xref: /dpdk/app/test-pmd/config.c (revision ea85e7d711b664558a53a8131e22fdff952e5241)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright 2013-2014 6WIND S.A.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <stdarg.h>
65 #include <errno.h>
66 #include <stdio.h>
67 #include <string.h>
68 #include <stdarg.h>
69 #include <stdint.h>
70 #include <inttypes.h>
71 
72 #include <sys/queue.h>
73 
74 #include <rte_common.h>
75 #include <rte_byteorder.h>
76 #include <rte_debug.h>
77 #include <rte_log.h>
78 #include <rte_memory.h>
79 #include <rte_memcpy.h>
80 #include <rte_memzone.h>
81 #include <rte_launch.h>
82 #include <rte_eal.h>
83 #include <rte_per_lcore.h>
84 #include <rte_lcore.h>
85 #include <rte_atomic.h>
86 #include <rte_branch_prediction.h>
87 #include <rte_mempool.h>
88 #include <rte_mbuf.h>
89 #include <rte_interrupts.h>
90 #include <rte_pci.h>
91 #include <rte_ether.h>
92 #include <rte_ethdev.h>
93 #include <rte_string_fns.h>
94 #include <rte_cycles.h>
95 #include <rte_flow.h>
96 #include <rte_errno.h>
97 #ifdef RTE_LIBRTE_IXGBE_PMD
98 #include <rte_pmd_ixgbe.h>
99 #endif
100 
101 #include "testpmd.h"
102 
103 static char *flowtype_to_str(uint16_t flow_type);
104 
105 static const struct {
106 	enum tx_pkt_split split;
107 	const char *name;
108 } tx_split_name[] = {
109 	{
110 		.split = TX_PKT_SPLIT_OFF,
111 		.name = "off",
112 	},
113 	{
114 		.split = TX_PKT_SPLIT_ON,
115 		.name = "on",
116 	},
117 	{
118 		.split = TX_PKT_SPLIT_RND,
119 		.name = "rand",
120 	},
121 };
122 
123 struct rss_type_info {
124 	char str[32];
125 	uint64_t rss_type;
126 };
127 
128 static const struct rss_type_info rss_type_table[] = {
129 	{ "ipv4", ETH_RSS_IPV4 },
130 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
131 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
132 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
133 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
134 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
135 	{ "ipv6", ETH_RSS_IPV6 },
136 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
137 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
138 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
139 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
140 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
141 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
142 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
143 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
144 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
145 	{ "port", ETH_RSS_PORT },
146 	{ "vxlan", ETH_RSS_VXLAN },
147 	{ "geneve", ETH_RSS_GENEVE },
148 	{ "nvgre", ETH_RSS_NVGRE },
149 
150 };
151 
152 static void
153 print_ethaddr(const char *name, struct ether_addr *eth_addr)
154 {
155 	char buf[ETHER_ADDR_FMT_SIZE];
156 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
157 	printf("%s%s", name, buf);
158 }
159 
160 void
161 nic_stats_display(portid_t port_id)
162 {
163 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
164 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
165 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
166 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
167 	uint64_t mpps_rx, mpps_tx;
168 	struct rte_eth_stats stats;
169 	struct rte_port *port = &ports[port_id];
170 	uint8_t i;
171 	portid_t pid;
172 
173 	static const char *nic_stats_border = "########################";
174 
175 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
176 		printf("Valid port range is [0");
177 		RTE_ETH_FOREACH_DEV(pid)
178 			printf(", %d", pid);
179 		printf("]\n");
180 		return;
181 	}
182 	rte_eth_stats_get(port_id, &stats);
183 	printf("\n  %s NIC statistics for port %-2d %s\n",
184 	       nic_stats_border, port_id, nic_stats_border);
185 
186 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
187 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
188 		       "%-"PRIu64"\n",
189 		       stats.ipackets, stats.imissed, stats.ibytes);
190 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
191 		printf("  RX-nombuf:  %-10"PRIu64"\n",
192 		       stats.rx_nombuf);
193 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
194 		       "%-"PRIu64"\n",
195 		       stats.opackets, stats.oerrors, stats.obytes);
196 	}
197 	else {
198 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
199 		       "    RX-bytes: %10"PRIu64"\n",
200 		       stats.ipackets, stats.ierrors, stats.ibytes);
201 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
202 		printf("  RX-nombuf:               %10"PRIu64"\n",
203 		       stats.rx_nombuf);
204 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
205 		       "    TX-bytes: %10"PRIu64"\n",
206 		       stats.opackets, stats.oerrors, stats.obytes);
207 	}
208 
209 	if (port->rx_queue_stats_mapping_enabled) {
210 		printf("\n");
211 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
212 			printf("  Stats reg %2d RX-packets: %10"PRIu64
213 			       "    RX-errors: %10"PRIu64
214 			       "    RX-bytes: %10"PRIu64"\n",
215 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
216 		}
217 	}
218 	if (port->tx_queue_stats_mapping_enabled) {
219 		printf("\n");
220 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
221 			printf("  Stats reg %2d TX-packets: %10"PRIu64
222 			       "                             TX-bytes: %10"PRIu64"\n",
223 			       i, stats.q_opackets[i], stats.q_obytes[i]);
224 		}
225 	}
226 
227 	diff_cycles = prev_cycles[port_id];
228 	prev_cycles[port_id] = rte_rdtsc();
229 	if (diff_cycles > 0)
230 		diff_cycles = prev_cycles[port_id] - diff_cycles;
231 
232 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
233 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
234 	prev_pkts_rx[port_id] = stats.ipackets;
235 	prev_pkts_tx[port_id] = stats.opackets;
236 	mpps_rx = diff_cycles > 0 ?
237 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
238 	mpps_tx = diff_cycles > 0 ?
239 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
240 	printf("\n  Throughput (since last show)\n");
241 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
242 			mpps_rx, mpps_tx);
243 
244 	printf("  %s############################%s\n",
245 	       nic_stats_border, nic_stats_border);
246 }
247 
248 void
249 nic_stats_clear(portid_t port_id)
250 {
251 	portid_t pid;
252 
253 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
254 		printf("Valid port range is [0");
255 		RTE_ETH_FOREACH_DEV(pid)
256 			printf(", %d", pid);
257 		printf("]\n");
258 		return;
259 	}
260 	rte_eth_stats_reset(port_id);
261 	printf("\n  NIC statistics for port %d cleared\n", port_id);
262 }
263 
264 void
265 nic_xstats_display(portid_t port_id)
266 {
267 	int cnt_xstats, idx_xstat;
268 	struct rte_eth_xstat_name *xstats_names;
269 	uint64_t *values;
270 
271 	printf("###### NIC extended statistics for port %-2d\n", port_id);
272 	if (!rte_eth_dev_is_valid_port(port_id)) {
273 		printf("Error: Invalid port number %i\n", port_id);
274 		return;
275 	}
276 
277 	/* Get count */
278 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0, NULL);
279 	if (cnt_xstats  < 0) {
280 		printf("Error: Cannot get count of xstats\n");
281 		return;
282 	}
283 
284 	/* Get id-name lookup table */
285 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
286 	if (xstats_names == NULL) {
287 		printf("Cannot allocate memory for xstats lookup\n");
288 		return;
289 	}
290 	if (cnt_xstats != rte_eth_xstats_get_names(
291 			port_id, xstats_names, cnt_xstats, NULL)) {
292 		printf("Error: Cannot get xstats lookup\n");
293 		free(xstats_names);
294 		return;
295 	}
296 
297 	/* Get stats themselves */
298 	values = malloc(sizeof(values) * cnt_xstats);
299 	if (values == NULL) {
300 		printf("Cannot allocate memory for xstats\n");
301 		free(xstats_names);
302 		return;
303 	}
304 	if (cnt_xstats != rte_eth_xstats_get(port_id, NULL, values,
305 			cnt_xstats)) {
306 		printf("Error: Unable to get xstats\n");
307 		free(xstats_names);
308 		free(values);
309 		return;
310 	}
311 
312 	/* Display xstats */
313 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
314 		printf("%s: %"PRIu64"\n",
315 			xstats_names[idx_xstat].name,
316 			values[idx_xstat]);
317 	free(xstats_names);
318 	free(values);
319 }
320 
321 void
322 nic_xstats_clear(portid_t port_id)
323 {
324 	rte_eth_xstats_reset(port_id);
325 }
326 
327 void
328 nic_stats_mapping_display(portid_t port_id)
329 {
330 	struct rte_port *port = &ports[port_id];
331 	uint16_t i;
332 	portid_t pid;
333 
334 	static const char *nic_stats_mapping_border = "########################";
335 
336 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
337 		printf("Valid port range is [0");
338 		RTE_ETH_FOREACH_DEV(pid)
339 			printf(", %d", pid);
340 		printf("]\n");
341 		return;
342 	}
343 
344 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
345 		printf("Port id %d - either does not support queue statistic mapping or"
346 		       " no queue statistic mapping set\n", port_id);
347 		return;
348 	}
349 
350 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
351 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
352 
353 	if (port->rx_queue_stats_mapping_enabled) {
354 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
355 			if (rx_queue_stats_mappings[i].port_id == port_id) {
356 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
357 				       rx_queue_stats_mappings[i].queue_id,
358 				       rx_queue_stats_mappings[i].stats_counter_id);
359 			}
360 		}
361 		printf("\n");
362 	}
363 
364 
365 	if (port->tx_queue_stats_mapping_enabled) {
366 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
367 			if (tx_queue_stats_mappings[i].port_id == port_id) {
368 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
369 				       tx_queue_stats_mappings[i].queue_id,
370 				       tx_queue_stats_mappings[i].stats_counter_id);
371 			}
372 		}
373 	}
374 
375 	printf("  %s####################################%s\n",
376 	       nic_stats_mapping_border, nic_stats_mapping_border);
377 }
378 
379 void
380 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
381 {
382 	struct rte_eth_rxq_info qinfo;
383 	int32_t rc;
384 	static const char *info_border = "*********************";
385 
386 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
387 	if (rc != 0) {
388 		printf("Failed to retrieve information for port: %hhu, "
389 			"RX queue: %hu\nerror desc: %s(%d)\n",
390 			port_id, queue_id, strerror(-rc), rc);
391 		return;
392 	}
393 
394 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
395 	       info_border, port_id, queue_id, info_border);
396 
397 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
398 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
399 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
400 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
401 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
402 	printf("\nRX drop packets: %s",
403 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
404 	printf("\nRX deferred start: %s",
405 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
406 	printf("\nRX scattered packets: %s",
407 		(qinfo.scattered_rx != 0) ? "on" : "off");
408 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
409 	printf("\n");
410 }
411 
412 void
413 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
414 {
415 	struct rte_eth_txq_info qinfo;
416 	int32_t rc;
417 	static const char *info_border = "*********************";
418 
419 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
420 	if (rc != 0) {
421 		printf("Failed to retrieve information for port: %hhu, "
422 			"TX queue: %hu\nerror desc: %s(%d)\n",
423 			port_id, queue_id, strerror(-rc), rc);
424 		return;
425 	}
426 
427 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
428 	       info_border, port_id, queue_id, info_border);
429 
430 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
431 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
432 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
433 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
434 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
435 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
436 	printf("\nTX deferred start: %s",
437 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
438 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
439 	printf("\n");
440 }
441 
442 void
443 port_infos_display(portid_t port_id)
444 {
445 	struct rte_port *port;
446 	struct ether_addr mac_addr;
447 	struct rte_eth_link link;
