xref: /dpdk/app/test-pmd/config.c (revision cd8c7c7ce241d2ea7c059a9df07caa9411ef19ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 struct rss_type_info {
77 	char str[32];
78 	uint64_t rss_type;
79 };
80 
81 static const struct rss_type_info rss_type_table[] = {
82 	{ "ipv4", ETH_RSS_IPV4 },
83 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
84 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
85 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
86 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
87 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
88 	{ "ipv6", ETH_RSS_IPV6 },
89 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
90 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
91 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
92 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
93 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
94 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
95 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
96 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
97 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
98 	{ "port", ETH_RSS_PORT },
99 	{ "vxlan", ETH_RSS_VXLAN },
100 	{ "geneve", ETH_RSS_GENEVE },
101 	{ "nvgre", ETH_RSS_NVGRE },
102 
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 	portid_t pid;
125 
126 	static const char *nic_stats_border = "########################";
127 
128 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129 		printf("Valid port range is [0");
130 		RTE_ETH_FOREACH_DEV(pid)
131 			printf(", %d", pid);
132 		printf("]\n");
133 		return;
134 	}
135 	rte_eth_stats_get(port_id, &stats);
136 	printf("\n  %s NIC statistics for port %-2d %s\n",
137 	       nic_stats_border, port_id, nic_stats_border);
138 
139 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141 		       "%-"PRIu64"\n",
142 		       stats.ipackets, stats.imissed, stats.ibytes);
143 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144 		printf("  RX-nombuf:  %-10"PRIu64"\n",
145 		       stats.rx_nombuf);
146 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147 		       "%-"PRIu64"\n",
148 		       stats.opackets, stats.oerrors, stats.obytes);
149 	}
150 	else {
151 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152 		       "    RX-bytes: %10"PRIu64"\n",
153 		       stats.ipackets, stats.ierrors, stats.ibytes);
154 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155 		printf("  RX-nombuf:               %10"PRIu64"\n",
156 		       stats.rx_nombuf);
157 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158 		       "    TX-bytes: %10"PRIu64"\n",
159 		       stats.opackets, stats.oerrors, stats.obytes);
160 	}
161 
162 	if (port->rx_queue_stats_mapping_enabled) {
163 		printf("\n");
164 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165 			printf("  Stats reg %2d RX-packets: %10"PRIu64
166 			       "    RX-errors: %10"PRIu64
167 			       "    RX-bytes: %10"PRIu64"\n",
168 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169 		}
170 	}
171 	if (port->tx_queue_stats_mapping_enabled) {
172 		printf("\n");
173 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174 			printf("  Stats reg %2d TX-packets: %10"PRIu64
175 			       "                             TX-bytes: %10"PRIu64"\n",
176 			       i, stats.q_opackets[i], stats.q_obytes[i]);
177 		}
178 	}
179 
180 	diff_cycles = prev_cycles[port_id];
181 	prev_cycles[port_id] = rte_rdtsc();
182 	if (diff_cycles > 0)
183 		diff_cycles = prev_cycles[port_id] - diff_cycles;
184 
185 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
187 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
189 	prev_pkts_rx[port_id] = stats.ipackets;
190 	prev_pkts_tx[port_id] = stats.opackets;
191 	mpps_rx = diff_cycles > 0 ?
192 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193 	mpps_tx = diff_cycles > 0 ?
194 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195 	printf("\n  Throughput (since last show)\n");
196 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197 			mpps_rx, mpps_tx);
198 
199 	printf("  %s############################%s\n",
200 	       nic_stats_border, nic_stats_border);
201 }
202 
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206 	portid_t pid;
207 
208 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209 		printf("Valid port range is [0");
210 		RTE_ETH_FOREACH_DEV(pid)
211 			printf(", %d", pid);
212 		printf("]\n");
213 		return;
214 	}
215 	rte_eth_stats_reset(port_id);
216 	printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218 
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222 	struct rte_eth_xstat *xstats;
223 	int cnt_xstats, idx_xstat;
224 	struct rte_eth_xstat_name *xstats_names;
225 
226 	printf("###### NIC extended statistics for port %-2d\n", port_id);
227 	if (!rte_eth_dev_is_valid_port(port_id)) {
228 		printf("Error: Invalid port number %i\n", port_id);
229 		return;
230 	}
231 
232 	/* Get count */
233 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234 	if (cnt_xstats  < 0) {
235 		printf("Error: Cannot get count of xstats\n");
236 		return;
237 	}
238 
239 	/* Get id-name lookup table */
240 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241 	if (xstats_names == NULL) {
242 		printf("Cannot allocate memory for xstats lookup\n");
243 		return;
244 	}
245 	if (cnt_xstats != rte_eth_xstats_get_names(
246 			port_id, xstats_names, cnt_xstats)) {
247 		printf("Error: Cannot get xstats lookup\n");
248 		free(xstats_names);
249 		return;
250 	}
251 
252 	/* Get stats themselves */
253 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254 	if (xstats == NULL) {
255 		printf("Cannot allocate memory for xstats\n");
256 		free(xstats_names);
257 		return;
258 	}
259 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260 		printf("Error: Unable to get xstats\n");
261 		free(xstats_names);
262 		free(xstats);
263 		return;
264 	}
265 
266 	/* Display xstats */
267 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268 		if (xstats_hide_zero && !xstats[idx_xstat].value)
269 			continue;
270 		printf("%s: %"PRIu64"\n",
271 			xstats_names[idx_xstat].name,
272 			xstats[idx_xstat].value);
273 	}
274 	free(xstats_names);
275 	free(xstats);
276 }
277 
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281 	rte_eth_xstats_reset(port_id);
282 }
283 
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287 	struct rte_port *port = &ports[port_id];
288 	uint16_t i;
289 	portid_t pid;
290 
291 	static const char *nic_stats_mapping_border = "########################";
292 
293 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294 		printf("Valid port range is [0");
295 		RTE_ETH_FOREACH_DEV(pid)
296 			printf(", %d", pid);
297 		printf("]\n");
298 		return;
299 	}
300 
301 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302 		printf("Port id %d - either does not support queue statistic mapping or"
303 		       " no queue statistic mapping set\n", port_id);
304 		return;
305 	}
306 
307 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309 
310 	if (port->rx_queue_stats_mapping_enabled) {
311 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312 			if (rx_queue_stats_mappings[i].port_id == port_id) {
313 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314 				       rx_queue_stats_mappings[i].queue_id,
315 				       rx_queue_stats_mappings[i].stats_counter_id);
316 			}
317 		}
318 		printf("\n");
319 	}
320 
321 
322 	if (port->tx_queue_stats_mapping_enabled) {
323 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324 			if (tx_queue_stats_mappings[i].port_id == port_id) {
325 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326 				       tx_queue_stats_mappings[i].queue_id,
327 				       tx_queue_stats_mappings[i].stats_counter_id);
328 			}
329 		}
330 	}
331 
332 	printf("  %s####################################%s\n",
333 	       nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335 
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339 	struct rte_eth_rxq_info qinfo;
340 	int32_t rc;
341 	static const char *info_border = "*********************";
342 
343 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344 	if (rc != 0) {
345 		printf("Failed to retrieve information for port: %u, "
346 			"RX queue: %hu\nerror desc: %s(%d)\n",
347 			port_id, queue_id, strerror(-rc), rc);
348 		return;
349 	}
350 
351 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352 	       info_border, port_id, queue_id, info_border);
353 
354 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359 	printf("\nRX drop packets: %s",
360 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361 	printf("\nRX deferred start: %s",
362 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363 	printf("\nRX scattered packets: %s",
364 		(qinfo.scattered_rx != 0) ? "on" : "off");
365 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366 	printf("\n");
367 }
368 
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372 	struct rte_eth_txq_info qinfo;
373 	int32_t rc;
374 	static const char *info_border = "*********************";
375 
376 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377 	if (rc != 0) {
378 		printf("Failed to retrieve information for port: %u, "
379 			"TX queue: %hu\nerror desc: %s(%d)\n",
380 			port_id, queue_id, strerror(-rc), rc);
381 		return;
382 	}
383 
384 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385 	       info_border, port_id, queue_id, info_border);
386 
387 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392 	printf("\nTX deferred start: %s",
393 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 port_infos_display(portid_t port_id)
400 {
401 	struct rte_port *port;
402 	struct ether_addr mac_addr;
403 	struct rte_eth_link link;
404 	struct rte_eth_dev_info dev_info;
405 	int vlan_offload;
406 	struct rte_mempool * mp;
407 	static const char *info_border = "*********************";
408 	portid_t pid;
409 	uint16_t mtu;
410 
411 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412 		printf("Valid port range is [0");
413 		RTE_ETH_FOREACH_DEV(pid)
414 			printf(", %d", pid);
415 		printf("]\n");
416 		return;
417 	}
418 	port = &ports[port_id];
419 	rte_eth_link_get_nowait(port_id, &link);
420 	memset(&dev_info, 0, sizeof(dev_info));
421 	rte_eth_dev_info_get(port_id, &dev_info);
422 	printf("\n%s Infos for port %-2d %s\n",
423 	       info_border, port_id, info_border);
424 	rte_eth_macaddr_get(port_id, &mac_addr);
425 	print_ethaddr("MAC address: ", &mac_addr);
426 	printf("\nDriver name: %s", dev_info.driver_name);
427 	printf("\nConnect to socket: %u", port->socket_id);
428 
