 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2165 struct fwd_stream *fs; 2166 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2167 fs->rx_port = fwd_ports_ids[rxp]; 2168 fs->rx_queue = rxq; 2169 fs->tx_port = fs->rx_port; 2170 fs->tx_queue = rxq; 2171 fs->peer_addr = fs->tx_port; 2172 fs->retry_enabled = retry_enabled; 2173 if (verbose_level > 0) 2174 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2175 sm_id, fs->rx_port, fs->rx_queue, 2176 fs->tx_queue); 2177 rxq = (queueid_t) (rxq + 1); 2178 if (rxq == nb_rxq) { 2179 rxq = 0; 2180 rxp = (portid_t) (rxp + 1); 2181 } 2182 } 2183 } 2184 } 2185 2186 void 2187 fwd_config_setup(void) 2188 { 2189 cur_fwd_config.fwd_eng = cur_fwd_eng; 2190 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2191 icmp_echo_config_setup(); 2192 return; 2193 } 2194 if ((nb_rxq > 1) && (nb_txq > 1)){ 2195 if (dcb_config) 2196 dcb_fwd_config_setup(); 2197 else 2198 rss_fwd_config_setup(); 2199 } 2200 else 2201 simple_fwd_config_setup(); 2202 } 2203 2204 void 2205 pkt_fwd_config_display(struct fwd_config *cfg) 2206 { 2207 struct fwd_stream *fs; 2208 lcoreid_t lc_id; 2209 streamid_t sm_id; 2210 2211 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2212 "NUMA support %s, MP over anonymous pages %s\n", 2213 cfg->fwd_eng->fwd_mode_name, 2214 retry_enabled == 0 ? "" : " with retry", 2215 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2216 numa_support == 1 ? "enabled" : "disabled", 2217 mp_anon != 0 ? "enabled" : "disabled"); 2218 2219 if (retry_enabled) 2220 printf("TX retry num: %u, delay between TX retries: %uus\n", 2221 burst_tx_retry_num, burst_tx_delay_time); 2222 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2223 printf("Logical Core %u (socket %u) forwards packets on " 2224 "%d streams:", 2225 fwd_lcores_cpuids[lc_id], 2226 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2227 fwd_lcores[lc_id]->stream_nb); 2228 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2229 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2230 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2231 "P=%d/Q=%d (socket %u) ", 2232 fs->rx_port, fs->rx_queue, 2233 ports[fs->rx_port].socket_id, 2234 fs->tx_port, fs->tx_queue, 2235 ports[fs->tx_port].socket_id); 2236 print_ethaddr("peer=", 2237 &peer_eth_addrs[fs->peer_addr]); 2238 } 2239 printf("\n"); 2240 } 2241 printf("\n"); 2242 } 2243 2244 int 2245 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2246 { 2247 unsigned int i; 2248 unsigned int lcore_cpuid; 2249 int record_now; 2250 2251 record_now = 0; 2252 again: 2253 for (i = 0; i < nb_lc; i++) { 2254 lcore_cpuid = lcorelist[i]; 2255 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2256 printf("lcore %u not enabled\n", lcore_cpuid); 2257 return -1; 2258 } 2259 if (lcore_cpuid == rte_get_master_lcore()) { 2260 printf("lcore %u cannot be masked on for running " 2261 "packet forwarding, which is the master lcore " 2262 "and reserved for command line parsing only\n", 2263 lcore_cpuid); 2264 return -1; 2265 } 2266 if (record_now) 2267 fwd_lcores_cpuids[i] = lcore_cpuid; 2268 } 2269 if (record_now == 0) { 2270 record_now = 1; 2271 goto again; 2272 } 2273 nb_cfg_lcores = (lcoreid_t) nb_lc; 2274 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2275 printf("previous number of forwarding cores %u - changed to " 2276 "number of configured cores %u\n", 2277 (unsigned int) nb_fwd_lcores, nb_lc); 2278 nb_fwd_lcores = (lcoreid_t) nb_lc; 2279 } 2280 2281 return 0; 2282 } 2283 2284 int 2285 set_fwd_lcores_mask(uint64_t lcoremask) 2286 { 2287 unsigned int lcorelist[64]; 2288 unsigned int nb_lc; 2289 unsigned int i; 2290 2291 if (lcoremask == 0) { 2292 printf("Invalid NULL mask of cores\n"); 2293 return -1; 2294 } 2295 nb_lc = 0; 2296 for (i = 0; i < 64; i++) { 2297 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2298 continue; 2299 lcorelist[nb_lc++] = i; 2300 } 2301 return set_fwd_lcores_list(lcorelist, nb_lc); 2302 } 2303 2304 void 2305 set_fwd_lcores_number(uint16_t nb_lc) 2306 { 2307 if (nb_lc > nb_cfg_lcores) { 2308 printf("nb fwd cores %u > %u (max. number of configured " 2309 "lcores) - ignored\n", 2310 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2311 return; 2312 } 2313 nb_fwd_lcores = (lcoreid_t) nb_lc; 2314 printf("Number of forwarding cores set to %u\n", 2315 (unsigned int) nb_fwd_lcores); 2316 } 2317 2318 void 2319 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2320 { 2321 unsigned int i; 2322 portid_t port_id; 2323 int record_now; 2324 2325 record_now = 0; 2326 again: 2327 for (i = 0; i < nb_pt; i++) { 2328 port_id = (portid_t) portlist[i]; 2329 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2330 return; 2331 if (record_now) 2332 fwd_ports_ids[i] = port_id; 2333 } 2334 if (record_now == 0) { 2335 record_now = 1; 2336 goto again; 2337 } 2338 nb_cfg_ports = (portid_t) nb_pt; 2339 if (nb_fwd_ports != (portid_t) nb_pt) { 2340 printf("previous number of forwarding ports %u - changed to " 2341 "number of configured ports %u\n", 2342 (unsigned int) nb_fwd_ports, nb_pt); 