xref: /dpdk/app/test-pmd/config.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_mtr.h>
42 #include <rte_errno.h>
43 #ifdef RTE_NET_IXGBE
44 #include <rte_pmd_ixgbe.h>
45 #endif
46 #ifdef RTE_NET_I40E
47 #include <rte_pmd_i40e.h>
48 #endif
49 #ifdef RTE_NET_BNXT
50 #include <rte_pmd_bnxt.h>
51 #endif
52 #include <rte_gro.h>
53 #include <rte_hexdump.h>
54 
55 #include "testpmd.h"
56 #include "cmdline_mtr.h"
57 
58 #define ETHDEV_FWVERS_LEN 32
59 
60 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
61 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
62 #else
63 #define CLOCK_TYPE_ID CLOCK_MONOTONIC
64 #endif
65 
66 #define NS_PER_SEC 1E9
67 
68 static char *flowtype_to_str(uint16_t flow_type);
69 
70 static const struct {
71 	enum tx_pkt_split split;
72 	const char *name;
73 } tx_split_name[] = {
74 	{
75 		.split = TX_PKT_SPLIT_OFF,
76 		.name = "off",
77 	},
78 	{
79 		.split = TX_PKT_SPLIT_ON,
80 		.name = "on",
81 	},
82 	{
83 		.split = TX_PKT_SPLIT_RND,
84 		.name = "rand",
85 	},
86 };
87 
88 const struct rss_type_info rss_type_table[] = {
89 	{ "all", ETH_RSS_ETH | ETH_RSS_VLAN | ETH_RSS_IP | ETH_RSS_TCP |
90 		ETH_RSS_UDP | ETH_RSS_SCTP | ETH_RSS_L2_PAYLOAD |
91 		ETH_RSS_L2TPV3 | ETH_RSS_ESP | ETH_RSS_AH | ETH_RSS_PFCP |
92 		ETH_RSS_GTPU | ETH_RSS_ECPRI | ETH_RSS_MPLS},
93 	{ "none", 0 },
94 	{ "eth", ETH_RSS_ETH },
95 	{ "l2-src-only", ETH_RSS_L2_SRC_ONLY },
96 	{ "l2-dst-only", ETH_RSS_L2_DST_ONLY },
97 	{ "vlan", ETH_RSS_VLAN },
98 	{ "s-vlan", ETH_RSS_S_VLAN },
99 	{ "c-vlan", ETH_RSS_C_VLAN },
100 	{ "ipv4", ETH_RSS_IPV4 },
101 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
102 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
103 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
104 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
105 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
106 	{ "ipv6", ETH_RSS_IPV6 },
107 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
108 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
109 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
110 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
111 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
112 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
113 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
114 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
115 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
116 	{ "port", ETH_RSS_PORT },
117 	{ "vxlan", ETH_RSS_VXLAN },
118 	{ "geneve", ETH_RSS_GENEVE },
119 	{ "nvgre", ETH_RSS_NVGRE },
120 	{ "ip", ETH_RSS_IP },
121 	{ "udp", ETH_RSS_UDP },
122 	{ "tcp", ETH_RSS_TCP },
123 	{ "sctp", ETH_RSS_SCTP },
124 	{ "tunnel", ETH_RSS_TUNNEL },
125 	{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
126 	{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
127 	{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
128 	{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
129 	{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
130 	{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
131 	{ "l3-src-only", ETH_RSS_L3_SRC_ONLY },
132 	{ "l3-dst-only", ETH_RSS_L3_DST_ONLY },
133 	{ "l4-src-only", ETH_RSS_L4_SRC_ONLY },
134 	{ "l4-dst-only", ETH_RSS_L4_DST_ONLY },
135 	{ "esp", ETH_RSS_ESP },
136 	{ "ah", ETH_RSS_AH },
137 	{ "l2tpv3", ETH_RSS_L2TPV3 },
138 	{ "pfcp", ETH_RSS_PFCP },
139 	{ "pppoe", ETH_RSS_PPPOE },
140 	{ "gtpu", ETH_RSS_GTPU },
141 	{ "ecpri", ETH_RSS_ECPRI },
142 	{ "mpls", ETH_RSS_MPLS },
143 	{ NULL, 0 },
144 };
145 
146 static const struct {
147 	enum rte_eth_fec_mode mode;
148 	const char *name;
149 } fec_mode_name[] = {
150 	{
151 		.mode = RTE_ETH_FEC_NOFEC,
152 		.name = "off",
153 	},
154 	{
155 		.mode = RTE_ETH_FEC_AUTO,
156 		.name = "auto",
157 	},
158 	{
159 		.mode = RTE_ETH_FEC_BASER,
160 		.name = "baser",
161 	},
162 	{
163 		.mode = RTE_ETH_FEC_RS,
164 		.name = "rs",
165 	},
166 };
167 
168 static void
169 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
170 {
171 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
172 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
173 	printf("%s%s", name, buf);
174 }
175 
176 void
177 nic_stats_display(portid_t port_id)
178 {
179 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
180 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
181 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
182 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
183 	static uint64_t prev_ns[RTE_MAX_ETHPORTS];
184 	struct timespec cur_time;
185 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
186 								diff_ns;
187 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
188 	struct rte_eth_stats stats;
189 
190 	static const char *nic_stats_border = "########################";
191 
192 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
193 		print_valid_ports();
194 		return;
195 	}
196 	rte_eth_stats_get(port_id, &stats);
197 	printf("\n  %s NIC statistics for port %-2d %s\n",
198 	       nic_stats_border, port_id, nic_stats_border);
199 
200 	printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
201 	       "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
202 	printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
203 	printf("  RX-nombuf:  %-10"PRIu64"\n", stats.rx_nombuf);
204 	printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
205 	       "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
206 
207 	diff_ns = 0;
208 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
209 		uint64_t ns;
210 
211 		ns = cur_time.tv_sec * NS_PER_SEC;
212 		ns += cur_time.tv_nsec;
213 
214 		if (prev_ns[port_id] != 0)
215 			diff_ns = ns - prev_ns[port_id];
216 		prev_ns[port_id] = ns;
217 	}
218 
219 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
220 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
221 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
222 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
223 	prev_pkts_rx[port_id] = stats.ipackets;
224 	prev_pkts_tx[port_id] = stats.opackets;
225 	mpps_rx = diff_ns > 0 ?
226 		(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
227 	mpps_tx = diff_ns > 0 ?
228 		(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
229 
230 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
231 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
232 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
233 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
234 	prev_bytes_rx[port_id] = stats.ibytes;
235 	prev_bytes_tx[port_id] = stats.obytes;
236 	mbps_rx = diff_ns > 0 ?
237 		(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
238 	mbps_tx = diff_ns > 0 ?
239 		(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
240 
241 	printf("\n  Throughput (since last show)\n");
242 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
243 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
244 	       mpps_tx, mbps_tx * 8);
245 
246 	printf("  %s############################%s\n",
247 	       nic_stats_border, nic_stats_border);
248 }
249 
250 void
251 nic_stats_clear(portid_t port_id)
252 {
253 	int ret;
254 
255 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
256 		print_valid_ports();
257 		return;
258 	}
259 
260 	ret = rte_eth_stats_reset(port_id);
261 	if (ret != 0) {
262 		fprintf(stderr,
263 			"%s: Error: failed to reset stats (port %u): %s",
264 			__func__, port_id, strerror(-ret));
265 		return;
266 	}
267 
268 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
269 	if (ret != 0) {
270 		if (ret < 0)
271 			ret = -ret;
272 		fprintf(stderr,
273 			"%s: Error: failed to get stats (port %u): %s",
274 			__func__, port_id, strerror(ret));
275 		return;
276 	}
277 	printf("\n  NIC statistics for port %d cleared\n", port_id);
278 }
279 
280 void
281 nic_xstats_display(portid_t port_id)
282 {
283 	struct rte_eth_xstat *xstats;
284 	int cnt_xstats, idx_xstat;
285 	struct rte_eth_xstat_name *xstats_names;
286 
287 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
288 		print_valid_ports();
289 		return;
290 	}
291 	printf("###### NIC extended statistics for port %-2d\n", port_id);
292 	if (!rte_eth_dev_is_valid_port(port_id)) {
293 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
294 		return;
295 	}
296 
297 	/* Get count */
298 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
299 	if (cnt_xstats  < 0) {
300 		fprintf(stderr, "Error: Cannot get count of xstats\n");
301 		return;
302 	}
303 
304 	/* Get id-name lookup table */
305 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
306 	if (xstats_names == NULL) {
307 		fprintf(stderr, "Cannot allocate memory for xstats lookup\n");
308 		return;
309 	}
310 	if (cnt_xstats != rte_eth_xstats_get_names(
311 			port_id, xstats_names, cnt_xstats)) {
312 		fprintf(stderr, "Error: Cannot get xstats lookup\n");
313 		free(xstats_names);
314 		return;
315 	}
316 
317 	/* Get stats themselves */
318 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
319 	if (xstats == NULL) {
320 		fprintf(stderr, "Cannot allocate memory for xstats\n");
321 		free(xstats_names);
322 		return;
323 	}
324 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
325 		fprintf(stderr, "Error: Unable to get xstats\n");
326 		free(xstats_names);
327 		free(xstats);
328 		return;
329 	}
330 
331 	/* Display xstats */
332 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
333 		if (xstats_hide_zero && !xstats[idx_xstat].value)
334 			continue;
335 		printf("%s: %"PRIu64"\n",
336 			xstats_names[idx_xstat].name,
337 			xstats[idx_xstat].value);
338 	}
339 	free(xstats_names);
340 	free(xstats);
341 }
342 
343 void
344 nic_xstats_clear(portid_t port_id)
345 {
346 	int ret;
347 
348 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
349 		print_valid_ports();
350 		return;
351 	}
352 
353 	ret = rte_eth_xstats_reset(port_id);
354 	if (ret != 0) {
355 		fprintf(stderr,
356 			"%s: Error: failed to reset xstats (port %u): %s\n",
357 			__func__, port_id, strerror(-ret));
358 		return;
359 	}
360 
361 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
362 	if (ret != 0) {
363 		if (ret < 0)
364 			ret = -ret;
365 		fprintf(stderr, "%s: Error: failed to get stats (port %u): %s",
366 			__func__, port_id, strerror(ret));
367 		return;
368 	}
369 }
370 
371 static const char *
372 get_queue_state_name(uint8_t queue_state)
373 {
374 	if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED)
375 		return "stopped";
376 	else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED)
377 		return "started";
378 	else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN)
379 		return "hairpin";
380 	else
381 		return "unknown";
382 }
383 
384 void
385 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
386 {
387 	struct rte_eth_burst_mode mode;
388 	struct rte_eth_rxq_info qinfo;
389 	int32_t rc;
390 	static const char *info_border = "*********************";
391 
392 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
393 	if (rc != 0) {
394 		fprintf(stderr,
395 			"Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n",
396 			port_id, queue_id, strerror(-rc), rc);
397 		return;
398 	}
399 
400 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
401 	       info_border, port_id, queue_id, info_border);
402 
403 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
404 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
405 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
406 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
407 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
408 	printf("\nRX drop packets: %s",
409 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
410 	printf("\nRX deferred start: %s",
411 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
412 	printf("\nRX scattered packets: %s",
413 		(qinfo.scattered_rx != 0) ? "on" : "off");
414 	printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state));
415 	if (qinfo.rx_buf_size != 0)
416 		printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
417 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
418 
419 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
420 		printf("\nBurst mode: %s%s",
421 		       mode.info,
422 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
423 				" (per queue)" : "");
424 
425 	printf("\n");
426 }
427 
428 void
429 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
430 {
431 	struct rte_eth_burst_mode mode;
432 	struct rte_eth_txq_info qinfo;
433 	int32_t rc;
434 	static const char *info_border = "*********************";
435 
436 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
437 	if (rc != 0) {
438 		fprintf(stderr,
439 			"Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n",
440 			port_id, queue_id, strerror(-rc), rc);
441 		return;
442 	}
443 
444 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
445 	       info_border, port_id, queue_id, info_border);
446 
447 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
448 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
449 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
450 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
451 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
452 	printf("\nTX deferred start: %s",
453 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
454 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
455 	printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state));
456 
457 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
458 		printf("\nBurst mode: %s%s",
459 		       mode.info,
460 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
461 				" (per queue)" : "");
462 
463 	printf("\n");
464 }
465 
466 static int bus_match_all(const struct rte_bus *bus, const void *data)
467 {
468 	RTE_SET_USED(bus);
469 	RTE_SET_USED(data);
470 	return 0;
471 }
472 
473 static void
474 device_infos_display_speeds(uint32_t speed_capa)
475 {
476 	printf("\n\tDevice speed capability:");
477 	if (speed_capa == ETH_LINK_SPEED_AUTONEG)
478 		printf(" Autonegotiate (all speeds)");
479 	if (speed_capa & ETH_LINK_SPEED_FIXED)
480 		printf(" Disable autonegotiate (fixed speed)  ");
481 	if (speed_capa & ETH_LINK_SPEED_10M_HD)
482 		printf(" 10 Mbps half-duplex  ");
483 	if (speed_capa & ETH_LINK_SPEED_10M)
484 		printf(" 10 Mbps full-duplex  ");
485 	if (speed_capa & ETH_LINK_SPEED_100M_HD)
486 		printf(" 100 Mbps half-duplex  ");
487 	if (speed_capa & ETH_LINK_SPEED_100M)
488 		printf(" 100 Mbps full-duplex  ");
489 	if (speed_capa & ETH_LINK_SPEED_1G)
490 		printf(" 1 Gbps  ");
491 	if (speed_capa & ETH_LINK_SPEED_2_5G)
492 		printf(" 2.5 Gbps  ");
493 	if (speed_capa & ETH_LINK_SPEED_5G)
494 		printf(" 5 Gbps  ");
495 	if (speed_capa & ETH_LINK_SPEED_10G)
496 		printf(" 10 Gbps  ");
497 	if (speed_capa & ETH_LINK_SPEED_20G)
498 		printf(" 20 Gbps  ");
499 	if (speed_capa & ETH_LINK_SPEED_25G)
500 		printf(" 25 Gbps  ");
501 	if (speed_capa & ETH_LINK_SPEED_40G)
502 		printf(" 40 Gbps  ");
503 	if (speed_capa & ETH_LINK_SPEED_50G)
504 		printf(" 50 Gbps  ");
505 	if (speed_capa & ETH_LINK_SPEED_56G)
506 		printf(" 56 Gbps  ");
507 	if (speed_capa & ETH_LINK_SPEED_100G)
508 		printf(" 100 Gbps  ");
509 	if (speed_capa & ETH_LINK_SPEED_200G)
510 		printf(" 200 Gbps  ");
511 }
512 
513 void
514 device_infos_display(const char *identifier)
515 {
516 	static const char *info_border = "*********************";
517 	struct rte_bus *start = NULL, *next;
518 	struct rte_dev_iterator dev_iter;
519 	char name[RTE_ETH_NAME_MAX_LEN];
520 	struct rte_ether_addr mac_addr;
521 	struct rte_device *dev;
522 	struct rte_devargs da;
523 	portid_t port_id;
524 	struct rte_eth_dev_info dev_info;
525 	char devstr[128];
526 
527 	memset(&da, 0, sizeof(da));
528 	if (!identifier)
529 		goto skip_parse;
530 
531 	if (rte_devargs_parsef(&da, "%s", identifier)) {
532 		fprintf(stderr, "cannot parse identifier\n");
533 		return;
534 	}
535 
536 skip_parse:
537 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
538 
539 		start = next;
540 		if (identifier && da.bus != next)
541 			continue;
542 
543 		/* Skip buses that don't have iterate method */
544 		if (!next->dev_iterate)
545 			continue;
546 
547 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
548 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
549 
550 			if (!dev->driver)
551 				continue;
552 			/* Check for matching device if identifier is present */
553 			if (identifier &&
554 			    strncmp(da.name, dev->name, strlen(dev->name)))
555 				continue;
556 			printf("\n%s Infos for device %s %s\n",
557 			       info_border, dev->name, info_border);
558 			printf("Bus name: %s", dev->bus->name);
559 			printf("\nDriver name: %s", dev->driver->name);
560 			printf("\nDevargs: %s",
561 			       dev->devargs ? dev->devargs->args : "");
562 			printf("\nConnect to socket: %d", dev->numa_node);
563 			printf("\n");
564 
565 			/* List ports with matching device name */
566 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
567 				printf("\n\tPort id: %-2d", port_id);
568 				if (eth_macaddr_get_print_err(port_id,
569 							      &mac_addr) == 0)
570 					print_ethaddr("\n\tMAC address: ",
571 						      &mac_addr);
572 				rte_eth_dev_get_name_by_port(port_id, name);
573 				printf("\n\tDevice name: %s", name);
574 				if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
575 					device_infos_display_speeds(dev_info.speed_capa);
576 				printf("\n");
577 			}
578 		}
579 	};
580 	rte_devargs_reset(&da);
581 }
582 
583 void
584 port_infos_display(portid_t port_id)
585 {
586 	struct rte_port *port;
587 	struct rte_ether_addr mac_addr;
588 	struct rte_eth_link link;
589 	struct rte_eth_dev_info dev_info;
590 	int vlan_offload;
591 	struct rte_mempool * mp;
592 	static const char *info_border = "*********************";
593 	uint16_t mtu;
594 	char name[RTE_ETH_NAME_MAX_LEN];
595 	int ret;
596 	char fw_version[ETHDEV_FWVERS_LEN];
597 
598 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
599 		print_valid_ports();
600 		return;
601 	}
602 	port = &ports[port_id];
603 	ret = eth_link_get_nowait_print_err(port_id, &link);
604 	if (ret < 0)
605 		return;
606 
607 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
608 	if (ret != 0)
609 		return;
610 
611 	printf("\n%s Infos for port %-2d %s\n",
612 	       info_border, port_id, info_border);
613 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
614 		print_ethaddr("MAC address: ", &mac_addr);
615 	rte_eth_dev_get_name_by_port(port_id, name);
616 	printf("\nDevice name: %s", name);
617 	printf("\nDriver name: %s", dev_info.driver_name);
618 
619 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
620 						ETHDEV_FWVERS_LEN) == 0)
621 		printf("\nFirmware-version: %s", fw_version);
622 	else
623 		printf("\nFirmware-version: %s", "not available");
624 
625 	if (dev_info.device->devargs && dev_info.device->devargs->args)
626 		printf("\nDevargs: %s", dev_info.device->devargs->args);
627 	printf("\nConnect to socket: %u", port->socket_id);
628 
629 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
630 		mp = mbuf_pool_find(port_numa[port_id], 0);
631 		if (mp)
632 			printf("\nmemory allocation on the socket: %d",
633 							port_numa[port_id]);
634 	} else
635 		printf("\nmemory allocation on the socket: %u",port->socket_id);
636 
637 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
638 	printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
639 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
640 	       ("full-duplex") : ("half-duplex"));
641 	printf("Autoneg status: %s\n", (link.link_autoneg == ETH_LINK_AUTONEG) ?