429 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
430 		mp = mbuf_pool_find(port_numa[port_id]);
431 		if (mp)
432 			printf("\nmemory allocation on the socket: %d",
433 							port_numa[port_id]);
434 	} else
435 		printf("\nmemory allocation on the socket: %u",port->socket_id);
436 
437 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440 	       ("full-duplex") : ("half-duplex"));
441 
442 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
443 		printf("MTU: %u\n", mtu);
444 
445 	printf("Promiscuous mode: %s\n",
446 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447 	printf("Allmulticast mode: %s\n",
448 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449 	printf("Maximum number of MAC addresses: %u\n",
450 	       (unsigned int)(port->dev_info.max_mac_addrs));
451 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
452 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
453 
454 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455 	if (vlan_offload >= 0){
456 		printf("VLAN offload: \n");
457 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458 			printf("  strip on \n");
459 		else
460 			printf("  strip off \n");
461 
462 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463 			printf("  filter on \n");
464 		else
465 			printf("  filter off \n");
466 
467 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468 			printf("  qinq(extend) on \n");
469 		else
470 			printf("  qinq(extend) off \n");
471 	}
472 
473 	if (dev_info.hash_key_size > 0)
474 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475 	if (dev_info.reta_size > 0)
476 		printf("Redirection table size: %u\n", dev_info.reta_size);
477 	if (!dev_info.flow_type_rss_offloads)
478 		printf("No flow type is supported.\n");
479 	else {
480 		uint16_t i;
481 		char *p;
482 
483 		printf("Supported flow types:\n");
484 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487 				continue;
488 			p = flowtype_to_str(i);
489 			if (p)
490 				printf("  %s\n", p);
491 			else
492 				printf("  user defined %d\n", i);
493 		}
494 	}
495 
496 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497 	printf("Maximum configurable length of RX packet: %u\n",
498 		dev_info.max_rx_pktlen);
499 	if (dev_info.max_vfs)
500 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501 	if (dev_info.max_vmdq_pools)
502 		printf("Maximum number of VMDq pools: %u\n",
503 			dev_info.max_vmdq_pools);
504 
505 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507 	printf("Max possible number of RXDs per queue: %hu\n",
508 		dev_info.rx_desc_lim.nb_max);
509 	printf("Min possible number of RXDs per queue: %hu\n",
510 		dev_info.rx_desc_lim.nb_min);
511 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512 
513 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515 	printf("Max possible number of TXDs per queue: %hu\n",
516 		dev_info.tx_desc_lim.nb_max);
517 	printf("Min possible number of TXDs per queue: %hu\n",
518 		dev_info.tx_desc_lim.nb_min);
519 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521 
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525 	struct rte_eth_dev_info dev_info;
526 	static const char *info_border = "************";
527 
528 	if (port_id_is_invalid(port_id, ENABLED_WARN))
529 		return;
530 
531 	rte_eth_dev_info_get(port_id, &dev_info);
532 
533 	printf("\n%s Port %d supported offload features: %s\n",
534 		info_border, port_id, info_border);
535 
536 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537 		printf("VLAN stripped:                 ");
538 		if (ports[port_id].dev_conf.rxmode.offloads &
539 		    DEV_RX_OFFLOAD_VLAN_STRIP)
540 			printf("on\n");
541 		else
542 			printf("off\n");
543 	}
544 
545 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546 		printf("Double VLANs stripped:         ");
547 		if (ports[port_id].dev_conf.rxmode.offloads &
548 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
549 			printf("on\n");
550 		else
551 			printf("off\n");
552 	}
553 
554 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555 		printf("RX IPv4 checksum:              ");
556 		if (ports[port_id].dev_conf.rxmode.offloads &
557 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
558 			printf("on\n");
559 		else
560 			printf("off\n");
561 	}
562 
563 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564 		printf("RX UDP checksum:               ");
565 		if (ports[port_id].dev_conf.rxmode.offloads &
566 		    DEV_RX_OFFLOAD_UDP_CKSUM)
567 			printf("on\n");
568 		else
569 			printf("off\n");
570 	}
571 
572 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573 		printf("RX TCP checksum:               ");
574 		if (ports[port_id].dev_conf.rxmode.offloads &
575 		    DEV_RX_OFFLOAD_TCP_CKSUM)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582 		printf("RX Outer IPv4 checksum:               ");
583 		if (ports[port_id].dev_conf.rxmode.offloads &
584 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585 			printf("on\n");
586 		else
587 			printf("off\n");
588 	}
589 
590 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591 		printf("Large receive offload:         ");
592 		if (ports[port_id].dev_conf.rxmode.offloads &
593 		    DEV_RX_OFFLOAD_TCP_LRO)
594 			printf("on\n");
595 		else
596 			printf("off\n");
597 	}
598 
599 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600 		printf("VLAN insert:                   ");
601 		if (ports[port_id].dev_conf.txmode.offloads &
602 		    DEV_TX_OFFLOAD_VLAN_INSERT)
603 			printf("on\n");
604 		else
605 			printf("off\n");
606 	}
607 
608 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609 		printf("HW timestamp:                  ");
610 		if (ports[port_id].dev_conf.rxmode.offloads &
611 		    DEV_RX_OFFLOAD_TIMESTAMP)
612 			printf("on\n");
613 		else
614 			printf("off\n");
615 	}
616 
617 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618 		printf("Double VLANs insert:           ");
619 		if (ports[port_id].dev_conf.txmode.offloads &
620 		    DEV_TX_OFFLOAD_QINQ_INSERT)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627 		printf("TX IPv4 checksum:              ");
628 		if (ports[port_id].dev_conf.txmode.offloads &
629 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
630 			printf("on\n");
631 		else
632 			printf("off\n");
633 	}
634 
635 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636 		printf("TX UDP checksum:               ");
637 		if (ports[port_id].dev_conf.txmode.offloads &
638 		    DEV_TX_OFFLOAD_UDP_CKSUM)
639 			printf("on\n");
640 		else
641 			printf("off\n");
642 	}
643 
644 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645 		printf("TX TCP checksum:               ");
646 		if (ports[port_id].dev_conf.txmode.offloads &
647 		    DEV_TX_OFFLOAD_TCP_CKSUM)
648 			printf("on\n");
649 		else
650 			printf("off\n");
651 	}
652 
653 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654 		printf("TX SCTP checksum:              ");
655 		if (ports[port_id].dev_conf.txmode.offloads &
656 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
657 			printf("on\n");
658 		else
659 			printf("off\n");
660 	}
661 
662 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663 		printf("TX Outer IPv4 checksum:        ");
664 		if (ports[port_id].dev_conf.txmode.offloads &
665 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666 			printf("on\n");
667 		else
668 			printf("off\n");
669 	}
670 
671 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672 		printf("TX TCP segmentation:           ");
673 		if (ports[port_id].dev_conf.txmode.offloads &
674 		    DEV_TX_OFFLOAD_TCP_TSO)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].dev_conf.txmode.offloads &
683 		    DEV_TX_OFFLOAD_UDP_TSO)
684 			printf("on\n");
685 		else
686 			printf("off\n");
687 	}
688 
689 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690 		printf("TSO for VXLAN tunnel packet:   ");
691 		if (ports[port_id].dev_conf.txmode.offloads &
692 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693 			printf("on\n");
694 		else
695 			printf("off\n");
696 	}
697 
698 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699 		printf("TSO for GRE tunnel packet:     ");
700 		if (ports[port_id].dev_conf.txmode.offloads &
701 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
702 			printf("on\n");
703 		else
704 			printf("off\n");
705 	}
706 
707 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708 		printf("TSO for IPIP tunnel packet:    ");
709 		if (ports[port_id].dev_conf.txmode.offloads &
710 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711 			printf("on\n");
712 		else
713 			printf("off\n");
714 	}
715 
716 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717 		printf("TSO for GENEVE tunnel packet:  ");
718 		if (ports[port_id].dev_conf.txmode.offloads &
719 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720 			printf("on\n");
721 		else
722 			printf("off\n");
723 	}
724 
725 }
726 
727 int
728 port_id_is_invalid(portid_t port_id, enum print_warning warning)
729 {
730 	uint16_t pid;
731 
732 	if (port_id == (portid_t)RTE_PORT_ALL)
733 		return 0;
734 
735 	RTE_ETH_FOREACH_DEV(pid)
736 		if (port_id == pid)
737 			return 0;
738 
739 	if (warning == ENABLED_WARN)
740 		printf("Invalid port %d\n", port_id);
741 
742 	return 1;
743 }
744 
745 static int
746 vlan_id_is_invalid(uint16_t vlan_id)
747 {
748 	if (vlan_id < 4096)
749 		return 0;
750 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
751 	return 1;
752 }
753 
754 static int
755 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
756 {
757 	const struct rte_pci_device *pci_dev;
758 	const struct rte_bus *bus;
759 	uint64_t pci_len;
760 
761 	if (reg_off & 0x3) {
762 		printf("Port register offset 0x%X not aligned on a 4-byte "
763 		       "boundary\n",
764 		       (unsigned)reg_off);
765 		return 1;
766 	}
767 
768 	if (!ports[port_id].dev_info.device) {
769 		printf("Invalid device\n");
770 		return 0;
771 	}
772 
773 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
774 	if (bus && !strcmp(bus->name, "pci")) {
775 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
776 	} else {
777 		printf("Not a PCI device\n");
778 		return 1;
779 	}
780 
781 	pci_len = pci_dev->mem_resource[0].len;
782 	if (reg_off >= pci_len) {
783 		printf("Port %d: register offset %u (0x%X) out of port PCI "
784 		       "resource (length=%"PRIu64")\n",
785 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
786 		return 1;
787 	}
788 	return 0;
789 }
790 
791 static int
792 reg_bit_pos_is_invalid(uint8_t bit_pos)
793 {
794 	if (bit_pos <= 31)
795 		return 0;
796 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