2343 nb_fwd_ports = (portid_t) nb_pt; 2344 } 2345 } 2346 2347 void 2348 set_fwd_ports_mask(uint64_t portmask) 2349 { 2350 unsigned int portlist[64]; 2351 unsigned int nb_pt; 2352 unsigned int i; 2353 2354 if (portmask == 0) { 2355 printf("Invalid NULL mask of ports\n"); 2356 return; 2357 } 2358 nb_pt = 0; 2359 RTE_ETH_FOREACH_DEV(i) { 2360 if (! ((uint64_t)(1ULL << i) & portmask)) 2361 continue; 2362 portlist[nb_pt++] = i; 2363 } 2364 set_fwd_ports_list(portlist, nb_pt); 2365 } 2366 2367 void 2368 set_fwd_ports_number(uint16_t nb_pt) 2369 { 2370 if (nb_pt > nb_cfg_ports) { 2371 printf("nb fwd ports %u > %u (number of configured " 2372 "ports) - ignored\n", 2373 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2374 return; 2375 } 2376 nb_fwd_ports = (portid_t) nb_pt; 2377 printf("Number of forwarding ports set to %u\n", 2378 (unsigned int) nb_fwd_ports); 2379 } 2380 2381 int 2382 port_is_forwarding(portid_t port_id) 2383 { 2384 unsigned int i; 2385 2386 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2387 return -1; 2388 2389 for (i = 0; i < nb_fwd_ports; i++) { 2390 if (fwd_ports_ids[i] == port_id) 2391 return 1; 2392 } 2393 2394 return 0; 2395 } 2396 2397 void 2398 set_nb_pkt_per_burst(uint16_t nb) 2399 { 2400 if (nb > MAX_PKT_BURST) { 2401 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2402 " ignored\n", 2403 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2404 return; 2405 } 2406 nb_pkt_per_burst = nb; 2407 printf("Number of packets per burst set to %u\n", 2408 (unsigned int) nb_pkt_per_burst); 2409 } 2410 2411 static const char * 2412 tx_split_get_name(enum tx_pkt_split split) 2413 { 2414 uint32_t i; 2415 2416 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2417 if (tx_split_name[i].split == split) 2418 return tx_split_name[i].name; 2419 } 2420 return NULL; 2421 } 2422 2423 void 2424 set_tx_pkt_split(const char *name) 2425 { 2426 uint32_t i; 2427 2428 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2429 if (strcmp(tx_split_name[i].name, name) == 0) { 2430 tx_pkt_split = tx_split_name[i].split; 2431 return; 2432 } 2433 } 2434 printf("unknown value: \"%s\"\n", name); 2435 } 2436 2437 void 2438 show_tx_pkt_segments(void) 2439 { 2440 uint32_t i, n; 2441 const char *split; 2442 2443 n = tx_pkt_nb_segs; 2444 split = tx_split_get_name(tx_pkt_split); 2445 2446 printf("Number of segments: %u\n", n); 2447 printf("Segment sizes: "); 2448 for (i = 0; i != n - 1; i++) 2449 printf("%hu,", tx_pkt_seg_lengths[i]); 2450 printf("%hu\n", tx_pkt_seg_lengths[i]); 2451 printf("Split packet: %s\n", split); 2452 } 2453 2454 void 2455 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2456 { 2457 uint16_t tx_pkt_len; 2458 unsigned i; 2459 2460 if (nb_segs >= (unsigned) nb_txd) { 2461 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2462 nb_segs, (unsigned int) nb_txd); 2463 return; 2464 } 2465 2466 /* 2467 * Check that each segment length is greater or equal than 2468 * the mbuf data sise. 2469 * Check also that the total packet length is greater or equal than the 2470 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2471 */ 2472 tx_pkt_len = 0; 2473 for (i = 0; i < nb_segs; i++) { 2474 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2475 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2476 i, seg_lengths[i], (unsigned) mbuf_data_size); 2477 return; 2478 } 2479 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2480 } 2481 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2482 printf("total packet length=%u < %d - give up\n", 2483 (unsigned) tx_pkt_len, 2484 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2485 return; 2486 } 2487 2488 for (i = 0; i < nb_segs; i++) 2489 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2490 2491 tx_pkt_length = tx_pkt_len; 2492 tx_pkt_nb_segs = (uint8_t) nb_segs; 2493 } 2494 2495 void 2496 setup_gro(const char *onoff, portid_t port_id) 2497 { 2498 if (!rte_eth_dev_is_valid_port(port_id)) { 2499 printf("invalid port id %u\n", port_id); 2500 return; 2501 } 2502 if (test_done == 0) { 2503 printf("Before enable/disable GRO," 2504 " please stop forwarding first\n"); 2505 return; 2506 } 2507 if (strcmp(onoff, "on") == 0) { 2508 if (gro_ports[port_id].enable != 0) { 2509 printf("Port %u has enabled GRO. Please" 2510 " disable GRO first\n", port_id); 2511 return; 2512 } 2513 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2514 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2515 gro_ports[port_id].param.max_flow_num = 2516 GRO_DEFAULT_FLOW_NUM; 2517 gro_ports[port_id].param.max_item_per_flow = 2518 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2519 } 2520 gro_ports[port_id].enable = 1; 2521 } else { 2522 if (gro_ports[port_id].enable == 0) { 2523 printf("Port %u has disabled GRO\n", port_id); 2524 return; 2525 } 2526 gro_ports[port_id].enable = 0; 2527 } 2528 } 2529 2530 void 2531 setup_gro_flush_cycles(uint8_t cycles) 2532 { 2533 if (test_done == 0) { 2534 printf("Before change flush interval for GRO," 2535 " please stop forwarding first.