1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <string.h> 10 #include <stdint.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/types.h> 15 #include <sys/stat.h> 16 #include <fcntl.h> 17 #include <unistd.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_debug.h> 22 #include <rte_log.h> 23 #include <rte_memory.h> 24 #include <rte_memcpy.h> 25 #include <rte_memzone.h> 26 #include <rte_launch.h> 27 #include <rte_eal.h> 28 #include <rte_per_lcore.h> 29 #include <rte_lcore.h> 30 #include <rte_atomic.h> 31 #include <rte_branch_prediction.h> 32 #include <rte_mempool.h> 33 #include <rte_mbuf.h> 34 #include <rte_interrupts.h> 35 #include <rte_pci.h> 36 #include <rte_ether.h> 37 #include <rte_ethdev.h> 38 #include <rte_string_fns.h> 39 #include <rte_cycles.h> 40 #include <rte_flow.h> 41 #include <rte_errno.h> 42 #ifdef RTE_LIBRTE_IXGBE_PMD 43 #include <rte_pmd_ixgbe.h> 44 #endif 45 #ifdef RTE_LIBRTE_I40E_PMD 46 #include <rte_pmd_i40e.h> 47 #endif 48 #ifdef RTE_LIBRTE_BNXT_PMD 49 #include <rte_pmd_bnxt.h> 50 #endif 51 #include <rte_gro.h> 52 #include <cmdline_parse_etheraddr.h> 53 54 #include "testpmd.h" 55 56 static char *flowtype_to_str(uint16_t flow_type); 57 58 static const struct { 59 enum tx_pkt_split split; 60 const char *name; 61 } tx_split_name[] = { 62 { 63 .split = TX_PKT_SPLIT_OFF, 64 .name = "off", 65 }, 66 { 67 .split = TX_PKT_SPLIT_ON, 68 .name = "on", 69 }, 70 { 71 .split = TX_PKT_SPLIT_RND, 72 .name = "rand", 73 }, 74 }; 75 76 struct rss_type_info { 77 char str[32]; 78 uint64_t rss_type; 79 }; 80 81 static const struct rss_type_info rss_type_table[] = { 82 { "ipv4", ETH_RSS_IPV4 }, 83 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 84 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 85 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 86 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 87 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 88 { "ipv6", ETH_RSS_IPV6 }, 89 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 90 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 91 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 92 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 93 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 94 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 95 { "ipv6-ex", ETH_RSS_IPV6_EX }, 96 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 97 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 98 { "port", ETH_RSS_PORT }, 99 { "vxlan", ETH_RSS_VXLAN }, 100 { "geneve", ETH_RSS_GENEVE }, 101 { "nvgre", ETH_RSS_NVGRE }, 102 103 }; 104 105 static void 106 print_ethaddr(const char *name, struct ether_addr *eth_addr) 107 { 108 char buf[ETHER_ADDR_FMT_SIZE]; 109 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 110 printf("%s%s", name, buf); 111 } 112 113 void 114 nic_stats_display(portid_t port_id) 115 { 116 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 117 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 118 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 119 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 120 uint64_t mpps_rx, mpps_tx; 121 struct rte_eth_stats stats; 122 struct rte_port *port = &ports[port_id]; 123 uint8_t i; 124 portid_t pid; 125 126 static const char *nic_stats_border = "########################"; 127 128 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 129 printf("Valid port range is [0"); 130 RTE_ETH_FOREACH_DEV(pid) 131 printf(", %d", pid); 132 printf("]\n"); 133 return; 134 } 135 rte_eth_stats_get(port_id, &stats); 136 printf("\n %s NIC statistics for port %-2d %s\n", 137 nic_stats_border, port_id, nic_stats_border); 138 139 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 140 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 141 "%-"PRIu64"\n", 142 stats.ipackets, stats.imissed, stats.ibytes); 143 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 144 printf(" RX-nombuf: %-10"PRIu64"\n", 145 stats.rx_nombuf); 146 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 147 "%-"PRIu64"\n", 148 stats.opackets, stats.oerrors, stats.obytes); 149 } 150 else { 151 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 152 " RX-bytes: %10"PRIu64"\n", 153 stats.ipackets, stats.ierrors, stats.ibytes); 154 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 155 printf(" RX-nombuf: %10"PRIu64"\n", 156 stats.rx_nombuf); 157 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 158 " TX-bytes: %10"PRIu64"\n", 159 stats.opackets, stats.oerrors, stats.obytes); 160 } 161 162 if (port->rx_queue_stats_mapping_enabled) { 163 printf("\n"); 164 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 165 printf(" Stats reg %2d RX-packets: %10"PRIu64 166 " RX-errors: %10"PRIu64 167 " RX-bytes: %10"PRIu64"\n", 168 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 169 } 170 } 171 if (port->tx_queue_stats_mapping_enabled) { 172 printf("\n"); 173 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 174 printf(" Stats reg %2d TX-packets: %10"PRIu64 175 " TX-bytes: %10"PRIu64"\n", 176 i, stats.q_opackets[i], stats.q_obytes[i]); 177 } 178 } 179 180 diff_cycles = prev_cycles[port_id]; 181 prev_cycles[port_id] = rte_rdtsc(); 182 if (diff_cycles > 0) 183 diff_cycles = prev_cycles[port_id] - diff_cycles; 184 185 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 186 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 187 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 188 (stats.opackets - prev_pkts_tx[port_id]) : 0; 189 prev_pkts_rx[port_id] = stats.ipackets; 190 prev_pkts_tx[port_id] = stats.opackets; 191 mpps_rx = diff_cycles > 0 ? 192 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 193 mpps_tx = diff_cycles > 0 ? 194 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 195 printf("\n Throughput (since last show)\n"); 196 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 197 mpps_rx, mpps_tx); 198 199 printf(" %s############################%s\n", 200 nic_stats_border, nic_stats_border); 201 } 202 203 void 204 nic_stats_clear(portid_t port_id) 205 { 206 portid_t pid; 207 208 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 209 printf("Valid port range is [0"); 210 RTE_ETH_FOREACH_DEV(pid) 211 printf(", %d", pid); 212 printf("]\n"); 213 return; 214 } 215 rte_eth_stats_reset(port_id); 216 printf("\n NIC statistics for port %d cleared\n", port_id); 217 } 218 219 void 220 nic_xstats_display(portid_t port_id) 221 { 222 struct rte_eth_xstat *xstats; 223 int cnt_xstats, idx_xstat; 224 struct rte_eth_xstat_name *xstats_names; 225 226 printf("###### NIC extended statistics for port %-2d\n", port_id); 227 if (!rte_eth_dev_is_valid_port(port_id)) { 228 printf("Error: Invalid port number %i\n", port_id); 229 return; 230 } 231 232 /* Get count */ 233 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 234 if (cnt_xstats < 0) { 235 printf("Error: Cannot get count of xstats\n"); 236 return; 237 } 238 239 /* Get id-name lookup table */ 240 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 241 if (xstats_names == NULL) { 242 printf("Cannot allocate memory for xstats lookup\n"); 243 return; 244 } 245 if (cnt_xstats != rte_eth_xstats_get_names( 246 port_id, xstats_names, cnt_xstats)) { 247 printf("Error: Cannot get xstats lookup\n"); 248 free(xstats_names); 249 return; 250 } 251 252 /* Get stats themselves */ 253 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 254 if (xstats == NULL) { 255 printf("Cannot allocate memory for xstats\n"); 256 free(xstats_names); 257 return; 258 } 259 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 260 printf("Error: Unable to get xstats\n"); 261 free(xstats_names); 262 free(xstats); 263 return; 264 } 265 266 /* Display xstats */ 267 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 268 if (xstats_hide_zero && !xstats[idx_xstat].value) 269 continue; 270 printf("%s: %"PRIu64"\n", 271 xstats_names[idx_xstat].name, 272 xstats[idx_xstat].value); 273 } 274 free(xstats_names); 275 free(xstats); 276 } 277 278 void 279 nic_xstats_clear(portid_t port_id) 280 { 281 rte_eth_xstats_reset(port_id); 282 } 283 284 void 285 nic_stats_mapping_display(portid_t port_id) 286 { 287 struct rte_port *port = &ports[port_id]; 288 uint16_t i; 289 portid_t pid; 290 291 static const char *nic_stats_mapping_border = "########################"; 292 293 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 294 printf("Valid port range is [0"); 295 RTE_ETH_FOREACH_DEV(pid) 296 printf(", %d", pid); 297 printf("]\n"); 298 return; 299 } 300 301 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 302 printf("Port id %d - either does not support queue statistic mapping or" 303 " no queue statistic mapping set\n", port_id); 304 return; 305 } 306 307 printf("\n %s NIC statistics mapping for port %-2d %s\n", 308 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 309 310 if (port->rx_queue_stats_mapping_enabled) { 311 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 312 if (rx_queue_stats_mappings[i].port_id == port_id) { 313 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 314 rx_queue_stats_mappings[i].queue_id, 315 rx_queue_stats_mappings[i].stats_counter_id); 316 } 317 } 318 printf("\n"); 319 } 320 321 322 if (port->tx_queue_stats_mapping_enabled) { 323 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 324 if (tx_queue_stats_mappings[i].port_id == port_id) { 325 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 326 tx_queue_stats_mappings[i].queue_id, 327 tx_queue_stats_mappings[i].stats_counter_id); 328 } 329 } 330 } 331 332 printf(" %s####################################%s\n", 333 nic_stats_mapping_border, nic_stats_mapping_border); 334 } 335 336 void 337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 338 { 339 struct rte_eth_rxq_info qinfo; 340 int32_t rc; 341 static const char *info_border = "*********************"; 342 343 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 344 if (rc != 0) { 345 printf("Failed to retrieve information for port: %u, " 346 "RX queue: %hu\nerror desc: %s(%d)\n", 347 port_id, queue_id, strerror(-rc), rc); 348 return; 349 } 350 351 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 352 info_border, port_id, queue_id, info_border); 353 354 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 355 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 356 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 357 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 358 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 359 printf("\nRX drop packets: %s", 360 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 361 printf("\nRX deferred start: %s", 362 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 363 printf("\nRX scattered packets: %s", 364 (qinfo.scattered_rx != 0) ? "on" : "off"); 365 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 366 printf("\n"); 367 } 368 369 void 370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 371 { 372 struct rte_eth_txq_info qinfo; 373 int32_t rc; 374 static const char *info_border = "*********************"; 375 376 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 377 if (rc != 0) { 378 printf("Failed to retrieve information for port: %u, " 379 "TX queue: %hu\nerror desc: %s(%d)\n", 380 port_id, queue_id, strerror(-rc), rc); 381 return; 382 } 383 384 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 385 info_border, port_id, queue_id, info_border); 386 387 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 388 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 389 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 390 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 391 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 392 printf("\nTX deferred start: %s", 393 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 394 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 395 printf("\n"); 396 } 397 398 void 399 port_infos_display(portid_t port_id) 400 { 401 struct rte_port *port; 402 struct ether_addr mac_addr; 403 struct rte_eth_link link; 404 struct rte_eth_dev_info dev_info; 405 int vlan_offload; 406 struct rte_mempool * mp; 407 static const char *info_border = "*********************"; 408 portid_t pid; 409 uint16_t mtu; 410 411 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 412 printf("Valid port range is [0"); 413 RTE_ETH_FOREACH_DEV(pid) 414 printf(", %d", pid); 415 printf("]\n"); 416 return; 417 } 418 port = &ports[port_id]; 419 rte_eth_link_get_nowait(port_id, &link); 420 memset(&dev_info, 0, sizeof(dev_info)); 421 rte_eth_dev_info_get(port_id, &dev_info); 422 printf("\n%s Infos for port %-2d %s\n", 423 info_border, port_id, info_border); 424 rte_eth_macaddr_get(port_id, &mac_addr); 425 print_ethaddr("MAC address: ", &mac_addr); 426 printf("\nDriver name: %s", dev_info.driver_name); 427 printf("\nConnect to socket: %u", port->socket_id); 428 429 if (port_numa[port_id] != NUMA_NO_CONFIG) { 430 mp = mbuf_pool_find(port_numa[port_id]); 431 if (mp) 432 printf("\nmemory allocation on the socket: %d", 433 port_numa[port_id]); 434 } else 435 printf("\nmemory allocation on the socket: %u",port->socket_id); 436 437 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 438 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 439 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 440 ("full-duplex") : ("half-duplex")); 441 442 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 443 printf("MTU: %u\n", mtu); 444 445 printf("Promiscuous mode: %s\n", 446 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 447 printf("Allmulticast mode: %s\n", 448 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 449 printf("Maximum number of MAC addresses: %u\n", 450 (unsigned int)(port->dev_info.max_mac_addrs)); 451 printf("Maximum number of MAC addresses of hash filtering: %u\n", 452 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 453 454 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 455 if (vlan_offload >= 0){ 456 printf("VLAN offload: \n"); 457 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 458 printf(" strip on \n"); 459 else 460 printf(" strip off \n"); 461 462 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 463 printf(" filter on \n"); 464 else 465 printf(" filter off \n"); 466 467 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 468 printf(" qinq(extend) on \n"); 469 else 470 printf(" qinq(extend) off \n"); 471 } 472 473 if (dev_info.hash_key_size > 0) 474 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 475 if (dev_info.reta_size > 0) 476 printf("Redirection table size: %u\n", dev_info.reta_size); 477 if (!dev_info.flow_type_rss_offloads) 478 printf("No flow type is supported.