797 	return 1;
798 }
799 
800 #define display_port_and_reg_off(port_id, reg_off) \
801 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
802 
803 static inline void
804 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
805 {
806 	display_port_and_reg_off(port_id, (unsigned)reg_off);
807 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
808 }
809 
810 void
811 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
812 {
813 	uint32_t reg_v;
814 
815 
816 	if (port_id_is_invalid(port_id, ENABLED_WARN))
817 		return;
818 	if (port_reg_off_is_invalid(port_id, reg_off))
819 		return;
820 	if (reg_bit_pos_is_invalid(bit_x))
821 		return;
822 	reg_v = port_id_pci_reg_read(port_id, reg_off);
823 	display_port_and_reg_off(port_id, (unsigned)reg_off);
824 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
825 }
826 
827 void
828 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
829 			   uint8_t bit1_pos, uint8_t bit2_pos)
830 {
831 	uint32_t reg_v;
832 	uint8_t  l_bit;
833 	uint8_t  h_bit;
834 
835 	if (port_id_is_invalid(port_id, ENABLED_WARN))
836 		return;
837 	if (port_reg_off_is_invalid(port_id, reg_off))
838 		return;
839 	if (reg_bit_pos_is_invalid(bit1_pos))
840 		return;
841 	if (reg_bit_pos_is_invalid(bit2_pos))
842 		return;
843 	if (bit1_pos > bit2_pos)
844 		l_bit = bit2_pos, h_bit = bit1_pos;
845 	else
846 		l_bit = bit1_pos, h_bit = bit2_pos;
847 
848 	reg_v = port_id_pci_reg_read(port_id, reg_off);
849 	reg_v >>= l_bit;
850 	if (h_bit < 31)
851 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
852 	display_port_and_reg_off(port_id, (unsigned)reg_off);
853 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
854 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
855 }
856 
857 void
858 port_reg_display(portid_t port_id, uint32_t reg_off)
859 {
860 	uint32_t reg_v;
861 
862 	if (port_id_is_invalid(port_id, ENABLED_WARN))
863 		return;
864 	if (port_reg_off_is_invalid(port_id, reg_off))
865 		return;
866 	reg_v = port_id_pci_reg_read(port_id, reg_off);
867 	display_port_reg_value(port_id, reg_off, reg_v);
868 }
869 
870 void
871 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
872 		 uint8_t bit_v)
873 {
874 	uint32_t reg_v;
875 
876 	if (port_id_is_invalid(port_id, ENABLED_WARN))
877 		return;
878 	if (port_reg_off_is_invalid(port_id, reg_off))
879 		return;
880 	if (reg_bit_pos_is_invalid(bit_pos))
881 		return;
882 	if (bit_v > 1) {
883 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
884 		return;
885 	}
886 	reg_v = port_id_pci_reg_read(port_id, reg_off);
887 	if (bit_v == 0)
888 		reg_v &= ~(1 << bit_pos);
889 	else
890 		reg_v |= (1 << bit_pos);
891 	port_id_pci_reg_write(port_id, reg_off, reg_v);
892 	display_port_reg_value(port_id, reg_off, reg_v);
893 }
894 
895 void
896 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
897 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
898 {
899 	uint32_t max_v;
900 	uint32_t reg_v;
901 	uint8_t  l_bit;
902 	uint8_t  h_bit;
903 
904 	if (port_id_is_invalid(port_id, ENABLED_WARN))
905 		return;
906 	if (port_reg_off_is_invalid(port_id, reg_off))
907 		return;
908 	if (reg_bit_pos_is_invalid(bit1_pos))
909 		return;
910 	if (reg_bit_pos_is_invalid(bit2_pos))
911 		return;
912 	if (bit1_pos > bit2_pos)
913 		l_bit = bit2_pos, h_bit = bit1_pos;
914 	else
915 		l_bit = bit1_pos, h_bit = bit2_pos;
916 
917 	if ((h_bit - l_bit) < 31)
918 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
919 	else
920 		max_v = 0xFFFFFFFF;
921 
922 	if (value > max_v) {
923 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
924 				(unsigned)value, (unsigned)value,
925 				(unsigned)max_v, (unsigned)max_v);
926 		return;
927 	}
928 	reg_v = port_id_pci_reg_read(port_id, reg_off);
929 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
930 	reg_v |= (value << l_bit); /* Set changed bits */
931 	port_id_pci_reg_write(port_id, reg_off, reg_v);
932 	display_port_reg_value(port_id, reg_off, reg_v);
933 }
934 
935 void
936 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
937 {
938 	if (port_id_is_invalid(port_id, ENABLED_WARN))
939 		return;
940 	if (port_reg_off_is_invalid(port_id, reg_off))
941 		return;
942 	port_id_pci_reg_write(port_id, reg_off, reg_v);
943 	display_port_reg_value(port_id, reg_off, reg_v);
944 }
945 
946 void
947 port_mtu_set(portid_t port_id, uint16_t mtu)
948 {
949 	int diag;
950 
951 	if (port_id_is_invalid(port_id, ENABLED_WARN))
952 		return;
953 	diag = rte_eth_dev_set_mtu(port_id, mtu);
954 	if (diag == 0)
955 		return;
956 	printf("Set MTU failed. diag=%d\n", diag);
957 }
958 
959 /* Generic flow management functions. */
960 
961 /** Generate flow_item[] entry. */
962 #define MK_FLOW_ITEM(t, s) \
963 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
964 		.name = # t, \
965 		.size = s, \
966 	}
967 
968 /** Information about known flow pattern items. */
969 static const struct {
970 	const char *name;
971 	size_t size;
972 } flow_item[] = {
973 	MK_FLOW_ITEM(END, 0),
974 	MK_FLOW_ITEM(VOID, 0),
975 	MK_FLOW_ITEM(INVERT, 0),
976 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
977 	MK_FLOW_ITEM(PF, 0),
978 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
979 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
980 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
981 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
982 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
983 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
984 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
985 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
986 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
987 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
988 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
989 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
990 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
991 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
992 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
993 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
994 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
995 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
996 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
997 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
998 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
999 };
1000 
1001 /** Compute storage space needed by item specification. */
1002 static void
1003 flow_item_spec_size(const struct rte_flow_item *item,
1004 		    size_t *size, size_t *pad)
1005 {
1006 	if (!item->spec) {
1007 		*size = 0;
1008 		goto empty;
1009 	}
1010 	switch (item->type) {
1011 		union {
1012 			const struct rte_flow_item_raw *raw;
1013 		} spec;
1014 
1015 	case RTE_FLOW_ITEM_TYPE_RAW:
1016 		spec.raw = item->spec;
1017 		*size = offsetof(struct rte_flow_item_raw, pattern) +
1018 			spec.raw->length * sizeof(*spec.raw->pattern);
1019 		break;
1020 	default:
1021 		*size = flow_item[item->type].size;
1022 		break;
1023 	}
1024 empty:
1025 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1026 }
1027 
1028 /** Generate flow_action[] entry. */
1029 #define MK_FLOW_ACTION(t, s) \
1030 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1031 		.name = # t, \
1032 		.size = s, \
1033 	}
1034 
1035 /** Information about known flow actions. */
1036 static const struct {
1037 	const char *name;
1038 	size_t size;
1039 } flow_action[] = {
1040 	MK_FLOW_ACTION(END, 0),
1041 	MK_FLOW_ACTION(VOID, 0),
1042 	MK_FLOW_ACTION(PASSTHRU, 0),
1043 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1044 	MK_FLOW_ACTION(FLAG, 0),
1045 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1046 	MK_FLOW_ACTION(DROP, 0),
1047 	MK_FLOW_ACTION(COUNT, 0),
1048 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1049 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1050 	MK_FLOW_ACTION(PF, 0),
1051 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1052 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1053 };
1054 
1055 /** Compute storage space needed by action configuration. */
1056 static void
1057 flow_action_conf_size(const struct rte_flow_action *action,
1058 		      size_t *size, size_t *pad)
1059 {
1060 	if (!action->conf) {
1061 		*size = 0;
1062 		goto empty;
1063 	}
1064 	switch (action->type) {
1065 		union {
1066 			const struct rte_flow_action_rss *rss;
1067 		} conf;
1068 
1069 	case RTE_FLOW_ACTION_TYPE_RSS:
1070 		conf.rss = action->conf;
1071 		*size = offsetof(struct rte_flow_action_rss, queue) +
1072 			conf.rss->num * sizeof(*conf.rss->queue);
1073 		break;
1074 	default:
1075 		*size = flow_action[action->type].size;
1076 		break;
1077 	}
1078 empty:
1079 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1080 }
1081 
1082 /** Generate a port_flow entry from attributes/pattern/actions. */
1083 static struct port_flow *
1084 port_flow_new(const struct rte_flow_attr *attr,
1085 	      const struct rte_flow_item *pattern,
1086 	      const struct rte_flow_action *actions)
1087 {
1088 	const struct rte_flow_item *item;
1089 	const struct rte_flow_action *action;
1090 	struct port_flow *pf = NULL;
1091 	size_t tmp;
1092 	size_t pad;
1093 	size_t off1 = 0;
1094 	size_t off2 = 0;
1095 	int err = ENOTSUP;
1096 
1097 store:
1098 	item = pattern;
1099 	if (pf)
1100 		pf->pattern = (void *)&pf->data[off1];
1101 	do {
1102 		struct rte_flow_item *dst = NULL;
1103 
1104 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1105 		    !flow_item[item->type].name)
1106 			goto notsup;
1107 		if (pf)
1108 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1109 		off1 += sizeof(*item);
1110 		flow_item_spec_size(item, &tmp, &pad);
1111 		if (item->spec) {
1112 			if (pf)
1113 				dst->spec = memcpy(pf->data + off2,
1114 						   item->spec, tmp);
1115 			off2 += tmp + pad;
1116 		}
1117 		if (item->last) {
1118 			if (pf)
1119 				dst->last = memcpy(pf->data + off2,
1120 						   item->last, tmp);
1121 			off2 += tmp + pad;
1122 		}
1123 		if (item->mask) {
1124 			if (pf)
1125 				dst->mask = memcpy(pf->data + off2,
1126 						   item->mask, tmp);
1127 			off2 += tmp + pad;
1128 		}
1129 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1130 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1131 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1132 	action = actions;
1133 	if (pf)
1134 		pf->actions = (void *)&pf->data[off1];
1135 	do {
1136 		struct rte_flow_action *dst = NULL;
1137 
1138 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1139 		    !flow_action[action->type].name)
1140 			goto notsup;
1141 		if (pf)
1142 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1143 		off1 += sizeof(*action);
