xref: /dpdk/app/test-pmd/config.c (revision d0ad8648b1c57c0e311ab7a3192bc3b507de5bf6)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 struct rss_type_info {
77 	char str[32];
78 	uint64_t rss_type;
79 };
80 
81 static const struct rss_type_info rss_type_table[] = {
82 	{ "ipv4", ETH_RSS_IPV4 },
83 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
84 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
85 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
86 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
87 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
88 	{ "ipv6", ETH_RSS_IPV6 },
89 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
90 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
91 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
92 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
93 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
94 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
95 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
96 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
97 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
98 	{ "port", ETH_RSS_PORT },
99 	{ "vxlan", ETH_RSS_VXLAN },
100 	{ "geneve", ETH_RSS_GENEVE },
101 	{ "nvgre", ETH_RSS_NVGRE },
102 
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 	portid_t pid;
125 
126 	static const char *nic_stats_border = "########################";
127 
128 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129 		printf("Valid port range is [0");
130 		RTE_ETH_FOREACH_DEV(pid)
131 			printf(", %d", pid);
132 		printf("]\n");
133 		return;
134 	}
135 	rte_eth_stats_get(port_id, &stats);
136 	printf("\n  %s NIC statistics for port %-2d %s\n",
137 	       nic_stats_border, port_id, nic_stats_border);
138 
139 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141 		       "%-"PRIu64"\n",
142 		       stats.ipackets, stats.imissed, stats.ibytes);
143 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144 		printf("  RX-nombuf:  %-10"PRIu64"\n",
145 		       stats.rx_nombuf);
146 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147 		       "%-"PRIu64"\n",
148 		       stats.opackets, stats.oerrors, stats.obytes);
149 	}
150 	else {
151 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152 		       "    RX-bytes: %10"PRIu64"\n",
153 		       stats.ipackets, stats.ierrors, stats.ibytes);
154 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155 		printf("  RX-nombuf:               %10"PRIu64"\n",
156 		       stats.rx_nombuf);
157 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158 		       "    TX-bytes: %10"PRIu64"\n",
159 		       stats.opackets, stats.oerrors, stats.obytes);
160 	}
161 
162 	if (port->rx_queue_stats_mapping_enabled) {
163 		printf("\n");
164 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165 			printf("  Stats reg %2d RX-packets: %10"PRIu64
166 			       "    RX-errors: %10"PRIu64
167 			       "    RX-bytes: %10"PRIu64"\n",
168 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169 		}
170 	}
171 	if (port->tx_queue_stats_mapping_enabled) {
172 		printf("\n");
173 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174 			printf("  Stats reg %2d TX-packets: %10"PRIu64
175 			       "                             TX-bytes: %10"PRIu64"\n",
176 			       i, stats.q_opackets[i], stats.q_obytes[i]);
177 		}
178 	}
179 
180 	diff_cycles = prev_cycles[port_id];
181 	prev_cycles[port_id] = rte_rdtsc();
182 	if (diff_cycles > 0)
183 		diff_cycles = prev_cycles[port_id] - diff_cycles;
184 
185 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
187 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
189 	prev_pkts_rx[port_id] = stats.ipackets;
190 	prev_pkts_tx[port_id] = stats.opackets;
191 	mpps_rx = diff_cycles > 0 ?
192 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193 	mpps_tx = diff_cycles > 0 ?
194 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195 	printf("\n  Throughput (since last show)\n");
196 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197 			mpps_rx, mpps_tx);
198 
199 	printf("  %s############################%s\n",
200 	       nic_stats_border, nic_stats_border);
201 }
202 
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206 	portid_t pid;
207 
208 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209 		printf("Valid port range is [0");
210 		RTE_ETH_FOREACH_DEV(pid)
211 			printf(", %d", pid);
212 		printf("]\n");
213 		return;
214 	}
215 	rte_eth_stats_reset(port_id);
216 	printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218 
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222 	struct rte_eth_xstat *xstats;
223 	int cnt_xstats, idx_xstat;
224 	struct rte_eth_xstat_name *xstats_names;
225 
226 	printf("###### NIC extended statistics for port %-2d\n", port_id);
227 	if (!rte_eth_dev_is_valid_port(port_id)) {
228 		printf("Error: Invalid port number %i\n", port_id);
229 		return;
230 	}
231 
232 	/* Get count */
233 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234 	if (cnt_xstats  < 0) {
235 		printf("Error: Cannot get count of xstats\n");
236 		return;
237 	}
238 
239 	/* Get id-name lookup table */
240 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241 	if (xstats_names == NULL) {
242 		printf("Cannot allocate memory for xstats lookup\n");
243 		return;
244 	}
245 	if (cnt_xstats != rte_eth_xstats_get_names(
246 			port_id, xstats_names, cnt_xstats)) {
247 		printf("Error: Cannot get xstats lookup\n");
248 		free(xstats_names);
249 		return;
250 	}
251 
252 	/* Get stats themselves */
253 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254 	if (xstats == NULL) {
255 		printf("Cannot allocate memory for xstats\n");
256 		free(xstats_names);
257 		return;
258 	}
259 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260 		printf("Error: Unable to get xstats\n");
261 		free(xstats_names);
262 		free(xstats);
263 		return;
264 	}
265 
266 	/* Display xstats */
267 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268 		if (xstats_hide_zero && !xstats[idx_xstat].value)
269 			continue;
270 		printf("%s: %"PRIu64"\n",
271 			xstats_names[idx_xstat].name,
272 			xstats[idx_xstat].value);
273 	}
274 	free(xstats_names);
275 	free(xstats);
276 }
277 
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281 	rte_eth_xstats_reset(port_id);
282 }
283 
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287 	struct rte_port *port = &ports[port_id];
288 	uint16_t i;
289 	portid_t pid;
290 
291 	static const char *nic_stats_mapping_border = "########################";
292 
293 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294 		printf("Valid port range is [0");
295 		RTE_ETH_FOREACH_DEV(pid)
296 			printf(", %d", pid);
297 		printf("]\n");
298 		return;
299 	}
300 
301 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302 		printf("Port id %d - either does not support queue statistic mapping or"
303 		       " no queue statistic mapping set\n", port_id);
304 		return;
305 	}
306 
307 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309 
310 	if (port->rx_queue_stats_mapping_enabled) {
311 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312 			if (rx_queue_stats_mappings[i].port_id == port_id) {
313 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314 				       rx_queue_stats_mappings[i].queue_id,
315 				       rx_queue_stats_mappings[i].stats_counter_id);
316 			}
317 		}
318 		printf("\n");
319 	}
320 
321 
322 	if (port->tx_queue_stats_mapping_enabled) {
323 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324 			if (tx_queue_stats_mappings[i].port_id == port_id) {
325 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326 				       tx_queue_stats_mappings[i].queue_id,
327 				       tx_queue_stats_mappings[i].stats_counter_id);
328 			}
329 		}
330 	}
331 
332 	printf("  %s####################################%s\n",
333 	       nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335 
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339 	struct rte_eth_rxq_info qinfo;
340 	int32_t rc;
341 	static const char *info_border = "*********************";
342 
343 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344 	if (rc != 0) {
345 		printf("Failed to retrieve information for port: %u, "
346 			"RX queue: %hu\nerror desc: %s(%d)\n",
347 			port_id, queue_id, strerror(-rc), rc);
348 		return;
349 	}
350 
351 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352 	       info_border, port_id, queue_id, info_border);
353 
354 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359 	printf("\nRX drop packets: %s",
360 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361 	printf("\nRX deferred start: %s",
362 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363 	printf("\nRX scattered packets: %s",
364 		(qinfo.scattered_rx != 0) ? "on" : "off");
365 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366 	printf("\n");
367 }
368 
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372 	struct rte_eth_txq_info qinfo;
373 	int32_t rc;
374 	static const char *info_border = "*********************";
375 
376 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377 	if (rc != 0) {
378 		printf("Failed to retrieve information for port: %u, "
379 			"TX queue: %hu\nerror desc: %s(%d)\n",
380 			port_id, queue_id, strerror(-rc), rc);
381 		return;
382 	}
383 
384 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385 	       info_border, port_id, queue_id, info_border);
386 
387 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392 	printf("\nTX deferred start: %s",
393 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 port_infos_display(portid_t port_id)
400 {
401 	struct rte_port *port;
402 	struct ether_addr mac_addr;
403 	struct rte_eth_link link;
404 	struct rte_eth_dev_info dev_info;
405 	int vlan_offload;
406 	struct rte_mempool * mp;
407 	static const char *info_border = "*********************";
408 	portid_t pid;
409 	uint16_t mtu;
410 
411 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412 		printf("Valid port range is [0");
413 		RTE_ETH_FOREACH_DEV(pid)
414 			printf(", %d", pid);
415 		printf("]\n");
416 		return;
417 	}
418 	port = &ports[port_id];
419 	rte_eth_link_get_nowait(port_id, &link);
420 	memset(&dev_info, 0, sizeof(dev_info));
421 	rte_eth_dev_info_get(port_id, &dev_info);
422 	printf("\n%s Infos for port %-2d %s\n",
423 	       info_border, port_id, info_border);
424 	rte_eth_macaddr_get(port_id, &mac_addr);
425 	print_ethaddr("MAC address: ", &mac_addr);
426 	printf("\nDriver name: %s", dev_info.driver_name);
427 	printf("\nConnect to socket: %u", port->socket_id);
428 
429 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
430 		mp = mbuf_pool_find(port_numa[port_id]);
431 		if (mp)
432 			printf("\nmemory allocation on the socket: %d",
433 							port_numa[port_id]);
434 	} else
435 		printf("\nmemory allocation on the socket: %u",port->socket_id);
436 
437 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440 	       ("full-duplex") : ("half-duplex"));
441 
442 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
443 		printf("MTU: %u\n", mtu);
444 
445 	printf("Promiscuous mode: %s\n",
446 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447 	printf("Allmulticast mode: %s\n",
448 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449 	printf("Maximum number of MAC addresses: %u\n",
450 	       (unsigned int)(port->dev_info.max_mac_addrs));
451 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
452 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
453 
454 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455 	if (vlan_offload >= 0){
456 		printf("VLAN offload: \n");
457 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458 			printf("  strip on \n");
459 		else
460 			printf("  strip off \n");
461 
462 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463 			printf("  filter on \n");
464 		else
465 			printf("  filter off \n");
466 
467 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468 			printf("  qinq(extend) on \n");
469 		else
470 			printf("  qinq(extend) off \n");
471 	}
472 
473 	if (dev_info.hash_key_size > 0)
474 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475 	if (dev_info.reta_size > 0)
476 		printf("Redirection table size: %u\n", dev_info.reta_size);
477 	if (!dev_info.flow_type_rss_offloads)
478 		printf("No flow type is supported.\n");
479 	else {
480 		uint16_t i;
481 		char *p;
482 
483 		printf("Supported flow types:\n");
484 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487 				continue;
488 			p = flowtype_to_str(i);
489 			if (p)
490 				printf("  %s\n", p);
491 			else
492 				printf("  user defined %d\n", i);
493 		}
494 	}
495 
496 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497 	printf("Maximum configurable length of RX packet: %u\n",
498 		dev_info.max_rx_pktlen);
499 	if (dev_info.max_vfs)