\n"); 479 else { 480 uint16_t i; 481 char *p; 482 483 printf("Supported flow types:\n"); 484 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 485 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 486 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 487 continue; 488 p = flowtype_to_str(i); 489 if (p) 490 printf(" %s\n", p); 491 else 492 printf(" user defined %d\n", i); 493 } 494 } 495 496 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 497 printf("Maximum configurable length of RX packet: %u\n", 498 dev_info.max_rx_pktlen); 499 if (dev_info.max_vfs) 500 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 501 if (dev_info.max_vmdq_pools) 502 printf("Maximum number of VMDq pools: %u\n", 503 dev_info.max_vmdq_pools); 504 505 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 506 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 507 printf("Max possible number of RXDs per queue: %hu\n", 508 dev_info.rx_desc_lim.nb_max); 509 printf("Min possible number of RXDs per queue: %hu\n", 510 dev_info.rx_desc_lim.nb_min); 511 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 512 513 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 514 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 515 printf("Max possible number of TXDs per queue: %hu\n", 516 dev_info.tx_desc_lim.nb_max); 517 printf("Min possible number of TXDs per queue: %hu\n", 518 dev_info.tx_desc_lim.nb_min); 519 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 520 } 521 522 void 523 port_offload_cap_display(portid_t port_id) 524 { 525 struct rte_eth_dev_info dev_info; 526 static const char *info_border = "************"; 527 528 if (port_id_is_invalid(port_id, ENABLED_WARN)) 529 return; 530 531 rte_eth_dev_info_get(port_id, &dev_info); 532 533 printf("\n%s Port %d supported offload features: %s\n", 534 info_border, port_id, info_border); 535 536 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 537 printf("VLAN stripped: "); 538 if (ports[port_id].dev_conf.rxmode.offloads & 539 DEV_RX_OFFLOAD_VLAN_STRIP) 540 printf("on\n"); 541 else 542 printf("off\n"); 543 } 544 545 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 546 printf("Double VLANs stripped: "); 547 if (ports[port_id].dev_conf.rxmode.offloads & 548 DEV_RX_OFFLOAD_VLAN_EXTEND) 549 printf("on\n"); 550 else 551 printf("off\n"); 552 } 553 554 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 555 printf("RX IPv4 checksum: "); 556 if (ports[port_id].dev_conf.rxmode.offloads & 557 DEV_RX_OFFLOAD_IPV4_CKSUM) 558 printf("on\n"); 559 else 560 printf("off\n"); 561 } 562 563 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 564 printf("RX UDP checksum: "); 565 if (ports[port_id].dev_conf.rxmode.offloads & 566 DEV_RX_OFFLOAD_UDP_CKSUM) 567 printf("on\n"); 568 else 569 printf("off\n"); 570 } 571 572 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 573 printf("RX TCP checksum: "); 574 if (ports[port_id].dev_conf.rxmode.offloads & 575 DEV_RX_OFFLOAD_TCP_CKSUM) 576 printf("on\n"); 577 else 578 printf("off\n"); 579 } 580 581 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) { 582 printf("RX Outer IPv4 checksum: "); 583 if (ports[port_id].dev_conf.rxmode.offloads & 584 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 585 printf("on\n"); 586 else 587 printf("off\n"); 588 } 589 590 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 591 printf("Large receive offload: "); 592 if (ports[port_id].dev_conf.rxmode.offloads & 593 DEV_RX_OFFLOAD_TCP_LRO) 594 printf("on\n"); 595 else 596 printf("off\n"); 597 } 598 599 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 600 printf("VLAN insert: "); 601 if (ports[port_id].dev_conf.txmode.offloads & 602 DEV_TX_OFFLOAD_VLAN_INSERT) 603 printf("on\n"); 604 else 605 printf("off\n"); 606 } 607 608 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) { 609 printf("HW timestamp: "); 610 if (ports[port_id].dev_conf.rxmode.offloads & 611 DEV_RX_OFFLOAD_TIMESTAMP) 612 printf("on\n"); 613 else 614 printf("off\n"); 615 } 616 617 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 618 printf("Double VLANs insert: "); 619 if (ports[port_id].dev_conf.txmode.offloads & 620 DEV_TX_OFFLOAD_QINQ_INSERT) 621 printf("on\n"); 622 else 623 printf("off\n"); 624 } 625 626 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 627 printf("TX IPv4 checksum: "); 628 if (ports[port_id].dev_conf.txmode.offloads & 629 DEV_TX_OFFLOAD_IPV4_CKSUM) 630 printf("on\n"); 631 else 632 printf("off\n"); 633 } 634 635 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 636 printf("TX UDP checksum: "); 637 if (ports[port_id].dev_conf.txmode.offloads & 638 DEV_TX_OFFLOAD_UDP_CKSUM) 639 printf("on\n"); 640 else 641 printf("off\n"); 642 } 643 644 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 645 printf("TX TCP checksum: "); 646 if (ports[port_id].dev_conf.txmode.offloads & 647 DEV_TX_OFFLOAD_TCP_CKSUM) 648 printf("on\n"); 649 else 650 printf("off\n"); 651 } 652 653 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 654 printf("TX SCTP checksum: "); 655 if (ports[port_id].dev_conf.txmode.offloads & 656 DEV_TX_OFFLOAD_SCTP_CKSUM) 657 printf("on\n"); 658 else 659 printf("off\n"); 660 } 661 662 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 663 printf("TX Outer IPv4 checksum: "); 664 if (ports[port_id].dev_conf.txmode.offloads & 665 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 666 printf("on\n"); 667 else 668 printf("off\n"); 669 } 670 671 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 672 printf("TX TCP segmentation: "); 673 if (ports[port_id].dev_conf.txmode.offloads & 674 DEV_TX_OFFLOAD_TCP_TSO) 675 printf("on\n"); 676 else 677 printf("off\n"); 678 } 679 680 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 681 printf("TX UDP segmentation: "); 682 if (ports[port_id].dev_conf.txmode.offloads & 683 DEV_TX_OFFLOAD_UDP_TSO) 684 printf("on\n"); 685 else 686 printf("off\n"); 687 } 688 689 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 690 printf("TSO for VXLAN tunnel packet: "); 691 if (ports[port_id].dev_conf.txmode.offloads & 692 DEV_TX_OFFLOAD_VXLAN_TNL_TSO) 693 printf("on\n"); 694 else 695 printf("off\n"); 696 } 697 698 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 699 printf("TSO for GRE tunnel packet: "); 700 if (ports[port_id].dev_conf.txmode.offloads & 701 DEV_TX_OFFLOAD_GRE_TNL_TSO) 702 printf("on\n"); 703 else 704 printf("off\n"); 705 } 706 707 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 708 printf("TSO for IPIP tunnel packet: "); 709 if (ports[port_id].dev_conf.txmode.offloads & 710 DEV_TX_OFFLOAD_IPIP_TNL_TSO) 711 printf("on\n"); 712 else 713 printf("off\n"); 714 } 715 716 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 717 printf("TSO for GENEVE tunnel packet: "); 718 if (ports[port_id].dev_conf.txmode.offloads & 719 DEV_TX_OFFLOAD_GENEVE_TNL_TSO) 720 printf("on\n"); 721 else 722 printf("off\n"); 723 } 724 725 } 726 727 int 728 port_id_is_invalid(portid_t port_id, enum print_warning warning) 729 { 730 uint16_t pid; 731 732 if (port_id == (portid_t)RTE_PORT_ALL) 733 return 0; 734 735 RTE_ETH_FOREACH_DEV(pid) 736 if (port_id == pid) 737 return 0; 738 739 if (warning == ENABLED_WARN) 740 printf("Invalid port %d\n", port_id); 741 742 return 1; 743 } 744 745 static int 746 vlan_id_is_invalid(uint16_t vlan_id) 747 { 748 if (vlan_id < 4096) 749 return 0; 750 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 751 return 1; 752 } 753 754 static int 755 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 756 { 757 const struct rte_pci_device *pci_dev; 758 const struct rte_bus *bus; 759 uint64_t pci_len; 760 761 if (reg_off & 0x3) { 762 printf("Port register offset 0x%X not aligned on a 4-byte " 763 "boundary\n", 764 (unsigned)reg_off); 765 return 1; 766 } 767 768 if (!ports[port_id].dev_info.device) { 769 printf("Invalid device\n"); 770 return 0; 771 } 772 773 bus = rte_bus_find_by_device(ports[port_id].dev_info.device); 774 if (bus && !strcmp(bus->name, "pci")) { 775 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); 776 } else { 777 printf("Not a PCI device\n"); 778 return 1; 779 } 780 781 pci_len = pci_dev->mem_resource[0].len; 782 if (reg_off >= pci_len) { 783 printf("Port %d: register offset %u (0x%X) out of port PCI " 784 "resource (length=%"PRIu64")\n", 785 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 786 return 1; 787 } 788 return 0; 789 } 790 791 static int 792 reg_bit_pos_is_invalid(uint8_t bit_pos) 793 { 794 if (bit_pos <= 31) 795 return 0; 796 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 797 return 1; 798 } 799 800 #define display_port_and_reg_off(port_id, reg_off) \ 801 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 802 803 static inline void 804 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 805 { 806 display_port_and_reg_off(port_id, (unsigned)reg_off); 807 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 808 } 809 810 void 811 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 812 { 813 uint32_t reg_v; 814 815 816 if (port_id_is_invalid(port_id, ENABLED_WARN)) 817 return; 818 if (port_reg_off_is_invalid(port_id, reg_off)) 819 return; 820 if (reg_bit_pos_is_invalid(bit_x)) 821 return; 822 reg_v = port_id_pci_reg_read(port_id, reg_off); 823 display_port_and_reg_off(port_id, (unsigned)reg_off); 824 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 825 } 826 827 void 828 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 829 uint8_t bit1_pos, uint8_t bit2_pos) 830 { 831 uint32_t reg_v; 832 uint8_t l_bit; 833 uint8_t h_bit; 834 835 if (port_id_is_invalid(port_id, ENABLED_WARN)) 836 return; 837 if (port_reg_off_is_invalid(port_id, reg_off)) 838 return; 839 if (reg_bit_pos_is_invalid(bit1_pos)) 840 return; 841 if (reg_bit_pos_is_invalid(bit2_pos)) 842 return; 843 if (bit1_pos > bit2_pos) 844 l_bit = bit2_pos, h_bit = bit1_pos; 845 else 846 l_bit = bit1_pos, h_bit = bit2_pos; 847 848 reg_v = port_id_pci_reg_read(port_id, reg_off); 849 reg_v >>= l_bit; 850 if (h_bit < 31) 851 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 852 display_port_and_reg_off(port_id, (unsigned)reg_off); 853 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 854 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 855 } 856 857 void 858 port_reg_display(portid_t port_id, uint32_t reg_off) 859 { 860 uint32_t reg_v; 861 862 if (port_id_is_invalid(port_id, ENABLED_WARN)) 863 return; 864 if (port_reg_off_is_invalid(port_id, reg_off)) 865 return; 866 reg_v = port_id_pci_reg_read(port_id, reg_off); 867 display_port_reg_value(port_id, reg_off, reg_v); 868 } 869 870 void 871 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 872 uint8_t bit_v) 873 { 874 uint32_t reg_v; 875 876 if (port_id_is_invalid(port_id, ENABLED_WARN)) 877 return; 878 if (port_reg_off_is_invalid(port_id, reg_off)) 879 return; 880 if (reg_bit_pos_is_invalid(bit_pos)) 881 return; 882 if (bit_v > 1) { 883 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 884 return; 885 } 886 reg_v = port_id_pci_reg_read(port_id, reg_off); 887 if (bit_v == 0) 888 reg_v &= ~(1 << bit_pos); 889 else 890 reg_v |= (1 << bit_pos); 891 port_id_pci_reg_write(port_id, reg_off, reg_v); 892 display_port_reg_value(port_id, reg_off, reg_v); 893 } 894 895 void 896 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 897 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 898 { 899 uint32_t max_v; 900 uint32_t reg_v; 901 uint8_t l_bit; 902 uint8_t h_bit; 903 904 if (port_id_is_invalid(port_id, ENABLED_WARN)) 905 return; 906 if (port_reg_off_is_invalid(port_id, reg_off)) 907 return; 908 if (reg_bit_pos_is_invalid(bit1_pos)) 909 return; 910 if (reg_bit_pos_is_invalid(bit2_pos)) 911 return; 912 if (bit1_pos > bit2_pos) 913 l_bit = bit2_pos, h_bit = bit1_pos; 914 else 915 l_bit = bit1_pos, h_bit = bit2_pos; 916 917 if ((h_bit - l_bit) < 31) 918 max_v = (1 << (h_bit - l_bit + 1)) - 1; 919 else 920 max_v = 0xFFFFFFFF; 921 922 if (value > max_v) { 923 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 924 (unsigned)value, (unsigned)value, 925 (unsigned)max_v, (unsigned)max_v); 926 return; 927 } 928 reg_v = port_id_pci_reg_read(port_id, reg_off); 929 