xref: /dpdk/app/test-pmd/config.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_mtr.h>
42 #include <rte_errno.h>
43 #ifdef RTE_NET_IXGBE
44 #include <rte_pmd_ixgbe.h>
45 #endif
46 #ifdef RTE_NET_I40E
47 #include <rte_pmd_i40e.h>
48 #endif
49 #ifdef RTE_NET_BNXT
50 #include <rte_pmd_bnxt.h>
51 #endif
52 #include <rte_gro.h>
53 #include <rte_hexdump.h>
54 
55 #include "testpmd.h"
56 #include "cmdline_mtr.h"
57 
58 #define ETHDEV_FWVERS_LEN 32
59 
60 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
61 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
62 #else
63 #define CLOCK_TYPE_ID CLOCK_MONOTONIC
64 #endif
65 
66 #define NS_PER_SEC 1E9
67 
68 static char *flowtype_to_str(uint16_t flow_type);
69 
70 static const struct {
71 	enum tx_pkt_split split;
72 	const char *name;
73 } tx_split_name[] = {
74 	{
75 		.split = TX_PKT_SPLIT_OFF,
76 		.name = "off",
77 	},
78 	{
79 		.split = TX_PKT_SPLIT_ON,
80 		.name = "on",
81 	},
82 	{
83 		.split = TX_PKT_SPLIT_RND,
84 		.name = "rand",
85 	},
86 };
87 
88 const struct rss_type_info rss_type_table[] = {
89 	{ "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP |
90 		RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD |
91 		RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP |
92 		RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS},
93 	{ "none", 0 },
94 	{ "eth", RTE_ETH_RSS_ETH },
95 	{ "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY },
96 	{ "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY },
97 	{ "vlan", RTE_ETH_RSS_VLAN },
98 	{ "s-vlan", RTE_ETH_RSS_S_VLAN },
99 	{ "c-vlan", RTE_ETH_RSS_C_VLAN },
100 	{ "ipv4", RTE_ETH_RSS_IPV4 },
101 	{ "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 },
102 	{ "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP },
103 	{ "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP },
104 	{ "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP },
105 	{ "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER },
106 	{ "ipv6", RTE_ETH_RSS_IPV6 },
107 	{ "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 },
108 	{ "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP },
109 	{ "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP },
110 	{ "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP },
111 	{ "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER },
112 	{ "l2-payload", RTE_ETH_RSS_L2_PAYLOAD },
113 	{ "ipv6-ex", RTE_ETH_RSS_IPV6_EX },
114 	{ "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX },
115 	{ "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX },
116 	{ "port", RTE_ETH_RSS_PORT },
117 	{ "vxlan", RTE_ETH_RSS_VXLAN },
118 	{ "geneve", RTE_ETH_RSS_GENEVE },
119 	{ "nvgre", RTE_ETH_RSS_NVGRE },
120 	{ "ip", RTE_ETH_RSS_IP },
121 	{ "udp", RTE_ETH_RSS_UDP },
122 	{ "tcp", RTE_ETH_RSS_TCP },
123 	{ "sctp", RTE_ETH_RSS_SCTP },
124 	{ "tunnel", RTE_ETH_RSS_TUNNEL },
125 	{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
126 	{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
127 	{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
128 	{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
129 	{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
130 	{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
131 	{ "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY },
132 	{ "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY },
133 	{ "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY },
134 	{ "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY },
135 	{ "esp", RTE_ETH_RSS_ESP },
136 	{ "ah", RTE_ETH_RSS_AH },
137 	{ "l2tpv3", RTE_ETH_RSS_L2TPV3 },
138 	{ "pfcp", RTE_ETH_RSS_PFCP },
139 	{ "pppoe", RTE_ETH_RSS_PPPOE },
140 	{ "gtpu", RTE_ETH_RSS_GTPU },
141 	{ "ecpri", RTE_ETH_RSS_ECPRI },
142 	{ "mpls", RTE_ETH_RSS_MPLS },
143 	{ "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM },
144 	{ "l4-chksum", RTE_ETH_RSS_L4_CHKSUM },
145 	{ NULL, 0 },
146 };
147 
148 static const struct {
149 	enum rte_eth_fec_mode mode;
150 	const char *name;
151 } fec_mode_name[] = {
152 	{
153 		.mode = RTE_ETH_FEC_NOFEC,
154 		.name = "off",
155 	},
156 	{
157 		.mode = RTE_ETH_FEC_AUTO,
158 		.name = "auto",
159 	},
160 	{
161 		.mode = RTE_ETH_FEC_BASER,
162 		.name = "baser",
163 	},
164 	{
165 		.mode = RTE_ETH_FEC_RS,
166 		.name = "rs",
167 	},
168 };
169 
170 static void
171 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
172 {
173 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
174 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
175 	printf("%s%s", name, buf);
176 }
177 
178 static void
179 nic_xstats_display_periodic(portid_t port_id)
180 {
181 	struct xstat_display_info *xstats_info;
182 	uint64_t *prev_values, *curr_values;
183 	uint64_t diff_value, value_rate;
184 	struct timespec cur_time;
185 	uint64_t *ids_supp;
186 	size_t ids_supp_sz;
187 	uint64_t diff_ns;
188 	unsigned int i;
189 	int rc;
190 
191 	xstats_info = &ports[port_id].xstats_info;
192 
193 	ids_supp_sz = xstats_info->ids_supp_sz;
194 	if (ids_supp_sz == 0)
195 		return;
196 
197 	printf("\n");
198 
199 	ids_supp = xstats_info->ids_supp;
200 	prev_values = xstats_info->prev_values;
201 	curr_values = xstats_info->curr_values;
202 
203 	rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values,
204 				      ids_supp_sz);
205 	if (rc != (int)ids_supp_sz) {
206 		fprintf(stderr,
207 			"Failed to get values of %zu xstats for port %u - return code %d\n",
208 			ids_supp_sz, port_id, rc);
209 		return;
210 	}
211 
212 	diff_ns = 0;
213 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
214 		uint64_t ns;
215 
216 		ns = cur_time.tv_sec * NS_PER_SEC;
217 		ns += cur_time.tv_nsec;
218 
219 		if (xstats_info->prev_ns != 0)
220 			diff_ns = ns - xstats_info->prev_ns;
221 		xstats_info->prev_ns = ns;
222 	}
223 
224 	printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)");
225 	for (i = 0; i < ids_supp_sz; i++) {
226 		diff_value = (curr_values[i] > prev_values[i]) ?
227 			     (curr_values[i] - prev_values[i]) : 0;
228 		prev_values[i] = curr_values[i];
229 		value_rate = diff_ns > 0 ?
230 				(double)diff_value / diff_ns * NS_PER_SEC : 0;
231 
232 		printf("  %-25s%12"PRIu64" %15"PRIu64"\n",
233 		       xstats_display[i].name, curr_values[i], value_rate);
234 	}
235 }
236 
237 void
238 nic_stats_display(portid_t port_id)
239 {
240 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
241 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
242 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
243 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
244 	static uint64_t prev_ns[RTE_MAX_ETHPORTS];
245 	struct timespec cur_time;
246 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
247 								diff_ns;
248 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
249 	struct rte_eth_stats stats;
250 
251 	static const char *nic_stats_border = "########################";
252 
253 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
254 		print_valid_ports();
255 		return;
256 	}
257 	rte_eth_stats_get(port_id, &stats);
258 	printf("\n  %s NIC statistics for port %-2d %s\n",
259 	       nic_stats_border, port_id, nic_stats_border);
260 
261 	printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
262 	       "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
263 	printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
264 	printf("  RX-nombuf:  %-10"PRIu64"\n", stats.rx_nombuf);
265 	printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
266 	       "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
267 
268 	diff_ns = 0;
269 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
270 		uint64_t ns;
271 
272 		ns = cur_time.tv_sec * NS_PER_SEC;
273 		ns += cur_time.tv_nsec;
274 
275 		if (prev_ns[port_id] != 0)
276 			diff_ns = ns - prev_ns[port_id];
277 		prev_ns[port_id] = ns;
278 	}
279 
280 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
281 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
282 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
283 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
284 	prev_pkts_rx[port_id] = stats.ipackets;
285 	prev_pkts_tx[port_id] = stats.opackets;
286 	mpps_rx = diff_ns > 0 ?
287 		(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
288 	mpps_tx = diff_ns > 0 ?
289 		(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
290 
291 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
292 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
293 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
294 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
295 	prev_bytes_rx[port_id] = stats.ibytes;
296 	prev_bytes_tx[port_id] = stats.obytes;
297 	mbps_rx = diff_ns > 0 ?
298 		(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
299 	mbps_tx = diff_ns > 0 ?
300 		(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
301 
302 	printf("\n  Throughput (since last show)\n");
303 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
304 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
305 	       mpps_tx, mbps_tx * 8);
306 
307 	if (xstats_display_num > 0)
308 		nic_xstats_display_periodic(port_id);
309 
310 	printf("  %s############################%s\n",
311 	       nic_stats_border, nic_stats_border);
312 }
313 
314 void
315 nic_stats_clear(portid_t port_id)
316 {
317 	int ret;
318 
319 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
320 		print_valid_ports();
321 		return;
322 	}
323 
324 	ret = rte_eth_stats_reset(port_id);
325 	if (ret != 0) {
326 		fprintf(stderr,
327 			"%s: Error: failed to reset stats (port %u): %s",
328 			__func__, port_id, strerror(-ret));
329 		return;
330 	}
331 
332 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
333 	if (ret != 0) {
334 		if (ret < 0)
335 			ret = -ret;
336 		fprintf(stderr,
337 			"%s: Error: failed to get stats (port %u): %s",
338 			__func__, port_id, strerror(ret));
339 		return;
340 	}
341 	printf("\n  NIC statistics for port %d cleared\n", port_id);
342 }
343 
344 void
345 nic_xstats_display(portid_t port_id)
346 {
347 	struct rte_eth_xstat *xstats;
348 	int cnt_xstats, idx_xstat;
349 	struct rte_eth_xstat_name *xstats_names;
350 
351 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
352 		print_valid_ports();
353 		return;
354 	}
355 	printf("###### NIC extended statistics for port %-2d\n", port_id);
356 	if (!rte_eth_dev_is_valid_port(port_id)) {
357 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
358 		return;
359 	}
360 
361 	/* Get count */
362 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
363 	if (cnt_xstats  < 0) {
364 		fprintf(stderr, "Error: Cannot get count of xstats\n");
365 		return;
366 	}
367 
368 	/* Get id-name lookup table */
369 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
370 	if (xstats_names == NULL) {
371 		fprintf(stderr, "Cannot allocate memory for xstats lookup\n");
372 		return;
373 	}
374 	if (cnt_xstats != rte_eth_xstats_get_names(
375 			port_id, xstats_names, cnt_xstats)) {
376 		fprintf(stderr, "Error: Cannot get xstats lookup\n");
377 		free(xstats_names);
378 		return;
379 	}
380 
381 	/* Get stats themselves */
382 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
383 	if (xstats == NULL) {
384 		fprintf(stderr, "Cannot allocate memory for xstats\n");
385 		free(xstats_names);
386 		return;
387 	}
388 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
389 		fprintf(stderr, "Error: Unable to get xstats\n");
390 		free(xstats_names);
391 		free(xstats);
392 		return;
393 	}
394 
395 	/* Display xstats */
396 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
397 		if (xstats_hide_zero && !xstats[idx_xstat].value)
398 			continue;
399 		printf("%s: %"PRIu64"\n",
400 			xstats_names[idx_xstat].name,
401 			xstats[idx_xstat].value);
402 	}
403 	free(xstats_names);
404 	free(xstats);
405 }
406 
407 void
408 nic_xstats_clear(portid_t port_id)
409 {
410 	int ret;
411 
412 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
413 		print_valid_ports();
414 		return;
415 	}
416 
417 	ret = rte_eth_xstats_reset(port_id);
418 	if (ret != 0) {
419 		fprintf(stderr,
420 			"%s: Error: failed to reset xstats (port %u): %s\n",
421 			__func__, port_id, strerror(-ret));
422 		return;
423 	}
424 
425 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
426 	if (ret != 0) {
427 		if (ret < 0)
428 			ret = -ret;
429 		fprintf(stderr, "%s: Error: failed to get stats (port %u): %s",
430 			__func__, port_id, strerror(ret));
431 		return;
432 	}
433 }
434 
435 static const char *
436 get_queue_state_name(uint8_t queue_state)
437 {
438 	if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED)
439 		return "stopped";
440 	else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED)
441 		return "started";
442 	else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN)
443 		return "hairpin";
444 	else
445 		return "unknown";
446 }
447 
448 void
449 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
450 {
451 	struct rte_eth_burst_mode mode;
452 	struct rte_eth_rxq_info qinfo;
453 	int32_t rc;
454 	static const char *info_border = "*********************";
455 
456 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
457 	if (rc != 0) {
458 		fprintf(stderr,
459 			"Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n",
460 			port_id, queue_id, strerror(-rc), rc);
461 		return;
462 	}
463 
464 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
465 	       info_border, port_id, queue_id, info_border);
466 
467 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
468 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
469 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
470 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
471 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
472 	printf("\nRX drop packets: %s",
473 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
474 	printf("\nRX deferred start: %s",
475 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
476 	printf("\nRX scattered packets: %s",
477 		(qinfo.scattered_rx != 0) ? "on" : "off");
478 	printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state));
479 	if (qinfo.rx_buf_size != 0)
480 		printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
481 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
482 
483 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
484 		printf("\nBurst mode: %s%s",
485 		       mode.info,
486 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
487 				" (per queue)" : "");
488 
489 	printf("\n");
490 }
491 
492 void
493 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
494 {
495 	struct rte_eth_burst_mode mode;
496 	struct rte_eth_txq_info qinfo;
497 	int32_t rc;
498 	static const char *info_border = "*********************";
499 
500 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
501 	if (rc != 0) {
502 		fprintf(stderr,
503 			"Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n",
504 			port_id, queue_id, strerror(-rc), rc);
505 		return;
506 	}
507 
508 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
509 	       info_border, port_id, queue_id, info_border);
510 
511 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
512 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
513 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
514 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
515 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
516 	printf("\nTX deferred start: %s",
517 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
518 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
519 	printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state));
520 
521 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
522 		printf("\nBurst mode: %s%s",
523 		       mode.info,
524 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
525 				" (per queue)" : "");
526 
527 	printf("\n");
528 }
529 
530 static int bus_match_all(const struct rte_bus *bus, const void *data)
531 {
532 	RTE_SET_USED(bus);
533 	RTE_SET_USED(data);
534 	return 0;
535 }
536 
537 static void
538 device_infos_display_speeds(uint32_t speed_capa)
539 {
540 	printf("\n\tDevice speed capability:");
541 	if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG)
542 		printf(" Autonegotiate (all speeds)");
543 	if (speed_capa & RTE_ETH_LINK_SPEED_FIXED)
544 		printf(" Disable autonegotiate (fixed speed)  ");
545 	if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD)
546 		printf(" 10 Mbps half-duplex  ");
547 	if (speed_capa & RTE_ETH_LINK_SPEED_10M)
548 		printf(" 10 Mbps full-duplex  ");
549 	if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD)
550 		printf(" 100 Mbps half-duplex  ");
551 	if (speed_capa & RTE_ETH_LINK_SPEED_100M)
552 		printf(" 100 Mbps full-duplex  ");
553 	if (speed_capa & RTE_ETH_LINK_SPEED_1G)
554 		printf(" 1 Gbps  ");
555 	if (speed_capa & RTE_ETH_LINK_SPEED_2_5G)
556 		printf(" 2.5 Gbps  ");
557 	if (speed_capa & RTE_ETH_LINK_SPEED_5G)
558 		printf(" 5 Gbps  ");
559 	if (speed_capa & RTE_ETH_LINK_SPEED_10G)
560 		printf(" 10 Gbps  ");
561 	if (speed_capa & RTE_ETH_LINK_SPEED_20G)
562 		printf(" 20 Gbps  ");
563 	if (speed_capa & RTE_ETH_LINK_SPEED_25G)
564 		printf(" 25 Gbps  ");
565 	if (speed_capa & RTE_ETH_LINK_SPEED_40G)
566 		printf(" 40 Gbps  ");
567 	if (speed_capa & RTE_ETH_LINK_SPEED_50G)
568 		printf(" 50 Gbps  ");
569 	if (speed_capa & RTE_ETH_LINK_SPEED_56G)
570 		printf(" 56 Gbps  ");
571 	if (speed_capa & RTE_ETH_LINK_SPEED_100G)
572 		printf(" 100 Gbps  ");
573 	if (speed_capa & RTE_ETH_LINK_SPEED_200G)
574 		printf(" 200 Gbps  ");
575 }
576 
577 void
578 device_infos_display(const char *identifier)
579 {
580 	static const char *info_border = "*********************";
581 	struct rte_bus *start = NULL, *next;
582 	struct rte_dev_iterator dev_iter;
583 	char name[RTE_ETH_NAME_MAX_LEN];
584 	struct rte_ether_addr mac_addr;
585 	struct rte_device *dev;
586 	struct rte_devargs da;
587 	portid_t port_id;
588 	struct rte_eth_dev_info dev_info;
589 	char devstr[128];
590 
591 	memset(&da, 0, sizeof(da));
592 	if (!identifier)
593 		goto skip_parse;
594 
595 	if (rte_devargs_parsef(&da, "%s", identifier)) {
596 		fprintf(stderr, "cannot parse identifier\n");
597 		return;
598 	}
599 
600 skip_parse:
601 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
602 
603 		start = next;
604 		if (identifier && da.bus != next)
605 			continue;
606 
607 		/* Skip buses that don't have iterate method */
608 		if (!next->dev_iterate)
609 			continue;
610 
611 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
612 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
613 
614 			if (!dev->driver)
615 				continue;
616 			/* Check for matching device if identifier is present */
617 			if (identifier &&
618 			    strncmp(da.name, dev->name, strlen(dev->name)))
619 				continue;
620 			printf("\n%s Infos for device %s %s\n",
621 			       info_border, dev->name, info_border);
622 			printf("Bus name: %s", dev->bus->name);
623 			printf("\nDriver name: %s", dev->driver->name);
624 			printf("\nDevargs: %s",
625 			       dev->devargs ? dev->devargs->args : "");
626 			printf("\nConnect to socket: %d", dev->numa_node);
627 			printf("\n");
628 
629 			/* List ports with matching device name */
630 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
631 				printf("\n\tPort id: %-2d", port_id);
632 				if (eth_macaddr_get_print_err(port_id,
633 							      &mac_addr) == 0)
634 					print_ethaddr("\n\tMAC address: ",
635 						      &mac_addr);
636 				rte_eth_dev_get_name_by_port(port_id, name);
637 				printf("\n\tDevice name: %s", name);
638 				if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
639 					device_infos_display_speeds(dev_info.speed_capa);
640 				printf("\n");
641 			}
642 		}
643 	};
644 	rte_devargs_reset(&da);
645 }
646 
647 static void
648 print_dev_capabilities(uint64_t capabilities)
649 {
650 	uint64_t single_capa;
651 	int begin;
652 	int end;
653 	int bit;
654 
655 	if (capabilities == 0)
656 		return;
657 
658 	begin = __builtin_ctzll(capabilities);
659 	end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities);
660 
661 	single_capa = 1ULL << begin;
662 	for (bit = begin; bit < end; bit++) {
663 		if (capabilities & single_capa)
664 			printf(" %s",
665 			       rte_eth_dev_capability_name(single_capa));
666 		single_capa <<= 1;
667 	}
668 }
669 
670 void
671 port_infos_display(portid_t port_id)
672 {
673 	struct rte_port *port;
674 	struct rte_ether_addr mac_addr;
675 	struct rte_eth_link link;
676 	struct rte_eth_dev_info dev_info;
677 	int vlan_offload;
678 	struct rte_mempool * mp;
679 	static const char *info_border = "*********************";
680 	uint16_t mtu;
681 	char name[RTE_ETH_NAME_MAX_LEN];
682 	int ret;
683 	char fw_version[ETHDEV_FWVERS_LEN];
684 
685 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
686 		print_valid_ports();
687 		return;
688 	}
689 	port = &ports[port_id];
690 	ret = eth_link_get_nowait_print_err(port_id, &link);
691 	if (ret < 0)
692 		return;
693 
694 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
695 	if (ret != 0)
696 		return;
697 
698 	printf("\n%s Infos for port %-2d %s\n",
699 	       info_border, port_id, info_border);
700 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
701 		print_ethaddr("MAC address: ", &mac_addr);
702 	rte_eth_dev_get_name_by_port(port_id, name);
703 	printf("\nDevice name: %s", name);
704 	printf("\nDriver name: %s", dev_info.driver_name);
705 
706 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
707 						ETHDEV_FWVERS_LEN) == 0)
708 		printf("\nFirmware-version: %s", fw_version);
709 	else
710 		printf("\nFirmware-version: %s", "not available");
711 
712 	if (dev_info.device->devargs && dev_info.device->devargs->args)
713 		printf("\nDevargs: %s", dev_info.device->devargs->args);
714 	printf("\nConnect to socket: %u", port->socket_id);
715 
716 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
717 		mp = mbuf_pool_find(port_numa[port_id], 0);
718 		if (mp)
719 			printf("\nmemory allocation on the socket: %d",
720 							port_numa[port_id]);
721 	} else
722 		printf("\nmemory allocation on the socket: %u",port->socket_id);
723 
724 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
725 	printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
726 	printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ?