448 	struct rte_eth_dev_info dev_info;
449 	int vlan_offload;
450 	struct rte_mempool * mp;
451 	static const char *info_border = "*********************";
452 	portid_t pid;
453 	uint16_t mtu;
454 
455 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
456 		printf("Valid port range is [0");
457 		RTE_ETH_FOREACH_DEV(pid)
458 			printf(", %d", pid);
459 		printf("]\n");
460 		return;
461 	}
462 	port = &ports[port_id];
463 	rte_eth_link_get_nowait(port_id, &link);
464 	memset(&dev_info, 0, sizeof(dev_info));
465 	rte_eth_dev_info_get(port_id, &dev_info);
466 	printf("\n%s Infos for port %-2d %s\n",
467 	       info_border, port_id, info_border);
468 	rte_eth_macaddr_get(port_id, &mac_addr);
469 	print_ethaddr("MAC address: ", &mac_addr);
470 	printf("\nDriver name: %s", dev_info.driver_name);
471 	printf("\nConnect to socket: %u", port->socket_id);
472 
473 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
474 		mp = mbuf_pool_find(port_numa[port_id]);
475 		if (mp)
476 			printf("\nmemory allocation on the socket: %d",
477 							port_numa[port_id]);
478 	} else
479 		printf("\nmemory allocation on the socket: %u",port->socket_id);
480 
481 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
482 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
483 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
484 	       ("full-duplex") : ("half-duplex"));
485 
486 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
487 		printf("MTU: %u\n", mtu);
488 
489 	printf("Promiscuous mode: %s\n",
490 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
491 	printf("Allmulticast mode: %s\n",
492 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
493 	printf("Maximum number of MAC addresses: %u\n",
494 	       (unsigned int)(port->dev_info.max_mac_addrs));
495 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
496 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
497 
498 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
499 	if (vlan_offload >= 0){
500 		printf("VLAN offload: \n");
501 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
502 			printf("  strip on \n");
503 		else
504 			printf("  strip off \n");
505 
506 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
507 			printf("  filter on \n");
508 		else
509 			printf("  filter off \n");
510 
511 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
512 			printf("  qinq(extend) on \n");
513 		else
514 			printf("  qinq(extend) off \n");
515 	}
516 
517 	if (dev_info.hash_key_size > 0)
518 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
519 	if (dev_info.reta_size > 0)
520 		printf("Redirection table size: %u\n", dev_info.reta_size);
521 	if (!dev_info.flow_type_rss_offloads)
522 		printf("No flow type is supported.\n");
523 	else {
524 		uint16_t i;
525 		char *p;
526 
527 		printf("Supported flow types:\n");
528 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
529 								i++) {
530 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
531 				continue;
532 			p = flowtype_to_str(i);
533 			printf("  %s\n", (p ? p : "unknown"));
534 		}
535 	}
536 
537 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
538 	printf("Max possible number of RXDs per queue: %hu\n",
539 		dev_info.rx_desc_lim.nb_max);
540 	printf("Min possible number of RXDs per queue: %hu\n",
541 		dev_info.rx_desc_lim.nb_min);
542 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
543 
544 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
545 	printf("Max possible number of TXDs per queue: %hu\n",
546 		dev_info.tx_desc_lim.nb_max);
547 	printf("Min possible number of TXDs per queue: %hu\n",
548 		dev_info.tx_desc_lim.nb_min);
549 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
550 }
551 
552 void
553 port_offload_cap_display(portid_t port_id)
554 {
555 	struct rte_eth_dev *dev;
556 	struct rte_eth_dev_info dev_info;
557 	static const char *info_border = "************";
558 
559 	if (port_id_is_invalid(port_id, ENABLED_WARN))
560 		return;
561 
562 	dev = &rte_eth_devices[port_id];
563 	rte_eth_dev_info_get(port_id, &dev_info);
564 
565 	printf("\n%s Port %d supported offload features: %s\n",
566 		info_border, port_id, info_border);
567 
568 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
569 		printf("VLAN stripped:                 ");
570 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
571 			printf("on\n");
572 		else
573 			printf("off\n");
574 	}
575 
576 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
577 		printf("Double VLANs stripped:         ");
578 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
579 			printf("on\n");
580 		else
581 			printf("off\n");
582 	}
583 
584 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
585 		printf("RX IPv4 checksum:              ");
586 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
587 			printf("on\n");
588 		else
589 			printf("off\n");
590 	}
591 
592 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
593 		printf("RX UDP checksum:               ");
594 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
595 			printf("on\n");
596 		else
597 			printf("off\n");
598 	}
599 
600 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
601 		printf("RX TCP checksum:               ");
602 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
603 			printf("on\n");
604 		else
605 			printf("off\n");
606 	}
607 
608 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
609 		printf("RX Outer IPv4 checksum:        on");
610 
611 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
612 		printf("Large receive offload:         ");
613 		if (dev->data->dev_conf.rxmode.enable_lro)
614 			printf("on\n");
615 		else
616 			printf("off\n");
617 	}
618 
619 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
620 		printf("VLAN insert:                   ");
621 		if (ports[port_id].tx_ol_flags &
622 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
623 			printf("on\n");
624 		else
625 			printf("off\n");
626 	}
627 
628 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
629 		printf("Double VLANs insert:           ");
630 		if (ports[port_id].tx_ol_flags &
631 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
632 			printf("on\n");
633 		else
634 			printf("off\n");
635 	}
636 
637 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
638 		printf("TX IPv4 checksum:              ");
639 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
640 			printf("on\n");
641 		else
642 			printf("off\n");
643 	}
644 
645 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
646 		printf("TX UDP checksum:               ");
647 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
648 			printf("on\n");
649 		else
650 			printf("off\n");
651 	}
652 
653 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
654 		printf("TX TCP checksum:               ");
655 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
656 			printf("on\n");
657 		else
658 			printf("off\n");
659 	}
660 
661 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
662 		printf("TX SCTP checksum:              ");
663 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
664 			printf("on\n");
665 		else
666 			printf("off\n");
667 	}
668 
669 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
670 		printf("TX Outer IPv4 checksum:        ");
671 		if (ports[port_id].tx_ol_flags &
672 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
673 			printf("on\n");
674 		else
675 			printf("off\n");
676 	}
677 
678 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
679 		printf("TX TCP segmentation:           ");
680 		if (ports[port_id].tso_segsz != 0)
681 			printf("on\n");
682 		else
683 			printf("off\n");
684 	}
685 
686 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
687 		printf("TX UDP segmentation:           ");
688 		if (ports[port_id].tso_segsz != 0)
689 			printf("on\n");
690 		else
691 			printf("off\n");
692 	}
693 
694 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
695 		printf("TSO for VXLAN tunnel packet:   ");
696 		if (ports[port_id].tunnel_tso_segsz)
697 			printf("on\n");
698 		else
699 			printf("off\n");
700 	}
701 
702 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
703 		printf("TSO for GRE tunnel packet:     ");
704 		if (ports[port_id].tunnel_tso_segsz)
705 			printf("on\n");
706 		else
707 			printf("off\n");
708 	}
709 
710 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
711 		printf("TSO for IPIP tunnel packet:    ");
712 		if (ports[port_id].tunnel_tso_segsz)
713 			printf("on\n");
714 		else
715 			printf("off\n");
716 	}
717 
718 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
719 		printf("TSO for GENEVE tunnel packet:  ");
720 		if (ports[port_id].tunnel_tso_segsz)
721 			printf("on\n");
722 		else
723 			printf("off\n");
724 	}
725 
726 }
727 
728 int
729 port_id_is_invalid(portid_t port_id, enum print_warning warning)
730 {
731 	if (port_id == (portid_t)RTE_PORT_ALL)
732 		return 0;
733 
734 	if (rte_eth_dev_is_valid_port(port_id))
735 		return 0;
736 
737 	if (warning == ENABLED_WARN)
738 		printf("Invalid port %d\n", port_id);
739 
740 	return 1;
741 }
742 
743 static int
744 vlan_id_is_invalid(uint16_t vlan_id)
745 {
746 	if (vlan_id < 4096)
747 		return 0;
748 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
749 	return 1;
750 }
751 
752 static int
753 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
754 {
755 	uint64_t pci_len;
756 
757 	if (reg_off & 0x3) {
758 		printf("Port register offset 0x%X not aligned on a 4-byte "
759 		       "boundary\n",
760 		       (unsigned)reg_off);
761 		return 1;
762 	}
763 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
764 	if (reg_off >= pci_len) {
765 		printf("Port %d: register offset %u (0x%X) out of port PCI "
766 		       "resource (length=%"PRIu64")\n",
767 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
768 		return 1;
769 	}
770 	return 0;
771 }
772 
773 static int
774 reg_bit_pos_is_invalid(uint8_t bit_pos)
775 {
776 	if (bit_pos <= 31)
777 		return 0;
778 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
779 	return 1;
780 }
781 
782 #define display_port_and_reg_off(port_id, reg_off) \
783 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
784 
785 static inline void
786 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
787 {
788 	display_port_and_reg_off(port_id, (unsigned)reg_off);
789 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
790 }
791 
792 void
793 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
794 {
795 	uint32_t reg_v;
796 
797 
798 	if (port_id_is_invalid(port_id, ENABLED_WARN))
799 		return;
800 	if (port_reg_off_is_invalid(port_id, reg_off))
801 		return;
802 	if (reg_bit_pos_is_invalid(bit_x))
803 		return;
804 	reg_v = port_id_pci_reg_read(port_id, reg_off);
805 	display_port_and_reg_off(port_id, (unsigned)reg_off);
806 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
807 }
808 
809 void
810 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
811 			   uint8_t bit1_pos, uint8_t bit2_pos)
812 {
813 	uint32_t reg_v;
814 	uint8_t  l_bit;
815 	uint8_t  h_bit;
816 
817 	if (port_id_is_invalid(port_id, ENABLED_WARN))
818 		return;
819 	if (port_reg_off_is_invalid(port_id, reg_off))
820 		return;
821 	if (reg_bit_pos_is_invalid(bit1_pos))
822 		return;
823 	if (reg_bit_pos_is_invalid(bit2_pos))
824 		return;
825 	if (bit1_pos > bit2_pos)
826 		l_bit = bit2_pos, h_bit = bit1_pos;
827 	else
828 		l_bit = bit1_pos, h_bit = bit2_pos;
829 
830 	reg_v = port_id_pci_reg_read(port_id, reg_off);
831 	reg_v >>= l_bit;
832 	if (h_bit < 31)
833 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
834 	display_port_and_reg_off(port_id, (unsigned)reg_off);
835 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
836 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
837 }
838 
839 void
840 port_reg_display(portid_t port_id, uint32_t reg_off)
841 {
842 	uint32_t reg_v;
843 
844 	if (port_id_is_invalid(port_id, ENABLED_WARN))
845 		return;
846 	if (port_reg_off_is_invalid(port_id, reg_off))
847 		return;
848 	reg_v = port_id_pci_reg_read(port_id, reg_off);
849 	display_port_reg_value(port_id, reg_off, reg_v);
850 }
851 
852 void
853 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
854 		 uint8_t bit_v)
855 {
856 	uint32_t reg_v;
857 
858 	if (port_id_is_invalid(port_id, ENABLED_WARN))
859 		return;
860 	if (port_reg_off_is_invalid(port_id, reg_off))
861 		return;
862 	if (reg_bit_pos_is_invalid(bit_pos))
863 		return;
864 	if (bit_v > 1) {