642 	       ("On") : ("Off"));
643 
644 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
645 		printf("MTU: %u\n", mtu);
646 
647 	printf("Promiscuous mode: %s\n",
648 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
649 	printf("Allmulticast mode: %s\n",
650 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
651 	printf("Maximum number of MAC addresses: %u\n",
652 	       (unsigned int)(port->dev_info.max_mac_addrs));
653 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
654 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
655 
656 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
657 	if (vlan_offload >= 0){
658 		printf("VLAN offload: \n");
659 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
660 			printf("  strip on, ");
661 		else
662 			printf("  strip off, ");
663 
664 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
665 			printf("filter on, ");
666 		else
667 			printf("filter off, ");
668 
669 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
670 			printf("extend on, ");
671 		else
672 			printf("extend off, ");
673 
674 		if (vlan_offload & ETH_QINQ_STRIP_OFFLOAD)
675 			printf("qinq strip on\n");
676 		else
677 			printf("qinq strip off\n");
678 	}
679 
680 	if (dev_info.hash_key_size > 0)
681 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
682 	if (dev_info.reta_size > 0)
683 		printf("Redirection table size: %u\n", dev_info.reta_size);
684 	if (!dev_info.flow_type_rss_offloads)
685 		printf("No RSS offload flow type is supported.\n");
686 	else {
687 		uint16_t i;
688 		char *p;
689 
690 		printf("Supported RSS offload flow types:\n");
691 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
692 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
693 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
694 				continue;
695 			p = flowtype_to_str(i);
696 			if (p)
697 				printf("  %s\n", p);
698 			else
699 				printf("  user defined %d\n", i);
700 		}
701 	}
702 
703 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
704 	printf("Maximum configurable length of RX packet: %u\n",
705 		dev_info.max_rx_pktlen);
706 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
707 		dev_info.max_lro_pkt_size);
708 	if (dev_info.max_vfs)
709 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
710 	if (dev_info.max_vmdq_pools)
711 		printf("Maximum number of VMDq pools: %u\n",
712 			dev_info.max_vmdq_pools);
713 
714 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
715 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
716 	printf("Max possible number of RXDs per queue: %hu\n",
717 		dev_info.rx_desc_lim.nb_max);
718 	printf("Min possible number of RXDs per queue: %hu\n",
719 		dev_info.rx_desc_lim.nb_min);
720 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
721 
722 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
723 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
724 	printf("Max possible number of TXDs per queue: %hu\n",
725 		dev_info.tx_desc_lim.nb_max);
726 	printf("Min possible number of TXDs per queue: %hu\n",
727 		dev_info.tx_desc_lim.nb_min);
728 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
729 	printf("Max segment number per packet: %hu\n",
730 		dev_info.tx_desc_lim.nb_seg_max);
731 	printf("Max segment number per MTU/TSO: %hu\n",
732 		dev_info.tx_desc_lim.nb_mtu_seg_max);
733 
734 	/* Show switch info only if valid switch domain and port id is set */
735 	if (dev_info.switch_info.domain_id !=
736 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
737 		if (dev_info.switch_info.name)
738 			printf("Switch name: %s\n", dev_info.switch_info.name);
739 
740 		printf("Switch domain Id: %u\n",
741 			dev_info.switch_info.domain_id);
742 		printf("Switch Port Id: %u\n",
743 			dev_info.switch_info.port_id);
744 	}
745 }
746 
747 void
748 port_summary_header_display(void)
749 {
750 	uint16_t port_number;
751 
752 	port_number = rte_eth_dev_count_avail();
753 	printf("Number of available ports: %i\n", port_number);
754 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
755 			"Driver", "Status", "Link");
756 }
757 
758 void
759 port_summary_display(portid_t port_id)
760 {
761 	struct rte_ether_addr mac_addr;
762 	struct rte_eth_link link;
763 	struct rte_eth_dev_info dev_info;
764 	char name[RTE_ETH_NAME_MAX_LEN];
765 	int ret;
766 
767 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
768 		print_valid_ports();
769 		return;
770 	}
771 
772 	ret = eth_link_get_nowait_print_err(port_id, &link);
773 	if (ret < 0)
774 		return;
775 
776 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
777 	if (ret != 0)
778 		return;
779 
780 	rte_eth_dev_get_name_by_port(port_id, name);
781 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
782 	if (ret != 0)
783 		return;
784 
785 	printf("%-4d %02X:%02X:%02X:%02X:%02X:%02X %-12s %-14s %-8s %s\n",
786 		port_id, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1],
787 		mac_addr.addr_bytes[2], mac_addr.addr_bytes[3],
788 		mac_addr.addr_bytes[4], mac_addr.addr_bytes[5], name,
789 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
790 		rte_eth_link_speed_to_str(link.link_speed));
791 }
792 
793 void
794 port_eeprom_display(portid_t port_id)
795 {
796 	struct rte_dev_eeprom_info einfo;
797 	int ret;
798 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
799 		print_valid_ports();
800 		return;
801 	}
802 
803 	int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
804 	if (len_eeprom < 0) {
805 		switch (len_eeprom) {
806 		case -ENODEV:
807 			fprintf(stderr, "port index %d invalid\n", port_id);
808 			break;
809 		case -ENOTSUP:
810 			fprintf(stderr, "operation not supported by device\n");
811 			break;
812 		case -EIO:
813 			fprintf(stderr, "device is removed\n");
814 			break;
815 		default:
816 			fprintf(stderr, "Unable to get EEPROM: %d\n",
817 				len_eeprom);
818 			break;
819 		}
820 		return;
821 	}
822 
823 	char buf[len_eeprom];
824 	einfo.offset = 0;
825 	einfo.length = len_eeprom;
826 	einfo.data = buf;
827 
828 	ret = rte_eth_dev_get_eeprom(port_id, &einfo);
829 	if (ret != 0) {
830 		switch (ret) {
831 		case -ENODEV:
832 			fprintf(stderr, "port index %d invalid\n", port_id);
833 			break;
834 		case -ENOTSUP:
835 			fprintf(stderr, "operation not supported by device\n");
836 			break;
837 		case -EIO:
838 			fprintf(stderr, "device is removed\n");
839 			break;
840 		default:
841 			fprintf(stderr, "Unable to get EEPROM: %d\n", ret);
842 			break;
843 		}
844 		return;
845 	}
846 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
847 	printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
848 }
849 
850 void
851 port_module_eeprom_display(portid_t port_id)
852 {
853 	struct rte_eth_dev_module_info minfo;
854 	struct rte_dev_eeprom_info einfo;
855 	int ret;
856 
857 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
858 		print_valid_ports();
859 		return;
860 	}
861 
862 
863 	ret = rte_eth_dev_get_module_info(port_id, &minfo);
864 	if (ret != 0) {
865 		switch (ret) {
866 		case -ENODEV:
867 			fprintf(stderr, "port index %d invalid\n", port_id);
868 			break;
869 		case -ENOTSUP:
870 			fprintf(stderr, "operation not supported by device\n");
871 			break;
872 		case -EIO:
873 			fprintf(stderr, "device is removed\n");
874 			break;
875 		default:
876 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
877 				ret);
878 			break;
879 		}
880 		return;
881 	}
882 
883 	char buf[minfo.eeprom_len];
884 	einfo.offset = 0;
885 	einfo.length = minfo.eeprom_len;
886 	einfo.data = buf;
887 
888 	ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
889 	if (ret != 0) {
890 		switch (ret) {
891 		case -ENODEV:
892 			fprintf(stderr, "port index %d invalid\n", port_id);
893 			break;
894 		case -ENOTSUP:
895 			fprintf(stderr, "operation not supported by device\n");
896 			break;
897 		case -EIO:
898 			fprintf(stderr, "device is removed\n");
899 			break;
900 		default:
901 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
902 				ret);
903 			break;
904 		}
905 		return;
906 	}
907 
908 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
909 	printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
910 }
911 
912 int
913 port_id_is_invalid(portid_t port_id, enum print_warning warning)
914 {
915 	uint16_t pid;
916 
917 	if (port_id == (portid_t)RTE_PORT_ALL)
918 		return 0;
919 
920 	RTE_ETH_FOREACH_DEV(pid)
921 		if (port_id == pid)
922 			return 0;
923 
924 	if (warning == ENABLED_WARN)
925 		fprintf(stderr, "Invalid port %d\n", port_id);
926 
927 	return 1;
928 }
929 
930 void print_valid_ports(void)
931 {
932 	portid_t pid;
933 
934 	printf("The valid ports array is [");
935 	RTE_ETH_FOREACH_DEV(pid) {
936 		printf(" %d", pid);
937 	}
938 	printf(" ]\n");
939 }
940 
941 static int
942 vlan_id_is_invalid(uint16_t vlan_id)
943 {
944 	if (vlan_id < 4096)
945 		return 0;
946 	fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id);
947 	return 1;
948 }
949 
950 static int
951 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
952 {
953 	const struct rte_pci_device *pci_dev;
954 	const struct rte_bus *bus;
955 	uint64_t pci_len;
956 
957 	if (reg_off & 0x3) {
958 		fprintf(stderr,
959 			"Port register offset 0x%X not aligned on a 4-byte boundary\n",
960 			(unsigned int)reg_off);
961 		return 1;
962 	}
963 
964 	if (!ports[port_id].dev_info.device) {
965 		fprintf(stderr, "Invalid device\n");
966 		return 0;
967 	}
968 
969 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
970 	if (bus && !strcmp(bus->name, "pci")) {
971 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
972 	} else {
973 		fprintf(stderr, "Not a PCI device\n");
974 		return 1;
975 	}
976 
977 	pci_len = pci_dev->mem_resource[0].len;
978 	if (reg_off >= pci_len) {
979 		fprintf(stderr,
980 			"Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n",
981 			port_id, (unsigned int)reg_off, (unsigned int)reg_off,
982 			pci_len);
983 		return 1;
984 	}
985 	return 0;
986 }
987 
988 static int
989 reg_bit_pos_is_invalid(uint8_t bit_pos)
990 {
991 	if (bit_pos <= 31)
992 		return 0;
993 	fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos);
994 	return 1;
995 }
996 
997 #define display_port_and_reg_off(port_id, reg_off) \
998 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
999 
1000 static inline void
1001 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1002 {
1003 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1004 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1005 }
1006 
1007 void
1008 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1009 {
1010 	uint32_t reg_v;
1011 
1012 
1013 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1014 		return;
1015 	if (port_reg_off_is_invalid(port_id, reg_off))
1016 		return;
1017 	if (reg_bit_pos_is_invalid(bit_x))
1018 		return;
1019 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1020 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1021 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1022 }
1023 
1024 void
1025 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1026 			   uint8_t bit1_pos, uint8_t bit2_pos)
1027 {
1028 	uint32_t reg_v;
1029 	uint8_t  l_bit;
1030 	uint8_t  h_bit;
1031 
1032 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1033 		return;
1034 	if (port_reg_off_is_invalid(port_id, reg_off))
1035 		return;
1036 	if (reg_bit_pos_is_invalid(bit1_pos))
1037 		return;
1038 	if (reg_bit_pos_is_invalid(bit2_pos))
1039 		return;
1040 	if (bit1_pos > bit2_pos)
1041 		l_bit = bit2_pos, h_bit = bit1_pos;
1042 	else
1043 		l_bit = bit1_pos, h_bit = bit2_pos;
1044 
1045 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1046 	reg_v >>= l_bit;
1047 	if (h_bit < 31)
1048 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1049 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1050 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1051 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1052 }
1053 
1054 void
1055 port_reg_display(portid_t port_id, uint32_t reg_off)
1056 {
1057 	uint32_t reg_v;
1058 
1059 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1060 		return;
1061 	if (port_reg_off_is_invalid(port_id, reg_off))
1062 		return;
1063 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1064 	display_port_reg_value(port_id, reg_off, reg_v);
1065 }
1066 
1067 void
1068 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1069 		 uint8_t bit_v)
1070 {
1071 	uint32_t reg_v;
1072 
1073 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1074 		return;
1075 	if (port_reg_off_is_invalid(port_id, reg_off))
1076 		return;
1077 	if (reg_bit_pos_is_invalid(bit_pos))
1078 		return;
1079 	if (bit_v > 1) {
1080 		fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n",
1081 			(int) bit_v);
1082 		return;
1083 	}
1084 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1085 	if (bit_v == 0)
1086 		reg_v &= ~(1 << bit_pos);
1087 	else
1088 		reg_v |= (1 << bit_pos);
1089 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1090 	display_port_reg_value(port_id, reg_off, reg_v);
1091 }
1092 
1093 void
1094 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1095 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1096 {
1097 	uint32_t max_v;
1098 	uint32_t reg_v;
1099 	uint8_t  l_bit;
1100 	uint8_t  h_bit;
1101 
1102 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1103 		return;
1104 	if (port_reg_off_is_invalid(port_id, reg_off))
1105 		return;
1106 	if (reg_bit_pos_is_invalid(bit1_pos))
1107 		return;
1108 	if (reg_bit_pos_is_invalid(bit2_pos))
1109 		return;
1110 	if (bit1_pos > bit2_pos)
1111 		l_bit = bit2_pos, h_bit = bit1_pos;
1112 	else
1113 		l_bit = bit1_pos, h_bit = bit2_pos;
1114 
1115 	if ((h_bit - l_bit) < 31)
1116 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1117 	else
1118 		max_v = 0xFFFFFFFF;
1119 
1120 	if (value > max_v) {
1121 		fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n",
1122 				(unsigned)value, (unsigned)value,
1123 				(unsigned)max_v, (unsigned)max_v);
1124 		return;
1125 	}
1126 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1127 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1128 	reg_v |= (value << l_bit); /* Set changed bits */
1129 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1130 	display_port_reg_value(port_id, reg_off, reg_v);
1131 }
1132 
1133 void
1134 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1135 {
1136 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1137 		return;
1138 	if (port_reg_off_is_invalid(port_id, reg_off))
1139 		return;
1140 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1141 	display_port_reg_value(port_id, reg_off, reg_v);
1142 }
1143 
1144 void
1145 port_mtu_set(portid_t port_id, uint16_t mtu)
1146 {
1147 	int diag;
1148 	struct rte_port *rte_port = &ports[port_id];
1149 	struct rte_eth_dev_info dev_info;
1150 	uint16_t eth_overhead;
1151 	int ret;
1152 
1153 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1154 		return;
1155 
1156 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
1157 	if (ret != 0)
1158 		return;
1159 
1160 	if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) {
1161 		fprintf(stderr,
1162 			"Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n",
1163 			mtu, dev_info.min_mtu, dev_info.max_mtu);
1164 		return;
1165 	}
1166 	diag = rte_eth_dev_set_mtu(port_id, mtu);
1167 	if (diag)
1168 		fprintf(stderr, "Set MTU failed. diag=%d\n", diag);
1169 	else if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1170 		/*
1171 		 * Ether overhead in driver is equal to the difference of
1172 		 * max_rx_pktlen and max_mtu in rte_eth_dev_info when the
1173 		 * device supports jumbo frame.
1174 		 */
1175 		eth_overhead = dev_info.max_rx_pktlen - dev_info.max_mtu;
1176 		if (mtu > RTE_ETHER_MTU) {
1177 			rte_port->dev_conf.rxmode.offloads |=
1178 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1179 			rte_port->dev_conf.rxmode.max_rx_pkt_len =
1180 						mtu + eth_overhead;
1181 		} else
1182 			rte_port->dev_conf.rxmode.offloads &=
1183 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
1184 	}
1185 }
1186 
1187 /* Generic flow management functions. */
1188 
1189 static struct port_flow_tunnel *
1190 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
1191 {
1192 	struct port_flow_tunnel *flow_tunnel;
1193 
1194 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1195 		if (flow_tunnel->id == port_tunnel_id)
1196 			goto out;
1197 	}
1198 	flow_tunnel = NULL;
1199 
1200 out:
1201 	return flow_tunnel;
1202 }
1203 
1204 const char *
1205 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
1206 {
1207 	const char *type;
1208 	switch (tunnel->type) {
1209 	default:
1210 		type = "unknown";
1211 		break;
1212 	case RTE_FLOW_ITEM_TYPE_VXLAN:
1213 		type = "vxlan";
1214 		break;
1215 	}
1216 
1217 	return type;
1218 }
1219 
1220 struct port_flow_tunnel *
1221 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
1222 {
1223 	struct rte_port *port = &ports[port_id];
1224 	struct port_flow_tunnel *flow_tunnel;
1225 
1226 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1227 		if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
1228 			goto out;
1229 	}
1230 	flow_tunnel = NULL;
1231 
1232 out:
1233 	return flow_tunnel;
1234 }
1235 
1236 void port_flow_tunnel_list(portid_t port_id)
1237 {
1238 	struct rte_port *port = &ports[port_id];
1239 	struct port_flow_tunnel *flt;
1240 
1241 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1242 		printf("port %u tunnel #%u type=%s",
1243 			port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
1244 		if (flt->tunnel.tun_id)
1245 			printf(" id=%" PRIu64, flt->tunnel.tun_id);
1246 		printf("\n");
1247 	}
1248 }
1249 
1250 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
1251 {
1252 	struct rte_port *port = &ports[port_id];
1253 	struct port_flow_tunnel *flt;
1254 
1255 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1256 		if (flt->id == tunnel_id)
1257 			break;
1258 	}
1259 	if (flt) {
1260 		LIST_REMOVE(flt, chain);
1261 		free(flt);
1262 		printf("port %u: flow tunnel #%u destroyed\n",
1263 			port_id, tunnel_id);
1264 	}
1265 }
1266 
1267 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
1268 {
1269 	struct rte_port *port = &ports[port_id];
1270 	enum rte_flow_item_type	type;
1271 	struct port_flow_tunnel *flt;
1272 
1273 	if (!strcmp(ops->type, "vxlan"))
1274 		type = RTE_FLOW_ITEM_TYPE_VXLAN;
1275 	else {
1276 		fprintf(stderr, "cannot offload \"%s\" tunnel type\n",
1277 			ops->type);
1278 		return;
1279 	}
1280 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1281 		if (flt->tunnel.type == type)
1282 			break;
1283 	}
1284 	if (!flt) {
1285 		flt = calloc(1, sizeof(*flt));
1286 		if (!flt) {
1287 			fprintf(stderr, "failed to allocate port flt object\n");
1288 			return;
1289 		}
1290 		flt->tunnel.type = type;
1291 		flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
1292 				  LIST_FIRST(&port->flow_tunnel_list)->id + 1;
1293 		LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
1294 	}
1295 	printf("port %d: flow tunnel #%u type %s\n",
1296 		port_id, flt->id, ops->type);
1297 }
1298 
1299 /** Generate a port_flow entry from attributes/pattern/actions. */
1300 static struct port_flow *
1301 port_flow_new(const struct rte_flow_attr *attr,
1302 	      const struct rte_flow_item *pattern,
1303 	      const struct rte_flow_action *actions,
1304 	      struct rte_flow_error *error)
1305 {
1306 	const struct rte_flow_conv_rule rule = {
1307 		.attr_ro = attr,
1308 		.pattern_ro = pattern,
1309 		.actions_ro = actions,
1310 	};
1311 	struct port_flow *pf;
1312 	int ret;
1313 
1314 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1315 	if (ret < 0)
1316 		return NULL;
1317 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1318 	if (!pf) {
1319 		rte_flow_error_set
1320 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1321 			 "calloc() failed");
1322 		return NULL;
1323 	}
1324 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1325 			  error) >= 0)
1326 		return pf;
1327 	free(pf);
1328 	return NULL;
1329 }
1330 
1331 /** Print a message out of a flow error. */
1332 static int
1333 port_flow_complain(struct rte_flow_error *error)
1334 {
1335 	static const char *const errstrlist[] = {
1336 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1337 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1338 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1339 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1340 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1341 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1342 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1343 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1344 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1345 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1346 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1347 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1348 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1349 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1350 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1351 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1352 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1353 	};
1354 	const char *errstr;
1355 	char buf[32];
1356 	int err = rte_errno;
1357 
1358 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1359 	    !errstrlist[error->type])
1360 		errstr = "unknown type";
1361 	else
1362 		errstr = errstrlist[error->type];
1363 	fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n",
1364 		__func__, error->type, errstr,
1365 		error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1366 					 error->cause), buf) : "",
1367 		error->message ? error->message : "(no stated reason)",
1368 		rte_strerror(err));
1369 	return -err;
1370 }
1371 
1372 static void
1373 rss_config_display(struct rte_flow_action_rss *rss_conf)
1374 {
1375 	uint8_t i;
1376 
1377 	if (rss_conf == NULL) {
1378 		fprintf(stderr, "Invalid rule\n");
1379 		return;
1380 	}
1381 
1382 	printf("RSS:\n"
1383 	       " queues:");
1384 	if (rss_conf->queue_num == 0)
1385 		printf(" none");
1386 	for (i = 0; i < rss_conf->queue_num; i++)
1387 		printf(" %d", rss_conf->queue[i]);
1388 	printf("\n");
1389 
1390 	printf(" function: ");
1391 	switch (rss_conf->func) {
1392 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1393 		printf("default\n");
1394 		break;
1395 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1396 		printf("toeplitz\n");
1397 		break;
1398 	case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
1399 		printf("simple_xor\n");
1400 		break;
1401 	case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
1402 		printf("symmetric_toeplitz\n");
1403 		break;
1404 	default:
1405 		printf("Unknown function\n");
1406 		return;
1407 	}
1408 
1409 	printf(" types:\n");
1410 	if (rss_conf->types == 0) {
1411 		printf("  none\n");
1412 		return;
1413 	}
1414 	for (i = 0; rss_type_table[i].str; i++) {
1415 		if ((rss_conf->types &
1416 		    rss_type_table[i].rss_type) ==
1417 		    rss_type_table[i].rss_type &&
1418 		    rss_type_table[i].rss_type != 0)
1419 			printf("  %s\n", rss_type_table[i].str);
1420 	}
1421 }
1422 
1423 static struct port_indirect_action *
1424 action_get_by_id(portid_t port_id, uint32_t id)
1425 {
1426 	struct rte_port *port;
1427 	struct port_indirect_action **ppia;
1428 	struct port_indirect_action *pia = NULL;
1429 
1430 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1431 	    port_id == (portid_t)RTE_PORT_ALL)
1432 		return NULL;
1433 	port = &ports[port_id];
1434 	ppia = &port->actions_list;
1435 	while (*ppia) {
1436 		if ((*ppia)->id == id) {
1437 			pia = *ppia;
1438 			break;
1439 		}
1440 		ppia = &(*ppia)->next;
1441 	}
1442 	if (!pia)
1443 		fprintf(stderr,
1444 			"Failed to find indirect action #%u on port %u\n",
1445 			id, port_id);
1446 	return pia;
1447 }
1448 
1449 static int
1450 action_alloc(portid_t port_id, uint32_t id,
1451 	     struct port_indirect_action **action)
1452 {
1453 	struct rte_port *port;
1454 	struct port_indirect_action **ppia;
1455 	struct port_indirect_action *pia = NULL;
1456 
1457 	*action = NULL;
1458 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1459 	    port_id == (portid_t)RTE_PORT_ALL)
1460 		return -EINVAL;
1461 	port = &ports[port_id];
1462 	if (id == UINT32_MAX) {
1463 		/* taking first available ID */
1464 		if (port->actions_list) {
1465 			if (port->actions_list->id == UINT32_MAX - 1) {
1466 				fprintf(stderr,
1467 					"Highest indirect action ID is already assigned, delete it first\n");
1468 				return -ENOMEM;
1469 			}
1470 			id = port->actions_list->id + 1;
1471 		} else {
1472 			id = 0;
1473 		}
1474 	}
1475 	pia = calloc(1, sizeof(*pia));
1476 	if (!pia) {
1477 		fprintf(stderr,
1478 			"Allocation of port %u indirect action failed\n",
1479 			port_id);
1480 		return -ENOMEM;
1481 	}
1482 	ppia = &port->actions_list;
1483 	while (*ppia && (*ppia)->id > id)
1484 		ppia = &(*ppia)->next;
1485 	if (*ppia && (*ppia)->id == id) {
1486 		fprintf(stderr,
1487 			"Indirect action #%u is already assigned, delete it first\n",
1488 			id);
1489 		free(pia);
1490 		return -EINVAL;
1491 	}
1492 	pia->next = *ppia;
1493 	pia->id = id;
1494 	*ppia = pia;
1495 	*action = pia;
1496 	return 0;
1497 }
1498 
1499 /** Create indirect action */
1500 int
1501 port_action_handle_create(portid_t port_id, uint32_t id,
1502 			  const struct rte_flow_indir_action_conf *conf,
1503 			  const struct rte_flow_action *action)
1504 {
1505 	struct port_indirect_action *pia;
1506 	int ret;
1507 	struct rte_flow_error error;
1508 
1509 	ret = action_alloc(port_id, id, &pia);
1510 	if (ret)
1511 		return ret;
1512 	if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
1513 		struct rte_flow_action_age *age =
1514 			(struct rte_flow_action_age *)(uintptr_t)(action->conf);
1515 
1516 		pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
1517 		age->context = &pia->age_type;
1518 	} else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) {
1519 		struct rte_flow_action_conntrack *ct =
1520 		(struct rte_flow_action_conntrack *)(uintptr_t)(action->conf);
1521 
1522 		memcpy(ct, &conntrack_context, sizeof(*ct));
1523 	}
1524 	/* Poisoning to make sure PMDs update it in case of error. */
1525 	memset(&error, 0x22, sizeof(error));
1526 	pia->handle = rte_flow_action_handle_create(port_id, conf, action,
1527 						    &error);
1528 	if (!pia->handle) {
1529 		uint32_t destroy_id = pia->id;
1530 		port_action_handle_destroy(port_id, 1, &destroy_id);
1531 		return port_flow_complain(&error);
1532 	}
1533 	pia->type = action->type;
1534 	printf("Indirect action #%u created\n", pia->id);
1535 	return 0;
1536 }
1537 
1538 /** Destroy indirect action */
1539 int
1540 port_action_handle_destroy(portid_t port_id,
1541 			   uint32_t n,
1542 			   const uint32_t *actions)
1543 {
1544 	struct rte_port *port;
1545 	struct port_indirect_action **tmp;
1546 	uint32_t c = 0;
1547 	int ret = 0;
1548 
1549 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1550 	    port_id == (portid_t)RTE_PORT_ALL)
1551 		return -EINVAL;
1552 	port = &ports[port_id];
1553 	tmp = &port->actions_list;
1554 	while (*tmp) {
1555 		uint32_t i;
1556 
1557 		for (i = 0; i != n; ++i) {
1558 			struct rte_flow_error error;
1559 			struct port_indirect_action *pia = *tmp;
1560 
1561 			if (actions[i] != pia->id)
1562 				continue;
1563 			/*
1564 			 * Poisoning to make sure PMDs update it in case
1565 			 * of error.