1144 		flow_action_conf_size(action, &tmp, &pad);
1145 		if (action->conf) {
1146 			if (pf)
1147 				dst->conf = memcpy(pf->data + off2,
1148 						   action->conf, tmp);
1149 			off2 += tmp + pad;
1150 		}
1151 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1152 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1153 	if (pf != NULL)
1154 		return pf;
1155 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1156 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1157 	pf = calloc(1, tmp + off1 + off2);
1158 	if (pf == NULL)
1159 		err = errno;
1160 	else {
1161 		*pf = (const struct port_flow){
1162 			.size = tmp + off1 + off2,
1163 			.attr = *attr,
1164 		};
1165 		tmp -= offsetof(struct port_flow, data);
1166 		off2 = tmp + off1;
1167 		off1 = tmp;
1168 		goto store;
1169 	}
1170 notsup:
1171 	rte_errno = err;
1172 	return NULL;
1173 }
1174 
1175 /** Print a message out of a flow error. */
1176 static int
1177 port_flow_complain(struct rte_flow_error *error)
1178 {
1179 	static const char *const errstrlist[] = {
1180 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1181 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1182 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1183 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1184 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1185 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1186 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1187 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1188 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1189 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1190 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1191 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1192 	};
1193 	const char *errstr;
1194 	char buf[32];
1195 	int err = rte_errno;
1196 
1197 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1198 	    !errstrlist[error->type])
1199 		errstr = "unknown type";
1200 	else
1201 		errstr = errstrlist[error->type];
1202 	printf("Caught error type %d (%s): %s%s\n",
1203 	       error->type, errstr,
1204 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1205 					error->cause), buf) : "",
1206 	       error->message ? error->message : "(no stated reason)");
1207 	return -err;
1208 }
1209 
1210 /** Validate flow rule. */
1211 int
1212 port_flow_validate(portid_t port_id,
1213 		   const struct rte_flow_attr *attr,
1214 		   const struct rte_flow_item *pattern,
1215 		   const struct rte_flow_action *actions)
1216 {
1217 	struct rte_flow_error error;
1218 
1219 	/* Poisoning to make sure PMDs update it in case of error. */
1220 	memset(&error, 0x11, sizeof(error));
1221 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1222 		return port_flow_complain(&error);
1223 	printf("Flow rule validated\n");
1224 	return 0;
1225 }
1226 
1227 /** Create flow rule. */
1228 int
1229 port_flow_create(portid_t port_id,
1230 		 const struct rte_flow_attr *attr,
1231 		 const struct rte_flow_item *pattern,
1232 		 const struct rte_flow_action *actions)
1233 {
1234 	struct rte_flow *flow;
1235 	struct rte_port *port;
1236 	struct port_flow *pf;
1237 	uint32_t id;
1238 	struct rte_flow_error error;
1239 
1240 	/* Poisoning to make sure PMDs update it in case of error. */
1241 	memset(&error, 0x22, sizeof(error));
1242 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1243 	if (!flow)
1244 		return port_flow_complain(&error);
1245 	port = &ports[port_id];
1246 	if (port->flow_list) {
1247 		if (port->flow_list->id == UINT32_MAX) {
1248 			printf("Highest rule ID is already assigned, delete"
1249 			       " it first");
1250 			rte_flow_destroy(port_id, flow, NULL);
1251 			return -ENOMEM;
1252 		}
1253 		id = port->flow_list->id + 1;
1254 	} else
1255 		id = 0;
1256 	pf = port_flow_new(attr, pattern, actions);
1257 	if (!pf) {
1258 		int err = rte_errno;
1259 
1260 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1261 		rte_flow_destroy(port_id, flow, NULL);
1262 		return -err;
1263 	}
1264 	pf->next = port->flow_list;
1265 	pf->id = id;
1266 	pf->flow = flow;
1267 	port->flow_list = pf;
1268 	printf("Flow rule #%u created\n", pf->id);
1269 	return 0;
1270 }
1271 
1272 /** Destroy a number of flow rules. */
1273 int
1274 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1275 {
1276 	struct rte_port *port;
1277 	struct port_flow **tmp;
1278 	uint32_t c = 0;
1279 	int ret = 0;
1280 
1281 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1282 	    port_id == (portid_t)RTE_PORT_ALL)
1283 		return -EINVAL;
1284 	port = &ports[port_id];
1285 	tmp = &port->flow_list;
1286 	while (*tmp) {
1287 		uint32_t i;
1288 
1289 		for (i = 0; i != n; ++i) {
1290 			struct rte_flow_error error;
1291 			struct port_flow *pf = *tmp;
1292 
1293 			if (rule[i] != pf->id)
1294 				continue;
1295 			/*
1296 			 * Poisoning to make sure PMDs update it in case
1297 			 * of error.
1298 			 */
1299 			memset(&error, 0x33, sizeof(error));
1300 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1301 				ret = port_flow_complain(&error);
1302 				continue;
1303 			}
1304 			printf("Flow rule #%u destroyed\n", pf->id);
1305 			*tmp = pf->next;
1306 			free(pf);
1307 			break;
1308 		}
1309 		if (i == n)
1310 			tmp = &(*tmp)->next;
1311 		++c;
1312 	}
1313 	return ret;
1314 }
1315 
1316 /** Remove all flow rules. */
1317 int
1318 port_flow_flush(portid_t port_id)
1319 {
1320 	struct rte_flow_error error;
1321 	struct rte_port *port;
1322 	int ret = 0;
1323 
1324 	/* Poisoning to make sure PMDs update it in case of error. */
1325 	memset(&error, 0x44, sizeof(error));
1326 	if (rte_flow_flush(port_id, &error)) {
1327 		ret = port_flow_complain(&error);
1328 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1329 		    port_id == (portid_t)RTE_PORT_ALL)
1330 			return ret;
1331 	}
1332 	port = &ports[port_id];
1333 	while (port->flow_list) {
1334 		struct port_flow *pf = port->flow_list->next;
1335 
1336 		free(port->flow_list);
1337 		port->flow_list = pf;
1338 	}
1339 	return ret;
1340 }
1341 
1342 /** Query a flow rule. */
1343 int
1344 port_flow_query(portid_t port_id, uint32_t rule,
1345 		enum rte_flow_action_type action)
1346 {
1347 	struct rte_flow_error error;
1348 	struct rte_port *port;
1349 	struct port_flow *pf;
1350 	const char *name;
1351 	union {
1352 		struct rte_flow_query_count count;
1353 	} query;
1354 
1355 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1356 	    port_id == (portid_t)RTE_PORT_ALL)
1357 		return -EINVAL;
1358 	port = &ports[port_id];
1359 	for (pf = port->flow_list; pf; pf = pf->next)
1360 		if (pf->id == rule)
1361 			break;
1362 	if (!pf) {
1363 		printf("Flow rule #%u not found\n", rule);
1364 		return -ENOENT;
1365 	}
1366 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1367 	    !flow_action[action].name)
1368 		name = "unknown";
1369 	else
1370 		name = flow_action[action].name;
1371 	switch (action) {
1372 	case RTE_FLOW_ACTION_TYPE_COUNT:
1373 		break;
1374 	default:
1375 		printf("Cannot query action type %d (%s)\n", action, name);
1376 		return -ENOTSUP;
1377 	}
1378 	/* Poisoning to make sure PMDs update it in case of error. */
1379 	memset(&error, 0x55, sizeof(error));
1380 	memset(&query, 0, sizeof(query));
1381 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1382 		return port_flow_complain(&error);
1383 	switch (action) {
1384 	case RTE_FLOW_ACTION_TYPE_COUNT:
1385 		printf("%s:\n"
1386 		       " hits_set: %u\n"
1387 		       " bytes_set: %u\n"
1388 		       " hits: %" PRIu64 "\n"
1389 		       " bytes: %" PRIu64 "\n",
1390 		       name,
1391 		       query.count.hits_set,
1392 		       query.count.bytes_set,
1393 		       query.count.hits,
1394 		       query.count.bytes);
1395 		break;
1396 	default:
1397 		printf("Cannot display result for action type %d (%s)\n",
1398 		       action, name);
1399 		break;
1400 	}
1401 	return 0;
1402 }
1403 
1404 /** List flow rules. */
1405 void
1406 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1407 {
1408 	struct rte_port *port;
1409 	struct port_flow *pf;
1410 	struct port_flow *list = NULL;
1411 	uint32_t i;
1412 
1413 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1414 	    port_id == (portid_t)RTE_PORT_ALL)
1415 		return;
1416 	port = &ports[port_id];
1417 	if (!port->flow_list)
1418 		return;
1419 	/* Sort flows by group, priority and ID. */
1420 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1421 		struct port_flow **tmp;
1422 
1423 		if (n) {
1424 			/* Filter out unwanted groups. */
1425 			for (i = 0; i != n; ++i)
1426 				if (pf->attr.group == group[i])
1427 					break;
1428 			if (i == n)
1429 				continue;
1430 		}
1431 		tmp = &list;
1432 		while (*tmp &&
1433 		       (pf->attr.group > (*tmp)->attr.group ||
1434 			(pf->attr.group == (*tmp)->attr.group &&
1435 			 pf->attr.priority > (*tmp)->attr.priority) ||
1436 			(pf->attr.group == (*tmp)->attr.group &&
1437 			 pf->attr.priority == (*tmp)->attr.priority &&
1438 			 pf->id > (*tmp)->id)))
1439 			tmp = &(*tmp)->tmp;
1440 		pf->tmp = *tmp;
1441 		*tmp = pf;
1442 	}
1443 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1444 	for (pf = list; pf != NULL; pf = pf->tmp) {
1445 		const struct rte_flow_item *item = pf->pattern;
1446 		const struct rte_flow_action *action = pf->actions;
1447 
1448 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1449 		       pf->id,
1450 		       pf->attr.group,
1451 		       pf->attr.priority,
1452 		       pf->attr.ingress ? 'i' : '-',
1453 		       pf->attr.egress ? 'e' : '-');
1454 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1455 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1456 				printf("%s ", flow_item[item->type].name);
1457 			++item;
1458 		}
1459 		printf("=>");
1460 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1461 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1462 				printf(" %s", flow_action[action->type].name);
1463 			++action;
1464 		}
1465 		printf("\n");
1466 	}
1467 }
1468 
1469 /** Restrict ingress traffic to the defined flow rules. */
1470 int
1471 port_flow_isolate(portid_t port_id, int set)
1472 {
1473 	struct rte_flow_error error;
1474 
1475 	/* Poisoning to make sure PMDs update it in case of error. */
1476 	memset(&error, 0x66, sizeof(error));
1477 	if (rte_flow_isolate(port_id, set, &error))
1478 		return port_flow_complain(&error);
1479 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1480 	       port_id,
1481 	       set ? "now restricted" : "not restricted anymore");
1482 	return 0;
1483 }
1484 
1485 /*
1486  * RX/TX ring descriptors display functions.
