xref: /dpdk/app/test-pmd/config.c (revision fc6bbb3f28f2336ecae64d4c2732c09c05a5ab4a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 const struct rss_type_info rss_type_table[] = {
77 	{ "ipv4", ETH_RSS_IPV4 },
78 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83 	{ "ipv6", ETH_RSS_IPV6 },
84 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
90 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
91 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93 	{ "port", ETH_RSS_PORT },
94 	{ "vxlan", ETH_RSS_VXLAN },
95 	{ "geneve", ETH_RSS_GENEVE },
96 	{ "nvgre", ETH_RSS_NVGRE },
97 	{ "ip", ETH_RSS_IP },
98 	{ "udp", ETH_RSS_UDP },
99 	{ "tcp", ETH_RSS_TCP },
100 	{ "sctp", ETH_RSS_SCTP },
101 	{ "tunnel", ETH_RSS_TUNNEL },
102 	{ NULL, 0 },
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 	portid_t pid;
125 
126 	static const char *nic_stats_border = "########################";
127 
128 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129 		printf("Valid port range is [0");
130 		RTE_ETH_FOREACH_DEV(pid)
131 			printf(", %d", pid);
132 		printf("]\n");
133 		return;
134 	}
135 	rte_eth_stats_get(port_id, &stats);
136 	printf("\n  %s NIC statistics for port %-2d %s\n",
137 	       nic_stats_border, port_id, nic_stats_border);
138 
139 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141 		       "%-"PRIu64"\n",
142 		       stats.ipackets, stats.imissed, stats.ibytes);
143 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144 		printf("  RX-nombuf:  %-10"PRIu64"\n",
145 		       stats.rx_nombuf);
146 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147 		       "%-"PRIu64"\n",
148 		       stats.opackets, stats.oerrors, stats.obytes);
149 	}
150 	else {
151 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152 		       "    RX-bytes: %10"PRIu64"\n",
153 		       stats.ipackets, stats.ierrors, stats.ibytes);
154 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155 		printf("  RX-nombuf:               %10"PRIu64"\n",
156 		       stats.rx_nombuf);
157 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158 		       "    TX-bytes: %10"PRIu64"\n",
159 		       stats.opackets, stats.oerrors, stats.obytes);
160 	}
161 
162 	if (port->rx_queue_stats_mapping_enabled) {
163 		printf("\n");
164 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165 			printf("  Stats reg %2d RX-packets: %10"PRIu64
166 			       "    RX-errors: %10"PRIu64
167 			       "    RX-bytes: %10"PRIu64"\n",
168 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169 		}
170 	}
171 	if (port->tx_queue_stats_mapping_enabled) {
172 		printf("\n");
173 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174 			printf("  Stats reg %2d TX-packets: %10"PRIu64
175 			       "                             TX-bytes: %10"PRIu64"\n",
176 			       i, stats.q_opackets[i], stats.q_obytes[i]);
177 		}
178 	}
179 
180 	diff_cycles = prev_cycles[port_id];
181 	prev_cycles[port_id] = rte_rdtsc();
182 	if (diff_cycles > 0)
183 		diff_cycles = prev_cycles[port_id] - diff_cycles;
184 
185 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
187 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
189 	prev_pkts_rx[port_id] = stats.ipackets;
190 	prev_pkts_tx[port_id] = stats.opackets;
191 	mpps_rx = diff_cycles > 0 ?
192 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193 	mpps_tx = diff_cycles > 0 ?
194 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195 	printf("\n  Throughput (since last show)\n");
196 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197 			mpps_rx, mpps_tx);
198 
199 	printf("  %s############################%s\n",
200 	       nic_stats_border, nic_stats_border);
201 }
202 
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206 	portid_t pid;
207 
208 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209 		printf("Valid port range is [0");
210 		RTE_ETH_FOREACH_DEV(pid)
211 			printf(", %d", pid);
212 		printf("]\n");
213 		return;
214 	}
215 	rte_eth_stats_reset(port_id);
216 	printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218 
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222 	struct rte_eth_xstat *xstats;
223 	int cnt_xstats, idx_xstat;
224 	struct rte_eth_xstat_name *xstats_names;
225 
226 	printf("###### NIC extended statistics for port %-2d\n", port_id);
227 	if (!rte_eth_dev_is_valid_port(port_id)) {
228 		printf("Error: Invalid port number %i\n", port_id);
229 		return;
230 	}
231 
232 	/* Get count */
233 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234 	if (cnt_xstats  < 0) {
235 		printf("Error: Cannot get count of xstats\n");
236 		return;
237 	}
238 
239 	/* Get id-name lookup table */
240 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241 	if (xstats_names == NULL) {
242 		printf("Cannot allocate memory for xstats lookup\n");
243 		return;
244 	}
245 	if (cnt_xstats != rte_eth_xstats_get_names(
246 			port_id, xstats_names, cnt_xstats)) {
247 		printf("Error: Cannot get xstats lookup\n");
248 		free(xstats_names);
249 		return;
250 	}
251 
252 	/* Get stats themselves */
253 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254 	if (xstats == NULL) {
255 		printf("Cannot allocate memory for xstats\n");
256 		free(xstats_names);
257 		return;
258 	}
259 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260 		printf("Error: Unable to get xstats\n");
261 		free(xstats_names);
262 		free(xstats);
263 		return;
264 	}
265 
266 	/* Display xstats */
267 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268 		if (xstats_hide_zero && !xstats[idx_xstat].value)
269 			continue;
270 		printf("%s: %"PRIu64"\n",
271 			xstats_names[idx_xstat].name,
272 			xstats[idx_xstat].value);
273 	}
274 	free(xstats_names);
275 	free(xstats);
276 }
277 
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281 	rte_eth_xstats_reset(port_id);
282 }
283 
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287 	struct rte_port *port = &ports[port_id];
288 	uint16_t i;
289 	portid_t pid;
290 
291 	static const char *nic_stats_mapping_border = "########################";
292 
293 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294 		printf("Valid port range is [0");
295 		RTE_ETH_FOREACH_DEV(pid)
296 			printf(", %d", pid);
297 		printf("]\n");
298 		return;
299 	}
300 
301 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302 		printf("Port id %d - either does not support queue statistic mapping or"
303 		       " no queue statistic mapping set\n", port_id);
304 		return;
305 	}
306 
307 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309 
310 	if (port->rx_queue_stats_mapping_enabled) {
311 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312 			if (rx_queue_stats_mappings[i].port_id == port_id) {
313 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314 				       rx_queue_stats_mappings[i].queue_id,
315 				       rx_queue_stats_mappings[i].stats_counter_id);
316 			}
317 		}
318 		printf("\n");
319 	}
320 
321 
322 	if (port->tx_queue_stats_mapping_enabled) {
323 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324 			if (tx_queue_stats_mappings[i].port_id == port_id) {
325 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326 				       tx_queue_stats_mappings[i].queue_id,
327 				       tx_queue_stats_mappings[i].stats_counter_id);
328 			}
329 		}
330 	}
331 
332 	printf("  %s####################################%s\n",
333 	       nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335 
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339 	struct rte_eth_rxq_info qinfo;
340 	int32_t rc;
341 	static const char *info_border = "*********************";
342 
343 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344 	if (rc != 0) {
345 		printf("Failed to retrieve information for port: %u, "
346 			"RX queue: %hu\nerror desc: %s(%d)\n",
347 			port_id, queue_id, strerror(-rc), rc);
348 		return;
349 	}
350 
351 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352 	       info_border, port_id, queue_id, info_border);
353 
354 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359 	printf("\nRX drop packets: %s",
360 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361 	printf("\nRX deferred start: %s",
362 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363 	printf("\nRX scattered packets: %s",
364 		(qinfo.scattered_rx != 0) ? "on" : "off");
365 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366 	printf("\n");
367 }
368 
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372 	struct rte_eth_txq_info qinfo;
373 	int32_t rc;
374 	static const char *info_border = "*********************";
375 
376 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377 	if (rc != 0) {
378 		printf("Failed to retrieve information for port: %u, "
379 			"TX queue: %hu\nerror desc: %s(%d)\n",
380 			port_id, queue_id, strerror(-rc), rc);
381 		return;
382 	}
383 
384 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385 	       info_border, port_id, queue_id, info_border);
386 
387 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392 	printf("\nTX deferred start: %s",
393 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 port_infos_display(portid_t port_id)
400 {
401 	struct rte_port *port;
402 	struct ether_addr mac_addr;
403 	struct rte_eth_link link;
404 	struct rte_eth_dev_info dev_info;
405 	int vlan_offload;
406 	struct rte_mempool * mp;
407 	static const char *info_border = "*********************";
408 	portid_t pid;
409 	uint16_t mtu;
410 
411 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412 		printf("Valid port range is [0");
413 		RTE_ETH_FOREACH_DEV(pid)
414 			printf(", %d", pid);
415 		printf("]\n");
416 		return;
417 	}
418 	port = &ports[port_id];
419 	rte_eth_link_get_nowait(port_id, &link);
420 	memset(&dev_info, 0, sizeof(dev_info));
421 	rte_eth_dev_info_get(port_id, &dev_info);
422 	printf("\n%s Infos for port %-2d %s\n",
423 	       info_border, port_id, info_border);
424 	rte_eth_macaddr_get(port_id, &mac_addr);
425 	print_ethaddr("MAC address: ", &mac_addr);
426 	printf("\nDriver name: %s", dev_info.driver_name);
427 	printf("\nConnect to socket: %u", port->socket_id);
428 
429 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
430 		mp = mbuf_pool_find(port_numa[port_id]);
431 		if (mp)
432 			printf("\nmemory allocation on the socket: %d",
433 							port_numa[port_id]);
434 	} else
435 		printf("\nmemory allocation on the socket: %u",port->socket_id);
436 
437 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440 	       ("full-duplex") : ("half-duplex"));
441 
442 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
443 		printf("MTU: %u\n", mtu);
444 
445 	printf("Promiscuous mode: %s\n",
446 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447 	printf("Allmulticast mode: %s\n",
448 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449 	printf("Maximum number of MAC addresses: %u\n",
450 	       (unsigned int)(port->dev_info.max_mac_addrs));
451 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
452 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
453 
454 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455 	if (vlan_offload >= 0){
456 		printf("VLAN offload: \n");
457 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458 			printf("  strip on \n");
459 		else
460 			printf("  strip off \n");
461 
462 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463 			printf("  filter on \n");
464 		else
465 			printf("  filter off \n");
466 
467 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468 			printf("  qinq(extend) on \n");
469 		else
470 			printf("  qinq(extend) off \n");
471 	}
472 
473 	if (dev_info.hash_key_size > 0)
474 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475 	if (dev_info.reta_size > 0)
476 		printf("Redirection table size: %u\n", dev_info.reta_size);
477 	if (!dev_info.flow_type_rss_offloads)
478 		printf("No flow type is supported.\n");
479 	else {
480 		uint16_t i;
481 		char *p;
482 
483 		printf("Supported flow types:\n");
484 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487 				continue;
488 			p = flowtype_to_str(i);
489 			if (p)
490 				printf("  %s\n", p);
491 			else
492 				printf("  user defined %d\n", i);
493 		}
494 	}
495 
496 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497 	printf("Maximum configurable length of RX packet: %u\n",
498 		dev_info.max_rx_pktlen);
499 	if (dev_info.max_vfs)
500 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501 	if (dev_info.max_vmdq_pools)
502 		printf("Maximum number of VMDq pools: %u\n",
503 			dev_info.max_vmdq_pools);
504 
505 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507 	printf("Max possible number of RXDs per queue: %hu\n",
508 		dev_info.rx_desc_lim.nb_max);
509 	printf("Min possible number of RXDs per queue: %hu\n",
510 		dev_info.rx_desc_lim.nb_min);
511 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512 
513 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515 	printf("Max possible number of TXDs per queue: %hu\n",