1566 			 */
1567 			memset(&error, 0x33, sizeof(error));
1568 
1569 			if (pia->handle && rte_flow_action_handle_destroy(
1570 					port_id, pia->handle, &error)) {
1571 				ret = port_flow_complain(&error);
1572 				continue;
1573 			}
1574 			*tmp = pia->next;
1575 			printf("Indirect action #%u destroyed\n", pia->id);
1576 			free(pia);
1577 			break;
1578 		}
1579 		if (i == n)
1580 			tmp = &(*tmp)->next;
1581 		++c;
1582 	}
1583 	return ret;
1584 }
1585 
1586 
1587 /** Get indirect action by port + id */
1588 struct rte_flow_action_handle *
1589 port_action_handle_get_by_id(portid_t port_id, uint32_t id)
1590 {
1591 
1592 	struct port_indirect_action *pia = action_get_by_id(port_id, id);
1593 
1594 	return (pia) ? pia->handle : NULL;
1595 }
1596 
1597 /** Update indirect action */
1598 int
1599 port_action_handle_update(portid_t port_id, uint32_t id,
1600 			  const struct rte_flow_action *action)
1601 {
1602 	struct rte_flow_error error;
1603 	struct rte_flow_action_handle *action_handle;
1604 	struct port_indirect_action *pia;
1605 	const void *update;
1606 
1607 	action_handle = port_action_handle_get_by_id(port_id, id);
1608 	if (!action_handle)
1609 		return -EINVAL;
1610 	pia = action_get_by_id(port_id, id);
1611 	if (!pia)
1612 		return -EINVAL;
1613 	switch (pia->type) {
1614 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1615 		update = action->conf;
1616 		break;
1617 	default:
1618 		update = action;
1619 		break;
1620 	}
1621 	if (rte_flow_action_handle_update(port_id, action_handle, update,
1622 					  &error)) {
1623 		return port_flow_complain(&error);
1624 	}
1625 	printf("Indirect action #%u updated\n", id);
1626 	return 0;
1627 }
1628 
1629 int
1630 port_action_handle_query(portid_t port_id, uint32_t id)
1631 {
1632 	struct rte_flow_error error;
1633 	struct port_indirect_action *pia;
1634 	union {
1635 		struct rte_flow_query_count count;
1636 		struct rte_flow_query_age age;
1637 		struct rte_flow_action_conntrack ct;
1638 	} query;
1639 
1640 	pia = action_get_by_id(port_id, id);
1641 	if (!pia)
1642 		return -EINVAL;
1643 	switch (pia->type) {
1644 	case RTE_FLOW_ACTION_TYPE_AGE:
1645 	case RTE_FLOW_ACTION_TYPE_COUNT:
1646 		break;
1647 	default:
1648 		fprintf(stderr,
1649 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1650 			id, pia->type, port_id);
1651 		return -ENOTSUP;
1652 	}
1653 	/* Poisoning to make sure PMDs update it in case of error. */
1654 	memset(&error, 0x55, sizeof(error));
1655 	memset(&query, 0, sizeof(query));
1656 	if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error))
1657 		return port_flow_complain(&error);
1658 	switch (pia->type) {
1659 	case RTE_FLOW_ACTION_TYPE_AGE:
1660 		printf("Indirect AGE action:\n"
1661 		       " aged: %u\n"
1662 		       " sec_since_last_hit_valid: %u\n"
1663 		       " sec_since_last_hit: %" PRIu32 "\n",
1664 		       query.age.aged,
1665 		       query.age.sec_since_last_hit_valid,
1666 		       query.age.sec_since_last_hit);
1667 		break;
1668 	case RTE_FLOW_ACTION_TYPE_COUNT:
1669 		printf("Indirect COUNT action:\n"
1670 		       " hits_set: %u\n"
1671 		       " bytes_set: %u\n"
1672 		       " hits: %" PRIu64 "\n"
1673 		       " bytes: %" PRIu64 "\n",
1674 		       query.count.hits_set,
1675 		       query.count.bytes_set,
1676 		       query.count.hits,
1677 		       query.count.bytes);
1678 		break;
1679 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1680 		printf("Conntrack Context:\n"
1681 		       "  Peer: %u, Flow dir: %s, Enable: %u\n"
1682 		       "  Live: %u, SACK: %u, CACK: %u\n"
1683 		       "  Packet dir: %s, Liberal: %u, State: %u\n"
1684 		       "  Factor: %u, Retrans: %u, TCP flags: %u\n"
1685 		       "  Last Seq: %u, Last ACK: %u\n"
1686 		       "  Last Win: %u, Last End: %u\n",
1687 		       query.ct.peer_port,
1688 		       query.ct.is_original_dir ? "Original" : "Reply",
1689 		       query.ct.enable, query.ct.live_connection,
1690 		       query.ct.selective_ack, query.ct.challenge_ack_passed,
1691 		       query.ct.last_direction ? "Original" : "Reply",
1692 		       query.ct.liberal_mode, query.ct.state,
1693 		       query.ct.max_ack_window, query.ct.retransmission_limit,
1694 		       query.ct.last_index, query.ct.last_seq,
1695 		       query.ct.last_ack, query.ct.last_window,
1696 		       query.ct.last_end);
1697 		printf("  Original Dir:\n"
1698 		       "    scale: %u, fin: %u, ack seen: %u\n"
1699 		       " unacked data: %u\n    Sent end: %u,"
1700 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1701 		       query.ct.original_dir.scale,
1702 		       query.ct.original_dir.close_initiated,
1703 		       query.ct.original_dir.last_ack_seen,
1704 		       query.ct.original_dir.data_unacked,
1705 		       query.ct.original_dir.sent_end,
1706 		       query.ct.original_dir.reply_end,
1707 		       query.ct.original_dir.max_win,
1708 		       query.ct.original_dir.max_ack);
1709 		printf("  Reply Dir:\n"
1710 		       "    scale: %u, fin: %u, ack seen: %u\n"
1711 		       " unacked data: %u\n    Sent end: %u,"
1712 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1713 		       query.ct.reply_dir.scale,
1714 		       query.ct.reply_dir.close_initiated,
1715 		       query.ct.reply_dir.last_ack_seen,
1716 		       query.ct.reply_dir.data_unacked,
1717 		       query.ct.reply_dir.sent_end,
1718 		       query.ct.reply_dir.reply_end,
1719 		       query.ct.reply_dir.max_win,
1720 		       query.ct.reply_dir.max_ack);
1721 		break;
1722 	default:
1723 		fprintf(stderr,
1724 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1725 			id, pia->type, port_id);
1726 		break;
1727 	}
1728 	return 0;
1729 }
1730 
1731 static struct port_flow_tunnel *
1732 port_flow_tunnel_offload_cmd_prep(portid_t port_id,
1733 				  const struct rte_flow_item *pattern,
1734 				  const struct rte_flow_action *actions,
1735 				  const struct tunnel_ops *tunnel_ops)
1736 {
1737 	int ret;
1738 	struct rte_port *port;
1739 	struct port_flow_tunnel *pft;
1740 	struct rte_flow_error error;
1741 
1742 	port = &ports[port_id];
1743 	pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
1744 	if (!pft) {
1745 		fprintf(stderr, "failed to locate port flow tunnel #%u\n",
1746 			tunnel_ops->id);
1747 		return NULL;
1748 	}
1749 	if (tunnel_ops->actions) {
1750 		uint32_t num_actions;
1751 		const struct rte_flow_action *aptr;
1752 
1753 		ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
1754 						&pft->pmd_actions,
1755 						&pft->num_pmd_actions,
1756 						&error);
1757 		if (ret) {
1758 			port_flow_complain(&error);
1759 			return NULL;
1760 		}
1761 		for (aptr = actions, num_actions = 1;
1762 		     aptr->type != RTE_FLOW_ACTION_TYPE_END;
1763 		     aptr++, num_actions++);
1764 		pft->actions = malloc(
1765 				(num_actions +  pft->num_pmd_actions) *
1766 				sizeof(actions[0]));
1767 		if (!pft->actions) {
1768 			rte_flow_tunnel_action_decap_release(
1769 					port_id, pft->actions,
1770 					pft->num_pmd_actions, &error);
1771 			return NULL;
1772 		}
1773 		rte_memcpy(pft->actions, pft->pmd_actions,
1774 			   pft->num_pmd_actions * sizeof(actions[0]));
1775 		rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
1776 			   num_actions * sizeof(actions[0]));
1777 	}
1778 	if (tunnel_ops->items) {
1779 		uint32_t num_items;
1780 		const struct rte_flow_item *iptr;
1781 
1782 		ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
1783 					    &pft->pmd_items,
1784 					    &pft->num_pmd_items,
1785 					    &error);
1786 		if (ret) {
1787 			port_flow_complain(&error);
1788 			return NULL;
1789 		}
1790 		for (iptr = pattern, num_items = 1;
1791 		     iptr->type != RTE_FLOW_ITEM_TYPE_END;
1792 		     iptr++, num_items++);
1793 		pft->items = malloc((num_items + pft->num_pmd_items) *
1794 				    sizeof(pattern[0]));
1795 		if (!pft->items) {
1796 			rte_flow_tunnel_item_release(
1797 					port_id, pft->pmd_items,
1798 					pft->num_pmd_items, &error);
1799 			return NULL;
1800 		}
1801 		rte_memcpy(pft->items, pft->pmd_items,
1802 			   pft->num_pmd_items * sizeof(pattern[0]));
1803 		rte_memcpy(pft->items + pft->num_pmd_items, pattern,
1804 			   num_items * sizeof(pattern[0]));
1805 	}
1806 
1807 	return pft;
1808 }
1809 
1810 static void
1811 port_flow_tunnel_offload_cmd_release(portid_t port_id,
1812 				     const struct tunnel_ops *tunnel_ops,
1813 				     struct port_flow_tunnel *pft)
1814 {
1815 	struct rte_flow_error error;
1816 
1817 	if (tunnel_ops->actions) {
1818 		free(pft->actions);
1819 		rte_flow_tunnel_action_decap_release(
1820 			port_id, pft->pmd_actions,
1821 			pft->num_pmd_actions, &error);
1822 		pft->actions = NULL;
1823 		pft->pmd_actions = NULL;
1824 	}
1825 	if (tunnel_ops->items) {
1826 		free(pft->items);
1827 		rte_flow_tunnel_item_release(port_id, pft->pmd_items,
1828 					     pft->num_pmd_items,
1829 					     &error);
1830 		pft->items = NULL;
1831 		pft->pmd_items = NULL;
1832 	}
1833 }
1834 
1835 /** Add port meter policy */
1836 int
1837 port_meter_policy_add(portid_t port_id, uint32_t policy_id,
1838 			const struct rte_flow_action *actions)
1839 {
1840 	struct rte_mtr_error error;
1841 	const struct rte_flow_action *act = actions;
1842 	const struct rte_flow_action *start;
1843 	struct rte_mtr_meter_policy_params policy;
1844 	uint32_t i = 0, act_n;
1845 	int ret;
1846 
1847 	for (i = 0; i < RTE_COLORS; i++) {
1848 		for (act_n = 0, start = act;
1849 			act->type != RTE_FLOW_ACTION_TYPE_END; act++)
1850 			act_n++;
1851 		if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END)
1852 			policy.actions[i] = start;
1853 		else
1854 			policy.actions[i] = NULL;
1855 		act++;
1856 	}
1857 	ret = rte_mtr_meter_policy_add(port_id,
1858 			policy_id,
1859 			&policy, &error);
1860 	if (ret)
1861 		print_mtr_err_msg(&error);
1862 	return ret;
1863 }
1864 
1865 /** Validate flow rule. */
1866 int
1867 port_flow_validate(portid_t port_id,
1868 		   const struct rte_flow_attr *attr,
1869 		   const struct rte_flow_item *pattern,
1870 		   const struct rte_flow_action *actions,
1871 		   const struct tunnel_ops *tunnel_ops)
1872 {
1873 	struct rte_flow_error error;
1874 	struct port_flow_tunnel *pft = NULL;
1875 
1876 	/* Poisoning to make sure PMDs update it in case of error. */
1877 	memset(&error, 0x11, sizeof(error));
1878 	if (tunnel_ops->enabled) {
1879 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
1880 							actions, tunnel_ops);
1881 		if (!pft)
1882 			return -ENOENT;
1883 		if (pft->items)
1884 			pattern = pft->items;
1885 		if (pft->actions)
1886 			actions = pft->actions;
1887 	}
1888 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1889 		return port_flow_complain(&error);
1890 	if (tunnel_ops->enabled)
1891 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
1892 	printf("Flow rule validated\n");
1893 	return 0;
1894 }
1895 
1896 /** Return age action structure if exists, otherwise NULL. */
1897 static struct rte_flow_action_age *
1898 age_action_get(const struct rte_flow_action *actions)
1899 {
1900 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1901 		switch (actions->type) {
1902 		case RTE_FLOW_ACTION_TYPE_AGE:
1903 			return (struct rte_flow_action_age *)
1904 				(uintptr_t)actions->conf;
1905 		default:
1906 			break;
1907 		}
1908 	}
1909 	return NULL;
1910 }
1911 
1912 /** Create flow rule. */
1913 int
1914 port_flow_create(portid_t port_id,
1915 		 const struct rte_flow_attr *attr,
1916 		 const struct rte_flow_item *pattern,
1917 		 const struct rte_flow_action *actions,
1918 		 const struct tunnel_ops *tunnel_ops)
1919 {
1920 	struct rte_flow *flow;
1921 	struct rte_port *port;
1922 	struct port_flow *pf;
1923 	uint32_t id = 0;
1924 	struct rte_flow_error error;
1925 	struct port_flow_tunnel *pft = NULL;
1926 	struct rte_flow_action_age *age = age_action_get(actions);
1927 
1928 	port = &ports[port_id];
1929 	if (port->flow_list) {
1930 		if (port->flow_list->id == UINT32_MAX) {
1931 			fprintf(stderr,
1932 				"Highest rule ID is already assigned, delete it first");
1933 			return -ENOMEM;
1934 		}
1935 		id = port->flow_list->id + 1;
1936 	}
1937 	if (tunnel_ops->enabled) {
1938 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
1939 							actions, tunnel_ops);
1940 		if (!pft)
1941 			return -ENOENT;
1942 		if (pft->items)
1943 			pattern = pft->items;
1944 		if (pft->actions)
1945 			actions = pft->actions;
1946 	}
1947 	pf = port_flow_new(attr, pattern, actions, &error);
1948 	if (!pf)
1949 		return port_flow_complain(&error);
1950 	if (age) {
1951 		pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
1952 		age->context = &pf->age_type;
1953 	}
1954 	/* Poisoning to make sure PMDs update it in case of error. */
1955 	memset(&error, 0x22, sizeof(error));
1956 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1957 	if (!flow) {
1958 		if (tunnel_ops->enabled)
1959 			port_flow_tunnel_offload_cmd_release(port_id,
1960 							     tunnel_ops, pft);
1961 		free(pf);
1962 		return port_flow_complain(&error);
1963 	}
1964 	pf->next = port->flow_list;
1965 	pf->id = id;
1966 	pf->flow = flow;
1967 	port->flow_list = pf;
1968 	if (tunnel_ops->enabled)
1969 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
1970 	printf("Flow rule #%u created\n", pf->id);
1971 	return 0;
1972 }
1973 
1974 /** Destroy a number of flow rules. */
1975 int
1976 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1977 {
1978 	struct rte_port *port;
1979 	struct port_flow **tmp;
1980 	uint32_t c = 0;
1981 	int ret = 0;
1982 
1983 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1984 	    port_id == (portid_t)RTE_PORT_ALL)
1985 		return -EINVAL;
1986 	port = &ports[port_id];
1987 	tmp = &port->flow_list;
1988 	while (*tmp) {
1989 		uint32_t i;
1990 
1991 		for (i = 0; i != n; ++i) {
1992 			struct rte_flow_error error;
1993 			struct port_flow *pf = *tmp;
1994 
1995 			if (rule[i] != pf->id)
1996 				continue;
1997 			/*
1998 			 * Poisoning to make sure PMDs update it in case
1999 			 * of error.