865 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
866 		return;
867 	}
868 	reg_v = port_id_pci_reg_read(port_id, reg_off);
869 	if (bit_v == 0)
870 		reg_v &= ~(1 << bit_pos);
871 	else
872 		reg_v |= (1 << bit_pos);
873 	port_id_pci_reg_write(port_id, reg_off, reg_v);
874 	display_port_reg_value(port_id, reg_off, reg_v);
875 }
876 
877 void
878 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
879 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
880 {
881 	uint32_t max_v;
882 	uint32_t reg_v;
883 	uint8_t  l_bit;
884 	uint8_t  h_bit;
885 
886 	if (port_id_is_invalid(port_id, ENABLED_WARN))
887 		return;
888 	if (port_reg_off_is_invalid(port_id, reg_off))
889 		return;
890 	if (reg_bit_pos_is_invalid(bit1_pos))
891 		return;
892 	if (reg_bit_pos_is_invalid(bit2_pos))
893 		return;
894 	if (bit1_pos > bit2_pos)
895 		l_bit = bit2_pos, h_bit = bit1_pos;
896 	else
897 		l_bit = bit1_pos, h_bit = bit2_pos;
898 
899 	if ((h_bit - l_bit) < 31)
900 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
901 	else
902 		max_v = 0xFFFFFFFF;
903 
904 	if (value > max_v) {
905 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
906 				(unsigned)value, (unsigned)value,
907 				(unsigned)max_v, (unsigned)max_v);
908 		return;
909 	}
910 	reg_v = port_id_pci_reg_read(port_id, reg_off);
911 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
912 	reg_v |= (value << l_bit); /* Set changed bits */
913 	port_id_pci_reg_write(port_id, reg_off, reg_v);
914 	display_port_reg_value(port_id, reg_off, reg_v);
915 }
916 
917 void
918 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
919 {
920 	if (port_id_is_invalid(port_id, ENABLED_WARN))
921 		return;
922 	if (port_reg_off_is_invalid(port_id, reg_off))
923 		return;
924 	port_id_pci_reg_write(port_id, reg_off, reg_v);
925 	display_port_reg_value(port_id, reg_off, reg_v);
926 }
927 
928 void
929 port_mtu_set(portid_t port_id, uint16_t mtu)
930 {
931 	int diag;
932 
933 	if (port_id_is_invalid(port_id, ENABLED_WARN))
934 		return;
935 	diag = rte_eth_dev_set_mtu(port_id, mtu);
936 	if (diag == 0)
937 		return;
938 	printf("Set MTU failed. diag=%d\n", diag);
939 }
940 
941 /* Generic flow management functions. */
942 
943 /** Generate flow_item[] entry. */
944 #define MK_FLOW_ITEM(t, s) \
945 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
946 		.name = # t, \
947 		.size = s, \
948 	}
949 
950 /** Information about known flow pattern items. */
951 static const struct {
952 	const char *name;
953 	size_t size;
954 } flow_item[] = {
955 	MK_FLOW_ITEM(END, 0),
956 	MK_FLOW_ITEM(VOID, 0),
957 	MK_FLOW_ITEM(INVERT, 0),
958 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
959 	MK_FLOW_ITEM(PF, 0),
960 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
961 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
962 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
963 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
964 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
965 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
966 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
967 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
968 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
969 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
970 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
971 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
972 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
973 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
974 };
975 
976 /** Compute storage space needed by item specification. */
977 static void
978 flow_item_spec_size(const struct rte_flow_item *item,
979 		    size_t *size, size_t *pad)
980 {
981 	if (!item->spec)
982 		goto empty;
983 	switch (item->type) {
984 		union {
985 			const struct rte_flow_item_raw *raw;
986 		} spec;
987 
988 	case RTE_FLOW_ITEM_TYPE_RAW:
989 		spec.raw = item->spec;
990 		*size = offsetof(struct rte_flow_item_raw, pattern) +
991 			spec.raw->length * sizeof(*spec.raw->pattern);
992 		break;
993 	default:
994 empty:
995 		*size = 0;
996 		break;
997 	}
998 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
999 }
1000 
1001 /** Generate flow_action[] entry. */
1002 #define MK_FLOW_ACTION(t, s) \
1003 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1004 		.name = # t, \
1005 		.size = s, \
1006 	}
1007 
1008 /** Information about known flow actions. */
1009 static const struct {
1010 	const char *name;
1011 	size_t size;
1012 } flow_action[] = {
1013 	MK_FLOW_ACTION(END, 0),
1014 	MK_FLOW_ACTION(VOID, 0),
1015 	MK_FLOW_ACTION(PASSTHRU, 0),
1016 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1017 	MK_FLOW_ACTION(FLAG, 0),
1018 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1019 	MK_FLOW_ACTION(DROP, 0),
1020 	MK_FLOW_ACTION(COUNT, 0),
1021 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1022 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1023 	MK_FLOW_ACTION(PF, 0),
1024 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1025 };
1026 
1027 /** Compute storage space needed by action configuration. */
1028 static void
1029 flow_action_conf_size(const struct rte_flow_action *action,
1030 		      size_t *size, size_t *pad)
1031 {
1032 	if (!action->conf)
1033 		goto empty;
1034 	switch (action->type) {
1035 		union {
1036 			const struct rte_flow_action_rss *rss;
1037 		} conf;
1038 
1039 	case RTE_FLOW_ACTION_TYPE_RSS:
1040 		conf.rss = action->conf;
1041 		*size = offsetof(struct rte_flow_action_rss, queue) +
1042 			conf.rss->num * sizeof(*conf.rss->queue);
1043 		break;
1044 	default:
1045 empty:
1046 		*size = 0;
1047 		break;
1048 	}
1049 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1050 }
1051 
1052 /** Generate a port_flow entry from attributes/pattern/actions. */
1053 static struct port_flow *
1054 port_flow_new(const struct rte_flow_attr *attr,
1055 	      const struct rte_flow_item *pattern,
1056 	      const struct rte_flow_action *actions)
1057 {
1058 	const struct rte_flow_item *item;
1059 	const struct rte_flow_action *action;
1060 	struct port_flow *pf = NULL;
1061 	size_t tmp;
1062 	size_t pad;
1063 	size_t off1 = 0;
1064 	size_t off2 = 0;
1065 	int err = ENOTSUP;
1066 
1067 store:
1068 	item = pattern;
1069 	if (pf)
1070 		pf->pattern = (void *)&pf->data[off1];
1071 	do {
1072 		struct rte_flow_item *dst = NULL;
1073 
1074 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1075 		    !flow_item[item->type].name)
1076 			goto notsup;
1077 		if (pf)
1078 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1079 		off1 += sizeof(*item);
1080 		flow_item_spec_size(item, &tmp, &pad);
1081 		if (item->spec) {
1082 			if (pf)
1083 				dst->spec = memcpy(pf->data + off2,
1084 						   item->spec, tmp);
1085 			off2 += tmp + pad;
1086 		}
1087 		if (item->last) {
1088 			if (pf)
1089 				dst->last = memcpy(pf->data + off2,
1090 						   item->last, tmp);
1091 			off2 += tmp + pad;
1092 		}
1093 		if (item->mask) {
1094 			if (pf)
1095 				dst->mask = memcpy(pf->data + off2,
1096 						   item->mask, tmp);
1097 			off2 += tmp + pad;
1098 		}
1099 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1100 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1101 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1102 	action = actions;
1103 	if (pf)
1104 		pf->actions = (void *)&pf->data[off1];
1105 	do {
1106 		struct rte_flow_action *dst = NULL;
1107 
1108 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1109 		    !flow_action[action->type].name)
1110 			goto notsup;
1111 		if (pf)
1112 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1113 		off1 += sizeof(*action);
1114 		flow_action_conf_size(action, &tmp, &pad);
1115 		if (action->conf) {
1116 			if (pf)
1117 				dst->conf = memcpy(pf->data + off2,
1118 						   action->conf, tmp);
1119 			off2 += tmp + pad;
1120 		}
1121 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1122 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1123 	if (pf != NULL)
1124 		return pf;
1125 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1126 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1127 	pf = calloc(1, tmp + off1 + off2);
1128 	if (pf == NULL)
1129 		err = errno;
1130 	else {
1131 		*pf = (const struct port_flow){
1132 			.size = tmp + off1 + off2,
1133 			.attr = *attr,
1134 		};
1135 		tmp -= offsetof(struct port_flow, data);
1136 		off2 = tmp + off1;
1137 		off1 = tmp;
1138 		goto store;
1139 	}
1140 notsup:
1141 	rte_errno = err;
1142 	return NULL;
1143 }
1144 
1145 /** Print a message out of a flow error. */
1146 static int
1147 port_flow_complain(struct rte_flow_error *error)
1148 {
1149 	static const char *const errstrlist[] = {
1150 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1151 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1152 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1153 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1154 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1155 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1156 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1157 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1158 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1159 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1160 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1161 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1162 	};
1163 	const char *errstr;
1164 	char buf[32];
1165 	int err = rte_errno;
1166 
1167 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1168 	    !errstrlist[error->type])
1169 		errstr = "unknown type";
1170 	else
1171 		errstr = errstrlist[error->type];
1172 	printf("Caught error type %d (%s): %s%s\n",
1173 	       error->type, errstr,
1174 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1175 					error->cause), buf) : "",
1176 	       error->message ? error->message : "(no stated reason)");
1177 	return -err;
1178 }
1179 
1180 /** Validate flow rule. */
1181 int
1182 port_flow_validate(portid_t port_id,
1183 		   const struct rte_flow_attr *attr,
1184 		   const struct rte_flow_item *pattern,
1185 		   const struct rte_flow_action *actions)
1186 {
1187 	struct rte_flow_error error;
1188 
1189 	/* Poisoning to make sure PMDs update it in case of error. */
1190 	memset(&error, 0x11, sizeof(error));
1191 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1192 		return port_flow_complain(&error);
1193 	printf("Flow rule validated\n");
1194 	return 0;
1195 }
1196 
1197 /** Create flow rule. */
1198 int
1199 port_flow_create(portid_t port_id,
1200 		 const struct rte_flow_attr *attr,
1201 		 const struct rte_flow_item *pattern,
1202 		 const struct rte_flow_action *actions)
1203 {
1204 	struct rte_flow *flow;
1205 	struct rte_port *port;
1206 	struct port_flow *pf;
1207 	uint32_t id;
1208 	struct rte_flow_error error;
1209 
1210 	/* Poisoning to make sure PMDs update it in case of error. */
1211 	memset(&error, 0x22, sizeof(error));
1212 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1213 	if (!flow)
1214 		return port_flow_complain(&error);
1215 	port = &ports[port_id];
1216 	if (port->flow_list) {
1217 		if (port->flow_list->id == UINT32_MAX) {
1218 			printf("Highest rule ID is already assigned, delete"
1219 			       " it first");
1220 			rte_flow_destroy(port_id, flow, NULL);
1221 			return -ENOMEM;
1222 		}
1223 		id = port->flow_list->id + 1;
1224 	} else
1225 		id = 0;
1226 	pf = port_flow_new(attr, pattern, actions);
1227 	if (!pf) {
1228 		int err = rte_errno;
1229 
1230 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1231 		rte_flow_destroy(port_id, flow, NULL);
1232 		return -err;
1233 	}
1234 	pf->next = port->flow_list;
1235 	pf->id = id;
1236 	pf->flow = flow;
1237 	port->flow_list = pf;
1238 	printf("Flow rule #%u created\n", pf->id);
1239 	return 0;
1240 }
1241 
1242 /** Destroy a number of flow rules. */
1243 int
1244 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1245 {
1246 	struct rte_port *port;
1247 	struct port_flow **tmp;
1248 	uint32_t c = 0;
1249 	int ret = 0;
1250 
1251 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1252 	    port_id == (portid_t)RTE_PORT_ALL)
1253 		return -EINVAL;
1254 	port = &ports[port_id];
1255 	tmp = &port->flow_list;
1256 	while (*tmp) {
1257 		uint32_t i;
1258 
1259 		for (i = 0; i != n; ++i) {
1260 			struct rte_flow_error error;
1261 			struct port_flow *pf = *tmp;
1262 
1263 			if (rule[i] != pf->id)
1264 				continue;
1265 			/*
1266 			 * Poisoning to make sure PMDs update it in case
1267 			 * of error.