500 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501 	if (dev_info.max_vmdq_pools)
502 		printf("Maximum number of VMDq pools: %u\n",
503 			dev_info.max_vmdq_pools);
504 
505 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507 	printf("Max possible number of RXDs per queue: %hu\n",
508 		dev_info.rx_desc_lim.nb_max);
509 	printf("Min possible number of RXDs per queue: %hu\n",
510 		dev_info.rx_desc_lim.nb_min);
511 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512 
513 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515 	printf("Max possible number of TXDs per queue: %hu\n",
516 		dev_info.tx_desc_lim.nb_max);
517 	printf("Min possible number of TXDs per queue: %hu\n",
518 		dev_info.tx_desc_lim.nb_min);
519 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521 
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525 	struct rte_eth_dev_info dev_info;
526 	static const char *info_border = "************";
527 
528 	if (port_id_is_invalid(port_id, ENABLED_WARN))
529 		return;
530 
531 	rte_eth_dev_info_get(port_id, &dev_info);
532 
533 	printf("\n%s Port %d supported offload features: %s\n",
534 		info_border, port_id, info_border);
535 
536 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537 		printf("VLAN stripped:                 ");
538 		if (ports[port_id].dev_conf.rxmode.offloads &
539 		    DEV_RX_OFFLOAD_VLAN_STRIP)
540 			printf("on\n");
541 		else
542 			printf("off\n");
543 	}
544 
545 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546 		printf("Double VLANs stripped:         ");
547 		if (ports[port_id].dev_conf.rxmode.offloads &
548 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
549 			printf("on\n");
550 		else
551 			printf("off\n");
552 	}
553 
554 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555 		printf("RX IPv4 checksum:              ");
556 		if (ports[port_id].dev_conf.rxmode.offloads &
557 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
558 			printf("on\n");
559 		else
560 			printf("off\n");
561 	}
562 
563 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564 		printf("RX UDP checksum:               ");
565 		if (ports[port_id].dev_conf.rxmode.offloads &
566 		    DEV_RX_OFFLOAD_UDP_CKSUM)
567 			printf("on\n");
568 		else
569 			printf("off\n");
570 	}
571 
572 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573 		printf("RX TCP checksum:               ");
574 		if (ports[port_id].dev_conf.rxmode.offloads &
575 		    DEV_RX_OFFLOAD_TCP_CKSUM)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582 		printf("RX Outer IPv4 checksum:               ");
583 		if (ports[port_id].dev_conf.rxmode.offloads &
584 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585 			printf("on\n");
586 		else
587 			printf("off\n");
588 	}
589 
590 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591 		printf("Large receive offload:         ");
592 		if (ports[port_id].dev_conf.rxmode.offloads &
593 		    DEV_RX_OFFLOAD_TCP_LRO)
594 			printf("on\n");
595 		else
596 			printf("off\n");
597 	}
598 
599 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600 		printf("VLAN insert:                   ");
601 		if (ports[port_id].dev_conf.txmode.offloads &
602 		    DEV_TX_OFFLOAD_VLAN_INSERT)
603 			printf("on\n");
604 		else
605 			printf("off\n");
606 	}
607 
608 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609 		printf("HW timestamp:                  ");
610 		if (ports[port_id].dev_conf.rxmode.offloads &
611 		    DEV_RX_OFFLOAD_TIMESTAMP)
612 			printf("on\n");
613 		else
614 			printf("off\n");
615 	}
616 
617 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618 		printf("Double VLANs insert:           ");
619 		if (ports[port_id].dev_conf.txmode.offloads &
620 		    DEV_TX_OFFLOAD_QINQ_INSERT)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627 		printf("TX IPv4 checksum:              ");
628 		if (ports[port_id].dev_conf.txmode.offloads &
629 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
630 			printf("on\n");
631 		else
632 			printf("off\n");
633 	}
634 
635 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636 		printf("TX UDP checksum:               ");
637 		if (ports[port_id].dev_conf.txmode.offloads &
638 		    DEV_TX_OFFLOAD_UDP_CKSUM)
639 			printf("on\n");
640 		else
641 			printf("off\n");
642 	}
643 
644 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645 		printf("TX TCP checksum:               ");
646 		if (ports[port_id].dev_conf.txmode.offloads &
647 		    DEV_TX_OFFLOAD_TCP_CKSUM)
648 			printf("on\n");
649 		else
650 			printf("off\n");
651 	}
652 
653 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654 		printf("TX SCTP checksum:              ");
655 		if (ports[port_id].dev_conf.txmode.offloads &
656 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
657 			printf("on\n");
658 		else
659 			printf("off\n");
660 	}
661 
662 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663 		printf("TX Outer IPv4 checksum:        ");
664 		if (ports[port_id].dev_conf.txmode.offloads &
665 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666 			printf("on\n");
667 		else
668 			printf("off\n");
669 	}
670 
671 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672 		printf("TX TCP segmentation:           ");
673 		if (ports[port_id].dev_conf.txmode.offloads &
674 		    DEV_TX_OFFLOAD_TCP_TSO)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].dev_conf.txmode.offloads &
683 		    DEV_TX_OFFLOAD_UDP_TSO)
684 			printf("on\n");
685 		else
686 			printf("off\n");
687 	}
688 
689 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690 		printf("TSO for VXLAN tunnel packet:   ");
691 		if (ports[port_id].dev_conf.txmode.offloads &
692 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693 			printf("on\n");
694 		else
695 			printf("off\n");
696 	}
697 
698 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699 		printf("TSO for GRE tunnel packet:     ");
700 		if (ports[port_id].dev_conf.txmode.offloads &
701 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
702 			printf("on\n");
703 		else
704 			printf("off\n");
705 	}
706 
707 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708 		printf("TSO for IPIP tunnel packet:    ");
709 		if (ports[port_id].dev_conf.txmode.offloads &
710 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711 			printf("on\n");
712 		else
713 			printf("off\n");
714 	}
715 
716 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717 		printf("TSO for GENEVE tunnel packet:  ");
718 		if (ports[port_id].dev_conf.txmode.offloads &
719 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720 			printf("on\n");
721 		else
722 			printf("off\n");
723 	}
724 
725 }
726 
727 int
728 port_id_is_invalid(portid_t port_id, enum print_warning warning)
729 {
730 	uint16_t pid;
731 
732 	if (port_id == (portid_t)RTE_PORT_ALL)
733 		return 0;
734 
735 	RTE_ETH_FOREACH_DEV(pid)
736 		if (port_id == pid)
737 			return 0;
738 
739 	if (warning == ENABLED_WARN)
740 		printf("Invalid port %d\n", port_id);
741 
742 	return 1;
743 }
744 
745 static int
746 vlan_id_is_invalid(uint16_t vlan_id)
747 {
748 	if (vlan_id < 4096)
749 		return 0;
750 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
751 	return 1;
752 }
753 
754 static int
755 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
756 {
757 	const struct rte_pci_device *pci_dev;
758 	const struct rte_bus *bus;
759 	uint64_t pci_len;
760 
761 	if (reg_off & 0x3) {
762 		printf("Port register offset 0x%X not aligned on a 4-byte "
763 		       "boundary\n",
764 		       (unsigned)reg_off);
765 		return 1;
766 	}
767 
768 	if (!ports[port_id].dev_info.device) {
769 		printf("Invalid device\n");
770 		return 0;
771 	}
772 
773 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
774 	if (bus && !strcmp(bus->name, "pci")) {
775 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
776 	} else {
777 		printf("Not a PCI device\n");
778 		return 1;
779 	}
780 
781 	pci_len = pci_dev->mem_resource[0].len;
782 	if (reg_off >= pci_len) {
783 		printf("Port %d: register offset %u (0x%X) out of port PCI "
784 		       "resource (length=%"PRIu64")\n",
785 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
786 		return 1;
787 	}
788 	return 0;
789 }
790 
791 static int
792 reg_bit_pos_is_invalid(uint8_t bit_pos)
793 {
794 	if (bit_pos <= 31)
795 		return 0;
796 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
797 	return 1;
798 }
799 
800 #define display_port_and_reg_off(port_id, reg_off) \
801 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
802 
803 static inline void
804 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
805 {
806 	display_port_and_reg_off(port_id, (unsigned)reg_off);
807 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
808 }
809 
810 void
811 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
812 {
813 	uint32_t reg_v;
814 
815 
816 	if (port_id_is_invalid(port_id, ENABLED_WARN))
817 		return;
818 	if (port_reg_off_is_invalid(port_id, reg_off))
819 		return;
820 	if (reg_bit_pos_is_invalid(bit_x))
821 		return;
822 	reg_v = port_id_pci_reg_read(port_id, reg_off);
823 	display_port_and_reg_off(port_id, (unsigned)reg_off);
824 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
825 }
826 
827 void
828 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
829 			   uint8_t bit1_pos, uint8_t bit2_pos)
830 {
831 	uint32_t reg_v;
832 	uint8_t  l_bit;
833 	uint8_t  h_bit;
834 
835 	if (port_id_is_invalid(port_id, ENABLED_WARN))
836 		return;
837 	if (port_reg_off_is_invalid(port_id, reg_off))
838 		return;
839 	if (reg_bit_pos_is_invalid(bit1_pos))
840 		return;
841 	if (reg_bit_pos_is_invalid(bit2_pos))
842 		return;
843 	if (bit1_pos > bit2_pos)
844 		l_bit = bit2_pos, h_bit = bit1_pos;
845 	else
846 		l_bit = bit1_pos, h_bit = bit2_pos;
847 
848 	reg_v = port_id_pci_reg_read(port_id, reg_off);
849 	reg_v >>= l_bit;
850 	if (h_bit < 31)
851 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
852 	display_port_and_reg_off(port_id, (unsigned)reg_off);
853 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
854 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
855 }
856 
857 void
858 port_reg_display(portid_t port_id, uint32_t reg_off)
859 {
860 	uint32_t reg_v;
861 
862 	if (port_id_is_invalid(port_id, ENABLED_WARN))
863 		return;
864 	if (port_reg_off_is_invalid(port_id, reg_off))
865 		return;
866 	reg_v = port_id_pci_reg_read(port_id, reg_off);
867 	display_port_reg_value(port_id, reg_off, reg_v);
868 }
869 
870 void
871 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
872 		 uint8_t bit_v)
873 {
874 	uint32_t reg_v;
875 
876 	if (port_id_is_invalid(port_id, ENABLED_WARN))
877 		return;
878 	if (port_reg_off_is_invalid(port_id, reg_off))
879 		return;
880 	if (reg_bit_pos_is_invalid(bit_pos))
881 		return;
882 	if (bit_v > 1) {
883 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
884 		return;
885 	}
886 	reg_v = port_id_pci_reg_read(port_id, reg_off);
887 	if (bit_v == 0)
888 		reg_v &= ~(1 << bit_pos);
889 	else
890 		reg_v |= (1 << bit_pos);
891 	port_id_pci_reg_write(port_id, reg_off, reg_v);
892 	display_port_reg_value(port_id, reg_off, reg_v);
893 }
894 
895 void
896 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
897 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
898 {
899 	uint32_t max_v;
900 	uint32_t reg_v;
901 	uint8_t  l_bit;
902 	uint8_t  h_bit;
903 
904 	if (port_id_is_invalid(port_id, ENABLED_WARN))
905 		return;
906 	if (port_reg_off_is_invalid(port_id, reg_off))
907 		return;
908 	if (reg_bit_pos_is_invalid(bit1_pos))
909 		return;
910 	if (reg_bit_pos_is_invalid(bit2_pos))
911 		return;
912 	if (bit1_pos > bit2_pos)
913 		l_bit = bit2_pos, h_bit = bit1_pos;
914 	else
915 		l_bit = bit1_pos, h_bit = bit2_pos;
916 
917 	if ((h_bit - l_bit) < 31)
918 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
919 	else
920 		max_v = 0xFFFFFFFF;
921 
922 	if (value > max_v) {
923 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
924 				(unsigned)value, (unsigned)value,
925 				(unsigned)max_v, (unsigned)max_v);
926 		return;
927 	}
928 	reg_v = port_id_pci_reg_read(port_id, reg_off);
929 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
930 	reg_v |= (value << l_bit); /* Set changed bits */
931 	port_id_pci_reg_write(port_id, reg_off, reg_v);
932 	display_port_reg_value(port_id, reg_off, reg_v);
933 }
934 
935 void
936 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
937 {
938 	if (port_id_is_invalid(port_id, ENABLED_WARN))
939 		return;
940 	if (port_reg_off_is_invalid(port_id, reg_off))
941 		return;
942 	port_id_pci_reg_write(port_id, reg_off, reg_v);
943 	display_port_reg_value(port_id, reg_off, reg_v);
944 }
945 
946 void
947 port_mtu_set(portid_t port_id, uint16_t mtu)
948 {
949 	int diag;
950 
951 	if (port_id_is_invalid(port_id, ENABLED_WARN))
952 		return;
953 	diag = rte_eth_dev_set_mtu(port_id, mtu);
954 	if (diag == 0)