2000 			 */
2001 			memset(&error, 0x33, sizeof(error));
2002 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
2003 				ret = port_flow_complain(&error);
2004 				continue;
2005 			}
2006 			printf("Flow rule #%u destroyed\n", pf->id);
2007 			*tmp = pf->next;
2008 			free(pf);
2009 			break;
2010 		}
2011 		if (i == n)
2012 			tmp = &(*tmp)->next;
2013 		++c;
2014 	}
2015 	return ret;
2016 }
2017 
2018 /** Remove all flow rules. */
2019 int
2020 port_flow_flush(portid_t port_id)
2021 {
2022 	struct rte_flow_error error;
2023 	struct rte_port *port;
2024 	int ret = 0;
2025 
2026 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2027 		port_id == (portid_t)RTE_PORT_ALL)
2028 		return -EINVAL;
2029 
2030 	port = &ports[port_id];
2031 
2032 	if (port->flow_list == NULL)
2033 		return ret;
2034 
2035 	/* Poisoning to make sure PMDs update it in case of error. */
2036 	memset(&error, 0x44, sizeof(error));
2037 	if (rte_flow_flush(port_id, &error)) {
2038 		port_flow_complain(&error);
2039 	}
2040 
2041 	while (port->flow_list) {
2042 		struct port_flow *pf = port->flow_list->next;
2043 
2044 		free(port->flow_list);
2045 		port->flow_list = pf;
2046 	}
2047 	return ret;
2048 }
2049 
2050 /** Dump flow rules. */
2051 int
2052 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id,
2053 		const char *file_name)
2054 {
2055 	int ret = 0;
2056 	FILE *file = stdout;
2057 	struct rte_flow_error error;
2058 	struct rte_port *port;
2059 	struct port_flow *pflow;
2060 	struct rte_flow *tmpFlow = NULL;
2061 	bool found = false;
2062 
2063 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2064 		port_id == (portid_t)RTE_PORT_ALL)
2065 		return -EINVAL;
2066 
2067 	if (!dump_all) {
2068 		port = &ports[port_id];
2069 		pflow = port->flow_list;
2070 		while (pflow) {
2071 			if (rule_id != pflow->id) {
2072 				pflow = pflow->next;
2073 			} else {
2074 				tmpFlow = pflow->flow;
2075 				if (tmpFlow)
2076 					found = true;
2077 				break;
2078 			}
2079 		}
2080 		if (found == false) {
2081 			fprintf(stderr, "Failed to dump to flow %d\n", rule_id);
2082 			return -EINVAL;
2083 		}
2084 	}
2085 
2086 	if (file_name && strlen(file_name)) {
2087 		file = fopen(file_name, "w");
2088 		if (!file) {
2089 			fprintf(stderr, "Failed to create file %s: %s\n",
2090 				file_name, strerror(errno));
2091 			return -errno;
2092 		}
2093 	}
2094 
2095 	if (!dump_all)
2096 		ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error);
2097 	else
2098 		ret = rte_flow_dev_dump(port_id, NULL, file, &error);
2099 	if (ret) {
2100 		port_flow_complain(&error);
2101 		fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret));
2102 	} else
2103 		printf("Flow dump finished\n");
2104 	if (file_name && strlen(file_name))
2105 		fclose(file);
2106 	return ret;
2107 }
2108 
2109 /** Query a flow rule. */
2110 int
2111 port_flow_query(portid_t port_id, uint32_t rule,
2112 		const struct rte_flow_action *action)
2113 {
2114 	struct rte_flow_error error;
2115 	struct rte_port *port;
2116 	struct port_flow *pf;
2117 	const char *name;
2118 	union {
2119 		struct rte_flow_query_count count;
2120 		struct rte_flow_action_rss rss_conf;
2121 		struct rte_flow_query_age age;
2122 	} query;
2123 	int ret;
2124 
2125 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2126 	    port_id == (portid_t)RTE_PORT_ALL)
2127 		return -EINVAL;
2128 	port = &ports[port_id];
2129 	for (pf = port->flow_list; pf; pf = pf->next)
2130 		if (pf->id == rule)
2131 			break;
2132 	if (!pf) {
2133 		fprintf(stderr, "Flow rule #%u not found\n", rule);
2134 		return -ENOENT;
2135 	}
2136 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2137 			    &name, sizeof(name),
2138 			    (void *)(uintptr_t)action->type, &error);
2139 	if (ret < 0)
2140 		return port_flow_complain(&error);
2141 	switch (action->type) {
2142 	case RTE_FLOW_ACTION_TYPE_COUNT:
2143 	case RTE_FLOW_ACTION_TYPE_RSS:
2144 	case RTE_FLOW_ACTION_TYPE_AGE:
2145 		break;
2146 	default:
2147 		fprintf(stderr, "Cannot query action type %d (%s)\n",
2148 			action->type, name);
2149 		return -ENOTSUP;
2150 	}
2151 	/* Poisoning to make sure PMDs update it in case of error. */
2152 	memset(&error, 0x55, sizeof(error));
2153 	memset(&query, 0, sizeof(query));
2154 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
2155 		return port_flow_complain(&error);
2156 	switch (action->type) {
2157 	case RTE_FLOW_ACTION_TYPE_COUNT:
2158 		printf("%s:\n"
2159 		       " hits_set: %u\n"
2160 		       " bytes_set: %u\n"
2161 		       " hits: %" PRIu64 "\n"
2162 		       " bytes: %" PRIu64 "\n",
2163 		       name,
2164 		       query.count.hits_set,
2165 		       query.count.bytes_set,
2166 		       query.count.hits,
2167 		       query.count.bytes);
2168 		break;
2169 	case RTE_FLOW_ACTION_TYPE_RSS:
2170 		rss_config_display(&query.rss_conf);
2171 		break;
2172 	case RTE_FLOW_ACTION_TYPE_AGE:
2173 		printf("%s:\n"
2174 		       " aged: %u\n"
2175 		       " sec_since_last_hit_valid: %u\n"
2176 		       " sec_since_last_hit: %" PRIu32 "\n",
2177 		       name,
2178 		       query.age.aged,
2179 		       query.age.sec_since_last_hit_valid,
2180 		       query.age.sec_since_last_hit);
2181 		break;
2182 	default:
2183 		fprintf(stderr,
2184 			"Cannot display result for action type %d (%s)\n",
2185 			action->type, name);
2186 		break;
2187 	}
2188 	return 0;
2189 }
2190 
2191 /** List simply and destroy all aged flows. */
2192 void
2193 port_flow_aged(portid_t port_id, uint8_t destroy)
2194 {
2195 	void **contexts;
2196 	int nb_context, total = 0, idx;
2197 	struct rte_flow_error error;
2198 	enum age_action_context_type *type;
2199 	union {
2200 		struct port_flow *pf;
2201 		struct port_indirect_action *pia;
2202 	} ctx;
2203 
2204 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2205 	    port_id == (portid_t)RTE_PORT_ALL)
2206 		return;
2207 	total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
2208 	printf("Port %u total aged flows: %d\n", port_id, total);
2209 	if (total < 0) {
2210 		port_flow_complain(&error);
2211 		return;
2212 	}
2213 	if (total == 0)
2214 		return;
2215 	contexts = malloc(sizeof(void *) * total);
2216 	if (contexts == NULL) {
2217 		fprintf(stderr, "Cannot allocate contexts for aged flow\n");
2218 		return;
2219 	}
2220 	printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
2221 	nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
2222 	if (nb_context != total) {
2223 		fprintf(stderr,
2224 			"Port:%d get aged flows count(%d) != total(%d)\n",
2225 			port_id, nb_context, total);
2226 		free(contexts);
2227 		return;
2228 	}
2229 	total = 0;
2230 	for (idx = 0; idx < nb_context; idx++) {
2231 		if (!contexts[idx]) {
2232 			fprintf(stderr, "Error: get Null context in port %u\n",
2233 				port_id);
2234 			continue;
2235 		}
2236 		type = (enum age_action_context_type *)contexts[idx];
2237 		switch (*type) {
2238 		case ACTION_AGE_CONTEXT_TYPE_FLOW:
2239 			ctx.pf = container_of(type, struct port_flow, age_type);
2240 			printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
2241 								 "\t%c%c%c\t\n",
2242 			       "Flow",
2243 			       ctx.pf->id,
2244 			       ctx.pf->rule.attr->group,
2245 			       ctx.pf->rule.attr->priority,
2246 			       ctx.pf->rule.attr->ingress ? 'i' : '-',
2247 			       ctx.pf->rule.attr->egress ? 'e' : '-',
2248 			       ctx.pf->rule.attr->transfer ? 't' : '-');
2249 			if (destroy && !port_flow_destroy(port_id, 1,
2250 							  &ctx.pf->id))
2251 				total++;
2252 			break;
2253 		case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION:
2254 			ctx.pia = container_of(type,
2255 					struct port_indirect_action, age_type);
2256 			printf("%-20s\t%" PRIu32 "\n", "Indirect action",
2257 			       ctx.pia->id);
2258 			break;
2259 		default:
2260 			fprintf(stderr, "Error: invalid context type %u\n",
2261 				port_id);
2262 			break;
2263 		}
2264 	}
2265 	printf("\n%d flows destroyed\n", total);
2266 	free(contexts);
2267 }
2268 
2269 /** List flow rules. */
2270 void
2271 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
2272 {
2273 	struct rte_port *port;
2274 	struct port_flow *pf;
2275 	struct port_flow *list = NULL;
2276 	uint32_t i;
2277 
2278 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2279 	    port_id == (portid_t)RTE_PORT_ALL)
2280 		return;
2281 	port = &ports[port_id];
2282 	if (!port->flow_list)
2283 		return;
2284 	/* Sort flows by group, priority and ID. */
2285 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2286 		struct port_flow **tmp;
2287 		const struct rte_flow_attr *curr = pf->rule.attr;
2288 
2289 		if (n) {
2290 			/* Filter out unwanted groups. */
2291 			for (i = 0; i != n; ++i)
2292 				if (curr->group == group[i])
2293 					break;
2294 			if (i == n)
2295 				continue;
2296 		}
2297 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
2298 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
2299 
2300 			if (curr->group > comp->group ||
2301 			    (curr->group == comp->group &&
2302 			     curr->priority > comp->priority) ||
2303 			    (curr->group == comp->group &&
2304 			     curr->priority == comp->priority &&
2305 			     pf->id > (*tmp)->id))
2306 				continue;
2307 			break;
2308 		}
2309 		pf->tmp = *tmp;
2310 		*tmp = pf;
2311 	}
2312 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
2313 	for (pf = list; pf != NULL; pf = pf->tmp) {
2314 		const struct rte_flow_item *item = pf->rule.pattern;
2315 		const struct rte_flow_action *action = pf->rule.actions;
2316 		const char *name;
2317 
2318 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
2319 		       pf->id,
2320 		       pf->rule.attr->group,
2321 		       pf->rule.attr->priority,
2322 		       pf->rule.attr->ingress ? 'i' : '-',
2323 		       pf->rule.attr->egress ? 'e' : '-',
2324 		       pf->rule.attr->transfer ? 't' : '-');
2325 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
2326 			if ((uint32_t)item->type > INT_MAX)
2327 				name = "PMD_INTERNAL";
2328 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
2329 					  &name, sizeof(name),
2330 					  (void *)(uintptr_t)item->type,
2331 					  NULL) <= 0)
2332 				name = "[UNKNOWN]";
2333 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
2334 				printf("%s ", name);
2335 			++item;
2336 		}
2337 		printf("=>");
2338 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
2339 			if ((uint32_t)action->type > INT_MAX)
2340 				name = "PMD_INTERNAL";
2341 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2342 					  &name, sizeof(name),
2343 					  (void *)(uintptr_t)action->type,
2344 					  NULL) <= 0)
2345 				name = "[UNKNOWN]";
2346 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
2347 				printf(" %s", name);
2348 			++action;
2349 		}
2350 		printf("\n");
2351 	}
2352 }
2353 
2354 /** Restrict ingress traffic to the defined flow rules. */
2355 int
2356 port_flow_isolate(portid_t port_id, int set)
2357 {
2358 	struct rte_flow_error error;
2359 
2360 	/* Poisoning to make sure PMDs update it in case of error. */
2361 	memset(&error, 0x66, sizeof(error));
2362 	if (rte_flow_isolate(port_id, set, &error))
2363 		return port_flow_complain(&error);
2364 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
2365 	       port_id,
2366 	       set ? "now restricted" : "not restricted anymore");
2367 	return 0;
2368 }
2369 
2370 /*
2371  * RX/TX ring descriptors display functions.
2372  */
2373 int
2374 rx_queue_id_is_invalid(queueid_t rxq_id)
2375 {
2376 	if (rxq_id < nb_rxq)
2377 		return 0;
2378 	fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n",
2379 		rxq_id, nb_rxq);
2380 	return 1;
2381 }
2382 
2383 int
2384 tx_queue_id_is_invalid(queueid_t txq_id)
2385 {
2386 	if (txq_id < nb_txq)
2387 		return 0;
2388 	fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n",
2389 		txq_id, nb_txq);
2390 	return 1;
2391 }
2392 
2393 static int
2394 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
2395 {
2396 	struct rte_port *port = &ports[port_id];
2397 	struct rte_eth_rxq_info rx_qinfo;
2398 	int ret;
2399 
2400 	ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
2401 	if (ret == 0) {
2402 		*ring_size = rx_qinfo.nb_desc;
2403 		return ret;
2404 	}
2405 
2406 	if (ret != -ENOTSUP)
2407 		return ret;
2408 	/*
2409 	 * If the rte_eth_rx_queue_info_get is not support for this PMD,
2410 	 * ring_size stored in testpmd will be used for validity verification.
2411 	 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
2412 	 * being 0, it will use a default value provided by PMDs to setup this
2413 	 * rxq. If the default value is 0, it will use the
2414 	 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
2415 	 */
2416 	if (port->nb_rx_desc[rxq_id])
2417 		*ring_size = port->nb_rx_desc[rxq_id];
2418 	else if (port->dev_info.default_rxportconf.ring_size)
2419 		*ring_size = port->dev_info.default_rxportconf.ring_size;
2420 	else
2421 		*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
2422 	return 0;
2423 }
2424 
2425 static int
2426 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
2427 {
2428 	struct rte_port *port = &ports[port_id];
2429 	struct rte_eth_txq_info tx_qinfo;
2430 	int ret;
2431 
2432 	ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
2433 	if (ret == 0) {
2434 		*ring_size = tx_qinfo.nb_desc;
2435 		return ret;
2436 	}
2437 
2438 	if (ret != -ENOTSUP)
2439 		return ret;
2440 	/*
2441 	 * If the rte_eth_tx_queue_info_get is not support for this PMD,
2442 	 * ring_size stored in testpmd will be used for validity verification.
