xref: /dpdk/app/test-pmd/config.c (revision e11bdd37745229bf26b557305c07d118c3dbaad7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 
53 #include "testpmd.h"
54 
55 #define ETHDEV_FWVERS_LEN 32
56 
57 static char *flowtype_to_str(uint16_t flow_type);
58 
59 static const struct {
60 	enum tx_pkt_split split;
61 	const char *name;
62 } tx_split_name[] = {
63 	{
64 		.split = TX_PKT_SPLIT_OFF,
65 		.name = "off",
66 	},
67 	{
68 		.split = TX_PKT_SPLIT_ON,
69 		.name = "on",
70 	},
71 	{
72 		.split = TX_PKT_SPLIT_RND,
73 		.name = "rand",
74 	},
75 };
76 
77 const struct rss_type_info rss_type_table[] = {
78 	{ "all", ETH_RSS_ETH | ETH_RSS_VLAN | ETH_RSS_IP | ETH_RSS_TCP |
79 		ETH_RSS_UDP | ETH_RSS_SCTP | ETH_RSS_L2_PAYLOAD |
80 		ETH_RSS_L2TPV3 | ETH_RSS_ESP | ETH_RSS_AH | ETH_RSS_PFCP},
81 	{ "none", 0 },
82 	{ "eth", ETH_RSS_ETH },
83 	{ "l2-src-only", ETH_RSS_L2_SRC_ONLY },
84 	{ "l2-dst-only", ETH_RSS_L2_DST_ONLY },
85 	{ "vlan", ETH_RSS_VLAN },
86 	{ "s-vlan", ETH_RSS_S_VLAN },
87 	{ "c-vlan", ETH_RSS_C_VLAN },
88 	{ "ipv4", ETH_RSS_IPV4 },
89 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
90 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
91 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
92 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
93 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
94 	{ "ipv6", ETH_RSS_IPV6 },
95 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
96 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
97 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
98 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
99 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
100 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
101 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
102 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
103 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
104 	{ "port", ETH_RSS_PORT },
105 	{ "vxlan", ETH_RSS_VXLAN },
106 	{ "geneve", ETH_RSS_GENEVE },
107 	{ "nvgre", ETH_RSS_NVGRE },
108 	{ "ip", ETH_RSS_IP },
109 	{ "udp", ETH_RSS_UDP },
110 	{ "tcp", ETH_RSS_TCP },
111 	{ "sctp", ETH_RSS_SCTP },
112 	{ "tunnel", ETH_RSS_TUNNEL },
113 	{ "l3-src-only", ETH_RSS_L3_SRC_ONLY },
114 	{ "l3-dst-only", ETH_RSS_L3_DST_ONLY },
115 	{ "l4-src-only", ETH_RSS_L4_SRC_ONLY },
116 	{ "l4-dst-only", ETH_RSS_L4_DST_ONLY },
117 	{ "esp", ETH_RSS_ESP },
118 	{ "ah", ETH_RSS_AH },
119 	{ "l2tpv3", ETH_RSS_L2TPV3 },
120 	{ "pfcp", ETH_RSS_PFCP },
121 	{ NULL, 0 },
122 };
123 
124 static void
125 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
126 {
127 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
128 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
129 	printf("%s%s", name, buf);
130 }
131 
132 void
133 nic_stats_display(portid_t port_id)
134 {
135 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
136 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
137 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
138 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
139 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
140 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
141 								diff_cycles;
142 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
143 	struct rte_eth_stats stats;
144 	struct rte_port *port = &ports[port_id];
145 	uint8_t i;
146 
147 	static const char *nic_stats_border = "########################";
148 
149 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
150 		print_valid_ports();
151 		return;
152 	}
153 	rte_eth_stats_get(port_id, &stats);
154 	printf("\n  %s NIC statistics for port %-2d %s\n",
155 	       nic_stats_border, port_id, nic_stats_border);
156 
157 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
158 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
159 		       "%-"PRIu64"\n",
160 		       stats.ipackets, stats.imissed, stats.ibytes);
161 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
162 		printf("  RX-nombuf:  %-10"PRIu64"\n",
163 		       stats.rx_nombuf);
164 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
165 		       "%-"PRIu64"\n",
166 		       stats.opackets, stats.oerrors, stats.obytes);
167 	}
168 	else {
169 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
170 		       "    RX-bytes: %10"PRIu64"\n",
171 		       stats.ipackets, stats.ierrors, stats.ibytes);
172 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
173 		printf("  RX-nombuf:               %10"PRIu64"\n",
174 		       stats.rx_nombuf);
175 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
176 		       "    TX-bytes: %10"PRIu64"\n",
177 		       stats.opackets, stats.oerrors, stats.obytes);
178 	}
179 
180 	if (port->rx_queue_stats_mapping_enabled) {
181 		printf("\n");
182 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
183 			printf("  Stats reg %2d RX-packets: %10"PRIu64
184 			       "    RX-errors: %10"PRIu64
185 			       "    RX-bytes: %10"PRIu64"\n",
186 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
187 		}
188 	}
189 	if (port->tx_queue_stats_mapping_enabled) {
190 		printf("\n");
191 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
192 			printf("  Stats reg %2d TX-packets: %10"PRIu64
193 			       "                             TX-bytes: %10"PRIu64"\n",
194 			       i, stats.q_opackets[i], stats.q_obytes[i]);
195 		}
196 	}
197 
198 	diff_cycles = prev_cycles[port_id];
199 	prev_cycles[port_id] = rte_rdtsc();
200 	if (diff_cycles > 0)
201 		diff_cycles = prev_cycles[port_id] - diff_cycles;
202 
203 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
204 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
205 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
206 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
207 	prev_pkts_rx[port_id] = stats.ipackets;
208 	prev_pkts_tx[port_id] = stats.opackets;
209 	mpps_rx = diff_cycles > 0 ?
210 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
211 	mpps_tx = diff_cycles > 0 ?
212 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
213 
214 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
215 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
216 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
217 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
218 	prev_bytes_rx[port_id] = stats.ibytes;
219 	prev_bytes_tx[port_id] = stats.obytes;
220 	mbps_rx = diff_cycles > 0 ?
221 		diff_bytes_rx * rte_get_tsc_hz() / diff_cycles : 0;
222 	mbps_tx = diff_cycles > 0 ?
223 		diff_bytes_tx * rte_get_tsc_hz() / diff_cycles : 0;
224 
225 	printf("\n  Throughput (since last show)\n");
226 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
227 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
228 	       mpps_tx, mbps_tx * 8);
229 
230 	printf("  %s############################%s\n",
231 	       nic_stats_border, nic_stats_border);
232 }
233 
234 void
235 nic_stats_clear(portid_t port_id)
236 {
237 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
238 		print_valid_ports();
239 		return;
240 	}
241 	rte_eth_stats_reset(port_id);
242 	printf("\n  NIC statistics for port %d cleared\n", port_id);
243 }
244 
245 void
246 nic_xstats_display(portid_t port_id)
247 {
248 	struct rte_eth_xstat *xstats;
249 	int cnt_xstats, idx_xstat;
250 	struct rte_eth_xstat_name *xstats_names;
251 
252 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
253 		print_valid_ports();
254 		return;
255 	}
256 	printf("###### NIC extended statistics for port %-2d\n", port_id);
257 	if (!rte_eth_dev_is_valid_port(port_id)) {
258 		printf("Error: Invalid port number %i\n", port_id);
259 		return;
260 	}
261 
262 	/* Get count */
263 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
264 	if (cnt_xstats  < 0) {
265 		printf("Error: Cannot get count of xstats\n");
266 		return;
267 	}
268 
269 	/* Get id-name lookup table */
270 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
271 	if (xstats_names == NULL) {
272 		printf("Cannot allocate memory for xstats lookup\n");
273 		return;
274 	}
275 	if (cnt_xstats != rte_eth_xstats_get_names(
276 			port_id, xstats_names, cnt_xstats)) {
277 		printf("Error: Cannot get xstats lookup\n");
278 		free(xstats_names);
279 		return;
280 	}
281 
282 	/* Get stats themselves */
283 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
284 	if (xstats == NULL) {
285 		printf("Cannot allocate memory for xstats\n");
286 		free(xstats_names);
287 		return;
288 	}
289 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
290 		printf("Error: Unable to get xstats\n");
291 		free(xstats_names);
292 		free(xstats);
293 		return;
294 	}
295 
296 	/* Display xstats */
297 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
298 		if (xstats_hide_zero && !xstats[idx_xstat].value)
299 			continue;
300 		printf("%s: %"PRIu64"\n",
301 			xstats_names[idx_xstat].name,
302 			xstats[idx_xstat].value);
303 	}
304 	free(xstats_names);
305 	free(xstats);
306 }
307 
308 void
309 nic_xstats_clear(portid_t port_id)
310 {
311 	int ret;
312 
313 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
314 		print_valid_ports();
315 		return;
316 	}
317 	ret = rte_eth_xstats_reset(port_id);
318 	if (ret != 0) {
319 		printf("%s: Error: failed to reset xstats (port %u): %s",
320 		       __func__, port_id, strerror(ret));
321 	}
322 }
323 
324 void
325 nic_stats_mapping_display(portid_t port_id)
326 {
327 	struct rte_port *port = &ports[port_id];
328 	uint16_t i;
329 
330 	static const char *nic_stats_mapping_border = "########################";
331 
332 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
333 		print_valid_ports();
334 		return;
335 	}
336 
337 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
338 		printf("Port id %d - either does not support queue statistic mapping or"
339 		       " no queue statistic mapping set\n", port_id);
340 		return;
341 	}
342 
343 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
344 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
345 
346 	if (port->rx_queue_stats_mapping_enabled) {
347 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
348 			if (rx_queue_stats_mappings[i].port_id == port_id) {
349 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
350 				       rx_queue_stats_mappings[i].queue_id,
351 				       rx_queue_stats_mappings[i].stats_counter_id);
352 			}
353 		}
354 		printf("\n");
355 	}
356 
357 
358 	if (port->tx_queue_stats_mapping_enabled) {
359 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
360 			if (tx_queue_stats_mappings[i].port_id == port_id) {
361 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
362 				       tx_queue_stats_mappings[i].queue_id,
363 				       tx_queue_stats_mappings[i].stats_counter_id);
364 			}
365 		}
366 	}
367 
368 	printf("  %s####################################%s\n",
369 	       nic_stats_mapping_border, nic_stats_mapping_border);
370 }
371 
372 void
373 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
374 {
375 	struct rte_eth_burst_mode mode;
376 	struct rte_eth_rxq_info qinfo;
377 	int32_t rc;
378 	static const char *info_border = "*********************";
379 
380 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
381 	if (rc != 0) {
382 		printf("Failed to retrieve information for port: %u, "
383 			"RX queue: %hu\nerror desc: %s(%d)\n",
384 			port_id, queue_id, strerror(-rc), rc);
385 		return;
386 	}
387 
388 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
389 	       info_border, port_id, queue_id, info_border);
390 
391 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
392 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
393 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
394 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
395 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
396 	printf("\nRX drop packets: %s",
397 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
398 	printf("\nRX deferred start: %s",
399 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
400 	printf("\nRX scattered packets: %s",
401 		(qinfo.scattered_rx != 0) ? "on" : "off");
402 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
403 
404 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
405 		printf("\nBurst mode: %s%s",
406 		       mode.info,
407 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
408 				" (per queue)" : "");
409 
410 	printf("\n");
411 }
412 
413 void
414 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
415 {
416 	struct rte_eth_burst_mode mode;
417 	struct rte_eth_txq_info qinfo;
418 	int32_t rc;
419 	static const char *info_border = "*********************";
420 
421 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
422 	if (rc != 0) {
423 		printf("Failed to retrieve information for port: %u, "
424 			"TX queue: %hu\nerror desc: %s(%d)\n",
425 			port_id, queue_id, strerror(-rc), rc);
426 		return;
427 	}
428 
429 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
430 	       info_border, port_id, queue_id, info_border);
431 
432 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
433 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
434 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
435 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
436 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
437 	printf("\nTX deferred start: %s",
438 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
439 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
440 
441 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
442 		printf("\nBurst mode: %s%s",
443 		       mode.info,
444 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
445 				" (per queue)" : "");
446 
447 	printf("\n");
448 }
449 
450 static int bus_match_all(const struct rte_bus *bus, const void *data)
451 {
452 	RTE_SET_USED(bus);
453 	RTE_SET_USED(data);
454 	return 0;
455 }
456 
457 void
458 device_infos_display(const char *identifier)
459 {
460 	static const char *info_border = "*********************";
461 	struct rte_bus *start = NULL, *next;
462 	struct rte_dev_iterator dev_iter;
463 	char name[RTE_ETH_NAME_MAX_LEN];
464 	struct rte_ether_addr mac_addr;
465 	struct rte_device *dev;
466 	struct rte_devargs da;
467 	portid_t port_id;
468 	char devstr[128];
469 
470 	memset(&da, 0, sizeof(da));
471 	if (!identifier)
472 		goto skip_parse;
473 
474 	if (rte_devargs_parsef(&da, "%s", identifier)) {
475 		printf("cannot parse identifier\n");
476 		if (da.args)
477 			free(da.args);
478 		return;
479 	}
480 
481 skip_parse:
482 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
483 
484 		start = next;
485 		if (identifier && da.bus != next)
486 			continue;
487 
488 		/* Skip buses that don't have iterate method */
489 		if (!next->dev_iterate)
490 			continue;
491 
492 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
493 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
494 
495 			if (!dev->driver)
496 				continue;
497 			/* Check for matching device if identifier is present */
498 			if (identifier &&
499 			    strncmp(da.name, dev->name, strlen(dev->name)))
500 				continue;
501 			printf("\n%s Infos for device %s %s\n",
502 			       info_border, dev->name, info_border);
503 			printf("Bus name: %s", dev->bus->name);
504 			printf("\nDriver name: %s", dev->driver->name);
505 			printf("\nDevargs: %s",
506 			       dev->devargs ? dev->devargs->args : "");
507 			printf("\nConnect to socket: %d", dev->numa_node);
508 			printf("\n");
509 
510 			/* List ports with matching device name */
511 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
512 				printf("\n\tPort id: %-2d", port_id);
513 				if (eth_macaddr_get_print_err(port_id,
514 							      &mac_addr) == 0)
515 					print_ethaddr("\n\tMAC address: ",
516 						      &mac_addr);
517 				rte_eth_dev_get_name_by_port(port_id, name);
518 				printf("\n\tDevice name: %s", name);
519 				printf("\n");
520 			}
521 		}
522 	};
523 }
524 
525 void
526 port_infos_display(portid_t port_id)
527 {
528 	struct rte_port *port;
529 	struct rte_ether_addr mac_addr;
530 	struct rte_eth_link link;
531 	struct rte_eth_dev_info dev_info;
532 	int vlan_offload;
533 	struct rte_mempool * mp;
534 	static const char *info_border = "*********************";
535 	uint16_t mtu;
536 	char name[RTE_ETH_NAME_MAX_LEN];
537 	int ret;
538 	char fw_version[ETHDEV_FWVERS_LEN];
539 
540 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
541 		print_valid_ports();
542 		return;
543 	}
544 	port = &ports[port_id];
545 	ret = eth_link_get_nowait_print_err(port_id, &link);
546 	if (ret < 0)
547 		return;
548 
549 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
550 	if (ret != 0)
551 		return;
552 
553 	printf("\n%s Infos for port %-2d %s\n",
554 	       info_border, port_id, info_border);
555 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
556 		print_ethaddr("MAC address: ", &mac_addr);
557 	rte_eth_dev_get_name_by_port(port_id, name);
558 	printf("\nDevice name: %s", name);
559 	printf("\nDriver name: %s", dev_info.driver_name);
560 
561 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
562 						ETHDEV_FWVERS_LEN) == 0)
563 		printf("\nFirmware-version: %s", fw_version);
564 	else
565 		printf("\nFirmware-version: %s", "not available");