1268 			 */
1269 			memset(&error, 0x33, sizeof(error));
1270 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1271 				ret = port_flow_complain(&error);
1272 				continue;
1273 			}
1274 			printf("Flow rule #%u destroyed\n", pf->id);
1275 			*tmp = pf->next;
1276 			free(pf);
1277 			break;
1278 		}
1279 		if (i == n)
1280 			tmp = &(*tmp)->next;
1281 		++c;
1282 	}
1283 	return ret;
1284 }
1285 
1286 /** Remove all flow rules. */
1287 int
1288 port_flow_flush(portid_t port_id)
1289 {
1290 	struct rte_flow_error error;
1291 	struct rte_port *port;
1292 	int ret = 0;
1293 
1294 	/* Poisoning to make sure PMDs update it in case of error. */
1295 	memset(&error, 0x44, sizeof(error));
1296 	if (rte_flow_flush(port_id, &error)) {
1297 		ret = port_flow_complain(&error);
1298 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1299 		    port_id == (portid_t)RTE_PORT_ALL)
1300 			return ret;
1301 	}
1302 	port = &ports[port_id];
1303 	while (port->flow_list) {
1304 		struct port_flow *pf = port->flow_list->next;
1305 
1306 		free(port->flow_list);
1307 		port->flow_list = pf;
1308 	}
1309 	return ret;
1310 }
1311 
1312 /** Query a flow rule. */
1313 int
1314 port_flow_query(portid_t port_id, uint32_t rule,
1315 		enum rte_flow_action_type action)
1316 {
1317 	struct rte_flow_error error;
1318 	struct rte_port *port;
1319 	struct port_flow *pf;
1320 	const char *name;
1321 	union {
1322 		struct rte_flow_query_count count;
1323 	} query;
1324 
1325 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1326 	    port_id == (portid_t)RTE_PORT_ALL)
1327 		return -EINVAL;
1328 	port = &ports[port_id];
1329 	for (pf = port->flow_list; pf; pf = pf->next)
1330 		if (pf->id == rule)
1331 			break;
1332 	if (!pf) {
1333 		printf("Flow rule #%u not found\n", rule);
1334 		return -ENOENT;
1335 	}
1336 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1337 	    !flow_action[action].name)
1338 		name = "unknown";
1339 	else
1340 		name = flow_action[action].name;
1341 	switch (action) {
1342 	case RTE_FLOW_ACTION_TYPE_COUNT:
1343 		break;
1344 	default:
1345 		printf("Cannot query action type %d (%s)\n", action, name);
1346 		return -ENOTSUP;
1347 	}
1348 	/* Poisoning to make sure PMDs update it in case of error. */
1349 	memset(&error, 0x55, sizeof(error));
1350 	memset(&query, 0, sizeof(query));
1351 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1352 		return port_flow_complain(&error);
1353 	switch (action) {
1354 	case RTE_FLOW_ACTION_TYPE_COUNT:
1355 		printf("%s:\n"
1356 		       " hits_set: %u\n"
1357 		       " bytes_set: %u\n"
1358 		       " hits: %" PRIu64 "\n"
1359 		       " bytes: %" PRIu64 "\n",
1360 		       name,
1361 		       query.count.hits_set,
1362 		       query.count.bytes_set,
1363 		       query.count.hits,
1364 		       query.count.bytes);
1365 		break;
1366 	default:
1367 		printf("Cannot display result for action type %d (%s)\n",
1368 		       action, name);
1369 		break;
1370 	}
1371 	return 0;
1372 }
1373 
1374 /** List flow rules. */
1375 void
1376 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1377 {
1378 	struct rte_port *port;
1379 	struct port_flow *pf;
1380 	struct port_flow *list = NULL;
1381 	uint32_t i;
1382 
1383 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1384 	    port_id == (portid_t)RTE_PORT_ALL)
1385 		return;
1386 	port = &ports[port_id];
1387 	if (!port->flow_list)
1388 		return;
1389 	/* Sort flows by group, priority and ID. */
1390 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1391 		struct port_flow **tmp;
1392 
1393 		if (n) {
1394 			/* Filter out unwanted groups. */
1395 			for (i = 0; i != n; ++i)
1396 				if (pf->attr.group == group[i])
1397 					break;
1398 			if (i == n)
1399 				continue;
1400 		}
1401 		tmp = &list;
1402 		while (*tmp &&
1403 		       (pf->attr.group > (*tmp)->attr.group ||
1404 			(pf->attr.group == (*tmp)->attr.group &&
1405 			 pf->attr.priority > (*tmp)->attr.priority) ||
1406 			(pf->attr.group == (*tmp)->attr.group &&
1407 			 pf->attr.priority == (*tmp)->attr.priority &&
1408 			 pf->id > (*tmp)->id)))
1409 			tmp = &(*tmp)->tmp;
1410 		pf->tmp = *tmp;
1411 		*tmp = pf;
1412 	}
1413 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1414 	for (pf = list; pf != NULL; pf = pf->tmp) {
1415 		const struct rte_flow_item *item = pf->pattern;
1416 		const struct rte_flow_action *action = pf->actions;
1417 
1418 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1419 		       pf->id,
1420 		       pf->attr.group,
1421 		       pf->attr.priority,
1422 		       pf->attr.ingress ? 'i' : '-',
1423 		       pf->attr.egress ? 'e' : '-');
1424 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1425 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1426 				printf("%s ", flow_item[item->type].name);
1427 			++item;
1428 		}
1429 		printf("=>");
1430 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1431 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1432 				printf(" %s", flow_action[action->type].name);
1433 			++action;
1434 		}
1435 		printf("\n");
1436 	}
1437 }
1438 
1439 /*
1440  * RX/TX ring descriptors display functions.
1441  */
1442 int
1443 rx_queue_id_is_invalid(queueid_t rxq_id)
1444 {
1445 	if (rxq_id < nb_rxq)
1446 		return 0;
1447 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1448 	return 1;
1449 }
1450 
1451 int
1452 tx_queue_id_is_invalid(queueid_t txq_id)
1453 {
1454 	if (txq_id < nb_txq)
1455 		return 0;
1456 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1457 	return 1;
1458 }
1459 
1460 static int
1461 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1462 {
1463 	if (rxdesc_id < nb_rxd)
1464 		return 0;
1465 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1466 	       rxdesc_id, nb_rxd);
1467 	return 1;
1468 }
1469 
1470 static int
1471 tx_desc_id_is_invalid(uint16_t txdesc_id)
1472 {
1473 	if (txdesc_id < nb_txd)
1474 		return 0;
1475 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1476 	       txdesc_id, nb_txd);
1477 	return 1;
1478 }
1479 
1480 static const struct rte_memzone *
1481 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1482 {
1483 	char mz_name[RTE_MEMZONE_NAMESIZE];
1484 	const struct rte_memzone *mz;
1485 
1486 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1487 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1488 	mz = rte_memzone_lookup(mz_name);
1489 	if (mz == NULL)
1490 		printf("%s ring memory zoneof (port %d, queue %d) not"
1491 		       "found (zone name = %s\n",
1492 		       ring_name, port_id, q_id, mz_name);
1493 	return mz;
1494 }
1495 
1496 union igb_ring_dword {
1497 	uint64_t dword;
1498 	struct {
1499 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1500 		uint32_t lo;
1501 		uint32_t hi;
1502 #else
1503 		uint32_t hi;
1504 		uint32_t lo;
1505 #endif
1506 	} words;
1507 };
1508 
1509 struct igb_ring_desc_32_bytes {
1510 	union igb_ring_dword lo_dword;
1511 	union igb_ring_dword hi_dword;
1512 	union igb_ring_dword resv1;
1513 	union igb_ring_dword resv2;
1514 };
1515 
1516 struct igb_ring_desc_16_bytes {
1517 	union igb_ring_dword lo_dword;
1518 	union igb_ring_dword hi_dword;
1519 };
1520 
1521 static void
1522 ring_rxd_display_dword(union igb_ring_dword dword)
1523 {
1524 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1525 					(unsigned)dword.words.hi);
1526 }
1527 
1528 static void
1529 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1530 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1531 			   uint8_t port_id,
1532 #else
1533 			   __rte_unused uint8_t port_id,
1534 #endif
1535 			   uint16_t desc_id)
1536 {
1537 	struct igb_ring_desc_16_bytes *ring =
1538 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1539 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1540 	struct rte_eth_dev_info dev_info;
1541 
1542 	memset(&dev_info, 0, sizeof(dev_info));
1543 	rte_eth_dev_info_get(port_id, &dev_info);
1544 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1545 		/* 32 bytes RX descriptor, i40e only */
1546 		struct igb_ring_desc_32_bytes *ring =
1547 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1548 		ring[desc_id].lo_dword.dword =
1549 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1550 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1551 		ring[desc_id].hi_dword.dword =
1552 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1553 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1554 		ring[desc_id].resv1.dword =
1555 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1556 		ring_rxd_display_dword(ring[desc_id].resv1);
1557 		ring[desc_id].resv2.dword =
1558 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1559 		ring_rxd_display_dword(ring[desc_id].resv2);
1560 
1561 		return;
1562 	}
1563 #endif
1564 	/* 16 bytes RX descriptor */
1565 	ring[desc_id].lo_dword.dword =
1566 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1567 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1568 	ring[desc_id].hi_dword.dword =
1569 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1570 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1571 }
1572 
1573 static void
1574 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1575 {
1576 	struct igb_ring_desc_16_bytes *ring;
1577 	struct igb_ring_desc_16_bytes txd;
1578 
1579 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1580 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1581 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1582 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1583 			(unsigned)txd.lo_dword.words.lo,
1584 			(unsigned)txd.lo_dword.words.hi,
1585 			(unsigned)txd.hi_dword.words.lo,
1586 			(unsigned)txd.hi_dword.words.hi);
1587 }
1588 
1589 void
1590 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1591 {
1592 	const struct rte_memzone *rx_mz;
1593 
1594 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1595 		return;
1596 	if (rx_queue_id_is_invalid(rxq_id))
1597 		return;
1598 	if (rx_desc_id_is_invalid(rxd_id))
1599 		return;
1600 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1601 	if (rx_mz == NULL)
1602 		return;
1603 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1604 }
1605 
1606 void
1607 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1608 {
1609 	const struct rte_memzone *tx_mz;
1610 
1611 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1612 		return;
1613 	if (tx_queue_id_is_invalid(txq_id))
1614 		return;
1615 	if (tx_desc_id_is_invalid(txd_id))
1616 		return;
1617 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1618 	if (tx_mz == NULL)
1619 		return;
1620 	ring_tx_descriptor_display(tx_mz, txd_id);
1621 }
1622 
1623 void
1624 fwd_lcores_config_display(void)
1625 {
1626 	lcoreid_t lc_id;
1627 
1628 	printf("List of forwarding lcores:");
1629 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1630 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1631 	printf("\n");
1632 }
1633 void
1634 rxtx_config_display(void)
1635 {
1636 	printf("  %s packet forwarding%s - CRC stripping %s - "
1637 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1638 	       retry_enabled == 0 ? "" : " with retry",
1639 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1640 	       nb_pkt_per_burst);
1641 
1642 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1643 		printf("  packet len=%u - nb packet segments=%d\n",
1644 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1645 
1646 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1647 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1648 
1649 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1650 	       nb_fwd_lcores, nb_fwd_ports);
1651 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1652 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1653 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1654 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1655 	       rx_conf->rx_thresh.wthresh);
1656 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1657 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1658 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1659 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1660 	       tx_conf->tx_thresh.wthresh);
1661 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1662 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1663 }
1664 
1665 void
1666 port_rss_reta_info(portid_t port_id,
1667 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1668 		   uint16_t nb_entries)
1669 {
1670 	uint16_t i, idx, shift;
1671 	int ret;
1672 
1673 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1674 		return;
1675 
1676 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1677 	if (ret != 0) {
1678 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1679 		return;
1680 	}
1681 
1682 	for (i = 0; i < nb_entries; i++) {
1683 		idx = i / RTE_RETA_GROUP_SIZE;
1684 		shift = i % RTE_RETA_GROUP_SIZE;
1685 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1686 			continue;
1687 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1688 					i, reta_conf[idx].reta[shift]);
1689 	}
1690 }
1691 
1692 /*
1693  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1694  * key of the port.