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 930 reg_v |= (value << l_bit); /* Set changed bits */ 931 port_id_pci_reg_write(port_id, reg_off, reg_v); 932 display_port_reg_value(port_id, reg_off, reg_v); 933 } 934 935 void 936 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 937 { 938 if (port_id_is_invalid(port_id, ENABLED_WARN)) 939 return; 940 if (port_reg_off_is_invalid(port_id, reg_off)) 941 return; 942 port_id_pci_reg_write(port_id, reg_off, reg_v); 943 display_port_reg_value(port_id, reg_off, reg_v); 944 } 945 946 void 947 port_mtu_set(portid_t port_id, uint16_t mtu) 948 { 949 int diag; 950 951 if (port_id_is_invalid(port_id, ENABLED_WARN)) 952 return; 953 diag = rte_eth_dev_set_mtu(port_id, mtu); 954 if (diag == 0) 955 return; 956 printf("Set MTU failed. diag=%d\n", diag); 957 } 958 959 /* Generic flow management functions. */ 960 961 /** Generate flow_item[] entry. */ 962 #define MK_FLOW_ITEM(t, s) \ 963 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 964 .name = # t, \ 965 .size = s, \ 966 } 967 968 /** Information about known flow pattern items. */ 969 static const struct { 970 const char *name; 971 size_t size; 972 } flow_item[] = { 973 MK_FLOW_ITEM(END, 0), 974 MK_FLOW_ITEM(VOID, 0), 975 MK_FLOW_ITEM(INVERT, 0), 976 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 977 MK_FLOW_ITEM(PF, 0), 978 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 979 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 980 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 981 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 982 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 983 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 984 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 985 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 986 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 987 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 988 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 989 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 990 MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), 991 MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), 992 MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 993 MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 994 MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), 995 MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), 996 MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), 997 MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), 998 MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)), 999 }; 1000 1001 /** Pattern item specification types. */ 1002 enum item_spec_type { 1003 ITEM_SPEC, 1004 ITEM_LAST, 1005 ITEM_MASK, 1006 }; 1007 1008 /** Compute storage space needed by item specification and copy it. */ 1009 static size_t 1010 flow_item_spec_copy(void *buf, const struct rte_flow_item *item, 1011 enum item_spec_type type) 1012 { 1013 size_t size = 0; 1014 const void *item_spec = 1015 type == ITEM_SPEC ? item->spec : 1016 type == ITEM_LAST ? item->last : 1017 type == ITEM_MASK ? item->mask : 1018 NULL; 1019 1020 if (!item_spec) 1021 goto empty; 1022 switch (item->type) { 1023 union { 1024 const struct rte_flow_item_raw *raw; 1025 } src; 1026 union { 1027 struct rte_flow_item_raw *raw; 1028 } dst; 1029 1030 case RTE_FLOW_ITEM_TYPE_RAW: 1031 src.raw = item_spec; 1032 dst.raw = buf; 1033 size = offsetof(struct rte_flow_item_raw, pattern) + 1034 src.raw->length * sizeof(*src.raw->pattern); 1035 if (dst.raw) 1036 memcpy(dst.raw, src.raw, size); 1037 break; 1038 default: 1039 size = flow_item[item->type].size; 1040 if (buf) 1041 memcpy(buf, item_spec, size); 1042 break; 1043 } 1044 empty: 1045 return RTE_ALIGN_CEIL(size, sizeof(double)); 1046 } 1047 1048 /** Generate flow_action[] entry. */ 1049 #define MK_FLOW_ACTION(t, s) \ 1050 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 1051 .name = # t, \ 1052 .size = s, \ 1053 } 1054 1055 /** Information about known flow actions. */ 1056 static const struct { 1057 const char *name; 1058 size_t size; 1059 } flow_action[] = { 1060 MK_FLOW_ACTION(END, 0), 1061 MK_FLOW_ACTION(VOID, 0), 1062 MK_FLOW_ACTION(PASSTHRU, 0), 1063 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1064 MK_FLOW_ACTION(FLAG, 0), 1065 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 1066 MK_FLOW_ACTION(DROP, 0), 1067 MK_FLOW_ACTION(COUNT, 0), 1068 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 1069 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 1070 MK_FLOW_ACTION(PF, 0), 1071 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1072 MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)), 1073 }; 1074 1075 /** Compute storage space needed by action configuration and copy it. */ 1076 static size_t 1077 flow_action_conf_copy(void *buf, const struct rte_flow_action *action) 1078 { 1079 size_t size = 0; 1080 1081 if (!action->conf) 1082 goto empty; 1083 switch (action->type) { 1084 union { 1085 const struct rte_flow_action_rss *rss; 1086 } src; 1087 union { 1088 struct rte_flow_action_rss *rss; 1089 } dst; 1090 size_t off; 1091 1092 case RTE_FLOW_ACTION_TYPE_RSS: 1093 src.rss = action->conf; 1094 dst.rss = buf; 1095 off = 0; 1096 if (dst.rss) 1097 *dst.rss = (struct rte_flow_action_rss){ 1098 .num = src.rss->num, 1099 }; 1100 off += offsetof(struct rte_flow_action_rss, queue); 1101 if (src.rss->num) { 1102 size = sizeof(*src.rss->queue) * src.rss->num; 1103 if (dst.rss) 1104 memcpy(dst.rss->queue, src.rss->queue, size); 1105 off += size; 1106 } 1107 off = RTE_ALIGN_CEIL(off, sizeof(double)); 1108 if (dst.rss) { 1109 dst.rss->rss_conf = (void *)((uintptr_t)dst.rss + off); 1110 *(struct rte_eth_rss_conf *)(uintptr_t) 1111 dst.rss->rss_conf = (struct rte_eth_rss_conf){ 1112 .rss_key_len = src.rss->rss_conf->rss_key_len, 1113 .rss_hf = src.rss->rss_conf->rss_hf, 1114 }; 1115 } 1116 off += sizeof(*src.rss->rss_conf); 1117 if (src.rss->rss_conf->rss_key_len) { 1118 off = RTE_ALIGN_CEIL(off, sizeof(double)); 1119 size = sizeof(*src.rss->rss_conf->rss_key) * 1120 src.rss->rss_conf->rss_key_len; 1121 if (dst.rss) { 1122 ((struct rte_eth_rss_conf *)(uintptr_t) 1123 dst.rss->rss_conf)->rss_key = 1124 (void *)((uintptr_t)dst.rss + off); 1125 memcpy(dst.rss->rss_conf->rss_key, 1126 src.rss->rss_conf->rss_key, 1127 size); 1128 } 1129 off += size; 1130 } 1131 size = off; 1132 break; 1133 default: 1134 size = flow_action[action->type].size; 1135 if (buf) 1136 memcpy(buf, action->conf, size); 1137 break; 1138 } 1139 empty: 1140 return RTE_ALIGN_CEIL(size, sizeof(double)); 1141 } 1142 1143 /** Generate a port_flow entry from attributes/pattern/actions. */ 1144 static struct port_flow * 1145 port_flow_new(const struct rte_flow_attr *attr, 1146 const struct rte_flow_item *pattern, 1147 const struct rte_flow_action *actions) 1148 { 1149 const struct rte_flow_item *item; 1150 const struct rte_flow_action *action; 1151 struct port_flow *pf = NULL; 1152 size_t tmp; 1153 size_t off1 = 0; 1154 size_t off2 = 0; 1155 int err = ENOTSUP; 1156 1157 store: 1158 item = pattern; 1159 if (pf) 1160 pf->pattern = (void *)&pf->data[off1]; 1161 do { 1162 struct rte_flow_item *dst = NULL; 1163 1164 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1165 !flow_item[item->type].name) 1166 goto notsup; 1167 if (pf) 1168 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1169 off1 += sizeof(*item); 1170 if (item->spec) { 1171 if (pf) 1172 dst->spec = pf->data + off2; 1173 off2 += flow_item_spec_copy 1174 (pf ? pf->data + off2 : NULL, item, ITEM_SPEC); 1175 } 1176 if (item->last) { 1177 if (pf) 1178 dst->last = pf->data + off2; 1179 off2 += flow_item_spec_copy 1180 (pf ? pf->data + off2 : NULL, item, ITEM_LAST); 1181 } 1182 if (item->mask) { 1183 if (pf) 1184 dst->mask = pf->data + off2; 1185 off2 += flow_item_spec_copy 1186 (pf ? pf->data + off2 : NULL, item, ITEM_MASK); 1187 } 1188 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1189 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1190 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1191 action = actions; 1192 if (pf) 1193 pf->actions = (void *)&pf->data[off1]; 1194 do { 1195 struct rte_flow_action *dst = NULL; 1196 1197 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1198 !flow_action[action->type].name) 1199 goto notsup; 1200 if (pf) 1201 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1202 off1 += sizeof(*action); 1203 if (action->conf) { 1204 if (pf) 1205 dst->conf = pf->data + off2; 1206 off2 += flow_action_conf_copy 1207 (pf ? pf->data + off2 : NULL, action); 1208 } 1209 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1210 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1211 if (pf != NULL) 1212 return pf; 1213 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1214 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1215 pf = calloc(1, tmp + off1 + off2); 1216 if (pf == NULL) 1217 err = errno; 1218 else { 1219 *pf = (const struct port_flow){ 1220 .size = tmp + off1 + off2, 1221 .attr = *attr, 1222 }; 1223 tmp -= offsetof(struct port_flow, data); 1224 off2 = tmp + off1; 1225 off1 = tmp; 1226 goto store; 1227 } 1228 notsup: 1229 rte_errno = err; 1230 return NULL; 1231 } 1232 1233 /** Print a message out of a flow error. */ 1234 static int 1235 port_flow_complain(struct rte_flow_error *error) 1236 { 1237 static const char *const errstrlist[] = { 1238 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1239 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1240 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1241 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1242 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1243 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1244 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1245 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1246 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1247 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1248 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1249 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1250 }; 1251 const char *errstr; 1252 char buf[32]; 1253 int err = rte_errno; 1254 1255 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1256 !errstrlist[error->type]) 1257 errstr = "unknown type"; 1258 else 1259 errstr = errstrlist[error->type]; 1260 printf("Caught error type %d (%s): %s%s\n", 1261 error->type, errstr, 1262 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1263 error->cause), buf) : "", 1264 error->message ? error->message : "(no stated reason)"); 1265 return -err; 1266 } 1267 1268 /** Validate flow rule. */ 1269 int 1270 port_flow_validate(portid_t port_id, 1271 const struct rte_flow_attr *attr, 1272 const struct rte_flow_item *pattern, 1273 const struct rte_flow_action *actions) 1274 { 1275 struct rte_flow_error error; 1276 1277 /* Poisoning to make sure PMDs update it in case of error. */ 1278 memset(&error, 0x11, sizeof(error)); 1279 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1280 return port_flow_complain(&error); 1281 printf("Flow rule validated\n"); 1282 return 0; 1283 } 1284 1285 /** Create flow rule. */ 1286 int 1287 port_flow_create(portid_t port_id, 1288 const struct rte_flow_attr *attr, 1289 const struct rte_flow_item *pattern, 1290 const struct rte_flow_action *actions) 1291 { 1292 struct rte_flow *flow; 1293 struct rte_port *port; 1294 struct port_flow *pf; 1295 uint32_t id; 1296 struct rte_flow_error error; 1297 1298 /* Poisoning to make sure PMDs update it in case of error. */ 1299 memset(&error, 0x22, sizeof(error)); 1300 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1301 if (!flow) 1302 return port_flow_complain(&error); 1303 port = &ports[port_id]; 1304 if (port->flow_list) { 1305 if (port->flow_list->id == UINT32_MAX) { 1306 printf("Highest rule ID is already assigned, delete" 1307 " it first"); 1308 rte_flow_destroy(port_id, flow, NULL); 1309 return -ENOMEM; 1310 } 1311 id = port->flow_list->id + 1; 1312 } else 1313 id = 0; 1314 pf = port_flow_new(attr, pattern, actions); 1315 if (!pf) { 1316 int err = rte_errno; 1317 1318 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1319 rte_flow_destroy(port_id, flow, NULL); 1320 return -err; 1321 } 1322 pf->next = port->flow_list; 1323 pf->id = id; 1324 pf->flow = flow; 1325 port->flow_list = pf; 1326 printf("Flow rule #%u created\n", pf->id); 1327 return 0; 1328 } 1329 1330 /** Destroy a number of flow rules. */ 1331 int 1332 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1333 { 1334 struct rte_port *port; 1335 struct port_flow **tmp; 1336 uint32_t c = 0; 1337 int ret = 0; 1338 1339 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1340 port_id == (portid_t)RTE_PORT_ALL) 1341 return -EINVAL; 1342 port = &ports[port_id]; 1343 tmp = &port->flow_list; 1344 while (*tmp) { 1345 uint32_t i; 1346 1347 for (i = 0; i != n; ++i) { 1348 struct rte_flow_error error; 1349 struct port_flow *pf = *tmp; 1350 1351 if (rule[i] != pf->id) 1352 continue; 1353 /* 1354 * Poisoning to make sure PMDs update it in case 1355 * of error. 