727 	       ("full-duplex") : ("half-duplex"));
728 	printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ?
729 	       ("On") : ("Off"));
730 
731 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
732 		printf("MTU: %u\n", mtu);
733 
734 	printf("Promiscuous mode: %s\n",
735 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
736 	printf("Allmulticast mode: %s\n",
737 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
738 	printf("Maximum number of MAC addresses: %u\n",
739 	       (unsigned int)(port->dev_info.max_mac_addrs));
740 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
741 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
742 
743 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
744 	if (vlan_offload >= 0){
745 		printf("VLAN offload: \n");
746 		if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD)
747 			printf("  strip on, ");
748 		else
749 			printf("  strip off, ");
750 
751 		if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD)
752 			printf("filter on, ");
753 		else
754 			printf("filter off, ");
755 
756 		if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD)
757 			printf("extend on, ");
758 		else
759 			printf("extend off, ");
760 
761 		if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD)
762 			printf("qinq strip on\n");
763 		else
764 			printf("qinq strip off\n");
765 	}
766 
767 	if (dev_info.hash_key_size > 0)
768 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
769 	if (dev_info.reta_size > 0)
770 		printf("Redirection table size: %u\n", dev_info.reta_size);
771 	if (!dev_info.flow_type_rss_offloads)
772 		printf("No RSS offload flow type is supported.\n");
773 	else {
774 		uint16_t i;
775 		char *p;
776 
777 		printf("Supported RSS offload flow types:\n");
778 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
779 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
780 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
781 				continue;
782 			p = flowtype_to_str(i);
783 			if (p)
784 				printf("  %s\n", p);
785 			else
786 				printf("  user defined %d\n", i);
787 		}
788 	}
789 
790 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
791 	printf("Maximum configurable length of RX packet: %u\n",
792 		dev_info.max_rx_pktlen);
793 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
794 		dev_info.max_lro_pkt_size);
795 	if (dev_info.max_vfs)
796 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
797 	if (dev_info.max_vmdq_pools)
798 		printf("Maximum number of VMDq pools: %u\n",
799 			dev_info.max_vmdq_pools);
800 
801 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
802 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
803 	printf("Max possible number of RXDs per queue: %hu\n",
804 		dev_info.rx_desc_lim.nb_max);
805 	printf("Min possible number of RXDs per queue: %hu\n",
806 		dev_info.rx_desc_lim.nb_min);
807 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
808 
809 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
810 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
811 	printf("Max possible number of TXDs per queue: %hu\n",
812 		dev_info.tx_desc_lim.nb_max);
813 	printf("Min possible number of TXDs per queue: %hu\n",
814 		dev_info.tx_desc_lim.nb_min);
815 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
816 	printf("Max segment number per packet: %hu\n",
817 		dev_info.tx_desc_lim.nb_seg_max);
818 	printf("Max segment number per MTU/TSO: %hu\n",
819 		dev_info.tx_desc_lim.nb_mtu_seg_max);
820 
821 	printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa);
822 	print_dev_capabilities(dev_info.dev_capa);
823 	printf(" )\n");
824 	/* Show switch info only if valid switch domain and port id is set */
825 	if (dev_info.switch_info.domain_id !=
826 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
827 		if (dev_info.switch_info.name)
828 			printf("Switch name: %s\n", dev_info.switch_info.name);
829 
830 		printf("Switch domain Id: %u\n",
831 			dev_info.switch_info.domain_id);
832 		printf("Switch Port Id: %u\n",
833 			dev_info.switch_info.port_id);
834 		if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0)
835 			printf("Switch Rx domain: %u\n",
836 			       dev_info.switch_info.rx_domain);
837 	}
838 }
839 
840 void
841 port_summary_header_display(void)
842 {
843 	uint16_t port_number;
844 
845 	port_number = rte_eth_dev_count_avail();
846 	printf("Number of available ports: %i\n", port_number);
847 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
848 			"Driver", "Status", "Link");
849 }
850 
851 void
852 port_summary_display(portid_t port_id)
853 {
854 	struct rte_ether_addr mac_addr;
855 	struct rte_eth_link link;
856 	struct rte_eth_dev_info dev_info;
857 	char name[RTE_ETH_NAME_MAX_LEN];
858 	int ret;
859 
860 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
861 		print_valid_ports();
862 		return;
863 	}
864 
865 	ret = eth_link_get_nowait_print_err(port_id, &link);
866 	if (ret < 0)
867 		return;
868 
869 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
870 	if (ret != 0)
871 		return;
872 
873 	rte_eth_dev_get_name_by_port(port_id, name);
874 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
875 	if (ret != 0)
876 		return;
877 
878 	printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n",
879 		port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name,
880 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
881 		rte_eth_link_speed_to_str(link.link_speed));
882 }
883 
884 void
885 port_eeprom_display(portid_t port_id)
886 {
887 	struct rte_dev_eeprom_info einfo;
888 	int ret;
889 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
890 		print_valid_ports();
891 		return;
892 	}
893 
894 	int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
895 	if (len_eeprom < 0) {
896 		switch (len_eeprom) {
897 		case -ENODEV:
898 			fprintf(stderr, "port index %d invalid\n", port_id);
899 			break;
900 		case -ENOTSUP:
901 			fprintf(stderr, "operation not supported by device\n");
902 			break;
903 		case -EIO:
904 			fprintf(stderr, "device is removed\n");
905 			break;
906 		default:
907 			fprintf(stderr, "Unable to get EEPROM: %d\n",
908 				len_eeprom);
909 			break;
910 		}
911 		return;
912 	}
913 
914 	char buf[len_eeprom];
915 	einfo.offset = 0;
916 	einfo.length = len_eeprom;
917 	einfo.data = buf;
918 
919 	ret = rte_eth_dev_get_eeprom(port_id, &einfo);
920 	if (ret != 0) {
921 		switch (ret) {
922 		case -ENODEV:
923 			fprintf(stderr, "port index %d invalid\n", port_id);
924 			break;
925 		case -ENOTSUP:
926 			fprintf(stderr, "operation not supported by device\n");
927 			break;
928 		case -EIO:
929 			fprintf(stderr, "device is removed\n");
930 			break;
931 		default:
932 			fprintf(stderr, "Unable to get EEPROM: %d\n", ret);
933 			break;
934 		}
935 		return;
936 	}
937 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
938 	printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
939 }
940 
941 void
942 port_module_eeprom_display(portid_t port_id)
943 {
944 	struct rte_eth_dev_module_info minfo;
945 	struct rte_dev_eeprom_info einfo;
946 	int ret;
947 
948 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
949 		print_valid_ports();
950 		return;
951 	}
952 
953 
954 	ret = rte_eth_dev_get_module_info(port_id, &minfo);
955 	if (ret != 0) {
956 		switch (ret) {
957 		case -ENODEV:
958 			fprintf(stderr, "port index %d invalid\n", port_id);
959 			break;
960 		case -ENOTSUP:
961 			fprintf(stderr, "operation not supported by device\n");
962 			break;
963 		case -EIO:
964 			fprintf(stderr, "device is removed\n");
965 			break;
966 		default:
967 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
968 				ret);
969 			break;
970 		}
971 		return;
972 	}
973 
974 	char buf[minfo.eeprom_len];
975 	einfo.offset = 0;
976 	einfo.length = minfo.eeprom_len;
977 	einfo.data = buf;
978 
979 	ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
980 	if (ret != 0) {
981 		switch (ret) {
982 		case -ENODEV:
983 			fprintf(stderr, "port index %d invalid\n", port_id);
984 			break;
985 		case -ENOTSUP:
986 			fprintf(stderr, "operation not supported by device\n");
987 			break;
988 		case -EIO:
989 			fprintf(stderr, "device is removed\n");
990 			break;
991 		default:
992 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
993 				ret);
994 			break;
995 		}
996 		return;
997 	}
998 
999 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
1000 	printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
1001 }
1002 
1003 int
1004 port_id_is_invalid(portid_t port_id, enum print_warning warning)
1005 {
1006 	uint16_t pid;
1007 
1008 	if (port_id == (portid_t)RTE_PORT_ALL)
1009 		return 0;
1010 
1011 	RTE_ETH_FOREACH_DEV(pid)
1012 		if (port_id == pid)
1013 			return 0;
1014 
1015 	if (warning == ENABLED_WARN)
1016 		fprintf(stderr, "Invalid port %d\n", port_id);
1017 
1018 	return 1;
1019 }
1020 
1021 void print_valid_ports(void)
1022 {
1023 	portid_t pid;
1024 
1025 	printf("The valid ports array is [");
1026 	RTE_ETH_FOREACH_DEV(pid) {
1027 		printf(" %d", pid);
1028 	}
1029 	printf(" ]\n");
1030 }
1031 
1032 static int
1033 vlan_id_is_invalid(uint16_t vlan_id)
1034 {
1035 	if (vlan_id < 4096)
1036 		return 0;
1037 	fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id);
1038 	return 1;
1039 }
1040 
1041 static int
1042 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
1043 {
1044 	const struct rte_pci_device *pci_dev;
1045 	const struct rte_bus *bus;
1046 	uint64_t pci_len;
1047 
1048 	if (reg_off & 0x3) {
1049 		fprintf(stderr,
1050 			"Port register offset 0x%X not aligned on a 4-byte boundary\n",
1051 			(unsigned int)reg_off);
1052 		return 1;
1053 	}
1054 
1055 	if (!ports[port_id].dev_info.device) {
1056 		fprintf(stderr, "Invalid device\n");
1057 		return 0;
1058 	}
1059 
1060 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
1061 	if (bus && !strcmp(bus->name, "pci")) {
1062 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
1063 	} else {
1064 		fprintf(stderr, "Not a PCI device\n");
1065 		return 1;
1066 	}
1067 
1068 	pci_len = pci_dev->mem_resource[0].len;
1069 	if (reg_off >= pci_len) {
1070 		fprintf(stderr,
1071 			"Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n",
1072 			port_id, (unsigned int)reg_off, (unsigned int)reg_off,
1073 			pci_len);
1074 		return 1;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static int
1080 reg_bit_pos_is_invalid(uint8_t bit_pos)
1081 {
1082 	if (bit_pos <= 31)
1083 		return 0;
1084 	fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos);
1085 	return 1;
1086 }
1087 
1088 #define display_port_and_reg_off(port_id, reg_off) \
1089 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
1090 
1091 static inline void
1092 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1093 {
1094 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1095 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1096 }
1097 
1098 void
1099 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1100 {
1101 	uint32_t reg_v;
1102 
1103 
1104 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1105 		return;
1106 	if (port_reg_off_is_invalid(port_id, reg_off))
1107 		return;
1108 	if (reg_bit_pos_is_invalid(bit_x))
1109 		return;
1110 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1111 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1112 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1113 }
1114 
1115 void
1116 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1117 			   uint8_t bit1_pos, uint8_t bit2_pos)
1118 {
1119 	uint32_t reg_v;
1120 	uint8_t  l_bit;
1121 	uint8_t  h_bit;
1122 
1123 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1124 		return;
1125 	if (port_reg_off_is_invalid(port_id, reg_off))
1126 		return;
1127 	if (reg_bit_pos_is_invalid(bit1_pos))
1128 		return;
1129 	if (reg_bit_pos_is_invalid(bit2_pos))
1130 		return;
1131 	if (bit1_pos > bit2_pos)
1132 		l_bit = bit2_pos, h_bit = bit1_pos;
1133 	else
1134 		l_bit = bit1_pos, h_bit = bit2_pos;
1135 
1136 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1137 	reg_v >>= l_bit;
1138 	if (h_bit < 31)
1139 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1140 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1141 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1142 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1143 }
1144 
1145 void
1146 port_reg_display(portid_t port_id, uint32_t reg_off)
1147 {
1148 	uint32_t reg_v;
1149 
1150 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1151 		return;
1152 	if (port_reg_off_is_invalid(port_id, reg_off))
1153 		return;
1154 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1155 	display_port_reg_value(port_id, reg_off, reg_v);
1156 }
1157 
1158 void
1159 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1160 		 uint8_t bit_v)
1161 {
1162 	uint32_t reg_v;
1163 
1164 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1165 		return;
1166 	if (port_reg_off_is_invalid(port_id, reg_off))
1167 		return;
1168 	if (reg_bit_pos_is_invalid(bit_pos))
1169 		return;
1170 	if (bit_v > 1) {
1171 		fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n",
1172 			(int) bit_v);
1173 		return;
1174 	}
1175 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1176 	if (bit_v == 0)
1177 		reg_v &= ~(1 << bit_pos);
1178 	else
1179 		reg_v |= (1 << bit_pos);
1180 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1181 	display_port_reg_value(port_id, reg_off, reg_v);
1182 }
1183 
1184 void
1185 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1186 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1187 {
1188 	uint32_t max_v;
1189 	uint32_t reg_v;
1190 	uint8_t  l_bit;
1191 	uint8_t  h_bit;
1192 
1193 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1194 		return;
1195 	if (port_reg_off_is_invalid(port_id, reg_off))
1196 		return;
1197 	if (reg_bit_pos_is_invalid(bit1_pos))
1198 		return;
1199 	if (reg_bit_pos_is_invalid(bit2_pos))
1200 		return;
1201 	if (bit1_pos > bit2_pos)
1202 		l_bit = bit2_pos, h_bit = bit1_pos;
1203 	else
1204 		l_bit = bit1_pos, h_bit = bit2_pos;
1205 
1206 	if ((h_bit - l_bit) < 31)
1207 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1208 	else
1209 		max_v = 0xFFFFFFFF;
1210 
1211 	if (value > max_v) {
1212 		fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n",
1213 				(unsigned)value, (unsigned)value,
1214 				(unsigned)max_v, (unsigned)max_v);
1215 		return;
1216 	}
1217 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1218 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1219 	reg_v |= (value << l_bit); /* Set changed bits */
1220 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1221 	display_port_reg_value(port_id, reg_off, reg_v);
1222 }
1223 
1224 void
1225 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1226 {
1227 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1228 		return;
1229 	if (port_reg_off_is_invalid(port_id, reg_off))
1230 		return;
1231 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1232 	display_port_reg_value(port_id, reg_off, reg_v);
1233 }
1234 
1235 void
1236 port_mtu_set(portid_t port_id, uint16_t mtu)
1237 {
1238 	struct rte_port *port = &ports[port_id];
1239 	int diag;
1240 
1241 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1242 		return;
1243 
1244 	diag = rte_eth_dev_set_mtu(port_id, mtu);
1245 	if (diag != 0) {
1246 		fprintf(stderr, "Set MTU failed. diag=%d\n", diag);
1247 		return;
1248 	}
1249 
1250 	port->dev_conf.rxmode.mtu = mtu;
1251 }
1252 
1253 /* Generic flow management functions. */
1254 
1255 static struct port_flow_tunnel *
1256 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
1257 {
1258 	struct port_flow_tunnel *flow_tunnel;
1259 
1260 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1261 		if (flow_tunnel->id == port_tunnel_id)
1262 			goto out;
1263 	}
1264 	flow_tunnel = NULL;
1265 
1266 out:
1267 	return flow_tunnel;
1268 }
1269 
1270 const char *
1271 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
1272 {
1273 	const char *type;
1274 	switch (tunnel->type) {
1275 	default:
1276 		type = "unknown";
1277 		break;
1278 	case RTE_FLOW_ITEM_TYPE_VXLAN:
1279 		type = "vxlan";
1280 		break;
1281 	case RTE_FLOW_ITEM_TYPE_GRE:
1282 		type = "gre";
1283 		break;
1284 	case RTE_FLOW_ITEM_TYPE_NVGRE:
1285 		type = "nvgre";
1286 		break;
1287 	case RTE_FLOW_ITEM_TYPE_GENEVE:
1288 		type = "geneve";
1289 		break;
1290 	}
1291 
1292 	return type;
1293 }
1294 
1295 struct port_flow_tunnel *
1296 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
1297 {
1298 	struct rte_port *port = &ports[port_id];
1299 	struct port_flow_tunnel *flow_tunnel;
1300 
1301 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1302 		if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
1303 			goto out;
1304 	}
1305 	flow_tunnel = NULL;
1306 
1307 out:
1308 	return flow_tunnel;
1309 }
1310 
1311 void port_flow_tunnel_list(portid_t port_id)
1312 {
1313 	struct rte_port *port = &ports[port_id];
1314 	struct port_flow_tunnel *flt;
1315 
1316 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1317 		printf("port %u tunnel #%u type=%s",
1318 			port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
1319 		if (flt->tunnel.tun_id)
1320 			printf(" id=%" PRIu64, flt->tunnel.tun_id);
1321 		printf("\n");
1322 	}
1323 }
1324 
1325 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
1326 {
1327 	struct rte_port *port = &ports[port_id];
1328 	struct port_flow_tunnel *flt;
1329 
1330 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1331 		if (flt->id == tunnel_id)
1332 			break;
1333 	}
1334 	if (flt) {
1335 		LIST_REMOVE(flt, chain);
1336 		free(flt);
1337 		printf("port %u: flow tunnel #%u destroyed\n",
1338 			port_id, tunnel_id);
1339 	}
1340 }
1341 
1342 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
1343 {
1344 	struct rte_port *port = &ports[port_id];
1345 	enum rte_flow_item_type	type;
1346 	struct port_flow_tunnel *flt;
1347 
1348 	if (!strcmp(ops->type, "vxlan"))
1349 		type = RTE_FLOW_ITEM_TYPE_VXLAN;
1350 	else if (!strcmp(ops->type, "gre"))
1351 		type = RTE_FLOW_ITEM_TYPE_GRE;
1352 	else if (!strcmp(ops->type, "nvgre"))
1353 		type = RTE_FLOW_ITEM_TYPE_NVGRE;
1354 	else if (!strcmp(ops->type, "geneve"))
1355 		type = RTE_FLOW_ITEM_TYPE_GENEVE;
1356 	else {
1357 		fprintf(stderr, "cannot offload \"%s\" tunnel type\n",
1358 			ops->type);
1359 		return;
1360 	}
1361 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1362 		if (flt->tunnel.type == type)
1363 			break;
1364 	}
1365 	if (!flt) {
1366 		flt = calloc(1, sizeof(*flt));
1367 		if (!flt) {
1368 			fprintf(stderr, "failed to allocate port flt object\n");
1369 			return;
1370 		}
1371 		flt->tunnel.type = type;
1372 		flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
1373 				  LIST_FIRST(&port->flow_tunnel_list)->id + 1;
1374 		LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
1375 	}
1376 	printf("port %d: flow tunnel #%u type %s\n",
1377 		port_id, flt->id, ops->type);
1378 }
1379 
1380 /** Generate a port_flow entry from attributes/pattern/actions. */
1381 static struct port_flow *
1382 port_flow_new(const struct rte_flow_attr *attr,
1383 	      const struct rte_flow_item *pattern,
1384 	      const struct rte_flow_action *actions,
1385 	      struct rte_flow_error *error)
1386 {
1387 	const struct rte_flow_conv_rule rule = {
1388 		.attr_ro = attr,
1389 		.pattern_ro = pattern,
1390 		.actions_ro = actions,
1391 	};
1392 	struct port_flow *pf;
1393 	int ret;
1394 
1395 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1396 	if (ret < 0)
1397 		return NULL;
1398 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1399 	if (!pf) {
1400 		rte_flow_error_set
1401 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1402 			 "calloc() failed");
1403 		return NULL;
1404 	}
1405 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1406 			  error) >= 0)
1407 		return pf;
1408 	free(pf);
1409 	return NULL;
1410 }
1411 
1412 /** Print a message out of a flow error. */
1413 static int
1414 port_flow_complain(struct rte_flow_error *error)
1415 {
1416 	static const char *const errstrlist[] = {
1417 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1418 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1419 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1420 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1421 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1422 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1423 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1424 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1425 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1426 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1427 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1428 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1429 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1430 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1431 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1432 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1433 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1434 	};
1435 	const char *errstr;
1436 	char buf[32];
1437 	int err = rte_errno;
1438 
1439 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1440 	    !errstrlist[error->type])
1441 		errstr = "unknown type";
1442 	else
1443 		errstr = errstrlist[error->type];
1444 	fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n",
1445 		__func__, error->type, errstr,
1446 		error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1447 					 error->cause), buf) : "",
1448 		error->message ? error->message : "(no stated reason)",
1449 		rte_strerror(err));
1450 	return -err;
1451 }
1452 
1453 static void
1454 rss_config_display(struct rte_flow_action_rss *rss_conf)
1455 {
1456 	uint8_t i;
1457 
1458 	if (rss_conf == NULL) {
1459 		fprintf(stderr, "Invalid rule\n");
1460 		return;
1461 	}
1462 