516 		dev_info.tx_desc_lim.nb_max);
517 	printf("Min possible number of TXDs per queue: %hu\n",
518 		dev_info.tx_desc_lim.nb_min);
519 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521 
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525 	struct rte_eth_dev_info dev_info;
526 	static const char *info_border = "************";
527 
528 	if (port_id_is_invalid(port_id, ENABLED_WARN))
529 		return;
530 
531 	rte_eth_dev_info_get(port_id, &dev_info);
532 
533 	printf("\n%s Port %d supported offload features: %s\n",
534 		info_border, port_id, info_border);
535 
536 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537 		printf("VLAN stripped:                 ");
538 		if (ports[port_id].dev_conf.rxmode.offloads &
539 		    DEV_RX_OFFLOAD_VLAN_STRIP)
540 			printf("on\n");
541 		else
542 			printf("off\n");
543 	}
544 
545 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546 		printf("Double VLANs stripped:         ");
547 		if (ports[port_id].dev_conf.rxmode.offloads &
548 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
549 			printf("on\n");
550 		else
551 			printf("off\n");
552 	}
553 
554 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555 		printf("RX IPv4 checksum:              ");
556 		if (ports[port_id].dev_conf.rxmode.offloads &
557 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
558 			printf("on\n");
559 		else
560 			printf("off\n");
561 	}
562 
563 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564 		printf("RX UDP checksum:               ");
565 		if (ports[port_id].dev_conf.rxmode.offloads &
566 		    DEV_RX_OFFLOAD_UDP_CKSUM)
567 			printf("on\n");
568 		else
569 			printf("off\n");
570 	}
571 
572 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573 		printf("RX TCP checksum:               ");
574 		if (ports[port_id].dev_conf.rxmode.offloads &
575 		    DEV_RX_OFFLOAD_TCP_CKSUM)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582 		printf("RX Outer IPv4 checksum:               ");
583 		if (ports[port_id].dev_conf.rxmode.offloads &
584 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585 			printf("on\n");
586 		else
587 			printf("off\n");
588 	}
589 
590 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591 		printf("Large receive offload:         ");
592 		if (ports[port_id].dev_conf.rxmode.offloads &
593 		    DEV_RX_OFFLOAD_TCP_LRO)
594 			printf("on\n");
595 		else
596 			printf("off\n");
597 	}
598 
599 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600 		printf("VLAN insert:                   ");
601 		if (ports[port_id].dev_conf.txmode.offloads &
602 		    DEV_TX_OFFLOAD_VLAN_INSERT)
603 			printf("on\n");
604 		else
605 			printf("off\n");
606 	}
607 
608 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609 		printf("HW timestamp:                  ");
610 		if (ports[port_id].dev_conf.rxmode.offloads &
611 		    DEV_RX_OFFLOAD_TIMESTAMP)
612 			printf("on\n");
613 		else
614 			printf("off\n");
615 	}
616 
617 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618 		printf("Double VLANs insert:           ");
619 		if (ports[port_id].dev_conf.txmode.offloads &
620 		    DEV_TX_OFFLOAD_QINQ_INSERT)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627 		printf("TX IPv4 checksum:              ");
628 		if (ports[port_id].dev_conf.txmode.offloads &
629 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
630 			printf("on\n");
631 		else
632 			printf("off\n");
633 	}
634 
635 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636 		printf("TX UDP checksum:               ");
637 		if (ports[port_id].dev_conf.txmode.offloads &
638 		    DEV_TX_OFFLOAD_UDP_CKSUM)
639 			printf("on\n");
640 		else
641 			printf("off\n");
642 	}
643 
644 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645 		printf("TX TCP checksum:               ");
646 		if (ports[port_id].dev_conf.txmode.offloads &
647 		    DEV_TX_OFFLOAD_TCP_CKSUM)
648 			printf("on\n");
649 		else
650 			printf("off\n");
651 	}
652 
653 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654 		printf("TX SCTP checksum:              ");
655 		if (ports[port_id].dev_conf.txmode.offloads &
656 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
657 			printf("on\n");
658 		else
659 			printf("off\n");
660 	}
661 
662 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663 		printf("TX Outer IPv4 checksum:        ");
664 		if (ports[port_id].dev_conf.txmode.offloads &
665 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666 			printf("on\n");
667 		else
668 			printf("off\n");
669 	}
670 
671 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672 		printf("TX TCP segmentation:           ");
673 		if (ports[port_id].dev_conf.txmode.offloads &
674 		    DEV_TX_OFFLOAD_TCP_TSO)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].dev_conf.txmode.offloads &
683 		    DEV_TX_OFFLOAD_UDP_TSO)
684 			printf("on\n");
685 		else
686 			printf("off\n");
687 	}
688 
689 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690 		printf("TSO for VXLAN tunnel packet:   ");
691 		if (ports[port_id].dev_conf.txmode.offloads &
692 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693 			printf("on\n");
694 		else
695 			printf("off\n");
696 	}
697 
698 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699 		printf("TSO for GRE tunnel packet:     ");
700 		if (ports[port_id].dev_conf.txmode.offloads &
701 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
702 			printf("on\n");
703 		else
704 			printf("off\n");
705 	}
706 
707 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708 		printf("TSO for IPIP tunnel packet:    ");
709 		if (ports[port_id].dev_conf.txmode.offloads &
710 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711 			printf("on\n");
712 		else
713 			printf("off\n");
714 	}
715 
716 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717 		printf("TSO for GENEVE tunnel packet:  ");
718 		if (ports[port_id].dev_conf.txmode.offloads &
719 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720 			printf("on\n");
721 		else
722 			printf("off\n");
723 	}
724 
725 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
726 		printf("IP tunnel TSO:  ");
727 		if (ports[port_id].dev_conf.txmode.offloads &
728 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
729 			printf("on\n");
730 		else
731 			printf("off\n");
732 	}
733 
734 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
735 		printf("UDP tunnel TSO:  ");
736 		if (ports[port_id].dev_conf.txmode.offloads &
737 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
738 			printf("on\n");
739 		else
740 			printf("off\n");
741 	}
742 }
743 
744 int
745 port_id_is_invalid(portid_t port_id, enum print_warning warning)
746 {
747 	uint16_t pid;
748 
749 	if (port_id == (portid_t)RTE_PORT_ALL)
750 		return 0;
751 
752 	RTE_ETH_FOREACH_DEV(pid)
753 		if (port_id == pid)
754 			return 0;
755 
756 	if (warning == ENABLED_WARN)
757 		printf("Invalid port %d\n", port_id);
758 
759 	return 1;
760 }
761 
762 static int
763 vlan_id_is_invalid(uint16_t vlan_id)
764 {
765 	if (vlan_id < 4096)
766 		return 0;
767 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
768 	return 1;
769 }
770 
771 static int
772 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
773 {
774 	const struct rte_pci_device *pci_dev;
775 	const struct rte_bus *bus;
776 	uint64_t pci_len;
777 
778 	if (reg_off & 0x3) {
779 		printf("Port register offset 0x%X not aligned on a 4-byte "
780 		       "boundary\n",
781 		       (unsigned)reg_off);
782 		return 1;
783 	}
784 
785 	if (!ports[port_id].dev_info.device) {
786 		printf("Invalid device\n");
787 		return 0;
788 	}
789 
790 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
791 	if (bus && !strcmp(bus->name, "pci")) {
792 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
793 	} else {
794 		printf("Not a PCI device\n");
795 		return 1;
796 	}
797 
798 	pci_len = pci_dev->mem_resource[0].len;
799 	if (reg_off >= pci_len) {
800 		printf("Port %d: register offset %u (0x%X) out of port PCI "
801 		       "resource (length=%"PRIu64")\n",
802 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
803 		return 1;
804 	}
805 	return 0;
806 }
807 
808 static int
809 reg_bit_pos_is_invalid(uint8_t bit_pos)
810 {
811 	if (bit_pos <= 31)
812 		return 0;
813 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
814 	return 1;
815 }
816 
817 #define display_port_and_reg_off(port_id, reg_off) \
818 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
819 
820 static inline void
821 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
822 {
823 	display_port_and_reg_off(port_id, (unsigned)reg_off);
824 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
825 }
826 
827 void
828 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
829 {
830 	uint32_t reg_v;
831 
832 
833 	if (port_id_is_invalid(port_id, ENABLED_WARN))
834 		return;
835 	if (port_reg_off_is_invalid(port_id, reg_off))
836 		return;
837 	if (reg_bit_pos_is_invalid(bit_x))
838 		return;
839 	reg_v = port_id_pci_reg_read(port_id, reg_off);
840 	display_port_and_reg_off(port_id, (unsigned)reg_off);
841 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
842 }
843 
844 void
845 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
846 			   uint8_t bit1_pos, uint8_t bit2_pos)
847 {
848 	uint32_t reg_v;
849 	uint8_t  l_bit;
850 	uint8_t  h_bit;
851 
852 	if (port_id_is_invalid(port_id, ENABLED_WARN))
853 		return;
854 	if (port_reg_off_is_invalid(port_id, reg_off))
855 		return;
856 	if (reg_bit_pos_is_invalid(bit1_pos))
857 		return;
858 	if (reg_bit_pos_is_invalid(bit2_pos))
859 		return;
860 	if (bit1_pos > bit2_pos)
861 		l_bit = bit2_pos, h_bit = bit1_pos;
862 	else
863 		l_bit = bit1_pos, h_bit = bit2_pos;
864 
865 	reg_v = port_id_pci_reg_read(port_id, reg_off);
866 	reg_v >>= l_bit;
867 	if (h_bit < 31)
868 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
869 	display_port_and_reg_off(port_id, (unsigned)reg_off);
870 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
871 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
872 }
873 
874 void
875 port_reg_display(portid_t port_id, uint32_t reg_off)
876 {
877 	uint32_t reg_v;
878 
879 	if (port_id_is_invalid(port_id, ENABLED_WARN))
880 		return;
881 	if (port_reg_off_is_invalid(port_id, reg_off))
882 		return;
883 	reg_v = port_id_pci_reg_read(port_id, reg_off);
884 	display_port_reg_value(port_id, reg_off, reg_v);
885 }
886 
887 void
888 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
889 		 uint8_t bit_v)
890 {
891 	uint32_t reg_v;
892 
893 	if (port_id_is_invalid(port_id, ENABLED_WARN))
894 		return;
895 	if (port_reg_off_is_invalid(port_id, reg_off))
896 		return;
897 	if (reg_bit_pos_is_invalid(bit_pos))
898 		return;
899 	if (bit_v > 1) {
900 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
901 		return;
902 	}
903 	reg_v = port_id_pci_reg_read(port_id, reg_off);
904 	if (bit_v == 0)
905 		reg_v &= ~(1 << bit_pos);
906 	else
907 		reg_v |= (1 << bit_pos);
908 	port_id_pci_reg_write(port_id, reg_off, reg_v);
909 	display_port_reg_value(port_id, reg_off, reg_v);
910 }
911 
912 void
913 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
914 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
915 {
916 	uint32_t max_v;
917 	uint32_t reg_v;
918 	uint8_t  l_bit;
919 	uint8_t  h_bit;
920 
921 	if (port_id_is_invalid(port_id, ENABLED_WARN))
922 		return;
923 	if (port_reg_off_is_invalid(port_id, reg_off))
924 		return;
925 	if (reg_bit_pos_is_invalid(bit1_pos))
926 		return;
927 	if (reg_bit_pos_is_invalid(bit2_pos))
928 		return;
929 	if (bit1_pos > bit2_pos)
930 		l_bit = bit2_pos, h_bit = bit1_pos;
931 	else
932 		l_bit = bit1_pos, h_bit = bit2_pos;
933 
934 	if ((h_bit - l_bit) < 31)
935 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
936 	else
937 		max_v = 0xFFFFFFFF;
938 
939 	if (value > max_v) {
940 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
941 				(unsigned)value, (unsigned)value,
942 				(unsigned)max_v, (unsigned)max_v);
943 		return;
944 	}
945 	reg_v = port_id_pci_reg_read(port_id, reg_off);
946 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
947 	reg_v |= (value << l_bit); /* Set changed bits */
948 	port_id_pci_reg_write(port_id, reg_off, reg_v);
949 	display_port_reg_value(port_id, reg_off, reg_v);
950 }
951 
952 void
953 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
954 {
955 	if (port_id_is_invalid(port_id, ENABLED_WARN))
956 		return;
957 	if (port_reg_off_is_invalid(port_id, reg_off))
958 		return;
959 	port_id_pci_reg_write(port_id, reg_off, reg_v);
960 	display_port_reg_value(port_id, reg_off, reg_v);
961 }
962 
963 void
964 port_mtu_set(portid_t port_id, uint16_t mtu)
965 {
966 	int diag;
967 
968 	if (port_id_is_invalid(port_id, ENABLED_WARN))
969 		return;
970 	diag = rte_eth_dev_set_mtu(port_id, mtu);
971 	if (diag == 0)
972 		return;
973 	printf("Set MTU failed. diag=%d\n", diag);
974 }
975 
976 /* Generic flow management functions. */
977 
978 /** Generate flow_item[] entry. */