955 		return;
956 	printf("Set MTU failed. diag=%d\n", diag);
957 }
958 
959 /* Generic flow management functions. */
960 
961 /** Generate flow_item[] entry. */
962 #define MK_FLOW_ITEM(t, s) \
963 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
964 		.name = # t, \
965 		.size = s, \
966 	}
967 
968 /** Information about known flow pattern items. */
969 static const struct {
970 	const char *name;
971 	size_t size;
972 } flow_item[] = {
973 	MK_FLOW_ITEM(END, 0),
974 	MK_FLOW_ITEM(VOID, 0),
975 	MK_FLOW_ITEM(INVERT, 0),
976 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
977 	MK_FLOW_ITEM(PF, 0),
978 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
979 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
980 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
981 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
982 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
983 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
984 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
985 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
986 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
987 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
988 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
989 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
990 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
991 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
992 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
993 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
994 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
995 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
996 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
997 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
998 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
999 };
1000 
1001 /** Pattern item specification types. */
1002 enum item_spec_type {
1003 	ITEM_SPEC,
1004 	ITEM_LAST,
1005 	ITEM_MASK,
1006 };
1007 
1008 /** Compute storage space needed by item specification and copy it. */
1009 static size_t
1010 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1011 		    enum item_spec_type type)
1012 {
1013 	size_t size = 0;
1014 	const void *item_spec =
1015 		type == ITEM_SPEC ? item->spec :
1016 		type == ITEM_LAST ? item->last :
1017 		type == ITEM_MASK ? item->mask :
1018 		NULL;
1019 
1020 	if (!item_spec)
1021 		goto empty;
1022 	switch (item->type) {
1023 		union {
1024 			const struct rte_flow_item_raw *raw;
1025 		} src;
1026 		union {
1027 			struct rte_flow_item_raw *raw;
1028 		} dst;
1029 
1030 	case RTE_FLOW_ITEM_TYPE_RAW:
1031 		src.raw = item_spec;
1032 		dst.raw = buf;
1033 		size = offsetof(struct rte_flow_item_raw, pattern) +
1034 			src.raw->length * sizeof(*src.raw->pattern);
1035 		if (dst.raw)
1036 			memcpy(dst.raw, src.raw, size);
1037 		break;
1038 	default:
1039 		size = flow_item[item->type].size;
1040 		if (buf)
1041 			memcpy(buf, item_spec, size);
1042 		break;
1043 	}
1044 empty:
1045 	return RTE_ALIGN_CEIL(size, sizeof(double));
1046 }
1047 
1048 /** Generate flow_action[] entry. */
1049 #define MK_FLOW_ACTION(t, s) \
1050 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1051 		.name = # t, \
1052 		.size = s, \
1053 	}
1054 
1055 /** Information about known flow actions. */
1056 static const struct {
1057 	const char *name;
1058 	size_t size;
1059 } flow_action[] = {
1060 	MK_FLOW_ACTION(END, 0),
1061 	MK_FLOW_ACTION(VOID, 0),
1062 	MK_FLOW_ACTION(PASSTHRU, 0),
1063 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1064 	MK_FLOW_ACTION(FLAG, 0),
1065 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1066 	MK_FLOW_ACTION(DROP, 0),
1067 	MK_FLOW_ACTION(COUNT, 0),
1068 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1069 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1070 	MK_FLOW_ACTION(PF, 0),
1071 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1072 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1073 };
1074 
1075 /** Compute storage space needed by action configuration and copy it. */
1076 static size_t
1077 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1078 {
1079 	size_t size = 0;
1080 
1081 	if (!action->conf)
1082 		goto empty;
1083 	switch (action->type) {
1084 		union {
1085 			const struct rte_flow_action_rss *rss;
1086 		} src;
1087 		union {
1088 			struct rte_flow_action_rss *rss;
1089 		} dst;
1090 		size_t off;
1091 
1092 	case RTE_FLOW_ACTION_TYPE_RSS:
1093 		src.rss = action->conf;
1094 		dst.rss = buf;
1095 		off = 0;
1096 		if (dst.rss)
1097 			*dst.rss = (struct rte_flow_action_rss){
1098 				.num = src.rss->num,
1099 			};
1100 		off += offsetof(struct rte_flow_action_rss, queue);
1101 		if (src.rss->num) {
1102 			size = sizeof(*src.rss->queue) * src.rss->num;
1103 			if (dst.rss)
1104 				memcpy(dst.rss->queue, src.rss->queue, size);
1105 			off += size;
1106 		}
1107 		off = RTE_ALIGN_CEIL(off, sizeof(double));
1108 		if (dst.rss) {
1109 			dst.rss->rss_conf = (void *)((uintptr_t)dst.rss + off);
1110 			*(struct rte_eth_rss_conf *)(uintptr_t)
1111 				dst.rss->rss_conf = (struct rte_eth_rss_conf){
1112 				.rss_key_len = src.rss->rss_conf->rss_key_len,
1113 				.rss_hf = src.rss->rss_conf->rss_hf,
1114 			};
1115 		}
1116 		off += sizeof(*src.rss->rss_conf);
1117 		if (src.rss->rss_conf->rss_key_len) {
1118 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1119 			size = sizeof(*src.rss->rss_conf->rss_key) *
1120 				src.rss->rss_conf->rss_key_len;
1121 			if (dst.rss) {
1122 				((struct rte_eth_rss_conf *)(uintptr_t)
1123 				 dst.rss->rss_conf)->rss_key =
1124 					(void *)((uintptr_t)dst.rss + off);
1125 				memcpy(dst.rss->rss_conf->rss_key,
1126 				       src.rss->rss_conf->rss_key,
1127 				       size);
1128 			}
1129 			off += size;
1130 		}
1131 		size = off;
1132 		break;
1133 	default:
1134 		size = flow_action[action->type].size;
1135 		if (buf)
1136 			memcpy(buf, action->conf, size);
1137 		break;
1138 	}
1139 empty:
1140 	return RTE_ALIGN_CEIL(size, sizeof(double));
1141 }
1142 
1143 /** Generate a port_flow entry from attributes/pattern/actions. */
1144 static struct port_flow *
1145 port_flow_new(const struct rte_flow_attr *attr,
1146 	      const struct rte_flow_item *pattern,
1147 	      const struct rte_flow_action *actions)
1148 {
1149 	const struct rte_flow_item *item;
1150 	const struct rte_flow_action *action;
1151 	struct port_flow *pf = NULL;
1152 	size_t tmp;
1153 	size_t off1 = 0;
1154 	size_t off2 = 0;
1155 	int err = ENOTSUP;
1156 
1157 store:
1158 	item = pattern;
1159 	if (pf)
1160 		pf->pattern = (void *)&pf->data[off1];
1161 	do {
1162 		struct rte_flow_item *dst = NULL;
1163 
1164 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1165 		    !flow_item[item->type].name)
1166 			goto notsup;
1167 		if (pf)
1168 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1169 		off1 += sizeof(*item);
1170 		if (item->spec) {
1171 			if (pf)
1172 				dst->spec = pf->data + off2;
1173 			off2 += flow_item_spec_copy
1174 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1175 		}
1176 		if (item->last) {
1177 			if (pf)
1178 				dst->last = pf->data + off2;
1179 			off2 += flow_item_spec_copy
1180 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1181 		}
1182 		if (item->mask) {
1183 			if (pf)
1184 				dst->mask = pf->data + off2;
1185 			off2 += flow_item_spec_copy
1186 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1187 		}
1188 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1189 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1190 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1191 	action = actions;
1192 	if (pf)
1193 		pf->actions = (void *)&pf->data[off1];
1194 	do {
1195 		struct rte_flow_action *dst = NULL;
1196 
1197 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1198 		    !flow_action[action->type].name)
1199 			goto notsup;
1200 		if (pf)
1201 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1202 		off1 += sizeof(*action);
1203 		if (action->conf) {
1204 			if (pf)
1205 				dst->conf = pf->data + off2;
1206 			off2 += flow_action_conf_copy
1207 				(pf ? pf->data + off2 : NULL, action);
1208 		}
1209 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1210 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1211 	if (pf != NULL)
1212 		return pf;
1213 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1214 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1215 	pf = calloc(1, tmp + off1 + off2);
1216 	if (pf == NULL)
1217 		err = errno;
1218 	else {
1219 		*pf = (const struct port_flow){
1220 			.size = tmp + off1 + off2,
1221 			.attr = *attr,
1222 		};
1223 		tmp -= offsetof(struct port_flow, data);
1224 		off2 = tmp + off1;
1225 		off1 = tmp;
1226 		goto store;
1227 	}
1228 notsup:
1229 	rte_errno = err;
1230 	return NULL;
1231 }
1232 
1233 /** Print a message out of a flow error. */
1234 static int
1235 port_flow_complain(struct rte_flow_error *error)
1236 {
1237 	static const char *const errstrlist[] = {
1238 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1239 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1240 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1241 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1242 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1243 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1244 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1245 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1246 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1247 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1248 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1249 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1250 	};
1251 	const char *errstr;
1252 	char buf[32];
1253 	int err = rte_errno;
1254 
1255 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1256 	    !errstrlist[error->type])
1257 		errstr = "unknown type";
1258 	else
1259 		errstr = errstrlist[error->type];
1260 	printf("Caught error type %d (%s): %s%s\n",
1261 	       error->type, errstr,
1262 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1263 					error->cause), buf) : "",
1264 	       error->message ? error->message : "(no stated reason)");
1265 	return -err;
1266 }
1267 
1268 /** Validate flow rule. */
1269 int
1270 port_flow_validate(portid_t port_id,
1271 		   const struct rte_flow_attr *attr,
1272 		   const struct rte_flow_item *pattern,
1273 		   const struct rte_flow_action *actions)
1274 {
1275 	struct rte_flow_error error;
1276 
1277 	/* Poisoning to make sure PMDs update it in case of error. */
1278 	memset(&error, 0x11, sizeof(error));
1279 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1280 		return port_flow_complain(&error);
1281 	printf("Flow rule validated\n");
1282 	return 0;
1283 }
1284 
1285 /** Create flow rule. */
1286 int
1287 port_flow_create(portid_t port_id,
1288 		 const struct rte_flow_attr *attr,
1289 		 const struct rte_flow_item *pattern,
1290 		 const struct rte_flow_action *actions)
1291 {
1292 	struct rte_flow *flow;
1293 	struct rte_port *port;
1294 	struct port_flow *pf;
1295 	uint32_t id;
1296 	struct rte_flow_error error;
1297 
1298 	/* Poisoning to make sure PMDs update it in case of error. */
1299 	memset(&error, 0x22, sizeof(error));
1300 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1301 	if (!flow)
1302 		return port_flow_complain(&error);
1303 	port = &ports[port_id];
1304 	if (port->flow_list) {
1305 		if (port->flow_list->id == UINT32_MAX) {
1306 			printf("Highest rule ID is already assigned, delete"
1307 			       " it first");
1308 			rte_flow_destroy(port_id, flow, NULL);
1309 			return -ENOMEM;
1310 		}
1311 		id = port->flow_list->id + 1;
1312 	} else
1313 		id = 0;
1314 	pf = port_flow_new(attr, pattern, actions);
1315 	if (!pf) {
1316 		int err = rte_errno;
1317 
1318 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1319 		rte_flow_destroy(port_id, flow, NULL);
1320 		return -err;
1321 	}
1322 	pf->next = port->flow_list;
1323 	pf->id = id;
1324 	pf->flow = flow;
1325 	port->flow_list = pf;
1326 	printf("Flow rule #%u created\n", pf->id);
1327 	return 0;
1328 }
1329 
1330 /** Destroy a number of flow rules. */
1331 int
1332 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1333 {
1334 	struct rte_port *port;
1335 	struct port_flow **tmp;
1336 	uint32_t c = 0;
1337 	int ret = 0;
1338 
1339 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1340 	    port_id == (portid_t)RTE_PORT_ALL)
1341 		return -EINVAL;
1342 	port = &ports[port_id];
1343 	tmp = &port->flow_list;
1344 	while (*tmp) {
1345 		uint32_t i;
1346 
1347 		for (i = 0; i != n; ++i) {
1348 			struct rte_flow_error error;
1349 			struct port_flow *pf = *tmp;
1350 
1351 			if (rule[i] != pf->id)
1352 				continue;
1353 			/*
1354 			 * Poisoning to make sure PMDs update it in case
1355 			 * of error.