1463 	printf("RSS:\n"
1464 	       " queues:");
1465 	if (rss_conf->queue_num == 0)
1466 		printf(" none");
1467 	for (i = 0; i < rss_conf->queue_num; i++)
1468 		printf(" %d", rss_conf->queue[i]);
1469 	printf("\n");
1470 
1471 	printf(" function: ");
1472 	switch (rss_conf->func) {
1473 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1474 		printf("default\n");
1475 		break;
1476 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1477 		printf("toeplitz\n");
1478 		break;
1479 	case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
1480 		printf("simple_xor\n");
1481 		break;
1482 	case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
1483 		printf("symmetric_toeplitz\n");
1484 		break;
1485 	default:
1486 		printf("Unknown function\n");
1487 		return;
1488 	}
1489 
1490 	printf(" types:\n");
1491 	if (rss_conf->types == 0) {
1492 		printf("  none\n");
1493 		return;
1494 	}
1495 	for (i = 0; rss_type_table[i].str; i++) {
1496 		if ((rss_conf->types &
1497 		    rss_type_table[i].rss_type) ==
1498 		    rss_type_table[i].rss_type &&
1499 		    rss_type_table[i].rss_type != 0)
1500 			printf("  %s\n", rss_type_table[i].str);
1501 	}
1502 }
1503 
1504 static struct port_indirect_action *
1505 action_get_by_id(portid_t port_id, uint32_t id)
1506 {
1507 	struct rte_port *port;
1508 	struct port_indirect_action **ppia;
1509 	struct port_indirect_action *pia = NULL;
1510 
1511 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1512 	    port_id == (portid_t)RTE_PORT_ALL)
1513 		return NULL;
1514 	port = &ports[port_id];
1515 	ppia = &port->actions_list;
1516 	while (*ppia) {
1517 		if ((*ppia)->id == id) {
1518 			pia = *ppia;
1519 			break;
1520 		}
1521 		ppia = &(*ppia)->next;
1522 	}
1523 	if (!pia)
1524 		fprintf(stderr,
1525 			"Failed to find indirect action #%u on port %u\n",
1526 			id, port_id);
1527 	return pia;
1528 }
1529 
1530 static int
1531 action_alloc(portid_t port_id, uint32_t id,
1532 	     struct port_indirect_action **action)
1533 {
1534 	struct rte_port *port;
1535 	struct port_indirect_action **ppia;
1536 	struct port_indirect_action *pia = NULL;
1537 
1538 	*action = NULL;
1539 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1540 	    port_id == (portid_t)RTE_PORT_ALL)
1541 		return -EINVAL;
1542 	port = &ports[port_id];
1543 	if (id == UINT32_MAX) {
1544 		/* taking first available ID */
1545 		if (port->actions_list) {
1546 			if (port->actions_list->id == UINT32_MAX - 1) {
1547 				fprintf(stderr,
1548 					"Highest indirect action ID is already assigned, delete it first\n");
1549 				return -ENOMEM;
1550 			}
1551 			id = port->actions_list->id + 1;
1552 		} else {
1553 			id = 0;
1554 		}
1555 	}
1556 	pia = calloc(1, sizeof(*pia));
1557 	if (!pia) {
1558 		fprintf(stderr,
1559 			"Allocation of port %u indirect action failed\n",
1560 			port_id);
1561 		return -ENOMEM;
1562 	}
1563 	ppia = &port->actions_list;
1564 	while (*ppia && (*ppia)->id > id)
1565 		ppia = &(*ppia)->next;
1566 	if (*ppia && (*ppia)->id == id) {
1567 		fprintf(stderr,
1568 			"Indirect action #%u is already assigned, delete it first\n",
1569 			id);
1570 		free(pia);
1571 		return -EINVAL;
1572 	}
1573 	pia->next = *ppia;
1574 	pia->id = id;
1575 	*ppia = pia;
1576 	*action = pia;
1577 	return 0;
1578 }
1579 
1580 /** Create indirect action */
1581 int
1582 port_action_handle_create(portid_t port_id, uint32_t id,
1583 			  const struct rte_flow_indir_action_conf *conf,
1584 			  const struct rte_flow_action *action)
1585 {
1586 	struct port_indirect_action *pia;
1587 	int ret;
1588 	struct rte_flow_error error;
1589 	struct rte_port *port;
1590 
1591 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1592 	    port_id == (portid_t)RTE_PORT_ALL)
1593 		return -EINVAL;
1594 
1595 	ret = action_alloc(port_id, id, &pia);
1596 	if (ret)
1597 		return ret;
1598 
1599 	port = &ports[port_id];
1600 
1601 	if (conf->transfer)
1602 		port_id = port->flow_transfer_proxy;
1603 
1604 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1605 	    port_id == (portid_t)RTE_PORT_ALL)
1606 		return -EINVAL;
1607 
1608 	if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
1609 		struct rte_flow_action_age *age =
1610 			(struct rte_flow_action_age *)(uintptr_t)(action->conf);
1611 
1612 		pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
1613 		age->context = &pia->age_type;
1614 	} else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) {
1615 		struct rte_flow_action_conntrack *ct =
1616 		(struct rte_flow_action_conntrack *)(uintptr_t)(action->conf);
1617 
1618 		memcpy(ct, &conntrack_context, sizeof(*ct));
1619 	}
1620 	/* Poisoning to make sure PMDs update it in case of error. */
1621 	memset(&error, 0x22, sizeof(error));
1622 	pia->handle = rte_flow_action_handle_create(port_id, conf, action,
1623 						    &error);
1624 	if (!pia->handle) {
1625 		uint32_t destroy_id = pia->id;
1626 		port_action_handle_destroy(port_id, 1, &destroy_id);
1627 		return port_flow_complain(&error);
1628 	}
1629 	pia->type = action->type;
1630 	pia->transfer = conf->transfer;
1631 	printf("Indirect action #%u created\n", pia->id);
1632 	return 0;
1633 }
1634 
1635 /** Destroy indirect action */
1636 int
1637 port_action_handle_destroy(portid_t port_id,
1638 			   uint32_t n,
1639 			   const uint32_t *actions)
1640 {
1641 	struct rte_port *port;
1642 	struct port_indirect_action **tmp;
1643 	uint32_t c = 0;
1644 	int ret = 0;
1645 
1646 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1647 	    port_id == (portid_t)RTE_PORT_ALL)
1648 		return -EINVAL;
1649 	port = &ports[port_id];
1650 	tmp = &port->actions_list;
1651 	while (*tmp) {
1652 		uint32_t i;
1653 
1654 		for (i = 0; i != n; ++i) {
1655 			struct rte_flow_error error;
1656 			struct port_indirect_action *pia = *tmp;
1657 			portid_t port_id_eff = port_id;
1658 
1659 			if (actions[i] != pia->id)
1660 				continue;
1661 
1662 			if (pia->transfer)
1663 				port_id_eff = port->flow_transfer_proxy;
1664 
1665 			if (port_id_is_invalid(port_id_eff, ENABLED_WARN) ||
1666 			    port_id_eff == (portid_t)RTE_PORT_ALL)
1667 				return -EINVAL;
1668 
1669 			/*
1670 			 * Poisoning to make sure PMDs update it in case
1671 			 * of error.
1672 			 */
1673 			memset(&error, 0x33, sizeof(error));
1674 
1675 			if (pia->handle && rte_flow_action_handle_destroy(
1676 					port_id_eff, pia->handle, &error)) {
1677 				ret = port_flow_complain(&error);
1678 				continue;
1679 			}
1680 			*tmp = pia->next;
1681 			printf("Indirect action #%u destroyed\n", pia->id);
1682 			free(pia);
1683 			break;
1684 		}
1685 		if (i == n)
1686 			tmp = &(*tmp)->next;
1687 		++c;
1688 	}
1689 	return ret;
1690 }
1691 
1692 
1693 /** Get indirect action by port + id */
1694 struct rte_flow_action_handle *
1695 port_action_handle_get_by_id(portid_t port_id, uint32_t id)
1696 {
1697 
1698 	struct port_indirect_action *pia = action_get_by_id(port_id, id);
1699 
1700 	return (pia) ? pia->handle : NULL;
1701 }
1702 
1703 /** Update indirect action */
1704 int
1705 port_action_handle_update(portid_t port_id, uint32_t id,
1706 			  const struct rte_flow_action *action)
1707 {
1708 	struct rte_flow_error error;
1709 	struct rte_flow_action_handle *action_handle;
1710 	struct port_indirect_action *pia;
1711 	struct rte_port *port;
1712 	const void *update;
1713 
1714 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1715 	    port_id == (portid_t)RTE_PORT_ALL)
1716 		return -EINVAL;
1717 
1718 	port = &ports[port_id];
1719 
1720 	action_handle = port_action_handle_get_by_id(port_id, id);
1721 	if (!action_handle)
1722 		return -EINVAL;
1723 	pia = action_get_by_id(port_id, id);
1724 	if (!pia)
1725 		return -EINVAL;
1726 	switch (pia->type) {
1727 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1728 		update = action->conf;
1729 		break;
1730 	default:
1731 		update = action;
1732 		break;
1733 	}
1734 
1735 	if (pia->transfer)
1736 		port_id = port->flow_transfer_proxy;
1737 
1738 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1739 	    port_id == (portid_t)RTE_PORT_ALL)
1740 		return -EINVAL;
1741 
1742 	if (rte_flow_action_handle_update(port_id, action_handle, update,
1743 					  &error)) {
1744 		return port_flow_complain(&error);
1745 	}
1746 	printf("Indirect action #%u updated\n", id);
1747 	return 0;
1748 }
1749 
1750 int
1751 port_action_handle_query(portid_t port_id, uint32_t id)
1752 {
1753 	struct rte_flow_error error;
1754 	struct port_indirect_action *pia;
1755 	union {
1756 		struct rte_flow_query_count count;
1757 		struct rte_flow_query_age age;
1758 		struct rte_flow_action_conntrack ct;
1759 	} query;
1760 	portid_t port_id_eff = port_id;
1761 	struct rte_port *port;
1762 
1763 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1764 	    port_id == (portid_t)RTE_PORT_ALL)
1765 		return -EINVAL;
1766 
1767 	port = &ports[port_id];
1768 
1769 	pia = action_get_by_id(port_id, id);
1770 	if (!pia)
1771 		return -EINVAL;
1772 	switch (pia->type) {
1773 	case RTE_FLOW_ACTION_TYPE_AGE:
1774 	case RTE_FLOW_ACTION_TYPE_COUNT:
1775 		break;
1776 	default:
1777 		fprintf(stderr,
1778 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1779 			id, pia->type, port_id);
1780 		return -ENOTSUP;
1781 	}
1782 
1783 	if (pia->transfer)
1784 		port_id_eff = port->flow_transfer_proxy;
1785 
1786 	if (port_id_is_invalid(port_id_eff, ENABLED_WARN) ||
1787 	    port_id_eff == (portid_t)RTE_PORT_ALL)
1788 		return -EINVAL;
1789 
1790 	/* Poisoning to make sure PMDs update it in case of error. */
1791 	memset(&error, 0x55, sizeof(error));
1792 	memset(&query, 0, sizeof(query));
1793 	if (rte_flow_action_handle_query(port_id_eff, pia->handle, &query,
1794 					 &error))
1795 		return port_flow_complain(&error);
1796 	switch (pia->type) {
1797 	case RTE_FLOW_ACTION_TYPE_AGE:
1798 		printf("Indirect AGE action:\n"
1799 		       " aged: %u\n"
1800 		       " sec_since_last_hit_valid: %u\n"
1801 		       " sec_since_last_hit: %" PRIu32 "\n",
1802 		       query.age.aged,
1803 		       query.age.sec_since_last_hit_valid,
1804 		       query.age.sec_since_last_hit);
1805 		break;
1806 	case RTE_FLOW_ACTION_TYPE_COUNT:
1807 		printf("Indirect COUNT action:\n"
1808 		       " hits_set: %u\n"
1809 		       " bytes_set: %u\n"
1810 		       " hits: %" PRIu64 "\n"
1811 		       " bytes: %" PRIu64 "\n",
1812 		       query.count.hits_set,
1813 		       query.count.bytes_set,
1814 		       query.count.hits,
1815 		       query.count.bytes);
1816 		break;
1817 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1818 		printf("Conntrack Context:\n"
1819 		       "  Peer: %u, Flow dir: %s, Enable: %u\n"
1820 		       "  Live: %u, SACK: %u, CACK: %u\n"
1821 		       "  Packet dir: %s, Liberal: %u, State: %u\n"
1822 		       "  Factor: %u, Retrans: %u, TCP flags: %u\n"
1823 		       "  Last Seq: %u, Last ACK: %u\n"
1824 		       "  Last Win: %u, Last End: %u\n",
1825 		       query.ct.peer_port,
1826 		       query.ct.is_original_dir ? "Original" : "Reply",
1827 		       query.ct.enable, query.ct.live_connection,
1828 		       query.ct.selective_ack, query.ct.challenge_ack_passed,
1829 		       query.ct.last_direction ? "Original" : "Reply",
1830 		       query.ct.liberal_mode, query.ct.state,
1831 		       query.ct.max_ack_window, query.ct.retransmission_limit,
1832 		       query.ct.last_index, query.ct.last_seq,
1833 		       query.ct.last_ack, query.ct.last_window,
1834 		       query.ct.last_end);
1835 		printf("  Original Dir:\n"
1836 		       "    scale: %u, fin: %u, ack seen: %u\n"
1837 		       " unacked data: %u\n    Sent end: %u,"
1838 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1839 		       query.ct.original_dir.scale,
1840 		       query.ct.original_dir.close_initiated,
1841 		       query.ct.original_dir.last_ack_seen,
1842 		       query.ct.original_dir.data_unacked,
1843 		       query.ct.original_dir.sent_end,
1844 		       query.ct.original_dir.reply_end,
1845 		       query.ct.original_dir.max_win,
1846 		       query.ct.original_dir.max_ack);
1847 		printf("  Reply Dir:\n"
1848 		       "    scale: %u, fin: %u, ack seen: %u\n"
1849 		       " unacked data: %u\n    Sent end: %u,"
1850 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1851 		       query.ct.reply_dir.scale,
1852 		       query.ct.reply_dir.close_initiated,
1853 		       query.ct.reply_dir.last_ack_seen,
1854 		       query.ct.reply_dir.data_unacked,
1855 		       query.ct.reply_dir.sent_end,
1856 		       query.ct.reply_dir.reply_end,
1857 		       query.ct.reply_dir.max_win,
1858 		       query.ct.reply_dir.max_ack);
1859 		break;
1860 	default:
1861 		fprintf(stderr,
1862 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1863 			id, pia->type, port_id);
1864 		break;
1865 	}
1866 	return 0;
1867 }
1868 
1869 static struct port_flow_tunnel *
1870 port_flow_tunnel_offload_cmd_prep(portid_t port_id,
1871 				  const struct rte_flow_item *pattern,
1872 				  const struct rte_flow_action *actions,
1873 				  const struct tunnel_ops *tunnel_ops)
1874 {
1875 	int ret;
1876 	struct rte_port *port;
1877 	struct port_flow_tunnel *pft;
1878 	struct rte_flow_error error;
1879 
1880 	port = &ports[port_id];
1881 	pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
1882 	if (!pft) {
1883 		fprintf(stderr, "failed to locate port flow tunnel #%u\n",
1884 			tunnel_ops->id);
1885 		return NULL;
1886 	}
1887 	if (tunnel_ops->actions) {
1888 		uint32_t num_actions;
1889 		const struct rte_flow_action *aptr;
1890 
1891 		ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
1892 						&pft->pmd_actions,
1893 						&pft->num_pmd_actions,
1894 						&error);
1895 		if (ret) {
1896 			port_flow_complain(&error);
1897 			return NULL;
1898 		}
1899 		for (aptr = actions, num_actions = 1;
1900 		     aptr->type != RTE_FLOW_ACTION_TYPE_END;
1901 		     aptr++, num_actions++);
1902 		pft->actions = malloc(
1903 				(num_actions +  pft->num_pmd_actions) *
1904 				sizeof(actions[0]));
1905 		if (!pft->actions) {
1906 			rte_flow_tunnel_action_decap_release(
1907 					port_id, pft->actions,
1908 					pft->num_pmd_actions, &error);
1909 			return NULL;
1910 		}
1911 		rte_memcpy(pft->actions, pft->pmd_actions,
1912 			   pft->num_pmd_actions * sizeof(actions[0]));
1913 		rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
1914 			   num_actions * sizeof(actions[0]));
1915 	}
1916 	if (tunnel_ops->items) {
1917 		uint32_t num_items;
1918 		const struct rte_flow_item *iptr;
1919 
1920 		ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
1921 					    &pft->pmd_items,
1922 					    &pft->num_pmd_items,
1923 					    &error);
1924 		if (ret) {
1925 			port_flow_complain(&error);
1926 			return NULL;
1927 		}
1928 		for (iptr = pattern, num_items = 1;
1929 		     iptr->type != RTE_FLOW_ITEM_TYPE_END;
1930 		     iptr++, num_items++);
1931 		pft->items = malloc((num_items + pft->num_pmd_items) *
1932 				    sizeof(pattern[0]));
1933 		if (!pft->items) {
1934 			rte_flow_tunnel_item_release(
1935 					port_id, pft->pmd_items,
1936 					pft->num_pmd_items, &error);
1937 			return NULL;
1938 		}
1939 		rte_memcpy(pft->items, pft->pmd_items,
1940 			   pft->num_pmd_items * sizeof(pattern[0]));
1941 		rte_memcpy(pft->items + pft->num_pmd_items, pattern,
1942 			   num_items * sizeof(pattern[0]));
1943 	}
1944 
1945 	return pft;
1946 }
1947 
1948 static void
1949 port_flow_tunnel_offload_cmd_release(portid_t port_id,
1950 				     const struct tunnel_ops *tunnel_ops,
1951 				     struct port_flow_tunnel *pft)
1952 {
1953 	struct rte_flow_error error;
1954 
1955 	if (tunnel_ops->actions) {
1956 		free(pft->actions);
1957 		rte_flow_tunnel_action_decap_release(
1958 			port_id, pft->pmd_actions,
1959 			pft->num_pmd_actions, &error);
1960 		pft->actions = NULL;
1961 		pft->pmd_actions = NULL;
1962 	}
1963 	if (tunnel_ops->items) {
1964 		free(pft->items);
1965 		rte_flow_tunnel_item_release(port_id, pft->pmd_items,
1966 					     pft->num_pmd_items,
1967 					     &error);
1968 		pft->items = NULL;
1969 		pft->pmd_items = NULL;
1970 	}
1971 }
1972 
1973 /** Add port meter policy */
1974 int
1975 port_meter_policy_add(portid_t port_id, uint32_t policy_id,
1976 			const struct rte_flow_action *actions)
1977 {
1978 	struct rte_mtr_error error;
1979 	const struct rte_flow_action *act = actions;
1980 	const struct rte_flow_action *start;
1981 	struct rte_mtr_meter_policy_params policy;
1982 	uint32_t i = 0, act_n;
1983 	int ret;
1984 
1985 	for (i = 0; i < RTE_COLORS; i++) {
1986 		for (act_n = 0, start = act;
1987 			act->type != RTE_FLOW_ACTION_TYPE_END; act++)
1988 			act_n++;
1989 		if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END)
1990 			policy.actions[i] = start;
1991 		else
1992 			policy.actions[i] = NULL;
1993 		act++;
1994 	}
1995 	ret = rte_mtr_meter_policy_add(port_id,
1996 			policy_id,
1997 			&policy, &error);
1998 	if (ret)
1999 		print_mtr_err_msg(&error);
2000 	return ret;
2001 }
2002 
2003 /** Validate flow rule. */
2004 int
2005 port_flow_validate(portid_t port_id,
2006 		   const struct rte_flow_attr *attr,
2007 		   const struct rte_flow_item *pattern,
2008 		   const struct rte_flow_action *actions,
2009 		   const struct tunnel_ops *tunnel_ops)
2010 {
2011 	struct rte_flow_error error;
2012 	struct port_flow_tunnel *pft = NULL;
2013 	struct rte_port *port;
2014 
2015 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2016 	    port_id == (portid_t)RTE_PORT_ALL)
2017 		return -EINVAL;
2018 
2019 	port = &ports[port_id];
2020 
2021 	if (attr->transfer)
2022 		port_id = port->flow_transfer_proxy;
2023 
2024 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2025 	    port_id == (portid_t)RTE_PORT_ALL)
2026 		return -EINVAL;
2027 
2028 	/* Poisoning to make sure PMDs update it in case of error. */
2029 	memset(&error, 0x11, sizeof(error));
2030 	if (tunnel_ops->enabled) {
2031 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
2032 							actions, tunnel_ops);
2033 		if (!pft)
2034 			return -ENOENT;
2035 		if (pft->items)
2036 			pattern = pft->items;
2037 		if (pft->actions)
2038 			actions = pft->actions;
2039 	}
2040 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
2041 		return port_flow_complain(&error);
2042 	if (tunnel_ops->enabled)
2043 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
2044 	printf("Flow rule validated\n");
2045 	return 0;
2046 }
2047 
2048 /** Return age action structure if exists, otherwise NULL. */
2049 static struct rte_flow_action_age *
2050 age_action_get(const struct rte_flow_action *actions)
2051 {
2052 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2053 		switch (actions->type) {
2054 		case RTE_FLOW_ACTION_TYPE_AGE:
2055 			return (struct rte_flow_action_age *)
2056 				(uintptr_t)actions->conf;
2057 		default:
2058 			break;
2059 		}
2060 	}
2061 	return NULL;
2062 }
2063 
2064 /** Create flow rule. */
2065 int
2066 port_flow_create(portid_t port_id,
2067 		 const struct rte_flow_attr *attr,
2068 		 const struct rte_flow_item *pattern,
2069 		 const struct rte_flow_action *actions,
2070 		 const struct tunnel_ops *tunnel_ops)
2071 {
2072 	struct rte_flow *flow;
2073 	struct rte_port *port;
2074 	struct port_flow *pf;
2075 	uint32_t id = 0;
2076 	struct rte_flow_error error;
2077 	struct port_flow_tunnel *pft = NULL;
2078 	struct rte_flow_action_age *age = age_action_get(actions);
2079 
2080 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2081 	    port_id == (portid_t)RTE_PORT_ALL)
2082 		return -EINVAL;
2083 
2084 	port = &ports[port_id];
2085 
2086 	if (attr->transfer)
2087 		port_id = port->flow_transfer_proxy;
2088 
2089 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2090 	    port_id == (portid_t)RTE_PORT_ALL)
2091 		return -EINVAL;
2092 
2093 	if (port->flow_list) {
2094 		if (port->flow_list->id == UINT32_MAX) {
2095 			fprintf(stderr,
2096 				"Highest rule ID is already assigned, delete it first");
2097 			return -ENOMEM;
2098 		}
2099 		id = port->flow_list->id + 1;
2100 	}
2101 	if (tunnel_ops->enabled) {
2102 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
2103 							actions, tunnel_ops);
2104 		if (!pft)
2105 			return -ENOENT;
2106 		if (pft->items)
2107 			pattern = pft->items;
2108 		if (pft->actions)
2109 			actions = pft->actions;
2110 	}
2111 	pf = port_flow_new(attr, pattern, actions, &error);
2112 	if (!pf)
2113 		return port_flow_complain(&error);
2114 	if (age) {
2115 		pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
2116 		age->context = &pf->age_type;
2117 	}
2118 	/* Poisoning to make sure PMDs update it in case of error. */
2119 	memset(&error, 0x22, sizeof(error));
2120 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
2121 	if (!flow) {
2122 		if (tunnel_ops->enabled)
2123 			port_flow_tunnel_offload_cmd_release(port_id,
2124 							     tunnel_ops, pft);
2125 		free(pf);
2126 		return port_flow_complain(&error);
2127 	}
2128 	pf->next = port->flow_list;
2129 	pf->id = id;
2130 	pf->flow = flow;
2131 	port->flow_list = pf;
2132 	if (tunnel_ops->enabled)
2133 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
2134 	printf("Flow rule #%u created\n", pf->id);
2135 	return 0;
2136 }
2137 
2138 /** Destroy a number of flow rules. */
2139 int
2140 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
2141 {
2142 	struct rte_port *port;
2143 	struct port_flow **tmp;
2144 	uint32_t c = 0;
2145 	int ret = 0;
2146 
2147 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2148 	    port_id == (portid_t)RTE_PORT_ALL)
2149 		return -EINVAL;
2150 	port = &ports[port_id];
2151 	tmp = &port->flow_list;
2152 	while (*tmp) {
2153 		uint32_t i;
2154 
2155 		for (i = 0; i != n; ++i) {
2156 			portid_t port_id_eff = port_id;
2157 			struct rte_flow_error error;
2158 			struct port_flow *pf = *tmp;
2159 
2160 			if (rule[i] != pf->id)
2161 				continue;
2162 			/*
2163 			 * Poisoning to make sure PMDs update it in case
2164 			 * of error.