566 
567 	if (dev_info.device->devargs && dev_info.device->devargs->args)
568 		printf("\nDevargs: %s", dev_info.device->devargs->args);
569 	printf("\nConnect to socket: %u", port->socket_id);
570 
571 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
572 		mp = mbuf_pool_find(port_numa[port_id]);
573 		if (mp)
574 			printf("\nmemory allocation on the socket: %d",
575 							port_numa[port_id]);
576 	} else
577 		printf("\nmemory allocation on the socket: %u",port->socket_id);
578 
579 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
580 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
581 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
582 	       ("full-duplex") : ("half-duplex"));
583 
584 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
585 		printf("MTU: %u\n", mtu);
586 
587 	printf("Promiscuous mode: %s\n",
588 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
589 	printf("Allmulticast mode: %s\n",
590 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
591 	printf("Maximum number of MAC addresses: %u\n",
592 	       (unsigned int)(port->dev_info.max_mac_addrs));
593 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
594 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
595 
596 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
597 	if (vlan_offload >= 0){
598 		printf("VLAN offload: \n");
599 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
600 			printf("  strip on, ");
601 		else
602 			printf("  strip off, ");
603 
604 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
605 			printf("filter on, ");
606 		else
607 			printf("filter off, ");
608 
609 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
610 			printf("extend on, ");
611 		else
612 			printf("extend off, ");
613 
614 		if (vlan_offload & ETH_QINQ_STRIP_OFFLOAD)
615 			printf("qinq strip on\n");
616 		else
617 			printf("qinq strip off\n");
618 	}
619 
620 	if (dev_info.hash_key_size > 0)
621 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
622 	if (dev_info.reta_size > 0)
623 		printf("Redirection table size: %u\n", dev_info.reta_size);
624 	if (!dev_info.flow_type_rss_offloads)
625 		printf("No RSS offload flow type is supported.\n");
626 	else {
627 		uint16_t i;
628 		char *p;
629 
630 		printf("Supported RSS offload flow types:\n");
631 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
632 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
633 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
634 				continue;
635 			p = flowtype_to_str(i);
636 			if (p)
637 				printf("  %s\n", p);
638 			else
639 				printf("  user defined %d\n", i);
640 		}
641 	}
642 
643 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
644 	printf("Maximum configurable length of RX packet: %u\n",
645 		dev_info.max_rx_pktlen);
646 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
647 		dev_info.max_lro_pkt_size);
648 	if (dev_info.max_vfs)
649 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
650 	if (dev_info.max_vmdq_pools)
651 		printf("Maximum number of VMDq pools: %u\n",
652 			dev_info.max_vmdq_pools);
653 
654 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
655 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
656 	printf("Max possible number of RXDs per queue: %hu\n",
657 		dev_info.rx_desc_lim.nb_max);
658 	printf("Min possible number of RXDs per queue: %hu\n",
659 		dev_info.rx_desc_lim.nb_min);
660 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
661 
662 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
663 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
664 	printf("Max possible number of TXDs per queue: %hu\n",
665 		dev_info.tx_desc_lim.nb_max);
666 	printf("Min possible number of TXDs per queue: %hu\n",
667 		dev_info.tx_desc_lim.nb_min);
668 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
669 	printf("Max segment number per packet: %hu\n",
670 		dev_info.tx_desc_lim.nb_seg_max);
671 	printf("Max segment number per MTU/TSO: %hu\n",
672 		dev_info.tx_desc_lim.nb_mtu_seg_max);
673 
674 	/* Show switch info only if valid switch domain and port id is set */
675 	if (dev_info.switch_info.domain_id !=
676 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
677 		if (dev_info.switch_info.name)
678 			printf("Switch name: %s\n", dev_info.switch_info.name);
679 
680 		printf("Switch domain Id: %u\n",
681 			dev_info.switch_info.domain_id);
682 		printf("Switch Port Id: %u\n",
683 			dev_info.switch_info.port_id);
684 	}
685 }
686 
687 void
688 port_summary_header_display(void)
689 {
690 	uint16_t port_number;
691 
692 	port_number = rte_eth_dev_count_avail();
693 	printf("Number of available ports: %i\n", port_number);
694 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
695 			"Driver", "Status", "Link");
696 }
697 
698 void
699 port_summary_display(portid_t port_id)
700 {
701 	struct rte_ether_addr mac_addr;
702 	struct rte_eth_link link;
703 	struct rte_eth_dev_info dev_info;
704 	char name[RTE_ETH_NAME_MAX_LEN];
705 	int ret;
706 
707 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
708 		print_valid_ports();
709 		return;
710 	}
711 
712 	ret = eth_link_get_nowait_print_err(port_id, &link);
713 	if (ret < 0)
714 		return;
715 
716 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
717 	if (ret != 0)
718 		return;
719 
720 	rte_eth_dev_get_name_by_port(port_id, name);
721 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
722 	if (ret != 0)
723 		return;
724 
725 	printf("%-4d %02X:%02X:%02X:%02X:%02X:%02X %-12s %-14s %-8s %uMbps\n",
726 		port_id, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1],
727 		mac_addr.addr_bytes[2], mac_addr.addr_bytes[3],
728 		mac_addr.addr_bytes[4], mac_addr.addr_bytes[5], name,
729 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
730 		(unsigned int) link.link_speed);
731 }
732 
733 void
734 port_offload_cap_display(portid_t port_id)
735 {
736 	struct rte_eth_dev_info dev_info;
737 	static const char *info_border = "************";
738 	int ret;
739 
740 	if (port_id_is_invalid(port_id, ENABLED_WARN))
741 		return;
742 
743 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
744 	if (ret != 0)
745 		return;
746 
747 	printf("\n%s Port %d supported offload features: %s\n",
748 		info_border, port_id, info_border);
749 
750 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
751 		printf("VLAN stripped:                 ");
752 		if (ports[port_id].dev_conf.rxmode.offloads &
753 		    DEV_RX_OFFLOAD_VLAN_STRIP)
754 			printf("on\n");
755 		else
756 			printf("off\n");
757 	}
758 
759 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
760 		printf("Double VLANs stripped:         ");
761 		if (ports[port_id].dev_conf.rxmode.offloads &
762 		    DEV_RX_OFFLOAD_QINQ_STRIP)
763 			printf("on\n");
764 		else
765 			printf("off\n");
766 	}
767 
768 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
769 		printf("RX IPv4 checksum:              ");
770 		if (ports[port_id].dev_conf.rxmode.offloads &
771 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
772 			printf("on\n");
773 		else
774 			printf("off\n");
775 	}
776 
777 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
778 		printf("RX UDP checksum:               ");
779 		if (ports[port_id].dev_conf.rxmode.offloads &
780 		    DEV_RX_OFFLOAD_UDP_CKSUM)
781 			printf("on\n");
782 		else
783 			printf("off\n");
784 	}
785 
786 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
787 		printf("RX TCP checksum:               ");
788 		if (ports[port_id].dev_conf.rxmode.offloads &
789 		    DEV_RX_OFFLOAD_TCP_CKSUM)
790 			printf("on\n");
791 		else
792 			printf("off\n");
793 	}
794 
795 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SCTP_CKSUM) {
796 		printf("RX SCTP checksum:              ");
797 		if (ports[port_id].dev_conf.rxmode.offloads &
798 		    DEV_RX_OFFLOAD_SCTP_CKSUM)
799 			printf("on\n");
800 		else
801 			printf("off\n");
802 	}
803 
804 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
805 		printf("RX Outer IPv4 checksum:        ");
806 		if (ports[port_id].dev_conf.rxmode.offloads &
807 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
808 			printf("on\n");
809 		else
810 			printf("off\n");
811 	}
812 
813 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) {
814 		printf("RX Outer UDP checksum:         ");
815 		if (ports[port_id].dev_conf.rxmode.offloads &
816 		    DEV_RX_OFFLOAD_OUTER_UDP_CKSUM)
817 			printf("on\n");
818 		else
819 			printf("off\n");
820 	}
821 
822 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
823 		printf("Large receive offload:         ");
824 		if (ports[port_id].dev_conf.rxmode.offloads &
825 		    DEV_RX_OFFLOAD_TCP_LRO)
826 			printf("on\n");
827 		else
828 			printf("off\n");
829 	}
830 
831 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
832 		printf("HW timestamp:                  ");
833 		if (ports[port_id].dev_conf.rxmode.offloads &
834 		    DEV_RX_OFFLOAD_TIMESTAMP)
835 			printf("on\n");
836 		else
837 			printf("off\n");
838 	}
839 
840 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) {
841 		printf("Rx Keep CRC:                   ");
842 		if (ports[port_id].dev_conf.rxmode.offloads &
843 		    DEV_RX_OFFLOAD_KEEP_CRC)
844 			printf("on\n");
845 		else
846 			printf("off\n");
847 	}
848 
849 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) {
850 		printf("RX offload security:           ");
851 		if (ports[port_id].dev_conf.rxmode.offloads &
852 		    DEV_RX_OFFLOAD_SECURITY)
853 			printf("on\n");
854 		else
855 			printf("off\n");
856 	}
857 
858 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
859 		printf("VLAN insert:                   ");
860 		if (ports[port_id].dev_conf.txmode.offloads &
861 		    DEV_TX_OFFLOAD_VLAN_INSERT)
862 			printf("on\n");
863 		else
864 			printf("off\n");
865 	}
866 
867 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
868 		printf("Double VLANs insert:           ");
869 		if (ports[port_id].dev_conf.txmode.offloads &
870 		    DEV_TX_OFFLOAD_QINQ_INSERT)
871 			printf("on\n");
872 		else
873 			printf("off\n");
874 	}
875 
876 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
877 		printf("TX IPv4 checksum:              ");
878 		if (ports[port_id].dev_conf.txmode.offloads &
879 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
880 			printf("on\n");
881 		else
882 			printf("off\n");
883 	}
884 
885 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
886 		printf("TX UDP checksum:               ");
887 		if (ports[port_id].dev_conf.txmode.offloads &
888 		    DEV_TX_OFFLOAD_UDP_CKSUM)
889 			printf("on\n");
890 		else
891 			printf("off\n");
892 	}
893 
894 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
895 		printf("TX TCP checksum:               ");
896 		if (ports[port_id].dev_conf.txmode.offloads &
897 		    DEV_TX_OFFLOAD_TCP_CKSUM)
898 			printf("on\n");
899 		else
900 			printf("off\n");
901 	}
902 
903 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
904 		printf("TX SCTP checksum:              ");
905 		if (ports[port_id].dev_conf.txmode.offloads &
906 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
907 			printf("on\n");
908 		else
909 			printf("off\n");
910 	}
911 
912 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
913 		printf("TX Outer IPv4 checksum:        ");
914 		if (ports[port_id].dev_conf.txmode.offloads &
915 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
916 			printf("on\n");
917 		else
918 			printf("off\n");
919 	}
920 
921 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
922 		printf("TX TCP segmentation:           ");
923 		if (ports[port_id].dev_conf.txmode.offloads &
924 		    DEV_TX_OFFLOAD_TCP_TSO)
925 			printf("on\n");
926 		else
927 			printf("off\n");
928 	}
929 
930 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
931 		printf("TX UDP segmentation:           ");
932 		if (ports[port_id].dev_conf.txmode.offloads &
933 		    DEV_TX_OFFLOAD_UDP_TSO)
934 			printf("on\n");
935 		else
936 			printf("off\n");
937 	}
938 
939 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
940 		printf("TSO for VXLAN tunnel packet:   ");
941 		if (ports[port_id].dev_conf.txmode.offloads &
942 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
943 			printf("on\n");
944 		else
945 			printf("off\n");
946 	}
947 
948 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
949 		printf("TSO for GRE tunnel packet:     ");
950 		if (ports[port_id].dev_conf.txmode.offloads &
951 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
952 			printf("on\n");
953 		else
954 			printf("off\n");
955 	}
956 
957 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
958 		printf("TSO for IPIP tunnel packet:    ");
959 		if (ports[port_id].dev_conf.txmode.offloads &
960 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
961 			printf("on\n");
962 		else
963 			printf("off\n");
964 	}
965 
966 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
967 		printf("TSO for GENEVE tunnel packet:  ");
968 		if (ports[port_id].dev_conf.txmode.offloads &
969 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
970 			printf("on\n");
971 		else
972 			printf("off\n");
973 	}
974 
975 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
976 		printf("IP tunnel TSO:  ");
977 		if (ports[port_id].dev_conf.txmode.offloads &
978 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
979 			printf("on\n");
980 		else
981 			printf("off\n");
982 	}
983 
984 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
985 		printf("UDP tunnel TSO:  ");
986 		if (ports[port_id].dev_conf.txmode.offloads &
987 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
988 			printf("on\n");
989 		else
990 			printf("off\n");
991 	}
992 
993 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
994 		printf("TX Outer UDP checksum:         ");
995 		if (ports[port_id].dev_conf.txmode.offloads &
996 		    DEV_TX_OFFLOAD_OUTER_UDP_CKSUM)
997 			printf("on\n");
998 		else
999 			printf("off\n");
1000 	}
1001 
1002 }
1003 
1004 int
1005 port_id_is_invalid(portid_t port_id, enum print_warning warning)
1006 {
1007 	uint16_t pid;
1008 
1009 	if (port_id == (portid_t)RTE_PORT_ALL)
1010 		return 0;
1011 
1012 	RTE_ETH_FOREACH_DEV(pid)
1013 		if (port_id == pid)
1014 			return 0;
1015 
1016 	if (warning == ENABLED_WARN)
1017 		printf("Invalid port %d\n", port_id);
1018 
1019 	return 1;
1020 }
1021 
1022 void print_valid_ports(void)
1023 {
1024 	portid_t pid;
1025 
1026 	printf("The valid ports array is [");
1027 	RTE_ETH_FOREACH_DEV(pid) {
1028 		printf(" %d", pid);
1029 	}
1030 	printf(" ]\n");
1031 }
1032 
1033 static int
1034 vlan_id_is_invalid(uint16_t vlan_id)
1035 {
1036 	if (vlan_id < 4096)
1037 		return 0;
1038 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
1039 	return 1;
1040 }
1041 
1042 static int
1043 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
1044 {
1045 	const struct rte_pci_device *pci_dev;
1046 	const struct rte_bus *bus;
1047 	uint64_t pci_len;
1048 
1049 	if (reg_off & 0x3) {
1050 		printf("Port register offset 0x%X not aligned on a 4-byte "
1051 		       "boundary\n",
1052 		       (unsigned)reg_off);
1053 		return 1;
1054 	}
1055 
1056 	if (!ports[port_id].dev_info.device) {
1057 		printf("Invalid device\n");
1058 		return 0;
1059 	}
1060 
1061 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
1062 	if (bus && !strcmp(bus->name, "pci")) {
1063 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
1064 	} else {
1065 		printf("Not a PCI device\n");
1066 		return 1;
1067 	}
1068 
1069 	pci_len = pci_dev->mem_resource[0].len;
1070 	if (reg_off >= pci_len) {
1071 		printf("Port %d: register offset %u (0x%X) out of port PCI "
1072 		       "resource (length=%"PRIu64")\n",
1073 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
1074 		return 1;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static int
1080 reg_bit_pos_is_invalid(uint8_t bit_pos)
1081 {
1082 	if (bit_pos <= 31)
1083 		return 0;
1084 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
1085 	return 1;
1086 }
1087 
1088 #define display_port_and_reg_off(port_id, reg_off) \
1089 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
1090 
1091 static inline void
1092 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1093 {
1094 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1095 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1096 }
1097 
1098 void
1099 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1100 {
1101 	uint32_t reg_v;
1102 
1103 
1104 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1105 		return;
1106 	if (port_reg_off_is_invalid(port_id, reg_off))
1107 		return;
1108 	if (reg_bit_pos_is_invalid(bit_x))
1109 		return;
1110 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1111 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1112 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1113 }
1114 
1115 void
1116 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1117 			   uint8_t bit1_pos, uint8_t bit2_pos)
1118 {
1119 	uint32_t reg_v;
1120 	uint8_t  l_bit;
1121 	uint8_t  h_bit;
1122 
1123 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1124 		return;
1125 	if (port_reg_off_is_invalid(port_id, reg_off))