979 #define MK_FLOW_ITEM(t, s) \
980 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
981 		.name = # t, \
982 		.size = s, \
983 	}
984 
985 /** Information about known flow pattern items. */
986 static const struct {
987 	const char *name;
988 	size_t size;
989 } flow_item[] = {
990 	MK_FLOW_ITEM(END, 0),
991 	MK_FLOW_ITEM(VOID, 0),
992 	MK_FLOW_ITEM(INVERT, 0),
993 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
994 	MK_FLOW_ITEM(PF, 0),
995 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
996 	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
997 	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
998 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
999 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1000 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1001 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1002 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1003 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1004 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1005 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1006 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1007 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1008 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1009 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1010 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1011 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1012 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1013 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1014 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1015 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1016 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1017 };
1018 
1019 /** Pattern item specification types. */
1020 enum item_spec_type {
1021 	ITEM_SPEC,
1022 	ITEM_LAST,
1023 	ITEM_MASK,
1024 };
1025 
1026 /** Compute storage space needed by item specification and copy it. */
1027 static size_t
1028 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1029 		    enum item_spec_type type)
1030 {
1031 	size_t size = 0;
1032 	const void *item_spec =
1033 		type == ITEM_SPEC ? item->spec :
1034 		type == ITEM_LAST ? item->last :
1035 		type == ITEM_MASK ? item->mask :
1036 		NULL;
1037 
1038 	if (!item_spec)
1039 		goto empty;
1040 	switch (item->type) {
1041 		union {
1042 			const struct rte_flow_item_raw *raw;
1043 		} src;
1044 		union {
1045 			struct rte_flow_item_raw *raw;
1046 		} dst;
1047 		size_t off;
1048 
1049 	case RTE_FLOW_ITEM_TYPE_RAW:
1050 		src.raw = item_spec;
1051 		dst.raw = buf;
1052 		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1053 				     sizeof(*src.raw->pattern));
1054 		size = off + src.raw->length * sizeof(*src.raw->pattern);
1055 		if (dst.raw) {
1056 			memcpy(dst.raw, src.raw, sizeof(*src.raw));
1057 			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1058 						  src.raw->pattern,
1059 						  size - off);
1060 		}
1061 		break;
1062 	default:
1063 		size = flow_item[item->type].size;
1064 		if (buf)
1065 			memcpy(buf, item_spec, size);
1066 		break;
1067 	}
1068 empty:
1069 	return RTE_ALIGN_CEIL(size, sizeof(double));
1070 }
1071 
1072 /** Generate flow_action[] entry. */
1073 #define MK_FLOW_ACTION(t, s) \
1074 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1075 		.name = # t, \
1076 		.size = s, \
1077 	}
1078 
1079 /** Information about known flow actions. */
1080 static const struct {
1081 	const char *name;
1082 	size_t size;
1083 } flow_action[] = {
1084 	MK_FLOW_ACTION(END, 0),
1085 	MK_FLOW_ACTION(VOID, 0),
1086 	MK_FLOW_ACTION(PASSTHRU, 0),
1087 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1088 	MK_FLOW_ACTION(FLAG, 0),
1089 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1090 	MK_FLOW_ACTION(DROP, 0),
1091 	MK_FLOW_ACTION(COUNT, 0),
1092 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1093 	MK_FLOW_ACTION(PF, 0),
1094 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1095 	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1096 	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1097 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1098 };
1099 
1100 /** Compute storage space needed by action configuration and copy it. */
1101 static size_t
1102 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1103 {
1104 	size_t size = 0;
1105 
1106 	if (!action->conf)
1107 		goto empty;
1108 	switch (action->type) {
1109 		union {
1110 			const struct rte_flow_action_rss *rss;
1111 		} src;
1112 		union {
1113 			struct rte_flow_action_rss *rss;
1114 		} dst;
1115 		size_t off;
1116 
1117 	case RTE_FLOW_ACTION_TYPE_RSS:
1118 		src.rss = action->conf;
1119 		dst.rss = buf;
1120 		off = 0;
1121 		if (dst.rss)
1122 			*dst.rss = (struct rte_flow_action_rss){
1123 				.func = src.rss->func,
1124 				.level = src.rss->level,
1125 				.types = src.rss->types,
1126 				.key_len = src.rss->key_len,
1127 				.queue_num = src.rss->queue_num,
1128 			};
1129 		off += sizeof(*src.rss);
1130 		if (src.rss->key_len) {
1131 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1132 			size = sizeof(*src.rss->key) * src.rss->key_len;
1133 			if (dst.rss)
1134 				dst.rss->key = memcpy
1135 					((void *)((uintptr_t)dst.rss + off),
1136 					 src.rss->key, size);
1137 			off += size;
1138 		}
1139 		if (src.rss->queue_num) {
1140 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1141 			size = sizeof(*src.rss->queue) * src.rss->queue_num;
1142 			if (dst.rss)
1143 				dst.rss->queue = memcpy
1144 					((void *)((uintptr_t)dst.rss + off),
1145 					 src.rss->queue, size);
1146 			off += size;
1147 		}
1148 		size = off;
1149 		break;
1150 	default:
1151 		size = flow_action[action->type].size;
1152 		if (buf)
1153 			memcpy(buf, action->conf, size);
1154 		break;
1155 	}
1156 empty:
1157 	return RTE_ALIGN_CEIL(size, sizeof(double));
1158 }
1159 
1160 /** Generate a port_flow entry from attributes/pattern/actions. */
1161 static struct port_flow *
1162 port_flow_new(const struct rte_flow_attr *attr,
1163 	      const struct rte_flow_item *pattern,
1164 	      const struct rte_flow_action *actions)
1165 {
1166 	const struct rte_flow_item *item;
1167 	const struct rte_flow_action *action;
1168 	struct port_flow *pf = NULL;
1169 	size_t tmp;
1170 	size_t off1 = 0;
1171 	size_t off2 = 0;
1172 	int err = ENOTSUP;
1173 
1174 store:
1175 	item = pattern;
1176 	if (pf)
1177 		pf->pattern = (void *)&pf->data[off1];
1178 	do {
1179 		struct rte_flow_item *dst = NULL;
1180 
1181 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1182 		    !flow_item[item->type].name)
1183 			goto notsup;
1184 		if (pf)
1185 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1186 		off1 += sizeof(*item);
1187 		if (item->spec) {
1188 			if (pf)
1189 				dst->spec = pf->data + off2;
1190 			off2 += flow_item_spec_copy
1191 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1192 		}
1193 		if (item->last) {
1194 			if (pf)
1195 				dst->last = pf->data + off2;
1196 			off2 += flow_item_spec_copy
1197 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1198 		}
1199 		if (item->mask) {
1200 			if (pf)
1201 				dst->mask = pf->data + off2;
1202 			off2 += flow_item_spec_copy
1203 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1204 		}
1205 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1206 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1207 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1208 	action = actions;
1209 	if (pf)
1210 		pf->actions = (void *)&pf->data[off1];
1211 	do {
1212 		struct rte_flow_action *dst = NULL;
1213 
1214 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1215 		    !flow_action[action->type].name)
1216 			goto notsup;
1217 		if (pf)
1218 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1219 		off1 += sizeof(*action);
1220 		if (action->conf) {
1221 			if (pf)
1222 				dst->conf = pf->data + off2;
1223 			off2 += flow_action_conf_copy
1224 				(pf ? pf->data + off2 : NULL, action);
1225 		}
1226 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1227 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1228 	if (pf != NULL)
1229 		return pf;
1230 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1231 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1232 	pf = calloc(1, tmp + off1 + off2);
1233 	if (pf == NULL)
1234 		err = errno;
1235 	else {
1236 		*pf = (const struct port_flow){
1237 			.size = tmp + off1 + off2,
1238 			.attr = *attr,
1239 		};
1240 		tmp -= offsetof(struct port_flow, data);
1241 		off2 = tmp + off1;
1242 		off1 = tmp;
1243 		goto store;
1244 	}
1245 notsup:
1246 	rte_errno = err;
1247 	return NULL;
1248 }
1249 
1250 /** Print a message out of a flow error. */
1251 static int
1252 port_flow_complain(struct rte_flow_error *error)
1253 {
1254 	static const char *const errstrlist[] = {
1255 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1256 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1257 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1258 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1259 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1260 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1261 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1262 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1263 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1264 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1265 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1266 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1267 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1268 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1269 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1270 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1271 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1272 	};
1273 	const char *errstr;
1274 	char buf[32];
1275 	int err = rte_errno;
1276 
1277 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1278 	    !errstrlist[error->type])
1279 		errstr = "unknown type";
1280 	else
1281 		errstr = errstrlist[error->type];
1282 	printf("Caught error type %d (%s): %s%s\n",
1283 	       error->type, errstr,
1284 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1285 					error->cause), buf) : "",
1286 	       error->message ? error->message : "(no stated reason)");
1287 	return -err;
1288 }
1289 
1290 /** Validate flow rule. */
1291 int
1292 port_flow_validate(portid_t port_id,
1293 		   const struct rte_flow_attr *attr,
1294 		   const struct rte_flow_item *pattern,
1295 		   const struct rte_flow_action *actions)
1296 {
1297 	struct rte_flow_error error;
1298 
1299 	/* Poisoning to make sure PMDs update it in case of error. */
1300 	memset(&error, 0x11, sizeof(error));
1301 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1302 		return port_flow_complain(&error);
1303 	printf("Flow rule validated\n");
1304 	return 0;
1305 }
1306 
1307 /** Create flow rule. */
1308 int
1309 port_flow_create(portid_t port_id,
1310 		 const struct rte_flow_attr *attr,
1311 		 const struct rte_flow_item *pattern,
1312 		 const struct rte_flow_action *actions)
1313 {
1314 	struct rte_flow *flow;
1315 	struct rte_port *port;
1316 	struct port_flow *pf;
1317 	uint32_t id;
1318 	struct rte_flow_error error;
1319 
1320 	/* Poisoning to make sure PMDs update it in case of error. */
1321 	memset(&error, 0x22, sizeof(error));
1322 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1323 	if (!flow)
1324 		return port_flow_complain(&error);
1325 	port = &ports[port_id];
1326 	if (port->flow_list) {
1327 		if (port->flow_list->id == UINT32_MAX) {
1328 			printf("Highest rule ID is already assigned, delete"
1329 			       " it first");
1330 			rte_flow_destroy(port_id, flow, NULL);
1331 			return -ENOMEM;
1332 		}
1333 		id = port->flow_list->id + 1;
1334 	} else
1335 		id = 0;
1336 	pf = port_flow_new(attr, pattern, actions);
1337 	if (!pf) {
1338 		int err = rte_errno;
1339 
1340 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1341 		rte_flow_destroy(port_id, flow, NULL);
1342 		return -err;
1343 	}
1344 	pf->next = port->flow_list;
1345 	pf->id = id;
1346 	pf->flow = flow;
1347 	port->flow_list = pf;
1348 	printf("Flow rule #%u created\n", pf->id);
1349 	return 0;
1350 }
1351 
1352 /** Destroy a number of flow rules. */
1353 int
1354 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1355 {
1356 	struct rte_port *port;
1357 	struct port_flow **tmp;
1358 	uint32_t c = 0;
1359 	int ret = 0;
1360 
1361 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1362 	    port_id == (portid_t)RTE_PORT_ALL)
1363 		return -EINVAL;
1364 	port = &ports[port_id];
1365 	tmp = &port->flow_list;
1366 	while (*tmp) {
1367 		uint32_t i;
1368 
1369 		for (i = 0; i != n; ++i) {
1370 			struct rte_flow_error error;
1371 			struct port_flow *pf = *tmp;
1372 
1373 			if (rule[i] != pf->id)
1374 				continue;
1375 			/*
1376 			 * Poisoning to make sure PMDs update it in case
1377 			 * of error.