2165 			 */
2166 			memset(&error, 0x33, sizeof(error));
2167 
2168 			if (pf->rule.attr->transfer)
2169 				port_id_eff = port->flow_transfer_proxy;
2170 
2171 			if (port_id_is_invalid(port_id_eff, ENABLED_WARN) ||
2172 			    port_id_eff == (portid_t)RTE_PORT_ALL)
2173 				return -EINVAL;
2174 
2175 			if (rte_flow_destroy(port_id_eff, pf->flow, &error)) {
2176 				ret = port_flow_complain(&error);
2177 				continue;
2178 			}
2179 			printf("Flow rule #%u destroyed\n", pf->id);
2180 			*tmp = pf->next;
2181 			free(pf);
2182 			break;
2183 		}
2184 		if (i == n)
2185 			tmp = &(*tmp)->next;
2186 		++c;
2187 	}
2188 	return ret;
2189 }
2190 
2191 /** Remove all flow rules. */
2192 int
2193 port_flow_flush(portid_t port_id)
2194 {
2195 	struct rte_flow_error error;
2196 	struct rte_port *port;
2197 	int ret = 0;
2198 
2199 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2200 		port_id == (portid_t)RTE_PORT_ALL)
2201 		return -EINVAL;
2202 
2203 	port = &ports[port_id];
2204 
2205 	if (port->flow_list == NULL)
2206 		return ret;
2207 
2208 	/* Poisoning to make sure PMDs update it in case of error. */
2209 	memset(&error, 0x44, sizeof(error));
2210 	if (rte_flow_flush(port_id, &error)) {
2211 		port_flow_complain(&error);
2212 	}
2213 
2214 	while (port->flow_list) {
2215 		struct port_flow *pf = port->flow_list->next;
2216 
2217 		free(port->flow_list);
2218 		port->flow_list = pf;
2219 	}
2220 	return ret;
2221 }
2222 
2223 /** Dump flow rules. */
2224 int
2225 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id,
2226 		const char *file_name)
2227 {
2228 	int ret = 0;
2229 	FILE *file = stdout;
2230 	struct rte_flow_error error;
2231 	struct rte_port *port;
2232 	struct port_flow *pflow;
2233 	struct rte_flow *tmpFlow = NULL;
2234 	bool found = false;
2235 
2236 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2237 		port_id == (portid_t)RTE_PORT_ALL)
2238 		return -EINVAL;
2239 
2240 	if (!dump_all) {
2241 		port = &ports[port_id];
2242 		pflow = port->flow_list;
2243 		while (pflow) {
2244 			if (rule_id != pflow->id) {
2245 				pflow = pflow->next;
2246 			} else {
2247 				tmpFlow = pflow->flow;
2248 				if (tmpFlow)
2249 					found = true;
2250 				break;
2251 			}
2252 		}
2253 		if (found == false) {
2254 			fprintf(stderr, "Failed to dump to flow %d\n", rule_id);
2255 			return -EINVAL;
2256 		}
2257 	}
2258 
2259 	if (file_name && strlen(file_name)) {
2260 		file = fopen(file_name, "w");
2261 		if (!file) {
2262 			fprintf(stderr, "Failed to create file %s: %s\n",
2263 				file_name, strerror(errno));
2264 			return -errno;
2265 		}
2266 	}
2267 
2268 	if (!dump_all)
2269 		ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error);
2270 	else
2271 		ret = rte_flow_dev_dump(port_id, NULL, file, &error);
2272 	if (ret) {
2273 		port_flow_complain(&error);
2274 		fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret));
2275 	} else
2276 		printf("Flow dump finished\n");
2277 	if (file_name && strlen(file_name))
2278 		fclose(file);
2279 	return ret;
2280 }
2281 
2282 /** Query a flow rule. */
2283 int
2284 port_flow_query(portid_t port_id, uint32_t rule,
2285 		const struct rte_flow_action *action)
2286 {
2287 	struct rte_flow_error error;
2288 	struct rte_port *port;
2289 	struct port_flow *pf;
2290 	const char *name;
2291 	union {
2292 		struct rte_flow_query_count count;
2293 		struct rte_flow_action_rss rss_conf;
2294 		struct rte_flow_query_age age;
2295 	} query;
2296 	int ret;
2297 
2298 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2299 	    port_id == (portid_t)RTE_PORT_ALL)
2300 		return -EINVAL;
2301 	port = &ports[port_id];
2302 	for (pf = port->flow_list; pf; pf = pf->next)
2303 		if (pf->id == rule)
2304 			break;
2305 	if (!pf) {
2306 		fprintf(stderr, "Flow rule #%u not found\n", rule);
2307 		return -ENOENT;
2308 	}
2309 
2310 	if (pf->rule.attr->transfer)
2311 		port_id = port->flow_transfer_proxy;
2312 
2313 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2314 	    port_id == (portid_t)RTE_PORT_ALL)
2315 		return -EINVAL;
2316 
2317 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2318 			    &name, sizeof(name),
2319 			    (void *)(uintptr_t)action->type, &error);
2320 	if (ret < 0)
2321 		return port_flow_complain(&error);
2322 	switch (action->type) {
2323 	case RTE_FLOW_ACTION_TYPE_COUNT:
2324 	case RTE_FLOW_ACTION_TYPE_RSS:
2325 	case RTE_FLOW_ACTION_TYPE_AGE:
2326 		break;
2327 	default:
2328 		fprintf(stderr, "Cannot query action type %d (%s)\n",
2329 			action->type, name);
2330 		return -ENOTSUP;
2331 	}
2332 	/* Poisoning to make sure PMDs update it in case of error. */
2333 	memset(&error, 0x55, sizeof(error));
2334 	memset(&query, 0, sizeof(query));
2335 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
2336 		return port_flow_complain(&error);
2337 	switch (action->type) {
2338 	case RTE_FLOW_ACTION_TYPE_COUNT:
2339 		printf("%s:\n"
2340 		       " hits_set: %u\n"
2341 		       " bytes_set: %u\n"
2342 		       " hits: %" PRIu64 "\n"
2343 		       " bytes: %" PRIu64 "\n",
2344 		       name,
2345 		       query.count.hits_set,
2346 		       query.count.bytes_set,
2347 		       query.count.hits,
2348 		       query.count.bytes);
2349 		break;
2350 	case RTE_FLOW_ACTION_TYPE_RSS:
2351 		rss_config_display(&query.rss_conf);
2352 		break;
2353 	case RTE_FLOW_ACTION_TYPE_AGE:
2354 		printf("%s:\n"
2355 		       " aged: %u\n"
2356 		       " sec_since_last_hit_valid: %u\n"
2357 		       " sec_since_last_hit: %" PRIu32 "\n",
2358 		       name,
2359 		       query.age.aged,
2360 		       query.age.sec_since_last_hit_valid,
2361 		       query.age.sec_since_last_hit);
2362 		break;
2363 	default:
2364 		fprintf(stderr,
2365 			"Cannot display result for action type %d (%s)\n",
2366 			action->type, name);
2367 		break;
2368 	}
2369 	return 0;
2370 }
2371 
2372 /** List simply and destroy all aged flows. */
2373 void
2374 port_flow_aged(portid_t port_id, uint8_t destroy)
2375 {
2376 	void **contexts;
2377 	int nb_context, total = 0, idx;
2378 	struct rte_flow_error error;
2379 	enum age_action_context_type *type;
2380 	union {
2381 		struct port_flow *pf;
2382 		struct port_indirect_action *pia;
2383 	} ctx;
2384 
2385 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2386 	    port_id == (portid_t)RTE_PORT_ALL)
2387 		return;
2388 	total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
2389 	printf("Port %u total aged flows: %d\n", port_id, total);
2390 	if (total < 0) {
2391 		port_flow_complain(&error);
2392 		return;
2393 	}
2394 	if (total == 0)
2395 		return;
2396 	contexts = malloc(sizeof(void *) * total);
2397 	if (contexts == NULL) {
2398 		fprintf(stderr, "Cannot allocate contexts for aged flow\n");
2399 		return;
2400 	}
2401 	printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
2402 	nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
2403 	if (nb_context != total) {
2404 		fprintf(stderr,
2405 			"Port:%d get aged flows count(%d) != total(%d)\n",
2406 			port_id, nb_context, total);
2407 		free(contexts);
2408 		return;
2409 	}
2410 	total = 0;
2411 	for (idx = 0; idx < nb_context; idx++) {
2412 		if (!contexts[idx]) {
2413 			fprintf(stderr, "Error: get Null context in port %u\n",
2414 				port_id);
2415 			continue;
2416 		}
2417 		type = (enum age_action_context_type *)contexts[idx];
2418 		switch (*type) {
2419 		case ACTION_AGE_CONTEXT_TYPE_FLOW:
2420 			ctx.pf = container_of(type, struct port_flow, age_type);
2421 			printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
2422 								 "\t%c%c%c\t\n",
2423 			       "Flow",
2424 			       ctx.pf->id,
2425 			       ctx.pf->rule.attr->group,
2426 			       ctx.pf->rule.attr->priority,
2427 			       ctx.pf->rule.attr->ingress ? 'i' : '-',
2428 			       ctx.pf->rule.attr->egress ? 'e' : '-',
2429 			       ctx.pf->rule.attr->transfer ? 't' : '-');
2430 			if (destroy && !port_flow_destroy(port_id, 1,
2431 							  &ctx.pf->id))
2432 				total++;
2433 			break;
2434 		case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION:
2435 			ctx.pia = container_of(type,
2436 					struct port_indirect_action, age_type);
2437 			printf("%-20s\t%" PRIu32 "\n", "Indirect action",
2438 			       ctx.pia->id);
2439 			break;
2440 		default:
2441 			fprintf(stderr, "Error: invalid context type %u\n",
2442 				port_id);
2443 			break;
2444 		}
2445 	}
2446 	printf("\n%d flows destroyed\n", total);
2447 	free(contexts);
2448 }
2449 
2450 /** List flow rules. */
2451 void
2452 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
2453 {
2454 	struct rte_port *port;
2455 	struct port_flow *pf;
2456 	struct port_flow *list = NULL;
2457 	uint32_t i;
2458 
2459 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2460 	    port_id == (portid_t)RTE_PORT_ALL)
2461 		return;
2462 	port = &ports[port_id];
2463 	if (!port->flow_list)
2464 		return;
2465 	/* Sort flows by group, priority and ID. */
2466 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2467 		struct port_flow **tmp;
2468 		const struct rte_flow_attr *curr = pf->rule.attr;
2469 
2470 		if (n) {
2471 			/* Filter out unwanted groups. */
2472 			for (i = 0; i != n; ++i)
2473 				if (curr->group == group[i])
2474 					break;
2475 			if (i == n)
2476 				continue;
2477 		}
2478 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
2479 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
2480 
2481 			if (curr->group > comp->group ||
2482 			    (curr->group == comp->group &&
2483 			     curr->priority > comp->priority) ||
2484 			    (curr->group == comp->group &&
2485 			     curr->priority == comp->priority &&
2486 			     pf->id > (*tmp)->id))
2487 				continue;
2488 			break;
2489 		}
2490 		pf->tmp = *tmp;
2491 		*tmp = pf;
2492 	}
2493 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
2494 	for (pf = list; pf != NULL; pf = pf->tmp) {
2495 		const struct rte_flow_item *item = pf->rule.pattern;
2496 		const struct rte_flow_action *action = pf->rule.actions;
2497 		const char *name;
2498 
2499 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
2500 		       pf->id,
2501 		       pf->rule.attr->group,
2502 		       pf->rule.attr->priority,
2503 		       pf->rule.attr->ingress ? 'i' : '-',
2504 		       pf->rule.attr->egress ? 'e' : '-',
2505 		       pf->rule.attr->transfer ? 't' : '-');
2506 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
2507 			if ((uint32_t)item->type > INT_MAX)
2508 				name = "PMD_INTERNAL";
2509 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
2510 					  &name, sizeof(name),
2511 					  (void *)(uintptr_t)item->type,
2512 					  NULL) <= 0)
2513 				name = "[UNKNOWN]";
2514 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
2515 				printf("%s ", name);
2516 			++item;
2517 		}
2518 		printf("=>");
2519 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
2520 			if ((uint32_t)action->type > INT_MAX)
2521 				name = "PMD_INTERNAL";
2522 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2523 					  &name, sizeof(name),
2524 					  (void *)(uintptr_t)action->type,
2525 					  NULL) <= 0)
2526 				name = "[UNKNOWN]";
2527 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
2528 				printf(" %s", name);
2529 			++action;
2530 		}
2531 		printf("\n");
2532 	}
2533 }
2534 
2535 /** Restrict ingress traffic to the defined flow rules. */
2536 int
2537 port_flow_isolate(portid_t port_id, int set)
2538 {
2539 	struct rte_flow_error error;
2540 
2541 	/* Poisoning to make sure PMDs update it in case of error. */
2542 	memset(&error, 0x66, sizeof(error));
2543 	if (rte_flow_isolate(port_id, set, &error))
2544 		return port_flow_complain(&error);
2545 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
2546 	       port_id,
2547 	       set ? "now restricted" : "not restricted anymore");
2548 	return 0;
2549 }
2550 
2551 /*
2552  * RX/TX ring descriptors display functions.
2553  */
2554 int
2555 rx_queue_id_is_invalid(queueid_t rxq_id)
2556 {
2557 	if (rxq_id < nb_rxq)
2558 		return 0;
2559 	fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n",
2560 		rxq_id, nb_rxq);
2561 	return 1;
2562 }
2563 
2564 int
2565 tx_queue_id_is_invalid(queueid_t txq_id)
2566 {
2567 	if (txq_id < nb_txq)
2568 		return 0;
2569 	fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n",
2570 		txq_id, nb_txq);
2571 	return 1;
2572 }
2573 
2574 static int
2575 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
2576 {
2577 	struct rte_port *port = &ports[port_id];
2578 	struct rte_eth_rxq_info rx_qinfo;
2579 	int ret;
2580 
2581 	ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
2582 	if (ret == 0) {
2583 		*ring_size = rx_qinfo.nb_desc;
2584 		return ret;
2585 	}
2586 
2587 	if (ret != -ENOTSUP)
2588 		return ret;
2589 	/*
2590 	 * If the rte_eth_rx_queue_info_get is not support for this PMD,
2591 	 * ring_size stored in testpmd will be used for validity verification.
2592 	 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
2593 	 * being 0, it will use a default value provided by PMDs to setup this
2594 	 * rxq. If the default value is 0, it will use the
2595 	 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
2596 	 */
2597 	if (port->nb_rx_desc[rxq_id])
2598 		*ring_size = port->nb_rx_desc[rxq_id];
2599 	else if (port->dev_info.default_rxportconf.ring_size)
2600 		*ring_size = port->dev_info.default_rxportconf.ring_size;
2601 	else
2602 		*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
2603 	return 0;
2604 }
2605 
2606 static int
2607 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
2608 {
2609 	struct rte_port *port = &ports[port_id];
2610 	struct rte_eth_txq_info tx_qinfo;
2611 	int ret;
2612 
2613 	ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
2614 	if (ret == 0) {
2615 		*ring_size = tx_qinfo.nb_desc;
2616 		return ret;
2617 	}
2618 
2619 	if (ret != -ENOTSUP)
2620 		return ret;
2621 	/*
2622 	 * If the rte_eth_tx_queue_info_get is not support for this PMD,
2623 	 * ring_size stored in testpmd will be used for validity verification.