1126 		return;
1127 	if (reg_bit_pos_is_invalid(bit1_pos))
1128 		return;
1129 	if (reg_bit_pos_is_invalid(bit2_pos))
1130 		return;
1131 	if (bit1_pos > bit2_pos)
1132 		l_bit = bit2_pos, h_bit = bit1_pos;
1133 	else
1134 		l_bit = bit1_pos, h_bit = bit2_pos;
1135 
1136 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1137 	reg_v >>= l_bit;
1138 	if (h_bit < 31)
1139 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1140 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1141 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1142 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1143 }
1144 
1145 void
1146 port_reg_display(portid_t port_id, uint32_t reg_off)
1147 {
1148 	uint32_t reg_v;
1149 
1150 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1151 		return;
1152 	if (port_reg_off_is_invalid(port_id, reg_off))
1153 		return;
1154 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1155 	display_port_reg_value(port_id, reg_off, reg_v);
1156 }
1157 
1158 void
1159 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1160 		 uint8_t bit_v)
1161 {
1162 	uint32_t reg_v;
1163 
1164 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1165 		return;
1166 	if (port_reg_off_is_invalid(port_id, reg_off))
1167 		return;
1168 	if (reg_bit_pos_is_invalid(bit_pos))
1169 		return;
1170 	if (bit_v > 1) {
1171 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
1172 		return;
1173 	}
1174 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1175 	if (bit_v == 0)
1176 		reg_v &= ~(1 << bit_pos);
1177 	else
1178 		reg_v |= (1 << bit_pos);
1179 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1180 	display_port_reg_value(port_id, reg_off, reg_v);
1181 }
1182 
1183 void
1184 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1185 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1186 {
1187 	uint32_t max_v;
1188 	uint32_t reg_v;
1189 	uint8_t  l_bit;
1190 	uint8_t  h_bit;
1191 
1192 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1193 		return;
1194 	if (port_reg_off_is_invalid(port_id, reg_off))
1195 		return;
1196 	if (reg_bit_pos_is_invalid(bit1_pos))
1197 		return;
1198 	if (reg_bit_pos_is_invalid(bit2_pos))
1199 		return;
1200 	if (bit1_pos > bit2_pos)
1201 		l_bit = bit2_pos, h_bit = bit1_pos;
1202 	else
1203 		l_bit = bit1_pos, h_bit = bit2_pos;
1204 
1205 	if ((h_bit - l_bit) < 31)
1206 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1207 	else
1208 		max_v = 0xFFFFFFFF;
1209 
1210 	if (value > max_v) {
1211 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
1212 				(unsigned)value, (unsigned)value,
1213 				(unsigned)max_v, (unsigned)max_v);
1214 		return;
1215 	}
1216 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1217 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1218 	reg_v |= (value << l_bit); /* Set changed bits */
1219 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1220 	display_port_reg_value(port_id, reg_off, reg_v);
1221 }
1222 
1223 void
1224 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1225 {
1226 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1227 		return;
1228 	if (port_reg_off_is_invalid(port_id, reg_off))
1229 		return;
1230 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1231 	display_port_reg_value(port_id, reg_off, reg_v);
1232 }
1233 
1234 void
1235 port_mtu_set(portid_t port_id, uint16_t mtu)
1236 {
1237 	int diag;
1238 	struct rte_port *rte_port = &ports[port_id];
1239 	struct rte_eth_dev_info dev_info;
1240 	uint16_t eth_overhead;
1241 	int ret;
1242 
1243 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1244 		return;
1245 
1246 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
1247 	if (ret != 0)
1248 		return;
1249 
1250 	if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) {
1251 		printf("Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n",
1252 			mtu, dev_info.min_mtu, dev_info.max_mtu);
1253 		return;
1254 	}
1255 	diag = rte_eth_dev_set_mtu(port_id, mtu);
1256 	if (diag == 0 &&
1257 	    dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1258 		/*
1259 		 * Ether overhead in driver is equal to the difference of
1260 		 * max_rx_pktlen and max_mtu in rte_eth_dev_info when the
1261 		 * device supports jumbo frame.
1262 		 */
1263 		eth_overhead = dev_info.max_rx_pktlen - dev_info.max_mtu;
1264 		if (mtu > RTE_ETHER_MAX_LEN - eth_overhead) {
1265 			rte_port->dev_conf.rxmode.offloads |=
1266 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1267 			rte_port->dev_conf.rxmode.max_rx_pkt_len =
1268 						mtu + eth_overhead;
1269 		} else
1270 			rte_port->dev_conf.rxmode.offloads &=
1271 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
1272 
1273 		return;
1274 	}
1275 	printf("Set MTU failed. diag=%d\n", diag);
1276 }
1277 
1278 /* Generic flow management functions. */
1279 
1280 /** Generate a port_flow entry from attributes/pattern/actions. */
1281 static struct port_flow *
1282 port_flow_new(const struct rte_flow_attr *attr,
1283 	      const struct rte_flow_item *pattern,
1284 	      const struct rte_flow_action *actions,
1285 	      struct rte_flow_error *error)
1286 {
1287 	const struct rte_flow_conv_rule rule = {
1288 		.attr_ro = attr,
1289 		.pattern_ro = pattern,
1290 		.actions_ro = actions,
1291 	};
1292 	struct port_flow *pf;
1293 	int ret;
1294 
1295 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1296 	if (ret < 0)
1297 		return NULL;
1298 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1299 	if (!pf) {
1300 		rte_flow_error_set
1301 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1302 			 "calloc() failed");
1303 		return NULL;
1304 	}
1305 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1306 			  error) >= 0)
1307 		return pf;
1308 	free(pf);
1309 	return NULL;
1310 }
1311 
1312 /** Print a message out of a flow error. */
1313 static int
1314 port_flow_complain(struct rte_flow_error *error)
1315 {
1316 	static const char *const errstrlist[] = {
1317 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1318 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1319 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1320 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1321 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1322 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1323 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1324 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1325 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1326 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1327 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1328 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1329 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1330 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1331 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1332 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1333 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1334 	};
1335 	const char *errstr;
1336 	char buf[32];
1337 	int err = rte_errno;
1338 
1339 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1340 	    !errstrlist[error->type])
1341 		errstr = "unknown type";
1342 	else
1343 		errstr = errstrlist[error->type];
1344 	printf("%s(): Caught PMD error type %d (%s): %s%s: %s\n", __func__,
1345 	       error->type, errstr,
1346 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1347 					error->cause), buf) : "",
1348 	       error->message ? error->message : "(no stated reason)",
1349 	       rte_strerror(err));
1350 	return -err;
1351 }
1352 
1353 /** Validate flow rule. */
1354 int
1355 port_flow_validate(portid_t port_id,
1356 		   const struct rte_flow_attr *attr,
1357 		   const struct rte_flow_item *pattern,
1358 		   const struct rte_flow_action *actions)
1359 {
1360 	struct rte_flow_error error;
1361 
1362 	/* Poisoning to make sure PMDs update it in case of error. */
1363 	memset(&error, 0x11, sizeof(error));
1364 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1365 		return port_flow_complain(&error);
1366 	printf("Flow rule validated\n");
1367 	return 0;
1368 }
1369 
1370 /** Create flow rule. */
1371 int
1372 port_flow_create(portid_t port_id,
1373 		 const struct rte_flow_attr *attr,
1374 		 const struct rte_flow_item *pattern,
1375 		 const struct rte_flow_action *actions)
1376 {
1377 	struct rte_flow *flow;
1378 	struct rte_port *port;
1379 	struct port_flow *pf;
1380 	uint32_t id;
1381 	struct rte_flow_error error;
1382 
1383 	/* Poisoning to make sure PMDs update it in case of error. */
1384 	memset(&error, 0x22, sizeof(error));
1385 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1386 	if (!flow)
1387 		return port_flow_complain(&error);
1388 	port = &ports[port_id];
1389 	if (port->flow_list) {
1390 		if (port->flow_list->id == UINT32_MAX) {
1391 			printf("Highest rule ID is already assigned, delete"
1392 			       " it first");
1393 			rte_flow_destroy(port_id, flow, NULL);
1394 			return -ENOMEM;
1395 		}
1396 		id = port->flow_list->id + 1;
1397 	} else
1398 		id = 0;
1399 	pf = port_flow_new(attr, pattern, actions, &error);
1400 	if (!pf) {
1401 		rte_flow_destroy(port_id, flow, NULL);
1402 		return port_flow_complain(&error);
1403 	}
1404 	pf->next = port->flow_list;
1405 	pf->id = id;
1406 	pf->flow = flow;
1407 	port->flow_list = pf;
1408 	printf("Flow rule #%u created\n", pf->id);
1409 	return 0;
1410 }
1411 
1412 /** Destroy a number of flow rules. */
1413 int
1414 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1415 {
1416 	struct rte_port *port;
1417 	struct port_flow **tmp;
1418 	uint32_t c = 0;
1419 	int ret = 0;
1420 
1421 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1422 	    port_id == (portid_t)RTE_PORT_ALL)
1423 		return -EINVAL;
1424 	port = &ports[port_id];
1425 	tmp = &port->flow_list;
1426 	while (*tmp) {
1427 		uint32_t i;
1428 
1429 		for (i = 0; i != n; ++i) {
1430 			struct rte_flow_error error;
1431 			struct port_flow *pf = *tmp;
1432 
1433 			if (rule[i] != pf->id)
1434 				continue;
1435 			/*
1436 			 * Poisoning to make sure PMDs update it in case
1437 			 * of error.
1438 			 */
1439 			memset(&error, 0x33, sizeof(error));
1440 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1441 				ret = port_flow_complain(&error);
1442 				continue;
1443 			}
1444 			printf("Flow rule #%u destroyed\n", pf->id);
1445 			*tmp = pf->next;
1446 			free(pf);
1447 			break;
1448 		}
1449 		if (i == n)
1450 			tmp = &(*tmp)->next;
1451 		++c;
1452 	}
1453 	return ret;
1454 }
1455 
1456 /** Remove all flow rules. */
1457 int
1458 port_flow_flush(portid_t port_id)
1459 {
1460 	struct rte_flow_error error;
1461 	struct rte_port *port;
1462 	int ret = 0;
1463 
1464 	/* Poisoning to make sure PMDs update it in case of error. */
1465 	memset(&error, 0x44, sizeof(error));
1466 	if (rte_flow_flush(port_id, &error)) {
1467 		ret = port_flow_complain(&error);
1468 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1469 		    port_id == (portid_t)RTE_PORT_ALL)
1470 			return ret;
1471 	}
1472 	port = &ports[port_id];
1473 	while (port->flow_list) {
1474 		struct port_flow *pf = port->flow_list->next;
1475 
1476 		free(port->flow_list);
1477 		port->flow_list = pf;
1478 	}
1479 	return ret;
1480 }
1481 
1482 /** Dump all flow rules. */
1483 int
1484 port_flow_dump(portid_t port_id, const char *file_name)
1485 {
1486 	int ret = 0;
1487 	FILE *file = stdout;
1488 	struct rte_flow_error error;
1489 
1490 	if (file_name && strlen(file_name)) {
1491 		file = fopen(file_name, "w");
1492 		if (!file) {
1493 			printf("Failed to create file %s: %s\n", file_name,
1494 			       strerror(errno));
1495 			return -errno;
1496 		}
1497 	}
1498 	ret = rte_flow_dev_dump(port_id, file, &error);
1499 	if (ret) {
1500 		port_flow_complain(&error);
1501 		printf("Failed to dump flow: %s\n", strerror(-ret));
1502 	} else
1503 		printf("Flow dump finished\n");
1504 	if (file_name && strlen(file_name))
1505 		fclose(file);
1506 	return ret;
1507 }
1508 
1509 /** Query a flow rule. */
1510 int
1511 port_flow_query(portid_t port_id, uint32_t rule,
1512 		const struct rte_flow_action *action)
1513 {
1514 	struct rte_flow_error error;
1515 	struct rte_port *port;
1516 	struct port_flow *pf;
1517 	const char *name;
1518 	union {
1519 		struct rte_flow_query_count count;
1520 	} query;
1521 	int ret;
1522 
1523 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1524 	    port_id == (portid_t)RTE_PORT_ALL)
1525 		return -EINVAL;
1526 	port = &ports[port_id];
1527 	for (pf = port->flow_list; pf; pf = pf->next)
1528 		if (pf->id == rule)
1529 			break;
1530 	if (!pf) {
1531 		printf("Flow rule #%u not found\n", rule);
1532 		return -ENOENT;
1533 	}
1534 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
1535 			    &name, sizeof(name),
1536 			    (void *)(uintptr_t)action->type, &error);
1537 	if (ret < 0)
1538 		return port_flow_complain(&error);
1539 	switch (action->type) {
1540 	case RTE_FLOW_ACTION_TYPE_COUNT:
1541 		break;
1542 	default:
1543 		printf("Cannot query action type %d (%s)\n",
1544 			action->type, name);
1545 		return -ENOTSUP;
1546 	}
1547 	/* Poisoning to make sure PMDs update it in case of error. */
1548 	memset(&error, 0x55, sizeof(error));
1549 	memset(&query, 0, sizeof(query));
1550 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1551 		return port_flow_complain(&error);
1552 	switch (action->type) {
1553 	case RTE_FLOW_ACTION_TYPE_COUNT:
1554 		printf("%s:\n"
1555 		       " hits_set: %u\n"
1556 		       " bytes_set: %u\n"
1557 		       " hits: %" PRIu64 "\n"
1558 		       " bytes: %" PRIu64 "\n",
1559 		       name,
1560 		       query.count.hits_set,
1561 		       query.count.bytes_set,
1562 		       query.count.hits,
1563 		       query.count.bytes);
1564 		break;
1565 	default:
1566 		printf("Cannot display result for action type %d (%s)\n",
1567 		       action->type, name);
1568 		break;
1569 	}
1570 	return 0;
1571 }
1572 
1573 /** List flow rules. */
1574 void
1575 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1576 {
1577 	struct rte_port *port;
1578 	struct port_flow *pf;
1579 	struct port_flow *list = NULL;
1580 	uint32_t i;
1581 
1582 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1583 	    port_id == (portid_t)RTE_PORT_ALL)
1584 		return;
1585 	port = &ports[port_id];
1586 	if (!port->flow_list)
1587 		return;
1588 	/* Sort flows by group, priority and ID. */
1589 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1590 		struct port_flow **tmp;
1591 		const struct rte_flow_attr *curr = pf->rule.attr;
1592 
1593 		if (n) {
1594 			/* Filter out unwanted groups. */
1595 			for (i = 0; i != n; ++i)
1596 				if (curr->group == group[i])
1597 					break;
1598 			if (i == n)
1599 				continue;
1600 		}
1601 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
1602 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
1603 
1604 			if (curr->group > comp->group ||
1605 			    (curr->group == comp->group &&
1606 			     curr->priority > comp->priority) ||
1607 			    (curr->group == comp->group &&
1608 			     curr->priority == comp->priority &&
1609 			     pf->id > (*tmp)->id))
1610 				continue;
1611 			break;
1612 		}
1613 		pf->tmp = *tmp;
1614 		*tmp = pf;
1615 	}
1616 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1617 	for (pf = list; pf != NULL; pf = pf->tmp) {
1618 		const struct rte_flow_item *item = pf->rule.pattern;
1619 		const struct rte_flow_action *action = pf->rule.actions;
1620 		const char *name;
1621 
1622 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1623 		       pf->id,
1624 		       pf->rule.attr->group,
1625 		       pf->rule.attr->priority,
1626 		       pf->rule.attr->ingress ? 'i' : '-',
1627 		       pf->rule.attr->egress ? 'e' : '-',
1628 		       pf->rule.attr->transfer ? 't' : '-');
1629 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1630 			if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
1631 					  &name, sizeof(name),
1632 					  (void *)(uintptr_t)item->type,
1633 					  NULL) <= 0)
1634 				name = "[UNKNOWN]";
1635 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1636 				printf("%s ", name);
1637 			++item;
1638 		}
1639 		printf("=>");
1640 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1641 			if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
1642 					  &name, sizeof(name),
1643 					  (void *)(uintptr_t)action->type,
1644 					  NULL) <= 0)
1645 				name = "[UNKNOWN]";
1646 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1647 				printf(" %s", name);
1648 			++action;
1649 		}
1650 		printf("\n");
1651 	}
1652 }
1653 
1654 /** Restrict ingress traffic to the defined flow rules. */
1655 int
1656 port_flow_isolate(portid_t port_id, int set)
1657 {
1658 	struct rte_flow_error error;
1659 
1660 	/* Poisoning to make sure PMDs update it in case of error. */
1661 	memset(&error, 0x66, sizeof(error));
1662 	if (rte_flow_isolate(port_id, set, &error))
1663 		return port_flow_complain(&error);
1664 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1665 	       port_id,
1666 	       set ? "now restricted" : "not restricted anymore");
1667 	return 0;
1668 }
1669 
1670 /*
1671  * RX/TX ring descriptors display functions.