1378 			 */
1379 			memset(&error, 0x33, sizeof(error));
1380 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1381 				ret = port_flow_complain(&error);
1382 				continue;
1383 			}
1384 			printf("Flow rule #%u destroyed\n", pf->id);
1385 			*tmp = pf->next;
1386 			free(pf);
1387 			break;
1388 		}
1389 		if (i == n)
1390 			tmp = &(*tmp)->next;
1391 		++c;
1392 	}
1393 	return ret;
1394 }
1395 
1396 /** Remove all flow rules. */
1397 int
1398 port_flow_flush(portid_t port_id)
1399 {
1400 	struct rte_flow_error error;
1401 	struct rte_port *port;
1402 	int ret = 0;
1403 
1404 	/* Poisoning to make sure PMDs update it in case of error. */
1405 	memset(&error, 0x44, sizeof(error));
1406 	if (rte_flow_flush(port_id, &error)) {
1407 		ret = port_flow_complain(&error);
1408 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1409 		    port_id == (portid_t)RTE_PORT_ALL)
1410 			return ret;
1411 	}
1412 	port = &ports[port_id];
1413 	while (port->flow_list) {
1414 		struct port_flow *pf = port->flow_list->next;
1415 
1416 		free(port->flow_list);
1417 		port->flow_list = pf;
1418 	}
1419 	return ret;
1420 }
1421 
1422 /** Query a flow rule. */
1423 int
1424 port_flow_query(portid_t port_id, uint32_t rule,
1425 		enum rte_flow_action_type action)
1426 {
1427 	struct rte_flow_error error;
1428 	struct rte_port *port;
1429 	struct port_flow *pf;
1430 	const char *name;
1431 	union {
1432 		struct rte_flow_query_count count;
1433 	} query;
1434 
1435 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1436 	    port_id == (portid_t)RTE_PORT_ALL)
1437 		return -EINVAL;
1438 	port = &ports[port_id];
1439 	for (pf = port->flow_list; pf; pf = pf->next)
1440 		if (pf->id == rule)
1441 			break;
1442 	if (!pf) {
1443 		printf("Flow rule #%u not found\n", rule);
1444 		return -ENOENT;
1445 	}
1446 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1447 	    !flow_action[action].name)
1448 		name = "unknown";
1449 	else
1450 		name = flow_action[action].name;
1451 	switch (action) {
1452 	case RTE_FLOW_ACTION_TYPE_COUNT:
1453 		break;
1454 	default:
1455 		printf("Cannot query action type %d (%s)\n", action, name);
1456 		return -ENOTSUP;
1457 	}
1458 	/* Poisoning to make sure PMDs update it in case of error. */
1459 	memset(&error, 0x55, sizeof(error));
1460 	memset(&query, 0, sizeof(query));
1461 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1462 		return port_flow_complain(&error);
1463 	switch (action) {
1464 	case RTE_FLOW_ACTION_TYPE_COUNT:
1465 		printf("%s:\n"
1466 		       " hits_set: %u\n"
1467 		       " bytes_set: %u\n"
1468 		       " hits: %" PRIu64 "\n"
1469 		       " bytes: %" PRIu64 "\n",
1470 		       name,
1471 		       query.count.hits_set,
1472 		       query.count.bytes_set,
1473 		       query.count.hits,
1474 		       query.count.bytes);
1475 		break;
1476 	default:
1477 		printf("Cannot display result for action type %d (%s)\n",
1478 		       action, name);
1479 		break;
1480 	}
1481 	return 0;
1482 }
1483 
1484 /** List flow rules. */
1485 void
1486 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1487 {
1488 	struct rte_port *port;
1489 	struct port_flow *pf;
1490 	struct port_flow *list = NULL;
1491 	uint32_t i;
1492 
1493 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1494 	    port_id == (portid_t)RTE_PORT_ALL)
1495 		return;
1496 	port = &ports[port_id];
1497 	if (!port->flow_list)
1498 		return;
1499 	/* Sort flows by group, priority and ID. */
1500 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1501 		struct port_flow **tmp;
1502 
1503 		if (n) {
1504 			/* Filter out unwanted groups. */
1505 			for (i = 0; i != n; ++i)
1506 				if (pf->attr.group == group[i])
1507 					break;
1508 			if (i == n)
1509 				continue;
1510 		}
1511 		tmp = &list;
1512 		while (*tmp &&
1513 		       (pf->attr.group > (*tmp)->attr.group ||
1514 			(pf->attr.group == (*tmp)->attr.group &&
1515 			 pf->attr.priority > (*tmp)->attr.priority) ||
1516 			(pf->attr.group == (*tmp)->attr.group &&
1517 			 pf->attr.priority == (*tmp)->attr.priority &&
1518 			 pf->id > (*tmp)->id)))
1519 			tmp = &(*tmp)->tmp;
1520 		pf->tmp = *tmp;
1521 		*tmp = pf;
1522 	}
1523 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1524 	for (pf = list; pf != NULL; pf = pf->tmp) {
1525 		const struct rte_flow_item *item = pf->pattern;
1526 		const struct rte_flow_action *action = pf->actions;
1527 
1528 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1529 		       pf->id,
1530 		       pf->attr.group,
1531 		       pf->attr.priority,
1532 		       pf->attr.ingress ? 'i' : '-',
1533 		       pf->attr.egress ? 'e' : '-',
1534 		       pf->attr.transfer ? 't' : '-');
1535 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1536 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1537 				printf("%s ", flow_item[item->type].name);
1538 			++item;
1539 		}
1540 		printf("=>");
1541 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1542 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1543 				printf(" %s", flow_action[action->type].name);
1544 			++action;
1545 		}
1546 		printf("\n");
1547 	}
1548 }
1549 
1550 /** Restrict ingress traffic to the defined flow rules. */
1551 int
1552 port_flow_isolate(portid_t port_id, int set)
1553 {
1554 	struct rte_flow_error error;
1555 
1556 	/* Poisoning to make sure PMDs update it in case of error. */
1557 	memset(&error, 0x66, sizeof(error));
1558 	if (rte_flow_isolate(port_id, set, &error))
1559 		return port_flow_complain(&error);
1560 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1561 	       port_id,
1562 	       set ? "now restricted" : "not restricted anymore");
1563 	return 0;
1564 }
1565 
1566 /*
1567  * RX/TX ring descriptors display functions.
1568  */
1569 int
1570 rx_queue_id_is_invalid(queueid_t rxq_id)
1571 {
1572 	if (rxq_id < nb_rxq)
1573 		return 0;
1574 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1575 	return 1;
1576 }
1577 
1578 int
1579 tx_queue_id_is_invalid(queueid_t txq_id)
1580 {
1581 	if (txq_id < nb_txq)
1582 		return 0;
1583 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1584 	return 1;
1585 }
1586 
1587 static int
1588 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1589 {
1590 	if (rxdesc_id < nb_rxd)
1591 		return 0;
1592 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1593 	       rxdesc_id, nb_rxd);
1594 	return 1;
1595 }
1596 
1597 static int
1598 tx_desc_id_is_invalid(uint16_t txdesc_id)
1599 {
1600 	if (txdesc_id < nb_txd)
1601 		return 0;
1602 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1603 	       txdesc_id, nb_txd);
1604 	return 1;
1605 }
1606 
1607 static const struct rte_memzone *
1608 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1609 {
1610 	char mz_name[RTE_MEMZONE_NAMESIZE];
1611 	const struct rte_memzone *mz;
1612 
1613 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1614 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1615 	mz = rte_memzone_lookup(mz_name);
1616 	if (mz == NULL)
1617 		printf("%s ring memory zoneof (port %d, queue %d) not"
1618 		       "found (zone name = %s\n",
1619 		       ring_name, port_id, q_id, mz_name);
1620 	return mz;
1621 }
1622 
1623 union igb_ring_dword {
1624 	uint64_t dword;
1625 	struct {
1626 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1627 		uint32_t lo;
1628 		uint32_t hi;
1629 #else
1630 		uint32_t hi;
1631 		uint32_t lo;
1632 #endif
1633 	} words;
1634 };
1635 
1636 struct igb_ring_desc_32_bytes {
1637 	union igb_ring_dword lo_dword;
1638 	union igb_ring_dword hi_dword;
1639 	union igb_ring_dword resv1;
1640 	union igb_ring_dword resv2;
1641 };
1642 
1643 struct igb_ring_desc_16_bytes {
1644 	union igb_ring_dword lo_dword;
1645 	union igb_ring_dword hi_dword;
1646 };
1647 
1648 static void
1649 ring_rxd_display_dword(union igb_ring_dword dword)
1650 {
1651 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1652 					(unsigned)dword.words.hi);
1653 }
1654 
1655 static void
1656 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1657 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1658 			   portid_t port_id,
1659 #else
1660 			   __rte_unused portid_t port_id,
1661 #endif
1662 			   uint16_t desc_id)
1663 {
1664 	struct igb_ring_desc_16_bytes *ring =
1665 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1666 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1667 	struct rte_eth_dev_info dev_info;
1668 
1669 	memset(&dev_info, 0, sizeof(dev_info));
1670 	rte_eth_dev_info_get(port_id, &dev_info);
1671 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1672 		/* 32 bytes RX descriptor, i40e only */
1673 		struct igb_ring_desc_32_bytes *ring =
1674 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1675 		ring[desc_id].lo_dword.dword =
1676 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1677 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1678 		ring[desc_id].hi_dword.dword =
1679 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1680 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1681 		ring[desc_id].resv1.dword =
1682 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1683 		ring_rxd_display_dword(ring[desc_id].resv1);
1684 		ring[desc_id].resv2.dword =
1685 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1686 		ring_rxd_display_dword(ring[desc_id].resv2);
1687 
1688 		return;
1689 	}
1690 #endif
1691 	/* 16 bytes RX descriptor */
1692 	ring[desc_id].lo_dword.dword =
1693 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1694 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1695 	ring[desc_id].hi_dword.dword =
1696 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1697 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1698 }
1699 
1700 static void
1701 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1702 {
1703 	struct igb_ring_desc_16_bytes *ring;
1704 	struct igb_ring_desc_16_bytes txd;
1705 
1706 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1707 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1708 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1709 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1710 			(unsigned)txd.lo_dword.words.lo,
1711 			(unsigned)txd.lo_dword.words.hi,
1712 			(unsigned)txd.hi_dword.words.lo,
1713 			(unsigned)txd.hi_dword.words.hi);
1714 }
1715 
1716 void
1717 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1718 {
1719 	const struct rte_memzone *rx_mz;
1720 
1721 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1722 		return;
1723 	if (rx_queue_id_is_invalid(rxq_id))
1724 		return;
1725 	if (rx_desc_id_is_invalid(rxd_id))
1726 		return;
1727 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1728 	if (rx_mz == NULL)
1729 		return;
1730 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1731 }
1732 
1733 void
1734 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1735 {
1736 	const struct rte_memzone *tx_mz;
1737 
1738 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1739 		return;
1740 	if (tx_queue_id_is_invalid(txq_id))
1741 		return;
1742 	if (tx_desc_id_is_invalid(txd_id))
1743 		return;
1744 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1745 	if (tx_mz == NULL)
1746 		return;
1747 	ring_tx_descriptor_display(tx_mz, txd_id);
1748 }
1749 
1750 void
1751 fwd_lcores_config_display(void)
1752 {
1753 	lcoreid_t lc_id;
1754 
1755 	printf("List of forwarding lcores:");
1756 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1757 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1758 	printf("\n");
1759 }
1760 void
1761 rxtx_config_display(void)
1762 {
1763 	portid_t pid;
1764 	queueid_t qid;
1765 
1766 	printf("  %s packet forwarding%s packets/burst=%d\n",
1767 	       cur_fwd_eng->fwd_mode_name,
1768 	       retry_enabled == 0 ? "" : " with retry",
1769 	       nb_pkt_per_burst);
1770 
1771 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1772 		printf("  packet len=%u - nb packet segments=%d\n",
1773 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1774 
1775 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1776 	       nb_fwd_lcores, nb_fwd_ports);
1777 
1778 	RTE_ETH_FOREACH_DEV(pid) {
1779 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1780 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1781 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1782 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1783 
1784 		/* per port config */
1785 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1786 				(unsigned int)pid, nb_rxq, nb_txq);
1787 
1788 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1789 				ports[pid].dev_conf.rxmode.offloads,
1790 				ports[pid].dev_conf.txmode.offloads);
1791 
1792 		/* per rx queue config only for first queue to be less verbose */
1793 		for (qid = 0; qid < 1; qid++) {
1794 			printf("    RX queue: %d\n", qid);
1795 			printf("      RX desc=%d - RX free threshold=%d\n",
1796 				nb_rx_desc[qid], rx_conf[qid].rx_free_thresh);
1797 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1798 				" wthresh=%d\n",
1799 				rx_conf[qid].rx_thresh.pthresh,
1800 				rx_conf[qid].rx_thresh.hthresh,
1801 				rx_conf[qid].rx_thresh.wthresh);
1802 			printf("      RX Offloads=0x%"PRIx64"\n",
1803 				rx_conf[qid].offloads);
1804 		}
1805 
1806 		/* per tx queue config only for first queue to be less verbose */
1807 		for (qid = 0; qid < 1; qid++) {
1808 			printf("    TX queue: %d\n", qid);
1809 			printf("      TX desc=%d - TX free threshold=%d\n",
1810 				nb_tx_desc[qid], tx_conf[qid].tx_free_thresh);
1811 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1812 				" wthresh=%d\n",
1813 				tx_conf[qid].tx_thresh.pthresh,
1814 				tx_conf[qid].tx_thresh.hthresh,
1815 				tx_conf[qid].tx_thresh.wthresh);
1816 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1817 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1818 		}
1819 	}
1820 }
1821 
1822 void
1823 port_rss_reta_info(portid_t port_id,
1824 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1825 		   uint16_t nb_entries)
1826 {
1827 	uint16_t i, idx, shift;
1828 	int ret;
1829 
1830 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1831 		return;
1832 
1833 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1834 	if (ret != 0) {
1835 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1836 		return;
1837 	}
1838 
1839 	for (i = 0; i < nb_entries; i++) {
1840 		idx = i / RTE_RETA_GROUP_SIZE;
1841 		shift = i % RTE_RETA_GROUP_SIZE;
1842 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1843 			continue;
1844 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1845 					i, reta_conf[idx].reta[shift]);
1846 	}
1847 }
1848 
1849 /*
1850  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1851  * key of the port.