2624 	 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
2625 	 * being 0, it will use a default value provided by PMDs to setup this
2626 	 * txq. If the default value is 0, it will use the
2627 	 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
2628 	 */
2629 	if (port->nb_tx_desc[txq_id])
2630 		*ring_size = port->nb_tx_desc[txq_id];
2631 	else if (port->dev_info.default_txportconf.ring_size)
2632 		*ring_size = port->dev_info.default_txportconf.ring_size;
2633 	else
2634 		*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
2635 	return 0;
2636 }
2637 
2638 static int
2639 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
2640 {
2641 	uint16_t ring_size;
2642 	int ret;
2643 
2644 	ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
2645 	if (ret)
2646 		return 1;
2647 
2648 	if (rxdesc_id < ring_size)
2649 		return 0;
2650 
2651 	fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n",
2652 		rxdesc_id, ring_size);
2653 	return 1;
2654 }
2655 
2656 static int
2657 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
2658 {
2659 	uint16_t ring_size;
2660 	int ret;
2661 
2662 	ret = get_tx_ring_size(port_id, txq_id, &ring_size);
2663 	if (ret)
2664 		return 1;
2665 
2666 	if (txdesc_id < ring_size)
2667 		return 0;
2668 
2669 	fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n",
2670 		txdesc_id, ring_size);
2671 	return 1;
2672 }
2673 
2674 static const struct rte_memzone *
2675 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
2676 {
2677 	char mz_name[RTE_MEMZONE_NAMESIZE];
2678 	const struct rte_memzone *mz;
2679 
2680 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
2681 			port_id, q_id, ring_name);
2682 	mz = rte_memzone_lookup(mz_name);
2683 	if (mz == NULL)
2684 		fprintf(stderr,
2685 			"%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n",
2686 			ring_name, port_id, q_id, mz_name);
2687 	return mz;
2688 }
2689 
2690 union igb_ring_dword {
2691 	uint64_t dword;
2692 	struct {
2693 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
2694 		uint32_t lo;
2695 		uint32_t hi;
2696 #else
2697 		uint32_t hi;
2698 		uint32_t lo;
2699 #endif
2700 	} words;
2701 };
2702 
2703 struct igb_ring_desc_32_bytes {
2704 	union igb_ring_dword lo_dword;
2705 	union igb_ring_dword hi_dword;
2706 	union igb_ring_dword resv1;
2707 	union igb_ring_dword resv2;
2708 };
2709 
2710 struct igb_ring_desc_16_bytes {
2711 	union igb_ring_dword lo_dword;
2712 	union igb_ring_dword hi_dword;
2713 };
2714 
2715 static void
2716 ring_rxd_display_dword(union igb_ring_dword dword)
2717 {
2718 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
2719 					(unsigned)dword.words.hi);
2720 }
2721 
2722 static void
2723 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
2724 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2725 			   portid_t port_id,
2726 #else
2727 			   __rte_unused portid_t port_id,
2728 #endif
2729 			   uint16_t desc_id)
2730 {
2731 	struct igb_ring_desc_16_bytes *ring =
2732 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
2733 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2734 	int ret;
2735 	struct rte_eth_dev_info dev_info;
2736 
2737 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2738 	if (ret != 0)
2739 		return;
2740 
2741 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
2742 		/* 32 bytes RX descriptor, i40e only */
2743 		struct igb_ring_desc_32_bytes *ring =
2744 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
2745 		ring[desc_id].lo_dword.dword =
2746 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2747 		ring_rxd_display_dword(ring[desc_id].lo_dword);
2748 		ring[desc_id].hi_dword.dword =
2749 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2750 		ring_rxd_display_dword(ring[desc_id].hi_dword);
2751 		ring[desc_id].resv1.dword =
2752 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
2753 		ring_rxd_display_dword(ring[desc_id].resv1);
2754 		ring[desc_id].resv2.dword =
2755 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
2756 		ring_rxd_display_dword(ring[desc_id].resv2);
2757 
2758 		return;
2759 	}
2760 #endif
2761 	/* 16 bytes RX descriptor */
2762 	ring[desc_id].lo_dword.dword =
2763 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2764 	ring_rxd_display_dword(ring[desc_id].lo_dword);
2765 	ring[desc_id].hi_dword.dword =
2766 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2767 	ring_rxd_display_dword(ring[desc_id].hi_dword);
2768 }
2769 
2770 static void
2771 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
2772 {
2773 	struct igb_ring_desc_16_bytes *ring;
2774 	struct igb_ring_desc_16_bytes txd;
2775 
2776 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
2777 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2778 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2779 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
2780 			(unsigned)txd.lo_dword.words.lo,
2781 			(unsigned)txd.lo_dword.words.hi,
2782 			(unsigned)txd.hi_dword.words.lo,
2783 			(unsigned)txd.hi_dword.words.hi);
2784 }
2785 
2786 void
2787 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
2788 {
2789 	const struct rte_memzone *rx_mz;
2790 
2791 	if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
2792 		return;
2793 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
2794 	if (rx_mz == NULL)
2795 		return;
2796 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
2797 }
2798 
2799 void
2800 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
2801 {
2802 	const struct rte_memzone *tx_mz;
2803 
2804 	if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
2805 		return;
2806 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
2807 	if (tx_mz == NULL)
2808 		return;
2809 	ring_tx_descriptor_display(tx_mz, txd_id);
2810 }
2811 
2812 void
2813 fwd_lcores_config_display(void)
2814 {
2815 	lcoreid_t lc_id;
2816 
2817 	printf("List of forwarding lcores:");
2818 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
2819 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
2820 	printf("\n");
2821 }
2822 void
2823 rxtx_config_display(void)
2824 {
2825 	portid_t pid;
2826 	queueid_t qid;
2827 
2828 	printf("  %s packet forwarding%s packets/burst=%d\n",
2829 	       cur_fwd_eng->fwd_mode_name,
2830 	       retry_enabled == 0 ? "" : " with retry",
2831 	       nb_pkt_per_burst);
2832 
2833 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
2834 		printf("  packet len=%u - nb packet segments=%d\n",
2835 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
2836 
2837 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
2838 	       nb_fwd_lcores, nb_fwd_ports);
2839 
2840 	RTE_ETH_FOREACH_DEV(pid) {
2841 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
2842 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
2843 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
2844 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
2845 		struct rte_eth_rxq_info rx_qinfo;
2846 		struct rte_eth_txq_info tx_qinfo;
2847 		uint16_t rx_free_thresh_tmp;
2848 		uint16_t tx_free_thresh_tmp;
2849 		uint16_t tx_rs_thresh_tmp;
2850 		uint16_t nb_rx_desc_tmp;
2851 		uint16_t nb_tx_desc_tmp;
2852 		uint64_t offloads_tmp;
2853 		uint8_t pthresh_tmp;
2854 		uint8_t hthresh_tmp;
2855 		uint8_t wthresh_tmp;
2856 		int32_t rc;
2857 
2858 		/* per port config */
2859 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
2860 				(unsigned int)pid, nb_rxq, nb_txq);
2861 
2862 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
2863 				ports[pid].dev_conf.rxmode.offloads,
2864 				ports[pid].dev_conf.txmode.offloads);
2865 
2866 		/* per rx queue config only for first queue to be less verbose */
2867 		for (qid = 0; qid < 1; qid++) {
2868 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
2869 			if (rc) {
2870 				nb_rx_desc_tmp = nb_rx_desc[qid];
2871 				rx_free_thresh_tmp =
2872 					rx_conf[qid].rx_free_thresh;
2873 				pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
2874 				hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
2875 				wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
2876 				offloads_tmp = rx_conf[qid].offloads;
2877 			} else {
2878 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
2879 				rx_free_thresh_tmp =
2880 						rx_qinfo.conf.rx_free_thresh;
2881 				pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
2882 				hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
2883 				wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
2884 				offloads_tmp = rx_qinfo.conf.offloads;
2885 			}
2886 
2887 			printf("    RX queue: %d\n", qid);
2888 			printf("      RX desc=%d - RX free threshold=%d\n",
2889 				nb_rx_desc_tmp, rx_free_thresh_tmp);
2890 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
2891 				" wthresh=%d\n",
2892 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2893 			printf("      RX Offloads=0x%"PRIx64, offloads_tmp);
2894 			if (rx_conf->share_group > 0)
2895 				printf(" share_group=%u share_qid=%u",
2896 				       rx_conf->share_group,
2897 				       rx_conf->share_qid);
2898 			printf("\n");
2899 		}
2900 
2901 		/* per tx queue config only for first queue to be less verbose */
2902 		for (qid = 0; qid < 1; qid++) {
2903 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
2904 			if (rc) {
2905 				nb_tx_desc_tmp = nb_tx_desc[qid];
2906 				tx_free_thresh_tmp =
2907 					tx_conf[qid].tx_free_thresh;
2908 				pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
2909 				hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
2910 				wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
2911 				offloads_tmp = tx_conf[qid].offloads;
2912 				tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
2913 			} else {
2914 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
2915 				tx_free_thresh_tmp =
2916 						tx_qinfo.conf.tx_free_thresh;
2917 				pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
2918 				hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
2919 				wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
2920 				offloads_tmp = tx_qinfo.conf.offloads;
2921 				tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
2922 			}
2923 
2924 			printf("    TX queue: %d\n", qid);
2925 			printf("      TX desc=%d - TX free threshold=%d\n",
2926 				nb_tx_desc_tmp, tx_free_thresh_tmp);
2927 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
2928 				" wthresh=%d\n",
2929 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2930 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
2931 				offloads_tmp, tx_rs_thresh_tmp);
2932 		}
2933 	}
2934 }
2935 
2936 void
2937 port_rss_reta_info(portid_t port_id,
2938 		   struct rte_eth_rss_reta_entry64 *reta_conf,
2939 		   uint16_t nb_entries)
2940 {
2941 	uint16_t i, idx, shift;
2942 	int ret;
2943 
2944 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2945 		return;
2946 
2947 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
2948 	if (ret != 0) {
2949 		fprintf(stderr,
2950 			"Failed to get RSS RETA info, return code = %d\n",
2951 			ret);
2952 		return;
2953 	}
2954 
2955 	for (i = 0; i < nb_entries; i++) {
2956 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
2957 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
2958 		if (!(reta_conf[idx].mask & (1ULL << shift)))
2959 			continue;
2960 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
2961 					i, reta_conf[idx].reta[shift]);
2962 	}
2963 }
2964 
2965 /*
2966  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
2967  * key of the port.
2968  */
2969 void
2970 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
2971 {
2972 	struct rte_eth_rss_conf rss_conf = {0};
2973 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
2974 	uint64_t rss_hf;
2975 	uint8_t i;
2976 	int diag;
2977 	struct rte_eth_dev_info dev_info;
2978 	uint8_t hash_key_size;
2979 	int ret;
2980 
2981 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2982 		return;
2983 
2984 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2985 	if (ret != 0)
2986 		return;
2987 
2988 	if (dev_info.hash_key_size > 0 &&
2989 			dev_info.hash_key_size <= sizeof(rss_key))
2990 		hash_key_size = dev_info.hash_key_size;
2991 	else {
2992 		fprintf(stderr,
2993 			"dev_info did not provide a valid hash key size\n");
2994 		return;
2995 	}
2996 
2997 	/* Get RSS hash key if asked to display it */
2998 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2999 	rss_conf.rss_key_len = hash_key_size;
3000 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
3001 	if (diag != 0) {
3002 		switch (diag) {
3003 		case -ENODEV:
3004 			fprintf(stderr, "port index %d invalid\n", port_id);
3005 			break;
3006 		case -ENOTSUP:
3007 			fprintf(stderr, "operation not supported by device\n");
3008 			break;
3009 		default:
3010 			fprintf(stderr, "operation failed - diag=%d\n", diag);
3011 			break;
3012 		}
3013 		return;
3014 	}
3015 	rss_hf = rss_conf.rss_hf;
3016 	if (rss_hf == 0) {
3017 		printf("RSS disabled\n");
3018 		return;
3019 	}
3020 	printf("RSS functions:\n ");
3021 	for (i = 0; rss_type_table[i].str; i++) {
3022 		if (rss_hf & rss_type_table[i].rss_type)
3023 			printf("%s ", rss_type_table[i].str);
3024 	}
3025 	printf("\n");
3026 	if (!show_rss_key)
3027 		return;
3028 	printf("RSS key:\n");
3029 	for (i = 0; i < hash_key_size; i++)
3030 		printf("%02X", rss_key[i]);
3031 	printf("\n");
3032 }
3033 
3034 void
3035 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
3036 			 uint8_t hash_key_len)
3037 {
3038 	struct rte_eth_rss_conf rss_conf;
3039 	int diag;
3040 	unsigned int i;
3041 
3042 	rss_conf.rss_key = NULL;
3043 	rss_conf.rss_key_len = hash_key_len;
3044 	rss_conf.rss_hf = 0;
3045 	for (i = 0; rss_type_table[i].str; i++) {
3046 		if (!strcmp(rss_type_table[i].str, rss_type))
3047 			rss_conf.rss_hf = rss_type_table[i].rss_type;
3048 	}
3049 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
3050 	if (diag == 0) {
3051 		rss_conf.rss_key = hash_key;
3052 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
3053 	}
3054 	if (diag == 0)
3055 		return;
3056 
3057 	switch (diag) {
3058 	case -ENODEV:
3059 		fprintf(stderr, "port index %d invalid\n", port_id);
3060 		break;
3061 	case -ENOTSUP:
3062 		fprintf(stderr, "operation not supported by device\n");
3063 		break;
3064 	default:
3065 		fprintf(stderr, "operation failed - diag=%d\n", diag);
3066 		break;
3067 	}
3068 }
3069 
3070 /*
3071  * Check whether a shared rxq scheduled on other lcores.
3072  */
3073 static bool
3074 fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc,
3075 			   portid_t src_port, queueid_t src_rxq,
3076 			   uint32_t share_group, queueid_t share_rxq)
3077 {
3078 	streamid_t sm_id;
3079 	streamid_t nb_fs_per_lcore;
3080 	lcoreid_t  nb_fc;
3081 	lcoreid_t  lc_id;
3082 	struct fwd_stream *fs;
3083 	struct rte_port *port;
3084 	struct rte_eth_dev_info *dev_info;
3085 	struct rte_eth_rxconf *rxq_conf;
3086 
3087 	nb_fc = cur_fwd_config.nb_fwd_lcores;
3088 	/* Check remaining cores. */
3089 	for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) {
3090 		sm_id = fwd_lcores[lc_id]->stream_idx;
3091 		nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
3092 		for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
3093 		     sm_id++) {
3094 			fs = fwd_streams[sm_id];
3095 			port = &ports[fs->rx_port];
3096 			dev_info = &port->dev_info;
3097 			rxq_conf = &port->rx_conf[fs->rx_queue];
3098 			if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
3099 			    == 0 || rxq_conf->share_group == 0)
3100 				/* Not shared rxq. */
3101 				continue;
3102 			if (domain_id != port->dev_info.switch_info.domain_id)
3103 				continue;
3104 			if (rxq_conf->share_group != share_group)
3105 				continue;
3106 			if (rxq_conf->share_qid != share_rxq)
3107 				continue;
3108 			printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n",
3109 			       share_group, share_rxq);
3110 			printf("  lcore %hhu Port %hu queue %hu\n",
3111 			       src_lc, src_port, src_rxq);
3112 			printf("  lcore %hhu Port %hu queue %hu\n",
3113 			       lc_id, fs->rx_port, fs->rx_queue);
3114 			printf("Please use --nb-cores=%hu to limit number of forwarding cores\n",
3115 			       nb_rxq);
3116 			return true;
3117 		}
3118 	}
3119 	return false;
3120 }
3121 
3122 /*
3123  * Check shared rxq configuration.
3124  *
3125  * Shared group must not being scheduled on different core.
3126  */
3127 bool
3128 pkt_fwd_shared_rxq_check(void)
3129 {
3130 	streamid_t sm_id;
3131 	streamid_t nb_fs_per_lcore;
3132 	lcoreid_t  nb_fc;
3133 	lcoreid_t  lc_id;
3134 	struct fwd_stream *fs;
3135 	uint16_t domain_id;
3136 	struct rte_port *port;
3137 	struct rte_eth_dev_info *dev_info;
3138 	struct rte_eth_rxconf *rxq_conf;
3139 
3140 	if (rxq_share == 0)
3141 		return true;
3142 	nb_fc = cur_fwd_config.nb_fwd_lcores;
3143 	/*
3144 	 * Check streams on each core, make sure the same switch domain +
3145 	 * group + queue doesn't get scheduled on other cores.
3146 	 */
3147 	for (lc_id = 0; lc_id < nb_fc; lc_id++) {
3148 		sm_id = fwd_lcores[lc_id]->stream_idx;
3149 		nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
3150 		for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
3151 		     sm_id++) {
3152 			fs = fwd_streams[sm_id];
3153 			/* Update lcore info stream being scheduled. */
3154 			fs->lcore = fwd_lcores[lc_id];
3155 			port = &ports[fs->rx_port];
3156 			dev_info = &port->dev_info;
3157 			rxq_conf = &port->rx_conf[fs->rx_queue];
3158 			if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
3159 			    == 0 || rxq_conf->share_group == 0)
3160 				/* Not shared rxq. */
3161 				continue;
3162 			/* Check shared rxq not scheduled on remaining cores. */
3163 			domain_id = port->dev_info.switch_info.domain_id;
3164 			if (fwd_stream_on_other_lcores(domain_id, lc_id,
3165 						       fs->rx_port,
3166 						       fs->rx_queue,
3167 						       rxq_conf->share_group,
3168 						       rxq_conf->share_qid))
3169 				return false;
3170 		}
3171 	}
3172 	return true;
3173 }
3174 
3175 /*
3176  * Setup forwarding configuration for each logical core.
3177  */
3178 static void
3179 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
3180 {
3181 	streamid_t nb_fs_per_lcore;
3182 	streamid_t nb_fs;
3183 	streamid_t sm_id;
3184 	lcoreid_t  nb_extra;
3185 	lcoreid_t  nb_fc;
3186 	lcoreid_t  nb_lc;
3187 	lcoreid_t  lc_id;
3188 
3189 	nb_fs = cfg->nb_fwd_streams;
3190 	nb_fc = cfg->nb_fwd_lcores;
3191 	if (nb_fs <= nb_fc) {
3192 		nb_fs_per_lcore = 1;
3193 		nb_extra = 0;
3194 	} else {
3195 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
3196 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
3197 	}
3198 
3199 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
3200 	sm_id = 0;
3201 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
3202 		fwd_lcores[lc_id]->stream_idx = sm_id;
3203 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
3204 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3205 	}
3206 
3207 	/*
3208 	 * Assign extra remaining streams, if any.
3209 	 */
3210 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
3211 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
3212 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
3213 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
3214 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3215 	}
3216 }
3217 
3218 static portid_t
3219 fwd_topology_tx_port_get(portid_t rxp)
3220 {
3221 	static int warning_once = 1;
3222 
3223 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
3224 
3225 	switch (port_topology) {
3226 	default:
3227 	case PORT_TOPOLOGY_PAIRED:
3228 		if ((rxp & 0x1) == 0) {
3229 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
3230 				return rxp + 1;
3231 			if (warning_once) {
3232 				fprintf(stderr,
3233 					"\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n");
3234 				warning_once = 0;
3235 			}
3236 			return rxp;
3237 		}
3238 		return rxp - 1;
3239 	case PORT_TOPOLOGY_CHAINED:
3240 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
3241 	case PORT_TOPOLOGY_LOOP:
3242 		return rxp;
3243 	}
3244 }
3245 
3246 static void
3247 simple_fwd_config_setup(void)
3248 {
3249 	portid_t i;
3250 
3251 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
3252 	cur_fwd_config.nb_fwd_streams =
3253 		(streamid_t) cur_fwd_config.nb_fwd_ports;
3254 
3255 	/* reinitialize forwarding streams */
3256 	init_fwd_streams();
3257 
3258 	/*
3259 	 * In the simple forwarding test, the number of forwarding cores
3260 	 * must be lower or equal to the number of forwarding ports.
3261 	 */
3262 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3263 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
3264 		cur_fwd_config.nb_fwd_lcores =
3265 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
3266 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3267 
3268 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
3269 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
3270 		fwd_streams[i]->rx_queue  = 0;
3271 		fwd_streams[i]->tx_port   =
3272 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
3273 		fwd_streams[i]->tx_queue  = 0;
3274 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
3275 		fwd_streams[i]->retry_enabled = retry_enabled;
3276 	}
3277 }
3278 
3279 /**
3280  * For the RSS forwarding test all streams distributed over lcores. Each stream
3281  * being composed of a RX queue to poll on a RX port for input messages,
3282  * associated with a TX queue of a TX port where to send forwarded packets.
3283  */
3284 static void
3285 rss_fwd_config_setup(void)
3286 {
3287 	portid_t   rxp;
3288 	portid_t   txp;
3289 	queueid_t  rxq;
3290 	queueid_t  nb_q;
3291 	streamid_t  sm_id;
3292 	int start;
3293 	int end;
3294 
3295 	nb_q = nb_rxq;
3296 	if (nb_q > nb_txq)
3297 		nb_q = nb_txq;
3298 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3299 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3300 	cur_fwd_config.nb_fwd_streams =
3301 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
3302 
3303 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3304 		cur_fwd_config.nb_fwd_lcores =
3305 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3306 
3307 	/* reinitialize forwarding streams */
3308 	init_fwd_streams();
3309 
3310 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3311 
3312 	if (proc_id > 0 && nb_q % num_procs != 0)
3313 		printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n");
3314 
3315 	/**
3316 	 * In multi-process, All queues are allocated to different
3317 	 * processes based on num_procs and proc_id. For example:
3318 	 * if supports 4 queues(nb_q), 2 processes(num_procs),
3319 	 * the 0~1 queue for primary process.
3320 	 * the 2~3 queue for secondary process.
3321 	 */
3322 	start = proc_id * nb_q / num_procs;
3323 	end = start + nb_q / num_procs;
3324 	rxp = 0;
3325 	rxq = start;
3326 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
3327 		struct fwd_stream *fs;
3328 
3329 		fs = fwd_streams[sm_id];
3330 		txp = fwd_topology_tx_port_get(rxp);
3331 		fs->rx_port = fwd_ports_ids[rxp];
3332 		fs->rx_queue = rxq;
3333 		fs->tx_port = fwd_ports_ids[txp];
3334 		fs->tx_queue = rxq;
3335 		fs->peer_addr = fs->tx_port;
3336 		fs->retry_enabled = retry_enabled;
3337 		rxp++;
3338 		if (rxp < nb_fwd_ports)
3339 			continue;
3340 		rxp = 0;
3341 		rxq++;
3342 		if (rxq >= end)
3343 			rxq = start;
3344 	}
3345 }
3346 
3347 static uint16_t
3348 get_fwd_port_total_tc_num(void)
3349 {
3350 	struct rte_eth_dcb_info dcb_info;
3351 	uint16_t total_tc_num = 0;
3352 	unsigned int i;
3353 
3354 	for (i = 0; i < nb_fwd_ports; i++) {
3355 		(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info);
3356 		total_tc_num += dcb_info.nb_tcs;
3357 	}
3358 
3359 	return total_tc_num;
3360 }
3361 
3362 /**
3363  * For the DCB forwarding test, each core is assigned on each traffic class.
3364  *
3365  * Each core is assigned a multi-stream, each stream being composed of
3366  * a RX queue to poll on a RX port for input messages, associated with
3367  * a TX queue of a TX port where to send forwarded packets. All RX and
3368  * TX queues are mapping to the same traffic class.
3369  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
3370  * the same core
3371  */
3372 static void
3373 dcb_fwd_config_setup(void)
3374 {
3375 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
3376 	portid_t txp, rxp = 0;
3377 	queueid_t txq, rxq = 0;
3378 	lcoreid_t  lc_id;
3379 	uint16_t nb_rx_queue, nb_tx_queue;
3380 	uint16_t i, j, k, sm_id = 0;
3381 	uint16_t total_tc_num;
3382 	struct rte_port *port;
3383 	uint8_t tc = 0;
3384 	portid_t pid;
3385 	int ret;
3386 
3387 	/*
3388 	 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED
3389 	 * or RTE_PORT_STOPPED.