1695  */
1696 void
1697 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1698 {
1699 	struct rte_eth_rss_conf rss_conf;
1700 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1701 	uint64_t rss_hf;
1702 	uint8_t i;
1703 	int diag;
1704 	struct rte_eth_dev_info dev_info;
1705 	uint8_t hash_key_size;
1706 
1707 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1708 		return;
1709 
1710 	memset(&dev_info, 0, sizeof(dev_info));
1711 	rte_eth_dev_info_get(port_id, &dev_info);
1712 	if (dev_info.hash_key_size > 0 &&
1713 			dev_info.hash_key_size <= sizeof(rss_key))
1714 		hash_key_size = dev_info.hash_key_size;
1715 	else {
1716 		printf("dev_info did not provide a valid hash key size\n");
1717 		return;
1718 	}
1719 
1720 	rss_conf.rss_hf = 0;
1721 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1722 		if (!strcmp(rss_info, rss_type_table[i].str))
1723 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1724 	}
1725 
1726 	/* Get RSS hash key if asked to display it */
1727 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1728 	rss_conf.rss_key_len = hash_key_size;
1729 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1730 	if (diag != 0) {
1731 		switch (diag) {
1732 		case -ENODEV:
1733 			printf("port index %d invalid\n", port_id);
1734 			break;
1735 		case -ENOTSUP:
1736 			printf("operation not supported by device\n");
1737 			break;
1738 		default:
1739 			printf("operation failed - diag=%d\n", diag);
1740 			break;
1741 		}
1742 		return;
1743 	}
1744 	rss_hf = rss_conf.rss_hf;
1745 	if (rss_hf == 0) {
1746 		printf("RSS disabled\n");
1747 		return;
1748 	}
1749 	printf("RSS functions:\n ");
1750 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1751 		if (rss_hf & rss_type_table[i].rss_type)
1752 			printf("%s ", rss_type_table[i].str);
1753 	}
1754 	printf("\n");
1755 	if (!show_rss_key)
1756 		return;
1757 	printf("RSS key:\n");
1758 	for (i = 0; i < hash_key_size; i++)
1759 		printf("%02X", rss_key[i]);
1760 	printf("\n");
1761 }
1762 
1763 void
1764 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1765 			 uint hash_key_len)
1766 {
1767 	struct rte_eth_rss_conf rss_conf;
1768 	int diag;
1769 	unsigned int i;
1770 
1771 	rss_conf.rss_key = NULL;
1772 	rss_conf.rss_key_len = hash_key_len;
1773 	rss_conf.rss_hf = 0;
1774 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1775 		if (!strcmp(rss_type_table[i].str, rss_type))
1776 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1777 	}
1778 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1779 	if (diag == 0) {
1780 		rss_conf.rss_key = hash_key;
1781 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1782 	}
1783 	if (diag == 0)
1784 		return;
1785 
1786 	switch (diag) {
1787 	case -ENODEV:
1788 		printf("port index %d invalid\n", port_id);
1789 		break;
1790 	case -ENOTSUP:
1791 		printf("operation not supported by device\n");
1792 		break;
1793 	default:
1794 		printf("operation failed - diag=%d\n", diag);
1795 		break;
1796 	}
1797 }
1798 
1799 /*
1800  * Setup forwarding configuration for each logical core.
1801  */
1802 static void
1803 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1804 {
1805 	streamid_t nb_fs_per_lcore;
1806 	streamid_t nb_fs;
1807 	streamid_t sm_id;
1808 	lcoreid_t  nb_extra;
1809 	lcoreid_t  nb_fc;
1810 	lcoreid_t  nb_lc;
1811 	lcoreid_t  lc_id;
1812 
1813 	nb_fs = cfg->nb_fwd_streams;
1814 	nb_fc = cfg->nb_fwd_lcores;
1815 	if (nb_fs <= nb_fc) {
1816 		nb_fs_per_lcore = 1;
1817 		nb_extra = 0;
1818 	} else {
1819 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1820 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1821 	}
1822 
1823 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1824 	sm_id = 0;
1825 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1826 		fwd_lcores[lc_id]->stream_idx = sm_id;
1827 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1828 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1829 	}
1830 
1831 	/*
1832 	 * Assign extra remaining streams, if any.
1833 	 */
1834 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1835 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1836 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1837 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1838 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1839 	}
1840 }
1841 
1842 static void
1843 simple_fwd_config_setup(void)
1844 {
1845 	portid_t i;
1846 	portid_t j;
1847 	portid_t inc = 2;
1848 
1849 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1850 	    port_topology == PORT_TOPOLOGY_LOOP) {
1851 		inc = 1;
1852 	} else if (nb_fwd_ports % 2) {
1853 		printf("\nWarning! Cannot handle an odd number of ports "
1854 		       "with the current port topology. Configuration "
1855 		       "must be changed to have an even number of ports, "
1856 		       "or relaunch application with "
1857 		       "--port-topology=chained\n\n");
1858 	}
1859 
1860 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1861 	cur_fwd_config.nb_fwd_streams =
1862 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1863 
1864 	/* reinitialize forwarding streams */
1865 	init_fwd_streams();
1866 
1867 	/*
1868 	 * In the simple forwarding test, the number of forwarding cores
1869 	 * must be lower or equal to the number of forwarding ports.
1870 	 */
1871 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1872 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1873 		cur_fwd_config.nb_fwd_lcores =
1874 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1875 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1876 
1877 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1878 		if (port_topology != PORT_TOPOLOGY_LOOP)
1879 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1880 		else
1881 			j = i;
1882 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1883 		fwd_streams[i]->rx_queue  = 0;
1884 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1885 		fwd_streams[i]->tx_queue  = 0;
1886 		fwd_streams[i]->peer_addr = j;
1887 		fwd_streams[i]->retry_enabled = retry_enabled;
1888 
1889 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1890 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1891 			fwd_streams[j]->rx_queue  = 0;
1892 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1893 			fwd_streams[j]->tx_queue  = 0;
1894 			fwd_streams[j]->peer_addr = i;
1895 			fwd_streams[j]->retry_enabled = retry_enabled;
1896 		}
1897 	}
1898 }
1899 
1900 /**
1901  * For the RSS forwarding test all streams distributed over lcores. Each stream
1902  * being composed of a RX queue to poll on a RX port for input messages,
1903  * associated with a TX queue of a TX port where to send forwarded packets.
1904  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1905  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1906  * following rules:
1907  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1908  *    - TxQl = RxQj
1909  */
1910 static void
1911 rss_fwd_config_setup(void)
1912 {
1913 	portid_t   rxp;
1914 	portid_t   txp;
1915 	queueid_t  rxq;
1916 	queueid_t  nb_q;
1917 	streamid_t  sm_id;
1918 
1919 	nb_q = nb_rxq;
1920 	if (nb_q > nb_txq)
1921 		nb_q = nb_txq;
1922 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1923 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1924 	cur_fwd_config.nb_fwd_streams =
1925 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1926 
1927 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1928 		cur_fwd_config.nb_fwd_lcores =
1929 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1930 
1931 	/* reinitialize forwarding streams */
1932 	init_fwd_streams();
1933 
1934 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1935 	rxp = 0; rxq = 0;
1936 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1937 		struct fwd_stream *fs;
1938 
1939 		fs = fwd_streams[sm_id];
1940 
1941 		if ((rxp & 0x1) == 0)
1942 			txp = (portid_t) (rxp + 1);
1943 		else
1944 			txp = (portid_t) (rxp - 1);
1945 		/*
1946 		 * if we are in loopback, simply send stuff out through the
1947 		 * ingress port
1948 		 */
1949 		if (port_topology == PORT_TOPOLOGY_LOOP)
1950 			txp = rxp;
1951 
1952 		fs->rx_port = fwd_ports_ids[rxp];
1953 		fs->rx_queue = rxq;
1954 		fs->tx_port = fwd_ports_ids[txp];
1955 		fs->tx_queue = rxq;
1956 		fs->peer_addr = fs->tx_port;
1957 		fs->retry_enabled = retry_enabled;
1958 		rxq = (queueid_t) (rxq + 1);
1959 		if (rxq < nb_q)
1960 			continue;
1961 		/*
1962 		 * rxq == nb_q
1963 		 * Restart from RX queue 0 on next RX port
1964 		 */
1965 		rxq = 0;
1966 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1967 			rxp = (portid_t)
1968 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1969 		else
1970 			rxp = (portid_t) (rxp + 1);
1971 	}
1972 }
1973 
1974 /**
1975  * For the DCB forwarding test, each core is assigned on each traffic class.
1976  *
1977  * Each core is assigned a multi-stream, each stream being composed of
1978  * a RX queue to poll on a RX port for input messages, associated with
1979  * a TX queue of a TX port where to send forwarded packets. All RX and
1980  * TX queues are mapping to the same traffic class.