1356 			 */
1357 			memset(&error, 0x33, sizeof(error));
1358 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1359 				ret = port_flow_complain(&error);
1360 				continue;
1361 			}
1362 			printf("Flow rule #%u destroyed\n", pf->id);
1363 			*tmp = pf->next;
1364 			free(pf);
1365 			break;
1366 		}
1367 		if (i == n)
1368 			tmp = &(*tmp)->next;
1369 		++c;
1370 	}
1371 	return ret;
1372 }
1373 
1374 /** Remove all flow rules. */
1375 int
1376 port_flow_flush(portid_t port_id)
1377 {
1378 	struct rte_flow_error error;
1379 	struct rte_port *port;
1380 	int ret = 0;
1381 
1382 	/* Poisoning to make sure PMDs update it in case of error. */
1383 	memset(&error, 0x44, sizeof(error));
1384 	if (rte_flow_flush(port_id, &error)) {
1385 		ret = port_flow_complain(&error);
1386 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1387 		    port_id == (portid_t)RTE_PORT_ALL)
1388 			return ret;
1389 	}
1390 	port = &ports[port_id];
1391 	while (port->flow_list) {
1392 		struct port_flow *pf = port->flow_list->next;
1393 
1394 		free(port->flow_list);
1395 		port->flow_list = pf;
1396 	}
1397 	return ret;
1398 }
1399 
1400 /** Query a flow rule. */
1401 int
1402 port_flow_query(portid_t port_id, uint32_t rule,
1403 		enum rte_flow_action_type action)
1404 {
1405 	struct rte_flow_error error;
1406 	struct rte_port *port;
1407 	struct port_flow *pf;
1408 	const char *name;
1409 	union {
1410 		struct rte_flow_query_count count;
1411 	} query;
1412 
1413 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1414 	    port_id == (portid_t)RTE_PORT_ALL)
1415 		return -EINVAL;
1416 	port = &ports[port_id];
1417 	for (pf = port->flow_list; pf; pf = pf->next)
1418 		if (pf->id == rule)
1419 			break;
1420 	if (!pf) {
1421 		printf("Flow rule #%u not found\n", rule);
1422 		return -ENOENT;
1423 	}
1424 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1425 	    !flow_action[action].name)
1426 		name = "unknown";
1427 	else
1428 		name = flow_action[action].name;
1429 	switch (action) {
1430 	case RTE_FLOW_ACTION_TYPE_COUNT:
1431 		break;
1432 	default:
1433 		printf("Cannot query action type %d (%s)\n", action, name);
1434 		return -ENOTSUP;
1435 	}
1436 	/* Poisoning to make sure PMDs update it in case of error. */
1437 	memset(&error, 0x55, sizeof(error));
1438 	memset(&query, 0, sizeof(query));
1439 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1440 		return port_flow_complain(&error);
1441 	switch (action) {
1442 	case RTE_FLOW_ACTION_TYPE_COUNT:
1443 		printf("%s:\n"
1444 		       " hits_set: %u\n"
1445 		       " bytes_set: %u\n"
1446 		       " hits: %" PRIu64 "\n"
1447 		       " bytes: %" PRIu64 "\n",
1448 		       name,
1449 		       query.count.hits_set,
1450 		       query.count.bytes_set,
1451 		       query.count.hits,
1452 		       query.count.bytes);
1453 		break;
1454 	default:
1455 		printf("Cannot display result for action type %d (%s)\n",
1456 		       action, name);
1457 		break;
1458 	}
1459 	return 0;
1460 }
1461 
1462 /** List flow rules. */
1463 void
1464 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1465 {
1466 	struct rte_port *port;
1467 	struct port_flow *pf;
1468 	struct port_flow *list = NULL;
1469 	uint32_t i;
1470 
1471 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1472 	    port_id == (portid_t)RTE_PORT_ALL)
1473 		return;
1474 	port = &ports[port_id];
1475 	if (!port->flow_list)
1476 		return;
1477 	/* Sort flows by group, priority and ID. */
1478 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1479 		struct port_flow **tmp;
1480 
1481 		if (n) {
1482 			/* Filter out unwanted groups. */
1483 			for (i = 0; i != n; ++i)
1484 				if (pf->attr.group == group[i])
1485 					break;
1486 			if (i == n)
1487 				continue;
1488 		}
1489 		tmp = &list;
1490 		while (*tmp &&
1491 		       (pf->attr.group > (*tmp)->attr.group ||
1492 			(pf->attr.group == (*tmp)->attr.group &&
1493 			 pf->attr.priority > (*tmp)->attr.priority) ||
1494 			(pf->attr.group == (*tmp)->attr.group &&
1495 			 pf->attr.priority == (*tmp)->attr.priority &&
1496 			 pf->id > (*tmp)->id)))
1497 			tmp = &(*tmp)->tmp;
1498 		pf->tmp = *tmp;
1499 		*tmp = pf;
1500 	}
1501 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1502 	for (pf = list; pf != NULL; pf = pf->tmp) {
1503 		const struct rte_flow_item *item = pf->pattern;
1504 		const struct rte_flow_action *action = pf->actions;
1505 
1506 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1507 		       pf->id,
1508 		       pf->attr.group,
1509 		       pf->attr.priority,
1510 		       pf->attr.ingress ? 'i' : '-',
1511 		       pf->attr.egress ? 'e' : '-');
1512 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1513 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1514 				printf("%s ", flow_item[item->type].name);
1515 			++item;
1516 		}
1517 		printf("=>");
1518 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1519 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1520 				printf(" %s", flow_action[action->type].name);
1521 			++action;
1522 		}
1523 		printf("\n");
1524 	}
1525 }
1526 
1527 /** Restrict ingress traffic to the defined flow rules. */
1528 int
1529 port_flow_isolate(portid_t port_id, int set)
1530 {
1531 	struct rte_flow_error error;
1532 
1533 	/* Poisoning to make sure PMDs update it in case of error. */
1534 	memset(&error, 0x66, sizeof(error));
1535 	if (rte_flow_isolate(port_id, set, &error))
1536 		return port_flow_complain(&error);
1537 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1538 	       port_id,
1539 	       set ? "now restricted" : "not restricted anymore");
1540 	return 0;
1541 }
1542 
1543 /*
1544  * RX/TX ring descriptors display functions.
1545  */
1546 int
1547 rx_queue_id_is_invalid(queueid_t rxq_id)
1548 {
1549 	if (rxq_id < nb_rxq)
1550 		return 0;
1551 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1552 	return 1;
1553 }
1554 
1555 int
1556 tx_queue_id_is_invalid(queueid_t txq_id)
1557 {
1558 	if (txq_id < nb_txq)
1559 		return 0;
1560 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1561 	return 1;
1562 }
1563 
1564 static int
1565 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1566 {
1567 	if (rxdesc_id < nb_rxd)
1568 		return 0;
1569 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1570 	       rxdesc_id, nb_rxd);
1571 	return 1;
1572 }
1573 
1574 static int
1575 tx_desc_id_is_invalid(uint16_t txdesc_id)
1576 {
1577 	if (txdesc_id < nb_txd)
1578 		return 0;
1579 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1580 	       txdesc_id, nb_txd);
1581 	return 1;
1582 }
1583 
1584 static const struct rte_memzone *
1585 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1586 {
1587 	char mz_name[RTE_MEMZONE_NAMESIZE];
1588 	const struct rte_memzone *mz;
1589 
1590 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1591 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1592 	mz = rte_memzone_lookup(mz_name);
1593 	if (mz == NULL)
1594 		printf("%s ring memory zoneof (port %d, queue %d) not"
1595 		       "found (zone name = %s\n",
1596 		       ring_name, port_id, q_id, mz_name);
1597 	return mz;
1598 }
1599 
1600 union igb_ring_dword {
1601 	uint64_t dword;
1602 	struct {
1603 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1604 		uint32_t lo;
1605 		uint32_t hi;
1606 #else
1607 		uint32_t hi;
1608 		uint32_t lo;
1609 #endif
1610 	} words;
1611 };
1612 
1613 struct igb_ring_desc_32_bytes {
1614 	union igb_ring_dword lo_dword;
1615 	union igb_ring_dword hi_dword;
1616 	union igb_ring_dword resv1;
1617 	union igb_ring_dword resv2;
1618 };
1619 
1620 struct igb_ring_desc_16_bytes {
1621 	union igb_ring_dword lo_dword;
1622 	union igb_ring_dword hi_dword;
1623 };
1624 
1625 static void
1626 ring_rxd_display_dword(union igb_ring_dword dword)
1627 {
1628 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1629 					(unsigned)dword.words.hi);
1630 }
1631 
1632 static void
1633 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1634 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1635 			   portid_t port_id,
1636 #else
1637 			   __rte_unused portid_t port_id,
1638 #endif
1639 			   uint16_t desc_id)
1640 {
1641 	struct igb_ring_desc_16_bytes *ring =
1642 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1643 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1644 	struct rte_eth_dev_info dev_info;
1645 
1646 	memset(&dev_info, 0, sizeof(dev_info));
1647 	rte_eth_dev_info_get(port_id, &dev_info);
1648 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1649 		/* 32 bytes RX descriptor, i40e only */
1650 		struct igb_ring_desc_32_bytes *ring =
1651 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1652 		ring[desc_id].lo_dword.dword =
1653 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1654 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1655 		ring[desc_id].hi_dword.dword =
1656 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1657 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1658 		ring[desc_id].resv1.dword =
1659 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1660 		ring_rxd_display_dword(ring[desc_id].resv1);
1661 		ring[desc_id].resv2.dword =
1662 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1663 		ring_rxd_display_dword(ring[desc_id].resv2);
1664 
1665 		return;
1666 	}
1667 #endif
1668 	/* 16 bytes RX descriptor */
1669 	ring[desc_id].lo_dword.dword =
1670 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1671 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1672 	ring[desc_id].hi_dword.dword =
1673 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1674 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1675 }
1676 
1677 static void
1678 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1679 {
1680 	struct igb_ring_desc_16_bytes *ring;
1681 	struct igb_ring_desc_16_bytes txd;
1682 
1683 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1684 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1685 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1686 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1687 			(unsigned)txd.lo_dword.words.lo,
1688 			(unsigned)txd.lo_dword.words.hi,
1689 			(unsigned)txd.hi_dword.words.lo,
1690 			(unsigned)txd.hi_dword.words.hi);
1691 }
1692 
1693 void
1694 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1695 {
1696 	const struct rte_memzone *rx_mz;
1697 
1698 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1699 		return;
1700 	if (rx_queue_id_is_invalid(rxq_id))
1701 		return;
1702 	if (rx_desc_id_is_invalid(rxd_id))
1703 		return;
1704 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1705 	if (rx_mz == NULL)
1706 		return;
1707 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1708 }
1709 
1710 void
1711 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1712 {
1713 	const struct rte_memzone *tx_mz;
1714 
1715 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1716 		return;
1717 	if (tx_queue_id_is_invalid(txq_id))
1718 		return;
1719 	if (tx_desc_id_is_invalid(txd_id))
1720 		return;
1721 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1722 	if (tx_mz == NULL)
1723 		return;
1724 	ring_tx_descriptor_display(tx_mz, txd_id);
1725 }
1726 
1727 void
1728 fwd_lcores_config_display(void)
1729 {
1730 	lcoreid_t lc_id;
1731 
1732 	printf("List of forwarding lcores:");
1733 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1734 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1735 	printf("\n");
1736 }
1737 void
1738 rxtx_config_display(void)
1739 {
1740 	portid_t pid;
1741 
1742 	printf("  %s packet forwarding%s packets/burst=%d\n",
1743 	       cur_fwd_eng->fwd_mode_name,
1744 	       retry_enabled == 0 ? "" : " with retry",
1745 	       nb_pkt_per_burst);
1746 
1747 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1748 		printf("  packet len=%u - nb packet segments=%d\n",
1749 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1750 
1751 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1752 	       nb_fwd_lcores, nb_fwd_ports);
1753 
1754 	RTE_ETH_FOREACH_DEV(pid) {
1755 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf;
1756 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf;
1757 
1758 		printf("  port %d:\n", (unsigned int)pid);
1759 		printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1760 				nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1761 		printf("  RX threshold registers: pthresh=%d hthresh=%d "
1762 		       " wthresh=%d\n",
1763 				rx_conf->rx_thresh.pthresh,
1764 				rx_conf->rx_thresh.hthresh,
1765 				rx_conf->rx_thresh.wthresh);
1766 		printf("  Rx offloads=0x%"PRIx64" RXQ offloads=0x%"PRIx64"\n",
1767 				ports[pid].dev_conf.rxmode.offloads,
1768 				rx_conf->offloads);
1769 		printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1770 				nb_txq, nb_txd, tx_conf->tx_free_thresh);
1771 		printf("  TX threshold registers: pthresh=%d hthresh=%d "
1772 		       " wthresh=%d\n",
1773 				tx_conf->tx_thresh.pthresh,
1774 				tx_conf->tx_thresh.hthresh,
1775 				tx_conf->tx_thresh.wthresh);
1776 		printf("  TX RS bit threshold=%d\n", tx_conf->tx_rs_thresh);
1777 		printf("  Tx offloads=0x%"PRIx64" TXQ offloads=0x%"PRIx64"\n",
1778 				ports[pid].dev_conf.txmode.offloads,
1779 				tx_conf->offloads);
1780 	}
1781 }
1782 
1783 void
1784 port_rss_reta_info(portid_t port_id,
1785 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1786 		   uint16_t nb_entries)
1787 {
1788 	uint16_t i, idx, shift;
1789 	int ret;
1790 
1791 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1792 		return;
1793 
1794 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1795 	if (ret != 0) {
1796 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1797 		return;
1798 	}
1799 
1800 	for (i = 0; i < nb_entries; i++) {
1801 		idx = i / RTE_RETA_GROUP_SIZE;
1802 		shift = i % RTE_RETA_GROUP_SIZE;
1803 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1804 			continue;
1805 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1806 					i, reta_conf[idx].reta[shift]);
1807 	}
1808 }
1809 
1810 /*
1811  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1812  * key of the port.