1356 */ 1357 memset(&error, 0x33, sizeof(error)); 1358 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1359 ret = port_flow_complain(&error); 1360 continue; 1361 } 1362 printf("Flow rule #%u destroyed\n", pf->id); 1363 *tmp = pf->next; 1364 free(pf); 1365 break; 1366 } 1367 if (i == n) 1368 tmp = &(*tmp)->next; 1369 ++c; 1370 } 1371 return ret; 1372 } 1373 1374 /** Remove all flow rules. */ 1375 int 1376 port_flow_flush(portid_t port_id) 1377 { 1378 struct rte_flow_error error; 1379 struct rte_port *port; 1380 int ret = 0; 1381 1382 /* Poisoning to make sure PMDs update it in case of error. */ 1383 memset(&error, 0x44, sizeof(error)); 1384 if (rte_flow_flush(port_id, &error)) { 1385 ret = port_flow_complain(&error); 1386 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1387 port_id == (portid_t)RTE_PORT_ALL) 1388 return ret; 1389 } 1390 port = &ports[port_id]; 1391 while (port->flow_list) { 1392 struct port_flow *pf = port->flow_list->next; 1393 1394 free(port->flow_list); 1395 port->flow_list = pf; 1396 } 1397 return ret; 1398 } 1399 1400 /** Query a flow rule. */ 1401 int 1402 port_flow_query(portid_t port_id, uint32_t rule, 1403 enum rte_flow_action_type action) 1404 { 1405 struct rte_flow_error error; 1406 struct rte_port *port; 1407 struct port_flow *pf; 1408 const char *name; 1409 union { 1410 struct rte_flow_query_count count; 1411 } query; 1412 1413 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1414 port_id == (portid_t)RTE_PORT_ALL) 1415 return -EINVAL; 1416 port = &ports[port_id]; 1417 for (pf = port->flow_list; pf; pf = pf->next) 1418 if (pf->id == rule) 1419 break; 1420 if (!pf) { 1421 printf("Flow rule #%u not found\n", rule); 1422 return -ENOENT; 1423 } 1424 if ((unsigned int)action >= RTE_DIM(flow_action) || 1425 !flow_action[action].name) 1426 name = "unknown"; 1427 else 1428 name = flow_action[action].name; 1429 switch (action) { 1430 case RTE_FLOW_ACTION_TYPE_COUNT: 1431 break; 1432 default: 1433 printf("Cannot query action type %d (%s)\n", action, name); 1434 return -ENOTSUP; 1435 } 1436 /* Poisoning to make sure PMDs update it in case of error. */ 1437 memset(&error, 0x55, sizeof(error)); 1438 memset(&query, 0, sizeof(query)); 1439 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1440 return port_flow_complain(&error); 1441 switch (action) { 1442 case RTE_FLOW_ACTION_TYPE_COUNT: 1443 printf("%s:\n" 1444 " hits_set: %u\n" 1445 " bytes_set: %u\n" 1446 " hits: %" PRIu64 "\n" 1447 " bytes: %" PRIu64 "\n", 1448 name, 1449 query.count.hits_set, 1450 query.count.bytes_set, 1451 query.count.hits, 1452 query.count.bytes); 1453 break; 1454 default: 1455 printf("Cannot display result for action type %d (%s)\n", 1456 action, name); 1457 break; 1458 } 1459 return 0; 1460 } 1461 1462 /** List flow rules. */ 1463 void 1464 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1465 { 1466 struct rte_port *port; 1467 struct port_flow *pf; 1468 struct port_flow *list = NULL; 1469 uint32_t i; 1470 1471 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1472 port_id == (portid_t)RTE_PORT_ALL) 1473 return; 1474 port = &ports[port_id]; 1475 if (!port->flow_list) 1476 return; 1477 /* Sort flows by group, priority and ID. */ 1478 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1479 struct port_flow **tmp; 1480 1481 if (n) { 1482 /* Filter out unwanted groups. */ 1483 for (i = 0; i != n; ++i) 1484 if (pf->attr.group == group[i]) 1485 break; 1486 if (i == n) 1487 continue; 1488 } 1489 tmp = &list; 1490 while (*tmp && 1491 (pf->attr.group > (*tmp)->attr.group || 1492 (pf->attr.group == (*tmp)->attr.group && 1493 pf->attr.priority > (*tmp)->attr.priority) || 1494 (pf->attr.group == (*tmp)->attr.group && 1495 pf->attr.priority == (*tmp)->attr.priority && 1496 pf->id > (*tmp)->id))) 1497 tmp = &(*tmp)->tmp; 1498 pf->tmp = *tmp; 1499 *tmp = pf; 1500 } 1501 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1502 for (pf = list; pf != NULL; pf = pf->tmp) { 1503 const struct rte_flow_item *item = pf->pattern; 1504 const struct rte_flow_action *action = pf->actions; 1505 1506 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1507 pf->id, 1508 pf->attr.group, 1509 pf->attr.priority, 1510 pf->attr.ingress ? 'i' : '-', 1511 pf->attr.egress ? 'e' : '-'); 1512 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1513 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1514 printf("%s ", flow_item[item->type].name); 1515 ++item; 1516 } 1517 printf("=>"); 1518 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1519 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1520 printf(" %s", flow_action[action->type].name); 1521 ++action; 1522 } 1523 printf("\n"); 1524 } 1525 } 1526 1527 /** Restrict ingress traffic to the defined flow rules. */ 1528 int 1529 port_flow_isolate(portid_t port_id, int set) 1530 { 1531 struct rte_flow_error error; 1532 1533 /* Poisoning to make sure PMDs update it in case of error. */ 1534 memset(&error, 0x66, sizeof(error)); 1535 if (rte_flow_isolate(port_id, set, &error)) 1536 return port_flow_complain(&error); 1537 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1538 port_id, 1539 set ? "now restricted" : "not restricted anymore"); 1540 return 0; 1541 } 1542 1543 /* 1544 * RX/TX ring descriptors display functions. 1545 */ 1546 int 1547 rx_queue_id_is_invalid(queueid_t rxq_id) 1548 { 1549 if (rxq_id < nb_rxq) 1550 return 0; 1551 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1552 return 1; 1553 } 1554 1555 int 1556 tx_queue_id_is_invalid(queueid_t txq_id) 1557 { 1558 if (txq_id < nb_txq) 1559 return 0; 1560 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1561 return 1; 1562 } 1563 1564 static int 1565 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1566 { 1567 if (rxdesc_id < nb_rxd) 1568 return 0; 1569 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1570 rxdesc_id, nb_rxd); 1571 return 1; 1572 } 1573 1574 static int 1575 tx_desc_id_is_invalid(uint16_t txdesc_id) 1576 { 1577 if (txdesc_id < nb_txd) 1578 return 0; 1579 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1580 txdesc_id, nb_txd); 1581 return 1; 1582 } 1583 1584 static const struct rte_memzone * 1585 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 1586 { 1587 char mz_name[RTE_MEMZONE_NAMESIZE]; 1588 const struct rte_memzone *mz; 1589 1590 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1591 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1592 mz = rte_memzone_lookup(mz_name); 1593 if (mz == NULL) 1594 printf("%s ring memory zoneof (port %d, queue %d) not" 1595 "found (zone name = %s\n", 1596 ring_name, port_id, q_id, mz_name); 1597 return mz; 1598 } 1599 1600 union igb_ring_dword { 1601 uint64_t dword; 1602 struct { 1603 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1604 uint32_t lo; 1605 uint32_t hi; 1606 #else 1607 uint32_t hi; 1608 uint32_t lo; 1609 #endif 1610 } words; 1611 }; 1612 1613 struct igb_ring_desc_32_bytes { 1614 union igb_ring_dword lo_dword; 1615 union igb_ring_dword hi_dword; 1616 union igb_ring_dword resv1; 1617 union igb_ring_dword resv2; 1618 }; 1619 1620 struct igb_ring_desc_16_bytes { 1621 union igb_ring_dword lo_dword; 1622 union igb_ring_dword hi_dword; 1623 }; 1624 1625 static void 1626 ring_rxd_display_dword(union igb_ring_dword dword) 1627 { 1628 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1629 (unsigned)dword.words.hi); 1630 } 1631 1632 static void 1633 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1634 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1635 portid_t port_id, 1636 #else 1637 __rte_unused portid_t port_id, 1638 #endif 1639 uint16_t desc_id) 1640 { 1641 struct igb_ring_desc_16_bytes *ring = 1642 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1643 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1644 struct rte_eth_dev_info dev_info; 1645 1646 memset(&dev_info, 0, sizeof(dev_info)); 1647 rte_eth_dev_info_get(port_id, &dev_info); 1648 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1649 /* 32 bytes RX descriptor, i40e only */ 1650 struct igb_ring_desc_32_bytes *ring = 1651 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1652 ring[desc_id].lo_dword.dword = 1653 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1654 ring_rxd_display_dword(ring[desc_id].lo_dword); 1655 ring[desc_id].hi_dword.dword = 1656 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1657 ring_rxd_display_dword(ring[desc_id].hi_dword); 1658 ring[desc_id].resv1.dword = 1659 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1660 ring_rxd_display_dword(ring[desc_id].resv1); 1661 ring[desc_id].resv2.dword = 1662 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1663 ring_rxd_display_dword(ring[desc_id].resv2); 1664 1665 return; 1666 } 1667 #endif 1668 /* 16 bytes RX descriptor */ 1669 ring[desc_id].lo_dword.dword = 1670 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1671 ring_rxd_display_dword(ring[desc_id].lo_dword); 1672 ring[desc_id].hi_dword.dword = 1673 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1674 ring_rxd_display_dword(ring[desc_id].hi_dword); 1675 } 1676 1677 static void 1678 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1679 { 1680 struct igb_ring_desc_16_bytes *ring; 1681 struct igb_ring_desc_16_bytes txd; 1682 1683 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1684 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1685 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1686 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1687 (unsigned)txd.lo_dword.words.lo, 1688 (unsigned)txd.lo_dword.words.hi, 1689 (unsigned)txd.hi_dword.words.lo, 1690 (unsigned)txd.hi_dword.words.hi); 1691 } 1692 1693 void 1694 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1695 { 1696 const struct rte_memzone *rx_mz; 1697 1698 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1699 return; 1700 if (rx_queue_id_is_invalid(rxq_id)) 1701 return; 1702 if (rx_desc_id_is_invalid(rxd_id)) 1703 return; 1704 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1705 if (rx_mz == NULL) 1706 return; 1707 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1708 } 1709 1710 void 1711 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1712 { 1713 const struct rte_memzone *tx_mz; 1714 1715 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1716 return; 1717 if (tx_queue_id_is_invalid(txq_id)) 1718 return; 1719 if (tx_desc_id_is_invalid(txd_id)) 1720 return; 1721 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1722 if (tx_mz == NULL) 1723 return; 1724 ring_tx_descriptor_display(tx_mz, txd_id); 1725 } 1726 1727 void 1728 fwd_lcores_config_display(void) 1729 { 1730 lcoreid_t lc_id; 1731 1732 printf("List of forwarding lcores:"); 1733 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1734 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1735 printf("\n"); 1736 } 1737 void 1738 rxtx_config_display(void) 1739 { 1740 portid_t pid; 1741 1742 printf(" %s packet forwarding%s packets/burst=%d\n", 1743 cur_fwd_eng->fwd_mode_name, 1744 retry_enabled == 0 ? "" : " with retry", 1745 nb_pkt_per_burst); 1746 1747 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1748 printf(" packet len=%u - nb packet segments=%d\n", 1749 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1750 1751 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1752 nb_fwd_lcores, nb_fwd_ports); 1753 1754 RTE_ETH_FOREACH_DEV(pid) { 1755 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf; 1756 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf; 1757 1758 printf(" port %d:\n", (unsigned int)pid); 1759 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1760 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1761 printf(" RX threshold registers: pthresh=%d hthresh=%d " 1762 " wthresh=%d\n", 1763 rx_conf->rx_thresh.pthresh, 1764 rx_conf->rx_thresh.hthresh, 1765 rx_conf->rx_thresh.wthresh); 1766 printf(" Rx offloads=0x%"PRIx64" RXQ offloads=0x%"PRIx64"\n", 1767 ports[pid].dev_conf.rxmode.offloads, 1768 rx_conf->offloads); 1769 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1770 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1771 printf(" TX threshold registers: pthresh=%d hthresh=%d " 1772 " wthresh=%d\n", 1773 tx_conf->tx_thresh.pthresh, 1774 tx_conf->tx_thresh.hthresh, 1775 tx_conf->tx_thresh.wthresh); 1776 printf(" TX RS bit threshold=%d\n", tx_conf->tx_rs_thresh); 1777 printf(" Tx offloads=0x%"PRIx64" TXQ offloads=0x%"PRIx64"\n", 1778 ports[pid].dev_conf.txmode.offloads, 1779 tx_conf->offloads); 1780 } 1781 } 1782 1783 void 1784 port_rss_reta_info(portid_t port_id, 1785 struct rte_eth_rss_reta_entry64 *reta_conf, 1786 uint16_t nb_entries) 1787 { 1788 uint16_t i, idx, shift; 1789 int ret; 1790 1791 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1792 return; 1793 1794 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1795 if (ret != 0) { 1796 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1797 return; 1798 } 1799 1800 for (i = 0; i < nb_entries; i++) { 1801 idx = i / RTE_RETA_GROUP_SIZE; 1802 shift = i % RTE_RETA_GROUP_SIZE; 1803 if (!