1852  */
1853 void
1854 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1855 {
1856 	struct rte_eth_rss_conf rss_conf;
1857 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1858 	uint64_t rss_hf;
1859 	uint8_t i;
1860 	int diag;
1861 	struct rte_eth_dev_info dev_info;
1862 	uint8_t hash_key_size;
1863 
1864 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1865 		return;
1866 
1867 	memset(&dev_info, 0, sizeof(dev_info));
1868 	rte_eth_dev_info_get(port_id, &dev_info);
1869 	if (dev_info.hash_key_size > 0 &&
1870 			dev_info.hash_key_size <= sizeof(rss_key))
1871 		hash_key_size = dev_info.hash_key_size;
1872 	else {
1873 		printf("dev_info did not provide a valid hash key size\n");
1874 		return;
1875 	}
1876 
1877 	rss_conf.rss_hf = 0;
1878 	for (i = 0; rss_type_table[i].str; i++) {
1879 		if (!strcmp(rss_info, rss_type_table[i].str))
1880 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1881 	}
1882 
1883 	/* Get RSS hash key if asked to display it */
1884 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1885 	rss_conf.rss_key_len = hash_key_size;
1886 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1887 	if (diag != 0) {
1888 		switch (diag) {
1889 		case -ENODEV:
1890 			printf("port index %d invalid\n", port_id);
1891 			break;
1892 		case -ENOTSUP:
1893 			printf("operation not supported by device\n");
1894 			break;
1895 		default:
1896 			printf("operation failed - diag=%d\n", diag);
1897 			break;
1898 		}
1899 		return;
1900 	}
1901 	rss_hf = rss_conf.rss_hf;
1902 	if (rss_hf == 0) {
1903 		printf("RSS disabled\n");
1904 		return;
1905 	}
1906 	printf("RSS functions:\n ");
1907 	for (i = 0; rss_type_table[i].str; i++) {
1908 		if (rss_hf & rss_type_table[i].rss_type)
1909 			printf("%s ", rss_type_table[i].str);
1910 	}
1911 	printf("\n");
1912 	if (!show_rss_key)
1913 		return;
1914 	printf("RSS key:\n");
1915 	for (i = 0; i < hash_key_size; i++)
1916 		printf("%02X", rss_key[i]);
1917 	printf("\n");
1918 }
1919 
1920 void
1921 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1922 			 uint hash_key_len)
1923 {
1924 	struct rte_eth_rss_conf rss_conf;
1925 	int diag;
1926 	unsigned int i;
1927 
1928 	rss_conf.rss_key = NULL;
1929 	rss_conf.rss_key_len = hash_key_len;
1930 	rss_conf.rss_hf = 0;
1931 	for (i = 0; rss_type_table[i].str; i++) {
1932 		if (!strcmp(rss_type_table[i].str, rss_type))
1933 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1934 	}
1935 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1936 	if (diag == 0) {
1937 		rss_conf.rss_key = hash_key;
1938 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1939 	}
1940 	if (diag == 0)
1941 		return;
1942 
1943 	switch (diag) {
1944 	case -ENODEV:
1945 		printf("port index %d invalid\n", port_id);
1946 		break;
1947 	case -ENOTSUP:
1948 		printf("operation not supported by device\n");
1949 		break;
1950 	default:
1951 		printf("operation failed - diag=%d\n", diag);
1952 		break;
1953 	}
1954 }
1955 
1956 /*
1957  * Setup forwarding configuration for each logical core.
1958  */
1959 static void
1960 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1961 {
1962 	streamid_t nb_fs_per_lcore;
1963 	streamid_t nb_fs;
1964 	streamid_t sm_id;
1965 	lcoreid_t  nb_extra;
1966 	lcoreid_t  nb_fc;
1967 	lcoreid_t  nb_lc;
1968 	lcoreid_t  lc_id;
1969 
1970 	nb_fs = cfg->nb_fwd_streams;
1971 	nb_fc = cfg->nb_fwd_lcores;
1972 	if (nb_fs <= nb_fc) {
1973 		nb_fs_per_lcore = 1;
1974 		nb_extra = 0;
1975 	} else {
1976 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1977 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1978 	}
1979 
1980 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1981 	sm_id = 0;
1982 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1983 		fwd_lcores[lc_id]->stream_idx = sm_id;
1984 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1985 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1986 	}
1987 
1988 	/*
1989 	 * Assign extra remaining streams, if any.
1990 	 */
1991 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1992 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1993 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1994 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1995 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1996 	}
1997 }
1998 
1999 static portid_t
2000 fwd_topology_tx_port_get(portid_t rxp)
2001 {
2002 	static int warning_once = 1;
2003 
2004 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2005 
2006 	switch (port_topology) {
2007 	default:
2008 	case PORT_TOPOLOGY_PAIRED:
2009 		if ((rxp & 0x1) == 0) {
2010 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2011 				return rxp + 1;
2012 			if (warning_once) {
2013 				printf("\nWarning! port-topology=paired"
2014 				       " and odd forward ports number,"
2015 				       " the last port will pair with"
2016 				       " itself.\n\n");
2017 				warning_once = 0;
2018 			}
2019 			return rxp;
2020 		}
2021 		return rxp - 1;
2022 	case PORT_TOPOLOGY_CHAINED:
2023 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2024 	case PORT_TOPOLOGY_LOOP:
2025 		return rxp;
2026 	}
2027 }
2028 
2029 static void
2030 simple_fwd_config_setup(void)
2031 {
2032 	portid_t i;
2033 
2034 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2035 	cur_fwd_config.nb_fwd_streams =
2036 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2037 
2038 	/* reinitialize forwarding streams */
2039 	init_fwd_streams();
2040 
2041 	/*
2042 	 * In the simple forwarding test, the number of forwarding cores
2043 	 * must be lower or equal to the number of forwarding ports.
2044 	 */
2045 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2046 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2047 		cur_fwd_config.nb_fwd_lcores =
2048 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2049 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2050 
2051 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2052 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2053 		fwd_streams[i]->rx_queue  = 0;
2054 		fwd_streams[i]->tx_port   =
2055 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2056 		fwd_streams[i]->tx_queue  = 0;
2057 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2058 		fwd_streams[i]->retry_enabled = retry_enabled;
2059 	}
2060 }
2061 
2062 /**
2063  * For the RSS forwarding test all streams distributed over lcores. Each stream
2064  * being composed of a RX queue to poll on a RX port for input messages,
2065  * associated with a TX queue of a TX port where to send forwarded packets.
2066  */
2067 static void
2068 rss_fwd_config_setup(void)
2069 {
2070 	portid_t   rxp;
2071 	portid_t   txp;
2072 	queueid_t  rxq;
2073 	queueid_t  nb_q;
2074 	streamid_t  sm_id;
2075 
2076 	nb_q = nb_rxq;
2077 	if (nb_q > nb_txq)
2078 		nb_q = nb_txq;
2079 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2080 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2081 	cur_fwd_config.nb_fwd_streams =
2082 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2083 
2084 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2085 		cur_fwd_config.nb_fwd_lcores =
2086 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2087 
2088 	/* reinitialize forwarding streams */
2089 	init_fwd_streams();
2090 
2091 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2092 	rxp = 0; rxq = 0;
2093 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2094 		struct fwd_stream *fs;
2095 
2096 		fs = fwd_streams[sm_id];
2097 		txp = fwd_topology_tx_port_get(rxp);
2098 		fs->rx_port = fwd_ports_ids[rxp];
2099 		fs->rx_queue = rxq;
2100 		fs->tx_port = fwd_ports_ids[txp];
2101 		fs->tx_queue = rxq;
2102 		fs->peer_addr = fs->tx_port;
2103 		fs->retry_enabled = retry_enabled;
2104 		rxq = (queueid_t) (rxq + 1);
2105 		if (rxq < nb_q)
2106 			continue;
2107 		/*
2108 		 * rxq == nb_q
2109 		 * Restart from RX queue 0 on next RX port
2110 		 */
2111 		rxq = 0;
2112 		rxp++;
2113 	}
2114 }
2115 
2116 /**
2117  * For the DCB forwarding test, each core is assigned on each traffic class.
2118  *
2119  * Each core is assigned a multi-stream, each stream being composed of
2120  * a RX queue to poll on a RX port for input messages, associated with
2121  * a TX queue of a TX port where to send forwarded packets. All RX and
2122  * TX queues are mapping to the same traffic class.
2123  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2124  * the same core
2125  */
2126 static void
2127 dcb_fwd_config_setup(void)
2128 {
2129 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2130 	portid_t txp, rxp = 0;
2131 	queueid_t txq, rxq = 0;
2132 	lcoreid_t  lc_id;
2133 	uint16_t nb_rx_queue, nb_tx_queue;
2134 	uint16_t i, j, k, sm_id = 0;
2135 	uint8_t tc = 0;
2136 
2137 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2138 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2139 	cur_fwd_config.nb_fwd_streams =
2140 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2141 
2142 	/* reinitialize forwarding streams */
2143 	init_fwd_streams();
2144 	sm_id = 0;
2145 	txp = 1;
2146 	/* get the dcb info on the first RX and TX ports */
2147 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2148 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2149 
2150 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2151 		fwd_lcores[lc_id]->stream_nb = 0;
2152 		fwd_lcores[lc_id]->stream_idx = sm_id;
2153 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2154 			/* if the nb_queue is zero, means this tc is
2155 			 * not enabled on the POOL
2156 			 */
2157 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2158 				break;
2159 			k = fwd_lcores[lc_id]->stream_nb +
2160 				fwd_lcores[lc_id]->stream_idx;
2161 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2162 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2163 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2164 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2165 			for (j = 0; j < nb_rx_queue; j++) {
2166 				struct fwd_stream *fs;
2167 
2168 				fs = fwd_streams[k + j];
2169 				fs->rx_port = fwd_ports_ids[rxp];
2170 				fs->rx_queue = rxq + j;
2171 				fs->tx_port = fwd_ports_ids[txp];
2172 				fs->tx_queue = txq + j % nb_tx_queue;
2173 				fs->peer_addr = fs->tx_port;
2174 				fs->retry_enabled = retry_enabled;
2175 			}
2176 			fwd_lcores[lc_id]->stream_nb +=
2177 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2178 		}
2179 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2180 
2181 		tc++;
2182 		if (tc < rxp_dcb_info.nb_tcs)
2183 			continue;
2184 		/* Restart from TC 0 on next RX port */
2185 		tc = 0;
2186 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2187 			rxp = (portid_t)
2188 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2189 		else
2190 			rxp++;
2191 		if (rxp >= nb_fwd_ports)
2192 			return;
2193 		/* get the dcb information on next RX and TX ports */
2194 		if ((rxp & 0x1) == 0)
2195 			txp = (portid_t) (rxp + 1);
2196 		else
2197 			txp = (portid_t) (rxp - 1);
2198 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2199 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2200 	}
2201 }
2202 
2203 static void
2204 icmp_echo_config_setup(void)
2205 {
2206 	portid_t  rxp;
2207 	queueid_t rxq;
2208 	lcoreid_t lc_id;
2209 	uint16_t  sm_id;
2210 
2211 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2212 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2213 			(nb_txq * nb_fwd_ports);
2214 	else
2215 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2216 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2217 	cur_fwd_config.nb_fwd_streams =
2218 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2219 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2220 		cur_fwd_config.nb_fwd_lcores =
2221 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2222 	if (verbose_level > 0) {
2223 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2224 		       __FUNCTION__,
2225 		       cur_fwd_config.nb_fwd_lcores,
2226 		       cur_fwd_config.nb_fwd_ports,
2227 		       cur_fwd_config.nb_fwd_streams);
2228 	}
2229 
2230 	/* reinitialize forwarding streams */
2231 	init_fwd_streams();
2232 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2233 	rxp = 0; rxq = 0;
2234 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2235 		if (verbose_level > 0)
2236 			printf("  core=%d: \n", lc_id);
2237 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2238 			struct fwd_stream *fs;
2239 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2240 			fs->rx_port = fwd_ports_ids[rxp];
2241 			fs->rx_queue = rxq;
2242 			fs->tx_port = fs->rx_port;
2243 			fs->tx_queue = rxq;
2244 			fs->peer_addr = fs->tx_port;
2245 			fs->retry_enabled = retry_enabled;
2246 			if (verbose_level > 0)
2247 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2248 				       sm_id, fs->rx_port, fs->rx_queue,
2249 				       fs->tx_queue);
2250 			rxq = (queueid_t) (rxq + 1);
2251 			if (rxq == nb_rxq) {
2252 				rxq = 0;
2253 				rxp = (portid_t) (rxp + 1);
2254 			}
2255 		}
2256 	}
2257 }
2258 
2259 void
2260 fwd_config_setup(void)
2261 {
2262 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2263 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2264 		icmp_echo_config_setup();
2265 		return;
2266 	}
2267 	if ((nb_rxq > 1) && (nb_txq > 1)){
2268 		if (dcb_config)
2269 			dcb_fwd_config_setup();
2270 		else
2271 			rss_fwd_config_setup();
2272 	}
2273 	else
2274 		simple_fwd_config_setup();
2275 }
2276 
2277 void
2278 pkt_fwd_config_display(struct fwd_config *cfg)
2279 {
2280 	struct fwd_stream *fs;
2281 	lcoreid_t  lc_id;
2282 	streamid_t sm_id;
2283 
2284 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2285 		"NUMA support %s, MP over anonymous pages %s\n",
2286 		cfg->fwd_eng->fwd_mode_name,
2287 		retry_enabled == 0 ? "" : " with retry",
2288 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2289 		numa_support == 1 ? "enabled" : "disabled",
2290 		mp_anon != 0 ? "enabled" : "disabled");
2291 
2292 	if (retry_enabled)
2293 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2294 			burst_tx_retry_num, burst_tx_delay_time);
2295 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2296 		printf("Logical Core %u (socket %u) forwards packets on "
2297 		       "%d streams:",
2298 		       fwd_lcores_cpuids[lc_id],
2299 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2300 		       fwd_lcores[lc_id]->stream_nb);
2301 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2302 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2303 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2304 			       "P=%d/Q=%d (socket %u) ",
2305 			       fs->rx_port, fs->rx_queue,
2306 			       ports[fs->rx_port].socket_id,
2307 			       fs->tx_port, fs->tx_queue,
2308 			       ports[fs->tx_port].socket_id);
2309 			print_ethaddr("peer=",
2310 				      &peer_eth_addrs[fs->peer_addr]);
2311 		}
2312 		printf("\n");
2313 	}
2314 	printf("\n");
2315 }
2316 
2317 void
2318 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2319 {
2320 	uint8_t c, new_peer_addr[6];
2321 	if (!rte_eth_dev_is_valid_port(port_id)) {
2322 		printf("Error: Invalid port number %i\n", port_id);
2323 		return;
2324 	}
2325 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2326 					sizeof(new_peer_addr)) < 0) {
2327 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2328 		return;
2329 	}
2330 	for (c = 0; c < 6; c++)
2331 		peer_eth_addrs[port_id].addr_bytes[c] =
2332 			new_peer_addr[c];
2333 }
2334 
2335 int
2336 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2337 {
2338 	unsigned int i;
2339 	unsigned int lcore_cpuid;
2340 	int record_now;
2341 
2342 	record_now = 0;
2343  again:
2344 	for (i = 0; i < nb_lc; i++) {
2345 		lcore_cpuid = lcorelist[i];
2346 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2347 			printf("lcore %u not enabled\n", lcore_cpuid);