3390 	 *
3391 	 * Re-configure ports to get updated mapping between tc and queue in
3392 	 * case the queue number of the port is changed. Skip for started ports
3393 	 * since modifying queue number and calling dev_configure need to stop
3394 	 * ports first.
3395 	 */
3396 	for (pid = 0; pid < nb_fwd_ports; pid++) {
3397 		if (port_is_started(pid) == 1)
3398 			continue;
3399 
3400 		port = &ports[pid];
3401 		ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq,
3402 					    &port->dev_conf);
3403 		if (ret < 0) {
3404 			fprintf(stderr,
3405 				"Failed to re-configure port %d, ret = %d.\n",
3406 				pid, ret);
3407 			return;
3408 		}
3409 	}
3410 
3411 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3412 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3413 	cur_fwd_config.nb_fwd_streams =
3414 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3415 	total_tc_num = get_fwd_port_total_tc_num();
3416 	if (cur_fwd_config.nb_fwd_lcores > total_tc_num)
3417 		cur_fwd_config.nb_fwd_lcores = total_tc_num;
3418 
3419 	/* reinitialize forwarding streams */
3420 	init_fwd_streams();
3421 	sm_id = 0;
3422 	txp = 1;
3423 	/* get the dcb info on the first RX and TX ports */
3424 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3425 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3426 
3427 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3428 		fwd_lcores[lc_id]->stream_nb = 0;
3429 		fwd_lcores[lc_id]->stream_idx = sm_id;
3430 		for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) {
3431 			/* if the nb_queue is zero, means this tc is
3432 			 * not enabled on the POOL
3433 			 */
3434 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
3435 				break;
3436 			k = fwd_lcores[lc_id]->stream_nb +
3437 				fwd_lcores[lc_id]->stream_idx;
3438 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
3439 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
3440 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3441 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
3442 			for (j = 0; j < nb_rx_queue; j++) {
3443 				struct fwd_stream *fs;
3444 
3445 				fs = fwd_streams[k + j];
3446 				fs->rx_port = fwd_ports_ids[rxp];
3447 				fs->rx_queue = rxq + j;
3448 				fs->tx_port = fwd_ports_ids[txp];
3449 				fs->tx_queue = txq + j % nb_tx_queue;
3450 				fs->peer_addr = fs->tx_port;
3451 				fs->retry_enabled = retry_enabled;
3452 			}
3453 			fwd_lcores[lc_id]->stream_nb +=
3454 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3455 		}
3456 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
3457 
3458 		tc++;
3459 		if (tc < rxp_dcb_info.nb_tcs)
3460 			continue;
3461 		/* Restart from TC 0 on next RX port */
3462 		tc = 0;
3463 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
3464 			rxp = (portid_t)
3465 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
3466 		else
3467 			rxp++;
3468 		if (rxp >= nb_fwd_ports)
3469 			return;
3470 		/* get the dcb information on next RX and TX ports */
3471 		if ((rxp & 0x1) == 0)
3472 			txp = (portid_t) (rxp + 1);
3473 		else
3474 			txp = (portid_t) (rxp - 1);
3475 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3476 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3477 	}
3478 }
3479 
3480 static void
3481 icmp_echo_config_setup(void)
3482 {
3483 	portid_t  rxp;
3484 	queueid_t rxq;
3485 	lcoreid_t lc_id;
3486 	uint16_t  sm_id;
3487 
3488 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
3489 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
3490 			(nb_txq * nb_fwd_ports);
3491 	else
3492 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3493 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3494 	cur_fwd_config.nb_fwd_streams =
3495 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3496 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3497 		cur_fwd_config.nb_fwd_lcores =
3498 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3499 	if (verbose_level > 0) {
3500 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
3501 		       __FUNCTION__,
3502 		       cur_fwd_config.nb_fwd_lcores,
3503 		       cur_fwd_config.nb_fwd_ports,
3504 		       cur_fwd_config.nb_fwd_streams);
3505 	}
3506 
3507 	/* reinitialize forwarding streams */
3508 	init_fwd_streams();
3509 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3510 	rxp = 0; rxq = 0;
3511 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3512 		if (verbose_level > 0)
3513 			printf("  core=%d: \n", lc_id);
3514 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3515 			struct fwd_stream *fs;
3516 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3517 			fs->rx_port = fwd_ports_ids[rxp];
3518 			fs->rx_queue = rxq;
3519 			fs->tx_port = fs->rx_port;
3520 			fs->tx_queue = rxq;
3521 			fs->peer_addr = fs->tx_port;
3522 			fs->retry_enabled = retry_enabled;
3523 			if (verbose_level > 0)
3524 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
3525 				       sm_id, fs->rx_port, fs->rx_queue,
3526 				       fs->tx_queue);
3527 			rxq = (queueid_t) (rxq + 1);
3528 			if (rxq == nb_rxq) {
3529 				rxq = 0;
3530 				rxp = (portid_t) (rxp + 1);
3531 			}
3532 		}
3533 	}
3534 }
3535 
3536 void
3537 fwd_config_setup(void)
3538 {
3539 	struct rte_port *port;
3540 	portid_t pt_id;
3541 	unsigned int i;
3542 
3543 	cur_fwd_config.fwd_eng = cur_fwd_eng;
3544 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
3545 		icmp_echo_config_setup();
3546 		return;
3547 	}
3548 
3549 	if ((nb_rxq > 1) && (nb_txq > 1)){
3550 		if (dcb_config) {
3551 			for (i = 0; i < nb_fwd_ports; i++) {
3552 				pt_id = fwd_ports_ids[i];
3553 				port = &ports[pt_id];
3554 				if (!port->dcb_flag) {
3555 					fprintf(stderr,
3556 						"In DCB mode, all forwarding ports must be configured in this mode.\n");
3557 					return;
3558 				}
3559 			}
3560 			if (nb_fwd_lcores == 1) {
3561 				fprintf(stderr,
3562 					"In DCB mode,the nb forwarding cores should be larger than 1.\n");
3563 				return;
3564 			}
3565 
3566 			dcb_fwd_config_setup();
3567 		} else
3568 			rss_fwd_config_setup();
3569 	}
3570 	else
3571 		simple_fwd_config_setup();
3572 }
3573 
3574 static const char *
3575 mp_alloc_to_str(uint8_t mode)
3576 {
3577 	switch (mode) {
3578 	case MP_ALLOC_NATIVE:
3579 		return "native";
3580 	case MP_ALLOC_ANON:
3581 		return "anon";
3582 	case MP_ALLOC_XMEM:
3583 		return "xmem";
3584 	case MP_ALLOC_XMEM_HUGE:
3585 		return "xmemhuge";
3586 	case MP_ALLOC_XBUF:
3587 		return "xbuf";
3588 	default:
3589 		return "invalid";
3590 	}
3591 }
3592 
3593 void
3594 pkt_fwd_config_display(struct fwd_config *cfg)
3595 {
3596 	struct fwd_stream *fs;
3597 	lcoreid_t  lc_id;
3598 	streamid_t sm_id;
3599 
3600 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
3601 		"NUMA support %s, MP allocation mode: %s\n",
3602 		cfg->fwd_eng->fwd_mode_name,
3603 		retry_enabled == 0 ? "" : " with retry",
3604 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
3605 		numa_support == 1 ? "enabled" : "disabled",
3606 		mp_alloc_to_str(mp_alloc_type));
3607 
3608 	if (retry_enabled)
3609 		printf("TX retry num: %u, delay between TX retries: %uus\n",
3610 			burst_tx_retry_num, burst_tx_delay_time);
3611 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
3612 		printf("Logical Core %u (socket %u) forwards packets on "
3613 		       "%d streams:",
3614 		       fwd_lcores_cpuids[lc_id],
3615 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
3616 		       fwd_lcores[lc_id]->stream_nb);
3617 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3618 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3619 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
3620 			       "P=%d/Q=%d (socket %u) ",
3621 			       fs->rx_port, fs->rx_queue,
3622 			       ports[fs->rx_port].socket_id,
3623 			       fs->tx_port, fs->tx_queue,
3624 			       ports[fs->tx_port].socket_id);
3625 			print_ethaddr("peer=",
3626 				      &peer_eth_addrs[fs->peer_addr]);
3627 		}
3628 		printf("\n");
3629 	}
3630 	printf("\n");
3631 }
3632 
3633 void
3634 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
3635 {
3636 	struct rte_ether_addr new_peer_addr;
3637 	if (!rte_eth_dev_is_valid_port(port_id)) {
3638 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
3639 		return;
3640 	}
3641 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
3642 		fprintf(stderr, "Error: Invalid ethernet address: %s\n",
3643 			peer_addr);
3644 		return;
3645 	}
3646 	peer_eth_addrs[port_id] = new_peer_addr;
3647 }
3648 
3649 int
3650 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
3651 {
3652 	unsigned int i;
3653 	unsigned int lcore_cpuid;
3654 	int record_now;
3655 
3656 	record_now = 0;
3657  again:
3658 	for (i = 0; i < nb_lc; i++) {
3659 		lcore_cpuid = lcorelist[i];
3660 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
3661 			fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid);
3662 			return -1;
3663 		}
3664 		if (lcore_cpuid == rte_get_main_lcore()) {
3665 			fprintf(stderr,
3666 				"lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n",
3667 				lcore_cpuid);
3668 			return -1;
3669 		}
3670 		if (record_now)
3671 			fwd_lcores_cpuids[i] = lcore_cpuid;
3672 	}
3673 	if (record_now == 0) {
3674 		record_now = 1;
3675 		goto again;
3676 	}
3677 	nb_cfg_lcores = (lcoreid_t) nb_lc;
3678 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
3679 		printf("previous number of forwarding cores %u - changed to "
3680 		       "number of configured cores %u\n",
3681 		       (unsigned int) nb_fwd_lcores, nb_lc);
3682 		nb_fwd_lcores = (lcoreid_t) nb_lc;
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 int
3689 set_fwd_lcores_mask(uint64_t lcoremask)
3690 {
3691 	unsigned int lcorelist[64];
3692 	unsigned int nb_lc;
3693 	unsigned int i;
3694 
3695 	if (lcoremask == 0) {
3696 		fprintf(stderr, "Invalid NULL mask of cores\n");
3697 		return -1;
3698 	}
3699 	nb_lc = 0;
3700 	for (i = 0; i < 64; i++) {
3701 		if (! ((uint64_t)(1ULL << i) & lcoremask))
3702 			continue;
3703 		lcorelist[nb_lc++] = i;
3704 	}
3705 	return set_fwd_lcores_list(lcorelist, nb_lc);
3706 }
3707 
3708 void
3709 set_fwd_lcores_number(uint16_t nb_lc)
3710 {
3711 	if (test_done == 0) {
3712 		fprintf(stderr, "Please stop forwarding first\n");
3713 		return;
3714 	}
3715 	if (nb_lc > nb_cfg_lcores) {
3716 		fprintf(stderr,
3717 			"nb fwd cores %u > %u (max. number of configured lcores) - ignored\n",
3718 			(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
3719 		return;
3720 	}
3721 	nb_fwd_lcores = (lcoreid_t) nb_lc;
3722 	printf("Number of forwarding cores set to %u\n",
3723 	       (unsigned int) nb_fwd_lcores);
3724 }
3725 
3726 void
3727 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
3728 {
3729 	unsigned int i;
3730 	portid_t port_id;
3731 	int record_now;
3732 
3733 	record_now = 0;
3734  again:
3735 	for (i = 0; i < nb_pt; i++) {
3736 		port_id = (portid_t) portlist[i];
3737 		if (port_id_is_invalid(port_id, ENABLED_WARN))
3738 			return;
3739 		if (record_now)
3740 			fwd_ports_ids[i] = port_id;
3741 	}
3742 	if (record_now == 0) {
3743 		record_now = 1;
3744 		goto again;
3745 	}
3746 	nb_cfg_ports = (portid_t) nb_pt;
3747 	if (nb_fwd_ports != (portid_t) nb_pt) {
3748 		printf("previous number of forwarding ports %u - changed to "
3749 		       "number of configured ports %u\n",
3750 		       (unsigned int) nb_fwd_ports, nb_pt);
3751 		nb_fwd_ports = (portid_t) nb_pt;
3752 	}
3753 }
3754 
3755 /**
3756  * Parse the user input and obtain the list of forwarding ports
3757  *
3758  * @param[in] list
3759  *   String containing the user input. User can specify
3760  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
3761  *   For example, if the user wants to use all the available
3762  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
3763  *   If the user wants to use only the ports 1,2 then the input
3764  *   is 1,2.
3765  *   valid characters are '-' and ','
3766  * @param[out] values
3767  *   This array will be filled with a list of port IDs
3768  *   based on the user input
3769  *   Note that duplicate entries are discarded and only the first
3770  *   count entries in this array are port IDs and all the rest
3771  *   will contain default values
3772  * @param[in] maxsize
3773  *   This parameter denotes 2 things
3774  *   1) Number of elements in the values array
3775  *   2) Maximum value of each element in the values array
3776  * @return
3777  *   On success, returns total count of parsed port IDs
3778  *   On failure, returns 0
3779  */
3780 static unsigned int
3781 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
3782 {
3783 	unsigned int count = 0;
3784 	char *end = NULL;
3785 	int min, max;
3786 	int value, i;
3787 	unsigned int marked[maxsize];
3788 
3789 	if (list == NULL || values == NULL)
3790 		return 0;
3791 
3792 	for (i = 0; i < (int)maxsize; i++)
3793 		marked[i] = 0;
3794 
3795 	min = INT_MAX;
3796 
3797 	do {
3798 		/*Remove the blank spaces if any*/
3799 		while (isblank(*list))
3800 			list++;
3801 		if (*list == '\0')
3802 			break;
3803 		errno = 0;
3804 		value = strtol(list, &end, 10);
3805 		if (errno || end == NULL)
3806 			return 0;
3807 		if (value < 0 || value >= (int)maxsize)
3808 			return 0;
3809 		while (isblank(*end))
3810 			end++;
3811 		if (*end == '-' && min == INT_MAX) {
3812 			min = value;
3813 		} else if ((*end == ',') || (*end == '\0')) {
3814 			max = value;
3815 			if (min == INT_MAX)
3816 				min = value;
3817 			for (i = min; i <= max; i++) {
3818 				if (count < maxsize) {
3819 					if (marked[i])
3820 						continue;
3821 					values[count] = i;
3822 					marked[i] = 1;
3823 					count++;
3824 				}
3825 			}
3826 			min = INT_MAX;
3827 		} else
3828 			return 0;
3829 		list = end + 1;
3830 	} while (*end != '\0');
3831 
3832 	return count;
3833 }
3834 
3835 void
3836 parse_fwd_portlist(const char *portlist)
3837 {
3838 	unsigned int portcount;
3839 	unsigned int portindex[RTE_MAX_ETHPORTS];
3840 	unsigned int i, valid_port_count = 0;
3841 
3842 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
3843 	if (!portcount)
3844 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
3845 
3846 	/*
3847 	 * Here we verify the validity of the ports
3848 	 * and thereby calculate the total number of
3849 	 * valid ports
3850 	 */
3851 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
3852 		if (rte_eth_dev_is_valid_port(portindex[i])) {
3853 			portindex[valid_port_count] = portindex[i];
3854 			valid_port_count++;
3855 		}
3856 	}
3857 
3858 	set_fwd_ports_list(portindex, valid_port_count);
3859 }
3860 
3861 void
3862 set_fwd_ports_mask(uint64_t portmask)
3863 {
3864 	unsigned int portlist[64];
3865 	unsigned int nb_pt;
3866 	unsigned int i;
3867 
3868 	if (portmask == 0) {
3869 		fprintf(stderr, "Invalid NULL mask of ports\n");
3870 		return;
3871 	}
3872 	nb_pt = 0;
3873 	RTE_ETH_FOREACH_DEV(i) {
3874 		if (! ((uint64_t)(1ULL << i) & portmask))
3875 			continue;
3876 		portlist[nb_pt++] = i;
3877 	}
3878 	set_fwd_ports_list(portlist, nb_pt);
3879 }
3880 
3881 void
3882 set_fwd_ports_number(uint16_t nb_pt)
3883 {
3884 	if (nb_pt > nb_cfg_ports) {
3885 		fprintf(stderr,
3886 			"nb fwd ports %u > %u (number of configured ports) - ignored\n",
3887 			(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
3888 		return;
3889 	}
3890 	nb_fwd_ports = (portid_t) nb_pt;
3891 	printf("Number of forwarding ports set to %u\n",
3892 	       (unsigned int) nb_fwd_ports);
3893 }
3894 
3895 int
3896 port_is_forwarding(portid_t port_id)
3897 {
3898 	unsigned int i;
3899 
3900 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3901 		return -1;
3902 
3903 	for (i = 0; i < nb_fwd_ports; i++) {
3904 		if (fwd_ports_ids[i] == port_id)
3905 			return 1;
3906 	}
3907 
3908 	return 0;
3909 }
3910 
3911 void
3912 set_nb_pkt_per_burst(uint16_t nb)
3913 {
3914 	if (nb > MAX_PKT_BURST) {
3915 		fprintf(stderr,
3916 			"nb pkt per burst: %u > %u (maximum packet per burst)  ignored\n",
3917 			(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
3918 		return;
3919 	}
3920 	nb_pkt_per_burst = nb;
3921 	printf("Number of packets per burst set to %u\n",
3922 	       (unsigned int) nb_pkt_per_burst);
3923 }
3924 
3925 static const char *
3926 tx_split_get_name(enum tx_pkt_split split)
3927 {
3928 	uint32_t i;
3929 
3930 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3931 		if (tx_split_name[i].split == split)
3932 			return tx_split_name[i].name;
3933 	}
3934 	return NULL;
3935 }
3936 
3937 void
3938 set_tx_pkt_split(const char *name)
3939 {
3940 	uint32_t i;
3941 
3942 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3943 		if (strcmp(tx_split_name[i].name, name) == 0) {
3944 			tx_pkt_split = tx_split_name[i].split;
3945 			return;
3946 		}
3947 	}
3948 	fprintf(stderr, "unknown value: \"%s\"\n", name);
3949 }
3950 
3951 int
3952 parse_fec_mode(const char *name, uint32_t *fec_capa)
3953 {
3954 	uint8_t i;
3955 
3956 	for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
3957 		if (strcmp(fec_mode_name[i].name, name) == 0) {
3958 			*fec_capa =
3959 				RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
3960 			return 0;
3961 		}
3962 	}
3963 	return -1;
3964 }
3965 
3966 void
3967 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
3968 {
3969 	unsigned int i, j;
3970 
3971 	printf("FEC capabilities:\n");
3972 
3973 	for (i = 0; i < num; i++) {
3974 		printf("%s : ",
3975 			rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
3976 
3977 		for (j = 0; j < RTE_DIM(fec_mode_name); j++) {
3978 			if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
3979 						speed_fec_capa[i].capa)
3980 				printf("%s ", fec_mode_name[j].name);
3981 		}
3982 		printf("\n");
3983 	}
3984 }
3985 
3986 void
3987 show_rx_pkt_offsets(void)
3988 {
3989 	uint32_t i, n;
3990 
3991 	n = rx_pkt_nb_offs;
3992 	printf("Number of offsets: %u\n", n);
3993 	if (n) {
3994 		printf("Segment offsets: ");
3995 		for (i = 0; i != n - 1; i++)
3996 			printf("%hu,", rx_pkt_seg_offsets[i]);
3997 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3998 	}
3999 }
4000 
4001 void
4002 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
4003 {
4004 	unsigned int i;
4005 
4006 	if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
4007 		printf("nb segments per RX packets=%u >= "
4008 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
4009 		return;
4010 	}
4011 
4012 	/*
4013 	 * No extra check here, the segment length will be checked by PMD
4014 	 * in the extended queue setup.
4015 	 */
4016 	for (i = 0; i < nb_offs; i++) {
4017 		if (seg_offsets[i] >= UINT16_MAX) {
4018 			printf("offset[%u]=%u > UINT16_MAX - give up\n",
4019 			       i, seg_offsets[i]);
4020 			return;
4021 		}
4022 	}
4023 
4024 	for (i = 0; i < nb_offs; i++)
4025 		rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
4026 
4027 	rx_pkt_nb_offs = (uint8_t) nb_offs;
4028 }
4029 
4030 void
4031 show_rx_pkt_segments(void)
4032 {
4033 	uint32_t i, n;
4034 
4035 	n = rx_pkt_nb_segs;
4036 	printf("Number of segments: %u\n", n);
4037 	if (n) {
4038 		printf("Segment sizes: ");
4039 		for (i = 0; i != n - 1; i++)
4040 			printf("%hu,", rx_pkt_seg_lengths[i]);
4041 		printf("%hu\n", rx_pkt_seg_lengths[i]);
4042 	}
4043 }
4044 
4045 void
4046 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
4047 {
4048 	unsigned int i;
4049 
4050 	if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
4051 		printf("nb segments per RX packets=%u >= "
4052 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
4053 		return;
4054 	}
4055 
4056 	/*
4057 	 * No extra check here, the segment length will be checked by PMD
4058 	 * in the extended queue setup.