\n"); 2536 return; 2537 } 2538 2539 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 2540 GRO_DEFAULT_FLUSH_CYCLES) { 2541 printf("The flushing cycle be in the range" 2542 " of 1 to %u. Revert to the default" 2543 " value %u.\n", 2544 GRO_MAX_FLUSH_CYCLES, 2545 GRO_DEFAULT_FLUSH_CYCLES); 2546 cycles = GRO_DEFAULT_FLUSH_CYCLES; 2547 } 2548 2549 gro_flush_cycles = cycles; 2550 } 2551 2552 void 2553 show_gro(portid_t port_id) 2554 { 2555 struct rte_gro_param *param; 2556 uint32_t max_pkts_num; 2557 2558 param = &gro_ports[port_id].param; 2559 2560 if (!rte_eth_dev_is_valid_port(port_id)) { 2561 printf("Invalid port id %u.\n", port_id); 2562 return; 2563 } 2564 if (gro_ports[port_id].enable) { 2565 printf("GRO type: TCP/IPv4\n"); 2566 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2567 max_pkts_num = param->max_flow_num * 2568 param->max_item_per_flow; 2569 } else 2570 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 2571 printf("Max number of packets to perform GRO: %u\n", 2572 max_pkts_num); 2573 printf("Flushing cycles: %u\n", gro_flush_cycles); 2574 } else 2575 printf("Port %u doesn't enable GRO.\n", port_id); 2576 } 2577 2578 void 2579 setup_gso(const char *mode, portid_t port_id) 2580 { 2581 if (!rte_eth_dev_is_valid_port(port_id)) { 2582 printf("invalid port id %u\n", port_id); 2583 return; 2584 } 2585 if (strcmp(mode, "on") == 0) { 2586 if (test_done == 0) { 2587 printf("before enabling GSO," 2588 " please stop forwarding first\n"); 2589 return; 2590 } 2591 gso_ports[port_id].enable = 1; 2592 } else if (strcmp(mode, "off") == 0) { 2593 if (test_done == 0) { 2594 printf("before disabling GSO," 2595 " please stop forwarding first\n"); 2596 return; 2597 } 2598 gso_ports[port_id].enable = 0; 2599 } 2600 } 2601 2602 char* 2603 list_pkt_forwarding_modes(void) 2604 { 2605 static char fwd_modes[128] = ""; 2606 const char *separator = "|"; 2607 struct fwd_engine *fwd_eng; 2608 unsigned i = 0; 2609 2610 if (strlen (fwd_modes) == 0) { 2611 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2612 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2613 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2614 strncat(fwd_modes, separator, 2615 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2616 } 2617 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2618 } 2619 2620 return fwd_modes; 2621 } 2622 2623 char* 2624 list_pkt_forwarding_retry_modes(void) 2625 { 2626 static char fwd_modes[128] = ""; 2627 const char *separator = "|"; 2628 struct fwd_engine *fwd_eng; 2629 unsigned i = 0; 2630 2631 if (strlen(fwd_modes) == 0) { 2632 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2633 if (fwd_eng == &rx_only_engine) 2634 continue; 2635 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2636 sizeof(fwd_modes) - 2637 strlen(fwd_modes) - 1); 2638 strncat(fwd_modes, separator, 2639 sizeof(fwd_modes) - 2640 strlen(fwd_modes) - 1); 2641 } 2642 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2643 } 2644 2645 return fwd_modes; 2646 } 2647 2648 void 2649 set_pkt_forwarding_mode(const char *fwd_mode_name) 2650 { 2651 struct fwd_engine *fwd_eng; 2652 unsigned i; 2653 2654 i = 0; 2655 while ((fwd_eng = fwd_engines[i]) != NULL) { 2656 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2657 printf("Set %s packet forwarding mode%s\n", 2658 fwd_mode_name, 2659 retry_enabled == 0 ? "" : " with retry"); 2660 cur_fwd_eng = fwd_eng; 2661 return; 2662 } 2663 i++; 2664 } 2665 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2666 } 2667 2668 void 2669 set_verbose_level(uint16_t vb_level) 2670 { 2671 printf("Change verbose level from %u to %u\n", 2672 (unsigned int) verbose_level, (unsigned int) vb_level); 2673 verbose_level = vb_level; 2674 } 2675 2676 void 2677 vlan_extend_set(portid_t port_id, int on) 2678 { 2679 int diag; 2680 int vlan_offload; 2681 2682 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2683 return; 2684 2685 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2686 2687 if (on) 2688 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2689 else 2690 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2691 2692 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2693 if (diag < 0) 2694 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2695 "diag=%d\n", port_id, on, diag); 2696 } 2697 2698 void 2699 rx_vlan_strip_set(portid_t port_id, int on) 2700 { 2701 int diag; 2702 int vlan_offload; 2703 2704 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2705 return; 2706 2707 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2708 2709 if (on) 2710 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2711 else 2712 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2713 2714 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2715 if (diag < 0) 2716 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2717 "diag=%d\n", port_id, on, diag); 2718 } 2719 2720 void 2721 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2722 { 2723 int diag; 2724 2725 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2726 return; 2727 2728 