(reta_conf[idx].mask & (1ULL << shift))) 1804 continue; 1805 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1806 i, reta_conf[idx].reta[shift]); 1807 } 1808 } 1809 1810 /* 1811 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1812 * key of the port. 1813 */ 1814 void 1815 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1816 { 1817 struct rte_eth_rss_conf rss_conf; 1818 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1819 uint64_t rss_hf; 1820 uint8_t i; 1821 int diag; 1822 struct rte_eth_dev_info dev_info; 1823 uint8_t hash_key_size; 1824 1825 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1826 return; 1827 1828 memset(&dev_info, 0, sizeof(dev_info)); 1829 rte_eth_dev_info_get(port_id, &dev_info); 1830 if (dev_info.hash_key_size > 0 && 1831 dev_info.hash_key_size <= sizeof(rss_key)) 1832 hash_key_size = dev_info.hash_key_size; 1833 else { 1834 printf("dev_info did not provide a valid hash key size\n"); 1835 return; 1836 } 1837 1838 rss_conf.rss_hf = 0; 1839 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1840 if (!strcmp(rss_info, rss_type_table[i].str)) 1841 rss_conf.rss_hf = rss_type_table[i].rss_type; 1842 } 1843 1844 /* Get RSS hash key if asked to display it */ 1845 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1846 rss_conf.rss_key_len = hash_key_size; 1847 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1848 if (diag != 0) { 1849 switch (diag) { 1850 case -ENODEV: 1851 printf("port index %d invalid\n", port_id); 1852 break; 1853 case -ENOTSUP: 1854 printf("operation not supported by device\n"); 1855 break; 1856 default: 1857 printf("operation failed - diag=%d\n", diag); 1858 break; 1859 } 1860 return; 1861 } 1862 rss_hf = rss_conf.rss_hf; 1863 if (rss_hf == 0) { 1864 printf("RSS disabled\n"); 1865 return; 1866 } 1867 printf("RSS functions:\n "); 1868 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1869 if (rss_hf & rss_type_table[i].rss_type) 1870 printf("%s ", rss_type_table[i].str); 1871 } 1872 printf("\n"); 1873 if (!show_rss_key) 1874 return; 1875 printf("RSS key:\n"); 1876 for (i = 0; i < hash_key_size; i++) 1877 printf("%02X", rss_key[i]); 1878 printf("\n"); 1879 } 1880 1881 void 1882 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1883 uint hash_key_len) 1884 { 1885 struct rte_eth_rss_conf rss_conf; 1886 int diag; 1887 unsigned int i; 1888 1889 rss_conf.rss_key = NULL; 1890 rss_conf.rss_key_len = hash_key_len; 1891 rss_conf.rss_hf = 0; 1892 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1893 if (!strcmp(rss_type_table[i].str, rss_type)) 1894 rss_conf.rss_hf = rss_type_table[i].rss_type; 1895 } 1896 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1897 if (diag == 0) { 1898 rss_conf.rss_key = hash_key; 1899 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1900 } 1901 if (diag == 0) 1902 return; 1903 1904 switch (diag) { 1905 case -ENODEV: 1906 printf("port index %d invalid\n", port_id); 1907 break; 1908 case -ENOTSUP: 1909 printf("operation not supported by device\n"); 1910 break; 1911 default: 1912 printf("operation failed - diag=%d\n", diag); 1913 break; 1914 } 1915 } 1916 1917 /* 1918 * Setup forwarding configuration for each logical core. 1919 */ 1920 static void 1921 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1922 { 1923 streamid_t nb_fs_per_lcore; 1924 streamid_t nb_fs; 1925 streamid_t sm_id; 1926 lcoreid_t nb_extra; 1927 lcoreid_t nb_fc; 1928 lcoreid_t nb_lc; 1929 lcoreid_t lc_id; 1930 1931 nb_fs = cfg->nb_fwd_streams; 1932 nb_fc = cfg->nb_fwd_lcores; 1933 if (nb_fs <= nb_fc) { 1934 nb_fs_per_lcore = 1; 1935 nb_extra = 0; 1936 } else { 1937 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1938 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1939 } 1940 1941 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1942 sm_id = 0; 1943 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1944 fwd_lcores[lc_id]->stream_idx = sm_id; 1945 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1946 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1947 } 1948 1949 /* 1950 * Assign extra remaining streams, if any. 1951 */ 1952 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1953 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1954 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1955 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1956 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1957 } 1958 } 1959 1960 static portid_t 1961 fwd_topology_tx_port_get(portid_t rxp) 1962 { 1963 static int warning_once = 1; 1964 1965 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 1966 1967 switch (port_topology) { 1968 default: 1969 case PORT_TOPOLOGY_PAIRED: 1970 if ((rxp & 0x1) == 0) { 1971 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 1972 return rxp + 1; 1973 if (warning_once) { 1974 printf("\nWarning! port-topology=paired" 1975 " and odd forward ports number," 1976 " the last port will pair with" 1977 " itself.\n\n"); 1978 warning_once = 0; 1979 } 1980 return rxp; 1981 } 1982 return rxp - 1; 1983 case PORT_TOPOLOGY_CHAINED: 1984 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 1985 case PORT_TOPOLOGY_LOOP: 1986 return rxp; 1987 } 1988 } 1989 1990 static void 1991 simple_fwd_config_setup(void) 1992 { 1993 portid_t i; 1994 1995 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1996 cur_fwd_config.nb_fwd_streams = 1997 (streamid_t) cur_fwd_config.nb_fwd_ports; 1998 1999 /* reinitialize forwarding streams */ 2000 init_fwd_streams(); 2001 2002 /* 2003 * In the simple forwarding test, the number of forwarding cores 2004 * must be lower or equal to the number of forwarding ports. 2005 */ 2006 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2007 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 2008 cur_fwd_config.nb_fwd_lcores = 2009 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 2010 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2011 2012 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2013 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 2014 fwd_streams[i]->rx_queue = 0; 2015 fwd_streams[i]->tx_port = 2016 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 2017 fwd_streams[i]->tx_queue = 0; 2018 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 2019 fwd_streams[i]->retry_enabled = retry_enabled; 2020 } 2021 } 2022 2023 /** 2024 * For the RSS forwarding test all streams distributed over lcores. Each stream 2025 * being composed of a RX queue to poll on a RX port for input messages, 2026 * associated with a TX queue of a TX port where to send forwarded packets. 2027 */ 2028 static void 2029 rss_fwd_config_setup(void) 2030 { 2031 portid_t rxp; 2032 portid_t txp; 2033 queueid_t rxq; 2034 queueid_t nb_q; 2035 streamid_t sm_id; 2036 2037 nb_q = nb_rxq; 2038 if (nb_q > nb_txq) 2039 nb_q = nb_txq; 2040 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2041 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2042 cur_fwd_config.nb_fwd_streams = 2043 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 2044 2045 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2046 cur_fwd_config.nb_fwd_lcores = 2047 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2048 2049 /* reinitialize forwarding streams */ 2050 init_fwd_streams(); 2051 2052 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2053 rxp = 0; rxq = 0; 2054 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2055 struct fwd_stream *fs; 2056 2057 fs = fwd_streams[sm_id]; 2058 txp = fwd_topology_tx_port_get(rxp); 2059 fs->rx_port = fwd_ports_ids[rxp]; 2060 fs->rx_queue = rxq; 2061 fs->tx_port = fwd_ports_ids[txp]; 2062 fs->tx_queue = rxq; 2063 fs->peer_addr = fs->tx_port; 2064 fs->retry_enabled = retry_enabled; 2065 rxq = (queueid_t) (rxq + 1); 2066 if (rxq < nb_q) 2067 continue; 2068 /* 2069 * rxq == nb_q 2070 * Restart from RX queue 0 on next RX port 2071 */ 2072 rxq = 0; 2073 rxp++; 2074 } 2075 } 2076 2077 /** 2078 * For the DCB forwarding test, each core is assigned on each traffic class. 2079 * 2080 * Each core is assigned a multi-stream, each stream being composed of 2081 * a RX queue to poll on a RX port for input messages, associated with 2082 * a TX queue of a TX port where to send forwarded packets. All RX and 2083 * TX queues are mapping to the same traffic class. 2084 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 2085 * the same core 2086 */ 2087 static void 2088 dcb_fwd_config_setup(void) 2089 { 2090 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 2091 portid_t txp, rxp = 0; 2092 queueid_t txq, rxq = 0; 2093 lcoreid_t lc_id; 2094 uint16_t nb_rx_queue, nb_tx_queue; 2095 uint16_t i, j, k, sm_id = 0; 2096 uint8_t tc = 0; 2097 2098 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2099 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2100 cur_fwd_config.nb_fwd_streams = 2101 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2102 2103 /* reinitialize forwarding streams */ 2104 init_fwd_streams(); 2105 sm_id = 0; 2106 txp = 1; 2107 /* get the dcb info on the first RX and TX ports */ 2108 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2109 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2110 2111 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2112 fwd_lcores[lc_id]->stream_nb = 0; 2113 fwd_lcores[lc_id]->stream_idx = sm_id; 2114 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2115 /* if the nb_queue is zero, means this tc is 2116 * not enabled on the POOL 2117 */ 2118 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2119 break; 2120 k = fwd_lcores[lc_id]->stream_nb + 2121 fwd_lcores[lc_id]->stream_idx; 2122 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2123 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2124 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2125 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2126 for (j = 0; j < nb_rx_queue; j++) { 2127 struct fwd_stream *fs; 2128 2129 fs = fwd_streams[k + j]; 2130 fs->rx_port = fwd_ports_ids[rxp]; 2131 fs->rx_queue = rxq + j; 2132 fs->tx_port = fwd_ports_ids[txp]; 2133 fs->tx_queue = txq + j % nb_tx_queue; 2134 fs->peer_addr = fs->tx_port; 2135 fs->retry_enabled = retry_enabled; 2136 } 2137 fwd_lcores[lc_id]->stream_nb += 2138 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2139 } 2140 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2141 2142 tc++; 2143 if (tc < rxp_dcb_info.nb_tcs) 2144 continue; 2145 /* Restart from TC 0 on next RX port */ 2146 tc = 0; 2147 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2148 rxp = (portid_t) 2149 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2150 else 2151 rxp++; 2152 if (rxp >= nb_fwd_ports) 2153 return; 2154 /* get the dcb information on next RX and TX ports */ 2155 if ((rxp & 0x1) == 0) 2156 txp = (portid_t) (rxp + 1); 2157 else 2158 txp = (portid_t) (rxp - 1); 2159 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2160 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2161 } 2162 } 2163 2164 static void 2165 icmp_echo_config_setup(void) 2166 { 2167 portid_t rxp; 2168 queueid_t rxq; 2169 lcoreid_t lc_id; 2170 uint16_t sm_id; 2171 2172 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2173 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2174 (nb_txq * nb_fwd_ports); 2175 else 2176 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2177 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2178 cur_fwd_config.nb_fwd_streams = 2179 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2180 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2181 cur_fwd_config.nb_fwd_lcores = 2182 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2183 if (verbose_level > 0) { 2184 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2185 __FUNCTION__, 2186 cur_fwd_config.nb_fwd_lcores, 2187 cur_fwd_config.nb_fwd_ports, 2188 cur_fwd_config.nb_fwd_streams); 2189 } 2190 2191 /* reinitialize forwarding streams */ 2192 init_fwd_streams(); 2193 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2194 rxp = 0; rxq = 0; 2195 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2196 if (verbose_level > 0) 2197 printf(" core=%d: \n", lc_id); 2198 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2199 struct fwd_stream *fs; 2200 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2201 fs->rx_port = fwd_ports_ids[rxp]; 2202 fs->rx_queue = rxq; 2203 fs->tx_port = fs->rx_port; 2204 fs->tx_queue = rxq; 2205 fs->peer_addr = fs->tx_port; 2206 fs->retry_enabled = retry_enabled; 2207 if (verbose_level > 0) 2208 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2209 sm_id, fs->rx_port, fs->rx_queue, 2210 fs->tx_queue); 2211 rxq = (queueid_t) (rxq + 1); 2212 if (rxq == nb_rxq) { 2213 rxq = 0; 2214 rxp = (portid_t) (rxp + 1); 2215 } 2216 } 2217 } 2218 } 2219 2220 void 2221 fwd_config_setup(void) 2222 { 2223 cur_fwd_config.fwd_eng = cur_fwd_eng; 2224 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2225 icmp_echo_config_setup(); 2226 return; 2227 } 2228 if ((nb_rxq > 1) && (nb_txq > 1)){ 2229 if (dcb_config) 2230 dcb_fwd_config_setup(); 2231 else 2232 rss_fwd_config_setup(); 2233 } 2234 else 2235 simple_fwd_config_setup(); 2236 } 2237 2238 void 2239 pkt_fwd_config_display(struct fwd_config *cfg) 2240 { 2241 struct fwd_stream *fs; 2242 lcoreid_t lc_id; 2243 streamid_t sm_id; 2244 2245 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2246 "NUMA support %s, MP over anonymous pages %s\n", 2247 cfg->fwd_eng->fwd_mode_name, 2248 retry_enabled == 0 ? "" : " with retry", 2249 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2250 numa_support == 1 ? "enabled" : "disabled", 2251 mp_anon != 0 ? "enabled" : "disabled"); 2252 2253 if (retry_enabled) 2254 printf("TX retry num: %u, delay between TX retries: %uus\n", 2255 burst_tx_retry_num, burst_tx_delay_time); 2256 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2257 printf("Logical Core %u (socket %u) forwards packets on " 2258 "%d streams:", 2259 fwd_lcores_cpuids[lc_id], 2260 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2261 fwd_lcores[lc_id]->stream_nb); 2262 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2263 