4059 	 */
4060 	for (i = 0; i < nb_segs; i++) {
4061 		if (seg_lengths[i] >= UINT16_MAX) {
4062 			printf("length[%u]=%u > UINT16_MAX - give up\n",
4063 			       i, seg_lengths[i]);
4064 			return;
4065 		}
4066 	}
4067 
4068 	for (i = 0; i < nb_segs; i++)
4069 		rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
4070 
4071 	rx_pkt_nb_segs = (uint8_t) nb_segs;
4072 }
4073 
4074 void
4075 show_tx_pkt_segments(void)
4076 {
4077 	uint32_t i, n;
4078 	const char *split;
4079 
4080 	n = tx_pkt_nb_segs;
4081 	split = tx_split_get_name(tx_pkt_split);
4082 
4083 	printf("Number of segments: %u\n", n);
4084 	printf("Segment sizes: ");
4085 	for (i = 0; i != n - 1; i++)
4086 		printf("%hu,", tx_pkt_seg_lengths[i]);
4087 	printf("%hu\n", tx_pkt_seg_lengths[i]);
4088 	printf("Split packet: %s\n", split);
4089 }
4090 
4091 static bool
4092 nb_segs_is_invalid(unsigned int nb_segs)
4093 {
4094 	uint16_t ring_size;
4095 	uint16_t queue_id;
4096 	uint16_t port_id;
4097 	int ret;
4098 
4099 	RTE_ETH_FOREACH_DEV(port_id) {
4100 		for (queue_id = 0; queue_id < nb_txq; queue_id++) {
4101 			ret = get_tx_ring_size(port_id, queue_id, &ring_size);
4102 			if (ret) {
4103 				/* Port may not be initialized yet, can't say
4104 				 * the port is invalid in this stage.
4105 				 */
4106 				continue;
4107 			}
4108 			if (ring_size < nb_segs) {
4109 				printf("nb segments per TX packets=%u >= TX "
4110 				       "queue(%u) ring_size=%u - txpkts ignored\n",
4111 				       nb_segs, queue_id, ring_size);
4112 				return true;
4113 			}
4114 		}
4115 	}
4116 
4117 	return false;
4118 }
4119 
4120 void
4121 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
4122 {
4123 	uint16_t tx_pkt_len;
4124 	unsigned int i;
4125 
4126 	/*
4127 	 * For single segment settings failed check is ignored.
4128 	 * It is a very basic capability to send the single segment
4129 	 * packets, suppose it is always supported.
4130 	 */
4131 	if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) {
4132 		fprintf(stderr,
4133 			"Tx segment size(%u) is not supported - txpkts ignored\n",
4134 			nb_segs);
4135 		return;
4136 	}
4137 
4138 	if (nb_segs > RTE_MAX_SEGS_PER_PKT) {
4139 		fprintf(stderr,
4140 			"Tx segment size(%u) is bigger than max number of segment(%u)\n",
4141 			nb_segs, RTE_MAX_SEGS_PER_PKT);
4142 		return;
4143 	}
4144 
4145 	/*
4146 	 * Check that each segment length is greater or equal than
4147 	 * the mbuf data size.
4148 	 * Check also that the total packet length is greater or equal than the
4149 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
4150 	 * 20 + 8).
4151 	 */
4152 	tx_pkt_len = 0;
4153 	for (i = 0; i < nb_segs; i++) {
4154 		if (seg_lengths[i] > mbuf_data_size[0]) {
4155 			fprintf(stderr,
4156 				"length[%u]=%u > mbuf_data_size=%u - give up\n",
4157 				i, seg_lengths[i], mbuf_data_size[0]);
4158 			return;
4159 		}
4160 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
4161 	}
4162 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
4163 		fprintf(stderr, "total packet length=%u < %d - give up\n",
4164 				(unsigned) tx_pkt_len,
4165 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
4166 		return;
4167 	}
4168 
4169 	for (i = 0; i < nb_segs; i++)
4170 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
4171 
4172 	tx_pkt_length  = tx_pkt_len;
4173 	tx_pkt_nb_segs = (uint8_t) nb_segs;
4174 }
4175 
4176 void
4177 show_tx_pkt_times(void)
4178 {
4179 	printf("Interburst gap: %u\n", tx_pkt_times_inter);
4180 	printf("Intraburst gap: %u\n", tx_pkt_times_intra);
4181 }
4182 
4183 void
4184 set_tx_pkt_times(unsigned int *tx_times)
4185 {
4186 	tx_pkt_times_inter = tx_times[0];
4187 	tx_pkt_times_intra = tx_times[1];
4188 }
4189 
4190 void
4191 setup_gro(const char *onoff, portid_t port_id)
4192 {
4193 	if (!rte_eth_dev_is_valid_port(port_id)) {
4194 		fprintf(stderr, "invalid port id %u\n", port_id);
4195 		return;
4196 	}
4197 	if (test_done == 0) {
4198 		fprintf(stderr,
4199 			"Before enable/disable GRO, please stop forwarding first\n");
4200 		return;
4201 	}
4202 	if (strcmp(onoff, "on") == 0) {
4203 		if (gro_ports[port_id].enable != 0) {
4204 			fprintf(stderr,
4205 				"Port %u has enabled GRO. Please disable GRO first\n",
4206 				port_id);
4207 			return;
4208 		}
4209 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
4210 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
4211 			gro_ports[port_id].param.max_flow_num =
4212 				GRO_DEFAULT_FLOW_NUM;
4213 			gro_ports[port_id].param.max_item_per_flow =
4214 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
4215 		}
4216 		gro_ports[port_id].enable = 1;
4217 	} else {
4218 		if (gro_ports[port_id].enable == 0) {
4219 			fprintf(stderr, "Port %u has disabled GRO\n", port_id);
4220 			return;
4221 		}
4222 		gro_ports[port_id].enable = 0;
4223 	}
4224 }
4225 
4226 void
4227 setup_gro_flush_cycles(uint8_t cycles)
4228 {
4229 	if (test_done == 0) {
4230 		fprintf(stderr,
4231 			"Before change flush interval for GRO, please stop forwarding first.\n");
4232 		return;
4233 	}
4234 
4235 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
4236 			GRO_DEFAULT_FLUSH_CYCLES) {
4237 		fprintf(stderr,
4238 			"The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n",
4239 			GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES);
4240 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
4241 	}
4242 
4243 	gro_flush_cycles = cycles;
4244 }
4245 
4246 void
4247 show_gro(portid_t port_id)
4248 {
4249 	struct rte_gro_param *param;
4250 	uint32_t max_pkts_num;
4251 
4252 	param = &gro_ports[port_id].param;
4253 
4254 	if (!rte_eth_dev_is_valid_port(port_id)) {
4255 		fprintf(stderr, "Invalid port id %u.\n", port_id);
4256 		return;
4257 	}
4258 	if (gro_ports[port_id].enable) {
4259 		printf("GRO type: TCP/IPv4\n");
4260 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
4261 			max_pkts_num = param->max_flow_num *
4262 				param->max_item_per_flow;
4263 		} else
4264 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
4265 		printf("Max number of packets to perform GRO: %u\n",
4266 				max_pkts_num);
4267 		printf("Flushing cycles: %u\n", gro_flush_cycles);
4268 	} else
4269 		printf("Port %u doesn't enable GRO.\n", port_id);
4270 }
4271 
4272 void
4273 setup_gso(const char *mode, portid_t port_id)
4274 {
4275 	if (!rte_eth_dev_is_valid_port(port_id)) {
4276 		fprintf(stderr, "invalid port id %u\n", port_id);
4277 		return;
4278 	}
4279 	if (strcmp(mode, "on") == 0) {
4280 		if (test_done == 0) {
4281 			fprintf(stderr,
4282 				"before enabling GSO, please stop forwarding first\n");
4283 			return;
4284 		}
4285 		gso_ports[port_id].enable = 1;
4286 	} else if (strcmp(mode, "off") == 0) {
4287 		if (test_done == 0) {
4288 			fprintf(stderr,
4289 				"before disabling GSO, please stop forwarding first\n");
4290 			return;
4291 		}
4292 		gso_ports[port_id].enable = 0;
4293 	}
4294 }
4295 
4296 char*
4297 list_pkt_forwarding_modes(void)
4298 {
4299 	static char fwd_modes[128] = "";
4300 	const char *separator = "|";
4301 	struct fwd_engine *fwd_eng;
4302 	unsigned i = 0;
4303 
4304 	if (strlen (fwd_modes) == 0) {
4305 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4306 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4307 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4308 			strncat(fwd_modes, separator,
4309 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4310 		}
4311 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4312 	}
4313 
4314 	return fwd_modes;
4315 }
4316 
4317 char*
4318 list_pkt_forwarding_retry_modes(void)
4319 {
4320 	static char fwd_modes[128] = "";
4321 	const char *separator = "|";
4322 	struct fwd_engine *fwd_eng;
4323 	unsigned i = 0;
4324 
4325 	if (strlen(fwd_modes) == 0) {
4326 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4327 			if (fwd_eng == &rx_only_engine)
4328 				continue;
4329 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4330 					sizeof(fwd_modes) -
4331 					strlen(fwd_modes) - 1);
4332 			strncat(fwd_modes, separator,
4333 					sizeof(fwd_modes) -
4334 					strlen(fwd_modes) - 1);
4335 		}
4336 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4337 	}
4338 
4339 	return fwd_modes;
4340 }
4341 
4342 void
4343 set_pkt_forwarding_mode(const char *fwd_mode_name)
4344 {
4345 	struct fwd_engine *fwd_eng;
4346 	unsigned i;
4347 
4348 	i = 0;
4349 	while ((fwd_eng = fwd_engines[i]) != NULL) {
4350 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
4351 			printf("Set %s packet forwarding mode%s\n",
4352 			       fwd_mode_name,
4353 			       retry_enabled == 0 ? "" : " with retry");
4354 			cur_fwd_eng = fwd_eng;
4355 			return;
4356 		}
4357 		i++;
4358 	}
4359 	fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name);
4360 }
4361 
4362 void
4363 add_rx_dump_callbacks(portid_t portid)
4364 {
4365 	struct rte_eth_dev_info dev_info;
4366 	uint16_t queue;
4367 	int ret;
4368 
4369 	if (port_id_is_invalid(portid, ENABLED_WARN))
4370 		return;
4371 
4372 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4373 	if (ret != 0)
4374 		return;
4375 
4376 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4377 		if (!ports[portid].rx_dump_cb[queue])
4378 			ports[portid].rx_dump_cb[queue] =
4379 				rte_eth_add_rx_callback(portid, queue,
4380 					dump_rx_pkts, NULL);
4381 }
4382 
4383 void
4384 add_tx_dump_callbacks(portid_t portid)
4385 {
4386 	struct rte_eth_dev_info dev_info;
4387 	uint16_t queue;
4388 	int ret;
4389 
4390 	if (port_id_is_invalid(portid, ENABLED_WARN))
4391 		return;
4392 
4393 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4394 	if (ret != 0)
4395 		return;
4396 
4397 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4398 		if (!ports[portid].tx_dump_cb[queue])
4399 			ports[portid].tx_dump_cb[queue] =
4400 				rte_eth_add_tx_callback(portid, queue,
4401 							dump_tx_pkts, NULL);
4402 }
4403 
4404 void
4405 remove_rx_dump_callbacks(portid_t portid)
4406 {
4407 	struct rte_eth_dev_info dev_info;
4408 	uint16_t queue;
4409 	int ret;
4410 
4411 	if (port_id_is_invalid(portid, ENABLED_WARN))
4412 		return;
4413 
4414 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4415 	if (ret != 0)
4416 		return;
4417 
4418 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4419 		if (ports[portid].rx_dump_cb[queue]) {
4420 			rte_eth_remove_rx_callback(portid, queue,
4421 				ports[portid].rx_dump_cb[queue]);
4422 			ports[portid].rx_dump_cb[queue] = NULL;
4423 		}
4424 }
4425 
4426 void
4427 remove_tx_dump_callbacks(portid_t portid)
4428 {
4429 	struct rte_eth_dev_info dev_info;
4430 	uint16_t queue;
4431 	int ret;
4432 
4433 	if (port_id_is_invalid(portid, ENABLED_WARN))
4434 		return;
4435 
4436 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4437 	if (ret != 0)
4438 		return;
4439 
4440 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4441 		if (ports[portid].tx_dump_cb[queue]) {
4442 			rte_eth_remove_tx_callback(portid, queue,
4443 				ports[portid].tx_dump_cb[queue]);
4444 			ports[portid].tx_dump_cb[queue] = NULL;
4445 		}
4446 }
4447 
4448 void
4449 configure_rxtx_dump_callbacks(uint16_t verbose)
4450 {
4451 	portid_t portid;
4452 
4453 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
4454 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
4455 		return;
4456 #endif
4457 
4458 	RTE_ETH_FOREACH_DEV(portid)
4459 	{
4460 		if (verbose == 1 || verbose > 2)
4461 			add_rx_dump_callbacks(portid);
4462 		else
4463 			remove_rx_dump_callbacks(portid);
4464 		if (verbose >= 2)
4465 			add_tx_dump_callbacks(portid);
4466 		else
4467 			remove_tx_dump_callbacks(portid);
4468 	}
4469 }
4470 
4471 void
4472 set_verbose_level(uint16_t vb_level)
4473 {
4474 	printf("Change verbose level from %u to %u\n",
4475 	       (unsigned int) verbose_level, (unsigned int) vb_level);
4476 	verbose_level = vb_level;
4477 	configure_rxtx_dump_callbacks(verbose_level);
4478 }
4479 
4480 void
4481 vlan_extend_set(portid_t port_id, int on)
4482 {
4483 	int diag;
4484 	int vlan_offload;
4485 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4486 
4487 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4488 		return;
4489 
4490 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4491 
4492 	if (on) {
4493 		vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD;
4494 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
4495 	} else {
4496 		vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD;
4497 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
4498 	}
4499 
4500 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4501 	if (diag < 0) {
4502 		fprintf(stderr,
4503 			"rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n",
4504 			port_id, on, diag);
4505 		return;
4506 	}
4507 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4508 }
4509 
4510 void
4511 rx_vlan_strip_set(portid_t port_id, int on)
4512 {
4513 	int diag;
4514 	int vlan_offload;
4515 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4516 
4517 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4518 		return;
4519 
4520 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4521 
4522 	if (on) {
4523 		vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD;
4524 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
4525 	} else {
4526 		vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD;
4527 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
4528 	}
4529 
4530 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4531 	if (diag < 0) {
4532 		fprintf(stderr,
4533 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4534 			__func__, port_id, on, diag);
4535 		return;
4536 	}
4537 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4538 }
4539 
4540 void
4541 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
4542 {
4543 	int diag;
4544 
4545 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4546 		return;
4547 
4548 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
4549 	if (diag < 0)
4550 		fprintf(stderr,
4551 			"%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n",
4552 			__func__, port_id, queue_id, on, diag);
4553 }
4554 
4555 void
4556 rx_vlan_filter_set(portid_t port_id, int on)
4557 {
4558 	int diag;
4559 	int vlan_offload;
4560 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4561 
4562 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4563 		return;
4564 
4565 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4566 
4567 	if (on) {
4568 		vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD;
4569 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
4570 	} else {
4571 		vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD;
4572 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
4573 	}
4574 
4575 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4576 	if (diag < 0) {
4577 		fprintf(stderr,
4578 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4579 			__func__, port_id, on, diag);
4580 		return;
4581 	}
4582 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4583 }
4584 
4585 void
4586 rx_vlan_qinq_strip_set(portid_t port_id, int on)
4587 {
4588 	int diag;
4589 	int vlan_offload;
4590 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4591 
4592 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4593 		return;
4594 
4595 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4596 
4597 	if (on) {
4598 		vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD;
4599 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
4600 	} else {
4601 		vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD;
4602 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
4603 	}
4604 
4605 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4606 	if (diag < 0) {
4607 		fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n",
4608 			__func__, port_id, on, diag);
4609 		return;
4610 	}
4611 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4612 }
4613 
4614 int
4615 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
4616 {
4617 	int diag;
4618 
4619 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4620 		return 1;
4621 	if (vlan_id_is_invalid(vlan_id))
4622 		return 1;
4623 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
4624 	if (diag == 0)
4625 		return 0;
4626 	fprintf(stderr,
4627 		"rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n",
4628 		port_id, vlan_id, on, diag);
4629 	return -1;
4630 }
4631 
4632 void
4633 rx_vlan_all_filter_set(portid_t port_id, int on)
4634 {
4635 	uint16_t vlan_id;
4636 
4637 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4638 		return;
4639 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
4640 		if (rx_vft_set(port_id, vlan_id, on))
4641 			break;
4642 	}
4643 }
4644 
4645 void
4646 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
4647 {
4648 	int diag;
4649 
4650 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4651 		return;
4652 
4653 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
4654 	if (diag == 0)
4655 		return;
4656 
4657 	fprintf(stderr,
4658 		"tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n",
4659 		port_id, vlan_type, tp_id, diag);
4660 }
4661 
4662 void
4663 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
4664 {
4665 	struct rte_eth_dev_info dev_info;
4666 	int ret;
4667 
4668 	if (vlan_id_is_invalid(vlan_id))
4669 		return;
4670 
4671 	if (ports[port_id].dev_conf.txmode.offloads &
4672 	    RTE_ETH_TX_OFFLOAD_QINQ_INSERT) {
4673 		fprintf(stderr, "Error, as QinQ has been enabled.\n");
4674 		return;
4675 	}
4676 
4677 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4678 	if (ret != 0)
4679 		return;
4680 
4681 	if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) {
4682 		fprintf(stderr,
4683 			"Error: vlan insert is not supported by port %d\n",
4684 			port_id);
4685 		return;
4686 	}
4687 
4688 	tx_vlan_reset(port_id);
4689 	ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT;
4690 	ports[port_id].tx_vlan_id = vlan_id;
4691 }
4692 
4693 void
4694 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
4695 {
4696 	struct rte_eth_dev_info dev_info;
4697 	int ret;
4698 
4699 	if (vlan_id_is_invalid(vlan_id))
4700 		return;
4701 	if (vlan_id_is_invalid(vlan_id_outer))
4702 		return;
4703 
4704 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4705 	if (ret != 0)
4706 		return;
4707 
4708 	if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) {
4709 		fprintf(stderr,
4710 			"Error: qinq insert not supported by port %d\n",
4711 			port_id);
4712 		return;
4713 	}
4714 
4715 	tx_vlan_reset(port_id);
4716 	ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
4717 						    RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
4718 	ports[port_id].tx_vlan_id = vlan_id;
4719 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
4720 }
4721 
4722 void
4723 tx_vlan_reset(portid_t port_id)
4724 {
4725 	ports[port_id].dev_conf.txmode.offloads &=
4726 				~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
4727 				  RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
4728 	ports[port_id].tx_vlan_id = 0;
4729 	ports[port_id].tx_vlan_id_outer = 0;
4730 }
4731 
4732 void
4733 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
4734 {
4735 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4736 		return;
4737 
4738 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
4739 }
4740 
4741 void
4742 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
4743 {
4744 	int ret;
4745 
4746 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4747 		return;
4748 
4749 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
4750 		return;
4751 
4752 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
4753 		fprintf(stderr, "map_value not in required range 0..%d\n",
4754 			RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
4755 		return;
4756 	}
4757 
4758 	if (!is_rx) { /* tx */
4759 		ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
4760 							     map_value);
4761 		if (ret) {
4762 			fprintf(stderr,
4763 				"failed to set tx queue stats mapping.\n");
4764 			return;
4765 		}
4766 	} else { /* rx */
4767 		ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
4768 							     map_value);
4769 		if (ret) {
4770 			fprintf(stderr,
4771 				"failed to set rx queue stats mapping.\n");
4772 			return;
4773 		}
4774 	}
4775 }
4776 
4777 void
4778 set_xstats_hide_zero(uint8_t on_off)
4779 {
4780 	xstats_hide_zero = on_off;
4781 }
4782 
4783 void
4784 set_record_core_cycles(uint8_t on_off)
4785 {
4786 	record_core_cycles = on_off;
4787 }
4788 
4789 void
4790 set_record_burst_stats(uint8_t on_off)
4791 {
4792 	record_burst_stats = on_off;
4793 }
4794 
4795 static char*
4796 flowtype_to_str(uint16_t flow_type)
4797 {
4798 	struct flow_type_info {
4799 		char str[32];
4800 		uint16_t ftype;
4801 	};
4802 
4803 	uint8_t i;
4804 	static struct flow_type_info flowtype_str_table[] = {
4805 		{"raw", RTE_ETH_FLOW_RAW},
4806 		{"ipv4", RTE_ETH_FLOW_IPV4},
4807 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
4808 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
4809 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
4810 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
4811 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
4812 		{"ipv6", RTE_ETH_FLOW_IPV6},
4813 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
4814 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
4815 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
4816 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
4817 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
4818 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
4819 		{"port", RTE_ETH_FLOW_PORT},
4820 		{"vxlan", RTE_ETH_FLOW_VXLAN},
4821 		{"geneve", RTE_ETH_FLOW_GENEVE},
4822 		{"nvgre", RTE_ETH_FLOW_NVGRE},
4823 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
4824 	};
4825 
4826 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
4827 		if (flowtype_str_table[i].ftype == flow_type)
4828 			return flowtype_str_table[i].str;
4829 	}
4830 
4831 	return NULL;
4832 }
4833 
4834 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