1813  */
1814 void
1815 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1816 {
1817 	struct rte_eth_rss_conf rss_conf;
1818 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1819 	uint64_t rss_hf;
1820 	uint8_t i;
1821 	int diag;
1822 	struct rte_eth_dev_info dev_info;
1823 	uint8_t hash_key_size;
1824 
1825 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1826 		return;
1827 
1828 	memset(&dev_info, 0, sizeof(dev_info));
1829 	rte_eth_dev_info_get(port_id, &dev_info);
1830 	if (dev_info.hash_key_size > 0 &&
1831 			dev_info.hash_key_size <= sizeof(rss_key))
1832 		hash_key_size = dev_info.hash_key_size;
1833 	else {
1834 		printf("dev_info did not provide a valid hash key size\n");
1835 		return;
1836 	}
1837 
1838 	rss_conf.rss_hf = 0;
1839 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1840 		if (!strcmp(rss_info, rss_type_table[i].str))
1841 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1842 	}
1843 
1844 	/* Get RSS hash key if asked to display it */
1845 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1846 	rss_conf.rss_key_len = hash_key_size;
1847 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1848 	if (diag != 0) {
1849 		switch (diag) {
1850 		case -ENODEV:
1851 			printf("port index %d invalid\n", port_id);
1852 			break;
1853 		case -ENOTSUP:
1854 			printf("operation not supported by device\n");
1855 			break;
1856 		default:
1857 			printf("operation failed - diag=%d\n", diag);
1858 			break;
1859 		}
1860 		return;
1861 	}
1862 	rss_hf = rss_conf.rss_hf;
1863 	if (rss_hf == 0) {
1864 		printf("RSS disabled\n");
1865 		return;
1866 	}
1867 	printf("RSS functions:\n ");
1868 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1869 		if (rss_hf & rss_type_table[i].rss_type)
1870 			printf("%s ", rss_type_table[i].str);
1871 	}
1872 	printf("\n");
1873 	if (!show_rss_key)
1874 		return;
1875 	printf("RSS key:\n");
1876 	for (i = 0; i < hash_key_size; i++)
1877 		printf("%02X", rss_key[i]);
1878 	printf("\n");
1879 }
1880 
1881 void
1882 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1883 			 uint hash_key_len)
1884 {
1885 	struct rte_eth_rss_conf rss_conf;
1886 	int diag;
1887 	unsigned int i;
1888 
1889 	rss_conf.rss_key = NULL;
1890 	rss_conf.rss_key_len = hash_key_len;
1891 	rss_conf.rss_hf = 0;
1892 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1893 		if (!strcmp(rss_type_table[i].str, rss_type))
1894 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1895 	}
1896 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1897 	if (diag == 0) {
1898 		rss_conf.rss_key = hash_key;
1899 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1900 	}
1901 	if (diag == 0)
1902 		return;
1903 
1904 	switch (diag) {
1905 	case -ENODEV:
1906 		printf("port index %d invalid\n", port_id);
1907 		break;
1908 	case -ENOTSUP:
1909 		printf("operation not supported by device\n");
1910 		break;
1911 	default:
1912 		printf("operation failed - diag=%d\n", diag);
1913 		break;
1914 	}
1915 }
1916 
1917 /*
1918  * Setup forwarding configuration for each logical core.
1919  */
1920 static void
1921 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1922 {
1923 	streamid_t nb_fs_per_lcore;
1924 	streamid_t nb_fs;
1925 	streamid_t sm_id;
1926 	lcoreid_t  nb_extra;
1927 	lcoreid_t  nb_fc;
1928 	lcoreid_t  nb_lc;
1929 	lcoreid_t  lc_id;
1930 
1931 	nb_fs = cfg->nb_fwd_streams;
1932 	nb_fc = cfg->nb_fwd_lcores;
1933 	if (nb_fs <= nb_fc) {
1934 		nb_fs_per_lcore = 1;
1935 		nb_extra = 0;
1936 	} else {
1937 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1938 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1939 	}
1940 
1941 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1942 	sm_id = 0;
1943 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1944 		fwd_lcores[lc_id]->stream_idx = sm_id;
1945 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1946 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1947 	}
1948 
1949 	/*
1950 	 * Assign extra remaining streams, if any.
1951 	 */
1952 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1953 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1954 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1955 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1956 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1957 	}
1958 }
1959 
1960 static portid_t
1961 fwd_topology_tx_port_get(portid_t rxp)
1962 {
1963 	static int warning_once = 1;
1964 
1965 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
1966 
1967 	switch (port_topology) {
1968 	default:
1969 	case PORT_TOPOLOGY_PAIRED:
1970 		if ((rxp & 0x1) == 0) {
1971 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
1972 				return rxp + 1;
1973 			if (warning_once) {
1974 				printf("\nWarning! port-topology=paired"
1975 				       " and odd forward ports number,"
1976 				       " the last port will pair with"
1977 				       " itself.\n\n");
1978 				warning_once = 0;
1979 			}
1980 			return rxp;
1981 		}
1982 		return rxp - 1;
1983 	case PORT_TOPOLOGY_CHAINED:
1984 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
1985 	case PORT_TOPOLOGY_LOOP:
1986 		return rxp;
1987 	}
1988 }
1989 
1990 static void
1991 simple_fwd_config_setup(void)
1992 {
1993 	portid_t i;
1994 
1995 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1996 	cur_fwd_config.nb_fwd_streams =
1997 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1998 
1999 	/* reinitialize forwarding streams */
2000 	init_fwd_streams();
2001 
2002 	/*
2003 	 * In the simple forwarding test, the number of forwarding cores
2004 	 * must be lower or equal to the number of forwarding ports.
2005 	 */
2006 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2007 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2008 		cur_fwd_config.nb_fwd_lcores =
2009 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2010 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2011 
2012 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2013 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2014 		fwd_streams[i]->rx_queue  = 0;
2015 		fwd_streams[i]->tx_port   =
2016 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2017 		fwd_streams[i]->tx_queue  = 0;
2018 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2019 		fwd_streams[i]->retry_enabled = retry_enabled;
2020 	}
2021 }
2022 
2023 /**
2024  * For the RSS forwarding test all streams distributed over lcores. Each stream
2025  * being composed of a RX queue to poll on a RX port for input messages,
2026  * associated with a TX queue of a TX port where to send forwarded packets.
2027  */
2028 static void
2029 rss_fwd_config_setup(void)
2030 {
2031 	portid_t   rxp;
2032 	portid_t   txp;
2033 	queueid_t  rxq;
2034 	queueid_t  nb_q;
2035 	streamid_t  sm_id;
2036 
2037 	nb_q = nb_rxq;
2038 	if (nb_q > nb_txq)
2039 		nb_q = nb_txq;
2040 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2041 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2042 	cur_fwd_config.nb_fwd_streams =
2043 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2044 
2045 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2046 		cur_fwd_config.nb_fwd_lcores =
2047 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2048 
2049 	/* reinitialize forwarding streams */
2050 	init_fwd_streams();
2051 
2052 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2053 	rxp = 0; rxq = 0;
2054 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2055 		struct fwd_stream *fs;
2056 
2057 		fs = fwd_streams[sm_id];
2058 		txp = fwd_topology_tx_port_get(rxp);
2059 		fs->rx_port = fwd_ports_ids[rxp];
2060 		fs->rx_queue = rxq;
2061 		fs->tx_port = fwd_ports_ids[txp];
2062 		fs->tx_queue = rxq;
2063 		fs->peer_addr = fs->tx_port;
2064 		fs->retry_enabled = retry_enabled;
2065 		rxq = (queueid_t) (rxq + 1);
2066 		if (rxq < nb_q)
2067 			continue;
2068 		/*
2069 		 * rxq == nb_q
2070 		 * Restart from RX queue 0 on next RX port
2071 		 */
2072 		rxq = 0;
2073 		rxp++;
2074 	}
2075 }
2076 
2077 /**
2078  * For the DCB forwarding test, each core is assigned on each traffic class.
2079  *
2080  * Each core is assigned a multi-stream, each stream being composed of
2081  * a RX queue to poll on a RX port for input messages, associated with
2082  * a TX queue of a TX port where to send forwarded packets. All RX and
2083  * TX queues are mapping to the same traffic class.
2084  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2085  * the same core
2086  */
2087 static void
2088 dcb_fwd_config_setup(void)
2089 {
2090 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2091 	portid_t txp, rxp = 0;
2092 	queueid_t txq, rxq = 0;
2093 	lcoreid_t  lc_id;
2094 	uint16_t nb_rx_queue, nb_tx_queue;
2095 	uint16_t i, j, k, sm_id = 0;
2096 	uint8_t tc = 0;
2097 
2098 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2099 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2100 	cur_fwd_config.nb_fwd_streams =
2101 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2102 
2103 	/* reinitialize forwarding streams */
2104 	init_fwd_streams();
2105 	sm_id = 0;
2106 	txp = 1;
2107 	/* get the dcb info on the first RX and TX ports */
2108 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2109 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2110 
2111 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2112 		fwd_lcores[lc_id]->stream_nb = 0;
2113 		fwd_lcores[lc_id]->stream_idx = sm_id;
2114 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2115 			/* if the nb_queue is zero, means this tc is
2116 			 * not enabled on the POOL
2117 			 */
2118 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2119 				break;
2120 			k = fwd_lcores[lc_id]->stream_nb +
2121 				fwd_lcores[lc_id]->stream_idx;
2122 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2123 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2124 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2125 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2126 			for (j = 0; j < nb_rx_queue; j++) {
2127 				struct fwd_stream *fs;
2128 
2129 				fs = fwd_streams[k + j];
2130 				fs->rx_port = fwd_ports_ids[rxp];
2131 				fs->rx_queue = rxq + j;
2132 				fs->tx_port = fwd_ports_ids[txp];
2133 				fs->tx_queue = txq + j % nb_tx_queue;
2134 				fs->peer_addr = fs->tx_port;
2135 				fs->retry_enabled = retry_enabled;
2136 			}
2137 			fwd_lcores[lc_id]->stream_nb +=
2138 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2139 		}
2140 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2141 
2142 		tc++;
2143 		if (tc < rxp_dcb_info.nb_tcs)
2144 			continue;
2145 		/* Restart from TC 0 on next RX port */
2146 		tc = 0;
2147 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2148 			rxp = (portid_t)
2149 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2150 		else
2151 			rxp++;
2152 		if (rxp >= nb_fwd_ports)
2153 			return;
2154 		/* get the dcb information on next RX and TX ports */
2155 		if ((rxp & 0x1) == 0)
2156 			txp = (portid_t) (rxp + 1);
2157 		else
2158 			txp = (portid_t) (rxp - 1);
2159 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2160 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2161 	}
2162 }
2163 
2164 static void
2165 icmp_echo_config_setup(void)
2166 {
2167 	portid_t  rxp;
2168 	queueid_t rxq;
2169 	lcoreid_t lc_id;
2170 	uint16_t  sm_id;
2171 
2172 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2173 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2174 			(nb_txq * nb_fwd_ports);
2175 	else
2176 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2177 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2178 	cur_fwd_config.nb_fwd_streams =
2179 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2180 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2181 		cur_fwd_config.nb_fwd_lcores =
2182 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2183 	if (verbose_level > 0) {
2184 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2185 		       __FUNCTION__,
2186 		       cur_fwd_config.nb_fwd_lcores,
2187 		       cur_fwd_config.nb_fwd_ports,
2188 		       cur_fwd_config.nb_fwd_streams);
2189 	}
2190 
2191 	/* reinitialize forwarding streams */
2192 	init_fwd_streams();
2193 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2194 	rxp = 0; rxq = 0;
2195 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2196 		if (verbose_level > 0)
2197 			printf("  core=%d: \n", lc_id);
2198 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2199 			struct fwd_stream *fs;
2200 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2201 			fs->rx_port = fwd_ports_ids[rxp];
2202 			fs->rx_queue = rxq;
2203 			fs->tx_port = fs->rx_port;
2204 			fs->tx_queue = rxq;
2205 			fs->peer_addr = fs->tx_port;
2206 			fs->retry_enabled = retry_enabled;
2207 			if (verbose_level > 0)
2208 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2209 				       sm_id, fs->rx_port, fs->rx_queue,
2210 				       fs->tx_queue);
2211 			rxq = (queueid_t) (rxq + 1);
2212 			if (rxq == nb_rxq) {
2213 				rxq = 0;
2214 				rxp = (portid_t) (rxp + 1);
2215 			}
2216 		}
2217 	}
2218 }
2219 
2220 void
2221 fwd_config_setup(void)
2222 {
2223 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2224 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2225 		icmp_echo_config_setup();
2226 		return;
2227 	}
2228 	if ((nb_rxq > 1) && (nb_txq > 1)){
2229 		if (dcb_config)
2230 			dcb_fwd_config_setup();
2231 		else
2232 			rss_fwd_config_setup();
2233 	}
2234 	else
2235 		simple_fwd_config_setup();
2236 }
2237 
2238 void
2239 pkt_fwd_config_display(struct fwd_config *cfg)
2240 {
2241 	struct fwd_stream *fs;
2242 	lcoreid_t  lc_id;
2243 	streamid_t sm_id;
2244 
2245 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2246 		"NUMA support %s, MP over anonymous pages %s\n",
2247 		cfg->fwd_eng->fwd_mode_name,
2248 		retry_enabled == 0 ? "" : " with retry",
2249 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2250 		numa_support == 1 ? "enabled" : "disabled",
2251 		mp_anon != 0 ? "enabled" : "disabled");
2252 
2253 	if (retry_enabled)
2254 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2255 			burst_tx_retry_num, burst_tx_delay_time);
2256 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2257 		printf("Logical Core %u (socket %u) forwards packets on "
2258 		       "%d streams:",
2259 		       fwd_lcores_cpuids[lc_id],
2260 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2261 		       fwd_lcores[lc_id]->stream_nb);
2262 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2263 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2264 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2265 			       "P=%d/Q=%d (socket %u) ",
2266 			       fs->rx_port, fs->rx_queue,
2267 			       ports[fs->rx_port].socket_id,
2268 			       fs->tx_port, fs->tx_queue,
2269 			       ports[fs->tx_port].socket_id);
2270 			print_ethaddr("peer=",
2271 				      &peer_eth_addrs[fs->peer_addr]);
2272 		}
2273 		printf("\n");
2274 	}
2275 	printf("\n");
2276 }
2277 
2278 void
2279 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2280 {
2281 	uint8_t c, new_peer_addr[6];
2282 	if (!rte_eth_dev_is_valid_port(port_id)) {
2283 		printf("Error: Invalid port number %i\n", port_id);
2284 		return;
2285 	}
2286 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2287 					sizeof(new_peer_addr)) < 0) {
2288 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2289 		return;
2290 	}
2291 	for (c = 0; c < 6; c++)
2292 		peer_eth_addrs[port_id].addr_bytes[c] =
2293 			new_peer_addr[c];
2294 }
2295 
2296 int
2297 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2298 {
2299 	unsigned int i;
2300 	unsigned int lcore_cpuid;
2301 	int record_now;
2302 
2303 	record_now = 0;
2304  again:
2305 	for (i = 0; i < nb_lc; i++) {
2306 		lcore_cpuid = lcorelist[i];