1672  */
1673 int
1674 rx_queue_id_is_invalid(queueid_t rxq_id)
1675 {
1676 	if (rxq_id < nb_rxq)
1677 		return 0;
1678 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1679 	return 1;
1680 }
1681 
1682 int
1683 tx_queue_id_is_invalid(queueid_t txq_id)
1684 {
1685 	if (txq_id < nb_txq)
1686 		return 0;
1687 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1688 	return 1;
1689 }
1690 
1691 static int
1692 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1693 {
1694 	if (rxdesc_id < nb_rxd)
1695 		return 0;
1696 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1697 	       rxdesc_id, nb_rxd);
1698 	return 1;
1699 }
1700 
1701 static int
1702 tx_desc_id_is_invalid(uint16_t txdesc_id)
1703 {
1704 	if (txdesc_id < nb_txd)
1705 		return 0;
1706 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1707 	       txdesc_id, nb_txd);
1708 	return 1;
1709 }
1710 
1711 static const struct rte_memzone *
1712 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1713 {
1714 	char mz_name[RTE_MEMZONE_NAMESIZE];
1715 	const struct rte_memzone *mz;
1716 
1717 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
1718 			port_id, q_id, ring_name);
1719 	mz = rte_memzone_lookup(mz_name);
1720 	if (mz == NULL)
1721 		printf("%s ring memory zoneof (port %d, queue %d) not"
1722 		       "found (zone name = %s\n",
1723 		       ring_name, port_id, q_id, mz_name);
1724 	return mz;
1725 }
1726 
1727 union igb_ring_dword {
1728 	uint64_t dword;
1729 	struct {
1730 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1731 		uint32_t lo;
1732 		uint32_t hi;
1733 #else
1734 		uint32_t hi;
1735 		uint32_t lo;
1736 #endif
1737 	} words;
1738 };
1739 
1740 struct igb_ring_desc_32_bytes {
1741 	union igb_ring_dword lo_dword;
1742 	union igb_ring_dword hi_dword;
1743 	union igb_ring_dword resv1;
1744 	union igb_ring_dword resv2;
1745 };
1746 
1747 struct igb_ring_desc_16_bytes {
1748 	union igb_ring_dword lo_dword;
1749 	union igb_ring_dword hi_dword;
1750 };
1751 
1752 static void
1753 ring_rxd_display_dword(union igb_ring_dword dword)
1754 {
1755 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1756 					(unsigned)dword.words.hi);
1757 }
1758 
1759 static void
1760 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1761 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1762 			   portid_t port_id,
1763 #else
1764 			   __rte_unused portid_t port_id,
1765 #endif
1766 			   uint16_t desc_id)
1767 {
1768 	struct igb_ring_desc_16_bytes *ring =
1769 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1770 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1771 	int ret;
1772 	struct rte_eth_dev_info dev_info;
1773 
1774 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
1775 	if (ret != 0)
1776 		return;
1777 
1778 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1779 		/* 32 bytes RX descriptor, i40e only */
1780 		struct igb_ring_desc_32_bytes *ring =
1781 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1782 		ring[desc_id].lo_dword.dword =
1783 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1784 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1785 		ring[desc_id].hi_dword.dword =
1786 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1787 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1788 		ring[desc_id].resv1.dword =
1789 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1790 		ring_rxd_display_dword(ring[desc_id].resv1);
1791 		ring[desc_id].resv2.dword =
1792 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1793 		ring_rxd_display_dword(ring[desc_id].resv2);
1794 
1795 		return;
1796 	}
1797 #endif
1798 	/* 16 bytes RX descriptor */
1799 	ring[desc_id].lo_dword.dword =
1800 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1801 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1802 	ring[desc_id].hi_dword.dword =
1803 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1804 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1805 }
1806 
1807 static void
1808 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1809 {
1810 	struct igb_ring_desc_16_bytes *ring;
1811 	struct igb_ring_desc_16_bytes txd;
1812 
1813 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1814 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1815 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1816 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1817 			(unsigned)txd.lo_dword.words.lo,
1818 			(unsigned)txd.lo_dword.words.hi,
1819 			(unsigned)txd.hi_dword.words.lo,
1820 			(unsigned)txd.hi_dword.words.hi);
1821 }
1822 
1823 void
1824 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1825 {
1826 	const struct rte_memzone *rx_mz;
1827 
1828 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1829 		return;
1830 	if (rx_queue_id_is_invalid(rxq_id))
1831 		return;
1832 	if (rx_desc_id_is_invalid(rxd_id))
1833 		return;
1834 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1835 	if (rx_mz == NULL)
1836 		return;
1837 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1838 }
1839 
1840 void
1841 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1842 {
1843 	const struct rte_memzone *tx_mz;
1844 
1845 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1846 		return;
1847 	if (tx_queue_id_is_invalid(txq_id))
1848 		return;
1849 	if (tx_desc_id_is_invalid(txd_id))
1850 		return;
1851 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1852 	if (tx_mz == NULL)
1853 		return;
1854 	ring_tx_descriptor_display(tx_mz, txd_id);
1855 }
1856 
1857 void
1858 fwd_lcores_config_display(void)
1859 {
1860 	lcoreid_t lc_id;
1861 
1862 	printf("List of forwarding lcores:");
1863 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1864 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1865 	printf("\n");
1866 }
1867 void
1868 rxtx_config_display(void)
1869 {
1870 	portid_t pid;
1871 	queueid_t qid;
1872 
1873 	printf("  %s packet forwarding%s packets/burst=%d\n",
1874 	       cur_fwd_eng->fwd_mode_name,
1875 	       retry_enabled == 0 ? "" : " with retry",
1876 	       nb_pkt_per_burst);
1877 
1878 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1879 		printf("  packet len=%u - nb packet segments=%d\n",
1880 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1881 
1882 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1883 	       nb_fwd_lcores, nb_fwd_ports);
1884 
1885 	RTE_ETH_FOREACH_DEV(pid) {
1886 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1887 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1888 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1889 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1890 		uint16_t nb_rx_desc_tmp;
1891 		uint16_t nb_tx_desc_tmp;
1892 		struct rte_eth_rxq_info rx_qinfo;
1893 		struct rte_eth_txq_info tx_qinfo;
1894 		int32_t rc;
1895 
1896 		/* per port config */
1897 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1898 				(unsigned int)pid, nb_rxq, nb_txq);
1899 
1900 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1901 				ports[pid].dev_conf.rxmode.offloads,
1902 				ports[pid].dev_conf.txmode.offloads);
1903 
1904 		/* per rx queue config only for first queue to be less verbose */
1905 		for (qid = 0; qid < 1; qid++) {
1906 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
1907 			if (rc)
1908 				nb_rx_desc_tmp = nb_rx_desc[qid];
1909 			else
1910 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
1911 
1912 			printf("    RX queue: %d\n", qid);
1913 			printf("      RX desc=%d - RX free threshold=%d\n",
1914 				nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh);
1915 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1916 				" wthresh=%d\n",
1917 				rx_conf[qid].rx_thresh.pthresh,
1918 				rx_conf[qid].rx_thresh.hthresh,
1919 				rx_conf[qid].rx_thresh.wthresh);
1920 			printf("      RX Offloads=0x%"PRIx64"\n",
1921 				rx_conf[qid].offloads);
1922 		}
1923 
1924 		/* per tx queue config only for first queue to be less verbose */
1925 		for (qid = 0; qid < 1; qid++) {
1926 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
1927 			if (rc)
1928 				nb_tx_desc_tmp = nb_tx_desc[qid];
1929 			else
1930 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
1931 
1932 			printf("    TX queue: %d\n", qid);
1933 			printf("      TX desc=%d - TX free threshold=%d\n",
1934 				nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh);
1935 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1936 				" wthresh=%d\n",
1937 				tx_conf[qid].tx_thresh.pthresh,
1938 				tx_conf[qid].tx_thresh.hthresh,
1939 				tx_conf[qid].tx_thresh.wthresh);
1940 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1941 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1942 		}
1943 	}
1944 }
1945 
1946 void
1947 port_rss_reta_info(portid_t port_id,
1948 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1949 		   uint16_t nb_entries)
1950 {
1951 	uint16_t i, idx, shift;
1952 	int ret;
1953 
1954 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1955 		return;
1956 
1957 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1958 	if (ret != 0) {
1959 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1960 		return;
1961 	}
1962 
1963 	for (i = 0; i < nb_entries; i++) {
1964 		idx = i / RTE_RETA_GROUP_SIZE;
1965 		shift = i % RTE_RETA_GROUP_SIZE;
1966 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1967 			continue;
1968 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1969 					i, reta_conf[idx].reta[shift]);
1970 	}
1971 }
1972 
1973 /*
1974  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1975  * key of the port.
1976  */
1977 void
1978 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
1979 {
1980 	struct rte_eth_rss_conf rss_conf = {0};
1981 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1982 	uint64_t rss_hf;
1983 	uint8_t i;
1984 	int diag;
1985 	struct rte_eth_dev_info dev_info;
1986 	uint8_t hash_key_size;
1987 	int ret;
1988 
1989 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1990 		return;
1991 
1992 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
1993 	if (ret != 0)
1994 		return;
1995 
1996 	if (dev_info.hash_key_size > 0 &&
1997 			dev_info.hash_key_size <= sizeof(rss_key))
1998 		hash_key_size = dev_info.hash_key_size;
1999 	else {
2000 		printf("dev_info did not provide a valid hash key size\n");
2001 		return;
2002 	}
2003 
2004 	/* Get RSS hash key if asked to display it */
2005 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2006 	rss_conf.rss_key_len = hash_key_size;
2007 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2008 	if (diag != 0) {
2009 		switch (diag) {
2010 		case -ENODEV:
2011 			printf("port index %d invalid\n", port_id);
2012 			break;
2013 		case -ENOTSUP:
2014 			printf("operation not supported by device\n");
2015 			break;
2016 		default:
2017 			printf("operation failed - diag=%d\n", diag);
2018 			break;
2019 		}
2020 		return;
2021 	}
2022 	rss_hf = rss_conf.rss_hf;
2023 	if (rss_hf == 0) {
2024 		printf("RSS disabled\n");
2025 		return;
2026 	}
2027 	printf("RSS functions:\n ");
2028 	for (i = 0; rss_type_table[i].str; i++) {
2029 		if (rss_hf & rss_type_table[i].rss_type)
2030 			printf("%s ", rss_type_table[i].str);
2031 	}
2032 	printf("\n");
2033 	if (!show_rss_key)
2034 		return;
2035 	printf("RSS key:\n");
2036 	for (i = 0; i < hash_key_size; i++)
2037 		printf("%02X", rss_key[i]);
2038 	printf("\n");
2039 }
2040 
2041 void
2042 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2043 			 uint hash_key_len)
2044 {
2045 	struct rte_eth_rss_conf rss_conf;
2046 	int diag;
2047 	unsigned int i;
2048 
2049 	rss_conf.rss_key = NULL;
2050 	rss_conf.rss_key_len = hash_key_len;
2051 	rss_conf.rss_hf = 0;
2052 	for (i = 0; rss_type_table[i].str; i++) {
2053 		if (!strcmp(rss_type_table[i].str, rss_type))
2054 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2055 	}
2056 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2057 	if (diag == 0) {
2058 		rss_conf.rss_key = hash_key;
2059 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2060 	}
2061 	if (diag == 0)
2062 		return;
2063 
2064 	switch (diag) {
2065 	case -ENODEV:
2066 		printf("port index %d invalid\n", port_id);
2067 		break;
2068 	case -ENOTSUP:
2069 		printf("operation not supported by device\n");
2070 		break;
2071 	default:
2072 		printf("operation failed - diag=%d\n", diag);
2073 		break;
2074 	}
2075 }
2076 
2077 /*
2078  * Setup forwarding configuration for each logical core.