2443 	 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
2444 	 * being 0, it will use a default value provided by PMDs to setup this
2445 	 * txq. If the default value is 0, it will use the
2446 	 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
2447 	 */
2448 	if (port->nb_tx_desc[txq_id])
2449 		*ring_size = port->nb_tx_desc[txq_id];
2450 	else if (port->dev_info.default_txportconf.ring_size)
2451 		*ring_size = port->dev_info.default_txportconf.ring_size;
2452 	else
2453 		*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
2454 	return 0;
2455 }
2456 
2457 static int
2458 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
2459 {
2460 	uint16_t ring_size;
2461 	int ret;
2462 
2463 	ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
2464 	if (ret)
2465 		return 1;
2466 
2467 	if (rxdesc_id < ring_size)
2468 		return 0;
2469 
2470 	fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n",
2471 		rxdesc_id, ring_size);
2472 	return 1;
2473 }
2474 
2475 static int
2476 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
2477 {
2478 	uint16_t ring_size;
2479 	int ret;
2480 
2481 	ret = get_tx_ring_size(port_id, txq_id, &ring_size);
2482 	if (ret)
2483 		return 1;
2484 
2485 	if (txdesc_id < ring_size)
2486 		return 0;
2487 
2488 	fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n",
2489 		txdesc_id, ring_size);
2490 	return 1;
2491 }
2492 
2493 static const struct rte_memzone *
2494 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
2495 {
2496 	char mz_name[RTE_MEMZONE_NAMESIZE];
2497 	const struct rte_memzone *mz;
2498 
2499 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
2500 			port_id, q_id, ring_name);
2501 	mz = rte_memzone_lookup(mz_name);
2502 	if (mz == NULL)
2503 		fprintf(stderr,
2504 			"%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n",
2505 			ring_name, port_id, q_id, mz_name);
2506 	return mz;
2507 }
2508 
2509 union igb_ring_dword {
2510 	uint64_t dword;
2511 	struct {
2512 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
2513 		uint32_t lo;
2514 		uint32_t hi;
2515 #else
2516 		uint32_t hi;
2517 		uint32_t lo;
2518 #endif
2519 	} words;
2520 };
2521 
2522 struct igb_ring_desc_32_bytes {
2523 	union igb_ring_dword lo_dword;
2524 	union igb_ring_dword hi_dword;
2525 	union igb_ring_dword resv1;
2526 	union igb_ring_dword resv2;
2527 };
2528 
2529 struct igb_ring_desc_16_bytes {
2530 	union igb_ring_dword lo_dword;
2531 	union igb_ring_dword hi_dword;
2532 };
2533 
2534 static void
2535 ring_rxd_display_dword(union igb_ring_dword dword)
2536 {
2537 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
2538 					(unsigned)dword.words.hi);
2539 }
2540 
2541 static void
2542 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
2543 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2544 			   portid_t port_id,
2545 #else
2546 			   __rte_unused portid_t port_id,
2547 #endif
2548 			   uint16_t desc_id)
2549 {
2550 	struct igb_ring_desc_16_bytes *ring =
2551 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
2552 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2553 	int ret;
2554 	struct rte_eth_dev_info dev_info;
2555 
2556 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2557 	if (ret != 0)
2558 		return;
2559 
2560 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
2561 		/* 32 bytes RX descriptor, i40e only */
2562 		struct igb_ring_desc_32_bytes *ring =
2563 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
2564 		ring[desc_id].lo_dword.dword =
2565 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2566 		ring_rxd_display_dword(ring[desc_id].lo_dword);
2567 		ring[desc_id].hi_dword.dword =
2568 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2569 		ring_rxd_display_dword(ring[desc_id].hi_dword);
2570 		ring[desc_id].resv1.dword =
2571 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
2572 		ring_rxd_display_dword(ring[desc_id].resv1);
2573 		ring[desc_id].resv2.dword =
2574 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
2575 		ring_rxd_display_dword(ring[desc_id].resv2);
2576 
2577 		return;
2578 	}
2579 #endif
2580 	/* 16 bytes RX descriptor */
2581 	ring[desc_id].lo_dword.dword =
2582 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2583 	ring_rxd_display_dword(ring[desc_id].lo_dword);
2584 	ring[desc_id].hi_dword.dword =
2585 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2586 	ring_rxd_display_dword(ring[desc_id].hi_dword);
2587 }
2588 
2589 static void
2590 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
2591 {
2592 	struct igb_ring_desc_16_bytes *ring;
2593 	struct igb_ring_desc_16_bytes txd;
2594 
2595 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
2596 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2597 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2598 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
2599 			(unsigned)txd.lo_dword.words.lo,
2600 			(unsigned)txd.lo_dword.words.hi,
2601 			(unsigned)txd.hi_dword.words.lo,
2602 			(unsigned)txd.hi_dword.words.hi);
2603 }
2604 
2605 void
2606 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
2607 {
2608 	const struct rte_memzone *rx_mz;
2609 
2610 	if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
2611 		return;
2612 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
2613 	if (rx_mz == NULL)
2614 		return;
2615 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
2616 }
2617 
2618 void
2619 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
2620 {
2621 	const struct rte_memzone *tx_mz;
2622 
2623 	if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
2624 		return;
2625 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
2626 	if (tx_mz == NULL)
2627 		return;
2628 	ring_tx_descriptor_display(tx_mz, txd_id);
2629 }
2630 
2631 void
2632 fwd_lcores_config_display(void)
2633 {
2634 	lcoreid_t lc_id;
2635 
2636 	printf("List of forwarding lcores:");
2637 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
2638 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
2639 	printf("\n");
2640 }
2641 void
2642 rxtx_config_display(void)
2643 {
2644 	portid_t pid;
2645 	queueid_t qid;
2646 
2647 	printf("  %s packet forwarding%s packets/burst=%d\n",
2648 	       cur_fwd_eng->fwd_mode_name,
2649 	       retry_enabled == 0 ? "" : " with retry",
2650 	       nb_pkt_per_burst);
2651 
2652 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
2653 		printf("  packet len=%u - nb packet segments=%d\n",
2654 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
2655 
2656 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
2657 	       nb_fwd_lcores, nb_fwd_ports);
2658 
2659 	RTE_ETH_FOREACH_DEV(pid) {
2660 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
2661 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
2662 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
2663 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
2664 		struct rte_eth_rxq_info rx_qinfo;
2665 		struct rte_eth_txq_info tx_qinfo;
2666 		uint16_t rx_free_thresh_tmp;
2667 		uint16_t tx_free_thresh_tmp;
2668 		uint16_t tx_rs_thresh_tmp;
2669 		uint16_t nb_rx_desc_tmp;
2670 		uint16_t nb_tx_desc_tmp;
2671 		uint64_t offloads_tmp;
2672 		uint8_t pthresh_tmp;
2673 		uint8_t hthresh_tmp;
2674 		uint8_t wthresh_tmp;
2675 		int32_t rc;
2676 
2677 		/* per port config */
2678 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
2679 				(unsigned int)pid, nb_rxq, nb_txq);
2680 
2681 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
2682 				ports[pid].dev_conf.rxmode.offloads,
2683 				ports[pid].dev_conf.txmode.offloads);
2684 
2685 		/* per rx queue config only for first queue to be less verbose */
2686 		for (qid = 0; qid < 1; qid++) {
2687 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
2688 			if (rc) {
2689 				nb_rx_desc_tmp = nb_rx_desc[qid];
2690 				rx_free_thresh_tmp =
2691 					rx_conf[qid].rx_free_thresh;
2692 				pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
2693 				hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
2694 				wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
2695 				offloads_tmp = rx_conf[qid].offloads;
2696 			} else {
2697 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
2698 				rx_free_thresh_tmp =
2699 						rx_qinfo.conf.rx_free_thresh;
2700 				pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
2701 				hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
2702 				wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
2703 				offloads_tmp = rx_qinfo.conf.offloads;
2704 			}
2705 
2706 			printf("    RX queue: %d\n", qid);
2707 			printf("      RX desc=%d - RX free threshold=%d\n",
2708 				nb_rx_desc_tmp, rx_free_thresh_tmp);
2709 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
2710 				" wthresh=%d\n",
2711 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2712 			printf("      RX Offloads=0x%"PRIx64"\n", offloads_tmp);
2713 		}
2714 
2715 		/* per tx queue config only for first queue to be less verbose */
2716 		for (qid = 0; qid < 1; qid++) {
2717 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
2718 			if (rc) {
2719 				nb_tx_desc_tmp = nb_tx_desc[qid];
2720 				tx_free_thresh_tmp =
2721 					tx_conf[qid].tx_free_thresh;
2722 				pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
2723 				hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
2724 				wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
2725 				offloads_tmp = tx_conf[qid].offloads;
2726 				tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
2727 			} else {
2728 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
2729 				tx_free_thresh_tmp =
2730 						tx_qinfo.conf.tx_free_thresh;
2731 				pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
2732 				hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
2733 				wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
2734 				offloads_tmp = tx_qinfo.conf.offloads;
2735 				tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
2736 			}
2737 
2738 			printf("    TX queue: %d\n", qid);
2739 			printf("      TX desc=%d - TX free threshold=%d\n",
2740 				nb_tx_desc_tmp, tx_free_thresh_tmp);
2741 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
2742 				" wthresh=%d\n",
2743 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2744 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
2745 				offloads_tmp, tx_rs_thresh_tmp);
2746 		}
2747 	}
2748 }
2749 
2750 void
2751 port_rss_reta_info(portid_t port_id,
2752 		   struct rte_eth_rss_reta_entry64 *reta_conf,
2753 		   uint16_t nb_entries)
2754 {
2755 	uint16_t i, idx, shift;
2756 	int ret;
2757 
2758 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2759 		return;
2760 
2761 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
2762 	if (ret != 0) {
2763 		fprintf(stderr,
2764 			"Failed to get RSS RETA info, return code = %d\n",
2765 			ret);
2766 		return;
2767 	}
2768 
2769 	for (i = 0; i < nb_entries; i++) {
2770 		idx = i / RTE_RETA_GROUP_SIZE;
2771 		shift = i % RTE_RETA_GROUP_SIZE;
2772 		if (!(reta_conf[idx].mask & (1ULL << shift)))
2773 			continue;
2774 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
2775 					i, reta_conf[idx].reta[shift]);
2776 	}
2777 }
2778 
2779 /*
2780  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
2781  * key of the port.
2782  */
2783 void
2784 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
2785 {
2786 	struct rte_eth_rss_conf rss_conf = {0};
2787 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
2788 	uint64_t rss_hf;
2789 	uint8_t i;
2790 	int diag;
2791 	struct rte_eth_dev_info dev_info;
2792 	uint8_t hash_key_size;
2793 	int ret;
2794 
2795 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2796 		return;
2797 
2798 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2799 	if (ret != 0)
2800 		return;
2801 
2802 	if (dev_info.hash_key_size > 0 &&
2803 			dev_info.hash_key_size <= sizeof(rss_key))
2804 		hash_key_size = dev_info.hash_key_size;
2805 	else {
2806 		fprintf(stderr,
2807 			"dev_info did not provide a valid hash key size\n");
2808 		return;
2809 	}
2810 
2811 	/* Get RSS hash key if asked to display it */
2812 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2813 	rss_conf.rss_key_len = hash_key_size;
2814 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2815 	if (diag != 0) {
2816 		switch (diag) {
2817 		case -ENODEV:
2818 			fprintf(stderr, "port index %d invalid\n", port_id);
2819 			break;
2820 		case -ENOTSUP:
2821 			fprintf(stderr, "operation not supported by device\n");
2822 			break;
2823 		default:
2824 			fprintf(stderr, "operation failed - diag=%d\n", diag);
2825 			break;
2826 		}
2827 		return;
2828 	}
2829 	rss_hf = rss_conf.rss_hf;
2830 	if (rss_hf == 0) {
2831 		printf("RSS disabled\n");
2832 		return;
2833 	}
2834 	printf("RSS functions:\n ");
2835 	for (i = 0; rss_type_table[i].str; i++) {
2836 		if (rss_hf & rss_type_table[i].rss_type)
2837 			printf("%s ", rss_type_table[i].str);
2838 	}
2839 	printf("\n");
2840 	if (!show_rss_key)
2841 		return;
2842 	printf("RSS key:\n");
2843 	for (i = 0; i < hash_key_size; i++)
2844 		printf("%02X", rss_key[i]);
2845 	printf("\n");
2846 }
2847 
2848 void
2849 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2850 			 uint8_t hash_key_len)
2851 {
2852 	struct rte_eth_rss_conf rss_conf;
2853 	int diag;
2854 	unsigned int i;
2855 
2856 	rss_conf.rss_key = NULL;
2857 	rss_conf.rss_key_len = hash_key_len;
2858 	rss_conf.rss_hf = 0;
2859 	for (i = 0; rss_type_table[i].str; i++) {
2860 		if (!strcmp(rss_type_table[i].str, rss_type))
2861 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2862 	}
2863 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2864 	if (diag == 0) {
2865 		rss_conf.rss_key = hash_key;
2866 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2867 	}
2868 	if (diag == 0)
2869 		return;
2870 
2871 	switch (diag) {
2872 	case -ENODEV:
2873 		fprintf(stderr, "port index %d invalid\n", port_id);
2874 		break;
2875 	case -ENOTSUP:
2876 		fprintf(stderr, "operation not supported by device\n");
2877 		break;
2878 	default:
2879 		fprintf(stderr, "operation failed - diag=%d\n", diag);
2880 		break;
2881 	}
2882 }
2883 
2884 /*
2885  * Setup forwarding configuration for each logical core.
2886  */
2887 static void
2888 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2889 {
2890 	streamid_t nb_fs_per_lcore;
2891 	streamid_t nb_fs;
2892 	streamid_t sm_id;
2893 	lcoreid_t  nb_extra;
2894 	lcoreid_t  nb_fc;
2895 	lcoreid_t  nb_lc;
2896 	lcoreid_t  lc_id;
2897 
2898 	nb_fs = cfg->nb_fwd_streams;
2899 	nb_fc = cfg->nb_fwd_lcores;
2900 	if (nb_fs <= nb_fc) {
2901 		nb_fs_per_lcore = 1;
2902 		nb_extra = 0;
2903 	} else {
2904 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2905 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2906 	}
2907 
2908 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2909 	sm_id = 0;
2910 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2911 		fwd_lcores[lc_id]->stream_idx = sm_id;
2912 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2913 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2914 	}
2915 
2916 	/*
2917 	 * Assign extra remaining streams, if any.
2918 	 */
2919 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2920 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2921 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2922 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2923 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2924 	}
2925 }
2926 
2927 static portid_t
2928 fwd_topology_tx_port_get(portid_t rxp)
2929 {
2930 	static int warning_once = 1;
2931 
2932 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2933 
2934 	switch (port_topology) {
2935 	default:
2936 	case PORT_TOPOLOGY_PAIRED:
2937 		if ((rxp & 0x1) == 0) {
2938 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2939 				return rxp + 1;
2940 			if (warning_once) {
2941 				fprintf(stderr,
2942 					"\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n");
2943 				warning_once = 0;
2944 			}
2945 			return rxp;
2946 		}
2947 		return rxp - 1;
2948 	case PORT_TOPOLOGY_CHAINED:
2949 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2950 	case PORT_TOPOLOGY_LOOP:
2951 		return rxp;
2952 	}
2953 }
2954 
2955 static void
2956 simple_fwd_config_setup(void)
2957 {
2958 	portid_t i;
2959 
2960 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2961 	cur_fwd_config.nb_fwd_streams =
2962 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2963 
2964 	/* reinitialize forwarding streams */
2965 	init_fwd_streams();
2966 
2967 	/*
2968 	 * In the simple forwarding test, the number of forwarding cores
2969 	 * must be lower or equal to the number of forwarding ports.
2970 	 */
2971 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2972 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2973 		cur_fwd_config.nb_fwd_lcores =
2974 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2975 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2976 
2977 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2978 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2979 		fwd_streams[i]->rx_queue  = 0;
2980 		fwd_streams[i]->tx_port   =
2981 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2982 		fwd_streams[i]->tx_queue  = 0;
2983 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2984 		fwd_streams[i]->retry_enabled = retry_enabled;
2985 	}
2986 }
2987 
2988 /**
2989  * For the RSS forwarding test all streams distributed over lcores. Each stream
2990  * being composed of a RX queue to poll on a RX port for input messages,
2991  * associated with a TX queue of a TX port where to send forwarded packets.
2992  */
2993 static void
2994 rss_fwd_config_setup(void)
2995 {
2996 	portid_t   rxp;
2997 	portid_t   txp;
2998 	queueid_t  rxq;
2999 	queueid_t  nb_q;
3000 	streamid_t  sm_id;
3001 
3002 	nb_q = nb_rxq;
3003 	if (nb_q > nb_txq)
3004 		nb_q = nb_txq;
3005 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3006 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3007 	cur_fwd_config.nb_fwd_streams =
3008 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
3009 
3010 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3011 		cur_fwd_config.nb_fwd_lcores =
3012 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3013 
3014 	/* reinitialize forwarding streams */
3015 	init_fwd_streams();
3016 
3017 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3018 	rxp = 0; rxq = 0;
3019 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
3020 		struct fwd_stream *fs;
3021 
3022 		fs = fwd_streams[sm_id];
3023 		txp = fwd_topology_tx_port_get(rxp);
3024 		fs->rx_port = fwd_ports_ids[rxp];
3025 		fs->rx_queue = rxq;
3026 		fs->tx_port = fwd_ports_ids[txp];
3027 		fs->tx_queue = rxq;
3028 		fs->peer_addr = fs->tx_port;
3029 		fs->retry_enabled = retry_enabled;
3030 		rxp++;
3031 		if (rxp < nb_fwd_ports)
3032 			continue;
3033 		rxp = 0;
3034 		rxq++;
3035 	}
3036 }
3037 
3038 static uint16_t
3039 get_fwd_port_total_tc_num(void)
3040 {
3041 	struct rte_eth_dcb_info dcb_info;
3042 	uint16_t total_tc_num = 0;
3043 	unsigned int i;
3044 
3045 	for (i = 0; i < nb_fwd_ports; i++) {
3046 		(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info);
3047 		total_tc_num += dcb_info.nb_tcs;
3048 	}
3049 
3050 	return total_tc_num;
3051 }
3052 
3053 /**
3054  * For the DCB forwarding test, each core is assigned on each traffic class.
3055  *
3056  * Each core is assigned a multi-stream, each stream being composed of
3057  * a RX queue to poll on a RX port for input messages, associated with
3058  * a TX queue of a TX port where to send forwarded packets. All RX and
3059  * TX queues are mapping to the same traffic class.
3060  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
3061  * the same core
3062  */
3063 static void
3064 dcb_fwd_config_setup(void)
3065 {
3066 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
3067 	portid_t txp, rxp = 0;
3068 	queueid_t txq, rxq = 0;
3069 	lcoreid_t  lc_id;
3070 	uint16_t nb_rx_queue, nb_tx_queue;
3071 	uint16_t i, j, k, sm_id = 0;
3072 	uint16_t total_tc_num;
3073 	struct rte_port *port;
3074 	uint8_t tc = 0;
3075 	portid_t pid;
3076 	int ret;
3077 
3078 	/*
3079 	 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED
3080 	 * or RTE_PORT_STOPPED.
3081 	 *
3082 	 * Re-configure ports to get updated mapping between tc and queue in
3083 	 * case the queue number of the port is changed. Skip for started ports
3084 	 * since modifying queue number and calling dev_configure need to stop
3085 	 * ports first.