1981  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1982  * the same core
1983  */
1984 static void
1985 dcb_fwd_config_setup(void)
1986 {
1987 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1988 	portid_t txp, rxp = 0;
1989 	queueid_t txq, rxq = 0;
1990 	lcoreid_t  lc_id;
1991 	uint16_t nb_rx_queue, nb_tx_queue;
1992 	uint16_t i, j, k, sm_id = 0;
1993 	uint8_t tc = 0;
1994 
1995 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1996 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1997 	cur_fwd_config.nb_fwd_streams =
1998 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1999 
2000 	/* reinitialize forwarding streams */
2001 	init_fwd_streams();
2002 	sm_id = 0;
2003 	txp = 1;
2004 	/* get the dcb info on the first RX and TX ports */
2005 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2006 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2007 
2008 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2009 		fwd_lcores[lc_id]->stream_nb = 0;
2010 		fwd_lcores[lc_id]->stream_idx = sm_id;
2011 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2012 			/* if the nb_queue is zero, means this tc is
2013 			 * not enabled on the POOL
2014 			 */
2015 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2016 				break;
2017 			k = fwd_lcores[lc_id]->stream_nb +
2018 				fwd_lcores[lc_id]->stream_idx;
2019 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2020 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2021 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2022 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2023 			for (j = 0; j < nb_rx_queue; j++) {
2024 				struct fwd_stream *fs;
2025 
2026 				fs = fwd_streams[k + j];
2027 				fs->rx_port = fwd_ports_ids[rxp];
2028 				fs->rx_queue = rxq + j;
2029 				fs->tx_port = fwd_ports_ids[txp];
2030 				fs->tx_queue = txq + j % nb_tx_queue;
2031 				fs->peer_addr = fs->tx_port;
2032 				fs->retry_enabled = retry_enabled;
2033 			}
2034 			fwd_lcores[lc_id]->stream_nb +=
2035 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2036 		}
2037 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2038 
2039 		tc++;
2040 		if (tc < rxp_dcb_info.nb_tcs)
2041 			continue;
2042 		/* Restart from TC 0 on next RX port */
2043 		tc = 0;
2044 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2045 			rxp = (portid_t)
2046 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2047 		else
2048 			rxp++;
2049 		if (rxp >= nb_fwd_ports)
2050 			return;
2051 		/* get the dcb information on next RX and TX ports */
2052 		if ((rxp & 0x1) == 0)
2053 			txp = (portid_t) (rxp + 1);
2054 		else
2055 			txp = (portid_t) (rxp - 1);
2056 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2057 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2058 	}
2059 }
2060 
2061 static void
2062 icmp_echo_config_setup(void)
2063 {
2064 	portid_t  rxp;
2065 	queueid_t rxq;
2066 	lcoreid_t lc_id;
2067 	uint16_t  sm_id;
2068 
2069 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2070 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2071 			(nb_txq * nb_fwd_ports);
2072 	else
2073 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2074 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2075 	cur_fwd_config.nb_fwd_streams =
2076 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2077 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2078 		cur_fwd_config.nb_fwd_lcores =
2079 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2080 	if (verbose_level > 0) {
2081 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2082 		       __FUNCTION__,
2083 		       cur_fwd_config.nb_fwd_lcores,
2084 		       cur_fwd_config.nb_fwd_ports,
2085 		       cur_fwd_config.nb_fwd_streams);
2086 	}
2087 
2088 	/* reinitialize forwarding streams */
2089 	init_fwd_streams();
2090 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2091 	rxp = 0; rxq = 0;
2092 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2093 		if (verbose_level > 0)
2094 			printf("  core=%d: \n", lc_id);
2095 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2096 			struct fwd_stream *fs;
2097 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2098 			fs->rx_port = fwd_ports_ids[rxp];
2099 			fs->rx_queue = rxq;
2100 			fs->tx_port = fs->rx_port;
2101 			fs->tx_queue = rxq;
2102 			fs->peer_addr = fs->tx_port;
2103 			fs->retry_enabled = retry_enabled;
2104 			if (verbose_level > 0)
2105 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2106 				       sm_id, fs->rx_port, fs->rx_queue,
2107 				       fs->tx_queue);
2108 			rxq = (queueid_t) (rxq + 1);
2109 			if (rxq == nb_rxq) {
2110 				rxq = 0;
2111 				rxp = (portid_t) (rxp + 1);
2112 			}
2113 		}
2114 	}
2115 }
2116 
2117 void
2118 fwd_config_setup(void)
2119 {
2120 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2121 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2122 		icmp_echo_config_setup();
2123 		return;
2124 	}
2125 	if ((nb_rxq > 1) && (nb_txq > 1)){
2126 		if (dcb_config)
2127 			dcb_fwd_config_setup();
2128 		else
2129 			rss_fwd_config_setup();
2130 	}
2131 	else
2132 		simple_fwd_config_setup();
2133 }
2134 
2135 void
2136 pkt_fwd_config_display(struct fwd_config *cfg)
2137 {
2138 	struct fwd_stream *fs;
2139 	lcoreid_t  lc_id;
2140 	streamid_t sm_id;
2141 
2142 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2143 		"NUMA support %s, MP over anonymous pages %s\n",
2144 		cfg->fwd_eng->fwd_mode_name,
2145 		retry_enabled == 0 ? "" : " with retry",
2146 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2147 		numa_support == 1 ? "enabled" : "disabled",
2148 		mp_anon != 0 ? "enabled" : "disabled");
2149 
2150 	if (retry_enabled)
2151 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2152 			burst_tx_retry_num, burst_tx_delay_time);
2153 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2154 		printf("Logical Core %u (socket %u) forwards packets on "
2155 		       "%d streams:",
2156 		       fwd_lcores_cpuids[lc_id],
2157 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2158 		       fwd_lcores[lc_id]->stream_nb);
2159 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2160 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2161 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2162 			       "P=%d/Q=%d (socket %u) ",
2163 			       fs->rx_port, fs->rx_queue,
2164 			       ports[fs->rx_port].socket_id,
2165 			       fs->tx_port, fs->tx_queue,
2166 			       ports[fs->tx_port].socket_id);
2167 			print_ethaddr("peer=",
2168 				      &peer_eth_addrs[fs->peer_addr]);
2169 		}
2170 		printf("\n");
2171 	}
2172 	printf("\n");
2173 }
2174 
2175 int
2176 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2177 {
2178 	unsigned int i;
2179 	unsigned int lcore_cpuid;
2180 	int record_now;
2181 
2182 	record_now = 0;
2183  again:
2184 	for (i = 0; i < nb_lc; i++) {
2185 		lcore_cpuid = lcorelist[i];
2186 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2187 			printf("lcore %u not enabled\n", lcore_cpuid);
2188 			return -1;
2189 		}
2190 		if (lcore_cpuid == rte_get_master_lcore()) {
2191 			printf("lcore %u cannot be masked on for running "
2192 			       "packet forwarding, which is the master lcore "
2193 			       "and reserved for command line parsing only\n",
2194 			       lcore_cpuid);
2195 			return -1;
2196 		}
2197 		if (record_now)
2198 			fwd_lcores_cpuids[i] = lcore_cpuid;
2199 	}
2200 	if (record_now == 0) {
2201 		record_now = 1;
2202 		goto again;
2203 	}
2204 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2205 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2206 		printf("previous number of forwarding cores %u - changed to "
2207 		       "number of configured cores %u\n",
2208 		       (unsigned int) nb_fwd_lcores, nb_lc);
2209 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 int
2216 set_fwd_lcores_mask(uint64_t lcoremask)
2217 {
2218 	unsigned int lcorelist[64];
2219 	unsigned int nb_lc;
2220 	unsigned int i;
2221 
2222 	if (lcoremask == 0) {
2223 		printf("Invalid NULL mask of cores\n");
2224 		return -1;
2225 	}
2226 	nb_lc = 0;
2227 	for (i = 0; i < 64; i++) {
2228 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2229 			continue;
2230 		lcorelist[nb_lc++] = i;
2231 	}
2232 	return set_fwd_lcores_list(lcorelist, nb_lc);
2233 }
2234 
2235 void
2236 set_fwd_lcores_number(uint16_t nb_lc)
2237 {
2238 	if (nb_lc > nb_cfg_lcores) {
2239 		printf("nb fwd cores %u > %u (max. number of configured "
2240 		       "lcores) - ignored\n",
2241 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2242 		return;
2243 	}
2244 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2245 	printf("Number of forwarding cores set to %u\n",
2246 	       (unsigned int) nb_fwd_lcores);
2247 }
2248 
2249 void
2250 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2251 {
2252 	unsigned int i;
2253 	portid_t port_id;
2254 	int record_now;
2255 
2256 	record_now = 0;
2257  again:
2258 	for (i = 0; i < nb_pt; i++) {
2259 		port_id = (portid_t) portlist[i];
2260 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2261 			return;
2262 		if (record_now)
2263 			fwd_ports_ids[i] = port_id;
2264 	}
2265 	if (record_now == 0) {
2266 		record_now = 1;
2267 		goto again;
2268 	}
2269 	nb_cfg_ports = (portid_t) nb_pt;
2270 	if (nb_fwd_ports != (portid_t) nb_pt) {
2271 		printf("previous number of forwarding ports %u - changed to "
2272 		       "number of configured ports %u\n",
2273 		       (unsigned int) nb_fwd_ports, nb_pt);
2274 		nb_fwd_ports = (portid_t) nb_pt;
2275 	}
2276 }
2277 
2278 void
2279 set_fwd_ports_mask(uint64_t portmask)
2280 {
2281 	unsigned int portlist[64];
2282 	unsigned int nb_pt;
2283 	unsigned int i;
2284 
2285 	if (portmask == 0) {
2286 		printf("Invalid NULL mask of ports\n");
2287 		return;
2288 	}
2289 	nb_pt = 0;
2290 	RTE_ETH_FOREACH_DEV(i) {
2291 		if (! ((uint64_t)(1ULL << i) & portmask))
2292 			continue;
2293 		portlist[nb_pt++] = i;
2294 	}
2295 	set_fwd_ports_list(portlist, nb_pt);
2296 }
2297 
2298 void
2299 set_fwd_ports_number(uint16_t nb_pt)
2300 {
2301 	if (nb_pt > nb_cfg_ports) {
2302 		printf("nb fwd ports %u > %u (number of configured "
2303 		       "ports) - ignored\n",
2304 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2305 		return;
2306 	}
2307 	nb_fwd_ports = (portid_t) nb_pt;
2308 	printf("Number of forwarding ports set to %u\n",
2309 	       (unsigned int) nb_fwd_ports);
2310 }
2311 
2312 int
2313 port_is_forwarding(portid_t port_id)
2314 {
2315 	unsigned int i;
2316 
2317 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2318 		return -1;
2319 
2320 	for (i = 0; i < nb_fwd_ports; i++) {
2321 		if (fwd_ports_ids[i] == port_id)
2322 			return 1;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 void
2329 set_nb_pkt_per_burst(uint16_t nb)
2330 {
2331 	if (nb > MAX_PKT_BURST) {
2332 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2333 		       " ignored\n",
2334 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2335 		return;
2336 	}
2337 	nb_pkt_per_burst = nb;
2338 	printf("Number of packets per burst set to %u\n",
2339 	       (unsigned int) nb_pkt_per_burst);
2340 }
2341 
2342 static const char *
2343 tx_split_get_name(enum tx_pkt_split split)
2344 {
2345 	uint32_t i;
2346 
2347 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2348 		if (tx_split_name[i].split == split)
2349 			return tx_split_name[i].name;
2350 	}
2351 	return NULL;
2352 }
2353 
2354 void
2355 set_tx_pkt_split(const char *name)
2356 {
2357 	uint32_t i;
2358 
2359 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2360 		if (strcmp(tx_split_name[i].name, name) == 0) {
2361 			tx_pkt_split = tx_split_name[i].split;
2362 			return;
2363 		}
2364 	}
2365 	printf("unknown value: \"%s\"\n", name);
2366 }
2367 
2368 void
2369 show_tx_pkt_segments(void)
2370 {
2371 	uint32_t i, n;
2372 	const char *split;
2373 
2374 	n = tx_pkt_nb_segs;
2375 	split = tx_split_get_name(tx_pkt_split);
2376 
2377 	printf("Number of segments: %u\n", n);
2378 	printf("Segment sizes: ");
2379 	for (i = 0; i != n - 1; i++)
2380 		printf("%hu,", tx_pkt_seg_lengths[i]);
2381 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2382 	printf("Split packet: %s\n", split);
2383 }
2384 
2385 void
2386 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2387 {
2388 	uint16_t tx_pkt_len;
2389 	unsigned i;
2390 
2391 	if (nb_segs >= (unsigned) nb_txd) {
2392 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2393 		       nb_segs, (unsigned int) nb_txd);
2394 		return;
2395 	}
2396 
2397 	/*
2398 	 * Check that each segment length is greater or equal than
2399 	 * the mbuf data sise.