2079  */
2080 static void
2081 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2082 {
2083 	streamid_t nb_fs_per_lcore;
2084 	streamid_t nb_fs;
2085 	streamid_t sm_id;
2086 	lcoreid_t  nb_extra;
2087 	lcoreid_t  nb_fc;
2088 	lcoreid_t  nb_lc;
2089 	lcoreid_t  lc_id;
2090 
2091 	nb_fs = cfg->nb_fwd_streams;
2092 	nb_fc = cfg->nb_fwd_lcores;
2093 	if (nb_fs <= nb_fc) {
2094 		nb_fs_per_lcore = 1;
2095 		nb_extra = 0;
2096 	} else {
2097 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2098 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2099 	}
2100 
2101 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2102 	sm_id = 0;
2103 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2104 		fwd_lcores[lc_id]->stream_idx = sm_id;
2105 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2106 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2107 	}
2108 
2109 	/*
2110 	 * Assign extra remaining streams, if any.
2111 	 */
2112 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2113 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2114 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2115 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2116 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2117 	}
2118 }
2119 
2120 static portid_t
2121 fwd_topology_tx_port_get(portid_t rxp)
2122 {
2123 	static int warning_once = 1;
2124 
2125 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2126 
2127 	switch (port_topology) {
2128 	default:
2129 	case PORT_TOPOLOGY_PAIRED:
2130 		if ((rxp & 0x1) == 0) {
2131 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2132 				return rxp + 1;
2133 			if (warning_once) {
2134 				printf("\nWarning! port-topology=paired"
2135 				       " and odd forward ports number,"
2136 				       " the last port will pair with"
2137 				       " itself.\n\n");
2138 				warning_once = 0;
2139 			}
2140 			return rxp;
2141 		}
2142 		return rxp - 1;
2143 	case PORT_TOPOLOGY_CHAINED:
2144 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2145 	case PORT_TOPOLOGY_LOOP:
2146 		return rxp;
2147 	}
2148 }
2149 
2150 static void
2151 simple_fwd_config_setup(void)
2152 {
2153 	portid_t i;
2154 
2155 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2156 	cur_fwd_config.nb_fwd_streams =
2157 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2158 
2159 	/* reinitialize forwarding streams */
2160 	init_fwd_streams();
2161 
2162 	/*
2163 	 * In the simple forwarding test, the number of forwarding cores
2164 	 * must be lower or equal to the number of forwarding ports.
2165 	 */
2166 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2167 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2168 		cur_fwd_config.nb_fwd_lcores =
2169 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2170 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2171 
2172 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2173 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2174 		fwd_streams[i]->rx_queue  = 0;
2175 		fwd_streams[i]->tx_port   =
2176 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2177 		fwd_streams[i]->tx_queue  = 0;
2178 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2179 		fwd_streams[i]->retry_enabled = retry_enabled;
2180 	}
2181 }
2182 
2183 /**
2184  * For the RSS forwarding test all streams distributed over lcores. Each stream
2185  * being composed of a RX queue to poll on a RX port for input messages,
2186  * associated with a TX queue of a TX port where to send forwarded packets.
2187  */
2188 static void
2189 rss_fwd_config_setup(void)
2190 {
2191 	portid_t   rxp;
2192 	portid_t   txp;
2193 	queueid_t  rxq;
2194 	queueid_t  nb_q;
2195 	streamid_t  sm_id;
2196 
2197 	nb_q = nb_rxq;
2198 	if (nb_q > nb_txq)
2199 		nb_q = nb_txq;
2200 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2201 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2202 	cur_fwd_config.nb_fwd_streams =
2203 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2204 
2205 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2206 		cur_fwd_config.nb_fwd_lcores =
2207 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2208 
2209 	/* reinitialize forwarding streams */
2210 	init_fwd_streams();
2211 
2212 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2213 	rxp = 0; rxq = 0;
2214 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2215 		struct fwd_stream *fs;
2216 
2217 		fs = fwd_streams[sm_id];
2218 		txp = fwd_topology_tx_port_get(rxp);
2219 		fs->rx_port = fwd_ports_ids[rxp];
2220 		fs->rx_queue = rxq;
2221 		fs->tx_port = fwd_ports_ids[txp];
2222 		fs->tx_queue = rxq;
2223 		fs->peer_addr = fs->tx_port;
2224 		fs->retry_enabled = retry_enabled;
2225 		rxp++;
2226 		if (rxp < nb_fwd_ports)
2227 			continue;
2228 		rxp = 0;
2229 		rxq++;
2230 	}
2231 }
2232 
2233 /**
2234  * For the DCB forwarding test, each core is assigned on each traffic class.
2235  *
2236  * Each core is assigned a multi-stream, each stream being composed of
2237  * a RX queue to poll on a RX port for input messages, associated with
2238  * a TX queue of a TX port where to send forwarded packets. All RX and
2239  * TX queues are mapping to the same traffic class.
2240  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2241  * the same core
2242  */
2243 static void
2244 dcb_fwd_config_setup(void)
2245 {
2246 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2247 	portid_t txp, rxp = 0;
2248 	queueid_t txq, rxq = 0;
2249 	lcoreid_t  lc_id;
2250 	uint16_t nb_rx_queue, nb_tx_queue;
2251 	uint16_t i, j, k, sm_id = 0;
2252 	uint8_t tc = 0;
2253 
2254 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2255 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2256 	cur_fwd_config.nb_fwd_streams =
2257 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2258 
2259 	/* reinitialize forwarding streams */
2260 	init_fwd_streams();
2261 	sm_id = 0;
2262 	txp = 1;
2263 	/* get the dcb info on the first RX and TX ports */
2264 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2265 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2266 
2267 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2268 		fwd_lcores[lc_id]->stream_nb = 0;
2269 		fwd_lcores[lc_id]->stream_idx = sm_id;
2270 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2271 			/* if the nb_queue is zero, means this tc is
2272 			 * not enabled on the POOL
2273 			 */
2274 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2275 				break;
2276 			k = fwd_lcores[lc_id]->stream_nb +
2277 				fwd_lcores[lc_id]->stream_idx;
2278 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2279 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2280 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2281 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2282 			for (j = 0; j < nb_rx_queue; j++) {
2283 				struct fwd_stream *fs;
2284 
2285 				fs = fwd_streams[k + j];
2286 				fs->rx_port = fwd_ports_ids[rxp];
2287 				fs->rx_queue = rxq + j;
2288 				fs->tx_port = fwd_ports_ids[txp];
2289 				fs->tx_queue = txq + j % nb_tx_queue;
2290 				fs->peer_addr = fs->tx_port;
2291 				fs->retry_enabled = retry_enabled;
2292 			}
2293 			fwd_lcores[lc_id]->stream_nb +=
2294 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2295 		}
2296 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2297 
2298 		tc++;
2299 		if (tc < rxp_dcb_info.nb_tcs)
2300 			continue;
2301 		/* Restart from TC 0 on next RX port */
2302 		tc = 0;
2303 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2304 			rxp = (portid_t)
2305 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2306 		else
2307 			rxp++;
2308 		if (rxp >= nb_fwd_ports)
2309 			return;
2310 		/* get the dcb information on next RX and TX ports */
2311 		if ((rxp & 0x1) == 0)
2312 			txp = (portid_t) (rxp + 1);
2313 		else
2314 			txp = (portid_t) (rxp - 1);
2315 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2316 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2317 	}
2318 }
2319 
2320 static void
2321 icmp_echo_config_setup(void)
2322 {
2323 	portid_t  rxp;
2324 	queueid_t rxq;
2325 	lcoreid_t lc_id;
2326 	uint16_t  sm_id;
2327 
2328 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2329 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2330 			(nb_txq * nb_fwd_ports);
2331 	else
2332 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2333 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2334 	cur_fwd_config.nb_fwd_streams =
2335 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2336 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2337 		cur_fwd_config.nb_fwd_lcores =
2338 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2339 	if (verbose_level > 0) {
2340 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2341 		       __FUNCTION__,
2342 		       cur_fwd_config.nb_fwd_lcores,
2343 		       cur_fwd_config.nb_fwd_ports,
2344 		       cur_fwd_config.nb_fwd_streams);
2345 	}
2346 
2347 	/* reinitialize forwarding streams */
2348 	init_fwd_streams();
2349 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2350 	rxp = 0; rxq = 0;
2351 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2352 		if (verbose_level > 0)
2353 			printf("  core=%d: \n", lc_id);
2354 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2355 			struct fwd_stream *fs;
2356 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2357 			fs->rx_port = fwd_ports_ids[rxp];
2358 			fs->rx_queue = rxq;
2359 			fs->tx_port = fs->rx_port;
2360 			fs->tx_queue = rxq;
2361 			fs->peer_addr = fs->tx_port;
2362 			fs->retry_enabled = retry_enabled;
2363 			if (verbose_level > 0)
2364 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2365 				       sm_id, fs->rx_port, fs->rx_queue,
2366 				       fs->tx_queue);
2367 			rxq = (queueid_t) (rxq + 1);
2368 			if (rxq == nb_rxq) {
2369 				rxq = 0;
2370 				rxp = (portid_t) (rxp + 1);
2371 			}
2372 		}
2373 	}
2374 }
2375 
2376 #if defined RTE_LIBRTE_PMD_SOFTNIC
2377 static void
2378 softnic_fwd_config_setup(void)
2379 {
2380 	struct rte_port *port;
2381 	portid_t pid, softnic_portid;
2382 	queueid_t i;
2383 	uint8_t softnic_enable = 0;
2384 
2385 	RTE_ETH_FOREACH_DEV(pid) {
2386 			port = &ports[pid];
2387 			const char *driver = port->dev_info.driver_name;
2388 
2389 			if (strcmp(driver, "net_softnic") == 0) {
2390 				softnic_portid = pid;
2391 				softnic_enable = 1;
2392 				break;
2393 			}
2394 	}
2395 
2396 	if (softnic_enable == 0) {
2397 		printf("Softnic mode not configured(%s)!\n", __func__);
2398 		return;
2399 	}
2400 
2401 	cur_fwd_config.nb_fwd_ports = 1;
2402 	cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq;
2403 
2404 	/* Re-initialize forwarding streams */
2405 	init_fwd_streams();
2406 
2407 	/*
2408 	 * In the softnic forwarding test, the number of forwarding cores
2409 	 * is set to one and remaining are used for softnic packet processing.
2410 	 */
2411 	cur_fwd_config.nb_fwd_lcores = 1;
2412 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2413 
2414 	for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) {
2415 		fwd_streams[i]->rx_port   = softnic_portid;
2416 		fwd_streams[i]->rx_queue  = i;
2417 		fwd_streams[i]->tx_port   = softnic_portid;
2418 		fwd_streams[i]->tx_queue  = i;
2419 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2420 		fwd_streams[i]->retry_enabled = retry_enabled;
2421 	}
2422 }
2423 #endif
2424 
2425 void
2426 fwd_config_setup(void)
2427 {
2428 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2429 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2430 		icmp_echo_config_setup();
2431 		return;
2432 	}
2433 
2434 #if defined RTE_LIBRTE_PMD_SOFTNIC
2435 	if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) {
2436 		softnic_fwd_config_setup();
2437 		return;
2438 	}
2439 #endif
2440 
2441 	if ((nb_rxq > 1) && (nb_txq > 1)){
2442 		if (dcb_config)
2443 			dcb_fwd_config_setup();
2444 		else
2445 			rss_fwd_config_setup();
2446 	}
2447 	else
2448 		simple_fwd_config_setup();
2449 }
2450 
2451 static const char *
2452 mp_alloc_to_str(uint8_t mode)
2453 {
2454 	switch (mode) {
2455 	case MP_ALLOC_NATIVE:
2456 		return "native";
2457 	case MP_ALLOC_ANON:
2458 		return "anon";
2459 	case MP_ALLOC_XMEM:
2460 		return "xmem";
2461 	case MP_ALLOC_XMEM_HUGE:
2462 		return "xmemhuge";
2463 	case MP_ALLOC_XBUF:
2464 		return "xbuf";
2465 	default:
2466 		return "invalid";
2467 	}
2468 }
2469 
2470 void
2471 pkt_fwd_config_display(struct fwd_config *cfg)
2472 {
2473 	struct fwd_stream *fs;
2474 	lcoreid_t  lc_id;
2475 	streamid_t sm_id;
2476 
2477 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2478 		"NUMA support %s, MP allocation mode: %s\n",
2479 		cfg->fwd_eng->fwd_mode_name,
2480 		retry_enabled == 0 ? "" : " with retry",
2481 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2482 		numa_support == 1 ? "enabled" : "disabled",
2483 		mp_alloc_to_str(mp_alloc_type));
2484 
2485 	if (retry_enabled)
2486 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2487 			burst_tx_retry_num, burst_tx_delay_time);
2488 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2489 		printf("Logical Core %u (socket %u) forwards packets on "
2490 		       "%d streams:",
2491 		       fwd_lcores_cpuids[lc_id],
2492 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2493 		       fwd_lcores[lc_id]->stream_nb);
2494 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2495 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2496 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2497 			       "P=%d/Q=%d (socket %u) ",
2498 			       fs->rx_port, fs->rx_queue,
2499 			       ports[fs->rx_port].socket_id,
2500 			       fs->tx_port, fs->tx_queue,
2501 			       ports[fs->tx_port].socket_id);
2502 			print_ethaddr("peer=",
2503 				      &peer_eth_addrs[fs->peer_addr]);
2504 		}
2505 		printf("\n");
2506 	}
2507 	printf("\n");
2508 }
2509 
2510 void
2511 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2512 {
2513 	struct rte_ether_addr new_peer_addr;
2514 	if (!rte_eth_dev_is_valid_port(port_id)) {
2515 		printf("Error: Invalid port number %i\n", port_id);
2516 		return;
2517 	}
2518 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
2519 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2520 		return;
2521 	}
2522 	peer_eth_addrs[port_id] = new_peer_addr;
2523 }
2524 
2525 int
2526 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2527 {
2528 	unsigned int i;
2529 	unsigned int lcore_cpuid;
2530 	int record_now;
2531 
2532 	record_now = 0;
2533  again:
2534 	for (i = 0; i < nb_lc; i++) {
2535 		lcore_cpuid = lcorelist[i];
2536 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2537 			printf("lcore %u not enabled\n", lcore_cpuid);
2538 			return -1;
2539 		}
2540 		if (lcore_cpuid == rte_get_master_lcore()) {
2541 			printf("lcore %u cannot be masked on for running "
2542 			       "packet forwarding, which is the master lcore "
2543 			       "and reserved for command line parsing only\n",
2544 			       lcore_cpuid);
2545 			return -1;
2546 		}
2547 		if (record_now)
2548 			fwd_lcores_cpuids[i] = lcore_cpuid;
2549 	}
2550 	if (record_now == 0) {
2551 		record_now = 1;
2552 		goto again;
2553 	}
2554 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2555 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2556 		printf("previous number of forwarding cores %u - changed to "
2557 		       "number of configured cores %u\n",
2558 		       (unsigned int) nb_fwd_lcores, nb_lc);
2559 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 int
2566 set_fwd_lcores_mask(uint64_t lcoremask)
2567 {
2568 	unsigned int lcorelist[64];
2569 	unsigned int nb_lc;
2570 	unsigned int i;
2571 
2572 	if (lcoremask == 0) {
2573 		printf("Invalid NULL mask of cores\n");
2574 		return -1;
2575 	}
2576 	nb_lc = 0;
2577 	for (i = 0; i < 64; i++) {
2578 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2579 			continue;
2580 		lcorelist[nb_lc++] = i;
2581 	}
2582 	return set_fwd_lcores_list(lcorelist, nb_lc);
2583 }
2584 
2585 void
2586 set_fwd_lcores_number(uint16_t nb_lc)
2587 {
2588 	if (nb_lc > nb_cfg_lcores) {
2589 		printf("nb fwd cores %u > %u (max. number of configured "
2590 		       "lcores) - ignored\n",
2591 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2592 		return;
2593 	}
2594 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2595 	printf("Number of forwarding cores set to %u\n",
2596 	       (unsigned int) nb_fwd_lcores);
2597 }
2598 
2599 void
2600 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2601 {
2602 	unsigned int i;
2603 	portid_t port_id;
2604 	int record_now;
2605 
2606 	record_now = 0;
2607  again:
2608 	for (i = 0; i < nb_pt; i++) {
2609 		port_id = (portid_t) portlist[i];
2610 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2611 			return;
2612 		if (record_now)
2613 			fwd_ports_ids[i] = port_id;
2614 	}
2615 	if (record_now == 0) {
2616 		record_now = 1;
2617 		goto again;
2618 	}
2619 	nb_cfg_ports = (portid_t) nb_pt;
2620 	if (nb_fwd_ports != (portid_t) nb_pt) {
2621 		printf("previous number of forwarding ports %u - changed to "
2622 		       "number of configured ports %u\n",
2623 		       (unsigned int) nb_fwd_ports, nb_pt);
2624 		nb_fwd_ports = (portid_t) nb_pt;
2625 	}
2626 }
2627 
2628 /**
2629  * Parse the user input and obtain the list of forwarding ports
2630  *
2631  * @param[in] list
2632  *   String containing the user input. User can specify
2633  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
2634  *   For example, if the user wants to use all the available
2635  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
2636  *   If the user wants to use only the ports 1,2 then the input
2637  *   is 1,2.