1487  */
1488 int
1489 rx_queue_id_is_invalid(queueid_t rxq_id)
1490 {
1491 	if (rxq_id < nb_rxq)
1492 		return 0;
1493 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1494 	return 1;
1495 }
1496 
1497 int
1498 tx_queue_id_is_invalid(queueid_t txq_id)
1499 {
1500 	if (txq_id < nb_txq)
1501 		return 0;
1502 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1503 	return 1;
1504 }
1505 
1506 static int
1507 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1508 {
1509 	if (rxdesc_id < nb_rxd)
1510 		return 0;
1511 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1512 	       rxdesc_id, nb_rxd);
1513 	return 1;
1514 }
1515 
1516 static int
1517 tx_desc_id_is_invalid(uint16_t txdesc_id)
1518 {
1519 	if (txdesc_id < nb_txd)
1520 		return 0;
1521 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1522 	       txdesc_id, nb_txd);
1523 	return 1;
1524 }
1525 
1526 static const struct rte_memzone *
1527 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1528 {
1529 	char mz_name[RTE_MEMZONE_NAMESIZE];
1530 	const struct rte_memzone *mz;
1531 
1532 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1533 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1534 	mz = rte_memzone_lookup(mz_name);
1535 	if (mz == NULL)
1536 		printf("%s ring memory zoneof (port %d, queue %d) not"
1537 		       "found (zone name = %s\n",
1538 		       ring_name, port_id, q_id, mz_name);
1539 	return mz;
1540 }
1541 
1542 union igb_ring_dword {
1543 	uint64_t dword;
1544 	struct {
1545 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1546 		uint32_t lo;
1547 		uint32_t hi;
1548 #else
1549 		uint32_t hi;
1550 		uint32_t lo;
1551 #endif
1552 	} words;
1553 };
1554 
1555 struct igb_ring_desc_32_bytes {
1556 	union igb_ring_dword lo_dword;
1557 	union igb_ring_dword hi_dword;
1558 	union igb_ring_dword resv1;
1559 	union igb_ring_dword resv2;
1560 };
1561 
1562 struct igb_ring_desc_16_bytes {
1563 	union igb_ring_dword lo_dword;
1564 	union igb_ring_dword hi_dword;
1565 };
1566 
1567 static void
1568 ring_rxd_display_dword(union igb_ring_dword dword)
1569 {
1570 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1571 					(unsigned)dword.words.hi);
1572 }
1573 
1574 static void
1575 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1576 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1577 			   portid_t port_id,
1578 #else
1579 			   __rte_unused portid_t port_id,
1580 #endif
1581 			   uint16_t desc_id)
1582 {
1583 	struct igb_ring_desc_16_bytes *ring =
1584 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1585 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1586 	struct rte_eth_dev_info dev_info;
1587 
1588 	memset(&dev_info, 0, sizeof(dev_info));
1589 	rte_eth_dev_info_get(port_id, &dev_info);
1590 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1591 		/* 32 bytes RX descriptor, i40e only */
1592 		struct igb_ring_desc_32_bytes *ring =
1593 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1594 		ring[desc_id].lo_dword.dword =
1595 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1596 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1597 		ring[desc_id].hi_dword.dword =
1598 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1599 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1600 		ring[desc_id].resv1.dword =
1601 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1602 		ring_rxd_display_dword(ring[desc_id].resv1);
1603 		ring[desc_id].resv2.dword =
1604 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1605 		ring_rxd_display_dword(ring[desc_id].resv2);
1606 
1607 		return;
1608 	}
1609 #endif
1610 	/* 16 bytes RX descriptor */
1611 	ring[desc_id].lo_dword.dword =
1612 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1613 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1614 	ring[desc_id].hi_dword.dword =
1615 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1616 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1617 }
1618 
1619 static void
1620 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1621 {
1622 	struct igb_ring_desc_16_bytes *ring;
1623 	struct igb_ring_desc_16_bytes txd;
1624 
1625 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1626 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1627 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1628 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1629 			(unsigned)txd.lo_dword.words.lo,
1630 			(unsigned)txd.lo_dword.words.hi,
1631 			(unsigned)txd.hi_dword.words.lo,
1632 			(unsigned)txd.hi_dword.words.hi);
1633 }
1634 
1635 void
1636 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1637 {
1638 	const struct rte_memzone *rx_mz;
1639 
1640 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1641 		return;
1642 	if (rx_queue_id_is_invalid(rxq_id))
1643 		return;
1644 	if (rx_desc_id_is_invalid(rxd_id))
1645 		return;
1646 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1647 	if (rx_mz == NULL)
1648 		return;
1649 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1650 }
1651 
1652 void
1653 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1654 {
1655 	const struct rte_memzone *tx_mz;
1656 
1657 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1658 		return;
1659 	if (tx_queue_id_is_invalid(txq_id))
1660 		return;
1661 	if (tx_desc_id_is_invalid(txd_id))
1662 		return;
1663 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1664 	if (tx_mz == NULL)
1665 		return;
1666 	ring_tx_descriptor_display(tx_mz, txd_id);
1667 }
1668 
1669 void
1670 fwd_lcores_config_display(void)
1671 {
1672 	lcoreid_t lc_id;
1673 
1674 	printf("List of forwarding lcores:");
1675 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1676 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1677 	printf("\n");
1678 }
1679 void
1680 rxtx_config_display(void)
1681 {
1682 	portid_t pid;
1683 
1684 	printf("  %s packet forwarding%s packets/burst=%d\n",
1685 	       cur_fwd_eng->fwd_mode_name,
1686 	       retry_enabled == 0 ? "" : " with retry",
1687 	       nb_pkt_per_burst);
1688 
1689 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1690 		printf("  packet len=%u - nb packet segments=%d\n",
1691 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1692 
1693 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1694 	       nb_fwd_lcores, nb_fwd_ports);
1695 
1696 	RTE_ETH_FOREACH_DEV(pid) {
1697 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf;
1698 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf;
1699 
1700 		printf("  port %d:\n", (unsigned int)pid);
1701 		printf("  CRC stripping %s\n",
1702 				(ports[pid].dev_conf.rxmode.offloads &
1703 				 DEV_RX_OFFLOAD_CRC_STRIP) ?
1704 				"enabled" : "disabled");
1705 		printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1706 				nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1707 		printf("  RX threshold registers: pthresh=%d hthresh=%d "
1708 		       " wthresh=%d\n",
1709 				rx_conf->rx_thresh.pthresh,
1710 				rx_conf->rx_thresh.hthresh,
1711 				rx_conf->rx_thresh.wthresh);
1712 		printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1713 				nb_txq, nb_txd, tx_conf->tx_free_thresh);
1714 		printf("  TX threshold registers: pthresh=%d hthresh=%d "
1715 		       " wthresh=%d\n",
1716 				tx_conf->tx_thresh.pthresh,
1717 				tx_conf->tx_thresh.hthresh,
1718 				tx_conf->tx_thresh.wthresh);
1719 		printf("  TX RS bit threshold=%d - TXQ offloads=0x%"PRIx64"\n",
1720 				tx_conf->tx_rs_thresh, tx_conf->offloads);
1721 	}
1722 }
1723 
1724 void
1725 port_rss_reta_info(portid_t port_id,
1726 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1727 		   uint16_t nb_entries)
1728 {
1729 	uint16_t i, idx, shift;
1730 	int ret;
1731 
1732 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1733 		return;
1734 
1735 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1736 	if (ret != 0) {
1737 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1738 		return;
1739 	}
1740 
1741 	for (i = 0; i < nb_entries; i++) {
1742 		idx = i / RTE_RETA_GROUP_SIZE;
1743 		shift = i % RTE_RETA_GROUP_SIZE;
1744 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1745 			continue;
1746 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1747 					i, reta_conf[idx].reta[shift]);
1748 	}
1749 }
1750 
1751 /*
1752  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1753  * key of the port.
1754  */
1755 void
1756 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1757 {
1758 	struct rte_eth_rss_conf rss_conf;
1759 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1760 	uint64_t rss_hf;
1761 	uint8_t i;
1762 	int diag;
1763 	struct rte_eth_dev_info dev_info;
1764 	uint8_t hash_key_size;
1765 
1766 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1767 		return;
1768 
1769 	memset(&dev_info, 0, sizeof(dev_info));
1770 	rte_eth_dev_info_get(port_id, &dev_info);
1771 	if (dev_info.hash_key_size > 0 &&
1772 			dev_info.hash_key_size <= sizeof(rss_key))
1773 		hash_key_size = dev_info.hash_key_size;
1774 	else {
1775 		printf("dev_info did not provide a valid hash key size\n");
1776 		return;
1777 	}
1778 
1779 	rss_conf.rss_hf = 0;
1780 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1781 		if (!strcmp(rss_info, rss_type_table[i].str))
1782 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1783 	}
1784 
1785 	/* Get RSS hash key if asked to display it */
1786 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1787 	rss_conf.rss_key_len = hash_key_size;
1788 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1789 	if (diag != 0) {
1790 		switch (diag) {
1791 		case -ENODEV:
1792 			printf("port index %d invalid\n", port_id);
1793 			break;
1794 		case -ENOTSUP:
1795 			printf("operation not supported by device\n");
1796 			break;
1797 		default:
1798 			printf("operation failed - diag=%d\n", diag);
1799 			break;
1800 		}
1801 		return;
1802 	}
1803 	rss_hf = rss_conf.rss_hf;
1804 	if (rss_hf == 0) {
1805 		printf("RSS disabled\n");
1806 		return;
1807 	}
1808 	printf("RSS functions:\n ");
1809 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1810 		if (rss_hf & rss_type_table[i].rss_type)
1811 			printf("%s ", rss_type_table[i].str);
1812 	}
1813 	printf("\n");
1814 	if (!show_rss_key)
1815 		return;
1816 	printf("RSS key:\n");
1817 	for (i = 0; i < hash_key_size; i++)
1818 		printf("%02X", rss_key[i]);
1819 	printf("\n");
1820 }
1821 
1822 void
1823 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1824 			 uint hash_key_len)
1825 {
1826 	struct rte_eth_rss_conf rss_conf;
1827 	int diag;
1828 	unsigned int i;
1829 
1830 	rss_conf.rss_key = NULL;
1831 	rss_conf.rss_key_len = hash_key_len;
1832 	rss_conf.rss_hf = 0;
1833 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1834 		if (!strcmp(rss_type_table[i].str, rss_type))
1835 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1836 	}
1837 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1838 	if (diag == 0) {
1839 		rss_conf.rss_key = hash_key;
1840 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1841 	}
1842 	if (diag == 0)
1843 		return;
1844 
1845 	switch (diag) {
1846 	case -ENODEV:
1847 		printf("port index %d invalid\n", port_id);
1848 		break;
1849 	case -ENOTSUP:
1850 		printf("operation not supported by device\n");
1851 		break;
1852 	default:
1853 		printf("operation failed - diag=%d\n", diag);
1854 		break;
1855 	}
1856 }
1857 
1858 /*
1859  * Setup forwarding configuration for each logical core.