2348 			return -1;
2349 		}
2350 		if (lcore_cpuid == rte_get_master_lcore()) {
2351 			printf("lcore %u cannot be masked on for running "
2352 			       "packet forwarding, which is the master lcore "
2353 			       "and reserved for command line parsing only\n",
2354 			       lcore_cpuid);
2355 			return -1;
2356 		}
2357 		if (record_now)
2358 			fwd_lcores_cpuids[i] = lcore_cpuid;
2359 	}
2360 	if (record_now == 0) {
2361 		record_now = 1;
2362 		goto again;
2363 	}
2364 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2365 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2366 		printf("previous number of forwarding cores %u - changed to "
2367 		       "number of configured cores %u\n",
2368 		       (unsigned int) nb_fwd_lcores, nb_lc);
2369 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 int
2376 set_fwd_lcores_mask(uint64_t lcoremask)
2377 {
2378 	unsigned int lcorelist[64];
2379 	unsigned int nb_lc;
2380 	unsigned int i;
2381 
2382 	if (lcoremask == 0) {
2383 		printf("Invalid NULL mask of cores\n");
2384 		return -1;
2385 	}
2386 	nb_lc = 0;
2387 	for (i = 0; i < 64; i++) {
2388 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2389 			continue;
2390 		lcorelist[nb_lc++] = i;
2391 	}
2392 	return set_fwd_lcores_list(lcorelist, nb_lc);
2393 }
2394 
2395 void
2396 set_fwd_lcores_number(uint16_t nb_lc)
2397 {
2398 	if (nb_lc > nb_cfg_lcores) {
2399 		printf("nb fwd cores %u > %u (max. number of configured "
2400 		       "lcores) - ignored\n",
2401 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2402 		return;
2403 	}
2404 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2405 	printf("Number of forwarding cores set to %u\n",
2406 	       (unsigned int) nb_fwd_lcores);
2407 }
2408 
2409 void
2410 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2411 {
2412 	unsigned int i;
2413 	portid_t port_id;
2414 	int record_now;
2415 
2416 	record_now = 0;
2417  again:
2418 	for (i = 0; i < nb_pt; i++) {
2419 		port_id = (portid_t) portlist[i];
2420 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2421 			return;
2422 		if (record_now)
2423 			fwd_ports_ids[i] = port_id;
2424 	}
2425 	if (record_now == 0) {
2426 		record_now = 1;
2427 		goto again;
2428 	}
2429 	nb_cfg_ports = (portid_t) nb_pt;
2430 	if (nb_fwd_ports != (portid_t) nb_pt) {
2431 		printf("previous number of forwarding ports %u - changed to "
2432 		       "number of configured ports %u\n",
2433 		       (unsigned int) nb_fwd_ports, nb_pt);
2434 		nb_fwd_ports = (portid_t) nb_pt;
2435 	}
2436 }
2437 
2438 void
2439 set_fwd_ports_mask(uint64_t portmask)
2440 {
2441 	unsigned int portlist[64];
2442 	unsigned int nb_pt;
2443 	unsigned int i;
2444 
2445 	if (portmask == 0) {
2446 		printf("Invalid NULL mask of ports\n");
2447 		return;
2448 	}
2449 	nb_pt = 0;
2450 	RTE_ETH_FOREACH_DEV(i) {
2451 		if (! ((uint64_t)(1ULL << i) & portmask))
2452 			continue;
2453 		portlist[nb_pt++] = i;
2454 	}
2455 	set_fwd_ports_list(portlist, nb_pt);
2456 }
2457 
2458 void
2459 set_fwd_ports_number(uint16_t nb_pt)
2460 {
2461 	if (nb_pt > nb_cfg_ports) {
2462 		printf("nb fwd ports %u > %u (number of configured "
2463 		       "ports) - ignored\n",
2464 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2465 		return;
2466 	}
2467 	nb_fwd_ports = (portid_t) nb_pt;
2468 	printf("Number of forwarding ports set to %u\n",
2469 	       (unsigned int) nb_fwd_ports);
2470 }
2471 
2472 int
2473 port_is_forwarding(portid_t port_id)
2474 {
2475 	unsigned int i;
2476 
2477 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2478 		return -1;
2479 
2480 	for (i = 0; i < nb_fwd_ports; i++) {
2481 		if (fwd_ports_ids[i] == port_id)
2482 			return 1;
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 void
2489 set_nb_pkt_per_burst(uint16_t nb)
2490 {
2491 	if (nb > MAX_PKT_BURST) {
2492 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2493 		       " ignored\n",
2494 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2495 		return;
2496 	}
2497 	nb_pkt_per_burst = nb;
2498 	printf("Number of packets per burst set to %u\n",
2499 	       (unsigned int) nb_pkt_per_burst);
2500 }
2501 
2502 static const char *
2503 tx_split_get_name(enum tx_pkt_split split)
2504 {
2505 	uint32_t i;
2506 
2507 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2508 		if (tx_split_name[i].split == split)
2509 			return tx_split_name[i].name;
2510 	}
2511 	return NULL;
2512 }
2513 
2514 void
2515 set_tx_pkt_split(const char *name)
2516 {
2517 	uint32_t i;
2518 
2519 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2520 		if (strcmp(tx_split_name[i].name, name) == 0) {
2521 			tx_pkt_split = tx_split_name[i].split;
2522 			return;
2523 		}
2524 	}
2525 	printf("unknown value: \"%s\"\n", name);
2526 }
2527 
2528 void
2529 show_tx_pkt_segments(void)
2530 {
2531 	uint32_t i, n;
2532 	const char *split;
2533 
2534 	n = tx_pkt_nb_segs;
2535 	split = tx_split_get_name(tx_pkt_split);
2536 
2537 	printf("Number of segments: %u\n", n);
2538 	printf("Segment sizes: ");
2539 	for (i = 0; i != n - 1; i++)
2540 		printf("%hu,", tx_pkt_seg_lengths[i]);
2541 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2542 	printf("Split packet: %s\n", split);
2543 }
2544 
2545 void
2546 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2547 {
2548 	uint16_t tx_pkt_len;
2549 	unsigned i;
2550 
2551 	if (nb_segs >= (unsigned) nb_txd) {
2552 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2553 		       nb_segs, (unsigned int) nb_txd);
2554 		return;
2555 	}
2556 
2557 	/*
2558 	 * Check that each segment length is greater or equal than
2559 	 * the mbuf data sise.
2560 	 * Check also that the total packet length is greater or equal than the
2561 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2562 	 */
2563 	tx_pkt_len = 0;
2564 	for (i = 0; i < nb_segs; i++) {
2565 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2566 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2567 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2568 			return;
2569 		}
2570 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2571 	}
2572 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2573 		printf("total packet length=%u < %d - give up\n",
2574 				(unsigned) tx_pkt_len,
2575 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2576 		return;
2577 	}
2578 
2579 	for (i = 0; i < nb_segs; i++)
2580 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2581 
2582 	tx_pkt_length  = tx_pkt_len;
2583 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2584 }
2585 
2586 void
2587 setup_gro(const char *onoff, portid_t port_id)
2588 {
2589 	if (!rte_eth_dev_is_valid_port(port_id)) {
2590 		printf("invalid port id %u\n", port_id);
2591 		return;
2592 	}
2593 	if (test_done == 0) {
2594 		printf("Before enable/disable GRO,"
2595 				" please stop forwarding first\n");
2596 		return;
2597 	}
2598 	if (strcmp(onoff, "on") == 0) {
2599 		if (gro_ports[port_id].enable != 0) {
2600 			printf("Port %u has enabled GRO. Please"
2601 					" disable GRO first\n", port_id);
2602 			return;
2603 		}
2604 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2605 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2606 			gro_ports[port_id].param.max_flow_num =
2607 				GRO_DEFAULT_FLOW_NUM;
2608 			gro_ports[port_id].param.max_item_per_flow =
2609 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2610 		}
2611 		gro_ports[port_id].enable = 1;
2612 	} else {
2613 		if (gro_ports[port_id].enable == 0) {
2614 			printf("Port %u has disabled GRO\n", port_id);
2615 			return;
2616 		}
2617 		gro_ports[port_id].enable = 0;
2618 	}
2619 }
2620 
2621 void
2622 setup_gro_flush_cycles(uint8_t cycles)
2623 {
2624 	if (test_done == 0) {
2625 		printf("Before change flush interval for GRO,"
2626 				" please stop forwarding first.\n");
2627 		return;
2628 	}
2629 
2630 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2631 			GRO_DEFAULT_FLUSH_CYCLES) {
2632 		printf("The flushing cycle be in the range"
2633 				" of 1 to %u. Revert to the default"
2634 				" value %u.\n",
2635 				GRO_MAX_FLUSH_CYCLES,
2636 				GRO_DEFAULT_FLUSH_CYCLES);
2637 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2638 	}
2639 
2640 	gro_flush_cycles = cycles;
2641 }
2642 
2643 void
2644 show_gro(portid_t port_id)
2645 {
2646 	struct rte_gro_param *param;
2647 	uint32_t max_pkts_num;
2648 
2649 	param = &gro_ports[port_id].param;
2650 
2651 	if (!rte_eth_dev_is_valid_port(port_id)) {
2652 		printf("Invalid port id %u.\n", port_id);
2653 		return;
2654 	}
2655 	if (gro_ports[port_id].enable) {
2656 		printf("GRO type: TCP/IPv4\n");
2657 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2658 			max_pkts_num = param->max_flow_num *
2659 				param->max_item_per_flow;
2660 		} else
2661 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2662 		printf("Max number of packets to perform GRO: %u\n",
2663 				max_pkts_num);
2664 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2665 	} else
2666 		printf("Port %u doesn't enable GRO.\n", port_id);
2667 }
2668 
2669 void
2670 setup_gso(const char *mode, portid_t port_id)
2671 {
2672 	if (!rte_eth_dev_is_valid_port(port_id)) {
2673 		printf("invalid port id %u\n", port_id);
2674 		return;
2675 	}
2676 	if (strcmp(mode, "on") == 0) {
2677 		if (test_done == 0) {
2678 			printf("before enabling GSO,"
2679 					" please stop forwarding first\n");
2680 			return;
2681 		}
2682 		gso_ports[port_id].enable = 1;
2683 	} else if (strcmp(mode, "off") == 0) {
2684 		if (test_done == 0) {
2685 			printf("before disabling GSO,"
2686 					" please stop forwarding first\n");
2687 			return;
2688 		}
2689 		gso_ports[port_id].enable = 0;
2690 	}
2691 }
2692 
2693 char*
2694 list_pkt_forwarding_modes(void)
2695 {
2696 	static char fwd_modes[128] = "";
2697 	const char *separator = "|";
2698 	struct fwd_engine *fwd_eng;
2699 	unsigned i = 0;
2700 
2701 	if (strlen (fwd_modes) == 0) {
2702 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2703 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2704 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2705 			strncat(fwd_modes, separator,
2706 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2707 		}
2708 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2709 	}
2710 
2711 	return fwd_modes;
2712 }
2713 
2714 char*
2715 list_pkt_forwarding_retry_modes(void)
2716 {
2717 	static char fwd_modes[128] = "";
2718 	const char *separator = "|";
2719 	struct fwd_engine *fwd_eng;
2720 	unsigned i = 0;
2721 
2722 	if (strlen(fwd_modes) == 0) {
2723 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2724 			if (fwd_eng == &rx_only_engine)
2725 				continue;
2726 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2727 					sizeof(fwd_modes) -
2728 					strlen(fwd_modes) - 1);
2729 			strncat(fwd_modes, separator,
2730 					sizeof(fwd_modes) -
2731 					strlen(fwd_modes) - 1);
2732 		}
2733 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2734 	}
2735 
2736 	return fwd_modes;
2737 }
2738 
2739 void
2740 set_pkt_forwarding_mode(const char *fwd_mode_name)
2741 {
2742 	struct fwd_engine *fwd_eng;
2743 	unsigned i;
2744 
2745 	i = 0;
2746 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2747 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2748 			printf("Set %s packet forwarding mode%s\n",
2749 			       fwd_mode_name,
2750 			       retry_enabled == 0 ? "" : " with retry");
2751 			cur_fwd_eng = fwd_eng;
2752 			return;
2753 		}
2754 		i++;
2755 	}
2756 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2757 }
2758 
2759 void
2760 set_verbose_level(uint16_t vb_level)
2761 {
2762 	printf("Change verbose level from %u to %u\n",
2763 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2764 	verbose_level = vb_level;
2765 }
2766 
2767 void
2768 vlan_extend_set(portid_t port_id, int on)
2769 {
2770 	int diag;
2771 	int vlan_offload;
2772 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2773 
2774 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2775 		return;
2776 
2777 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2778 
2779 	if (on) {
2780 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2781 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2782 	} else {
2783 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2784 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2785 	}
2786 
2787 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2788 	if (diag < 0)
2789 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2790 	       "diag=%d\n", port_id, on, diag);
2791 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2792 }
2793 
2794 void
2795 rx_vlan_strip_set(portid_t port_id, int on)
2796 {
2797 	int diag;
2798 	int vlan_offload;
2799 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2800 
2801 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2802 		return;
2803 
2804 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2805 
2806 	if (on) {
2807 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2808 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2809 	} else {
2810 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2811 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2812 	}
2813 
2814 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2815 	if (diag < 0)
2816 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2817 	       "diag=%d\n", port_id, on, diag);
2818 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2819 }
2820 
2821 void
2822 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2823 {
2824 	int diag;
2825 
2826 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2827 		return;
2828 
2829 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2830 	if (diag < 0)
2831 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2832 	       "diag=%d\n", port_id, queue_id, on, diag);
2833 }
2834 
2835 void
2836 rx_vlan_filter_set(portid_t port_id, int on)
2837 {
2838 	int diag;
2839 	int vlan_offload;
2840 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2841 
2842 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2843 		return;
2844 
2845 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2846 
2847 	if (on) {
2848 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2849 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2850 	} else {
2851 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2852 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2853 	}
2854 
2855 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2856 	if (diag < 0)
2857 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2858 	       "diag=%d\n", port_id, on, diag);
2859 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2860 }
2861 
2862 int
2863 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2864 {
2865 	int diag;
2866 
2867 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2868 		return 1;
2869 	if (vlan_id_is_invalid(vlan_id))
2870 		return 1;
2871 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2872 	if (diag == 0)
2873 		return 0;
2874 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2875 	       "diag=%d\n",
2876 	       port_id, vlan_id, on, diag);
2877 	return -1;
2878 }
2879 
2880 void
2881 rx_vlan_all_filter_set(portid_t port_id, int on)
2882 {
2883 	uint16_t vlan_id;
2884 
2885 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2886 		return;
2887 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2888 		if (rx_vft_set(port_id, vlan_id, on))
2889 			break;
2890 	}
2891 }
2892 
2893 void
2894 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2895 {
2896 	int diag;
2897 
2898 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2899 		return;
2900 
2901 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2902 	if (diag == 0)
2903 		return;
2904 
2905 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2906 	       "diag=%d\n",