2638  *   valid characters are '-' and ','
2639  * @param[out] values
2640  *   This array will be filled with a list of port IDs
2641  *   based on the user input
2642  *   Note that duplicate entries are discarded and only the first
2643  *   count entries in this array are port IDs and all the rest
2644  *   will contain default values
2645  * @param[in] maxsize
2646  *   This parameter denotes 2 things
2647  *   1) Number of elements in the values array
2648  *   2) Maximum value of each element in the values array
2649  * @return
2650  *   On success, returns total count of parsed port IDs
2651  *   On failure, returns 0
2652  */
2653 static unsigned int
2654 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
2655 {
2656 	unsigned int count = 0;
2657 	char *end = NULL;
2658 	int min, max;
2659 	int value, i;
2660 	unsigned int marked[maxsize];
2661 
2662 	if (list == NULL || values == NULL)
2663 		return 0;
2664 
2665 	for (i = 0; i < (int)maxsize; i++)
2666 		marked[i] = 0;
2667 
2668 	min = INT_MAX;
2669 
2670 	do {
2671 		/*Remove the blank spaces if any*/
2672 		while (isblank(*list))
2673 			list++;
2674 		if (*list == '\0')
2675 			break;
2676 		errno = 0;
2677 		value = strtol(list, &end, 10);
2678 		if (errno || end == NULL)
2679 			return 0;
2680 		if (value < 0 || value >= (int)maxsize)
2681 			return 0;
2682 		while (isblank(*end))
2683 			end++;
2684 		if (*end == '-' && min == INT_MAX) {
2685 			min = value;
2686 		} else if ((*end == ',') || (*end == '\0')) {
2687 			max = value;
2688 			if (min == INT_MAX)
2689 				min = value;
2690 			for (i = min; i <= max; i++) {
2691 				if (count < maxsize) {
2692 					if (marked[i])
2693 						continue;
2694 					values[count] = i;
2695 					marked[i] = 1;
2696 					count++;
2697 				}
2698 			}
2699 			min = INT_MAX;
2700 		} else
2701 			return 0;
2702 		list = end + 1;
2703 	} while (*end != '\0');
2704 
2705 	return count;
2706 }
2707 
2708 void
2709 parse_fwd_portlist(const char *portlist)
2710 {
2711 	unsigned int portcount;
2712 	unsigned int portindex[RTE_MAX_ETHPORTS];
2713 	unsigned int i, valid_port_count = 0;
2714 
2715 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
2716 	if (!portcount)
2717 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
2718 
2719 	/*
2720 	 * Here we verify the validity of the ports
2721 	 * and thereby calculate the total number of
2722 	 * valid ports
2723 	 */
2724 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
2725 		if (rte_eth_dev_is_valid_port(portindex[i])) {
2726 			portindex[valid_port_count] = portindex[i];
2727 			valid_port_count++;
2728 		}
2729 	}
2730 
2731 	set_fwd_ports_list(portindex, valid_port_count);
2732 }
2733 
2734 void
2735 set_fwd_ports_mask(uint64_t portmask)
2736 {
2737 	unsigned int portlist[64];
2738 	unsigned int nb_pt;
2739 	unsigned int i;
2740 
2741 	if (portmask == 0) {
2742 		printf("Invalid NULL mask of ports\n");
2743 		return;
2744 	}
2745 	nb_pt = 0;
2746 	RTE_ETH_FOREACH_DEV(i) {
2747 		if (! ((uint64_t)(1ULL << i) & portmask))
2748 			continue;
2749 		portlist[nb_pt++] = i;
2750 	}
2751 	set_fwd_ports_list(portlist, nb_pt);
2752 }
2753 
2754 void
2755 set_fwd_ports_number(uint16_t nb_pt)
2756 {
2757 	if (nb_pt > nb_cfg_ports) {
2758 		printf("nb fwd ports %u > %u (number of configured "
2759 		       "ports) - ignored\n",
2760 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2761 		return;
2762 	}
2763 	nb_fwd_ports = (portid_t) nb_pt;
2764 	printf("Number of forwarding ports set to %u\n",
2765 	       (unsigned int) nb_fwd_ports);
2766 }
2767 
2768 int
2769 port_is_forwarding(portid_t port_id)
2770 {
2771 	unsigned int i;
2772 
2773 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2774 		return -1;
2775 
2776 	for (i = 0; i < nb_fwd_ports; i++) {
2777 		if (fwd_ports_ids[i] == port_id)
2778 			return 1;
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 void
2785 set_nb_pkt_per_burst(uint16_t nb)
2786 {
2787 	if (nb > MAX_PKT_BURST) {
2788 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2789 		       " ignored\n",
2790 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2791 		return;
2792 	}
2793 	nb_pkt_per_burst = nb;
2794 	printf("Number of packets per burst set to %u\n",
2795 	       (unsigned int) nb_pkt_per_burst);
2796 }
2797 
2798 static const char *
2799 tx_split_get_name(enum tx_pkt_split split)
2800 {
2801 	uint32_t i;
2802 
2803 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2804 		if (tx_split_name[i].split == split)
2805 			return tx_split_name[i].name;
2806 	}
2807 	return NULL;
2808 }
2809 
2810 void
2811 set_tx_pkt_split(const char *name)
2812 {
2813 	uint32_t i;
2814 
2815 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2816 		if (strcmp(tx_split_name[i].name, name) == 0) {
2817 			tx_pkt_split = tx_split_name[i].split;
2818 			return;
2819 		}
2820 	}
2821 	printf("unknown value: \"%s\"\n", name);
2822 }
2823 
2824 void
2825 show_tx_pkt_segments(void)
2826 {
2827 	uint32_t i, n;
2828 	const char *split;
2829 
2830 	n = tx_pkt_nb_segs;
2831 	split = tx_split_get_name(tx_pkt_split);
2832 
2833 	printf("Number of segments: %u\n", n);
2834 	printf("Segment sizes: ");
2835 	for (i = 0; i != n - 1; i++)
2836 		printf("%hu,", tx_pkt_seg_lengths[i]);
2837 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2838 	printf("Split packet: %s\n", split);
2839 }
2840 
2841 void
2842 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2843 {
2844 	uint16_t tx_pkt_len;
2845 	unsigned i;
2846 
2847 	if (nb_segs >= (unsigned) nb_txd) {
2848 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2849 		       nb_segs, (unsigned int) nb_txd);
2850 		return;
2851 	}
2852 
2853 	/*
2854 	 * Check that each segment length is greater or equal than
2855 	 * the mbuf data sise.
2856 	 * Check also that the total packet length is greater or equal than the
2857 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
2858 	 * 20 + 8).
2859 	 */
2860 	tx_pkt_len = 0;
2861 	for (i = 0; i < nb_segs; i++) {
2862 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2863 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2864 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2865 			return;
2866 		}
2867 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2868 	}
2869 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
2870 		printf("total packet length=%u < %d - give up\n",
2871 				(unsigned) tx_pkt_len,
2872 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
2873 		return;
2874 	}
2875 
2876 	for (i = 0; i < nb_segs; i++)
2877 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2878 
2879 	tx_pkt_length  = tx_pkt_len;
2880 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2881 }
2882 
2883 void
2884 setup_gro(const char *onoff, portid_t port_id)
2885 {
2886 	if (!rte_eth_dev_is_valid_port(port_id)) {
2887 		printf("invalid port id %u\n", port_id);
2888 		return;
2889 	}
2890 	if (test_done == 0) {
2891 		printf("Before enable/disable GRO,"
2892 				" please stop forwarding first\n");
2893 		return;
2894 	}
2895 	if (strcmp(onoff, "on") == 0) {
2896 		if (gro_ports[port_id].enable != 0) {
2897 			printf("Port %u has enabled GRO. Please"
2898 					" disable GRO first\n", port_id);
2899 			return;
2900 		}
2901 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2902 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2903 			gro_ports[port_id].param.max_flow_num =
2904 				GRO_DEFAULT_FLOW_NUM;
2905 			gro_ports[port_id].param.max_item_per_flow =
2906 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2907 		}
2908 		gro_ports[port_id].enable = 1;
2909 	} else {
2910 		if (gro_ports[port_id].enable == 0) {
2911 			printf("Port %u has disabled GRO\n", port_id);
2912 			return;
2913 		}
2914 		gro_ports[port_id].enable = 0;
2915 	}
2916 }
2917 
2918 void
2919 setup_gro_flush_cycles(uint8_t cycles)
2920 {
2921 	if (test_done == 0) {
2922 		printf("Before change flush interval for GRO,"
2923 				" please stop forwarding first.\n");
2924 		return;
2925 	}
2926 
2927 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2928 			GRO_DEFAULT_FLUSH_CYCLES) {
2929 		printf("The flushing cycle be in the range"
2930 				" of 1 to %u. Revert to the default"
2931 				" value %u.\n",
2932 				GRO_MAX_FLUSH_CYCLES,
2933 				GRO_DEFAULT_FLUSH_CYCLES);
2934 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2935 	}
2936 
2937 	gro_flush_cycles = cycles;
2938 }
2939 
2940 void
2941 show_gro(portid_t port_id)
2942 {
2943 	struct rte_gro_param *param;
2944 	uint32_t max_pkts_num;
2945 
2946 	param = &gro_ports[port_id].param;
2947 
2948 	if (!rte_eth_dev_is_valid_port(port_id)) {
2949 		printf("Invalid port id %u.\n", port_id);
2950 		return;
2951 	}
2952 	if (gro_ports[port_id].enable) {
2953 		printf("GRO type: TCP/IPv4\n");
2954 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2955 			max_pkts_num = param->max_flow_num *
2956 				param->max_item_per_flow;
2957 		} else
2958 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2959 		printf("Max number of packets to perform GRO: %u\n",
2960 				max_pkts_num);
2961 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2962 	} else
2963 		printf("Port %u doesn't enable GRO.\n", port_id);
2964 }
2965 
2966 void
2967 setup_gso(const char *mode, portid_t port_id)
2968 {
2969 	if (!rte_eth_dev_is_valid_port(port_id)) {
2970 		printf("invalid port id %u\n", port_id);
2971 		return;
2972 	}
2973 	if (strcmp(mode, "on") == 0) {
2974 		if (test_done == 0) {
2975 			printf("before enabling GSO,"
2976 					" please stop forwarding first\n");
2977 			return;
2978 		}
2979 		gso_ports[port_id].enable = 1;
2980 	} else if (strcmp(mode, "off") == 0) {
2981 		if (test_done == 0) {
2982 			printf("before disabling GSO,"
2983 					" please stop forwarding first\n");
2984 			return;
2985 		}
2986 		gso_ports[port_id].enable = 0;
2987 	}
2988 }
2989 
2990 char*
2991 list_pkt_forwarding_modes(void)
2992 {
2993 	static char fwd_modes[128] = "";
2994 	const char *separator = "|";
2995 	struct fwd_engine *fwd_eng;
2996 	unsigned i = 0;
2997 
2998 	if (strlen (fwd_modes) == 0) {
2999 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
3000 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
3001 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
3002 			strncat(fwd_modes, separator,
3003 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
3004 		}
3005 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
3006 	}
3007 
3008 	return fwd_modes;
3009 }
3010 
3011 char*
3012 list_pkt_forwarding_retry_modes(void)
3013 {
3014 	static char fwd_modes[128] = "";
3015 	const char *separator = "|";
3016 	struct fwd_engine *fwd_eng;
3017 	unsigned i = 0;
3018 
3019 	if (strlen(fwd_modes) == 0) {
3020 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
3021 			if (fwd_eng == &rx_only_engine)
3022 				continue;
3023 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
3024 					sizeof(fwd_modes) -
3025 					strlen(fwd_modes) - 1);
3026 			strncat(fwd_modes, separator,
3027 					sizeof(fwd_modes) -
3028 					strlen(fwd_modes) - 1);
3029 		}
3030 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
3031 	}
3032 
3033 	return fwd_modes;
3034 }
3035 
3036 void
3037 set_pkt_forwarding_mode(const char *fwd_mode_name)
3038 {
3039 	struct fwd_engine *fwd_eng;
3040 	unsigned i;
3041 
3042 	i = 0;
3043 	while ((fwd_eng = fwd_engines[i]) != NULL) {
3044 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
3045 			printf("Set %s packet forwarding mode%s\n",
3046 			       fwd_mode_name,
3047 			       retry_enabled == 0 ? "" : " with retry");
3048 			cur_fwd_eng = fwd_eng;
3049 			return;
3050 		}
3051 		i++;
3052 	}
3053 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
3054 }
3055 
3056 void
3057 add_rx_dump_callbacks(portid_t portid)
3058 {
3059 	struct rte_eth_dev_info dev_info;
3060 	uint16_t queue;
3061 	int ret;
3062 
3063 	if (port_id_is_invalid(portid, ENABLED_WARN))
3064 		return;
3065 
3066 	ret = eth_dev_info_get_print_err(portid, &dev_info);
3067 	if (ret != 0)
3068 		return;
3069 
3070 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
3071 		if (!ports[portid].rx_dump_cb[queue])
3072 			ports[portid].rx_dump_cb[queue] =
3073 				rte_eth_add_rx_callback(portid, queue,
3074 					dump_rx_pkts, NULL);
3075 }
3076 
3077 void
3078 add_tx_dump_callbacks(portid_t portid)
3079 {
3080 	struct rte_eth_dev_info dev_info;
3081 	uint16_t queue;
3082 	int ret;
3083 
3084 	if (port_id_is_invalid(portid, ENABLED_WARN))
3085 		return;
3086 
3087 	ret = eth_dev_info_get_print_err(portid, &dev_info);
3088 	if (ret != 0)
3089 		return;
3090 
3091 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
3092 		if (!ports[portid].tx_dump_cb[queue])
3093 			ports[portid].tx_dump_cb[queue] =
3094 				rte_eth_add_tx_callback(portid, queue,
3095 							dump_tx_pkts, NULL);
3096 }
3097 
3098 void
3099 remove_rx_dump_callbacks(portid_t portid)
3100 {
3101 	struct rte_eth_dev_info dev_info;
3102 	uint16_t queue;
3103 	int ret;
3104 
3105 	if (port_id_is_invalid(portid, ENABLED_WARN))
3106 		return;
3107 
3108 	ret = eth_dev_info_get_print_err(portid, &dev_info);
3109 	if (ret != 0)
3110 		return;
3111 
3112 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
3113 		if (ports[portid].rx_dump_cb[queue]) {
3114 			rte_eth_remove_rx_callback(portid, queue,
3115 				ports[portid].rx_dump_cb[queue]);
3116 			ports[portid].rx_dump_cb[queue] = NULL;
3117 		}
3118 }
3119 
3120 void
3121 remove_tx_dump_callbacks(portid_t portid)
3122 {
3123 	struct rte_eth_dev_info dev_info;
3124 	uint16_t queue;
3125 	int ret;
3126 
3127 	if (port_id_is_invalid(portid, ENABLED_WARN))
3128 		return;
3129 
3130 	ret = eth_dev_info_get_print_err(portid, &dev_info);
3131 	if (ret != 0)
3132 		return;
3133 
3134 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
3135 		if (ports[portid].tx_dump_cb[queue]) {
3136 			rte_eth_remove_tx_callback(portid, queue,
3137 				ports[portid].tx_dump_cb[queue]);
3138 			ports[portid].tx_dump_cb[queue] = NULL;
3139 		}
3140 }
3141 
3142 void
3143 configure_rxtx_dump_callbacks(uint16_t verbose)
3144 {
3145 	portid_t portid;
3146 
3147 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
3148 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
3149 		return;
3150 #endif
3151 
3152 	RTE_ETH_FOREACH_DEV(portid)
3153 	{
3154 		if (verbose == 1 || verbose > 2)
3155 			add_rx_dump_callbacks(portid);
3156 		else
3157 			remove_rx_dump_callbacks(portid);
3158 		if (verbose >= 2)
3159 			add_tx_dump_callbacks(portid);
3160 		else
3161 			remove_tx_dump_callbacks(portid);
3162 	}
3163 }
3164 
3165 void
3166 set_verbose_level(uint16_t vb_level)
3167 {
3168 	printf("Change verbose level from %u to %u\n",
3169 	       (unsigned int) verbose_level, (unsigned int) vb_level);
3170 	verbose_level = vb_level;
3171 	configure_rxtx_dump_callbacks(verbose_level);
3172 }
3173 
3174 void
3175 vlan_extend_set(portid_t port_id, int on)
3176 {
3177 	int diag;
3178 	int vlan_offload;
3179 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
3180 
3181 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3182 		return;
3183 
3184 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3185 
3186 	if (on) {
3187 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
3188 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
3189 	} else {
3190 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
3191 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
3192 	}
3193 
3194 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
3195 	if (diag < 0)
3196 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
3197 	       "diag=%d\n", port_id, on, diag);
3198 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
3199 }
3200 
3201 void
3202 rx_vlan_strip_set(portid_t port_id, int on)
3203 {
3204 	int diag;
3205 	int vlan_offload;
3206 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
3207 
3208 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3209 		return;
3210 
3211 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3212 
3213 	if (on) {
3214 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
3215 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
3216 	} else {
3217 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
3218 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
3219 	}
3220 
3221 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
3222 	if (diag < 0)
3223 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
3224 	       "diag=%d\n", port_id, on, diag);
3225 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
3226 }
3227 
3228 void
3229 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
3230 {
3231 	int diag;
3232 
3233 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3234 		return;
3235 
3236 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
3237 	if (diag < 0)
3238 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
3239 	       "diag=%d\n", port_id, queue_id, on, diag);
3240 }
3241 
3242 void
3243 rx_vlan_filter_set(portid_t port_id, int on)
3244 {
3245 	int diag;
3246 	int vlan_offload;
3247 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
3248 
3249 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3250 		return;
3251 
3252 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3253 
3254 	if (on) {
3255 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
3256 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
3257 	} else {
3258 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
3259 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
3260 	}
3261 
3262 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
3263 	if (diag < 0)
3264 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
3265 	       "diag=%d\n", port_id, on, diag);
3266 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
3267 }
3268 
3269 void