2307 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2308 			printf("lcore %u not enabled\n", lcore_cpuid);
2309 			return -1;
2310 		}
2311 		if (lcore_cpuid == rte_get_master_lcore()) {
2312 			printf("lcore %u cannot be masked on for running "
2313 			       "packet forwarding, which is the master lcore "
2314 			       "and reserved for command line parsing only\n",
2315 			       lcore_cpuid);
2316 			return -1;
2317 		}
2318 		if (record_now)
2319 			fwd_lcores_cpuids[i] = lcore_cpuid;
2320 	}
2321 	if (record_now == 0) {
2322 		record_now = 1;
2323 		goto again;
2324 	}
2325 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2326 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2327 		printf("previous number of forwarding cores %u - changed to "
2328 		       "number of configured cores %u\n",
2329 		       (unsigned int) nb_fwd_lcores, nb_lc);
2330 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 int
2337 set_fwd_lcores_mask(uint64_t lcoremask)
2338 {
2339 	unsigned int lcorelist[64];
2340 	unsigned int nb_lc;
2341 	unsigned int i;
2342 
2343 	if (lcoremask == 0) {
2344 		printf("Invalid NULL mask of cores\n");
2345 		return -1;
2346 	}
2347 	nb_lc = 0;
2348 	for (i = 0; i < 64; i++) {
2349 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2350 			continue;
2351 		lcorelist[nb_lc++] = i;
2352 	}
2353 	return set_fwd_lcores_list(lcorelist, nb_lc);
2354 }
2355 
2356 void
2357 set_fwd_lcores_number(uint16_t nb_lc)
2358 {
2359 	if (nb_lc > nb_cfg_lcores) {
2360 		printf("nb fwd cores %u > %u (max. number of configured "
2361 		       "lcores) - ignored\n",
2362 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2363 		return;
2364 	}
2365 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2366 	printf("Number of forwarding cores set to %u\n",
2367 	       (unsigned int) nb_fwd_lcores);
2368 }
2369 
2370 void
2371 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2372 {
2373 	unsigned int i;
2374 	portid_t port_id;
2375 	int record_now;
2376 
2377 	record_now = 0;
2378  again:
2379 	for (i = 0; i < nb_pt; i++) {
2380 		port_id = (portid_t) portlist[i];
2381 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2382 			return;
2383 		if (record_now)
2384 			fwd_ports_ids[i] = port_id;
2385 	}
2386 	if (record_now == 0) {
2387 		record_now = 1;
2388 		goto again;
2389 	}
2390 	nb_cfg_ports = (portid_t) nb_pt;
2391 	if (nb_fwd_ports != (portid_t) nb_pt) {
2392 		printf("previous number of forwarding ports %u - changed to "
2393 		       "number of configured ports %u\n",
2394 		       (unsigned int) nb_fwd_ports, nb_pt);
2395 		nb_fwd_ports = (portid_t) nb_pt;
2396 	}
2397 }
2398 
2399 void
2400 set_fwd_ports_mask(uint64_t portmask)
2401 {
2402 	unsigned int portlist[64];
2403 	unsigned int nb_pt;
2404 	unsigned int i;
2405 
2406 	if (portmask == 0) {
2407 		printf("Invalid NULL mask of ports\n");
2408 		return;
2409 	}
2410 	nb_pt = 0;
2411 	RTE_ETH_FOREACH_DEV(i) {
2412 		if (! ((uint64_t)(1ULL << i) & portmask))
2413 			continue;
2414 		portlist[nb_pt++] = i;
2415 	}
2416 	set_fwd_ports_list(portlist, nb_pt);
2417 }
2418 
2419 void
2420 set_fwd_ports_number(uint16_t nb_pt)
2421 {
2422 	if (nb_pt > nb_cfg_ports) {
2423 		printf("nb fwd ports %u > %u (number of configured "
2424 		       "ports) - ignored\n",
2425 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2426 		return;
2427 	}
2428 	nb_fwd_ports = (portid_t) nb_pt;
2429 	printf("Number of forwarding ports set to %u\n",
2430 	       (unsigned int) nb_fwd_ports);
2431 }
2432 
2433 int
2434 port_is_forwarding(portid_t port_id)
2435 {
2436 	unsigned int i;
2437 
2438 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2439 		return -1;
2440 
2441 	for (i = 0; i < nb_fwd_ports; i++) {
2442 		if (fwd_ports_ids[i] == port_id)
2443 			return 1;
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 void
2450 set_nb_pkt_per_burst(uint16_t nb)
2451 {
2452 	if (nb > MAX_PKT_BURST) {
2453 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2454 		       " ignored\n",
2455 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2456 		return;
2457 	}
2458 	nb_pkt_per_burst = nb;
2459 	printf("Number of packets per burst set to %u\n",
2460 	       (unsigned int) nb_pkt_per_burst);
2461 }
2462 
2463 static const char *
2464 tx_split_get_name(enum tx_pkt_split split)
2465 {
2466 	uint32_t i;
2467 
2468 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2469 		if (tx_split_name[i].split == split)
2470 			return tx_split_name[i].name;
2471 	}
2472 	return NULL;
2473 }
2474 
2475 void
2476 set_tx_pkt_split(const char *name)
2477 {
2478 	uint32_t i;
2479 
2480 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2481 		if (strcmp(tx_split_name[i].name, name) == 0) {
2482 			tx_pkt_split = tx_split_name[i].split;
2483 			return;
2484 		}
2485 	}
2486 	printf("unknown value: \"%s\"\n", name);
2487 }
2488 
2489 void
2490 show_tx_pkt_segments(void)
2491 {
2492 	uint32_t i, n;
2493 	const char *split;
2494 
2495 	n = tx_pkt_nb_segs;
2496 	split = tx_split_get_name(tx_pkt_split);
2497 
2498 	printf("Number of segments: %u\n", n);
2499 	printf("Segment sizes: ");
2500 	for (i = 0; i != n - 1; i++)
2501 		printf("%hu,", tx_pkt_seg_lengths[i]);
2502 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2503 	printf("Split packet: %s\n", split);
2504 }
2505 
2506 void
2507 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2508 {
2509 	uint16_t tx_pkt_len;
2510 	unsigned i;
2511 
2512 	if (nb_segs >= (unsigned) nb_txd) {
2513 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2514 		       nb_segs, (unsigned int) nb_txd);
2515 		return;
2516 	}
2517 
2518 	/*
2519 	 * Check that each segment length is greater or equal than
2520 	 * the mbuf data sise.
2521 	 * Check also that the total packet length is greater or equal than the
2522 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2523 	 */
2524 	tx_pkt_len = 0;
2525 	for (i = 0; i < nb_segs; i++) {
2526 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2527 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2528 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2529 			return;
2530 		}
2531 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2532 	}
2533 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2534 		printf("total packet length=%u < %d - give up\n",
2535 				(unsigned) tx_pkt_len,
2536 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2537 		return;
2538 	}
2539 
2540 	for (i = 0; i < nb_segs; i++)
2541 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2542 
2543 	tx_pkt_length  = tx_pkt_len;
2544 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2545 }
2546 
2547 void
2548 setup_gro(const char *onoff, portid_t port_id)
2549 {
2550 	if (!rte_eth_dev_is_valid_port(port_id)) {
2551 		printf("invalid port id %u\n", port_id);
2552 		return;
2553 	}
2554 	if (test_done == 0) {
2555 		printf("Before enable/disable GRO,"
2556 				" please stop forwarding first\n");
2557 		return;
2558 	}
2559 	if (strcmp(onoff, "on") == 0) {
2560 		if (gro_ports[port_id].enable != 0) {
2561 			printf("Port %u has enabled GRO. Please"
2562 					" disable GRO first\n", port_id);
2563 			return;
2564 		}
2565 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2566 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2567 			gro_ports[port_id].param.max_flow_num =
2568 				GRO_DEFAULT_FLOW_NUM;
2569 			gro_ports[port_id].param.max_item_per_flow =
2570 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2571 		}
2572 		gro_ports[port_id].enable = 1;
2573 	} else {
2574 		if (gro_ports[port_id].enable == 0) {
2575 			printf("Port %u has disabled GRO\n", port_id);
2576 			return;
2577 		}
2578 		gro_ports[port_id].enable = 0;
2579 	}
2580 }
2581 
2582 void
2583 setup_gro_flush_cycles(uint8_t cycles)
2584 {
2585 	if (test_done == 0) {
2586 		printf("Before change flush interval for GRO,"
2587 				" please stop forwarding first.\n");
2588 		return;
2589 	}
2590 
2591 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2592 			GRO_DEFAULT_FLUSH_CYCLES) {
2593 		printf("The flushing cycle be in the range"
2594 				" of 1 to %u. Revert to the default"
2595 				" value %u.\n",
2596 				GRO_MAX_FLUSH_CYCLES,
2597 				GRO_DEFAULT_FLUSH_CYCLES);
2598 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2599 	}
2600 
2601 	gro_flush_cycles = cycles;
2602 }
2603 
2604 void
2605 show_gro(portid_t port_id)
2606 {
2607 	struct rte_gro_param *param;
2608 	uint32_t max_pkts_num;
2609 
2610 	param = &gro_ports[port_id].param;
2611 
2612 	if (!rte_eth_dev_is_valid_port(port_id)) {
2613 		printf("Invalid port id %u.\n", port_id);
2614 		return;
2615 	}
2616 	if (gro_ports[port_id].enable) {
2617 		printf("GRO type: TCP/IPv4\n");
2618 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2619 			max_pkts_num = param->max_flow_num *
2620 				param->max_item_per_flow;
2621 		} else
2622 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2623 		printf("Max number of packets to perform GRO: %u\n",
2624 				max_pkts_num);
2625 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2626 	} else
2627 		printf("Port %u doesn't enable GRO.\n", port_id);
2628 }
2629 
2630 void
2631 setup_gso(const char *mode, portid_t port_id)
2632 {
2633 	if (!rte_eth_dev_is_valid_port(port_id)) {
2634 		printf("invalid port id %u\n", port_id);
2635 		return;
2636 	}
2637 	if (strcmp(mode, "on") == 0) {
2638 		if (test_done == 0) {
2639 			printf("before enabling GSO,"
2640 					" please stop forwarding first\n");
2641 			return;
2642 		}
2643 		gso_ports[port_id].enable = 1;
2644 	} else if (strcmp(mode, "off") == 0) {
2645 		if (test_done == 0) {
2646 			printf("before disabling GSO,"
2647 					" please stop forwarding first\n");
2648 			return;
2649 		}
2650 		gso_ports[port_id].enable = 0;
2651 	}
2652 }
2653 
2654 char*
2655 list_pkt_forwarding_modes(void)
2656 {
2657 	static char fwd_modes[128] = "";
2658 	const char *separator = "|";
2659 	struct fwd_engine *fwd_eng;
2660 	unsigned i = 0;
2661 
2662 	if (strlen (fwd_modes) == 0) {
2663 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2664 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2665 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2666 			strncat(fwd_modes, separator,
2667 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2668 		}
2669 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2670 	}
2671 
2672 	return fwd_modes;
2673 }
2674 
2675 char*
2676 list_pkt_forwarding_retry_modes(void)
2677 {
2678 	static char fwd_modes[128] = "";
2679 	const char *separator = "|";
2680 	struct fwd_engine *fwd_eng;
2681 	unsigned i = 0;
2682 
2683 	if (strlen(fwd_modes) == 0) {
2684 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2685 			if (fwd_eng == &rx_only_engine)
2686 				continue;
2687 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2688 					sizeof(fwd_modes) -
2689 					strlen(fwd_modes) - 1);
2690 			strncat(fwd_modes, separator,
2691 					sizeof(fwd_modes) -
2692 					strlen(fwd_modes) - 1);
2693 		}
2694 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2695 	}
2696 
2697 	return fwd_modes;
2698 }
2699 
2700 void
2701 set_pkt_forwarding_mode(const char *fwd_mode_name)
2702 {
2703 	struct fwd_engine *fwd_eng;
2704 	unsigned i;
2705 
2706 	i = 0;
2707 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2708 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2709 			printf("Set %s packet forwarding mode%s\n",
2710 			       fwd_mode_name,
2711 			       retry_enabled == 0 ? "" : " with retry");
2712 			cur_fwd_eng = fwd_eng;
2713 			return;
2714 		}
2715 		i++;
2716 	}
2717 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2718 }
2719 
2720 void
2721 set_verbose_level(uint16_t vb_level)
2722 {
2723 	printf("Change verbose level from %u to %u\n",
2724 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2725 	verbose_level = vb_level;
2726 }
2727 
2728 void
2729 vlan_extend_set(portid_t port_id, int on)
2730 {
2731 	int diag;
2732 	int vlan_offload;
2733 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2734 
2735 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2736 		return;
2737 
2738 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2739 
2740 	if (on) {
2741 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2742 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2743 	} else {
2744 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2745 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2746 	}
2747 
2748 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2749 	if (diag < 0)
2750 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2751 	       "diag=%d\n", port_id, on, diag);
2752 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2753 }
2754 
2755 void
2756 rx_vlan_strip_set(portid_t port_id, int on)
2757 {
2758 	int diag;
2759 	int vlan_offload;
2760 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2761 
2762 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2763 		return;
2764 
2765 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2766 
2767 	if (on) {
2768 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2769 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2770 	} else {
2771 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2772 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2773 	}
2774 
2775 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2776 	if (diag < 0)
2777 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2778 	       "diag=%d\n", port_id, on, diag);
2779 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2780 }
2781 
2782 void
2783 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2784 {
2785 	int diag;
2786 
2787 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2788 		return;
2789 
2790 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2791 	if (diag < 0)
2792 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2793 	       "diag=%d\n", port_id, queue_id, on, diag);
2794 }
2795 
2796 void
2797 rx_vlan_filter_set(portid_t port_id, int on)
2798 {
2799 	int diag;
2800 	int vlan_offload;
2801 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2802 
2803 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2804 		return;
2805 
2806 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2807 
2808 	if (on) {
2809 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2810 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2811 	} else {
2812 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2813 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2814 	}
2815 
2816 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2817 	if (diag < 0)
2818 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2819 	       "diag=%d\n", port_id, on, diag);
2820 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2821 }
2822 
2823 int
2824 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2825 {
2826 	int diag;
2827 
2828 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2829 		return 1;
2830 	if (vlan_id_is_invalid(vlan_id))
2831 		return 1;
2832 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2833 	if (diag == 0)
2834 		return 0;
2835 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2836 	       "diag=%d\n",
2837 	       port_id, vlan_id, on, diag);
2838 	return -1;
2839 }
2840 
2841 void
2842 rx_vlan_all_filter_set(portid_t port_id, int on)
2843 {
2844 	uint16_t vlan_id;
2845 
2846 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2847 		return;
2848 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2849 		if (rx_vft_set(port_id, vlan_id, on))
2850 			break;
2851 	}
2852 }
2853 
2854 void
2855 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2856 {
2857 	int diag;
2858 
2859 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2860 		return;
2861 
2862 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2863 	if (diag == 0)
2864 		return;
2865 
2866 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2867 	       "diag=%d\n",