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2729 if (diag < 0) 2730 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2731 "diag=%d\n", port_id, queue_id, on, diag); 2732 } 2733 2734 void 2735 rx_vlan_filter_set(portid_t port_id, int on) 2736 { 2737 int diag; 2738 int vlan_offload; 2739 2740 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2741 return; 2742 2743 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2744 2745 if (on) 2746 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2747 else 2748 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2749 2750 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2751 if (diag < 0) 2752 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2753 "diag=%d\n", port_id, on, diag); 2754 } 2755 2756 int 2757 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2758 { 2759 int diag; 2760 2761 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2762 return 1; 2763 if (vlan_id_is_invalid(vlan_id)) 2764 return 1; 2765 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2766 if (diag == 0) 2767 return 0; 2768 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2769 "diag=%d\n", 2770 port_id, vlan_id, on, diag); 2771 return -1; 2772 } 2773 2774 void 2775 rx_vlan_all_filter_set(portid_t port_id, int on) 2776 { 2777 uint16_t vlan_id; 2778 2779 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2780 return; 2781 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2782 if (rx_vft_set(port_id, vlan_id, on)) 2783 break; 2784 } 2785 } 2786 2787 void 2788 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2789 { 2790 int diag; 2791 2792 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2793 return; 2794 2795 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2796 if (diag == 0) 2797 return; 2798 2799 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2800 "diag=%d\n", 2801 port_id, vlan_type, tp_id, diag); 2802 } 2803 2804 void 2805 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2806 { 2807 int vlan_offload; 2808 2809 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2810 return; 2811 if (vlan_id_is_invalid(vlan_id)) 2812 return; 2813 2814 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2815 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2816 printf("Error, as QinQ has been enabled.\n"); 2817 return; 2818 } 2819 2820 tx_vlan_reset(port_id); 2821 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT; 2822 ports[port_id].tx_vlan_id = vlan_id; 2823 } 2824 2825 void 2826 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2827 { 2828 int vlan_offload; 2829 2830 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2831 return; 2832 if (vlan_id_is_invalid(vlan_id)) 2833 return; 2834 if (vlan_id_is_invalid(vlan_id_outer)) 2835 return; 2836 2837 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2838 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2839 printf("Error, as QinQ hasn't been enabled.\n"); 2840 return; 2841 } 2842 2843 tx_vlan_reset(port_id); 2844 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT; 2845 ports[port_id].tx_vlan_id = vlan_id; 2846 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2847 } 2848 2849 void 2850 tx_vlan_reset(portid_t port_id) 2851 { 2852 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2853 return; 2854 ports[port_id].dev_conf.txmode.offloads &= 2855 ~(DEV_TX_OFFLOAD_VLAN_INSERT | 2856 DEV_TX_OFFLOAD_QINQ_INSERT); 2857 ports[port_id].tx_vlan_id = 0; 2858 ports[port_id].tx_vlan_id_outer = 0; 2859 } 2860 2861 void 2862 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2863 { 2864 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2865 return; 2866 2867 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2868 } 2869 2870 void 2871 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2872 { 2873 uint16_t i; 2874 uint8_t existing_mapping_found = 0; 2875 2876 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2877 return; 2878 2879 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2880 return; 2881 2882 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2883 printf("map_value not in required range 0..%d\n", 2884 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2885 return; 2886 } 2887 2888 if (!is_rx) { /*then tx*/ 2889 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2890 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2891 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2892 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2893 existing_mapping_found = 1; 2894 break; 2895 } 2896 } 2897 if (!existing_mapping_found) { /* A new additional mapping... */ 2898 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2899 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2900 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2901 nb_tx_queue_stats_mappings++; 2902 } 2903 } 2904 else { /*rx*/ 2905 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2906 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2907 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2908 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2909 