3270 rx_vlan_qinq_strip_set(portid_t port_id, int on)
3271 {
3272 	int diag;
3273 	int vlan_offload;
3274 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
3275 
3276 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3277 		return;
3278 
3279 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3280 
3281 	if (on) {
3282 		vlan_offload |= ETH_QINQ_STRIP_OFFLOAD;
3283 		port_rx_offloads |= DEV_RX_OFFLOAD_QINQ_STRIP;
3284 	} else {
3285 		vlan_offload &= ~ETH_QINQ_STRIP_OFFLOAD;
3286 		port_rx_offloads &= ~DEV_RX_OFFLOAD_QINQ_STRIP;
3287 	}
3288 
3289 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
3290 	if (diag < 0)
3291 		printf("%s(port_pi=%d, on=%d) failed "
3292 	       "diag=%d\n", __func__, port_id, on, diag);
3293 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
3294 }
3295 
3296 int
3297 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
3298 {
3299 	int diag;
3300 
3301 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3302 		return 1;
3303 	if (vlan_id_is_invalid(vlan_id))
3304 		return 1;
3305 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
3306 	if (diag == 0)
3307 		return 0;
3308 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
3309 	       "diag=%d\n",
3310 	       port_id, vlan_id, on, diag);
3311 	return -1;
3312 }
3313 
3314 void
3315 rx_vlan_all_filter_set(portid_t port_id, int on)
3316 {
3317 	uint16_t vlan_id;
3318 
3319 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3320 		return;
3321 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
3322 		if (rx_vft_set(port_id, vlan_id, on))
3323 			break;
3324 	}
3325 }
3326 
3327 void
3328 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
3329 {
3330 	int diag;
3331 
3332 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3333 		return;
3334 
3335 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
3336 	if (diag == 0)
3337 		return;
3338 
3339 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
3340 	       "diag=%d\n",
3341 	       port_id, vlan_type, tp_id, diag);
3342 }
3343 
3344 void
3345 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
3346 {
3347 	struct rte_eth_dev_info dev_info;
3348 	int ret;
3349 
3350 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3351 		return;
3352 	if (vlan_id_is_invalid(vlan_id))
3353 		return;
3354 
3355 	if (ports[port_id].dev_conf.txmode.offloads &
3356 	    DEV_TX_OFFLOAD_QINQ_INSERT) {
3357 		printf("Error, as QinQ has been enabled.\n");
3358 		return;
3359 	}
3360 
3361 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
3362 	if (ret != 0)
3363 		return;
3364 
3365 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
3366 		printf("Error: vlan insert is not supported by port %d\n",
3367 			port_id);
3368 		return;
3369 	}
3370 
3371 	tx_vlan_reset(port_id);
3372 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
3373 	ports[port_id].tx_vlan_id = vlan_id;
3374 }
3375 
3376 void
3377 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
3378 {
3379 	struct rte_eth_dev_info dev_info;
3380 	int ret;
3381 
3382 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3383 		return;
3384 	if (vlan_id_is_invalid(vlan_id))
3385 		return;
3386 	if (vlan_id_is_invalid(vlan_id_outer))
3387 		return;
3388 
3389 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
3390 	if (ret != 0)
3391 		return;
3392 
3393 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
3394 		printf("Error: qinq insert not supported by port %d\n",
3395 			port_id);
3396 		return;
3397 	}
3398 
3399 	tx_vlan_reset(port_id);
3400 	ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT |
3401 						    DEV_TX_OFFLOAD_QINQ_INSERT);
3402 	ports[port_id].tx_vlan_id = vlan_id;
3403 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
3404 }
3405 
3406 void
3407 tx_vlan_reset(portid_t port_id)
3408 {
3409 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3410 		return;
3411 	ports[port_id].dev_conf.txmode.offloads &=
3412 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
3413 				  DEV_TX_OFFLOAD_QINQ_INSERT);
3414 	ports[port_id].tx_vlan_id = 0;
3415 	ports[port_id].tx_vlan_id_outer = 0;
3416 }
3417 
3418 void
3419 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
3420 {
3421 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3422 		return;
3423 
3424 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
3425 }
3426 
3427 void
3428 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
3429 {
3430 	uint16_t i;
3431 	uint8_t existing_mapping_found = 0;
3432 
3433 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3434 		return;
3435 
3436 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3437 		return;
3438 
3439 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3440 		printf("map_value not in required range 0..%d\n",
3441 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3442 		return;
3443 	}
3444 
3445 	if (!is_rx) { /*then tx*/
3446 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3447 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3448 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3449 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3450 				existing_mapping_found = 1;
3451 				break;
3452 			}
3453 		}
3454 		if (!existing_mapping_found) { /* A new additional mapping... */
3455 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3456 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3457 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3458 			nb_tx_queue_stats_mappings++;
3459 		}
3460 	}
3461 	else { /*rx*/
3462 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3463 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3464 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3465 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3466 				existing_mapping_found = 1;
3467 				break;
3468 			}
3469 		}
3470 		if (!existing_mapping_found) { /* A new additional mapping... */
3471 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3472 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3473 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3474 			nb_rx_queue_stats_mappings++;
3475 		}
3476 	}
3477 }
3478 
3479 void
3480 set_xstats_hide_zero(uint8_t on_off)
3481 {
3482 	xstats_hide_zero = on_off;
3483 }
3484 
3485 static inline void
3486 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3487 {
3488 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3489 
3490 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3491 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3492 			" tunnel_id: 0x%08x",
3493 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3494 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3495 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3496 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3497 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3498 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3499 
3500 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3501 			rte_be_to_cpu_16(mask->src_port_mask),
3502 			rte_be_to_cpu_16(mask->dst_port_mask));
3503 
3504 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3505 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3506 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3507 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3508 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3509 
3510 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3511 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3512 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3513 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3514 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3515 	}
3516 
3517 	printf("\n");
3518 }
3519 
3520 static inline void
3521 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3522 {
3523 	struct rte_eth_flex_payload_cfg *cfg;
3524 	uint32_t i, j;
3525 
3526 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3527 		cfg = &flex_conf->flex_set[i];
3528 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3529 			printf("\n    RAW:  ");
3530 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3531 			printf("\n    L2_PAYLOAD:  ");
3532 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3533 			printf("\n    L3_PAYLOAD:  ");
3534 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3535 			printf("\n    L4_PAYLOAD:  ");
3536 		else
3537 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3538 		for (j = 0; j < num; j++)
3539 			printf("  %-5u", cfg->src_offset[j]);
3540 	}
3541 	printf("\n");
3542 }
3543 
3544 static char *
3545 flowtype_to_str(uint16_t flow_type)
3546 {
3547 	struct flow_type_info {
3548 		char str[32];
3549 		uint16_t ftype;
3550 	};
3551 
3552 	uint8_t i;
3553 	static struct flow_type_info flowtype_str_table[] = {
3554 		{"raw", RTE_ETH_FLOW_RAW},
3555 		{"ipv4", RTE_ETH_FLOW_IPV4},
3556 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3557 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3558 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3559 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3560 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3561 		{"ipv6", RTE_ETH_FLOW_IPV6},
3562 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3563 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3564 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3565 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3566 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3567 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3568 		{"port", RTE_ETH_FLOW_PORT},
3569 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3570 		{"geneve", RTE_ETH_FLOW_GENEVE},
3571 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3572 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3573 	};
3574 
3575 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3576 		if (flowtype_str_table[i].ftype == flow_type)
3577 			return flowtype_str_table[i].str;
3578 	}
3579 
3580 	return NULL;
3581 }
3582 
3583 static inline void
3584 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3585 {
3586 	struct rte_eth_fdir_flex_mask *mask;
3587 	uint32_t i, j;
3588 	char *p;
3589 
3590 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3591 		mask = &flex_conf->flex_mask[i];
3592 		p = flowtype_to_str(mask->flow_type);
3593 		printf("\n    %s:\t", p ? p : "unknown");
3594 		for (j = 0; j < num; j++)
3595 			printf(" %02x", mask->mask[j]);
3596 	}
3597 	printf("\n");
3598 }
3599 
3600 static inline void
3601 print_fdir_flow_type(uint32_t flow_types_mask)
3602 {
3603 	int i;
3604 	char *p;
3605 
3606 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3607 		if (!(flow_types_mask & (1 << i)))
3608 			continue;
3609 		p = flowtype_to_str(i);
3610 		if (p)
3611 			printf(" %s", p);
3612 		else
3613 			printf(" unknown");
3614 	}
3615 	printf("\n");
3616 }
3617 
3618 void
3619 fdir_get_infos(portid_t port_id)
3620 {
3621 	struct rte_eth_fdir_stats fdir_stat;
3622 	struct rte_eth_fdir_info fdir_info;
3623 	int ret;
3624 
3625 	static const char *fdir_stats_border = "########################";
3626 
3627 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3628 		return;
3629 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3630 	if (ret < 0) {
3631 		printf("\n FDIR is not supported on port %-2d\n",
3632 			port_id);
3633 		return;
3634 	}
3635 
3636 	memset(&fdir_info, 0, sizeof(fdir_info));
3637 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3638 			       RTE_ETH_FILTER_INFO, &fdir_info);
3639 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3640 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3641 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3642 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3643 	       fdir_stats_border, port_id, fdir_stats_border);
3644 	printf("  MODE: ");
3645 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3646 		printf("  PERFECT\n");
3647 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3648 		printf("  PERFECT-MAC-VLAN\n");
3649 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3650 		printf("  PERFECT-TUNNEL\n");
3651 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3652 		printf("  SIGNATURE\n");
3653 	else
3654 		printf("  DISABLE\n");
3655 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3656 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3657 		printf("  SUPPORTED FLOW TYPE: ");
3658 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3659 	}
3660 	printf("  FLEX PAYLOAD INFO:\n");
3661 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3662 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3663 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3664 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3665 		fdir_info.flex_payload_unit,
3666 		fdir_info.max_flex_payload_segment_num,
3667 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3668 	printf("  MASK: ");
3669 	print_fdir_mask(&fdir_info.mask);
3670 	if (fdir_info.flex_conf.nb_payloads > 0) {
3671 		printf("  FLEX PAYLOAD SRC OFFSET:");
3672 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3673 	}
3674 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3675 		printf("  FLEX MASK CFG:");
3676 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3677 	}
3678 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3679 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3680 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3681 	       fdir_info.guarant_spc, fdir_info.best_spc);
3682 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3683 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3684 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3685 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3686 	       fdir_stat.collision, fdir_stat.free,
3687 	       fdir_stat.maxhash, fdir_stat.maxlen,
3688 	       fdir_stat.add, fdir_stat.remove,
3689 	       fdir_stat.f_add, fdir_stat.f_remove);
3690 	printf("  %s############################%s\n",
3691 	       fdir_stats_border, fdir_stats_border);
3692 }
3693 
3694 void
3695 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3696 {
3697 	struct rte_port *port;
3698 	struct rte_eth_fdir_flex_conf *flex_conf;
3699 	int i, idx = 0;
3700 
3701 	port = &ports[port_id];
3702 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3703 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3704 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3705 			idx = i;
3706 			break;
3707 		}
3708 	}
3709 	if (i >= RTE_ETH_FLOW_MAX) {
3710 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3711 			idx = flex_conf->nb_flexmasks;
3712 			flex_conf->nb_flexmasks++;
3713 		} else {
3714 			printf("The flex mask table is full. Can not set flex"
3715 				" mask for flow_type(%u).", cfg->flow_type);
3716 			return;
3717 		}
3718 	}
3719 	rte_memcpy(&flex_conf->flex_mask[idx],
3720 			 cfg,
3721 			 sizeof(struct rte_eth_fdir_flex_mask));
3722 }
3723 
3724 void
3725 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3726 {
3727 	struct rte_port *port;
3728 	struct rte_eth_fdir_flex_conf *flex_conf;
3729 	int i, idx = 0;
3730 
3731 	port = &ports[port_id];
3732 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3733 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3734 		if (cfg->type == flex_conf->flex_set[i].type) {
3735 			idx = i;
3736 			break;
3737 		}
3738 	}
3739 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3740 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3741 			idx = flex_conf->nb_payloads;
3742 			flex_conf->nb_payloads++;
3743 		} else {
3744 			printf("The flex payload table is full. Can not set"
3745 				" flex payload for type(%u).", cfg->type);
3746 			return;
3747 		}
3748 	}
3749 	rte_memcpy(&flex_conf->flex_set[idx],
3750 			 cfg,
3751 			 sizeof(struct rte_eth_flex_payload_cfg));
3752 
3753 }
3754 
3755 void
3756 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3757 {
3758 #ifdef RTE_LIBRTE_IXGBE_PMD
3759 	int diag;
3760 
3761 	if (is_rx)
3762 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3763 	else
3764 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3765 
3766 	if (diag == 0)
3767 		return;
3768 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3769 			is_rx ? "rx" : "tx", port_id, diag);
3770 	return;
3771 #endif
3772 	printf("VF %s setting not supported for port %d\n",
3773 			is_rx ? "Rx" : "Tx", port_id);
3774 	RTE_SET_USED(vf);
3775 	RTE_SET_USED(on);
3776 }
3777 
3778 int
3779 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3780 {
3781 	int diag;
3782 	struct rte_eth_link link;
3783 	int ret;
3784 
3785 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3786 		return 1;
3787 	ret = eth_link_get_nowait_print_err(port_id, &link);
3788 	if (ret < 0)
3789 		return 1;
3790 	if (rate > link.link_speed) {
3791 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3792 			rate, link.link_speed);
3793 		return 1;
3794 	}
3795 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3796 	if (diag == 0)
3797 		return diag;
3798 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3799 		port_id, diag);
3800 	return diag;
3801 }
3802 
3803 int
3804 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3805 {
3806 	int diag = -ENOTSUP;
3807 
3808 	RTE_SET_USED(vf);
3809 	RTE_SET_USED(rate);
3810 	RTE_SET_USED(q_msk);
3811 
3812 #ifdef RTE_LIBRTE_IXGBE_PMD
3813 	if (diag == -ENOTSUP)
3814 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3815 						       q_msk);
3816 #endif
3817 #ifdef RTE_LIBRTE_BNXT_PMD
3818 	if (diag == -ENOTSUP)
3819 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3820 #endif
3821 	if (diag == 0)
3822 		return diag;
3823 
3824 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3825 		port_id, diag);
3826 	return diag;
3827 }
3828 
3829 /*
3830  * Functions to manage the set of filtered Multicast MAC addresses.