2907 	       port_id, vlan_type, tp_id, diag);
2908 }
2909 
2910 void
2911 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2912 {
2913 	int vlan_offload;
2914 	struct rte_eth_dev_info dev_info;
2915 
2916 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2917 		return;
2918 	if (vlan_id_is_invalid(vlan_id))
2919 		return;
2920 
2921 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2922 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2923 		printf("Error, as QinQ has been enabled.\n");
2924 		return;
2925 	}
2926 	rte_eth_dev_info_get(port_id, &dev_info);
2927 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2928 		printf("Error: vlan insert is not supported by port %d\n",
2929 			port_id);
2930 		return;
2931 	}
2932 
2933 	tx_vlan_reset(port_id);
2934 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2935 	ports[port_id].tx_vlan_id = vlan_id;
2936 }
2937 
2938 void
2939 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2940 {
2941 	int vlan_offload;
2942 	struct rte_eth_dev_info dev_info;
2943 
2944 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2945 		return;
2946 	if (vlan_id_is_invalid(vlan_id))
2947 		return;
2948 	if (vlan_id_is_invalid(vlan_id_outer))
2949 		return;
2950 
2951 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2952 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2953 		printf("Error, as QinQ hasn't been enabled.\n");
2954 		return;
2955 	}
2956 	rte_eth_dev_info_get(port_id, &dev_info);
2957 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2958 		printf("Error: qinq insert not supported by port %d\n",
2959 			port_id);
2960 		return;
2961 	}
2962 
2963 	tx_vlan_reset(port_id);
2964 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2965 	ports[port_id].tx_vlan_id = vlan_id;
2966 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2967 }
2968 
2969 void
2970 tx_vlan_reset(portid_t port_id)
2971 {
2972 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2973 		return;
2974 	ports[port_id].dev_conf.txmode.offloads &=
2975 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2976 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2977 	ports[port_id].tx_vlan_id = 0;
2978 	ports[port_id].tx_vlan_id_outer = 0;
2979 }
2980 
2981 void
2982 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2983 {
2984 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2985 		return;
2986 
2987 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2988 }
2989 
2990 void
2991 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2992 {
2993 	uint16_t i;
2994 	uint8_t existing_mapping_found = 0;
2995 
2996 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2997 		return;
2998 
2999 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3000 		return;
3001 
3002 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3003 		printf("map_value not in required range 0..%d\n",
3004 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3005 		return;
3006 	}
3007 
3008 	if (!is_rx) { /*then tx*/
3009 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3010 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3011 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3012 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3013 				existing_mapping_found = 1;
3014 				break;
3015 			}
3016 		}
3017 		if (!existing_mapping_found) { /* A new additional mapping... */
3018 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3019 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3020 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3021 			nb_tx_queue_stats_mappings++;
3022 		}
3023 	}
3024 	else { /*rx*/
3025 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3026 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3027 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3028 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3029 				existing_mapping_found = 1;
3030 				break;
3031 			}
3032 		}
3033 		if (!existing_mapping_found) { /* A new additional mapping... */
3034 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3035 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3036 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3037 			nb_rx_queue_stats_mappings++;
3038 		}
3039 	}
3040 }
3041 
3042 void
3043 set_xstats_hide_zero(uint8_t on_off)
3044 {
3045 	xstats_hide_zero = on_off;
3046 }
3047 
3048 static inline void
3049 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3050 {
3051 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3052 
3053 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3054 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3055 			" tunnel_id: 0x%08x",
3056 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3057 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3058 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3059 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3060 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3061 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3062 
3063 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3064 			rte_be_to_cpu_16(mask->src_port_mask),
3065 			rte_be_to_cpu_16(mask->dst_port_mask));
3066 
3067 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3068 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3069 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3070 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3071 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3072 
3073 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3074 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3075 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3076 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3077 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3078 	}
3079 
3080 	printf("\n");
3081 }
3082 
3083 static inline void
3084 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3085 {
3086 	struct rte_eth_flex_payload_cfg *cfg;
3087 	uint32_t i, j;
3088 
3089 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3090 		cfg = &flex_conf->flex_set[i];
3091 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3092 			printf("\n    RAW:  ");
3093 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3094 			printf("\n    L2_PAYLOAD:  ");
3095 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3096 			printf("\n    L3_PAYLOAD:  ");
3097 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3098 			printf("\n    L4_PAYLOAD:  ");
3099 		else
3100 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3101 		for (j = 0; j < num; j++)
3102 			printf("  %-5u", cfg->src_offset[j]);
3103 	}
3104 	printf("\n");
3105 }
3106 
3107 static char *
3108 flowtype_to_str(uint16_t flow_type)
3109 {
3110 	struct flow_type_info {
3111 		char str[32];
3112 		uint16_t ftype;
3113 	};
3114 
3115 	uint8_t i;
3116 	static struct flow_type_info flowtype_str_table[] = {
3117 		{"raw", RTE_ETH_FLOW_RAW},
3118 		{"ipv4", RTE_ETH_FLOW_IPV4},
3119 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3120 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3121 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3122 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3123 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3124 		{"ipv6", RTE_ETH_FLOW_IPV6},
3125 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3126 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3127 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3128 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3129 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3130 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3131 		{"port", RTE_ETH_FLOW_PORT},
3132 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3133 		{"geneve", RTE_ETH_FLOW_GENEVE},
3134 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3135 	};
3136 
3137 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3138 		if (flowtype_str_table[i].ftype == flow_type)
3139 			return flowtype_str_table[i].str;
3140 	}
3141 
3142 	return NULL;
3143 }
3144 
3145 static inline void
3146 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3147 {
3148 	struct rte_eth_fdir_flex_mask *mask;
3149 	uint32_t i, j;
3150 	char *p;
3151 
3152 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3153 		mask = &flex_conf->flex_mask[i];
3154 		p = flowtype_to_str(mask->flow_type);
3155 		printf("\n    %s:\t", p ? p : "unknown");
3156 		for (j = 0; j < num; j++)
3157 			printf(" %02x", mask->mask[j]);
3158 	}
3159 	printf("\n");
3160 }
3161 
3162 static inline void
3163 print_fdir_flow_type(uint32_t flow_types_mask)
3164 {
3165 	int i;
3166 	char *p;
3167 
3168 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3169 		if (!(flow_types_mask & (1 << i)))
3170 			continue;
3171 		p = flowtype_to_str(i);
3172 		if (p)
3173 			printf(" %s", p);
3174 		else
3175 			printf(" unknown");
3176 	}
3177 	printf("\n");
3178 }
3179 
3180 void
3181 fdir_get_infos(portid_t port_id)
3182 {
3183 	struct rte_eth_fdir_stats fdir_stat;
3184 	struct rte_eth_fdir_info fdir_info;
3185 	int ret;
3186 
3187 	static const char *fdir_stats_border = "########################";
3188 
3189 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3190 		return;
3191 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3192 	if (ret < 0) {
3193 		printf("\n FDIR is not supported on port %-2d\n",
3194 			port_id);
3195 		return;
3196 	}
3197 
3198 	memset(&fdir_info, 0, sizeof(fdir_info));
3199 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3200 			       RTE_ETH_FILTER_INFO, &fdir_info);
3201 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3202 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3203 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3204 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3205 	       fdir_stats_border, port_id, fdir_stats_border);
3206 	printf("  MODE: ");
3207 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3208 		printf("  PERFECT\n");
3209 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3210 		printf("  PERFECT-MAC-VLAN\n");
3211 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3212 		printf("  PERFECT-TUNNEL\n");
3213 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3214 		printf("  SIGNATURE\n");
3215 	else
3216 		printf("  DISABLE\n");
3217 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3218 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3219 		printf("  SUPPORTED FLOW TYPE: ");
3220 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3221 	}
3222 	printf("  FLEX PAYLOAD INFO:\n");
3223 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3224 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3225 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3226 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3227 		fdir_info.flex_payload_unit,
3228 		fdir_info.max_flex_payload_segment_num,
3229 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3230 	printf("  MASK: ");
3231 	print_fdir_mask(&fdir_info.mask);
3232 	if (fdir_info.flex_conf.nb_payloads > 0) {
3233 		printf("  FLEX PAYLOAD SRC OFFSET:");
3234 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3235 	}
3236 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3237 		printf("  FLEX MASK CFG:");
3238 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3239 	}
3240 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3241 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3242 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3243 	       fdir_info.guarant_spc, fdir_info.best_spc);
3244 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3245 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3246 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3247 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3248 	       fdir_stat.collision, fdir_stat.free,
3249 	       fdir_stat.maxhash, fdir_stat.maxlen,
3250 	       fdir_stat.add, fdir_stat.remove,
3251 	       fdir_stat.f_add, fdir_stat.f_remove);
3252 	printf("  %s############################%s\n",
3253 	       fdir_stats_border, fdir_stats_border);
3254 }
3255 
3256 void
3257 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3258 {
3259 	struct rte_port *port;
3260 	struct rte_eth_fdir_flex_conf *flex_conf;
3261 	int i, idx = 0;
3262 
3263 	port = &ports[port_id];
3264 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3265 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3266 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3267 			idx = i;
3268 			break;
3269 		}
3270 	}
3271 	if (i >= RTE_ETH_FLOW_MAX) {
3272 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3273 			idx = flex_conf->nb_flexmasks;
3274 			flex_conf->nb_flexmasks++;
3275 		} else {
3276 			printf("The flex mask table is full. Can not set flex"
3277 				" mask for flow_type(%u).", cfg->flow_type);
3278 			return;
3279 		}
3280 	}
3281 	rte_memcpy(&flex_conf->flex_mask[idx],
3282 			 cfg,
3283 			 sizeof(struct rte_eth_fdir_flex_mask));
3284 }
3285 
3286 void
3287 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3288 {
3289 	struct rte_port *port;
3290 	struct rte_eth_fdir_flex_conf *flex_conf;
3291 	int i, idx = 0;
3292 
3293 	port = &ports[port_id];
3294 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3295 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3296 		if (cfg->type == flex_conf->flex_set[i].type) {
3297 			idx = i;
3298 			break;
3299 		}
3300 	}
3301 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3302 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3303 			idx = flex_conf->nb_payloads;
3304 			flex_conf->nb_payloads++;
3305 		} else {
3306 			printf("The flex payload table is full. Can not set"
3307 				" flex payload for type(%u).", cfg->type);
3308 			return;
3309 		}
3310 	}
3311 	rte_memcpy(&flex_conf->flex_set[idx],
3312 			 cfg,
3313 			 sizeof(struct rte_eth_flex_payload_cfg));
3314 
3315 }
3316 
3317 void
3318 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3319 {
3320 #ifdef RTE_LIBRTE_IXGBE_PMD
3321 	int diag;
3322 
3323 	if (is_rx)
3324 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3325 	else
3326 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3327 
3328 	if (diag == 0)
3329 		return;
3330 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3331 			is_rx ? "rx" : "tx", port_id, diag);
3332 	return;
3333 #endif
3334 	printf("VF %s setting not supported for port %d\n",
3335 			is_rx ? "Rx" : "Tx", port_id);
3336 	RTE_SET_USED(vf);
3337 	RTE_SET_USED(on);
3338 }
3339 
3340 int
3341 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3342 {
3343 	int diag;
3344 	struct rte_eth_link link;
3345 
3346 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3347 		return 1;
3348 	rte_eth_link_get_nowait(port_id, &link);
3349 	if (rate > link.link_speed) {
3350 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3351 			rate, link.link_speed);
3352 		return 1;
3353 	}
3354 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3355 	if (diag == 0)
3356 		return diag;
3357 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3358 		port_id, diag);
3359 	return diag;
3360 }
3361 
3362 int
3363 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3364 {
3365 	int diag = -ENOTSUP;
3366 
3367 	RTE_SET_USED(vf);
3368 	RTE_SET_USED(rate);
3369 	RTE_SET_USED(q_msk);
3370 
3371 #ifdef RTE_LIBRTE_IXGBE_PMD
3372 	if (diag == -ENOTSUP)
3373 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3374 						       q_msk);
3375 #endif
3376 #ifdef RTE_LIBRTE_BNXT_PMD
3377 	if (diag == -ENOTSUP)
3378 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3379 #endif
3380 	if (diag == 0)
3381 		return diag;
3382 
3383 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3384 		port_id, diag);
3385 	return diag;
3386 }
3387 
3388 /*
3389  * Functions to manage the set of filtered Multicast MAC addresses.