existing_mapping_found = 1; 2910 break; 2911 } 2912 } 2913 if (!existing_mapping_found) { /* A new additional mapping... */ 2914 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2915 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2916 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2917 nb_rx_queue_stats_mappings++; 2918 } 2919 } 2920 } 2921 2922 void 2923 set_xstats_hide_zero(uint8_t on_off) 2924 { 2925 xstats_hide_zero = on_off; 2926 } 2927 2928 static inline void 2929 print_fdir_mask(struct rte_eth_fdir_masks *mask) 2930 { 2931 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 2932 2933 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2934 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 2935 " tunnel_id: 0x%08x", 2936 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 2937 rte_be_to_cpu_32(mask->tunnel_id_mask)); 2938 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2939 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 2940 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 2941 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 2942 2943 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 2944 rte_be_to_cpu_16(mask->src_port_mask), 2945 rte_be_to_cpu_16(mask->dst_port_mask)); 2946 2947 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2948 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 2949 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 2950 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 2951 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 2952 2953 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2954 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 2955 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 2956 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 2957 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 2958 } 2959 2960 printf("\n"); 2961 } 2962 2963 static inline void 2964 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2965 { 2966 struct rte_eth_flex_payload_cfg *cfg; 2967 uint32_t i, j; 2968 2969 for (i = 0; i < flex_conf->nb_payloads; i++) { 2970 cfg = &flex_conf->flex_set[i]; 2971 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 2972 printf("\n RAW: "); 2973 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 2974 printf("\n L2_PAYLOAD: "); 2975 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 2976 printf("\n L3_PAYLOAD: "); 2977 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 2978 printf("\n L4_PAYLOAD: "); 2979 else 2980 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 2981 for (j = 0; j < num; j++) 2982 printf(" %-5u", cfg->src_offset[j]); 2983 } 2984 printf("\n"); 2985 } 2986 2987 static char * 2988 flowtype_to_str(uint16_t flow_type) 2989 { 2990 struct flow_type_info { 2991 char str[32]; 2992 uint16_t ftype; 2993 }; 2994 2995 uint8_t i; 2996 static struct flow_type_info flowtype_str_table[] = { 2997 {"raw", RTE_ETH_FLOW_RAW}, 2998 {"ipv4", RTE_ETH_FLOW_IPV4}, 2999 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 3000 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 3001 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 3002 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 3003 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 3004 {"ipv6", RTE_ETH_FLOW_IPV6}, 3005 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 3006 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 3007 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 3008 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 3009 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 3010 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 3011 {"port", RTE_ETH_FLOW_PORT}, 3012 {"vxlan", RTE_ETH_FLOW_VXLAN}, 3013 {"geneve", RTE_ETH_FLOW_GENEVE}, 3014 {"nvgre", RTE_ETH_FLOW_NVGRE}, 3015 }; 3016 3017 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 3018 if (flowtype_str_table[i].ftype == flow_type) 3019 return flowtype_str_table[i].str; 3020 } 3021 3022 return NULL; 3023 } 3024 3025 static inline void 3026 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3027 { 3028 struct rte_eth_fdir_flex_mask *mask; 3029 uint32_t i, j; 3030 char *p; 3031 3032 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 3033 mask = &flex_conf->flex_mask[i]; 3034 p = flowtype_to_str(mask->flow_type); 3035 printf("\n %s:\t", p ? p : "unknown"); 3036 for (j = 0; j < num; j++) 3037 printf(" %02x", mask->mask[j]); 3038 } 3039 printf("\n"); 3040 } 3041 3042 static inline void 3043 print_fdir_flow_type(uint32_t flow_types_mask) 3044 { 3045 int i; 3046 char *p; 3047 3048 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 3049 if (!