3831  *
3832  * A pool of filtered multicast MAC addresses is associated with each port.
3833  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3834  * The address of the pool and the number of valid multicast MAC addresses
3835  * recorded in the pool are stored in the fields "mc_addr_pool" and
3836  * "mc_addr_nb" of the "rte_port" data structure.
3837  *
3838  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3839  * to be supplied a contiguous array of multicast MAC addresses.
3840  * To comply with this constraint, the set of multicast addresses recorded
3841  * into the pool are systematically compacted at the beginning of the pool.
3842  * Hence, when a multicast address is removed from the pool, all following
3843  * addresses, if any, are copied back to keep the set contiguous.
3844  */
3845 #define MCAST_POOL_INC 32
3846 
3847 static int
3848 mcast_addr_pool_extend(struct rte_port *port)
3849 {
3850 	struct rte_ether_addr *mc_pool;
3851 	size_t mc_pool_size;
3852 
3853 	/*
3854 	 * If a free entry is available at the end of the pool, just
3855 	 * increment the number of recorded multicast addresses.
3856 	 */
3857 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3858 		port->mc_addr_nb++;
3859 		return 0;
3860 	}
3861 
3862 	/*
3863 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3864 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3865 	 * of MCAST_POOL_INC.
3866 	 */
3867 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
3868 						    MCAST_POOL_INC);
3869 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
3870 						mc_pool_size);
3871 	if (mc_pool == NULL) {
3872 		printf("allocation of pool of %u multicast addresses failed\n",
3873 		       port->mc_addr_nb + MCAST_POOL_INC);
3874 		return -ENOMEM;
3875 	}
3876 
3877 	port->mc_addr_pool = mc_pool;
3878 	port->mc_addr_nb++;
3879 	return 0;
3880 
3881 }
3882 
3883 static void
3884 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
3885 {
3886 	if (mcast_addr_pool_extend(port) != 0)
3887 		return;
3888 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
3889 }
3890 
3891 static void
3892 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3893 {
3894 	port->mc_addr_nb--;
3895 	if (addr_idx == port->mc_addr_nb) {
3896 		/* No need to recompact the set of multicast addressses. */
3897 		if (port->mc_addr_nb == 0) {
3898 			/* free the pool of multicast addresses. */
3899 			free(port->mc_addr_pool);
3900 			port->mc_addr_pool = NULL;
3901 		}
3902 		return;
3903 	}
3904 	memmove(&port->mc_addr_pool[addr_idx],
3905 		&port->mc_addr_pool[addr_idx + 1],
3906 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
3907 }
3908 
3909 static int
3910 eth_port_multicast_addr_list_set(portid_t port_id)
3911 {
3912 	struct rte_port *port;
3913 	int diag;
3914 
3915 	port = &ports[port_id];
3916 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3917 					    port->mc_addr_nb);
3918 	if (diag < 0)
3919 		printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3920 			port_id, port->mc_addr_nb, diag);
3921 
3922 	return diag;
3923 }
3924 
3925 void
3926 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
3927 {
3928 	struct rte_port *port;
3929 	uint32_t i;
3930 
3931 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3932 		return;
3933 
3934 	port = &ports[port_id];
3935 
3936 	/*
3937 	 * Check that the added multicast MAC address is not already recorded
3938 	 * in the pool of multicast addresses.
3939 	 */
3940 	for (i = 0; i < port->mc_addr_nb; i++) {
3941 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3942 			printf("multicast address already filtered by port\n");
3943 			return;
3944 		}
3945 	}
3946 
3947 	mcast_addr_pool_append(port, mc_addr);
3948 	if (eth_port_multicast_addr_list_set(port_id) < 0)
3949 		/* Rollback on failure, remove the address from the pool */
3950 		mcast_addr_pool_remove(port, i);
3951 }
3952 
3953 void
3954 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
3955 {
3956 	struct rte_port *port;
3957 	uint32_t i;
3958 
3959 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3960 		return;
3961 
3962 	port = &ports[port_id];
3963 
3964 	/*
3965 	 * Search the pool of multicast MAC addresses for the removed address.
3966 	 */
3967 	for (i = 0; i < port->mc_addr_nb; i++) {
3968 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3969 			break;
3970 	}
3971 	if (i == port->mc_addr_nb) {
3972 		printf("multicast address not filtered by port %d\n", port_id);
3973 		return;
3974 	}
3975 
3976 	mcast_addr_pool_remove(port, i);
3977 	if (eth_port_multicast_addr_list_set(port_id) < 0)
3978 		/* Rollback on failure, add the address back into the pool */
3979 		mcast_addr_pool_append(port, mc_addr);
3980 }
3981 
3982 void
3983 port_dcb_info_display(portid_t port_id)
3984 {
3985 	struct rte_eth_dcb_info dcb_info;
3986 	uint16_t i;
3987 	int ret;
3988 	static const char *border = "================";
3989 
3990 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3991 		return;
3992 
3993 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3994 	if (ret) {
3995 		printf("\n Failed to get dcb infos on port %-2d\n",
3996 			port_id);
3997 		return;
3998 	}
3999 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
4000 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
4001 	printf("\n  TC :        ");
4002 	for (i = 0; i < dcb_info.nb_tcs; i++)
4003 		printf("\t%4d", i);
4004 	printf("\n  Priority :  ");
4005 	for (i = 0; i < dcb_info.nb_tcs; i++)
4006 		printf("\t%4d", dcb_info.prio_tc[i]);
4007 	printf("\n  BW percent :");
4008 	for (i = 0; i < dcb_info.nb_tcs; i++)
4009 		printf("\t%4d%%", dcb_info.tc_bws[i]);
4010 	printf("\n  RXQ base :  ");
4011 	for (i = 0; i < dcb_info.nb_tcs; i++)
4012 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
4013 	printf("\n  RXQ number :");
4014 	for (i = 0; i < dcb_info.nb_tcs; i++)
4015 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
4016 	printf("\n  TXQ base :  ");
4017 	for (i = 0; i < dcb_info.nb_tcs; i++)
4018 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
4019 	printf("\n  TXQ number :");
4020 	for (i = 0; i < dcb_info.nb_tcs; i++)
4021 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
4022 	printf("\n");
4023 }
4024 
4025 uint8_t *
4026 open_file(const char *file_path, uint32_t *size)
4027 {
4028 	int fd = open(file_path, O_RDONLY);
4029 	off_t pkg_size;
4030 	uint8_t *buf = NULL;
4031 	int ret = 0;
4032 	struct stat st_buf;
4033 
4034 	if (size)
4035 		*size = 0;
4036 
4037 	if (fd == -1) {
4038 		printf("%s: Failed to open %s\n", __func__, file_path);
4039 		return buf;
4040 	}
4041 
4042 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
4043 		close(fd);
4044 		printf("%s: File operations failed\n", __func__);
4045 		return buf;
4046 	}
4047 
4048 	pkg_size = st_buf.st_size;
4049 	if (pkg_size < 0) {
4050 		close(fd);
4051 		printf("%s: File operations failed\n", __func__);
4052 		return buf;
4053 	}
4054 
4055 	buf = (uint8_t *)malloc(pkg_size);
4056 	if (!buf) {
4057 		close(fd);
4058 		printf("%s: Failed to malloc memory\n",	__func__);
4059 		return buf;
4060 	}
4061 
4062 	ret = read(fd, buf, pkg_size);
4063 	if (ret < 0) {
4064 		close(fd);
4065 		printf("%s: File read operation failed\n", __func__);
4066 		close_file(buf);
4067 		return NULL;
4068 	}
4069 
4070 	if (size)
4071 		*size = pkg_size;
4072 
4073 	close(fd);
4074 
4075 	return buf;
4076 }
4077 
4078 int
4079 save_file(const char *file_path, uint8_t *buf, uint32_t size)
4080 {
4081 	FILE *fh = fopen(file_path, "wb");
4082 
4083 	if (fh == NULL) {
4084 		printf("%s: Failed to open %s\n", __func__, file_path);
4085 		return -1;
4086 	}
4087 
4088 	if (fwrite(buf, 1, size, fh) != size) {
4089 		fclose(fh);
4090 		printf("%s: File write operation failed\n", __func__);
4091 		return -1;
4092 	}
4093 
4094 	fclose(fh);
4095 
4096 	return 0;
4097 }
4098 
4099 int
4100 close_file(uint8_t *buf)
4101 {
4102 	if (buf) {
4103 		free((void *)buf);
4104 		return 0;
4105 	}
4106 
4107 	return -1;
4108 }
4109 
4110 void
4111 port_queue_region_info_display(portid_t port_id, void *buf)
4112 {
4113 #ifdef RTE_LIBRTE_I40E_PMD
4114 	uint16_t i, j;
4115 	struct rte_pmd_i40e_queue_regions *info =
4116 		(struct rte_pmd_i40e_queue_regions *)buf;
4117 	static const char *queue_region_info_stats_border = "-------";
4118 
4119 	if (!info->queue_region_number)
4120 		printf("there is no region has been set before");
4121 
4122 	printf("\n	%s All queue region info for port=%2d %s",
4123 			queue_region_info_stats_border, port_id,
4124 			queue_region_info_stats_border);
4125 	printf("\n	queue_region_number: %-14u \n",
4126 			info->queue_region_number);
4127 
4128 	for (i = 0; i < info->queue_region_number; i++) {
4129 		printf("\n	region_id: %-14u queue_number: %-14u "
4130 			"queue_start_index: %-14u \n",
4131 			info->region[i].region_id,
4132 			info->region[i].queue_num,
4133 			info->region[i].queue_start_index);
4134 
4135 		printf("  user_priority_num is	%-14u :",
4136 					info->region[i].user_priority_num);
4137 		for (j = 0; j < info->region[i].user_priority_num; j++)
4138 			printf(" %-14u ", info->region[i].user_priority[j]);
4139 
4140 		printf("\n	flowtype_num is  %-14u :",
4141 				info->region[i].flowtype_num);
4142 		for (j = 0; j < info->region[i].flowtype_num; j++)
4143 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
4144 	}
4145 #else
4146 	RTE_SET_USED(port_id);
4147 	RTE_SET_USED(buf);
4148 #endif
4149 
4150 	printf("\n\n");
4151 }
4152 
4153 void
4154 show_macs(portid_t port_id)
4155 {
4156 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
4157 	struct rte_eth_dev_info dev_info;
4158 	struct rte_ether_addr *addr;
4159 	uint32_t i, num_macs = 0;
4160 	struct rte_eth_dev *dev;
4161 
4162 	dev = &rte_eth_devices[port_id];
4163 
4164 	rte_eth_dev_info_get(port_id, &dev_info);
4165 
4166 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
4167 		addr = &dev->data->mac_addrs[i];
4168 
4169 		/* skip zero address */
4170 		if (rte_is_zero_ether_addr(addr))
4171 			continue;
4172 
4173 		num_macs++;
4174 	}
4175 
4176 	printf("Number of MAC address added: %d\n", num_macs);
4177 
4178 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
4179 		addr = &dev->data->mac_addrs[i];
4180 
4181 		/* skip zero address */
4182 		if (rte_is_zero_ether_addr(addr))
4183 			continue;
4184 
4185 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
4186 		printf("  %s\n", buf);
4187 	}
4188 }
4189 
4190 void
4191 show_mcast_macs(portid_t port_id)
4192 {
4193 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
4194 	struct rte_ether_addr *addr;
4195 	struct rte_port *port;
4196 	uint32_t i;
4197 
4198 	port = &ports[port_id];
4199 
4200 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
4201 
4202 	for (i = 0; i < port->mc_addr_nb; i++) {
4203 		addr = &port->mc_addr_pool[i];
4204 
4205 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
4206 		printf("  %s\n", buf);
4207 	}
4208 }
4209