3390  *
3391  * A pool of filtered multicast MAC addresses is associated with each port.
3392  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3393  * The address of the pool and the number of valid multicast MAC addresses
3394  * recorded in the pool are stored in the fields "mc_addr_pool" and
3395  * "mc_addr_nb" of the "rte_port" data structure.
3396  *
3397  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3398  * to be supplied a contiguous array of multicast MAC addresses.
3399  * To comply with this constraint, the set of multicast addresses recorded
3400  * into the pool are systematically compacted at the beginning of the pool.
3401  * Hence, when a multicast address is removed from the pool, all following
3402  * addresses, if any, are copied back to keep the set contiguous.
3403  */
3404 #define MCAST_POOL_INC 32
3405 
3406 static int
3407 mcast_addr_pool_extend(struct rte_port *port)
3408 {
3409 	struct ether_addr *mc_pool;
3410 	size_t mc_pool_size;
3411 
3412 	/*
3413 	 * If a free entry is available at the end of the pool, just
3414 	 * increment the number of recorded multicast addresses.
3415 	 */
3416 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3417 		port->mc_addr_nb++;
3418 		return 0;
3419 	}
3420 
3421 	/*
3422 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3423 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3424 	 * of MCAST_POOL_INC.
3425 	 */
3426 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3427 						    MCAST_POOL_INC);
3428 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3429 						mc_pool_size);
3430 	if (mc_pool == NULL) {
3431 		printf("allocation of pool of %u multicast addresses failed\n",
3432 		       port->mc_addr_nb + MCAST_POOL_INC);
3433 		return -ENOMEM;
3434 	}
3435 
3436 	port->mc_addr_pool = mc_pool;
3437 	port->mc_addr_nb++;
3438 	return 0;
3439 
3440 }
3441 
3442 static void
3443 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3444 {
3445 	port->mc_addr_nb--;
3446 	if (addr_idx == port->mc_addr_nb) {
3447 		/* No need to recompact the set of multicast addressses. */
3448 		if (port->mc_addr_nb == 0) {
3449 			/* free the pool of multicast addresses. */
3450 			free(port->mc_addr_pool);
3451 			port->mc_addr_pool = NULL;
3452 		}
3453 		return;
3454 	}
3455 	memmove(&port->mc_addr_pool[addr_idx],
3456 		&port->mc_addr_pool[addr_idx + 1],
3457 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3458 }
3459 
3460 static void
3461 eth_port_multicast_addr_list_set(portid_t port_id)
3462 {
3463 	struct rte_port *port;
3464 	int diag;
3465 
3466 	port = &ports[port_id];
3467 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3468 					    port->mc_addr_nb);
3469 	if (diag == 0)
3470 		return;
3471 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3472 	       port->mc_addr_nb, port_id, -diag);
3473 }
3474 
3475 void
3476 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3477 {
3478 	struct rte_port *port;
3479 	uint32_t i;
3480 
3481 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3482 		return;
3483 
3484 	port = &ports[port_id];
3485 
3486 	/*
3487 	 * Check that the added multicast MAC address is not already recorded
3488 	 * in the pool of multicast addresses.
3489 	 */
3490 	for (i = 0; i < port->mc_addr_nb; i++) {
3491 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3492 			printf("multicast address already filtered by port\n");
3493 			return;
3494 		}
3495 	}
3496 
3497 	if (mcast_addr_pool_extend(port) != 0)
3498 		return;
3499 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3500 	eth_port_multicast_addr_list_set(port_id);
3501 }
3502 
3503 void
3504 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3505 {
3506 	struct rte_port *port;
3507 	uint32_t i;
3508 
3509 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3510 		return;
3511 
3512 	port = &ports[port_id];
3513 
3514 	/*
3515 	 * Search the pool of multicast MAC addresses for the removed address.
3516 	 */
3517 	for (i = 0; i < port->mc_addr_nb; i++) {
3518 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3519 			break;
3520 	}
3521 	if (i == port->mc_addr_nb) {
3522 		printf("multicast address not filtered by port %d\n", port_id);
3523 		return;
3524 	}
3525 
3526 	mcast_addr_pool_remove(port, i);
3527 	eth_port_multicast_addr_list_set(port_id);
3528 }
3529 
3530 void
3531 port_dcb_info_display(portid_t port_id)
3532 {
3533 	struct rte_eth_dcb_info dcb_info;
3534 	uint16_t i;
3535 	int ret;
3536 	static const char *border = "================";
3537 
3538 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3539 		return;
3540 
3541 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3542 	if (ret) {
3543 		printf("\n Failed to get dcb infos on port %-2d\n",
3544 			port_id);
3545 		return;
3546 	}
3547 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3548 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3549 	printf("\n  TC :        ");
3550 	for (i = 0; i < dcb_info.nb_tcs; i++)
3551 		printf("\t%4d", i);
3552 	printf("\n  Priority :  ");
3553 	for (i = 0; i < dcb_info.nb_tcs; i++)
3554 		printf("\t%4d", dcb_info.prio_tc[i]);
3555 	printf("\n  BW percent :");
3556 	for (i = 0; i < dcb_info.nb_tcs; i++)
3557 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3558 	printf("\n  RXQ base :  ");
3559 	for (i = 0; i < dcb_info.nb_tcs; i++)
3560 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3561 	printf("\n  RXQ number :");
3562 	for (i = 0; i < dcb_info.nb_tcs; i++)
3563 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3564 	printf("\n  TXQ base :  ");
3565 	for (i = 0; i < dcb_info.nb_tcs; i++)
3566 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3567 	printf("\n  TXQ number :");
3568 	for (i = 0; i < dcb_info.nb_tcs; i++)
3569 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3570 	printf("\n");
3571 }
3572 
3573 uint8_t *
3574 open_file(const char *file_path, uint32_t *size)
3575 {
3576 	int fd = open(file_path, O_RDONLY);
3577 	off_t pkg_size;
3578 	uint8_t *buf = NULL;
3579 	int ret = 0;
3580 	struct stat st_buf;
3581 
3582 	if (size)
3583 		*size = 0;
3584 
3585 	if (fd == -1) {
3586 		printf("%s: Failed to open %s\n", __func__, file_path);
3587 		return buf;
3588 	}
3589 
3590 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3591 		close(fd);
3592 		printf("%s: File operations failed\n", __func__);
3593 		return buf;
3594 	}
3595 
3596 	pkg_size = st_buf.st_size;
3597 	if (pkg_size < 0) {
3598 		close(fd);
3599 		printf("%s: File operations failed\n", __func__);
3600 		return buf;
3601 	}
3602 
3603 	buf = (uint8_t *)malloc(pkg_size);
3604 	if (!buf) {
3605 		close(fd);
3606 		printf("%s: Failed to malloc memory\n",	__func__);
3607 		return buf;
3608 	}
3609 
3610 	ret = read(fd, buf, pkg_size);
3611 	if (ret < 0) {
3612 		close(fd);
3613 		printf("%s: File read operation failed\n", __func__);
3614 		close_file(buf);
3615 		return NULL;
3616 	}
3617 
3618 	if (size)
3619 		*size = pkg_size;
3620 
3621 	close(fd);
3622 
3623 	return buf;
3624 }
3625 
3626 int
3627 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3628 {
3629 	FILE *fh = fopen(file_path, "wb");
3630 
3631 	if (fh == NULL) {
3632 		printf("%s: Failed to open %s\n", __func__, file_path);
3633 		return -1;
3634 	}
3635 
3636 	if (fwrite(buf, 1, size, fh) != size) {
3637 		fclose(fh);
3638 		printf("%s: File write operation failed\n", __func__);
3639 		return -1;
3640 	}
3641 
3642 	fclose(fh);
3643 
3644 	return 0;
3645 }
3646 
3647 int
3648 close_file(uint8_t *buf)
3649 {
3650 	if (buf) {
3651 		free((void *)buf);
3652 		return 0;
3653 	}
3654 
3655 	return -1;
3656 }
3657 
3658 void
3659 port_queue_region_info_display(portid_t port_id, void *buf)
3660 {
3661 #ifdef RTE_LIBRTE_I40E_PMD
3662 	uint16_t i, j;
3663 	struct rte_pmd_i40e_queue_regions *info =
3664 		(struct rte_pmd_i40e_queue_regions *)buf;
3665 	static const char *queue_region_info_stats_border = "-------";
3666 
3667 	if (!info->queue_region_number)
3668 		printf("there is no region has been set before");
3669 
3670 	printf("\n	%s All queue region info for port=%2d %s",
3671 			queue_region_info_stats_border, port_id,
3672 			queue_region_info_stats_border);
3673 	printf("\n	queue_region_number: %-14u \n",
3674 			info->queue_region_number);
3675 
3676 	for (i = 0; i < info->queue_region_number; i++) {
3677 		printf("\n	region_id: %-14u queue_number: %-14u "
3678 			"queue_start_index: %-14u \n",
3679 			info->region[i].region_id,
3680 			info->region[i].queue_num,
3681 			info->region[i].queue_start_index);
3682 
3683 		printf("  user_priority_num is	%-14u :",
3684 					info->region[i].user_priority_num);
3685 		for (j = 0; j < info->region[i].user_priority_num; j++)
3686 			printf(" %-14u ", info->region[i].user_priority[j]);
3687 
3688 		printf("\n	flowtype_num is  %-14u :",
3689 				info->region[i].flowtype_num);
3690 		for (j = 0; j < info->region[i].flowtype_num; j++)
3691 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3692 	}
3693 #else
3694 	RTE_SET_USED(port_id);
3695 	RTE_SET_USED(buf);
3696 #endif
3697 
3698 	printf("\n\n");
3699 }
3700