2868 	       port_id, vlan_type, tp_id, diag);
2869 }
2870 
2871 void
2872 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2873 {
2874 	int vlan_offload;
2875 	struct rte_eth_dev_info dev_info;
2876 
2877 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2878 		return;
2879 	if (vlan_id_is_invalid(vlan_id))
2880 		return;
2881 
2882 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2883 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2884 		printf("Error, as QinQ has been enabled.\n");
2885 		return;
2886 	}
2887 	rte_eth_dev_info_get(port_id, &dev_info);
2888 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2889 		printf("Error: vlan insert is not supported by port %d\n",
2890 			port_id);
2891 		return;
2892 	}
2893 
2894 	tx_vlan_reset(port_id);
2895 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2896 	ports[port_id].tx_vlan_id = vlan_id;
2897 }
2898 
2899 void
2900 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2901 {
2902 	int vlan_offload;
2903 	struct rte_eth_dev_info dev_info;
2904 
2905 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2906 		return;
2907 	if (vlan_id_is_invalid(vlan_id))
2908 		return;
2909 	if (vlan_id_is_invalid(vlan_id_outer))
2910 		return;
2911 
2912 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2913 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2914 		printf("Error, as QinQ hasn't been enabled.\n");
2915 		return;
2916 	}
2917 	rte_eth_dev_info_get(port_id, &dev_info);
2918 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2919 		printf("Error: qinq insert not supported by port %d\n",
2920 			port_id);
2921 		return;
2922 	}
2923 
2924 	tx_vlan_reset(port_id);
2925 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2926 	ports[port_id].tx_vlan_id = vlan_id;
2927 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2928 }
2929 
2930 void
2931 tx_vlan_reset(portid_t port_id)
2932 {
2933 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2934 		return;
2935 	ports[port_id].dev_conf.txmode.offloads &=
2936 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2937 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2938 	ports[port_id].tx_vlan_id = 0;
2939 	ports[port_id].tx_vlan_id_outer = 0;
2940 }
2941 
2942 void
2943 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2944 {
2945 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2946 		return;
2947 
2948 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2949 }
2950 
2951 void
2952 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2953 {
2954 	uint16_t i;
2955 	uint8_t existing_mapping_found = 0;
2956 
2957 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2958 		return;
2959 
2960 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2961 		return;
2962 
2963 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2964 		printf("map_value not in required range 0..%d\n",
2965 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2966 		return;
2967 	}
2968 
2969 	if (!is_rx) { /*then tx*/
2970 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2971 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2972 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2973 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2974 				existing_mapping_found = 1;
2975 				break;
2976 			}
2977 		}
2978 		if (!existing_mapping_found) { /* A new additional mapping... */
2979 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2980 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2981 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2982 			nb_tx_queue_stats_mappings++;
2983 		}
2984 	}
2985 	else { /*rx*/
2986 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2987 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2988 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2989 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2990 				existing_mapping_found = 1;
2991 				break;
2992 			}
2993 		}
2994 		if (!existing_mapping_found) { /* A new additional mapping... */
2995 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2996 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2997 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2998 			nb_rx_queue_stats_mappings++;
2999 		}
3000 	}
3001 }
3002 
3003 void
3004 set_xstats_hide_zero(uint8_t on_off)
3005 {
3006 	xstats_hide_zero = on_off;
3007 }
3008 
3009 static inline void
3010 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3011 {
3012 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3013 
3014 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3015 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3016 			" tunnel_id: 0x%08x",
3017 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3018 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3019 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3020 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3021 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3022 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3023 
3024 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3025 			rte_be_to_cpu_16(mask->src_port_mask),
3026 			rte_be_to_cpu_16(mask->dst_port_mask));
3027 
3028 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3029 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3030 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3031 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3032 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3033 
3034 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3035 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3036 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3037 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3038 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3039 	}
3040 
3041 	printf("\n");
3042 }
3043 
3044 static inline void
3045 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3046 {
3047 	struct rte_eth_flex_payload_cfg *cfg;
3048 	uint32_t i, j;
3049 
3050 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3051 		cfg = &flex_conf->flex_set[i];
3052 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3053 			printf("\n    RAW:  ");
3054 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3055 			printf("\n    L2_PAYLOAD:  ");
3056 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3057 			printf("\n    L3_PAYLOAD:  ");
3058 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3059 			printf("\n    L4_PAYLOAD:  ");
3060 		else
3061 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3062 		for (j = 0; j < num; j++)
3063 			printf("  %-5u", cfg->src_offset[j]);
3064 	}
3065 	printf("\n");
3066 }
3067 
3068 static char *
3069 flowtype_to_str(uint16_t flow_type)
3070 {
3071 	struct flow_type_info {
3072 		char str[32];
3073 		uint16_t ftype;
3074 	};
3075 
3076 	uint8_t i;
3077 	static struct flow_type_info flowtype_str_table[] = {
3078 		{"raw", RTE_ETH_FLOW_RAW},
3079 		{"ipv4", RTE_ETH_FLOW_IPV4},
3080 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3081 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3082 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3083 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3084 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3085 		{"ipv6", RTE_ETH_FLOW_IPV6},
3086 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3087 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3088 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3089 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3090 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3091 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3092 		{"port", RTE_ETH_FLOW_PORT},
3093 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3094 		{"geneve", RTE_ETH_FLOW_GENEVE},
3095 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3096 	};
3097 
3098 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3099 		if (flowtype_str_table[i].ftype == flow_type)
3100 			return flowtype_str_table[i].str;
3101 	}
3102 
3103 	return NULL;
3104 }
3105 
3106 static inline void
3107 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3108 {
3109 	struct rte_eth_fdir_flex_mask *mask;
3110 	uint32_t i, j;
3111 	char *p;
3112 
3113 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3114 		mask = &flex_conf->flex_mask[i];
3115 		p = flowtype_to_str(mask->flow_type);
3116 		printf("\n    %s:\t", p ? p : "unknown");
3117 		for (j = 0; j < num; j++)
3118 			printf(" %02x", mask->mask[j]);
3119 	}
3120 	printf("\n");
3121 }
3122 
3123 static inline void
3124 print_fdir_flow_type(uint32_t flow_types_mask)
3125 {
3126 	int i;
3127 	char *p;
3128 
3129 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3130 		if (!(flow_types_mask & (1 << i)))
3131 			continue;
3132 		p = flowtype_to_str(i);
3133 		if (p)
3134 			printf(" %s", p);
3135 		else
3136 			printf(" unknown");
3137 	}
3138 	printf("\n");
3139 }
3140 
3141 void
3142 fdir_get_infos(portid_t port_id)
3143 {
3144 	struct rte_eth_fdir_stats fdir_stat;
3145 	struct rte_eth_fdir_info fdir_info;
3146 	int ret;
3147 
3148 	static const char *fdir_stats_border = "########################";
3149 
3150 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3151 		return;
3152 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3153 	if (ret < 0) {
3154 		printf("\n FDIR is not supported on port %-2d\n",
3155 			port_id);
3156 		return;
3157 	}
3158 
3159 	memset(&fdir_info, 0, sizeof(fdir_info));
3160 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3161 			       RTE_ETH_FILTER_INFO, &fdir_info);
3162 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3163 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3164 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3165 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3166 	       fdir_stats_border, port_id, fdir_stats_border);
3167 	printf("  MODE: ");
3168 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3169 		printf("  PERFECT\n");
3170 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3171 		printf("  PERFECT-MAC-VLAN\n");
3172 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3173 		printf("  PERFECT-TUNNEL\n");
3174 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3175 		printf("  SIGNATURE\n");
3176 	else
3177 		printf("  DISABLE\n");
3178 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3179 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3180 		printf("  SUPPORTED FLOW TYPE: ");
3181 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3182 	}
3183 	printf("  FLEX PAYLOAD INFO:\n");
3184 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3185 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3186 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3187 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3188 		fdir_info.flex_payload_unit,
3189 		fdir_info.max_flex_payload_segment_num,
3190 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3191 	printf("  MASK: ");
3192 	print_fdir_mask(&fdir_info.mask);
3193 	if (fdir_info.flex_conf.nb_payloads > 0) {
3194 		printf("  FLEX PAYLOAD SRC OFFSET:");
3195 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3196 	}
3197 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3198 		printf("  FLEX MASK CFG:");
3199 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3200 	}
3201 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3202 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3203 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3204 	       fdir_info.guarant_spc, fdir_info.best_spc);
3205 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3206 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3207 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3208 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3209 	       fdir_stat.collision, fdir_stat.free,
3210 	       fdir_stat.maxhash, fdir_stat.maxlen,
3211 	       fdir_stat.add, fdir_stat.remove,
3212 	       fdir_stat.f_add, fdir_stat.f_remove);
3213 	printf("  %s############################%s\n",
3214 	       fdir_stats_border, fdir_stats_border);
3215 }
3216 
3217 void
3218 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3219 {
3220 	struct rte_port *port;
3221 	struct rte_eth_fdir_flex_conf *flex_conf;
3222 	int i, idx = 0;
3223 
3224 	port = &ports[port_id];
3225 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3226 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3227 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3228 			idx = i;
3229 			break;
3230 		}
3231 	}
3232 	if (i >= RTE_ETH_FLOW_MAX) {
3233 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3234 			idx = flex_conf->nb_flexmasks;
3235 			flex_conf->nb_flexmasks++;
3236 		} else {
3237 			printf("The flex mask table is full. Can not set flex"
3238 				" mask for flow_type(%u).", cfg->flow_type);
3239 			return;
3240 		}
3241 	}
3242 	rte_memcpy(&flex_conf->flex_mask[idx],
3243 			 cfg,
3244 			 sizeof(struct rte_eth_fdir_flex_mask));
3245 }
3246 
3247 void
3248 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3249 {
3250 	struct rte_port *port;
3251 	struct rte_eth_fdir_flex_conf *flex_conf;
3252 	int i, idx = 0;
3253 
3254 	port = &ports[port_id];
3255 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3256 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3257 		if (cfg->type == flex_conf->flex_set[i].type) {
3258 			idx = i;
3259 			break;
3260 		}
3261 	}
3262 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3263 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3264 			idx = flex_conf->nb_payloads;
3265 			flex_conf->nb_payloads++;
3266 		} else {
3267 			printf("The flex payload table is full. Can not set"
3268 				" flex payload for type(%u).", cfg->type);
3269 			return;
3270 		}
3271 	}
3272 	rte_memcpy(&flex_conf->flex_set[idx],
3273 			 cfg,
3274 			 sizeof(struct rte_eth_flex_payload_cfg));
3275 
3276 }
3277 
3278 void
3279 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3280 {
3281 #ifdef RTE_LIBRTE_IXGBE_PMD
3282 	int diag;
3283 
3284 	if (is_rx)
3285 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3286 	else
3287 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3288 
3289 	if (diag == 0)
3290 		return;
3291 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3292 			is_rx ? "rx" : "tx", port_id, diag);
3293 	return;
3294 #endif
3295 	printf("VF %s setting not supported for port %d\n",
3296 			is_rx ? "Rx" : "Tx", port_id);
3297 	RTE_SET_USED(vf);
3298 	RTE_SET_USED(on);
3299 }
3300 
3301 int
3302 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3303 {
3304 	int diag;
3305 	struct rte_eth_link link;
3306 
3307 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3308 		return 1;
3309 	rte_eth_link_get_nowait(port_id, &link);
3310 	if (rate > link.link_speed) {
3311 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3312 			rate, link.link_speed);
3313 		return 1;
3314 	}
3315 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3316 	if (diag == 0)
3317 		return diag;
3318 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3319 		port_id, diag);
3320 	return diag;
3321 }
3322 
3323 int
3324 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3325 {
3326 	int diag = -ENOTSUP;
3327 
3328 	RTE_SET_USED(vf);
3329 	RTE_SET_USED(rate);
3330 	RTE_SET_USED(q_msk);
3331 
3332 #ifdef RTE_LIBRTE_IXGBE_PMD
3333 	if (diag == -ENOTSUP)
3334 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3335 						       q_msk);
3336 #endif
3337 #ifdef RTE_LIBRTE_BNXT_PMD
3338 	if (diag == -ENOTSUP)
3339 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3340 #endif
3341 	if (diag == 0)
3342 		return diag;
3343 
3344 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3345 		port_id, diag);
3346 	return diag;
3347 }
3348 
3349 /*
3350  * Functions to manage the set of filtered Multicast MAC addresses.