3086 	 */
3087 	for (pid = 0; pid < nb_fwd_ports; pid++) {
3088 		if (port_is_started(pid) == 1)
3089 			continue;
3090 
3091 		port = &ports[pid];
3092 		ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq,
3093 					    &port->dev_conf);
3094 		if (ret < 0) {
3095 			fprintf(stderr,
3096 				"Failed to re-configure port %d, ret = %d.\n",
3097 				pid, ret);
3098 			return;
3099 		}
3100 	}
3101 
3102 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3103 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3104 	cur_fwd_config.nb_fwd_streams =
3105 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3106 	total_tc_num = get_fwd_port_total_tc_num();
3107 	if (cur_fwd_config.nb_fwd_lcores > total_tc_num)
3108 		cur_fwd_config.nb_fwd_lcores = total_tc_num;
3109 
3110 	/* reinitialize forwarding streams */
3111 	init_fwd_streams();
3112 	sm_id = 0;
3113 	txp = 1;
3114 	/* get the dcb info on the first RX and TX ports */
3115 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3116 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3117 
3118 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3119 		fwd_lcores[lc_id]->stream_nb = 0;
3120 		fwd_lcores[lc_id]->stream_idx = sm_id;
3121 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
3122 			/* if the nb_queue is zero, means this tc is
3123 			 * not enabled on the POOL
3124 			 */
3125 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
3126 				break;
3127 			k = fwd_lcores[lc_id]->stream_nb +
3128 				fwd_lcores[lc_id]->stream_idx;
3129 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
3130 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
3131 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3132 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
3133 			for (j = 0; j < nb_rx_queue; j++) {
3134 				struct fwd_stream *fs;
3135 
3136 				fs = fwd_streams[k + j];
3137 				fs->rx_port = fwd_ports_ids[rxp];
3138 				fs->rx_queue = rxq + j;
3139 				fs->tx_port = fwd_ports_ids[txp];
3140 				fs->tx_queue = txq + j % nb_tx_queue;
3141 				fs->peer_addr = fs->tx_port;
3142 				fs->retry_enabled = retry_enabled;
3143 			}
3144 			fwd_lcores[lc_id]->stream_nb +=
3145 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3146 		}
3147 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
3148 
3149 		tc++;
3150 		if (tc < rxp_dcb_info.nb_tcs)
3151 			continue;
3152 		/* Restart from TC 0 on next RX port */
3153 		tc = 0;
3154 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
3155 			rxp = (portid_t)
3156 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
3157 		else
3158 			rxp++;
3159 		if (rxp >= nb_fwd_ports)
3160 			return;
3161 		/* get the dcb information on next RX and TX ports */
3162 		if ((rxp & 0x1) == 0)
3163 			txp = (portid_t) (rxp + 1);
3164 		else
3165 			txp = (portid_t) (rxp - 1);
3166 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3167 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3168 	}
3169 }
3170 
3171 static void
3172 icmp_echo_config_setup(void)
3173 {
3174 	portid_t  rxp;
3175 	queueid_t rxq;
3176 	lcoreid_t lc_id;
3177 	uint16_t  sm_id;
3178 
3179 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
3180 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
3181 			(nb_txq * nb_fwd_ports);
3182 	else
3183 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3184 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3185 	cur_fwd_config.nb_fwd_streams =
3186 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3187 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3188 		cur_fwd_config.nb_fwd_lcores =
3189 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3190 	if (verbose_level > 0) {
3191 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
3192 		       __FUNCTION__,
3193 		       cur_fwd_config.nb_fwd_lcores,
3194 		       cur_fwd_config.nb_fwd_ports,
3195 		       cur_fwd_config.nb_fwd_streams);
3196 	}
3197 
3198 	/* reinitialize forwarding streams */
3199 	init_fwd_streams();
3200 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3201 	rxp = 0; rxq = 0;
3202 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3203 		if (verbose_level > 0)
3204 			printf("  core=%d: \n", lc_id);
3205 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3206 			struct fwd_stream *fs;
3207 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3208 			fs->rx_port = fwd_ports_ids[rxp];
3209 			fs->rx_queue = rxq;
3210 			fs->tx_port = fs->rx_port;
3211 			fs->tx_queue = rxq;
3212 			fs->peer_addr = fs->tx_port;
3213 			fs->retry_enabled = retry_enabled;
3214 			if (verbose_level > 0)
3215 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
3216 				       sm_id, fs->rx_port, fs->rx_queue,
3217 				       fs->tx_queue);
3218 			rxq = (queueid_t) (rxq + 1);
3219 			if (rxq == nb_rxq) {
3220 				rxq = 0;
3221 				rxp = (portid_t) (rxp + 1);
3222 			}
3223 		}
3224 	}
3225 }
3226 
3227 void
3228 fwd_config_setup(void)
3229 {
3230 	struct rte_port *port;
3231 	portid_t pt_id;
3232 	unsigned int i;
3233 
3234 	cur_fwd_config.fwd_eng = cur_fwd_eng;
3235 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
3236 		icmp_echo_config_setup();
3237 		return;
3238 	}
3239 
3240 	if ((nb_rxq > 1) && (nb_txq > 1)){
3241 		if (dcb_config) {
3242 			for (i = 0; i < nb_fwd_ports; i++) {
3243 				pt_id = fwd_ports_ids[i];
3244 				port = &ports[pt_id];
3245 				if (!port->dcb_flag) {
3246 					fprintf(stderr,
3247 						"In DCB mode, all forwarding ports must be configured in this mode.\n");
3248 					return;
3249 				}
3250 			}
3251 			if (nb_fwd_lcores == 1) {
3252 				fprintf(stderr,
3253 					"In DCB mode,the nb forwarding cores should be larger than 1.\n");
3254 				return;
3255 			}
3256 
3257 			dcb_fwd_config_setup();
3258 		} else
3259 			rss_fwd_config_setup();
3260 	}
3261 	else
3262 		simple_fwd_config_setup();
3263 }
3264 
3265 static const char *
3266 mp_alloc_to_str(uint8_t mode)
3267 {
3268 	switch (mode) {
3269 	case MP_ALLOC_NATIVE:
3270 		return "native";
3271 	case MP_ALLOC_ANON:
3272 		return "anon";
3273 	case MP_ALLOC_XMEM:
3274 		return "xmem";
3275 	case MP_ALLOC_XMEM_HUGE:
3276 		return "xmemhuge";
3277 	case MP_ALLOC_XBUF:
3278 		return "xbuf";
3279 	default:
3280 		return "invalid";
3281 	}
3282 }
3283 
3284 void
3285 pkt_fwd_config_display(struct fwd_config *cfg)
3286 {
3287 	struct fwd_stream *fs;
3288 	lcoreid_t  lc_id;
3289 	streamid_t sm_id;
3290 
3291 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
3292 		"NUMA support %s, MP allocation mode: %s\n",
3293 		cfg->fwd_eng->fwd_mode_name,
3294 		retry_enabled == 0 ? "" : " with retry",
3295 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
3296 		numa_support == 1 ? "enabled" : "disabled",
3297 		mp_alloc_to_str(mp_alloc_type));
3298 
3299 	if (retry_enabled)
3300 		printf("TX retry num: %u, delay between TX retries: %uus\n",
3301 			burst_tx_retry_num, burst_tx_delay_time);
3302 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
3303 		printf("Logical Core %u (socket %u) forwards packets on "
3304 		       "%d streams:",
3305 		       fwd_lcores_cpuids[lc_id],
3306 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
3307 		       fwd_lcores[lc_id]->stream_nb);
3308 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3309 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3310 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
3311 			       "P=%d/Q=%d (socket %u) ",
3312 			       fs->rx_port, fs->rx_queue,
3313 			       ports[fs->rx_port].socket_id,
3314 			       fs->tx_port, fs->tx_queue,
3315 			       ports[fs->tx_port].socket_id);
3316 			print_ethaddr("peer=",
3317 				      &peer_eth_addrs[fs->peer_addr]);
3318 		}
3319 		printf("\n");
3320 	}
3321 	printf("\n");
3322 }
3323 
3324 void
3325 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
3326 {
3327 	struct rte_ether_addr new_peer_addr;
3328 	if (!rte_eth_dev_is_valid_port(port_id)) {
3329 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
3330 		return;
3331 	}
3332 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
3333 		fprintf(stderr, "Error: Invalid ethernet address: %s\n",
3334 			peer_addr);
3335 		return;
3336 	}
3337 	peer_eth_addrs[port_id] = new_peer_addr;
3338 }
3339 
3340 int
3341 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
3342 {
3343 	unsigned int i;
3344 	unsigned int lcore_cpuid;
3345 	int record_now;
3346 
3347 	record_now = 0;
3348  again:
3349 	for (i = 0; i < nb_lc; i++) {
3350 		lcore_cpuid = lcorelist[i];
3351 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
3352 			fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid);
3353 			return -1;
3354 		}
3355 		if (lcore_cpuid == rte_get_main_lcore()) {
3356 			fprintf(stderr,
3357 				"lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n",
3358 				lcore_cpuid);
3359 			return -1;
3360 		}
3361 		if (record_now)
3362 			fwd_lcores_cpuids[i] = lcore_cpuid;
3363 	}
3364 	if (record_now == 0) {
3365 		record_now = 1;
3366 		goto again;
3367 	}
3368 	nb_cfg_lcores = (lcoreid_t) nb_lc;
3369 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
3370 		printf("previous number of forwarding cores %u - changed to "
3371 		       "number of configured cores %u\n",
3372 		       (unsigned int) nb_fwd_lcores, nb_lc);
3373 		nb_fwd_lcores = (lcoreid_t) nb_lc;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 int
3380 set_fwd_lcores_mask(uint64_t lcoremask)
3381 {
3382 	unsigned int lcorelist[64];
3383 	unsigned int nb_lc;
3384 	unsigned int i;
3385 
3386 	if (lcoremask == 0) {
3387 		fprintf(stderr, "Invalid NULL mask of cores\n");
3388 		return -1;
3389 	}
3390 	nb_lc = 0;
3391 	for (i = 0; i < 64; i++) {
3392 		if (! ((uint64_t)(1ULL << i) & lcoremask))
3393 			continue;
3394 		lcorelist[nb_lc++] = i;
3395 	}
3396 	return set_fwd_lcores_list(lcorelist, nb_lc);
3397 }
3398 
3399 void
3400 set_fwd_lcores_number(uint16_t nb_lc)
3401 {
3402 	if (test_done == 0) {
3403 		fprintf(stderr, "Please stop forwarding first\n");
3404 		return;
3405 	}
3406 	if (nb_lc > nb_cfg_lcores) {
3407 		fprintf(stderr,
3408 			"nb fwd cores %u > %u (max. number of configured lcores) - ignored\n",
3409 			(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
3410 		return;
3411 	}
3412 	nb_fwd_lcores = (lcoreid_t) nb_lc;
3413 	printf("Number of forwarding cores set to %u\n",
3414 	       (unsigned int) nb_fwd_lcores);
3415 }
3416 
3417 void
3418 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
3419 {
3420 	unsigned int i;
3421 	portid_t port_id;
3422 	int record_now;
3423 
3424 	record_now = 0;
3425  again:
3426 	for (i = 0; i < nb_pt; i++) {
3427 		port_id = (portid_t) portlist[i];
3428 		if (port_id_is_invalid(port_id, ENABLED_WARN))
3429 			return;
3430 		if (record_now)
3431 			fwd_ports_ids[i] = port_id;
3432 	}
3433 	if (record_now == 0) {
3434 		record_now = 1;
3435 		goto again;
3436 	}
3437 	nb_cfg_ports = (portid_t) nb_pt;
3438 	if (nb_fwd_ports != (portid_t) nb_pt) {
3439 		printf("previous number of forwarding ports %u - changed to "
3440 		       "number of configured ports %u\n",
3441 		       (unsigned int) nb_fwd_ports, nb_pt);
3442 		nb_fwd_ports = (portid_t) nb_pt;
3443 	}
3444 }
3445 
3446 /**
3447  * Parse the user input and obtain the list of forwarding ports
3448  *
3449  * @param[in] list
3450  *   String containing the user input. User can specify
3451  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
3452  *   For example, if the user wants to use all the available
3453  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
3454  *   If the user wants to use only the ports 1,2 then the input
3455  *   is 1,2.
3456  *   valid characters are '-' and ','
3457  * @param[out] values
3458  *   This array will be filled with a list of port IDs
3459  *   based on the user input
3460  *   Note that duplicate entries are discarded and only the first
3461  *   count entries in this array are port IDs and all the rest
3462  *   will contain default values
3463  * @param[in] maxsize
3464  *   This parameter denotes 2 things
3465  *   1) Number of elements in the values array
3466  *   2) Maximum value of each element in the values array
3467  * @return
3468  *   On success, returns total count of parsed port IDs
3469  *   On failure, returns 0
3470  */
3471 static unsigned int
3472 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
3473 {
3474 	unsigned int count = 0;
3475 	char *end = NULL;
3476 	int min, max;
3477 	int value, i;
3478 	unsigned int marked[maxsize];
3479 
3480 	if (list == NULL || values == NULL)
3481 		return 0;
3482 
3483 	for (i = 0; i < (int)maxsize; i++)
3484 		marked[i] = 0;
3485 
3486 	min = INT_MAX;
3487 
3488 	do {
3489 		/*Remove the blank spaces if any*/
3490 		while (isblank(*list))
3491 			list++;
3492 		if (*list == '\0')
3493 			break;
3494 		errno = 0;
3495 		value = strtol(list, &end, 10);
3496 		if (errno || end == NULL)
3497 			return 0;
3498 		if (value < 0 || value >= (int)maxsize)
3499 			return 0;
3500 		while (isblank(*end))
3501 			end++;
3502 		if (*end == '-' && min == INT_MAX) {
3503 			min = value;
3504 		} else if ((*end == ',') || (*end == '\0')) {
3505 			max = value;
3506 			if (min == INT_MAX)
3507 				min = value;
3508 			for (i = min; i <= max; i++) {
3509 				if (count < maxsize) {
3510 					if (marked[i])
3511 						continue;
3512 					values[count] = i;
3513 					marked[i] = 1;
3514 					count++;
3515 				}
3516 			}
3517 			min = INT_MAX;
3518 		} else
3519 			return 0;
3520 		list = end + 1;
3521 	} while (*end != '\0');
3522 
3523 	return count;
3524 }
3525 
3526 void
3527 parse_fwd_portlist(const char *portlist)
3528 {
3529 	unsigned int portcount;
3530 	unsigned int portindex[RTE_MAX_ETHPORTS];
3531 	unsigned int i, valid_port_count = 0;
3532 
3533 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
3534 	if (!portcount)
3535 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
3536 
3537 	/*
3538 	 * Here we verify the validity of the ports
3539 	 * and thereby calculate the total number of
3540 	 * valid ports
3541 	 */
3542 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
3543 		if (rte_eth_dev_is_valid_port(portindex[i])) {
3544 			portindex[valid_port_count] = portindex[i];
3545 			valid_port_count++;
3546 		}
3547 	}
3548 
3549 	set_fwd_ports_list(portindex, valid_port_count);
3550 }
3551 
3552 void
3553 set_fwd_ports_mask(uint64_t portmask)
3554 {
3555 	unsigned int portlist[64];
3556 	unsigned int nb_pt;
3557 	unsigned int i;
3558 
3559 	if (portmask == 0) {
3560 		fprintf(stderr, "Invalid NULL mask of ports\n");
3561 		return;
3562 	}
3563 	nb_pt = 0;
3564 	RTE_ETH_FOREACH_DEV(i) {
3565 		if (! ((uint64_t)(1ULL << i) & portmask))
3566 			continue;
3567 		portlist[nb_pt++] = i;
3568 	}
3569 	set_fwd_ports_list(portlist, nb_pt);
3570 }
3571 
3572 void
3573 set_fwd_ports_number(uint16_t nb_pt)
3574 {
3575 	if (nb_pt > nb_cfg_ports) {
3576 		fprintf(stderr,
3577 			"nb fwd ports %u > %u (number of configured ports) - ignored\n",
3578 			(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
3579 		return;
3580 	}
3581 	nb_fwd_ports = (portid_t) nb_pt;
3582 	printf("Number of forwarding ports set to %u\n",
3583 	       (unsigned int) nb_fwd_ports);
3584 }
3585 
3586 int
3587 port_is_forwarding(portid_t port_id)
3588 {
3589 	unsigned int i;
3590 
3591 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3592 		return -1;
3593 
3594 	for (i = 0; i < nb_fwd_ports; i++) {
3595 		if (fwd_ports_ids[i] == port_id)
3596 			return 1;
3597 	}
3598 
3599 	return 0;
3600 }
3601 
3602 void
3603 set_nb_pkt_per_burst(uint16_t nb)
3604 {
3605 	if (nb > MAX_PKT_BURST) {
3606 		fprintf(stderr,
3607 			"nb pkt per burst: %u > %u (maximum packet per burst)  ignored\n",
3608 			(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
3609 		return;
3610 	}
3611 	nb_pkt_per_burst = nb;
3612 	printf("Number of packets per burst set to %u\n",
3613 	       (unsigned int) nb_pkt_per_burst);
3614 }
3615 
3616 static const char *
3617 tx_split_get_name(enum tx_pkt_split split)
3618 {
3619 	uint32_t i;
3620 
3621 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3622 		if (tx_split_name[i].split == split)
3623 			return tx_split_name[i].name;
3624 	}
3625 	return NULL;
3626 }
3627 
3628 void
3629 set_tx_pkt_split(const char *name)
3630 {
3631 	uint32_t i;
3632 
3633 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3634 		if (strcmp(tx_split_name[i].name, name) == 0) {
3635 			tx_pkt_split = tx_split_name[i].split;
3636 			return;
3637 		}
3638 	}
3639 	fprintf(stderr, "unknown value: \"%s\"\n", name);
3640 }
3641 
3642 int
3643 parse_fec_mode(const char *name, uint32_t *fec_capa)
3644 {
3645 	uint8_t i;
3646 
3647 	for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
3648 		if (strcmp(fec_mode_name[i].name, name) == 0) {
3649 			*fec_capa =
3650 				RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
3651 			return 0;
3652 		}
3653 	}
3654 	return -1;
3655 }
3656 
3657 void
3658 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
3659 {
3660 	unsigned int i, j;
3661 
3662 	printf("FEC capabilities:\n");
3663 
3664 	for (i = 0; i < num; i++) {
3665 		printf("%s : ",
3666 			rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
3667 
3668 		for (j = 0; j < RTE_DIM(fec_mode_name); j++) {
3669 			if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
3670 						speed_fec_capa[i].capa)
3671 				printf("%s ", fec_mode_name[j].name);
3672 		}
3673 		printf("\n");
3674 	}
3675 }
3676 
3677 void
3678 show_rx_pkt_offsets(void)
3679 {
3680 	uint32_t i, n;
3681 
3682 	n = rx_pkt_nb_offs;
3683 	printf("Number of offsets: %u\n", n);
3684 	if (n) {
3685 		printf("Segment offsets: ");
3686 		for (i = 0; i != n - 1; i++)
3687 			printf("%hu,", rx_pkt_seg_offsets[i]);
3688 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3689 	}
3690 }
3691 
3692 void
3693 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
3694 {
3695 	unsigned int i;
3696 
3697 	if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
3698 		printf("nb segments per RX packets=%u >= "
3699 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
3700 		return;
3701 	}
3702 
3703 	/*
3704 	 * No extra check here, the segment length will be checked by PMD
3705 	 * in the extended queue setup.
3706 	 */
3707 	for (i = 0; i < nb_offs; i++) {
3708 		if (seg_offsets[i] >= UINT16_MAX) {
3709 			printf("offset[%u]=%u > UINT16_MAX - give up\n",
3710 			       i, seg_offsets[i]);
3711 			return;
3712 		}
3713 	}
3714 
3715 	for (i = 0; i < nb_offs; i++)
3716 		rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
3717 
3718 	rx_pkt_nb_offs = (uint8_t) nb_offs;
3719 }
3720 
3721 void
3722 show_rx_pkt_segments(void)
3723 {
3724 	uint32_t i, n;
3725 
3726 	n = rx_pkt_nb_segs;
3727 	printf("Number of segments: %u\n", n);
3728 	if (n) {
3729 		printf("Segment sizes: ");
3730 		for (i = 0; i != n - 1; i++)
3731 			printf("%hu,", rx_pkt_seg_lengths[i]);
3732 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3733 	}
3734 }
3735 
3736 void
3737 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3738 {
3739 	unsigned int i;
3740 
3741 	if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
3742 		printf("nb segments per RX packets=%u >= "
3743 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
3744 		return;
3745 	}
3746 
3747 	/*
3748 	 * No extra check here, the segment length will be checked by PMD
3749 	 * in the extended queue setup.
3750 	 */
3751 	for (i = 0; i < nb_segs; i++) {
3752 		if (seg_lengths[i] >= UINT16_MAX) {
3753 			printf("length[%u]=%u > UINT16_MAX - give up\n",
3754 			       i, seg_lengths[i]);
3755 			return;
3756 		}
3757 	}
3758 
3759 	for (i = 0; i < nb_segs; i++)
3760 		rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3761 
3762 	rx_pkt_nb_segs = (uint8_t) nb_segs;
3763 }
3764 
3765 void
3766 show_tx_pkt_segments(void)
3767 {
3768 	uint32_t i, n;
3769 	const char *split;
3770 
3771 	n = tx_pkt_nb_segs;
3772 	split = tx_split_get_name(tx_pkt_split);
3773 
3774 	printf("Number of segments: %u\n", n);
3775 	printf("Segment sizes: ");
3776 	for (i = 0; i != n - 1; i++)
3777 		printf("%hu,", tx_pkt_seg_lengths[i]);
3778 	printf("%hu\n", tx_pkt_seg_lengths[i]);
3779 	printf("Split packet: %s\n", split);
3780 }
3781 
3782 static bool
3783 nb_segs_is_invalid(unsigned int nb_segs)
3784 {
3785 	uint16_t ring_size;
3786 	uint16_t queue_id;
3787 	uint16_t port_id;
3788 	int ret;
3789 
3790 	RTE_ETH_FOREACH_DEV(port_id) {
3791 		for (queue_id = 0; queue_id < nb_txq; queue_id++) {
3792 			ret = get_tx_ring_size(port_id, queue_id, &ring_size);
3793 			if (ret) {
3794 				/* Port may not be initialized yet, can't say
3795 				 * the port is invalid in this stage.
3796 				 */
3797 				continue;
3798 			}
3799 			if (ring_size < nb_segs) {
3800 				printf("nb segments per TX packets=%u >= TX "
3801 				       "queue(%u) ring_size=%u - txpkts ignored\n",
3802 				       nb_segs, queue_id, ring_size);
3803 				return true;
3804 			}
3805 		}
3806 	}
3807 
3808 	return false;
3809 }
3810 
3811 void
3812 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3813 {
3814 	uint16_t tx_pkt_len;
3815 	unsigned int i;
3816 
3817 	/*
3818 	 * For single segment settings failed check is ignored.
3819 	 * It is a very basic capability to send the single segment
3820 	 * packets, suppose it is always supported.
3821 	 */
3822 	if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) {
3823 		fprintf(stderr,
3824 			"Tx segment size(%u) is not supported - txpkts ignored\n",
3825 			nb_segs);
3826 		return;
3827 	}
3828 
3829 	if (nb_segs > RTE_MAX_SEGS_PER_PKT) {
3830 		fprintf(stderr,
3831 			"Tx segment size(%u) is bigger than max number of segment(%u)\n",
3832 			nb_segs, RTE_MAX_SEGS_PER_PKT);
3833 		return;
3834 	}
3835 
3836 	/*
3837 	 * Check that each segment length is greater or equal than
3838 	 * the mbuf data size.
3839 	 * Check also that the total packet length is greater or equal than the
3840 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
3841 	 * 20 + 8).