1860  */
1861 static void
1862 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1863 {
1864 	streamid_t nb_fs_per_lcore;
1865 	streamid_t nb_fs;
1866 	streamid_t sm_id;
1867 	lcoreid_t  nb_extra;
1868 	lcoreid_t  nb_fc;
1869 	lcoreid_t  nb_lc;
1870 	lcoreid_t  lc_id;
1871 
1872 	nb_fs = cfg->nb_fwd_streams;
1873 	nb_fc = cfg->nb_fwd_lcores;
1874 	if (nb_fs <= nb_fc) {
1875 		nb_fs_per_lcore = 1;
1876 		nb_extra = 0;
1877 	} else {
1878 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1879 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1880 	}
1881 
1882 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1883 	sm_id = 0;
1884 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1885 		fwd_lcores[lc_id]->stream_idx = sm_id;
1886 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1887 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1888 	}
1889 
1890 	/*
1891 	 * Assign extra remaining streams, if any.
1892 	 */
1893 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1894 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1895 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1896 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1897 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1898 	}
1899 }
1900 
1901 static portid_t
1902 fwd_topology_tx_port_get(portid_t rxp)
1903 {
1904 	static int warning_once = 1;
1905 
1906 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
1907 
1908 	switch (port_topology) {
1909 	default:
1910 	case PORT_TOPOLOGY_PAIRED:
1911 		if ((rxp & 0x1) == 0) {
1912 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
1913 				return rxp + 1;
1914 			if (warning_once) {
1915 				printf("\nWarning! port-topology=paired"
1916 				       " and odd forward ports number,"
1917 				       " the last port will pair with"
1918 				       " itself.\n\n");
1919 				warning_once = 0;
1920 			}
1921 			return rxp;
1922 		}
1923 		return rxp - 1;
1924 	case PORT_TOPOLOGY_CHAINED:
1925 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
1926 	case PORT_TOPOLOGY_LOOP:
1927 		return rxp;
1928 	}
1929 }
1930 
1931 static void
1932 simple_fwd_config_setup(void)
1933 {
1934 	portid_t i;
1935 
1936 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1937 	cur_fwd_config.nb_fwd_streams =
1938 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1939 
1940 	/* reinitialize forwarding streams */
1941 	init_fwd_streams();
1942 
1943 	/*
1944 	 * In the simple forwarding test, the number of forwarding cores
1945 	 * must be lower or equal to the number of forwarding ports.
1946 	 */
1947 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1948 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1949 		cur_fwd_config.nb_fwd_lcores =
1950 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1951 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1952 
1953 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
1954 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1955 		fwd_streams[i]->rx_queue  = 0;
1956 		fwd_streams[i]->tx_port   =
1957 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
1958 		fwd_streams[i]->tx_queue  = 0;
1959 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
1960 		fwd_streams[i]->retry_enabled = retry_enabled;
1961 	}
1962 }
1963 
1964 /**
1965  * For the RSS forwarding test all streams distributed over lcores. Each stream
1966  * being composed of a RX queue to poll on a RX port for input messages,
1967  * associated with a TX queue of a TX port where to send forwarded packets.
1968  */
1969 static void
1970 rss_fwd_config_setup(void)
1971 {
1972 	portid_t   rxp;
1973 	portid_t   txp;
1974 	queueid_t  rxq;
1975 	queueid_t  nb_q;
1976 	streamid_t  sm_id;
1977 
1978 	nb_q = nb_rxq;
1979 	if (nb_q > nb_txq)
1980 		nb_q = nb_txq;
1981 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1982 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1983 	cur_fwd_config.nb_fwd_streams =
1984 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1985 
1986 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1987 		cur_fwd_config.nb_fwd_lcores =
1988 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1989 
1990 	/* reinitialize forwarding streams */
1991 	init_fwd_streams();
1992 
1993 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1994 	rxp = 0; rxq = 0;
1995 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1996 		struct fwd_stream *fs;
1997 
1998 		fs = fwd_streams[sm_id];
1999 		txp = fwd_topology_tx_port_get(rxp);
2000 		fs->rx_port = fwd_ports_ids[rxp];
2001 		fs->rx_queue = rxq;
2002 		fs->tx_port = fwd_ports_ids[txp];
2003 		fs->tx_queue = rxq;
2004 		fs->peer_addr = fs->tx_port;
2005 		fs->retry_enabled = retry_enabled;
2006 		rxq = (queueid_t) (rxq + 1);
2007 		if (rxq < nb_q)
2008 			continue;
2009 		/*
2010 		 * rxq == nb_q
2011 		 * Restart from RX queue 0 on next RX port
2012 		 */
2013 		rxq = 0;
2014 		rxp++;
2015 	}
2016 }
2017 
2018 /**
2019  * For the DCB forwarding test, each core is assigned on each traffic class.
2020  *
2021  * Each core is assigned a multi-stream, each stream being composed of
2022  * a RX queue to poll on a RX port for input messages, associated with
2023  * a TX queue of a TX port where to send forwarded packets. All RX and
2024  * TX queues are mapping to the same traffic class.
2025  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2026  * the same core
2027  */
2028 static void
2029 dcb_fwd_config_setup(void)
2030 {
2031 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2032 	portid_t txp, rxp = 0;
2033 	queueid_t txq, rxq = 0;
2034 	lcoreid_t  lc_id;
2035 	uint16_t nb_rx_queue, nb_tx_queue;
2036 	uint16_t i, j, k, sm_id = 0;
2037 	uint8_t tc = 0;
2038 
2039 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2040 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2041 	cur_fwd_config.nb_fwd_streams =
2042 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2043 
2044 	/* reinitialize forwarding streams */
2045 	init_fwd_streams();
2046 	sm_id = 0;
2047 	txp = 1;
2048 	/* get the dcb info on the first RX and TX ports */
2049 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2050 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2051 
2052 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2053 		fwd_lcores[lc_id]->stream_nb = 0;
2054 		fwd_lcores[lc_id]->stream_idx = sm_id;
2055 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2056 			/* if the nb_queue is zero, means this tc is
2057 			 * not enabled on the POOL
2058 			 */
2059 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2060 				break;
2061 			k = fwd_lcores[lc_id]->stream_nb +
2062 				fwd_lcores[lc_id]->stream_idx;
2063 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2064 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2065 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2066 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2067 			for (j = 0; j < nb_rx_queue; j++) {
2068 				struct fwd_stream *fs;
2069 
2070 				fs = fwd_streams[k + j];
2071 				fs->rx_port = fwd_ports_ids[rxp];
2072 				fs->rx_queue = rxq + j;
2073 				fs->tx_port = fwd_ports_ids[txp];
2074 				fs->tx_queue = txq + j % nb_tx_queue;
2075 				fs->peer_addr = fs->tx_port;
2076 				fs->retry_enabled = retry_enabled;
2077 			}
2078 			fwd_lcores[lc_id]->stream_nb +=
2079 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2080 		}
2081 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2082 
2083 		tc++;
2084 		if (tc < rxp_dcb_info.nb_tcs)
2085 			continue;
2086 		/* Restart from TC 0 on next RX port */
2087 		tc = 0;
2088 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2089 			rxp = (portid_t)
2090 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2091 		else
2092 			rxp++;
2093 		if (rxp >= nb_fwd_ports)
2094 			return;
2095 		/* get the dcb information on next RX and TX ports */
2096 		if ((rxp & 0x1) == 0)
2097 			txp = (portid_t) (rxp + 1);
2098 		else
2099 			txp = (portid_t) (rxp - 1);
2100 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2101 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2102 	}
2103 }
2104 
2105 static void
2106 icmp_echo_config_setup(void)
2107 {
2108 	portid_t  rxp;
2109 	queueid_t rxq;
2110 	lcoreid_t lc_id;
2111 	uint16_t  sm_id;
2112 
2113 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2114 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2115 			(nb_txq * nb_fwd_ports);
2116 	else
2117 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2118 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2119 	cur_fwd_config.nb_fwd_streams =
2120 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2121 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2122 		cur_fwd_config.nb_fwd_lcores =
2123 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2124 	if (verbose_level > 0) {
2125 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2126 		       __FUNCTION__,
2127 		       cur_fwd_config.nb_fwd_lcores,
2128 		       cur_fwd_config.nb_fwd_ports,
2129 		       cur_fwd_config.nb_fwd_streams);
2130 	}
2131 
2132 	/* reinitialize forwarding streams */
2133 	init_fwd_streams();
2134 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2135 	rxp = 0; rxq = 0;