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2264 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2265 "P=%d/Q=%d (socket %u) ", 2266 fs->rx_port, fs->rx_queue, 2267 ports[fs->rx_port].socket_id, 2268 fs->tx_port, fs->tx_queue, 2269 ports[fs->tx_port].socket_id); 2270 print_ethaddr("peer=", 2271 &peer_eth_addrs[fs->peer_addr]); 2272 } 2273 printf("\n"); 2274 } 2275 printf("\n"); 2276 } 2277 2278 void 2279 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 2280 { 2281 uint8_t c, new_peer_addr[6]; 2282 if (!rte_eth_dev_is_valid_port(port_id)) { 2283 printf("Error: Invalid port number %i\n", port_id); 2284 return; 2285 } 2286 if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr, 2287 sizeof(new_peer_addr)) < 0) { 2288 printf("Error: Invalid ethernet address: %s\n", peer_addr); 2289 return; 2290 } 2291 for (c = 0; c < 6; c++) 2292 peer_eth_addrs[port_id].addr_bytes[c] = 2293 new_peer_addr[c]; 2294 } 2295 2296 int 2297 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2298 { 2299 unsigned int i; 2300 unsigned int lcore_cpuid; 2301 int record_now; 2302 2303 record_now = 0; 2304 again: 2305 for (i = 0; i < nb_lc; i++) { 2306 lcore_cpuid = lcorelist[i]; 2307 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2308 printf("lcore %u not enabled\n", lcore_cpuid); 2309 return -1; 2310 } 2311 if (lcore_cpuid == rte_get_master_lcore()) { 2312 printf("lcore %u cannot be masked on for running " 2313 "packet forwarding, which is the master lcore " 2314 "and reserved for command line parsing only\n", 2315 lcore_cpuid); 2316 return -1; 2317 } 2318 if (record_now) 2319 fwd_lcores_cpuids[i] = lcore_cpuid; 2320 } 2321 if (record_now == 0) { 2322 record_now = 1; 2323 goto again; 2324 } 2325 nb_cfg_lcores = (lcoreid_t) nb_lc; 2326 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2327 printf("previous number of forwarding cores %u - changed to " 2328 "number of configured cores %u\n", 2329 (unsigned int) nb_fwd_lcores, nb_lc); 2330 nb_fwd_lcores = (lcoreid_t) nb_lc; 2331 } 2332 2333 return 0; 2334 } 2335 2336 int 2337 set_fwd_lcores_mask(uint64_t lcoremask) 2338 { 2339 unsigned int lcorelist[64]; 2340 unsigned int nb_lc; 2341 unsigned int i; 2342 2343 if (lcoremask == 0) { 2344 printf("Invalid NULL mask of cores\n"); 2345 return -1; 2346 } 2347 nb_lc = 0; 2348 for (i = 0; i < 64; i++) { 2349 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2350 continue; 2351 lcorelist[nb_lc++] = i; 2352 } 2353 return set_fwd_lcores_list(lcorelist, nb_lc); 2354 } 2355 2356 void 2357 set_fwd_lcores_number(uint16_t nb_lc) 2358 { 2359 if (nb_lc > nb_cfg_lcores) { 2360 printf("nb fwd cores %u > %u (max. number of configured " 2361 "lcores) - ignored\n", 2362 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2363 return; 2364 } 2365 nb_fwd_lcores = (lcoreid_t) nb_lc; 2366 printf("Number of forwarding cores set to %u\n", 2367 (unsigned int) nb_fwd_lcores); 2368 } 2369 2370 void 2371 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2372 { 2373 unsigned int i; 2374 portid_t port_id; 2375 int record_now; 2376 2377 record_now = 0; 2378 again: 2379 for (i = 0; i < nb_pt; i++) { 2380 port_id = (portid_t) portlist[i]; 2381 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2382 return; 2383 if (record_now) 2384 fwd_ports_ids[i] = port_id; 2385 } 2386 if (record_now == 0) { 2387 record_now = 1; 2388 goto again; 2389 } 2390 nb_cfg_ports = (portid_t) nb_pt; 2391 if (nb_fwd_ports != (portid_t) nb_pt) { 2392 printf("previous number of forwarding ports %u - changed to " 2393 "number of configured ports %u\n", 2394 (unsigned int) nb_fwd_ports, nb_pt); 2395 nb_fwd_ports = (portid_t) nb_pt; 2396 } 2397 } 2398 2399 void 2400 set_fwd_ports_mask(uint64_t portmask) 2401 { 2402 unsigned int portlist[64]; 2403 unsigned int nb_pt; 2404 unsigned int i; 2405 2406 if (portmask == 0) { 2407 printf("Invalid NULL mask of ports\n"); 2408 return; 2409 } 2410 nb_pt = 0; 2411 RTE_ETH_FOREACH_DEV(i) { 2412 if (! ((uint64_t)(1ULL << i) & portmask)) 2413 continue; 2414 portlist[nb_pt++] = i; 2415 } 2416 set_fwd_ports_list(portlist, nb_pt); 2417 } 2418 2419 void 2420 set_fwd_ports_number(uint16_t nb_pt) 2421 { 2422 if (nb_pt > nb_cfg_ports) { 2423 printf("nb fwd ports %u > %u (number of configured " 2424 "ports) - ignored\n", 2425 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2426 return; 2427 } 2428 nb_fwd_ports = (portid_t) nb_pt; 2429 printf("Number of forwarding ports set to %u\n", 2430 (unsigned int) nb_fwd_ports); 2431 } 2432 2433 int 2434 port_is_forwarding(portid_t port_id) 2435 { 2436 unsigned int i; 2437 2438 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2439 return -1; 2440 2441 for (i = 0; i < nb_fwd_ports; i++) { 2442 if (fwd_ports_ids[i] == port_id) 2443 return 1; 2444 } 2445 2446 return 0; 2447 } 2448 2449 void 2450 set_nb_pkt_per_burst(uint16_t nb) 2451 { 2452 if (nb > MAX_PKT_BURST) { 2453 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2454 " ignored\n", 2455 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2456 return; 2457 } 2458 nb_pkt_per_burst = nb; 2459 printf("Number of packets per burst set to %u\n", 2460 (unsigned int) nb_pkt_per_burst); 2461 } 2462 2463 static const char * 2464 tx_split_get_name(enum tx_pkt_split split) 2465 { 2466 uint32_t i; 2467 2468 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2469 if (tx_split_name[i].split == split) 2470 return tx_split_name[i].name; 2471 } 2472 return NULL; 2473 } 2474 2475 void 2476 set_tx_pkt_split(const char *name) 2477 { 2478 uint32_t i; 2479 2480 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2481 if (strcmp(tx_split_name[i].name, name) == 0) { 2482 tx_pkt_split = tx_split_name[i].split; 2483 return; 2484 } 2485 } 2486 printf("unknown value: \"%s\"\n", name); 2487 } 2488 2489 void 2490 show_tx_pkt_segments(void) 2491 { 2492 uint32_t i, n; 2493 const char *split; 2494 2495 n = tx_pkt_nb_segs; 2496 split = tx_split_get_name(tx_pkt_split); 2497 2498 printf("Number of segments: %u\n", n); 2499 printf("Segment sizes: "); 2500 for (i = 0; i != n - 1; i++) 2501 printf("%hu,", tx_pkt_seg_lengths[i]); 2502 printf("%hu\n", tx_pkt_seg_lengths[i]); 2503 printf("Split packet: %s\n", split); 2504 } 2505 2506 void 2507 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2508 { 2509 uint16_t tx_pkt_len; 2510 unsigned i; 2511 2512 if (nb_segs >= (unsigned) nb_txd) { 2513 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2514 nb_segs, (unsigned int) nb_txd); 2515 return; 2516 } 2517 2518 /* 2519 * Check that each segment length is greater or equal than 2520 * the mbuf data sise. 2521 * Check also that the total packet length is greater or equal than the 2522 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2523 */ 2524 tx_pkt_len = 0; 2525 for (i = 0; i < nb_segs; i++) { 2526 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2527 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2528 i, seg_lengths[i], (unsigned) mbuf_data_size); 2529 return; 2530 } 2531 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2532 } 2533 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2534 printf("total packet length=%u < %d - give up\n", 2535 (unsigned) tx_pkt_len, 2536 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2537 return; 2538 } 2539 2540 for (i = 0; i < nb_segs; i++) 2541 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2542 2543 tx_pkt_length = tx_pkt_len; 2544 tx_pkt_nb_segs = (uint8_t) nb_segs; 2545 } 2546 2547 void 2548 setup_gro(const char *onoff, portid_t port_id) 2549 { 2550 if (!rte_eth_dev_is_valid_port(port_id)) { 2551 printf("invalid port id %u\n", port_id); 2552 return; 2553 } 2554 if (test_done == 0) { 2555 printf("Before enable/disable GRO," 2556 " please stop forwarding first\n"); 2557 return; 2558 } 2559 if (strcmp(onoff, "on") == 0) { 2560 if (gro_ports[port_id].enable != 0) { 2561 printf("Port %u has enabled GRO. Please" 2562 " disable GRO first\n", port_id); 2563 return; 2564 } 2565 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2566 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2567 gro_ports[port_id].param.max_flow_num = 2568 GRO_DEFAULT_FLOW_NUM; 2569 gro_ports[port_id].param.max_item_per_flow = 2570 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2571 } 2572 gro_ports[port_id].enable = 1; 2573 } else { 2574 if (gro_ports[port_id].enable == 0) { 2575 printf("Port %u has disabled GRO\n", port_id); 2576 return; 2577 } 2578 gro_ports[port_id].enable = 0; 2579 } 2580 } 2581 2582 void 2583 setup_gro_flush_cycles(uint8_t cycles) 2584 { 2585 if (test_done == 0) { 2586 printf("Before change flush interval for GRO," 2587 " please stop forwarding first.\n"); 2588 return; 2589 } 2590 2591 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 2592 GRO_DEFAULT_FLUSH_CYCLES) { 2593 printf("The flushing cycle be in the range" 2594 " of 1 to %u. Revert to the default" 2595 " value %u.\n", 2596 GRO_MAX_FLUSH_CYCLES, 2597 GRO_DEFAULT_FLUSH_CYCLES); 2598 cycles = GRO_DEFAULT_FLUSH_CYCLES; 2599 } 2600 2601 gro_flush_cycles = cycles; 2602 } 2603 2604 void 2605 show_gro(portid_t port_id) 2606 { 2607 struct rte_gro_param *param; 2608 uint32_t max_pkts_num; 2609 2610 param = &gro_ports[port_id].param; 2611 2612 if (!rte_eth_dev_is_valid_port(port_id)) { 2613 printf("Invalid port id %u.\n", port_id); 2614 return; 2615 } 2616 if (gro_ports[port_id].enable) { 2617 printf("GRO type: TCP/IPv4\n"); 2618 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2619 max_pkts_num = param->max_flow_num * 2620 param->max_item_per_flow; 2621 } else 2622 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 2623 printf("Max number of packets to perform GRO: %u\n", 2624 max_pkts_num); 2625 printf("Flushing cycles: %u\n", gro_flush_cycles); 2626 } else 2627 printf("Port %u doesn't enable GRO.\n", port_id); 2628 } 2629 2630 void 2631 setup_gso(const char *mode, portid_t port_id) 2632 { 2633 if (!rte_eth_dev_is_valid_port(port_id)) { 2634 printf("invalid port id %u\n", port_id); 2635 return; 2636 } 2637 if (strcmp(mode, "on") == 0) { 2638 if (test_done == 0) { 2639 printf("before enabling GSO," 2640 " please stop forwarding first\n"); 2641 return; 2642 } 2643 gso_ports[port_id].enable = 1; 2644 } else if (strcmp(mode, "off") == 0) { 2645 if (test_done == 0) { 2646 printf("before disabling GSO," 2647 " please stop forwarding first\n"); 2648 return; 2649 } 2650 gso_ports[port_id].enable = 0; 2651 } 2652 } 2653 2654 char* 2655 list_pkt_forwarding_modes(void) 2656 { 2657 static char fwd_modes[128] = ""; 2658 const char *separator = "|"; 2659 struct fwd_engine *fwd_eng; 2660 unsigned i = 0; 2661 2662 if (strlen (fwd_modes) == 0) { 2663 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2664 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2665 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2666 strncat(fwd_modes, separator, 2667 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2668 } 2669 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2670 } 2671 2672 return fwd_modes; 2673 } 2674 2675 char* 2676 list_pkt_forwarding_retry_modes(void) 2677 { 2678 static char fwd_modes[128] = ""; 2679 const char *separator = "|"; 2680 struct fwd_engine *fwd_eng; 2681 unsigned i = 0; 2682 2683 if (strlen(fwd_modes) == 0) { 2684 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2685 if (fwd_eng == &rx_only_engine) 2686 continue; 2687 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2688 sizeof(fwd_modes) - 2689 strlen(fwd_modes) - 1); 2690 strncat(fwd_modes, separator, 2691 sizeof(fwd_modes) - 2692 strlen(fwd_modes) - 1); 2693 } 2694 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2695 } 2696 2697 return fwd_modes; 2698 } 2699 2700 void 2701 set_pkt_forwarding_mode(const char *fwd_mode_name) 2702 { 2703 struct fwd_engine *fwd_eng; 2704 unsigned i; 2705 2706 i = 0; 2707 while ((fwd_eng = fwd_engines[i]) != NULL) { 2708 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2709 printf("Set %s packet forwarding mode%s\n", 2710 fwd_mode_name, 2711 retry_enabled == 0 ? "" : " with retry"); 2712 cur_fwd_eng = fwd_eng; 2713 return; 2714 } 2715 i++; 2716 } 2717 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2718 } 2719 2720 void 2721 set_verbose_level(uint16_t vb_level) 2722 { 2723 printf("Change verbose level from %u to %u\n", 2724 (unsigned int) verbose_level, (unsigned int) vb_level); 2725 verbose_level = vb_level; 2726 } 2727 2728 void 2729 vlan_extend_set(portid_t port_id, int on) 2730 { 2731 int diag; 2732 int vlan_offload; 2733 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2734 2735 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2736 return; 2737 2738 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2739 2740 if (on) { 2741 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2742 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND; 2743 } else { 2744 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2745 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND; 2746 } 2747 2748 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2749 if (diag < 0) 2750 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2751 "diag=%d\n", port_id, on, diag); 2752 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2753 } 2754 2755 void 2756 rx_vlan_strip_set(portid_t port_id, int on) 2757 { 2758 int diag; 2759 int vlan_offload; 2760 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2761 2762 