2400 	 * Check also that the total packet length is greater or equal than the
2401 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2402 	 */
2403 	tx_pkt_len = 0;
2404 	for (i = 0; i < nb_segs; i++) {
2405 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2406 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2407 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2408 			return;
2409 		}
2410 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2411 	}
2412 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2413 		printf("total packet length=%u < %d - give up\n",
2414 				(unsigned) tx_pkt_len,
2415 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2416 		return;
2417 	}
2418 
2419 	for (i = 0; i < nb_segs; i++)
2420 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2421 
2422 	tx_pkt_length  = tx_pkt_len;
2423 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2424 }
2425 
2426 char*
2427 list_pkt_forwarding_modes(void)
2428 {
2429 	static char fwd_modes[128] = "";
2430 	const char *separator = "|";
2431 	struct fwd_engine *fwd_eng;
2432 	unsigned i = 0;
2433 
2434 	if (strlen (fwd_modes) == 0) {
2435 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2436 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2437 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2438 			strncat(fwd_modes, separator,
2439 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2440 		}
2441 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2442 	}
2443 
2444 	return fwd_modes;
2445 }
2446 
2447 char*
2448 list_pkt_forwarding_retry_modes(void)
2449 {
2450 	static char fwd_modes[128] = "";
2451 	const char *separator = "|";
2452 	struct fwd_engine *fwd_eng;
2453 	unsigned i = 0;
2454 
2455 	if (strlen(fwd_modes) == 0) {
2456 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2457 			if (fwd_eng == &rx_only_engine)
2458 				continue;
2459 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2460 					sizeof(fwd_modes) -
2461 					strlen(fwd_modes) - 1);
2462 			strncat(fwd_modes, separator,
2463 					sizeof(fwd_modes) -
2464 					strlen(fwd_modes) - 1);
2465 		}
2466 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2467 	}
2468 
2469 	return fwd_modes;
2470 }
2471 
2472 void
2473 set_pkt_forwarding_mode(const char *fwd_mode_name)
2474 {
2475 	struct fwd_engine *fwd_eng;
2476 	unsigned i;
2477 
2478 	i = 0;
2479 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2480 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2481 			printf("Set %s packet forwarding mode%s\n",
2482 			       fwd_mode_name,
2483 			       retry_enabled == 0 ? "" : " with retry");
2484 			cur_fwd_eng = fwd_eng;
2485 			return;
2486 		}
2487 		i++;
2488 	}
2489 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2490 }
2491 
2492 void
2493 set_verbose_level(uint16_t vb_level)
2494 {
2495 	printf("Change verbose level from %u to %u\n",
2496 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2497 	verbose_level = vb_level;
2498 }
2499 
2500 void
2501 vlan_extend_set(portid_t port_id, int on)
2502 {
2503 	int diag;
2504 	int vlan_offload;
2505 
2506 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2507 		return;
2508 
2509 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2510 
2511 	if (on)
2512 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2513 	else
2514 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2515 
2516 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2517 	if (diag < 0)
2518 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2519 	       "diag=%d\n", port_id, on, diag);
2520 }
2521 
2522 void
2523 rx_vlan_strip_set(portid_t port_id, int on)
2524 {
2525 	int diag;
2526 	int vlan_offload;
2527 
2528 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2529 		return;
2530 
2531 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2532 
2533 	if (on)
2534 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2535 	else
2536 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2537 
2538 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2539 	if (diag < 0)
2540 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2541 	       "diag=%d\n", port_id, on, diag);
2542 }
2543 
2544 void
2545 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2546 {
2547 	int diag;
2548 
2549 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2550 		return;
2551 
2552 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2553 	if (diag < 0)
2554 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2555 	       "diag=%d\n", port_id, queue_id, on, diag);
2556 }
2557 
2558 void
2559 rx_vlan_filter_set(portid_t port_id, int on)
2560 {
2561 	int diag;
2562 	int vlan_offload;
2563 
2564 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2565 		return;
2566 
2567 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2568 
2569 	if (on)
2570 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2571 	else
2572 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2573 
2574 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2575 	if (diag < 0)
2576 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2577 	       "diag=%d\n", port_id, on, diag);
2578 }
2579 
2580 int
2581 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2582 {
2583 	int diag;
2584 
2585 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2586 		return 1;
2587 	if (vlan_id_is_invalid(vlan_id))
2588 		return 1;
2589 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2590 	if (diag == 0)
2591 		return 0;
2592 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2593 	       "diag=%d\n",
2594 	       port_id, vlan_id, on, diag);
2595 	return -1;
2596 }
2597 
2598 void
2599 rx_vlan_all_filter_set(portid_t port_id, int on)
2600 {
2601 	uint16_t vlan_id;
2602 
2603 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2604 		return;
2605 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2606 		if (rx_vft_set(port_id, vlan_id, on))
2607 			break;
2608 	}
2609 }
2610 
2611 void
2612 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2613 {
2614 	int diag;
2615 
2616 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2617 		return;
2618 
2619 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2620 	if (diag == 0)
2621 		return;
2622 
2623 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2624 	       "diag=%d\n",
2625 	       port_id, vlan_type, tp_id, diag);
2626 }
2627 
2628 void
2629 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2630 {
2631 	int vlan_offload;
2632 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2633 		return;
2634 	if (vlan_id_is_invalid(vlan_id))
2635 		return;
2636 
2637 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2638 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2639 		printf("Error, as QinQ has been enabled.\n");
2640 		return;
2641 	}
2642 
2643 	tx_vlan_reset(port_id);
2644 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2645 	ports[port_id].tx_vlan_id = vlan_id;
2646 }
2647 
2648 void
2649 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2650 {
2651 	int vlan_offload;
2652 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2653 		return;
2654 	if (vlan_id_is_invalid(vlan_id))
2655 		return;
2656 	if (vlan_id_is_invalid(vlan_id_outer))
2657 		return;
2658 
2659 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2660 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2661 		printf("Error, as QinQ hasn't been enabled.\n");
2662 		return;
2663 	}
2664 
2665 	tx_vlan_reset(port_id);
2666 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2667 	ports[port_id].tx_vlan_id = vlan_id;
2668 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2669 }
2670 
2671 void
2672 tx_vlan_reset(portid_t port_id)
2673 {
2674 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2675 		return;
2676 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2677 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2678 	ports[port_id].tx_vlan_id = 0;
2679 	ports[port_id].tx_vlan_id_outer = 0;
2680 }
2681 
2682 void
2683 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2684 {
2685 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2686 		return;
2687 
2688 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2689 }
2690 
2691 void
2692 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2693 {
2694 	uint16_t i;
2695 	uint8_t existing_mapping_found = 0;
2696 
2697 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2698 		return;
2699 
2700 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2701 		return;
2702 
2703 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2704 		printf("map_value not in required range 0..%d\n",
2705 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2706 		return;
2707 	}
2708 
2709 	if (!is_rx) { /*then tx*/
2710 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2711 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2712 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2713 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2714 				existing_mapping_found = 1;
2715 				break;
2716 			}
2717 		}
2718 		if (!existing_mapping_found) { /* A new additional mapping... */
2719 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2720 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2721 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2722 			nb_tx_queue_stats_mappings++;
2723 		}
2724 	}
2725 	else { /*rx*/
2726 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2727 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2728 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2729 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2730 				existing_mapping_found = 1;
2731 				break;
2732 			}
2733 		}
2734 		if (!existing_mapping_found) { /* A new additional mapping... */
2735 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2736 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2737 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2738 			nb_rx_queue_stats_mappings++;
2739 		}
2740 	}
2741 }
2742 
2743 static inline void
2744 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2745 {
2746 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2747 
2748 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2749 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2750 			" tunnel_id: 0x%08x",
2751 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2752 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2753 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2754 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2755 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2756 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2757 
2758 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2759 			rte_be_to_cpu_16(mask->src_port_mask),
2760 			rte_be_to_cpu_16(mask->dst_port_mask));
2761 
2762 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2763 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2764 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2765 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2766 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2767 
2768 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2769 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2770 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2771 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2772 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2773 	}
2774 
2775 	printf("\n");
2776 }
2777 
2778 static inline void
2779 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2780 {
2781 	struct rte_eth_flex_payload_cfg *cfg;
2782 	uint32_t i, j;
2783 
2784 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2785 		cfg = &flex_conf->flex_set[i];
2786 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2787 			printf("\n    RAW:  ");
2788 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2789 			printf("\n    L2_PAYLOAD:  ");
2790 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2791 			printf("\n    L3_PAYLOAD:  ");
2792 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2793 			printf("\n    L4_PAYLOAD:  ");
2794 		else
2795 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2796 		for (j = 0; j < num; j++)
2797 			printf("  %-5u", cfg->src_offset[j]);
2798 	}
2799 	printf("\n");
2800 }
2801 
2802 static char *
2803 flowtype_to_str(uint16_t flow_type)
2804 {
2805 	struct flow_type_info {
2806 		char str[32];
2807 		uint16_t ftype;
2808 	};
2809 
2810 	uint8_t i;
2811 	static struct flow_type_info flowtype_str_table[] = {
2812 		{"raw", RTE_ETH_FLOW_RAW},
2813 		{"ipv4", RTE_ETH_FLOW_IPV4},
2814 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2815 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2816 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2817 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2818 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2819 		{"ipv6", RTE_ETH_FLOW_IPV6},
2820 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2821 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2822 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2823 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2824 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2825 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2826 		{"port", RTE_ETH_FLOW_PORT},
2827 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2828 		{"geneve", RTE_ETH_FLOW_GENEVE},
2829 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2830 	};
2831 
2832 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2833 		if (flowtype_str_table[i].ftype == flow_type)
2834 			return flowtype_str_table[i].str;
2835 	}
2836 
2837 	return NULL;
2838 }
2839 
2840 static inline void
2841 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2842 {
2843 	struct rte_eth_fdir_flex_mask *mask;
2844 	uint32_t i, j;
2845 	char *p;
2846 
2847 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2848 		mask = &flex_conf->flex_mask[i];
2849 		p = flowtype_to_str(mask->flow_type);
2850 		printf("\n    %s:\t", p ? p : "unknown");
2851 		for (j = 0; j < num; j++)
2852 			printf(" %02x", mask->mask[j]);
2853 	}
2854 	printf("\n");
2855 }
2856 
2857 static inline void
2858 print_fdir_flow_type(uint32_t flow_types_mask)
2859 {
2860 	int i;