3351  *
3352  * A pool of filtered multicast MAC addresses is associated with each port.
3353  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3354  * The address of the pool and the number of valid multicast MAC addresses
3355  * recorded in the pool are stored in the fields "mc_addr_pool" and
3356  * "mc_addr_nb" of the "rte_port" data structure.
3357  *
3358  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3359  * to be supplied a contiguous array of multicast MAC addresses.
3360  * To comply with this constraint, the set of multicast addresses recorded
3361  * into the pool are systematically compacted at the beginning of the pool.
3362  * Hence, when a multicast address is removed from the pool, all following
3363  * addresses, if any, are copied back to keep the set contiguous.
3364  */
3365 #define MCAST_POOL_INC 32
3366 
3367 static int
3368 mcast_addr_pool_extend(struct rte_port *port)
3369 {
3370 	struct ether_addr *mc_pool;
3371 	size_t mc_pool_size;
3372 
3373 	/*
3374 	 * If a free entry is available at the end of the pool, just
3375 	 * increment the number of recorded multicast addresses.
3376 	 */
3377 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3378 		port->mc_addr_nb++;
3379 		return 0;
3380 	}
3381 
3382 	/*
3383 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3384 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3385 	 * of MCAST_POOL_INC.
3386 	 */
3387 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3388 						    MCAST_POOL_INC);
3389 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3390 						mc_pool_size);
3391 	if (mc_pool == NULL) {
3392 		printf("allocation of pool of %u multicast addresses failed\n",
3393 		       port->mc_addr_nb + MCAST_POOL_INC);
3394 		return -ENOMEM;
3395 	}
3396 
3397 	port->mc_addr_pool = mc_pool;
3398 	port->mc_addr_nb++;
3399 	return 0;
3400 
3401 }
3402 
3403 static void
3404 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3405 {
3406 	port->mc_addr_nb--;
3407 	if (addr_idx == port->mc_addr_nb) {
3408 		/* No need to recompact the set of multicast addressses. */
3409 		if (port->mc_addr_nb == 0) {
3410 			/* free the pool of multicast addresses. */
3411 			free(port->mc_addr_pool);
3412 			port->mc_addr_pool = NULL;
3413 		}
3414 		return;
3415 	}
3416 	memmove(&port->mc_addr_pool[addr_idx],
3417 		&port->mc_addr_pool[addr_idx + 1],
3418 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3419 }
3420 
3421 static void
3422 eth_port_multicast_addr_list_set(portid_t port_id)
3423 {
3424 	struct rte_port *port;
3425 	int diag;
3426 
3427 	port = &ports[port_id];
3428 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3429 					    port->mc_addr_nb);
3430 	if (diag == 0)
3431 		return;
3432 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3433 	       port->mc_addr_nb, port_id, -diag);
3434 }
3435 
3436 void
3437 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3438 {
3439 	struct rte_port *port;
3440 	uint32_t i;
3441 
3442 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3443 		return;
3444 
3445 	port = &ports[port_id];
3446 
3447 	/*
3448 	 * Check that the added multicast MAC address is not already recorded
3449 	 * in the pool of multicast addresses.
3450 	 */
3451 	for (i = 0; i < port->mc_addr_nb; i++) {
3452 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3453 			printf("multicast address already filtered by port\n");
3454 			return;
3455 		}
3456 	}
3457 
3458 	if (mcast_addr_pool_extend(port) != 0)
3459 		return;
3460 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3461 	eth_port_multicast_addr_list_set(port_id);
3462 }
3463 
3464 void
3465 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3466 {
3467 	struct rte_port *port;
3468 	uint32_t i;
3469 
3470 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3471 		return;
3472 
3473 	port = &ports[port_id];
3474 
3475 	/*
3476 	 * Search the pool of multicast MAC addresses for the removed address.
3477 	 */
3478 	for (i = 0; i < port->mc_addr_nb; i++) {
3479 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3480 			break;
3481 	}
3482 	if (i == port->mc_addr_nb) {
3483 		printf("multicast address not filtered by port %d\n", port_id);
3484 		return;
3485 	}
3486 
3487 	mcast_addr_pool_remove(port, i);
3488 	eth_port_multicast_addr_list_set(port_id);
3489 }
3490 
3491 void
3492 port_dcb_info_display(portid_t port_id)
3493 {
3494 	struct rte_eth_dcb_info dcb_info;
3495 	uint16_t i;
3496 	int ret;
3497 	static const char *border = "================";
3498 
3499 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3500 		return;
3501 
3502 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3503 	if (ret) {
3504 		printf("\n Failed to get dcb infos on port %-2d\n",
3505 			port_id);
3506 		return;
3507 	}
3508 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3509 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3510 	printf("\n  TC :        ");
3511 	for (i = 0; i < dcb_info.nb_tcs; i++)
3512 		printf("\t%4d", i);
3513 	printf("\n  Priority :  ");
3514 	for (i = 0; i < dcb_info.nb_tcs; i++)
3515 		printf("\t%4d", dcb_info.prio_tc[i]);
3516 	printf("\n  BW percent :");
3517 	for (i = 0; i < dcb_info.nb_tcs; i++)
3518 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3519 	printf("\n  RXQ base :  ");
3520 	for (i = 0; i < dcb_info.nb_tcs; i++)
3521 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3522 	printf("\n  RXQ number :");
3523 	for (i = 0; i < dcb_info.nb_tcs; i++)
3524 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3525 	printf("\n  TXQ base :  ");
3526 	for (i = 0; i < dcb_info.nb_tcs; i++)
3527 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3528 	printf("\n  TXQ number :");
3529 	for (i = 0; i < dcb_info.nb_tcs; i++)
3530 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3531 	printf("\n");
3532 }
3533 
3534 uint8_t *
3535 open_file(const char *file_path, uint32_t *size)
3536 {
3537 	int fd = open(file_path, O_RDONLY);
3538 	off_t pkg_size;
3539 	uint8_t *buf = NULL;
3540 	int ret = 0;
3541 	struct stat st_buf;
3542 
3543 	if (size)
3544 		*size = 0;
3545 
3546 	if (fd == -1) {
3547 		printf("%s: Failed to open %s\n", __func__, file_path);
3548 		return buf;
3549 	}
3550 
3551 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3552 		close(fd);
3553 		printf("%s: File operations failed\n", __func__);
3554 		return buf;
3555 	}
3556 
3557 	pkg_size = st_buf.st_size;
3558 	if (pkg_size < 0) {
3559 		close(fd);
3560 		printf("%s: File operations failed\n", __func__);
3561 		return buf;
3562 	}
3563 
3564 	buf = (uint8_t *)malloc(pkg_size);
3565 	if (!buf) {
3566 		close(fd);
3567 		printf("%s: Failed to malloc memory\n",	__func__);
3568 		return buf;
3569 	}
3570 
3571 	ret = read(fd, buf, pkg_size);
3572 	if (ret < 0) {
3573 		close(fd);
3574 		printf("%s: File read operation failed\n", __func__);
3575 		close_file(buf);
3576 		return NULL;
3577 	}
3578 
3579 	if (size)
3580 		*size = pkg_size;
3581 
3582 	close(fd);
3583 
3584 	return buf;
3585 }
3586 
3587 int
3588 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3589 {
3590 	FILE *fh = fopen(file_path, "wb");
3591 
3592 	if (fh == NULL) {
3593 		printf("%s: Failed to open %s\n", __func__, file_path);
3594 		return -1;
3595 	}
3596 
3597 	if (fwrite(buf, 1, size, fh) != size) {
3598 		fclose(fh);
3599 		printf("%s: File write operation failed\n", __func__);
3600 		return -1;
3601 	}
3602 
3603 	fclose(fh);
3604 
3605 	return 0;
3606 }
3607 
3608 int
3609 close_file(uint8_t *buf)
3610 {
3611 	if (buf) {
3612 		free((void *)buf);
3613 		return 0;
3614 	}
3615 
3616 	return -1;
3617 }
3618 
3619 void
3620 port_queue_region_info_display(portid_t port_id, void *buf)
3621 {
3622 #ifdef RTE_LIBRTE_I40E_PMD
3623 	uint16_t i, j;
3624 	struct rte_pmd_i40e_queue_regions *info =
3625 		(struct rte_pmd_i40e_queue_regions *)buf;
3626 	static const char *queue_region_info_stats_border = "-------";
3627 
3628 	if (!info->queue_region_number)
3629 		printf("there is no region has been set before");
3630 
3631 	printf("\n	%s All queue region info for port=%2d %s",
3632 			queue_region_info_stats_border, port_id,
3633 			queue_region_info_stats_border);
3634 	printf("\n	queue_region_number: %-14u \n",
3635 			info->queue_region_number);
3636 
3637 	for (i = 0; i < info->queue_region_number; i++) {
3638 		printf("\n	region_id: %-14u queue_number: %-14u "
3639 			"queue_start_index: %-14u \n",
3640 			info->region[i].region_id,
3641 			info->region[i].queue_num,
3642 			info->region[i].queue_start_index);
3643 
3644 		printf("  user_priority_num is	%-14u :",
3645 					info->region[i].user_priority_num);
3646 		for (j = 0; j < info->region[i].user_priority_num; j++)
3647 			printf(" %-14u ", info->region[i].user_priority[j]);
3648 
3649 		printf("\n	flowtype_num is  %-14u :",
3650 				info->region[i].flowtype_num);
3651 		for (j = 0; j < info->region[i].flowtype_num; j++)
3652 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3653 	}
3654 #else
3655 	RTE_SET_USED(port_id);
3656 	RTE_SET_USED(buf);
3657 #endif
3658 
3659 	printf("\n\n");
3660 }
3661