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2763 return; 2764 2765 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2766 2767 if (on) { 2768 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2769 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP; 2770 } else { 2771 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2772 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; 2773 } 2774 2775 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2776 if (diag < 0) 2777 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2778 "diag=%d\n", port_id, on, diag); 2779 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2780 } 2781 2782 void 2783 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2784 { 2785 int diag; 2786 2787 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2788 return; 2789 2790 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2791 if (diag < 0) 2792 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2793 "diag=%d\n", port_id, queue_id, on, diag); 2794 } 2795 2796 void 2797 rx_vlan_filter_set(portid_t port_id, int on) 2798 { 2799 int diag; 2800 int vlan_offload; 2801 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2802 2803 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2804 return; 2805 2806 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2807 2808 if (on) { 2809 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2810 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 2811 } else { 2812 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2813 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER; 2814 } 2815 2816 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2817 if (diag < 0) 2818 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2819 "diag=%d\n", port_id, on, diag); 2820 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2821 } 2822 2823 int 2824 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2825 { 2826 int diag; 2827 2828 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2829 return 1; 2830 if (vlan_id_is_invalid(vlan_id)) 2831 return 1; 2832 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2833 if (diag == 0) 2834 return 0; 2835 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2836 "diag=%d\n", 2837 port_id, vlan_id, on, diag); 2838 return -1; 2839 } 2840 2841 void 2842 rx_vlan_all_filter_set(portid_t port_id, int on) 2843 { 2844 uint16_t vlan_id; 2845 2846 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2847 return; 2848 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2849 if (rx_vft_set(port_id, vlan_id, on)) 2850 break; 2851 } 2852 } 2853 2854 void 2855 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2856 { 2857 int diag; 2858 2859 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2860 return; 2861 2862 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2863 if (diag == 0) 2864 return; 2865 2866 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2867 "diag=%d\n", 2868 port_id, vlan_type, tp_id, diag); 2869 } 2870 2871 void 2872 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2873 { 2874 int vlan_offload; 2875 struct rte_eth_dev_info dev_info; 2876 2877 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2878 return; 2879 if (vlan_id_is_invalid(vlan_id)) 2880 return; 2881 2882 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2883 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2884 printf("Error, as QinQ has been enabled.\n"); 2885 return; 2886 } 2887 rte_eth_dev_info_get(port_id, &dev_info); 2888 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) { 2889 printf("Error: vlan insert is not supported by port %d\n", 2890 port_id); 2891 return; 2892 } 2893 2894 tx_vlan_reset(port_id); 2895 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT; 2896 ports[port_id].tx_vlan_id = vlan_id; 2897 } 2898 2899 void 2900 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2901 { 2902 int vlan_offload; 2903 struct rte_eth_dev_info dev_info; 2904 2905 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2906 return; 2907 if (vlan_id_is_invalid(vlan_id)) 2908 return; 2909 if (vlan_id_is_invalid(vlan_id_outer)) 2910 return; 2911 2912 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2913 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2914 printf("Error, as QinQ hasn't been enabled.\n"); 2915 return; 2916 } 2917 rte_eth_dev_info_get(port_id, &dev_info); 2918 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) { 2919 printf("Error: qinq insert not supported by port %d\n", 2920 port_id); 2921 return; 2922 } 2923 2924 tx_vlan_reset(port_id); 2925 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT; 2926 ports[port_id].tx_vlan_id = vlan_id; 2927 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2928 } 2929 2930 void 2931 tx_vlan_reset(portid_t port_id) 2932 { 2933 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2934 return; 2935 ports[port_id].dev_conf.txmode.offloads &= 2936 ~(DEV_TX_OFFLOAD_VLAN_INSERT | 2937 DEV_TX_OFFLOAD_QINQ_INSERT); 2938 ports[port_id].tx_vlan_id = 0; 2939 ports[port_id].tx_vlan_id_outer = 0; 2940 } 2941 2942 void 2943 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2944 { 2945 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2946 return; 2947 2948 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2949 } 2950 2951 void 2952 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2953 { 2954 uint16_t i; 2955 uint8_t existing_mapping_found = 0; 2956 2957 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2958 return; 2959 2960 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2961 return; 2962 2963 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2964 printf("map_value not in required range 0..%d\n", 2965 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2966 return; 2967 } 2968 2969 if (!is_rx) { /*then tx*/ 2970 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2971 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2972 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2973 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2974 existing_mapping_found = 1; 2975 break; 2976 } 2977 } 2978 if (!existing_mapping_found) { /* A new additional mapping... */ 2979 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2980 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2981 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2982 nb_tx_queue_stats_mappings++; 2983 } 2984 } 2985 else { /*rx*/ 2986 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2987 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2988 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2989 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2990 existing_mapping_found = 1; 2991 break; 2992 } 2993 } 2994 if (!existing_mapping_found) { /* A new additional mapping... */ 2995 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2996 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2997 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2998 nb_rx_queue_stats_mappings++; 2999 } 3000 } 3001 } 3002 3003 void 3004 set_xstats_hide_zero(uint8_t on_off) 3005 { 3006 xstats_hide_zero = on_off; 3007 } 3008 3009 static inline void 3010 print_fdir_mask(struct rte_eth_fdir_masks *mask) 3011 { 3012 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 3013 3014 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3015 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 3016 " tunnel_id: 0x%08x", 3017 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 3018 rte_be_to_cpu_32(mask->tunnel_id_mask)); 3019 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3020 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 3021 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 3022 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 3023 3024 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 3025 rte_be_to_cpu_16(mask->src_port_mask), 3026 rte_be_to_cpu_16(mask->dst_port_mask)); 3027 3028 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3029 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 3030 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 3031 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 3032 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 3033 3034 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3035 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 3036 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 3037 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 3038 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 3039 } 3040 3041 printf("\n"); 3042 } 3043 3044 static inline void 3045 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3046 { 3047 struct rte_eth_flex_payload_cfg *cfg; 3048 uint32_t i, j; 3049 3050 for (i = 0; i < flex_conf->nb_payloads; i++) { 3051 cfg = &flex_conf->flex_set[i]; 3052 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 3053 printf("\n RAW: "); 3054 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 3055 printf("\n L2_PAYLOAD: "); 3056 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 3057 printf("\n L3_PAYLOAD: "); 3058 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 3059 printf("\n L4_PAYLOAD: "); 3060 else 3061 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 3062 for (j = 0; j < num; j++) 3063 printf(" %-5u", cfg->src_offset[j]); 3064 } 3065 printf("\n"); 3066 } 3067 3068 static char * 3069 flowtype_to_str(uint16_t flow_type) 3070 { 3071 struct flow_type_info { 3072 char str[32]; 3073 uint16_t ftype; 3074 }; 3075 3076 uint8_t i; 3077 static struct flow_type_info flowtype_str_table[] = { 3078 {"raw", RTE_ETH_FLOW_RAW}, 3079 {"ipv4", RTE_ETH_FLOW_IPV4}, 3080 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 3081 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 3082 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 3083 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 3084 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 3085 {"ipv6", RTE_ETH_FLOW_IPV6}, 3086 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 3087 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 3088 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 3089 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 3090 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 3091 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 3092 {"port", RTE_ETH_FLOW_PORT}, 3093 {"vxlan", RTE_ETH_FLOW_VXLAN}, 3094 {"geneve", RTE_ETH_FLOW_GENEVE}, 3095 {"nvgre", RTE_ETH_FLOW_NVGRE}, 3096 }; 3097 3098 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 3099 if (flowtype_str_table[i].ftype == flow_type) 3100 return flowtype_str_table[i].str; 3101 } 3102 3103 return NULL; 3104 } 3105 3106 static inline void 3107 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3108 { 3109 struct rte_eth_fdir_flex_mask *mask; 3110 uint32_t i, j; 3111 char *p; 3112 3113 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 3114 mask = &flex_conf->flex_mask[i]; 3115 p = flowtype_to_str(mask->flow_type); 3116 printf("\n %s:\t", p ? p : "unknown"); 3117 for (j = 0; j < num; j++) 3118 printf(" %02x", mask->mask[j]); 3119 } 3120 printf("\n"); 3121 } 3122 3123 static inline void 3124 print_fdir_flow_type(uint32_t flow_types_mask) 3125 { 3126 int i; 3127 char *p; 3128 3129 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 3130 if (!(flow_types_mask & (1 << i))) 3131 continue; 3132 p = flowtype_to_str(i); 3133 if (p) 3134 printf(" %s", p); 3135 else 3136 printf(" unknown"); 3137 } 3138 printf("\n"); 3139 } 3140 3141 void 3142 fdir_get_infos(portid_t port_id) 3143 { 3144 struct rte_eth_fdir_stats fdir_stat; 3145 struct rte_eth_fdir_info fdir_info; 3146 int ret; 3147 3148 static const char *fdir_stats_border = "########################"; 3149 3150 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3151 return; 3152 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 3153 if (ret < 0) { 3154 printf("\n FDIR is not supported on port %-2d\n", 3155 port_id); 3156 return; 3157 } 3158 3159 memset(&fdir_info, 0, sizeof(fdir_info)); 3160 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3161 RTE_ETH_FILTER_INFO, &fdir_info); 3162 memset(&fdir_stat, 0, sizeof(fdir_stat)); 3163 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3164 RTE_ETH_FILTER_STATS, &fdir_stat); 3165 printf("\n %s FDIR infos for port %-2d %s\n", 3166 fdir_stats_border, port_id, fdir_stats_border); 3167 printf(" MODE: "); 3168 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 3169 printf(" PERFECT\n"); 3170 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 3171 printf(" PERFECT-MAC-VLAN\n"); 3172 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3173 printf(" PERFECT-TUNNEL\n"); 3174 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 3175 printf(" SIGNATURE\n"); 3176 else 3177 printf(" DISABLE\n"); 3178 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 3179 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 3180 printf(" SUPPORTED FLOW TYPE: "); 3181 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 3182 } 3183 printf(" FLEX PAYLOAD INFO:\n"); 3184 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 3185 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 3186 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 3187 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 3188 fdir_info.flex_payload_unit, 3189 fdir_info.max_flex_payload_segment_num, 3190 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 