2136 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2137 		if (verbose_level > 0)
2138 			printf("  core=%d: \n", lc_id);
2139 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2140 			struct fwd_stream *fs;
2141 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2142 			fs->rx_port = fwd_ports_ids[rxp];
2143 			fs->rx_queue = rxq;
2144 			fs->tx_port = fs->rx_port;
2145 			fs->tx_queue = rxq;
2146 			fs->peer_addr = fs->tx_port;
2147 			fs->retry_enabled = retry_enabled;
2148 			if (verbose_level > 0)
2149 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2150 				       sm_id, fs->rx_port, fs->rx_queue,
2151 				       fs->tx_queue);
2152 			rxq = (queueid_t) (rxq + 1);
2153 			if (rxq == nb_rxq) {
2154 				rxq = 0;
2155 				rxp = (portid_t) (rxp + 1);
2156 			}
2157 		}
2158 	}
2159 }
2160 
2161 void
2162 fwd_config_setup(void)
2163 {
2164 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2165 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2166 		icmp_echo_config_setup();
2167 		return;
2168 	}
2169 	if ((nb_rxq > 1) && (nb_txq > 1)){
2170 		if (dcb_config)
2171 			dcb_fwd_config_setup();
2172 		else
2173 			rss_fwd_config_setup();
2174 	}
2175 	else
2176 		simple_fwd_config_setup();
2177 }
2178 
2179 void
2180 pkt_fwd_config_display(struct fwd_config *cfg)
2181 {
2182 	struct fwd_stream *fs;
2183 	lcoreid_t  lc_id;
2184 	streamid_t sm_id;
2185 
2186 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2187 		"NUMA support %s, MP over anonymous pages %s\n",
2188 		cfg->fwd_eng->fwd_mode_name,
2189 		retry_enabled == 0 ? "" : " with retry",
2190 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2191 		numa_support == 1 ? "enabled" : "disabled",
2192 		mp_anon != 0 ? "enabled" : "disabled");
2193 
2194 	if (retry_enabled)
2195 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2196 			burst_tx_retry_num, burst_tx_delay_time);
2197 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2198 		printf("Logical Core %u (socket %u) forwards packets on "
2199 		       "%d streams:",
2200 		       fwd_lcores_cpuids[lc_id],
2201 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2202 		       fwd_lcores[lc_id]->stream_nb);
2203 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2204 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2205 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2206 			       "P=%d/Q=%d (socket %u) ",
2207 			       fs->rx_port, fs->rx_queue,
2208 			       ports[fs->rx_port].socket_id,
2209 			       fs->tx_port, fs->tx_queue,
2210 			       ports[fs->tx_port].socket_id);
2211 			print_ethaddr("peer=",
2212 				      &peer_eth_addrs[fs->peer_addr]);
2213 		}
2214 		printf("\n");
2215 	}
2216 	printf("\n");
2217 }
2218 
2219 void
2220 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2221 {
2222 	uint8_t c, new_peer_addr[6];
2223 	if (!rte_eth_dev_is_valid_port(port_id)) {
2224 		printf("Error: Invalid port number %i\n", port_id);
2225 		return;
2226 	}
2227 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2228 					sizeof(new_peer_addr)) < 0) {
2229 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2230 		return;
2231 	}
2232 	for (c = 0; c < 6; c++)
2233 		peer_eth_addrs[port_id].addr_bytes[c] =
2234 			new_peer_addr[c];
2235 }
2236 
2237 int
2238 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2239 {
2240 	unsigned int i;
2241 	unsigned int lcore_cpuid;
2242 	int record_now;
2243 
2244 	record_now = 0;
2245  again:
2246 	for (i = 0; i < nb_lc; i++) {
2247 		lcore_cpuid = lcorelist[i];
2248 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2249 			printf("lcore %u not enabled\n", lcore_cpuid);
2250 			return -1;
2251 		}
2252 		if (lcore_cpuid == rte_get_master_lcore()) {
2253 			printf("lcore %u cannot be masked on for running "
2254 			       "packet forwarding, which is the master lcore "
2255 			       "and reserved for command line parsing only\n",
2256 			       lcore_cpuid);
2257 			return -1;
2258 		}
2259 		if (record_now)
2260 			fwd_lcores_cpuids[i] = lcore_cpuid;
2261 	}
2262 	if (record_now == 0) {
2263 		record_now = 1;
2264 		goto again;
2265 	}
2266 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2267 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2268 		printf("previous number of forwarding cores %u - changed to "
2269 		       "number of configured cores %u\n",
2270 		       (unsigned int) nb_fwd_lcores, nb_lc);
2271 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 int
2278 set_fwd_lcores_mask(uint64_t lcoremask)
2279 {
2280 	unsigned int lcorelist[64];
2281 	unsigned int nb_lc;
2282 	unsigned int i;
2283 
2284 	if (lcoremask == 0) {
2285 		printf("Invalid NULL mask of cores\n");
2286 		return -1;
2287 	}
2288 	nb_lc = 0;
2289 	for (i = 0; i < 64; i++) {
2290 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2291 			continue;
2292 		lcorelist[nb_lc++] = i;
2293 	}
2294 	return set_fwd_lcores_list(lcorelist, nb_lc);
2295 }
2296 
2297 void
2298 set_fwd_lcores_number(uint16_t nb_lc)
2299 {
2300 	if (nb_lc > nb_cfg_lcores) {
2301 		printf("nb fwd cores %u > %u (max. number of configured "
2302 		       "lcores) - ignored\n",
2303 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2304 		return;
2305 	}
2306 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2307 	printf("Number of forwarding cores set to %u\n",
2308 	       (unsigned int) nb_fwd_lcores);
2309 }
2310 
2311 void
2312 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2313 {
2314 	unsigned int i;
2315 	portid_t port_id;
2316 	int record_now;
2317 
2318 	record_now = 0;
2319  again:
2320 	for (i = 0; i < nb_pt; i++) {
2321 		port_id = (portid_t) portlist[i];
2322 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2323 			return;
2324 		if (record_now)
2325 			fwd_ports_ids[i] = port_id;
2326 	}
2327 	if (record_now == 0) {
2328 		record_now = 1;
2329 		goto again;
2330 	}
2331 	nb_cfg_ports = (portid_t) nb_pt;
2332 	if (nb_fwd_ports != (portid_t) nb_pt) {
2333 		printf("previous number of forwarding ports %u - changed to "
2334 		       "number of configured ports %u\n",
2335 		       (unsigned int) nb_fwd_ports, nb_pt);
2336 		nb_fwd_ports = (portid_t) nb_pt;
2337 	}
2338 }
2339 
2340 void
2341 set_fwd_ports_mask(uint64_t portmask)
2342 {
2343 	unsigned int portlist[64];
2344 	unsigned int nb_pt;
2345 	unsigned int i;
2346 
2347 	if (portmask == 0) {
2348 		printf("Invalid NULL mask of ports\n");
2349 		return;
2350 	}
2351 	nb_pt = 0;
2352 	RTE_ETH_FOREACH_DEV(i) {
2353 		if (! ((uint64_t)(1ULL << i) & portmask))
2354 			continue;
2355 		portlist[nb_pt++] = i;
2356 	}
2357 	set_fwd_ports_list(portlist, nb_pt);
2358 }
2359 
2360 void
2361 set_fwd_ports_number(uint16_t nb_pt)
2362 {
2363 	if (nb_pt > nb_cfg_ports) {
2364 		printf("nb fwd ports %u > %u (number of configured "
2365 		       "ports) - ignored\n",
2366 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2367 		return;
2368 	}
2369 	nb_fwd_ports = (portid_t) nb_pt;
2370 	printf("Number of forwarding ports set to %u\n",
2371 	       (unsigned int) nb_fwd_ports);
2372 }
2373 
2374 int
2375 port_is_forwarding(portid_t port_id)
2376 {
2377 	unsigned int i;
2378 
2379 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2380 		return -1;
2381 
2382 	for (i = 0; i < nb_fwd_ports; i++) {
2383 		if (fwd_ports_ids[i] == port_id)
2384 			return 1;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 void
2391 set_nb_pkt_per_burst(uint16_t nb)
2392 {
2393 	if (nb > MAX_PKT_BURST) {
2394 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2395 		       " ignored\n",
2396 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2397 		return;
2398 	}
2399 	nb_pkt_per_burst = nb;
2400 	printf("Number of packets per burst set to %u\n",
2401 	       (unsigned int) nb_pkt_per_burst);
2402 }
2403 
2404 static const char *
2405 tx_split_get_name(enum tx_pkt_split split)
2406 {
2407 	uint32_t i;
2408 
2409 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2410 		if (tx_split_name[i].split == split)
2411 			return tx_split_name[i].name;
2412 	}
2413 	return NULL;
2414 }
2415 
2416 void
2417 set_tx_pkt_split(const char *name)
2418 {
2419 	uint32_t i;
2420 
2421 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2422 		if (strcmp(tx_split_name[i].name, name) == 0) {
2423 			tx_pkt_split = tx_split_name[i].split;
2424 			return;
2425 		}
2426 	}
2427 	printf("unknown value: \"%s\"\n", name);
2428 }
2429 
2430 void
2431 show_tx_pkt_segments(void)
2432 {
2433 	uint32_t i, n;
2434 	const char *split;
2435 
2436 	n = tx_pkt_nb_segs;
2437 	split = tx_split_get_name(tx_pkt_split);
2438 
2439 	printf("Number of segments: %u\n", n);
2440 	printf("Segment sizes: ");
2441 	for (i = 0; i != n - 1; i++)
2442 		printf("%hu,", tx_pkt_seg_lengths[i]);
2443 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2444 	printf("Split packet: %s\n", split);
2445 }
2446 
2447 void
2448 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2449 {
2450 	uint16_t tx_pkt_len;
2451 	unsigned i;
2452 
2453 	if (nb_segs >= (unsigned) nb_txd) {
2454 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2455 		       nb_segs, (unsigned int) nb_txd);
2456 		return;
2457 	}
2458 
2459 	/*
2460 	 * Check that each segment length is greater or equal than
2461 	 * the mbuf data sise.