(flow_types_mask & (1 << i))) 3050 continue; 3051 p = flowtype_to_str(i); 3052 if (p) 3053 printf(" %s", p); 3054 else 3055 printf(" unknown"); 3056 } 3057 printf("\n"); 3058 } 3059 3060 void 3061 fdir_get_infos(portid_t port_id) 3062 { 3063 struct rte_eth_fdir_stats fdir_stat; 3064 struct rte_eth_fdir_info fdir_info; 3065 int ret; 3066 3067 static const char *fdir_stats_border = "########################"; 3068 3069 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3070 return; 3071 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 3072 if (ret < 0) { 3073 printf("\n FDIR is not supported on port %-2d\n", 3074 port_id); 3075 return; 3076 } 3077 3078 memset(&fdir_info, 0, sizeof(fdir_info)); 3079 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3080 RTE_ETH_FILTER_INFO, &fdir_info); 3081 memset(&fdir_stat, 0, sizeof(fdir_stat)); 3082 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3083 RTE_ETH_FILTER_STATS, &fdir_stat); 3084 printf("\n %s FDIR infos for port %-2d %s\n", 3085 fdir_stats_border, port_id, fdir_stats_border); 3086 printf(" MODE: "); 3087 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 3088 printf(" PERFECT\n"); 3089 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 3090 printf(" PERFECT-MAC-VLAN\n"); 3091 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3092 printf(" PERFECT-TUNNEL\n"); 3093 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 3094 printf(" SIGNATURE\n"); 3095 else 3096 printf(" DISABLE\n"); 3097 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 3098 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 3099 printf(" SUPPORTED FLOW TYPE: "); 3100 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 3101 } 3102 printf(" FLEX PAYLOAD INFO:\n"); 3103 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 3104 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 3105 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 3106 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 3107 fdir_info.flex_payload_unit, 3108 fdir_info.max_flex_payload_segment_num, 3109 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 3110 printf(" MASK: "); 3111 print_fdir_mask(&fdir_info.mask); 3112 if (fdir_info.flex_conf.nb_payloads > 0) { 3113 printf(" FLEX PAYLOAD SRC OFFSET:"); 3114 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3115 } 3116 if (fdir_info.flex_conf.nb_flexmasks > 0) { 3117 printf(" FLEX MASK CFG:"); 3118 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3119 } 3120 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 3121 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 3122 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 3123 fdir_info.guarant_spc, fdir_info.best_spc); 3124 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 3125 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 3126 " add: %-10"PRIu64" remove: %"PRIu64"\n" 3127 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 3128 fdir_stat.collision, fdir_stat.free, 3129 fdir_stat.maxhash, fdir_stat.maxlen, 3130 fdir_stat.add, fdir_stat.remove, 3131 fdir_stat.f_add, fdir_stat.f_remove); 3132 printf(" %s############################%s\n", 3133 fdir_stats_border, fdir_stats_border); 3134 } 3135 3136 void 3137 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 3138 { 3139 struct rte_port *port; 3140 struct rte_eth_fdir_flex_conf *flex_conf; 3141 int i, idx = 0; 3142 3143 port = &ports[port_id]; 3144 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3145 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3146 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3147 idx = i; 3148 break; 3149 } 3150 } 3151 if (i >= RTE_ETH_FLOW_MAX) { 3152 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3153 idx = flex_conf->nb_flexmasks; 3154 flex_conf->nb_flexmasks++; 3155 } else { 3156 printf("The flex mask table is full. Can not set flex" 3157 " mask for flow_type(%u).", cfg->flow_type); 3158 return; 3159 } 3160 } 3161 rte_memcpy(&flex_conf->flex_mask[idx], 3162 cfg, 3163 sizeof(struct rte_eth_fdir_flex_mask)); 3164 } 3165 3166 void 3167 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3168 { 3169 struct rte_port *port; 3170 struct rte_eth_fdir_flex_conf *flex_conf; 3171 int i, idx = 0; 3172 3173 port = &ports[port_id]; 3174 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3175 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3176 if (cfg->type == flex_conf->flex_set[i].type) { 3177 idx = i; 3178 break; 3179 } 3180 } 3181 if (i >= RTE_ETH_PAYLOAD_MAX) { 3182 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3183 idx = flex_conf->nb_payloads; 3184 flex_conf->nb_payloads++; 3185 } else { 3186 printf("The flex payload table is full. Can not set" 3187 " flex payload for type(%u).", cfg->type); 3188 return; 3189 } 3190 } 3191 rte_memcpy(&flex_conf->flex_set[idx], 3192 cfg, 3193 sizeof(struct rte_eth_flex_payload_cfg)); 3194 3195 } 3196 3197 void 3198 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3199 { 3200 #ifdef RTE_LIBRTE_IXGBE_PMD 3201 int diag; 3202 3203 if (is_rx) 3204 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3205 else 3206 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3207 3208 if (diag == 0) 3209 return; 3210 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3211 is_rx ? "rx" : "tx", port_id, diag); 3212 return; 3213 #endif 3214 printf("VF %s setting not supported for port %d\n", 3215 is_rx ? "Rx" : "Tx", port_id); 3216 