2861 	char *p;
2862 
2863 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2864 		if (!(flow_types_mask & (1 << i)))
2865 			continue;
2866 		p = flowtype_to_str(i);
2867 		if (p)
2868 			printf(" %s", p);
2869 		else
2870 			printf(" unknown");
2871 	}
2872 	printf("\n");
2873 }
2874 
2875 void
2876 fdir_get_infos(portid_t port_id)
2877 {
2878 	struct rte_eth_fdir_stats fdir_stat;
2879 	struct rte_eth_fdir_info fdir_info;
2880 	int ret;
2881 
2882 	static const char *fdir_stats_border = "########################";
2883 
2884 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2885 		return;
2886 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2887 	if (ret < 0) {
2888 		printf("\n FDIR is not supported on port %-2d\n",
2889 			port_id);
2890 		return;
2891 	}
2892 
2893 	memset(&fdir_info, 0, sizeof(fdir_info));
2894 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2895 			       RTE_ETH_FILTER_INFO, &fdir_info);
2896 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2897 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2898 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2899 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2900 	       fdir_stats_border, port_id, fdir_stats_border);
2901 	printf("  MODE: ");
2902 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2903 		printf("  PERFECT\n");
2904 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2905 		printf("  PERFECT-MAC-VLAN\n");
2906 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2907 		printf("  PERFECT-TUNNEL\n");
2908 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2909 		printf("  SIGNATURE\n");
2910 	else
2911 		printf("  DISABLE\n");
2912 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2913 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2914 		printf("  SUPPORTED FLOW TYPE: ");
2915 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2916 	}
2917 	printf("  FLEX PAYLOAD INFO:\n");
2918 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2919 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2920 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2921 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2922 		fdir_info.flex_payload_unit,
2923 		fdir_info.max_flex_payload_segment_num,
2924 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2925 	printf("  MASK: ");
2926 	print_fdir_mask(&fdir_info.mask);
2927 	if (fdir_info.flex_conf.nb_payloads > 0) {
2928 		printf("  FLEX PAYLOAD SRC OFFSET:");
2929 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2930 	}
2931 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2932 		printf("  FLEX MASK CFG:");
2933 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2934 	}
2935 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2936 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2937 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2938 	       fdir_info.guarant_spc, fdir_info.best_spc);
2939 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2940 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2941 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2942 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2943 	       fdir_stat.collision, fdir_stat.free,
2944 	       fdir_stat.maxhash, fdir_stat.maxlen,
2945 	       fdir_stat.add, fdir_stat.remove,
2946 	       fdir_stat.f_add, fdir_stat.f_remove);
2947 	printf("  %s############################%s\n",
2948 	       fdir_stats_border, fdir_stats_border);
2949 }
2950 
2951 void
2952 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2953 {
2954 	struct rte_port *port;
2955 	struct rte_eth_fdir_flex_conf *flex_conf;
2956 	int i, idx = 0;
2957 
2958 	port = &ports[port_id];
2959 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2960 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2961 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2962 			idx = i;
2963 			break;
2964 		}
2965 	}
2966 	if (i >= RTE_ETH_FLOW_MAX) {
2967 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2968 			idx = flex_conf->nb_flexmasks;
2969 			flex_conf->nb_flexmasks++;
2970 		} else {
2971 			printf("The flex mask table is full. Can not set flex"
2972 				" mask for flow_type(%u).", cfg->flow_type);
2973 			return;
2974 		}
2975 	}
2976 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2977 			 cfg,
2978 			 sizeof(struct rte_eth_fdir_flex_mask));
2979 }
2980 
2981 void
2982 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2983 {
2984 	struct rte_port *port;
2985 	struct rte_eth_fdir_flex_conf *flex_conf;
2986 	int i, idx = 0;
2987 
2988 	port = &ports[port_id];
2989 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2990 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2991 		if (cfg->type == flex_conf->flex_set[i].type) {
2992 			idx = i;
2993 			break;
2994 		}
2995 	}
2996 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2997 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2998 			idx = flex_conf->nb_payloads;
2999 			flex_conf->nb_payloads++;
3000 		} else {
3001 			printf("The flex payload table is full. Can not set"
3002 				" flex payload for type(%u).", cfg->type);
3003 			return;
3004 		}
3005 	}
3006 	(void)rte_memcpy(&flex_conf->flex_set[idx],
3007 			 cfg,
3008 			 sizeof(struct rte_eth_flex_payload_cfg));
3009 
3010 }
3011 
3012 #ifdef RTE_LIBRTE_IXGBE_PMD
3013 void
3014 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3015 {
3016 	int diag;
3017 
3018 	if (is_rx)
3019 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3020 	else
3021 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3022 
3023 	if (diag == 0)
3024 		return;
3025 	if(is_rx)
3026 		printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed "
3027 	       		"diag=%d\n", port_id, diag);
3028 	else
3029 		printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed "
3030 	       		"diag=%d\n", port_id, diag);
3031 
3032 }
3033 #endif
3034 
3035 int
3036 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3037 {
3038 	int diag;
3039 	struct rte_eth_link link;
3040 
3041 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3042 		return 1;
3043 	rte_eth_link_get_nowait(port_id, &link);
3044 	if (rate > link.link_speed) {
3045 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3046 			rate, link.link_speed);
3047 		return 1;
3048 	}
3049 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3050 	if (diag == 0)
3051 		return diag;
3052 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3053 		port_id, diag);
3054 	return diag;
3055 }
3056 
3057 #ifdef RTE_LIBRTE_IXGBE_PMD
3058 int
3059 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3060 {
3061 	int diag;
3062 
3063 	diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk);
3064 	if (diag == 0)
3065 		return diag;
3066 	printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n",
3067 		port_id, diag);
3068 	return diag;
3069 }
3070 #endif
3071 
3072 /*
3073  * Functions to manage the set of filtered Multicast MAC addresses.
3074  *
3075  * A pool of filtered multicast MAC addresses is associated with each port.
3076  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3077  * The address of the pool and the number of valid multicast MAC addresses
3078  * recorded in the pool are stored in the fields "mc_addr_pool" and
3079  * "mc_addr_nb" of the "rte_port" data structure.
3080  *
3081  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3082  * to be supplied a contiguous array of multicast MAC addresses.
3083  * To comply with this constraint, the set of multicast addresses recorded
3084  * into the pool are systematically compacted at the beginning of the pool.
3085  * Hence, when a multicast address is removed from the pool, all following
3086  * addresses, if any, are copied back to keep the set contiguous.
3087  */
3088 #define MCAST_POOL_INC 32
3089 
3090 static int
3091 mcast_addr_pool_extend(struct rte_port *port)
3092 {
3093 	struct ether_addr *mc_pool;
3094 	size_t mc_pool_size;
3095 
3096 	/*
3097 	 * If a free entry is available at the end of the pool, just
3098 	 * increment the number of recorded multicast addresses.
3099 	 */
3100 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3101 		port->mc_addr_nb++;
3102 		return 0;
3103 	}
3104 
3105 	/*
3106 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3107 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3108 	 * of MCAST_POOL_INC.
3109 	 */
3110 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3111 						    MCAST_POOL_INC);
3112 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3113 						mc_pool_size);
3114 	if (mc_pool == NULL) {
3115 		printf("allocation of pool of %u multicast addresses failed\n",
3116 		       port->mc_addr_nb + MCAST_POOL_INC);
3117 		return -ENOMEM;
3118 	}
3119 
3120 	port->mc_addr_pool = mc_pool;
3121 	port->mc_addr_nb++;
3122 	return 0;
3123 
3124 }
3125 
3126 static void
3127 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3128 {
3129 	port->mc_addr_nb--;
3130 	if (addr_idx == port->mc_addr_nb) {
3131 		/* No need to recompact the set of multicast addressses. */
3132 		if (port->mc_addr_nb == 0) {
3133 			/* free the pool of multicast addresses. */
3134 			free(port->mc_addr_pool);
3135 			port->mc_addr_pool = NULL;
3136 		}
3137 		return;
3138 	}
3139 	memmove(&port->mc_addr_pool[addr_idx],
3140 		&port->mc_addr_pool[addr_idx + 1],
3141 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3142 }
3143 
3144 static void
3145 eth_port_multicast_addr_list_set(uint8_t port_id)
3146 {
3147 	struct rte_port *port;
3148 	int diag;
3149 
3150 	port = &ports[port_id];
3151 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3152 					    port->mc_addr_nb);
3153 	if (diag == 0)
3154 		return;
3155 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3156 	       port->mc_addr_nb, port_id, -diag);
3157 }
3158 
3159 void
3160 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3161 {
3162 	struct rte_port *port;
3163 	uint32_t i;
3164 
3165 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3166 		return;
3167 
3168 	port = &ports[port_id];
3169 
3170 	/*
3171 	 * Check that the added multicast MAC address is not already recorded
3172 	 * in the pool of multicast addresses.
3173 	 */
3174 	for (i = 0; i < port->mc_addr_nb; i++) {
3175 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3176 			printf("multicast address already filtered by port\n");
3177 			return;
3178 		}
3179 	}
3180 
3181 	if (mcast_addr_pool_extend(port) != 0)
3182 		return;
3183 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3184 	eth_port_multicast_addr_list_set(port_id);
3185 }
3186 
3187 void
3188 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3189 {
3190 	struct rte_port *port;
3191 	uint32_t i;
3192 
3193 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3194 		return;
3195 
3196 	port = &ports[port_id];
3197 
3198 	/*
3199 	 * Search the pool of multicast MAC addresses for the removed address.
3200 	 */
3201 	for (i = 0; i < port->mc_addr_nb; i++) {
3202 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3203 			break;
3204 	}
3205 	if (i == port->mc_addr_nb) {
3206 		printf("multicast address not filtered by port %d\n", port_id);
3207 		return;
3208 	}
3209 
3210 	mcast_addr_pool_remove(port, i);
3211 	eth_port_multicast_addr_list_set(port_id);
3212 }
3213 
3214 void
3215 port_dcb_info_display(uint8_t port_id)
3216 {
3217 	struct rte_eth_dcb_info dcb_info;
3218 	uint16_t i;
3219 	int ret;
3220 	static const char *border = "================";
3221 
3222 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3223 		return;
3224 
3225 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3226 	if (ret) {
3227 		printf("\n Failed to get dcb infos on port %-2d\n",
3228 			port_id);
3229 		return;
3230 	}
3231 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3232 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3233 	printf("\n  TC :        ");
3234 	for (i = 0; i < dcb_info.nb_tcs; i++)
3235 		printf("\t%4d", i);
3236 	printf("\n  Priority :  ");
3237 	for (i = 0; i < dcb_info.nb_tcs; i++)
3238 		printf("\t%4d", dcb_info.prio_tc[i]);
3239 	printf("\n  BW percent :");
3240 	for (i = 0; i < dcb_info.nb_tcs; i++)
3241 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3242 	printf("\n  RXQ base :  ");
3243 	for (i = 0; i < dcb_info.nb_tcs; i++)
3244 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3245 	printf("\n  RXQ number :");
3246 	for (i = 0; i < dcb_info.nb_tcs; i++)
3247 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3248 	printf("\n  TXQ base :  ");
3249 	for (i = 0; i < dcb_info.nb_tcs; i++)
3250 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3251 	printf("\n  TXQ number :");
3252 	for (i = 0; i < dcb_info.nb_tcs; i++)
3253 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3254 	printf("\n");
3255 }
3256 
3257 uint8_t *
3258 open_ddp_package_file(const char *file_path, uint32_t *size)
3259 {
3260 	FILE *fh = fopen(file_path, "rb");
3261 	uint32_t pkg_size;
3262 	uint8_t *buf = NULL;
3263 	int ret = 0;
3264 
3265 	if (size)
3266 		*size = 0;
3267 
3268 	if (fh == NULL) {
3269 		printf("%s: Failed to open %s\n", __func__, file_path);
3270 		return buf;
3271 	}
3272 
3273 	ret = fseek(fh, 0, SEEK_END);
3274 	if (ret < 0) {
3275 		fclose(fh);
3276 		printf("%s: File operations failed\n", __func__);
3277 		return buf;
3278 	}
3279 
3280 	pkg_size = ftell(fh);
3281 
3282 	buf = (uint8_t *)malloc(pkg_size);
3283 	if (!buf) {
3284 		fclose(fh);
3285 		printf("%s: Failed to malloc memory\n",	__func__);
3286 		return buf;
3287 	}
3288 
3289 	ret = fseek(fh, 0, SEEK_SET);
3290 	if (ret < 0) {
3291 		fclose(fh);
3292 		printf("%s: File seek operation failed\n", __func__);
3293 		close_ddp_package_file(buf);
3294 		return NULL;
3295 	}
3296 
3297 	ret = fread(buf, 1, pkg_size, fh);
3298 	if (ret < 0) {
3299 		fclose(fh);
3300 		printf("%s: File read operation failed\n", __func__);
3301 		close_ddp_package_file(buf);
3302 		return NULL;
3303 	}
3304 
3305 	if (size)
3306 		*size = pkg_size;
3307 
3308 	fclose(fh);
3309 
3310 	return buf;
3311 }
3312 
3313 int
3314 close_ddp_package_file(uint8_t *buf)
3315 {
3316 	if (buf) {
3317 		free((void *)buf);
3318 		return 0;
3319 	}
3320 
3321 	return -1;
3322 }
3323