3842 	 */
3843 	tx_pkt_len = 0;
3844 	for (i = 0; i < nb_segs; i++) {
3845 		if (seg_lengths[i] > mbuf_data_size[0]) {
3846 			fprintf(stderr,
3847 				"length[%u]=%u > mbuf_data_size=%u - give up\n",
3848 				i, seg_lengths[i], mbuf_data_size[0]);
3849 			return;
3850 		}
3851 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
3852 	}
3853 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
3854 		fprintf(stderr, "total packet length=%u < %d - give up\n",
3855 				(unsigned) tx_pkt_len,
3856 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
3857 		return;
3858 	}
3859 
3860 	for (i = 0; i < nb_segs; i++)
3861 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3862 
3863 	tx_pkt_length  = tx_pkt_len;
3864 	tx_pkt_nb_segs = (uint8_t) nb_segs;
3865 }
3866 
3867 void
3868 show_tx_pkt_times(void)
3869 {
3870 	printf("Interburst gap: %u\n", tx_pkt_times_inter);
3871 	printf("Intraburst gap: %u\n", tx_pkt_times_intra);
3872 }
3873 
3874 void
3875 set_tx_pkt_times(unsigned int *tx_times)
3876 {
3877 	tx_pkt_times_inter = tx_times[0];
3878 	tx_pkt_times_intra = tx_times[1];
3879 }
3880 
3881 void
3882 setup_gro(const char *onoff, portid_t port_id)
3883 {
3884 	if (!rte_eth_dev_is_valid_port(port_id)) {
3885 		fprintf(stderr, "invalid port id %u\n", port_id);
3886 		return;
3887 	}
3888 	if (test_done == 0) {
3889 		fprintf(stderr,
3890 			"Before enable/disable GRO, please stop forwarding first\n");
3891 		return;
3892 	}
3893 	if (strcmp(onoff, "on") == 0) {
3894 		if (gro_ports[port_id].enable != 0) {
3895 			fprintf(stderr,
3896 				"Port %u has enabled GRO. Please disable GRO first\n",
3897 				port_id);
3898 			return;
3899 		}
3900 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
3901 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
3902 			gro_ports[port_id].param.max_flow_num =
3903 				GRO_DEFAULT_FLOW_NUM;
3904 			gro_ports[port_id].param.max_item_per_flow =
3905 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
3906 		}
3907 		gro_ports[port_id].enable = 1;
3908 	} else {
3909 		if (gro_ports[port_id].enable == 0) {
3910 			fprintf(stderr, "Port %u has disabled GRO\n", port_id);
3911 			return;
3912 		}
3913 		gro_ports[port_id].enable = 0;
3914 	}
3915 }
3916 
3917 void
3918 setup_gro_flush_cycles(uint8_t cycles)
3919 {
3920 	if (test_done == 0) {
3921 		fprintf(stderr,
3922 			"Before change flush interval for GRO, please stop forwarding first.\n");
3923 		return;
3924 	}
3925 
3926 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
3927 			GRO_DEFAULT_FLUSH_CYCLES) {
3928 		fprintf(stderr,
3929 			"The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n",
3930 			GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES);
3931 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
3932 	}
3933 
3934 	gro_flush_cycles = cycles;
3935 }
3936 
3937 void
3938 show_gro(portid_t port_id)
3939 {
3940 	struct rte_gro_param *param;
3941 	uint32_t max_pkts_num;
3942 
3943 	param = &gro_ports[port_id].param;
3944 
3945 	if (!rte_eth_dev_is_valid_port(port_id)) {
3946 		fprintf(stderr, "Invalid port id %u.\n", port_id);
3947 		return;
3948 	}
3949 	if (gro_ports[port_id].enable) {
3950 		printf("GRO type: TCP/IPv4\n");
3951 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
3952 			max_pkts_num = param->max_flow_num *
3953 				param->max_item_per_flow;
3954 		} else
3955 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
3956 		printf("Max number of packets to perform GRO: %u\n",
3957 				max_pkts_num);
3958 		printf("Flushing cycles: %u\n", gro_flush_cycles);
3959 	} else
3960 		printf("Port %u doesn't enable GRO.\n", port_id);
3961 }
3962 
3963 void
3964 setup_gso(const char *mode, portid_t port_id)
3965 {
3966 	if (!rte_eth_dev_is_valid_port(port_id)) {
3967 		fprintf(stderr, "invalid port id %u\n", port_id);
3968 		return;
3969 	}
3970 	if (strcmp(mode, "on") == 0) {
3971 		if (test_done == 0) {
3972 			fprintf(stderr,
3973 				"before enabling GSO, please stop forwarding first\n");
3974 			return;
3975 		}
3976 		gso_ports[port_id].enable = 1;
3977 	} else if (strcmp(mode, "off") == 0) {
3978 		if (test_done == 0) {
3979 			fprintf(stderr,
3980 				"before disabling GSO, please stop forwarding first\n");
3981 			return;
3982 		}
3983 		gso_ports[port_id].enable = 0;
3984 	}
3985 }
3986 
3987 char*
3988 list_pkt_forwarding_modes(void)
3989 {
3990 	static char fwd_modes[128] = "";
3991 	const char *separator = "|";
3992 	struct fwd_engine *fwd_eng;
3993 	unsigned i = 0;
3994 
3995 	if (strlen (fwd_modes) == 0) {
3996 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
3997 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
3998 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
3999 			strncat(fwd_modes, separator,
4000 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4001 		}
4002 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4003 	}
4004 
4005 	return fwd_modes;
4006 }
4007 
4008 char*
4009 list_pkt_forwarding_retry_modes(void)
4010 {
4011 	static char fwd_modes[128] = "";
4012 	const char *separator = "|";
4013 	struct fwd_engine *fwd_eng;
4014 	unsigned i = 0;
4015 
4016 	if (strlen(fwd_modes) == 0) {
4017 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4018 			if (fwd_eng == &rx_only_engine)
4019 				continue;
4020 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4021 					sizeof(fwd_modes) -
4022 					strlen(fwd_modes) - 1);
4023 			strncat(fwd_modes, separator,
4024 					sizeof(fwd_modes) -
4025 					strlen(fwd_modes) - 1);
4026 		}
4027 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4028 	}
4029 
4030 	return fwd_modes;
4031 }
4032 
4033 void
4034 set_pkt_forwarding_mode(const char *fwd_mode_name)
4035 {
4036 	struct fwd_engine *fwd_eng;
4037 	unsigned i;
4038 
4039 	i = 0;
4040 	while ((fwd_eng = fwd_engines[i]) != NULL) {
4041 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
4042 			printf("Set %s packet forwarding mode%s\n",
4043 			       fwd_mode_name,
4044 			       retry_enabled == 0 ? "" : " with retry");
4045 			cur_fwd_eng = fwd_eng;
4046 			return;
4047 		}
4048 		i++;
4049 	}
4050 	fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name);
4051 }
4052 
4053 void
4054 add_rx_dump_callbacks(portid_t portid)
4055 {
4056 	struct rte_eth_dev_info dev_info;
4057 	uint16_t queue;
4058 	int ret;
4059 
4060 	if (port_id_is_invalid(portid, ENABLED_WARN))
4061 		return;
4062 
4063 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4064 	if (ret != 0)
4065 		return;
4066 
4067 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4068 		if (!ports[portid].rx_dump_cb[queue])
4069 			ports[portid].rx_dump_cb[queue] =
4070 				rte_eth_add_rx_callback(portid, queue,
4071 					dump_rx_pkts, NULL);
4072 }
4073 
4074 void
4075 add_tx_dump_callbacks(portid_t portid)
4076 {
4077 	struct rte_eth_dev_info dev_info;
4078 	uint16_t queue;
4079 	int ret;
4080 
4081 	if (port_id_is_invalid(portid, ENABLED_WARN))
4082 		return;
4083 
4084 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4085 	if (ret != 0)
4086 		return;
4087 
4088 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4089 		if (!ports[portid].tx_dump_cb[queue])
4090 			ports[portid].tx_dump_cb[queue] =
4091 				rte_eth_add_tx_callback(portid, queue,
4092 							dump_tx_pkts, NULL);
4093 }
4094 
4095 void
4096 remove_rx_dump_callbacks(portid_t portid)
4097 {
4098 	struct rte_eth_dev_info dev_info;
4099 	uint16_t queue;
4100 	int ret;
4101 
4102 	if (port_id_is_invalid(portid, ENABLED_WARN))
4103 		return;
4104 
4105 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4106 	if (ret != 0)
4107 		return;
4108 
4109 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4110 		if (ports[portid].rx_dump_cb[queue]) {
4111 			rte_eth_remove_rx_callback(portid, queue,
4112 				ports[portid].rx_dump_cb[queue]);
4113 			ports[portid].rx_dump_cb[queue] = NULL;
4114 		}
4115 }
4116 
4117 void
4118 remove_tx_dump_callbacks(portid_t portid)
4119 {
4120 	struct rte_eth_dev_info dev_info;
4121 	uint16_t queue;
4122 	int ret;
4123 
4124 	if (port_id_is_invalid(portid, ENABLED_WARN))
4125 		return;
4126 
4127 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4128 	if (ret != 0)
4129 		return;
4130 
4131 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4132 		if (ports[portid].tx_dump_cb[queue]) {
4133 			rte_eth_remove_tx_callback(portid, queue,
4134 				ports[portid].tx_dump_cb[queue]);
4135 			ports[portid].tx_dump_cb[queue] = NULL;
4136 		}
4137 }
4138 
4139 void
4140 configure_rxtx_dump_callbacks(uint16_t verbose)
4141 {
4142 	portid_t portid;
4143 
4144 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
4145 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
4146 		return;
4147 #endif
4148 
4149 	RTE_ETH_FOREACH_DEV(portid)
4150 	{
4151 		if (verbose == 1 || verbose > 2)
4152 			add_rx_dump_callbacks(portid);
4153 		else
4154 			remove_rx_dump_callbacks(portid);
4155 		if (verbose >= 2)
4156 			add_tx_dump_callbacks(portid);
4157 		else
4158 			remove_tx_dump_callbacks(portid);
4159 	}
4160 }
4161 
4162 void
4163 set_verbose_level(uint16_t vb_level)
4164 {
4165 	printf("Change verbose level from %u to %u\n",
4166 	       (unsigned int) verbose_level, (unsigned int) vb_level);
4167 	verbose_level = vb_level;
4168 	configure_rxtx_dump_callbacks(verbose_level);
4169 }
4170 
4171 void
4172 vlan_extend_set(portid_t port_id, int on)
4173 {
4174 	int diag;
4175 	int vlan_offload;
4176 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4177 
4178 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4179 		return;
4180 
4181 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4182 
4183 	if (on) {
4184 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
4185 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
4186 	} else {
4187 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
4188 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
4189 	}
4190 
4191 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4192 	if (diag < 0) {
4193 		fprintf(stderr,
4194 			"rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n",
4195 			port_id, on, diag);
4196 		return;
4197 	}
4198 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4199 }
4200 
4201 void
4202 rx_vlan_strip_set(portid_t port_id, int on)
4203 {
4204 	int diag;
4205 	int vlan_offload;
4206 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4207 
4208 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4209 		return;
4210 
4211 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4212 
4213 	if (on) {
4214 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
4215 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4216 	} else {
4217 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
4218 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4219 	}
4220 
4221 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4222 	if (diag < 0) {
4223 		fprintf(stderr,
4224 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4225 			__func__, port_id, on, diag);
4226 		return;
4227 	}
4228 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4229 }
4230 
4231 void
4232 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
4233 {
4234 	int diag;
4235 
4236 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4237 		return;
4238 
4239 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
4240 	if (diag < 0)
4241 		fprintf(stderr,
4242 			"%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n",
4243 			__func__, port_id, queue_id, on, diag);
4244 }
4245 
4246 void
4247 rx_vlan_filter_set(portid_t port_id, int on)
4248 {
4249 	int diag;
4250 	int vlan_offload;
4251 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4252 
4253 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4254 		return;
4255 
4256 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4257 
4258 	if (on) {
4259 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
4260 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
4261 	} else {
4262 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
4263 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
4264 	}
4265 
4266 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4267 	if (diag < 0) {
4268 		fprintf(stderr,
4269 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4270 			__func__, port_id, on, diag);
4271 		return;
4272 	}
4273 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4274 }
4275 
4276 void
4277 rx_vlan_qinq_strip_set(portid_t port_id, int on)
4278 {
4279 	int diag;
4280 	int vlan_offload;
4281 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4282 
4283 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4284 		return;
4285 
4286 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4287 
4288 	if (on) {
4289 		vlan_offload |= ETH_QINQ_STRIP_OFFLOAD;
4290 		port_rx_offloads |= DEV_RX_OFFLOAD_QINQ_STRIP;
4291 	} else {
4292 		vlan_offload &= ~ETH_QINQ_STRIP_OFFLOAD;
4293 		port_rx_offloads &= ~DEV_RX_OFFLOAD_QINQ_STRIP;
4294 	}
4295 
4296 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4297 	if (diag < 0) {
4298 		fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n",
4299 			__func__, port_id, on, diag);
4300 		return;
4301 	}
4302 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4303 }
4304 
4305 int
4306 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
4307 {
4308 	int diag;
4309 
4310 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4311 		return 1;
4312 	if (vlan_id_is_invalid(vlan_id))
4313 		return 1;
4314 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
4315 	if (diag == 0)
4316 		return 0;
4317 	fprintf(stderr,
4318 		"rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n",
4319 		port_id, vlan_id, on, diag);
4320 	return -1;
4321 }
4322 
4323 void
4324 rx_vlan_all_filter_set(portid_t port_id, int on)
4325 {
4326 	uint16_t vlan_id;
4327 
4328 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4329 		return;
4330 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
4331 		if (rx_vft_set(port_id, vlan_id, on))
4332 			break;
4333 	}
4334 }
4335 
4336 void
4337 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
4338 {
4339 	int diag;
4340 
4341 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4342 		return;
4343 
4344 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
4345 	if (diag == 0)
4346 		return;
4347 
4348 	fprintf(stderr,
4349 		"tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n",
4350 		port_id, vlan_type, tp_id, diag);
4351 }
4352 
4353 void
4354 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
4355 {
4356 	struct rte_eth_dev_info dev_info;
4357 	int ret;
4358 
4359 	if (vlan_id_is_invalid(vlan_id))
4360 		return;
4361 
4362 	if (ports[port_id].dev_conf.txmode.offloads &
4363 	    DEV_TX_OFFLOAD_QINQ_INSERT) {
4364 		fprintf(stderr, "Error, as QinQ has been enabled.\n");
4365 		return;
4366 	}
4367 
4368 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4369 	if (ret != 0)
4370 		return;
4371 
4372 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
4373 		fprintf(stderr,
4374 			"Error: vlan insert is not supported by port %d\n",
4375 			port_id);
4376 		return;
4377 	}
4378 
4379 	tx_vlan_reset(port_id);
4380 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
4381 	ports[port_id].tx_vlan_id = vlan_id;
4382 }
4383 
4384 void
4385 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
4386 {
4387 	struct rte_eth_dev_info dev_info;
4388 	int ret;
4389 
4390 	if (vlan_id_is_invalid(vlan_id))
4391 		return;
4392 	if (vlan_id_is_invalid(vlan_id_outer))
4393 		return;
4394 
4395 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4396 	if (ret != 0)
4397 		return;
4398 
4399 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
4400 		fprintf(stderr,
4401 			"Error: qinq insert not supported by port %d\n",
4402 			port_id);
4403 		return;
4404 	}
4405 
4406 	tx_vlan_reset(port_id);
4407 	ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT |
4408 						    DEV_TX_OFFLOAD_QINQ_INSERT);
4409 	ports[port_id].tx_vlan_id = vlan_id;
4410 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
4411 }
4412 
4413 void
4414 tx_vlan_reset(portid_t port_id)
4415 {
4416 	ports[port_id].dev_conf.txmode.offloads &=
4417 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
4418 				  DEV_TX_OFFLOAD_QINQ_INSERT);
4419 	ports[port_id].tx_vlan_id = 0;
4420 	ports[port_id].tx_vlan_id_outer = 0;
4421 }
4422 
4423 void
4424 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
4425 {
4426 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4427 		return;
4428 
4429 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
4430 }
4431 
4432 void
4433 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
4434 {
4435 	int ret;
4436 
4437 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4438 		return;
4439 
4440 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
4441 		return;
4442 
4443 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
4444 		fprintf(stderr, "map_value not in required range 0..%d\n",
4445 			RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
4446 		return;
4447 	}
4448 
4449 	if (!is_rx) { /* tx */
4450 		ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
4451 							     map_value);
4452 		if (ret) {
4453 			fprintf(stderr,
4454 				"failed to set tx queue stats mapping.\n");
4455 			return;
4456 		}
4457 	} else { /* rx */
4458 		ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
4459 							     map_value);
4460 		if (ret) {
4461 			fprintf(stderr,
4462 				"failed to set rx queue stats mapping.\n");
4463 			return;
4464 		}
4465 	}
4466 }
4467 
4468 void
4469 set_xstats_hide_zero(uint8_t on_off)
4470 {
4471 	xstats_hide_zero = on_off;
4472 }
4473 
4474 void
4475 set_record_core_cycles(uint8_t on_off)
4476 {
4477 	record_core_cycles = on_off;
4478 }
4479 
4480 void
4481 set_record_burst_stats(uint8_t on_off)
4482 {
4483 	record_burst_stats = on_off;
4484 }
4485 
4486 static char*
4487 flowtype_to_str(uint16_t flow_type)
4488 {
4489 	struct flow_type_info {
4490 		char str[32];
4491 		uint16_t ftype;
4492 	};
4493 
4494 	uint8_t i;
4495 	static struct flow_type_info flowtype_str_table[] = {
4496 		{"raw", RTE_ETH_FLOW_RAW},
4497 		{"ipv4", RTE_ETH_FLOW_IPV4},
4498 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
4499 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
4500 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
4501 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
4502 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
4503 		{"ipv6", RTE_ETH_FLOW_IPV6},
4504 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
4505 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
4506 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
4507 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
4508 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
4509 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
4510 		{"port", RTE_ETH_FLOW_PORT},
4511 		{"vxlan", RTE_ETH_FLOW_VXLAN},
4512 		{"geneve", RTE_ETH_FLOW_GENEVE},
4513 		{"nvgre", RTE_ETH_FLOW_NVGRE},
4514 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
4515 	};
4516 
4517 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
4518 		if (flowtype_str_table[i].ftype == flow_type)
4519 			return flowtype_str_table[i].str;
4520 	}
4521 
4522 	return NULL;
4523 }
4524 
4525 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
4526 
4527 static inline void
4528 print_fdir_mask(struct rte_eth_fdir_masks *mask)
4529 {
4530 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
4531 
4532 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4533 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
4534 			" tunnel_id: 0x%08x",
4535 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
4536 			rte_be_to_cpu_32(mask->tunnel_id_mask));
4537 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
4538 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
4539 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
4540 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
4541 
4542 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
4543 			rte_be_to_cpu_16(mask->src_port_mask),
4544 			rte_be_to_cpu_16(mask->dst_port_mask));
4545 
4546 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4547 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
4548 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
4549 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
4550 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
4551 
4552 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4553 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
4554 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
4555 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