RTE_SET_USED(vf); 3217 RTE_SET_USED(on); 3218 } 3219 3220 int 3221 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3222 { 3223 int diag; 3224 struct rte_eth_link link; 3225 3226 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3227 return 1; 3228 rte_eth_link_get_nowait(port_id, &link); 3229 if (rate > link.link_speed) { 3230 printf("Invalid rate value:%u bigger than link speed: %u\n", 3231 rate, link.link_speed); 3232 return 1; 3233 } 3234 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3235 if (diag == 0) 3236 return diag; 3237 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3238 port_id, diag); 3239 return diag; 3240 } 3241 3242 int 3243 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3244 { 3245 int diag = -ENOTSUP; 3246 3247 RTE_SET_USED(vf); 3248 RTE_SET_USED(rate); 3249 RTE_SET_USED(q_msk); 3250 3251 #ifdef RTE_LIBRTE_IXGBE_PMD 3252 if (diag == -ENOTSUP) 3253 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3254 q_msk); 3255 #endif 3256 #ifdef RTE_LIBRTE_BNXT_PMD 3257 if (diag == -ENOTSUP) 3258 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3259 #endif 3260 if (diag == 0) 3261 return diag; 3262 3263 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3264 port_id, diag); 3265 return diag; 3266 } 3267 3268 /* 3269 * Functions to manage the set of filtered Multicast MAC addresses. 3270 * 3271 * A pool of filtered multicast MAC addresses is associated with each port. 3272 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3273 * The address of the pool and the number of valid multicast MAC addresses 3274 * recorded in the pool are stored in the fields "mc_addr_pool" and 3275 * "mc_addr_nb" of the "rte_port" data structure. 3276 * 3277 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3278 * to be supplied a contiguous array of multicast MAC addresses. 3279 * To comply with this constraint, the set of multicast addresses recorded 3280 * into the pool are systematically compacted at the beginning of the pool. 3281 * Hence, when a multicast address is removed from the pool, all following 3282 * addresses, if any, are copied back to keep the set contiguous. 3283 */ 3284 #define MCAST_POOL_INC 32 3285 3286 static int 3287 mcast_addr_pool_extend(struct rte_port *port) 3288 { 3289 struct ether_addr *mc_pool; 3290 size_t mc_pool_size; 3291 3292 /* 3293 * If a free entry is available at the end of the pool, just 3294 * increment the number of recorded multicast addresses. 3295 */ 3296 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3297 port->mc_addr_nb++; 3298 return 0; 3299 } 3300 3301 /* 3302 * [re]allocate a pool with MCAST_POOL_INC more entries. 3303 * The previous test guarantees that port->mc_addr_nb is a multiple 3304 * of MCAST_POOL_INC. 3305 */ 3306 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3307 MCAST_POOL_INC); 3308 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3309 mc_pool_size); 3310 if (mc_pool == NULL) { 3311 printf("allocation of pool of %u multicast addresses failed\n", 3312 port->mc_addr_nb + MCAST_POOL_INC); 3313 return -ENOMEM; 3314 } 3315 3316 port->mc_addr_pool = mc_pool; 3317 port->mc_addr_nb++; 3318 return 0; 3319 3320 } 3321 3322 static void 3323 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3324 { 3325 port->mc_addr_nb--; 3326 if (addr_idx == port->mc_addr_nb) { 3327 /* No need to recompact the set of multicast addressses. */ 3328 if (port->mc_addr_nb == 0) { 3329 /* free the pool of multicast addresses. */ 3330 free(port->mc_addr_pool); 3331 port->mc_addr_pool = NULL; 3332 } 3333 return; 3334 } 3335 memmove(&port->mc_addr_pool[addr_idx], 3336 &port->mc_addr_pool[addr_idx + 1], 3337 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3338 } 3339 3340 static void 3341 eth_port_multicast_addr_list_set(portid_t port_id) 3342 { 3343 struct rte_port *port; 3344 int diag; 3345 3346 port = &ports[port_id]; 3347 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3348 port->mc_addr_nb); 3349 if (diag == 0) 3350 return; 3351 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3352 port->mc_addr_nb, port_id, -diag); 3353 } 3354 3355 void 3356 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr) 3357 { 3358 struct rte_port *port; 3359 uint32_t i; 3360 3361 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3362 return; 3363 3364 port = &ports[port_id]; 3365 3366 /* 3367 * Check that the added multicast MAC address is not already recorded 3368 * in the pool of multicast addresses. 3369 */ 3370 for (i = 0; i < port->mc_addr_nb; i++) { 3371 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3372 printf("multicast address already filtered by port\n"); 3373 return; 3374 } 3375 } 3376 3377 if (mcast_addr_pool_extend(port) != 0) 3378 return; 3379 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3380 eth_port_multicast_addr_list_set(port_id); 3381 } 3382 3383 void 3384 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr) 3385 { 3386 struct rte_port *port; 3387 uint32_t i; 3388 3389 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3390 return; 3391 3392 port = &ports[port_id]; 3393 3394 /* 3395 * Search the pool of multicast MAC addresses for the removed address. 