3191 printf(" MASK: "); 3192 print_fdir_mask(&fdir_info.mask); 3193 if (fdir_info.flex_conf.nb_payloads > 0) { 3194 printf(" FLEX PAYLOAD SRC OFFSET:"); 3195 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3196 } 3197 if (fdir_info.flex_conf.nb_flexmasks > 0) { 3198 printf(" FLEX MASK CFG:"); 3199 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3200 } 3201 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 3202 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 3203 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 3204 fdir_info.guarant_spc, fdir_info.best_spc); 3205 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 3206 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 3207 " add: %-10"PRIu64" remove: %"PRIu64"\n" 3208 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 3209 fdir_stat.collision, fdir_stat.free, 3210 fdir_stat.maxhash, fdir_stat.maxlen, 3211 fdir_stat.add, fdir_stat.remove, 3212 fdir_stat.f_add, fdir_stat.f_remove); 3213 printf(" %s############################%s\n", 3214 fdir_stats_border, fdir_stats_border); 3215 } 3216 3217 void 3218 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 3219 { 3220 struct rte_port *port; 3221 struct rte_eth_fdir_flex_conf *flex_conf; 3222 int i, idx = 0; 3223 3224 port = &ports[port_id]; 3225 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3226 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3227 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3228 idx = i; 3229 break; 3230 } 3231 } 3232 if (i >= RTE_ETH_FLOW_MAX) { 3233 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3234 idx = flex_conf->nb_flexmasks; 3235 flex_conf->nb_flexmasks++; 3236 } else { 3237 printf("The flex mask table is full. Can not set flex" 3238 " mask for flow_type(%u).", cfg->flow_type); 3239 return; 3240 } 3241 } 3242 rte_memcpy(&flex_conf->flex_mask[idx], 3243 cfg, 3244 sizeof(struct rte_eth_fdir_flex_mask)); 3245 } 3246 3247 void 3248 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3249 { 3250 struct rte_port *port; 3251 struct rte_eth_fdir_flex_conf *flex_conf; 3252 int i, idx = 0; 3253 3254 port = &ports[port_id]; 3255 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3256 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3257 if (cfg->type == flex_conf->flex_set[i].type) { 3258 idx = i; 3259 break; 3260 } 3261 } 3262 if (i >= RTE_ETH_PAYLOAD_MAX) { 3263 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3264 idx = flex_conf->nb_payloads; 3265 flex_conf->nb_payloads++; 3266 } else { 3267 printf("The flex payload table is full. Can not set" 3268 " flex payload for type(%u).", cfg->type); 3269 return; 3270 } 3271 } 3272 rte_memcpy(&flex_conf->flex_set[idx], 3273 cfg, 3274 sizeof(struct rte_eth_flex_payload_cfg)); 3275 3276 } 3277 3278 void 3279 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3280 { 3281 #ifdef RTE_LIBRTE_IXGBE_PMD 3282 int diag; 3283 3284 if (is_rx) 3285 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3286 else 3287 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3288 3289 if (diag == 0) 3290 return; 3291 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3292 is_rx ? "rx" : "tx", port_id, diag); 3293 return; 3294 #endif 3295 printf("VF %s setting not supported for port %d\n", 3296 is_rx ? "Rx" : "Tx", port_id); 3297 RTE_SET_USED(vf); 3298 RTE_SET_USED(on); 3299 } 3300 3301 int 3302 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3303 { 3304 int diag; 3305 struct rte_eth_link link; 3306 3307 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3308 return 1; 3309 rte_eth_link_get_nowait(port_id, &link); 3310 if (rate > link.link_speed) { 3311 printf("Invalid rate value:%u bigger than link speed: %u\n", 3312 rate, link.link_speed); 3313 return 1; 3314 } 3315 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3316 if (diag == 0) 3317 return diag; 3318 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3319 port_id, diag); 3320 return diag; 3321 } 3322 3323 int 3324 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3325 { 3326 int diag = -ENOTSUP; 3327 3328 RTE_SET_USED(vf); 3329 RTE_SET_USED(rate); 3330 RTE_SET_USED(q_msk); 3331 3332 #ifdef RTE_LIBRTE_IXGBE_PMD 3333 if (diag == -ENOTSUP) 3334 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3335 q_msk); 3336 #endif 3337 #ifdef RTE_LIBRTE_BNXT_PMD 3338 if (diag == -ENOTSUP) 3339 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3340 #endif 3341 if (diag == 0) 3342 return diag; 3343 3344 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3345 port_id, diag); 3346 return diag; 3347 } 3348 3349 /* 3350 * Functions to manage the set of filtered Multicast MAC addresses. 3351 * 3352 * A pool of filtered multicast MAC addresses is associated with each port. 3353 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3354 * The address of the pool and the number of valid multicast MAC addresses 3355 * recorded in the pool are stored in the fields "mc_addr_pool" and 3356 * "mc_addr_nb" of the "rte_port" data structure. 3357 * 3358 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3359 * to be supplied a contiguous array of multicast MAC addresses. 3360 * To comply with this constraint, the set of multicast addresses recorded 3361 * into the pool are systematically compacted at the beginning of the pool. 3362 * Hence, when a multicast address is removed from the pool, all following 3363 * addresses, if any, are copied back to keep the set contiguous. 3364 */ 3365 #define MCAST_POOL_INC 32 3366 3367 static int 3368 mcast_addr_pool_extend(struct rte_port *port) 3369 { 3370 struct ether_addr *mc_pool; 3371 size_t mc_pool_size; 3372 3373 /* 3374 * If a free entry is available at the end of the pool, just 3375 * increment the number of recorded multicast addresses. 3376 */ 3377 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3378 port->mc_addr_nb++; 3379 return 0; 3380 } 3381 3382 /* 3383 * [re]allocate a pool with MCAST_POOL_INC more entries. 3384 * The previous test guarantees that port->mc_addr_nb is a multiple 3385 * of MCAST_POOL_INC. 3386 */ 3387 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3388 MCAST_POOL_INC); 3389 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3390 mc_pool_size); 3391 if (mc_pool == NULL) { 3392 printf("allocation of pool of %u multicast addresses failed\n", 3393 port->mc_addr_nb + MCAST_POOL_INC); 3394 return -ENOMEM; 3395 } 3396 3397 port->mc_addr_pool = mc_pool; 3398 port->mc_addr_nb++; 3399 return 0; 3400 3401 } 3402 3403 static void 3404 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3405 { 3406 port->mc_addr_nb--; 3407 if (addr_idx == port->mc_addr_nb) { 3408 /* No need to recompact the set of multicast addressses. */ 3409 if (port->mc_addr_nb == 0) { 3410 /* free the pool of multicast addresses. */ 3411 free(port->mc_addr_pool); 3412 port->mc_addr_pool = NULL; 3413 } 3414 return; 3415 } 3416 memmove(&port->mc_addr_pool[addr_idx], 3417 &port->mc_addr_pool[addr_idx + 1], 3418 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3419 } 3420 3421 static void 3422 eth_port_multicast_addr_list_set(portid_t port_id) 3423 { 3424 struct rte_port *port; 3425 int diag; 3426 3427 port = &ports[port_id]; 3428 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3429 port->mc_addr_nb); 3430 if (diag == 0) 3431 return; 3432 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3433 port->mc_addr_nb, port_id, -diag); 3434 } 3435 3436 void 3437 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr) 3438 { 3439 struct rte_port *port; 3440 uint32_t i; 3441 3442 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3443 return; 3444 3445 port = &ports[port_id]; 3446 3447 /* 3448 * Check that the added multicast MAC address is not already recorded 3449 * in the pool of multicast addresses. 3450 */ 3451 for (i = 0; i < port->mc_addr_nb; i++) { 3452 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3453 printf("multicast address already filtered by port\n"); 3454 return; 3455 } 3456 } 3457 3458 if (mcast_addr_pool_extend(port) != 0) 3459 return; 3460 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3461 eth_port_multicast_addr_list_set(port_id); 3462 } 3463 3464 void 3465 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr) 3466 { 3467 struct rte_port *port; 3468 uint32_t i; 3469 3470 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3471 return; 3472 3473 port = &ports[port_id]; 3474 3475 /* 3476 * Search the pool of multicast MAC addresses for the removed address. 3477 */ 3478 for (i = 0; i < port->mc_addr_nb; i++) { 3479 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3480 break; 3481 } 3482 if (i == port->mc_addr_nb) { 3483 printf("multicast address not filtered by port %d\n", port_id); 3484 return; 3485 } 3486 3487 mcast_addr_pool_remove(port, i); 3488 eth_port_multicast_addr_list_set(port_id); 3489 } 3490 3491 void 3492 port_dcb_info_display(portid_t port_id) 3493 { 3494 struct rte_eth_dcb_info dcb_info; 3495 uint16_t i; 3496 int ret; 3497 static const char *border = "================"; 3498 3499 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3500 return; 3501 3502 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3503 if (ret) { 3504 printf("\n Failed to get dcb infos on port %-2d\n", 3505 port_id); 3506 return; 3507 } 3508 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3509 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3510 printf("\n TC : "); 3511 for (i = 0; i < dcb_info.nb_tcs; i++) 3512 printf("\t%4d", i); 3513 printf("\n Priority : "); 3514 for (i = 0; i < dcb_info.nb_tcs; i++) 3515 printf("\t%4d", dcb_info.prio_tc[i]); 3516 printf("\n BW percent :"); 3517 for (i = 0; i < dcb_info.nb_tcs; i++) 3518 printf("\t%4d%%", dcb_info.tc_bws[i]); 3519 printf("\n RXQ base : "); 3520 for (i = 0; i < dcb_info.nb_tcs; i++) 3521 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3522 printf("\n RXQ number :"); 3523 for (i = 0; i < dcb_info.nb_tcs; i++) 3524 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3525 printf("\n TXQ base : "); 3526 for (i = 0; i < dcb_info.nb_tcs; i++) 3527 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3528 printf("\n TXQ number :"); 3529 for (i = 0; i < dcb_info.nb_tcs; i++) 3530 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3531 printf("\n"); 3532 } 3533 3534 uint8_t * 3535 open_file(const char *file_path, uint32_t *size) 3536 { 3537 int fd = open(file_path, O_RDONLY); 3538 off_t pkg_size; 3539 uint8_t *buf = NULL; 3540 int ret = 0; 3541 struct stat st_buf; 3542 3543 if (size) 3544 *size = 0; 3545 3546 if (fd == -1) { 3547 printf("%s: Failed to open %s\n", __func__, file_path); 3548 return buf; 3549 } 3550 3551 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 3552 close(fd); 3553 printf("%s: File operations failed\n", __func__); 3554 return buf; 3555 } 3556 3557 pkg_size = st_buf.st_size; 3558 if (pkg_size < 0) { 3559 close(fd); 3560 printf("%s: File operations failed\n", __func__); 3561 return buf; 3562 } 3563 3564 buf = (uint8_t *)malloc(pkg_size); 3565 if (!buf) { 3566 close(fd); 3567 printf("%s: Failed to malloc memory\n", __func__); 3568 return buf; 3569 } 3570 3571 ret = read(fd, buf, pkg_size); 3572 if (ret < 0) { 3573 close(fd); 3574 printf("%s: File read operation failed\n", __func__); 3575 close_file(buf); 3576 return NULL; 3577 } 3578 3579 if (size) 3580 *size = pkg_size; 3581 3582 close(fd); 3583 3584 return buf; 3585 } 3586 3587 int 3588 save_file(const char *file_path, uint8_t *buf, uint32_t size) 3589 { 3590 FILE *fh = fopen(file_path, "wb"); 3591 3592 if (fh == NULL) { 3593 printf("%s: Failed to open %s\n", __func__, file_path); 3594 return -1; 3595 } 3596 3597 if (fwrite(buf, 1, size, fh) != size) { 3598 fclose(fh); 3599 printf("%s: File write operation failed\n", __func__); 3600 return -1; 3601 } 3602 3603 fclose(fh); 3604 3605 return 0; 3606 } 3607 3608 int 3609 close_file(uint8_t *buf) 3610 { 3611 if (buf) { 3612 free((void *)buf); 3613 return 0; 3614 } 3615 3616 return -1; 3617 } 3618 3619 void 3620 port_queue_region_info_display(portid_t port_id, void *buf) 3621 { 3622 #ifdef RTE_LIBRTE_I40E_PMD 3623 uint16_t i, j; 3624 struct rte_pmd_i40e_queue_regions *info = 3625 (struct rte_pmd_i40e_queue_regions *)buf; 3626 static const char *queue_region_info_stats_border = "-------"; 3627 3628 if (!info->queue_region_number) 3629 printf("there is no region has been set before"); 3630 3631 printf("\n %s All queue region info for port=%2d %s", 3632 queue_region_info_stats_border, port_id, 3633 queue_region_info_stats_border); 3634 printf("\n queue_region_number: %-14u \n", 3635 info->queue_region_number); 3636 3637 for (i = 0; i < info->queue_region_number; i++) { 3638 printf("\n region_id: %-14u queue_number: %-14u " 3639 "queue_start_index: %-14u \n", 3640 info->region[i].region_id, 3641 info->region[i].queue_num, 3642 info->region[i].queue_start_index); 3643 3644 printf(" user_priority_num is %-14u :", 3645 info->region[i].user_priority_num); 3646 for (j = 0; j < info->region[i].user_priority_num; j++) 3647 printf(" %-14u ", info->region[i].user_priority[j]); 3648 3649 printf("\n flowtype_num is %-14u :", 3650 info->region[i].flowtype_num); 3651 for (j = 0; j < info->region[i].flowtype_num; j++) 3652 printf(" %-14u ", info->region[i].hw_flowtype[j]); 3653 } 3654 #else 3655 RTE_SET_USED(port_id); 3656 RTE_SET_USED(buf); 3657 #endif 3658 3659 printf("\n\n"); 3660 } 3661