4556 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
4557 	}
4558 
4559 	printf("\n");
4560 }
4561 
4562 static inline void
4563 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4564 {
4565 	struct rte_eth_flex_payload_cfg *cfg;
4566 	uint32_t i, j;
4567 
4568 	for (i = 0; i < flex_conf->nb_payloads; i++) {
4569 		cfg = &flex_conf->flex_set[i];
4570 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
4571 			printf("\n    RAW:  ");
4572 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
4573 			printf("\n    L2_PAYLOAD:  ");
4574 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
4575 			printf("\n    L3_PAYLOAD:  ");
4576 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
4577 			printf("\n    L4_PAYLOAD:  ");
4578 		else
4579 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
4580 		for (j = 0; j < num; j++)
4581 			printf("  %-5u", cfg->src_offset[j]);
4582 	}
4583 	printf("\n");
4584 }
4585 
4586 static inline void
4587 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4588 {
4589 	struct rte_eth_fdir_flex_mask *mask;
4590 	uint32_t i, j;
4591 	char *p;
4592 
4593 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
4594 		mask = &flex_conf->flex_mask[i];
4595 		p = flowtype_to_str(mask->flow_type);
4596 		printf("\n    %s:\t", p ? p : "unknown");
4597 		for (j = 0; j < num; j++)
4598 			printf(" %02x", mask->mask[j]);
4599 	}
4600 	printf("\n");
4601 }
4602 
4603 static inline void
4604 print_fdir_flow_type(uint32_t flow_types_mask)
4605 {
4606 	int i;
4607 	char *p;
4608 
4609 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
4610 		if (!(flow_types_mask & (1 << i)))
4611 			continue;
4612 		p = flowtype_to_str(i);
4613 		if (p)
4614 			printf(" %s", p);
4615 		else
4616 			printf(" unknown");
4617 	}
4618 	printf("\n");
4619 }
4620 
4621 static int
4622 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
4623 		    struct rte_eth_fdir_stats *fdir_stat)
4624 {
4625 	int ret = -ENOTSUP;
4626 
4627 #ifdef RTE_NET_I40E
4628 	if (ret == -ENOTSUP) {
4629 		ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
4630 		if (!ret)
4631 			ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
4632 	}
4633 #endif
4634 #ifdef RTE_NET_IXGBE
4635 	if (ret == -ENOTSUP) {
4636 		ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
4637 		if (!ret)
4638 			ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
4639 	}
4640 #endif
4641 	switch (ret) {
4642 	case 0:
4643 		break;
4644 	case -ENOTSUP:
4645 		fprintf(stderr, "\n FDIR is not supported on port %-2d\n",
4646 			port_id);
4647 		break;
4648 	default:
4649 		fprintf(stderr, "programming error: (%s)\n", strerror(-ret));
4650 		break;
4651 	}
4652 	return ret;
4653 }
4654 
4655 void
4656 fdir_get_infos(portid_t port_id)
4657 {
4658 	struct rte_eth_fdir_stats fdir_stat;
4659 	struct rte_eth_fdir_info fdir_info;
4660 
4661 	static const char *fdir_stats_border = "########################";
4662 
4663 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4664 		return;
4665 
4666 	memset(&fdir_info, 0, sizeof(fdir_info));
4667 	memset(&fdir_stat, 0, sizeof(fdir_stat));
4668 	if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
4669 		return;
4670 
4671 	printf("\n  %s FDIR infos for port %-2d     %s\n",
4672 	       fdir_stats_border, port_id, fdir_stats_border);
4673 	printf("  MODE: ");
4674 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
4675 		printf("  PERFECT\n");
4676 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
4677 		printf("  PERFECT-MAC-VLAN\n");
4678 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4679 		printf("  PERFECT-TUNNEL\n");
4680 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
4681 		printf("  SIGNATURE\n");
4682 	else
4683 		printf("  DISABLE\n");
4684 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
4685 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
4686 		printf("  SUPPORTED FLOW TYPE: ");
4687 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
4688 	}
4689 	printf("  FLEX PAYLOAD INFO:\n");
4690 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
4691 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
4692 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
4693 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
4694 		fdir_info.flex_payload_unit,
4695 		fdir_info.max_flex_payload_segment_num,
4696 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
4697 	printf("  MASK: ");
4698 	print_fdir_mask(&fdir_info.mask);
4699 	if (fdir_info.flex_conf.nb_payloads > 0) {
4700 		printf("  FLEX PAYLOAD SRC OFFSET:");
4701 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4702 	}
4703 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
4704 		printf("  FLEX MASK CFG:");
4705 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4706 	}
4707 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
4708 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
4709 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
4710 	       fdir_info.guarant_spc, fdir_info.best_spc);
4711 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
4712 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
4713 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
4714 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
4715 	       fdir_stat.collision, fdir_stat.free,
4716 	       fdir_stat.maxhash, fdir_stat.maxlen,
4717 	       fdir_stat.add, fdir_stat.remove,
4718 	       fdir_stat.f_add, fdir_stat.f_remove);
4719 	printf("  %s############################%s\n",
4720 	       fdir_stats_border, fdir_stats_border);
4721 }
4722 
4723 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */
4724 
4725 void
4726 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
4727 {
4728 	struct rte_port *port;
4729 	struct rte_eth_fdir_flex_conf *flex_conf;
4730 	int i, idx = 0;
4731 
4732 	port = &ports[port_id];
4733 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4734 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
4735 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
4736 			idx = i;
4737 			break;
4738 		}
4739 	}
4740 	if (i >= RTE_ETH_FLOW_MAX) {
4741 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
4742 			idx = flex_conf->nb_flexmasks;
4743 			flex_conf->nb_flexmasks++;
4744 		} else {
4745 			fprintf(stderr,
4746 				"The flex mask table is full. Can not set flex mask for flow_type(%u).",
4747 				cfg->flow_type);
4748 			return;
4749 		}
4750 	}
4751 	rte_memcpy(&flex_conf->flex_mask[idx],
4752 			 cfg,
4753 			 sizeof(struct rte_eth_fdir_flex_mask));
4754 }
4755 
4756 void
4757 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
4758 {
4759 	struct rte_port *port;
4760 	struct rte_eth_fdir_flex_conf *flex_conf;
4761 	int i, idx = 0;
4762 
4763 	port = &ports[port_id];
4764 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4765 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
4766 		if (cfg->type == flex_conf->flex_set[i].type) {
4767 			idx = i;
4768 			break;
4769 		}
4770 	}
4771 	if (i >= RTE_ETH_PAYLOAD_MAX) {
4772 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
4773 			idx = flex_conf->nb_payloads;
4774 			flex_conf->nb_payloads++;
4775 		} else {
4776 			fprintf(stderr,
4777 				"The flex payload table is full. Can not set flex payload for type(%u).",
4778 				cfg->type);
4779 			return;
4780 		}
4781 	}
4782 	rte_memcpy(&flex_conf->flex_set[idx],
4783 			 cfg,
4784 			 sizeof(struct rte_eth_flex_payload_cfg));
4785 
4786 }
4787 
4788 void
4789 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
4790 {
4791 #ifdef RTE_NET_IXGBE
4792 	int diag;
4793 
4794 	if (is_rx)
4795 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
4796 	else
4797 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
4798 
4799 	if (diag == 0)
4800 		return;
4801 	fprintf(stderr,
4802 		"rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
4803 		is_rx ? "rx" : "tx", port_id, diag);
4804 	return;
4805 #endif
4806 	fprintf(stderr, "VF %s setting not supported for port %d\n",
4807 		is_rx ? "Rx" : "Tx", port_id);
4808 	RTE_SET_USED(vf);
4809 	RTE_SET_USED(on);
4810 }
4811 
4812 int
4813 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
4814 {
4815 	int diag;
4816 	struct rte_eth_link link;
4817 	int ret;
4818 
4819 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4820 		return 1;
4821 	ret = eth_link_get_nowait_print_err(port_id, &link);
4822 	if (ret < 0)
4823 		return 1;
4824 	if (link.link_speed != ETH_SPEED_NUM_UNKNOWN &&
4825 	    rate > link.link_speed) {
4826 		fprintf(stderr,
4827 			"Invalid rate value:%u bigger than link speed: %u\n",
4828 			rate, link.link_speed);
4829 		return 1;
4830 	}
4831 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
4832 	if (diag == 0)
4833 		return diag;
4834 	fprintf(stderr,
4835 		"rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
4836 		port_id, diag);
4837 	return diag;
4838 }
4839 
4840 int
4841 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
4842 {
4843 	int diag = -ENOTSUP;
4844 
4845 	RTE_SET_USED(vf);
4846 	RTE_SET_USED(rate);
4847 	RTE_SET_USED(q_msk);
4848 
4849 #ifdef RTE_NET_IXGBE
4850 	if (diag == -ENOTSUP)
4851 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
4852 						       q_msk);
4853 #endif
4854 #ifdef RTE_NET_BNXT
4855 	if (diag == -ENOTSUP)
4856 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
4857 #endif
4858 	if (diag == 0)
4859 		return diag;
4860 
4861 	fprintf(stderr,
4862 		"%s for port_id=%d failed diag=%d\n",
4863 		__func__, port_id, diag);
4864 	return diag;
4865 }
4866 
4867 /*
4868  * Functions to manage the set of filtered Multicast MAC addresses.
4869  *
4870  * A pool of filtered multicast MAC addresses is associated with each port.
4871  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
4872  * The address of the pool and the number of valid multicast MAC addresses
4873  * recorded in the pool are stored in the fields "mc_addr_pool" and
4874  * "mc_addr_nb" of the "rte_port" data structure.
4875  *
4876  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
4877  * to be supplied a contiguous array of multicast MAC addresses.
4878  * To comply with this constraint, the set of multicast addresses recorded
4879  * into the pool are systematically compacted at the beginning of the pool.
4880  * Hence, when a multicast address is removed from the pool, all following
4881  * addresses, if any, are copied back to keep the set contiguous.
4882  */
4883 #define MCAST_POOL_INC 32
4884 
4885 static int
4886 mcast_addr_pool_extend(struct rte_port *port)
4887 {
4888 	struct rte_ether_addr *mc_pool;
4889 	size_t mc_pool_size;
4890 
4891 	/*
4892 	 * If a free entry is available at the end of the pool, just
4893 	 * increment the number of recorded multicast addresses.
4894 	 */
4895 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
4896 		port->mc_addr_nb++;
4897 		return 0;
4898 	}
4899 
4900 	/*
4901 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
4902 	 * The previous test guarantees that port->mc_addr_nb is a multiple
4903 	 * of MCAST_POOL_INC.
4904 	 */
4905 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
4906 						    MCAST_POOL_INC);
4907 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
4908 						mc_pool_size);
4909 	if (mc_pool == NULL) {
4910 		fprintf(stderr,
4911 			"allocation of pool of %u multicast addresses failed\n",
4912 			port->mc_addr_nb + MCAST_POOL_INC);
4913 		return -ENOMEM;
4914 	}
4915 
4916 	port->mc_addr_pool = mc_pool;
4917 	port->mc_addr_nb++;
4918 	return 0;
4919 
4920 }
4921 
4922 static void
4923 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
4924 {
4925 	if (mcast_addr_pool_extend(port) != 0)
4926 		return;
4927 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
4928 }
4929 
4930 static void
4931 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
4932 {
4933 	port->mc_addr_nb--;
4934 	if (addr_idx == port->mc_addr_nb) {
4935 		/* No need to recompact the set of multicast addressses. */
4936 		if (port->mc_addr_nb == 0) {
4937 			/* free the pool of multicast addresses. */
4938 			free(port->mc_addr_pool);
4939 			port->mc_addr_pool = NULL;
4940 		}
4941 		return;
4942 	}
4943 	memmove(&port->mc_addr_pool[addr_idx],
4944 		&port->mc_addr_pool[addr_idx + 1],
4945 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
4946 }
4947 
4948 static int
4949 eth_port_multicast_addr_list_set(portid_t port_id)
4950 {
4951 	struct rte_port *port;
4952 	int diag;
4953 
4954 	port = &ports[port_id];
4955 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
4956 					    port->mc_addr_nb);
4957 	if (diag < 0)
4958 		fprintf(stderr,
4959 			"rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
4960 			port_id, port->mc_addr_nb, diag);
4961 
4962 	return diag;
4963 }
4964 
4965 void
4966 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
4967 {
4968 	struct rte_port *port;
4969 	uint32_t i;
4970 
4971 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4972 		return;
4973 
4974 	port = &ports[port_id];
4975 
4976 	/*
4977 	 * Check that the added multicast MAC address is not already recorded
4978 	 * in the pool of multicast addresses.
4979 	 */
4980 	for (i = 0; i < port->mc_addr_nb; i++) {
4981 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
4982 			fprintf(stderr,
4983 				"multicast address already filtered by port\n");
4984 			return;
4985 		}
4986 	}
4987 
4988 	mcast_addr_pool_append(port, mc_addr);
4989 	if (eth_port_multicast_addr_list_set(port_id) < 0)
4990 		/* Rollback on failure, remove the address from the pool */
4991 		mcast_addr_pool_remove(port, i);
4992 }
4993 
4994 void
4995 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
4996 {
4997 	struct rte_port *port;
4998 	uint32_t i;
4999 
5000 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5001 		return;
5002 
5003 	port = &ports[port_id];
5004 
5005 	/*
5006 	 * Search the pool of multicast MAC addresses for the removed address.
5007 	 */
5008 	for (i = 0; i < port->mc_addr_nb; i++) {
5009 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
5010 			break;
5011 	}
5012 	if (i == port->mc_addr_nb) {
5013 		fprintf(stderr, "multicast address not filtered by port %d\n",
5014 			port_id);
5015 		return;
5016 	}
5017 
5018 	mcast_addr_pool_remove(port, i);
5019 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5020 		/* Rollback on failure, add the address back into the pool */
5021 		mcast_addr_pool_append(port, mc_addr);
5022 }
5023 
5024 void
5025 port_dcb_info_display(portid_t port_id)
5026 {
5027 	struct rte_eth_dcb_info dcb_info;
5028 	uint16_t i;
5029 	int ret;
5030 	static const char *border = "================";
5031 
5032 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5033 		return;
5034 
5035 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
5036 	if (ret) {
5037 		fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n",
5038 			port_id);
5039 		return;
5040 	}
5041 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
5042 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
5043 	printf("\n  TC :        ");
5044 	for (i = 0; i < dcb_info.nb_tcs; i++)
5045 		printf("\t%4d", i);
5046 	printf("\n  Priority :  ");
5047 	for (i = 0; i < dcb_info.nb_tcs; i++)
5048 		printf("\t%4d", dcb_info.prio_tc[i]);
5049 	printf("\n  BW percent :");
5050 	for (i = 0; i < dcb_info.nb_tcs; i++)
5051 		printf("\t%4d%%", dcb_info.tc_bws[i]);
5052 	printf("\n  RXQ base :  ");
5053 	for (i = 0; i < dcb_info.nb_tcs; i++)
5054 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
5055 	printf("\n  RXQ number :");
5056 	for (i = 0; i < dcb_info.nb_tcs; i++)
5057 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
5058 	printf("\n  TXQ base :  ");
5059 	for (i = 0; i < dcb_info.nb_tcs; i++)
5060 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
5061 	printf("\n  TXQ number :");
5062 	for (i = 0; i < dcb_info.nb_tcs; i++)
5063 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
5064 	printf("\n");
5065 }
5066 
5067 uint8_t *
5068 open_file(const char *file_path, uint32_t *size)
5069 {
5070 	int fd = open(file_path, O_RDONLY);
5071 	off_t pkg_size;
5072 	uint8_t *buf = NULL;
5073 	int ret = 0;
5074 	struct stat st_buf;
5075 
5076 	if (size)
5077 		*size = 0;
5078 
5079 	if (fd == -1) {
5080 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5081 		return buf;
5082 	}
5083 
5084 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
5085 		close(fd);
5086 		fprintf(stderr, "%s: File operations failed\n", __func__);
5087 		return buf;
5088 	}
5089 
5090 	pkg_size = st_buf.st_size;
5091 	if (pkg_size < 0) {
5092 		close(fd);
5093 		fprintf(stderr, "%s: File operations failed\n", __func__);
5094 		return buf;
5095 	}
5096 
5097 	buf = (uint8_t *)malloc(pkg_size);
5098 	if (!buf) {
5099 		close(fd);
5100 		fprintf(stderr, "%s: Failed to malloc memory\n", __func__);
5101 		return buf;
5102 	}
5103 
5104 	ret = read(fd, buf, pkg_size);
5105 	if (ret < 0) {
5106 		close(fd);
5107 		fprintf(stderr, "%s: File read operation failed\n", __func__);
5108 		close_file(buf);
5109 		return NULL;
5110 	}
5111 
5112 	if (size)
5113 		*size = pkg_size;
5114 
5115 	close(fd);
5116 
5117 	return buf;
5118 }
5119 
5120 int
5121 save_file(const char *file_path, uint8_t *buf, uint32_t size)
5122 {
5123 	FILE *fh = fopen(file_path, "wb");
5124 
5125 	if (fh == NULL) {
5126 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5127 		return -1;
5128 	}
5129 
5130 	if (fwrite(buf, 1, size, fh) != size) {
5131 		fclose(fh);
5132 		fprintf(stderr, "%s: File write operation failed\n", __func__);
5133 		return -1;
5134 	}
5135 
5136 	fclose(fh);
5137 
5138 	return 0;
5139 }
5140 
5141 int
5142 close_file(uint8_t *buf)
5143 {
5144 	if (buf) {
5145 		free((void *)buf);
5146 		return 0;
5147 	}
5148 
5149 	return -1;
5150 }
5151 
5152 void
5153 port_queue_region_info_display(portid_t port_id, void *buf)
5154 {
5155 #ifdef RTE_NET_I40E
5156 	uint16_t i, j;
5157 	struct rte_pmd_i40e_queue_regions *info =
5158 		(struct rte_pmd_i40e_queue_regions *)buf;
5159 	static const char *queue_region_info_stats_border = "-------";
5160 
5161 	if (!info->queue_region_number)
5162 		printf("there is no region has been set before");
5163 
5164 	printf("\n	%s All queue region info for port=%2d %s",
5165 			queue_region_info_stats_border, port_id,
5166 			queue_region_info_stats_border);
5167 	printf("\n	queue_region_number: %-14u \n",
5168 			info->queue_region_number);
5169 
5170 	for (i = 0; i < info->queue_region_number; i++) {
5171 		printf("\n	region_id: %-14u queue_number: %-14u "
5172 			"queue_start_index: %-14u \n",
5173 			info->region[i].region_id,
5174 			info->region[i].queue_num,
5175 			info->region[i].queue_start_index);
5176 
5177 		printf("  user_priority_num is	%-14u :",
5178 					info->region[i].user_priority_num);
5179 		for (j = 0; j < info->region[i].user_priority_num; j++)
5180 			printf(" %-14u ", info->region[i].user_priority[j]);
5181 
5182 		printf("\n	flowtype_num is  %-14u :",
5183 				info->region[i].flowtype_num);
5184 		for (j = 0; j < info->region[i].flowtype_num; j++)
5185 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
5186 	}
5187 #else
5188 	RTE_SET_USED(port_id);
5189 	RTE_SET_USED(buf);
5190 #endif
5191 
5192 	printf("\n\n");
5193 }
5194 
5195 void
5196 show_macs(portid_t port_id)
5197 {
5198 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5199 	struct rte_eth_dev_info dev_info;
5200 	struct rte_ether_addr *addr;
5201 	uint32_t i, num_macs = 0;
5202 	struct rte_eth_dev *dev;
5203 
5204 	dev = &rte_eth_devices[port_id];
5205 
5206 	if (eth_dev_info_get_print_err(port_id, &dev_info))
5207 		return;
5208 
5209 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
5210 		addr = &dev->data->mac_addrs[i];
5211 
5212 		/* skip zero address */
5213 		if (rte_is_zero_ether_addr(addr))
5214 			continue;
5215 
5216 		num_macs++;
5217 	}
5218 
5219 	printf("Number of MAC address added: %d\n", num_macs);
5220 
5221 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
5222 		addr = &dev->data->mac_addrs[i];
5223 
5224 		/* skip zero address */
5225 		if (rte_is_zero_ether_addr(addr))
5226 			continue;
5227 
5228 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5229 		printf("  %s\n", buf);
5230 	}
5231 }
5232 
5233 void
5234 show_mcast_macs(portid_t port_id)
5235 {
5236 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5237 	struct rte_ether_addr *addr;
5238 	struct rte_port *port;
5239 	uint32_t i;
5240 
5241 	port = &ports[port_id];
5242 
5243 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
5244 
5245 	for (i = 0; i < port->mc_addr_nb; i++) {
5246 		addr = &port->mc_addr_pool[i];
5247 
5248 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5249 		printf("  %s\n", buf);
5250 	}
5251 }
5252