4835 
4836 static inline void
4837 print_fdir_mask(struct rte_eth_fdir_masks *mask)
4838 {
4839 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
4840 
4841 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4842 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
4843 			" tunnel_id: 0x%08x",
4844 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
4845 			rte_be_to_cpu_32(mask->tunnel_id_mask));
4846 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
4847 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
4848 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
4849 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
4850 
4851 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
4852 			rte_be_to_cpu_16(mask->src_port_mask),
4853 			rte_be_to_cpu_16(mask->dst_port_mask));
4854 
4855 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4856 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
4857 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
4858 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
4859 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
4860 
4861 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4862 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
4863 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
4864 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
4865 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
4866 	}
4867 
4868 	printf("\n");
4869 }
4870 
4871 static inline void
4872 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4873 {
4874 	struct rte_eth_flex_payload_cfg *cfg;
4875 	uint32_t i, j;
4876 
4877 	for (i = 0; i < flex_conf->nb_payloads; i++) {
4878 		cfg = &flex_conf->flex_set[i];
4879 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
4880 			printf("\n    RAW:  ");
4881 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
4882 			printf("\n    L2_PAYLOAD:  ");
4883 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
4884 			printf("\n    L3_PAYLOAD:  ");
4885 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
4886 			printf("\n    L4_PAYLOAD:  ");
4887 		else
4888 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
4889 		for (j = 0; j < num; j++)
4890 			printf("  %-5u", cfg->src_offset[j]);
4891 	}
4892 	printf("\n");
4893 }
4894 
4895 static inline void
4896 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4897 {
4898 	struct rte_eth_fdir_flex_mask *mask;
4899 	uint32_t i, j;
4900 	char *p;
4901 
4902 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
4903 		mask = &flex_conf->flex_mask[i];
4904 		p = flowtype_to_str(mask->flow_type);
4905 		printf("\n    %s:\t", p ? p : "unknown");
4906 		for (j = 0; j < num; j++)
4907 			printf(" %02x", mask->mask[j]);
4908 	}
4909 	printf("\n");
4910 }
4911 
4912 static inline void
4913 print_fdir_flow_type(uint32_t flow_types_mask)
4914 {
4915 	int i;
4916 	char *p;
4917 
4918 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
4919 		if (!(flow_types_mask & (1 << i)))
4920 			continue;
4921 		p = flowtype_to_str(i);
4922 		if (p)
4923 			printf(" %s", p);
4924 		else
4925 			printf(" unknown");
4926 	}
4927 	printf("\n");
4928 }
4929 
4930 static int
4931 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
4932 		    struct rte_eth_fdir_stats *fdir_stat)
4933 {
4934 	int ret = -ENOTSUP;
4935 
4936 #ifdef RTE_NET_I40E
4937 	if (ret == -ENOTSUP) {
4938 		ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
4939 		if (!ret)
4940 			ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
4941 	}
4942 #endif
4943 #ifdef RTE_NET_IXGBE
4944 	if (ret == -ENOTSUP) {
4945 		ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
4946 		if (!ret)
4947 			ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
4948 	}
4949 #endif
4950 	switch (ret) {
4951 	case 0:
4952 		break;
4953 	case -ENOTSUP:
4954 		fprintf(stderr, "\n FDIR is not supported on port %-2d\n",
4955 			port_id);
4956 		break;
4957 	default:
4958 		fprintf(stderr, "programming error: (%s)\n", strerror(-ret));
4959 		break;
4960 	}
4961 	return ret;
4962 }
4963 
4964 void
4965 fdir_get_infos(portid_t port_id)
4966 {
4967 	struct rte_eth_fdir_stats fdir_stat;
4968 	struct rte_eth_fdir_info fdir_info;
4969 
4970 	static const char *fdir_stats_border = "########################";
4971 
4972 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4973 		return;
4974 
4975 	memset(&fdir_info, 0, sizeof(fdir_info));
4976 	memset(&fdir_stat, 0, sizeof(fdir_stat));
4977 	if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
4978 		return;
4979 
4980 	printf("\n  %s FDIR infos for port %-2d     %s\n",
4981 	       fdir_stats_border, port_id, fdir_stats_border);
4982 	printf("  MODE: ");
4983 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
4984 		printf("  PERFECT\n");
4985 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
4986 		printf("  PERFECT-MAC-VLAN\n");
4987 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4988 		printf("  PERFECT-TUNNEL\n");
4989 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
4990 		printf("  SIGNATURE\n");
4991 	else
4992 		printf("  DISABLE\n");
4993 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
4994 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
4995 		printf("  SUPPORTED FLOW TYPE: ");
4996 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
4997 	}
4998 	printf("  FLEX PAYLOAD INFO:\n");
4999 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
5000 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
5001 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
5002 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
5003 		fdir_info.flex_payload_unit,
5004 		fdir_info.max_flex_payload_segment_num,
5005 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
5006 	printf("  MASK: ");
5007 	print_fdir_mask(&fdir_info.mask);
5008 	if (fdir_info.flex_conf.nb_payloads > 0) {
5009 		printf("  FLEX PAYLOAD SRC OFFSET:");
5010 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
5011 	}
5012 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
5013 		printf("  FLEX MASK CFG:");
5014 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
5015 	}
5016 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
5017 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
5018 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
5019 	       fdir_info.guarant_spc, fdir_info.best_spc);
5020 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
5021 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
5022 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
5023 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
5024 	       fdir_stat.collision, fdir_stat.free,
5025 	       fdir_stat.maxhash, fdir_stat.maxlen,
5026 	       fdir_stat.add, fdir_stat.remove,
5027 	       fdir_stat.f_add, fdir_stat.f_remove);
5028 	printf("  %s############################%s\n",
5029 	       fdir_stats_border, fdir_stats_border);
5030 }
5031 
5032 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */
5033 
5034 void
5035 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
5036 {
5037 	struct rte_port *port;
5038 	struct rte_eth_fdir_flex_conf *flex_conf;
5039 	int i, idx = 0;
5040 
5041 	port = &ports[port_id];
5042 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
5043 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
5044 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
5045 			idx = i;
5046 			break;
5047 		}
5048 	}
5049 	if (i >= RTE_ETH_FLOW_MAX) {
5050 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
5051 			idx = flex_conf->nb_flexmasks;
5052 			flex_conf->nb_flexmasks++;
5053 		} else {
5054 			fprintf(stderr,
5055 				"The flex mask table is full. Can not set flex mask for flow_type(%u).",
5056 				cfg->flow_type);
5057 			return;
5058 		}
5059 	}
5060 	rte_memcpy(&flex_conf->flex_mask[idx],
5061 			 cfg,
5062 			 sizeof(struct rte_eth_fdir_flex_mask));
5063 }
5064 
5065 void
5066 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
5067 {
5068 	struct rte_port *port;
5069 	struct rte_eth_fdir_flex_conf *flex_conf;
5070 	int i, idx = 0;
5071 
5072 	port = &ports[port_id];
5073 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
5074 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
5075 		if (cfg->type == flex_conf->flex_set[i].type) {
5076 			idx = i;
5077 			break;
5078 		}
5079 	}
5080 	if (i >= RTE_ETH_PAYLOAD_MAX) {
5081 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
5082 			idx = flex_conf->nb_payloads;
5083 			flex_conf->nb_payloads++;
5084 		} else {
5085 			fprintf(stderr,
5086 				"The flex payload table is full. Can not set flex payload for type(%u).",
5087 				cfg->type);
5088 			return;
5089 		}
5090 	}
5091 	rte_memcpy(&flex_conf->flex_set[idx],
5092 			 cfg,
5093 			 sizeof(struct rte_eth_flex_payload_cfg));
5094 
5095 }
5096 
5097 void
5098 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
5099 {
5100 #ifdef RTE_NET_IXGBE
5101 	int diag;
5102 
5103 	if (is_rx)
5104 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
5105 	else
5106 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
5107 
5108 	if (diag == 0)
5109 		return;
5110 	fprintf(stderr,
5111 		"rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
5112 		is_rx ? "rx" : "tx", port_id, diag);
5113 	return;
5114 #endif
5115 	fprintf(stderr, "VF %s setting not supported for port %d\n",
5116 		is_rx ? "Rx" : "Tx", port_id);
5117 	RTE_SET_USED(vf);
5118 	RTE_SET_USED(on);
5119 }
5120 
5121 int
5122 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
5123 {
5124 	int diag;
5125 	struct rte_eth_link link;
5126 	int ret;
5127 
5128 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5129 		return 1;
5130 	ret = eth_link_get_nowait_print_err(port_id, &link);
5131 	if (ret < 0)
5132 		return 1;
5133 	if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN &&
5134 	    rate > link.link_speed) {
5135 		fprintf(stderr,
5136 			"Invalid rate value:%u bigger than link speed: %u\n",
5137 			rate, link.link_speed);
5138 		return 1;
5139 	}
5140 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
5141 	if (diag == 0)
5142 		return diag;
5143 	fprintf(stderr,
5144 		"rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
5145 		port_id, diag);
5146 	return diag;
5147 }
5148 
5149 int
5150 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
5151 {
5152 	int diag = -ENOTSUP;
5153 
5154 	RTE_SET_USED(vf);
5155 	RTE_SET_USED(rate);
5156 	RTE_SET_USED(q_msk);
5157 
5158 #ifdef RTE_NET_IXGBE
5159 	if (diag == -ENOTSUP)
5160 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
5161 						       q_msk);
5162 #endif
5163 #ifdef RTE_NET_BNXT
5164 	if (diag == -ENOTSUP)
5165 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
5166 #endif
5167 	if (diag == 0)
5168 		return diag;
5169 
5170 	fprintf(stderr,
5171 		"%s for port_id=%d failed diag=%d\n",
5172 		__func__, port_id, diag);
5173 	return diag;
5174 }
5175 
5176 /*
5177  * Functions to manage the set of filtered Multicast MAC addresses.
5178  *
5179  * A pool of filtered multicast MAC addresses is associated with each port.
5180  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
5181  * The address of the pool and the number of valid multicast MAC addresses
5182  * recorded in the pool are stored in the fields "mc_addr_pool" and
5183  * "mc_addr_nb" of the "rte_port" data structure.
5184  *
5185  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
5186  * to be supplied a contiguous array of multicast MAC addresses.
5187  * To comply with this constraint, the set of multicast addresses recorded
5188  * into the pool are systematically compacted at the beginning of the pool.
5189  * Hence, when a multicast address is removed from the pool, all following
5190  * addresses, if any, are copied back to keep the set contiguous.
5191  */
5192 #define MCAST_POOL_INC 32
5193 
5194 static int
5195 mcast_addr_pool_extend(struct rte_port *port)
5196 {
5197 	struct rte_ether_addr *mc_pool;
5198 	size_t mc_pool_size;
5199 
5200 	/*
5201 	 * If a free entry is available at the end of the pool, just
5202 	 * increment the number of recorded multicast addresses.
5203 	 */
5204 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
5205 		port->mc_addr_nb++;
5206 		return 0;
5207 	}
5208 
5209 	/*
5210 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
5211 	 * The previous test guarantees that port->mc_addr_nb is a multiple
5212 	 * of MCAST_POOL_INC.
5213 	 */
5214 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
5215 						    MCAST_POOL_INC);
5216 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
5217 						mc_pool_size);
5218 	if (mc_pool == NULL) {
5219 		fprintf(stderr,
5220 			"allocation of pool of %u multicast addresses failed\n",
5221 			port->mc_addr_nb + MCAST_POOL_INC);
5222 		return -ENOMEM;
5223 	}
5224 
5225 	port->mc_addr_pool = mc_pool;
5226 	port->mc_addr_nb++;
5227 	return 0;
5228 
5229 }
5230 
5231 static void
5232 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
5233 {
5234 	if (mcast_addr_pool_extend(port) != 0)
5235 		return;
5236 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
5237 }
5238 
5239 static void
5240 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
5241 {
5242 	port->mc_addr_nb--;
5243 	if (addr_idx == port->mc_addr_nb) {
5244 		/* No need to recompact the set of multicast addressses. */
5245 		if (port->mc_addr_nb == 0) {
5246 			/* free the pool of multicast addresses. */
5247 			free(port->mc_addr_pool);
5248 			port->mc_addr_pool = NULL;
5249 		}
5250 		return;
5251 	}
5252 	memmove(&port->mc_addr_pool[addr_idx],
5253 		&port->mc_addr_pool[addr_idx + 1],
5254 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
5255 }
5256 
5257 static int
5258 eth_port_multicast_addr_list_set(portid_t port_id)
5259 {
5260 	struct rte_port *port;
5261 	int diag;
5262 
5263 	port = &ports[port_id];
5264 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
5265 					    port->mc_addr_nb);
5266 	if (diag < 0)
5267 		fprintf(stderr,
5268 			"rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
5269 			port_id, port->mc_addr_nb, diag);
5270 
5271 	return diag;
5272 }
5273 
5274 void
5275 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
5276 {
5277 	struct rte_port *port;
5278 	uint32_t i;
5279 
5280 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5281 		return;
5282 
5283 	port = &ports[port_id];
5284 
5285 	/*
5286 	 * Check that the added multicast MAC address is not already recorded
5287 	 * in the pool of multicast addresses.
5288 	 */
5289 	for (i = 0; i < port->mc_addr_nb; i++) {
5290 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
5291 			fprintf(stderr,
5292 				"multicast address already filtered by port\n");
5293 			return;
5294 		}
5295 	}
5296 
5297 	mcast_addr_pool_append(port, mc_addr);
5298 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5299 		/* Rollback on failure, remove the address from the pool */
5300 		mcast_addr_pool_remove(port, i);
5301 }
5302 
5303 void
5304 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
5305 {
5306 	struct rte_port *port;
5307 	uint32_t i;
5308 
5309 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5310 		return;
5311 
5312 	port = &ports[port_id];
5313 
5314 	/*
5315 	 * Search the pool of multicast MAC addresses for the removed address.
5316 	 */
5317 	for (i = 0; i < port->mc_addr_nb; i++) {
5318 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
5319 			break;
5320 	}
5321 	if (i == port->mc_addr_nb) {
5322 		fprintf(stderr, "multicast address not filtered by port %d\n",
5323 			port_id);
5324 		return;
5325 	}
5326 
5327 	mcast_addr_pool_remove(port, i);
5328 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5329 		/* Rollback on failure, add the address back into the pool */
5330 		mcast_addr_pool_append(port, mc_addr);
5331 }
5332 
5333 void
5334 port_dcb_info_display(portid_t port_id)
5335 {
5336 	struct rte_eth_dcb_info dcb_info;
5337 	uint16_t i;
5338 	int ret;
5339 	static const char *border = "================";
5340 
5341 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5342 		return;
5343 
5344 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
5345 	if (ret) {
5346 		fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n",
5347 			port_id);
5348 		return;
5349 	}
5350 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
5351 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
5352 	printf("\n  TC :        ");
5353 	for (i = 0; i < dcb_info.nb_tcs; i++)
5354 		printf("\t%4d", i);
5355 	printf("\n  Priority :  ");
5356 	for (i = 0; i < dcb_info.nb_tcs; i++)
5357 		printf("\t%4d", dcb_info.prio_tc[i]);
5358 	printf("\n  BW percent :");
5359 	for (i = 0; i < dcb_info.nb_tcs; i++)
5360 		printf("\t%4d%%", dcb_info.tc_bws[i]);
5361 	printf("\n  RXQ base :  ");
5362 	for (i = 0; i < dcb_info.nb_tcs; i++)
5363 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
5364 	printf("\n  RXQ number :");
5365 	for (i = 0; i < dcb_info.nb_tcs; i++)
5366 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
5367 	printf("\n  TXQ base :  ");
5368 	for (i = 0; i < dcb_info.nb_tcs; i++)
5369 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
5370 	printf("\n  TXQ number :");
5371 	for (i = 0; i < dcb_info.nb_tcs; i++)
5372 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
5373 	printf("\n");
5374 }
5375 
5376 uint8_t *
5377 open_file(const char *file_path, uint32_t *size)
5378 {
5379 	int fd = open(file_path, O_RDONLY);
5380 	off_t pkg_size;
5381 	uint8_t *buf = NULL;
5382 	int ret = 0;
5383 	struct stat st_buf;
5384 
5385 	if (size)
5386 		*size = 0;
5387 
5388 	if (fd == -1) {
5389 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5390 		return buf;
5391 	}
5392 
5393 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
5394 		close(fd);
5395 		fprintf(stderr, "%s: File operations failed\n", __func__);
5396 		return buf;
5397 	}
5398 
5399 	pkg_size = st_buf.st_size;
5400 	if (pkg_size < 0) {
5401 		close(fd);
5402 		fprintf(stderr, "%s: File operations failed\n", __func__);
5403 		return buf;
5404 	}
5405 
5406 	buf = (uint8_t *)malloc(pkg_size);
5407 	if (!buf) {
5408 		close(fd);
5409 		fprintf(stderr, "%s: Failed to malloc memory\n", __func__);
5410 		return buf;
5411 	}
5412 
5413 	ret = read(fd, buf, pkg_size);
5414 	if (ret < 0) {
5415 		close(fd);
5416 		fprintf(stderr, "%s: File read operation failed\n", __func__);
5417 		close_file(buf);
5418 		return NULL;
5419 	}
5420 
5421 	if (size)
5422 		*size = pkg_size;
5423 
5424 	close(fd);
5425 
5426 	return buf;
5427 }
5428 
5429 int
5430 save_file(const char *file_path, uint8_t *buf, uint32_t size)
5431 {
5432 	FILE *fh = fopen(file_path, "wb");
5433 
5434 	if (fh == NULL) {
5435 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5436 		return -1;
5437 	}
5438 
5439 	if (fwrite(buf, 1, size, fh) != size) {
5440 		fclose(fh);
5441 		fprintf(stderr, "%s: File write operation failed\n", __func__);
5442 		return -1;
5443 	}
5444 
5445 	fclose(fh);
5446 
5447 	return 0;
5448 }
5449 
5450 int
5451 close_file(uint8_t *buf)
5452 {
5453 	if (buf) {
5454 		free((void *)buf);
5455 		return 0;
5456 	}
5457 
5458 	return -1;
5459 }
5460 
5461 void
5462 port_queue_region_info_display(portid_t port_id, void *buf)
5463 {
5464 #ifdef RTE_NET_I40E
5465 	uint16_t i, j;
5466 	struct rte_pmd_i40e_queue_regions *info =
5467 		(struct rte_pmd_i40e_queue_regions *)buf;
5468 	static const char *queue_region_info_stats_border = "-------";
5469 
5470 	if (!info->queue_region_number)
5471 		printf("there is no region has been set before");
5472 
5473 	printf("\n	%s All queue region info for port=%2d %s",
5474 			queue_region_info_stats_border, port_id,
5475 			queue_region_info_stats_border);
5476 	printf("\n	queue_region_number: %-14u \n",
5477 			info->queue_region_number);
5478 
5479 	for (i = 0; i < info->queue_region_number; i++) {
5480 		printf("\n	region_id: %-14u queue_number: %-14u "
5481 			"queue_start_index: %-14u \n",
5482 			info->region[i].region_id,
5483 			info->region[i].queue_num,
5484 			info->region[i].queue_start_index);
5485 
5486 		printf("  user_priority_num is	%-14u :",
5487 					info->region[i].user_priority_num);
5488 		for (j = 0; j < info->region[i].user_priority_num; j++)
5489 			printf(" %-14u ", info->region[i].user_priority[j]);
5490 
5491 		printf("\n	flowtype_num is  %-14u :",
5492 				info->region[i].flowtype_num);
5493 		for (j = 0; j < info->region[i].flowtype_num; j++)
5494 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
5495 	}
5496 #else
5497 	RTE_SET_USED(port_id);
5498 	RTE_SET_USED(buf);
5499 #endif
5500 
5501 	printf("\n\n");
5502 }
5503 
5504 void
5505 show_macs(portid_t port_id)
5506 {
5507 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5508 	struct rte_eth_dev_info dev_info;
5509 	int32_t i, rc, num_macs = 0;
5510 
5511 	if (eth_dev_info_get_print_err(port_id, &dev_info))
5512 		return;
5513 
5514 	struct rte_ether_addr addr[dev_info.max_mac_addrs];
5515 	rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs);
5516 	if (rc < 0)
5517 		return;
5518 
5519 	for (i = 0; i < rc; i++) {
5520 
5521 		/* skip zero address */
5522 		if (rte_is_zero_ether_addr(&addr[i]))
5523 			continue;
5524 
5525 		num_macs++;
5526 	}
5527 
5528 	printf("Number of MAC address added: %d\n", num_macs);
5529 
5530 	for (i = 0; i < rc; i++) {
5531 
5532 		/* skip zero address */
5533 		if (rte_is_zero_ether_addr(&addr[i]))
5534 			continue;
5535 
5536 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]);
5537 		printf("  %s\n", buf);
5538 	}
5539 }
5540 
5541 void
5542 show_mcast_macs(portid_t port_id)
5543 {
5544 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5545 	struct rte_ether_addr *addr;
5546 	struct rte_port *port;
5547 	uint32_t i;
5548 
5549 	port = &ports[port_id];
5550 
5551 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
5552 
5553 	for (i = 0; i < port->mc_addr_nb; i++) {
5554 		addr = &port->mc_addr_pool[i];
5555 
5556 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5557 		printf("  %s\n", buf);
5558 	}
5559 }
5560