3396 */ 3397 for (i = 0; i < port->mc_addr_nb; i++) { 3398 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3399 break; 3400 } 3401 if (i == port->mc_addr_nb) { 3402 printf("multicast address not filtered by port %d\n", port_id); 3403 return; 3404 } 3405 3406 mcast_addr_pool_remove(port, i); 3407 eth_port_multicast_addr_list_set(port_id); 3408 } 3409 3410 void 3411 port_dcb_info_display(portid_t port_id) 3412 { 3413 struct rte_eth_dcb_info dcb_info; 3414 uint16_t i; 3415 int ret; 3416 static const char *border = "================"; 3417 3418 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3419 return; 3420 3421 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3422 if (ret) { 3423 printf("\n Failed to get dcb infos on port %-2d\n", 3424 port_id); 3425 return; 3426 } 3427 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3428 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3429 printf("\n TC : "); 3430 for (i = 0; i < dcb_info.nb_tcs; i++) 3431 printf("\t%4d", i); 3432 printf("\n Priority : "); 3433 for (i = 0; i < dcb_info.nb_tcs; i++) 3434 printf("\t%4d", dcb_info.prio_tc[i]); 3435 printf("\n BW percent :"); 3436 for (i = 0; i < dcb_info.nb_tcs; i++) 3437 printf("\t%4d%%", dcb_info.tc_bws[i]); 3438 printf("\n RXQ base : "); 3439 for (i = 0; i < dcb_info.nb_tcs; i++) 3440 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3441 printf("\n RXQ number :"); 3442 for (i = 0; i < dcb_info.nb_tcs; i++) 3443 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3444 printf("\n TXQ base : "); 3445 for (i = 0; i < dcb_info.nb_tcs; i++) 3446 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3447 printf("\n TXQ number :"); 3448 for (i = 0; i < dcb_info.nb_tcs; i++) 3449 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3450 printf("\n"); 3451 } 3452 3453 uint8_t * 3454 open_ddp_package_file(const char *file_path, uint32_t *size) 3455 { 3456 int fd = open(file_path, O_RDONLY); 3457 off_t pkg_size; 3458 uint8_t *buf = NULL; 3459 int ret = 0; 3460 struct stat st_buf; 3461 3462 if (size) 3463 *size = 0; 3464 3465 if (fd == -1) { 3466 printf("%s: Failed to open %s\n", __func__, file_path); 3467 return buf; 3468 } 3469 3470 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 3471 close(fd); 3472 printf("%s: File operations failed\n", __func__); 3473 return buf; 3474 } 3475 3476 pkg_size = st_buf.st_size; 3477 if (pkg_size < 0) { 3478 close(fd); 3479 printf("%s: File operations failed\n", __func__); 3480 return buf; 3481 } 3482 3483 buf = (uint8_t *)malloc(pkg_size); 3484 if (!buf) { 3485 close(fd); 3486 printf("%s: Failed to malloc memory\n", __func__); 3487 return buf; 3488 } 3489 3490 ret = read(fd, buf, pkg_size); 3491 if (ret < 0) { 3492 close(fd); 3493 printf("%s: File read operation failed\n", __func__); 3494 close_ddp_package_file(buf); 3495 return NULL; 3496 } 3497 3498 if (size) 3499 *size = pkg_size; 3500 3501 close(fd); 3502 3503 return buf; 3504 } 3505 3506 int 3507 save_ddp_package_file(const char *file_path, uint8_t *buf, uint32_t size) 3508 { 3509 FILE *fh = fopen(file_path, "wb"); 3510 3511 if (fh == NULL) { 3512 printf("%s: Failed to open %s\n", __func__, file_path); 3513 return -1; 3514 } 3515 3516 if (fwrite(buf, 1, size, fh) != size) { 3517 fclose(fh); 3518 printf("%s: File write operation failed\n", __func__); 3519 return -1; 3520 } 3521 3522 fclose(fh); 3523 3524 return 0; 3525 } 3526 3527 int 3528 close_ddp_package_file(uint8_t *buf) 3529 { 3530 if (buf) { 3531 free((void *)buf); 3532 return 0; 3533 } 3534 3535 return -1; 3536 } 3537 3538 void 3539 port_queue_region_info_display(portid_t port_id, void *buf) 3540 { 3541 #ifdef RTE_LIBRTE_I40E_PMD 3542 uint16_t i, j; 3543 struct rte_pmd_i40e_queue_regions *info = 3544 (struct rte_pmd_i40e_queue_regions *)buf; 3545 static const char *queue_region_info_stats_border = "-------"; 3546 3547 if (!info->queue_region_number) 3548 printf("there is no region has been set before"); 3549 3550 printf("\n %s All queue region info for port=%2d %s", 3551 queue_region_info_stats_border, port_id, 3552 queue_region_info_stats_border); 3553 printf("\n queue_region_number: %-14u \n", 3554 info->queue_region_number); 3555 3556 for (i = 0; i < info->queue_region_number; i++) { 3557 printf("\n region_id: %-14u queue_number: %-14u " 3558 "queue_start_index: %-14u \n", 3559 info->region[i].region_id, 3560 info->region[i].queue_num, 3561 info->region[i].queue_start_index); 3562 3563 printf(" user_priority_num is %-14u :", 3564 info->region[i].user_priority_num); 3565 for (j = 0; j < info->region[i].user_priority_num; j++) 3566 printf(" %-14u ", info->region[i].user_priority[j]); 3567 3568 printf("\n flowtype_num is %-14u :", 3569 info->region[i].flowtype_num); 3570 for (j = 0; j < info->region[i].flowtype_num; j++) 3571 printf(" %-14u ", info->region[i].hw_flowtype[j]); 3572 } 3573 #else 3574 RTE_SET_USED(port_id); 3575 RTE_SET_USED(buf); 3576 #endif 3577 3578 printf("\n\n"); 3579 } 3580