2462 	 * Check also that the total packet length is greater or equal than the
2463 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2464 	 */
2465 	tx_pkt_len = 0;
2466 	for (i = 0; i < nb_segs; i++) {
2467 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2468 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2469 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2470 			return;
2471 		}
2472 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2473 	}
2474 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2475 		printf("total packet length=%u < %d - give up\n",
2476 				(unsigned) tx_pkt_len,
2477 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2478 		return;
2479 	}
2480 
2481 	for (i = 0; i < nb_segs; i++)
2482 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2483 
2484 	tx_pkt_length  = tx_pkt_len;
2485 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2486 }
2487 
2488 void
2489 setup_gro(const char *onoff, portid_t port_id)
2490 {
2491 	if (!rte_eth_dev_is_valid_port(port_id)) {
2492 		printf("invalid port id %u\n", port_id);
2493 		return;
2494 	}
2495 	if (test_done == 0) {
2496 		printf("Before enable/disable GRO,"
2497 				" please stop forwarding first\n");
2498 		return;
2499 	}
2500 	if (strcmp(onoff, "on") == 0) {
2501 		if (gro_ports[port_id].enable != 0) {
2502 			printf("Port %u has enabled GRO. Please"
2503 					" disable GRO first\n", port_id);
2504 			return;
2505 		}
2506 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2507 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2508 			gro_ports[port_id].param.max_flow_num =
2509 				GRO_DEFAULT_FLOW_NUM;
2510 			gro_ports[port_id].param.max_item_per_flow =
2511 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2512 		}
2513 		gro_ports[port_id].enable = 1;
2514 	} else {
2515 		if (gro_ports[port_id].enable == 0) {
2516 			printf("Port %u has disabled GRO\n", port_id);
2517 			return;
2518 		}
2519 		gro_ports[port_id].enable = 0;
2520 	}
2521 }
2522 
2523 void
2524 setup_gro_flush_cycles(uint8_t cycles)
2525 {
2526 	if (test_done == 0) {
2527 		printf("Before change flush interval for GRO,"
2528 				" please stop forwarding first.\n");
2529 		return;
2530 	}
2531 
2532 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2533 			GRO_DEFAULT_FLUSH_CYCLES) {
2534 		printf("The flushing cycle be in the range"
2535 				" of 1 to %u. Revert to the default"
2536 				" value %u.\n",
2537 				GRO_MAX_FLUSH_CYCLES,
2538 				GRO_DEFAULT_FLUSH_CYCLES);
2539 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2540 	}
2541 
2542 	gro_flush_cycles = cycles;
2543 }
2544 
2545 void
2546 show_gro(portid_t port_id)
2547 {
2548 	struct rte_gro_param *param;
2549 	uint32_t max_pkts_num;
2550 
2551 	param = &gro_ports[port_id].param;
2552 
2553 	if (!rte_eth_dev_is_valid_port(port_id)) {
2554 		printf("Invalid port id %u.\n", port_id);
2555 		return;
2556 	}
2557 	if (gro_ports[port_id].enable) {
2558 		printf("GRO type: TCP/IPv4\n");
2559 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2560 			max_pkts_num = param->max_flow_num *
2561 				param->max_item_per_flow;
2562 		} else
2563 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2564 		printf("Max number of packets to perform GRO: %u\n",
2565 				max_pkts_num);
2566 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2567 	} else
2568 		printf("Port %u doesn't enable GRO.\n", port_id);
2569 }
2570 
2571 void
2572 setup_gso(const char *mode, portid_t port_id)
2573 {
2574 	if (!rte_eth_dev_is_valid_port(port_id)) {
2575 		printf("invalid port id %u\n", port_id);
2576 		return;
2577 	}
2578 	if (strcmp(mode, "on") == 0) {
2579 		if (test_done == 0) {
2580 			printf("before enabling GSO,"
2581 					" please stop forwarding first\n");
2582 			return;
2583 		}
2584 		gso_ports[port_id].enable = 1;
2585 	} else if (strcmp(mode, "off") == 0) {
2586 		if (test_done == 0) {
2587 			printf("before disabling GSO,"
2588 					" please stop forwarding first\n");
2589 			return;
2590 		}
2591 		gso_ports[port_id].enable = 0;
2592 	}
2593 }
2594 
2595 char*
2596 list_pkt_forwarding_modes(void)
2597 {
2598 	static char fwd_modes[128] = "";
2599 	const char *separator = "|";
2600 	struct fwd_engine *fwd_eng;
2601 	unsigned i = 0;
2602 
2603 	if (strlen (fwd_modes) == 0) {
2604 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2605 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2606 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2607 			strncat(fwd_modes, separator,
2608 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2609 		}
2610 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2611 	}
2612 
2613 	return fwd_modes;
2614 }
2615 
2616 char*
2617 list_pkt_forwarding_retry_modes(void)
2618 {
2619 	static char fwd_modes[128] = "";
2620 	const char *separator = "|";
2621 	struct fwd_engine *fwd_eng;
2622 	unsigned i = 0;
2623 
2624 	if (strlen(fwd_modes) == 0) {
2625 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2626 			if (fwd_eng == &rx_only_engine)
2627 				continue;
2628 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2629 					sizeof(fwd_modes) -
2630 					strlen(fwd_modes) - 1);
2631 			strncat(fwd_modes, separator,
2632 					sizeof(fwd_modes) -
2633 					strlen(fwd_modes) - 1);
2634 		}
2635 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2636 	}
2637 
2638 	return fwd_modes;
2639 }
2640 
2641 void
2642 set_pkt_forwarding_mode(const char *fwd_mode_name)
2643 {
2644 	struct fwd_engine *fwd_eng;
2645 	unsigned i;
2646 
2647 	i = 0;
2648 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2649 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2650 			printf("Set %s packet forwarding mode%s\n",
2651 			       fwd_mode_name,
2652 			       retry_enabled == 0 ? "" : " with retry");
2653 			cur_fwd_eng = fwd_eng;
2654 			return;
2655 		}
2656 		i++;
2657 	}
2658 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2659 }
2660 
2661 void
2662 set_verbose_level(uint16_t vb_level)
2663 {
2664 	printf("Change verbose level from %u to %u\n",
2665 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2666 	verbose_level = vb_level;
2667 }
2668 
2669 void
2670 vlan_extend_set(portid_t port_id, int on)
2671 {
2672 	int diag;
2673 	int vlan_offload;
2674 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2675 
2676 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2677 		return;
2678 
2679 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2680 
2681 	if (on) {
2682 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2683 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2684 	} else {
2685 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2686 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2687 	}
2688 
2689 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2690 	if (diag < 0)
2691 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2692 	       "diag=%d\n", port_id, on, diag);
2693 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2694 }
2695 
2696 void
2697 rx_vlan_strip_set(portid_t port_id, int on)
2698 {
2699 	int diag;
2700 	int vlan_offload;
2701 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2702 
2703 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2704 		return;
2705 
2706 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2707 
2708 	if (on) {
2709 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2710 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2711 	} else {
2712 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2713 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2714 	}
2715 
2716 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2717 	if (diag < 0)
2718 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2719 	       "diag=%d\n", port_id, on, diag);
2720 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2721 }
2722 
2723 void
2724 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2725 {
2726 	int diag;
2727 
2728 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2729 		return;
2730 
2731 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2732 	if (diag < 0)
2733 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2734 	       "diag=%d\n", port_id, queue_id, on, diag);
2735 }
2736 
2737 void
2738 rx_vlan_filter_set(portid_t port_id, int on)
2739 {
2740 	int diag;
2741 	int vlan_offload;
2742 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2743 
2744 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2745 		return;
2746 
2747 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2748 
2749 	if (on) {
2750 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2751 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2752 	} else {
2753 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2754 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2755 	}
2756 
2757 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2758 	if (diag < 0)
2759 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2760 	       "diag=%d\n", port_id, on, diag);
2761 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2762 }
2763 
2764 int
2765 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2766 {
2767 	int diag;
2768 
2769 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2770 		return 1;
2771 	if (vlan_id_is_invalid(vlan_id))
2772 		return 1;
2773 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2774 	if (diag == 0)
2775 		return 0;
2776 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2777 	       "diag=%d\n",
2778 	       port_id, vlan_id, on, diag);
2779 	return -1;
2780 }
2781 
2782 void
2783 rx_vlan_all_filter_set(portid_t port_id, int on)
2784 {
2785 	uint16_t vlan_id;
2786 
2787 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2788 		return;
2789 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2790 		if (rx_vft_set(port_id, vlan_id, on))
2791 			break;
2792 	}
2793 }
2794 
2795 void
2796 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2797 {
2798 	int diag;
2799 
2800 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2801 		return;
2802 
2803 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2804 	if (diag == 0)
2805 		return;
2806 
2807 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2808 	       "diag=%d\n",
2809 	       port_id, vlan_type, tp_id, diag);
2810 }
2811 
2812 void
2813 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2814 {
2815 	int vlan_offload;
2816 	struct rte_eth_dev_info dev_info;
2817 
2818 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2819 		return;
2820 	if (vlan_id_is_invalid(vlan_id))
2821 		return;
2822 
2823 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2824 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2825 		printf("Error, as QinQ has been enabled.\n");
2826 		return;
2827 	}
2828 	rte_eth_dev_info_get(port_id, &dev_info);
2829 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2830 		printf("Error: vlan insert is not supported by port %d\n",
2831 			port_id);
2832 		return;
2833 	}
2834 
2835 	tx_vlan_reset(port_id);
2836 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2837 	ports[port_id].tx_vlan_id = vlan_id;
2838 }
2839 
2840 void
2841 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2842 {
2843 	int vlan_offload;
2844 	struct rte_eth_dev_info dev_info;
2845 
2846 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2847 		return;
2848 	if (vlan_id_is_invalid(vlan_id))
2849 		return;
2850 	if (vlan_id_is_invalid(vlan_id_outer))
2851 		return;
2852 
2853 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2854 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2855 		printf("Error, as QinQ hasn't been enabled.\n");
2856 		return;
2857 	}
2858 	rte_eth_dev_info_get(port_id, &dev_info);
2859 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2860 		printf("Error: qinq insert not supported by port %d\n",
2861 			port_id);
2862 		return;
2863 	}
2864 
2865 	tx_vlan_reset(port_id);
2866 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2867 	ports[port_id].tx_vlan_id = vlan_id;
2868 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2869 }
2870 
2871 void
2872 tx_vlan_reset(portid_t port_id)
2873 {
2874 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2875 		return;
2876 	ports[port_id].dev_conf.txmode.offloads &=
2877 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2878 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2879 	ports[port_id].tx_vlan_id = 0;
2880 	ports[port_id].tx_vlan_id_outer = 0;
2881 }
2882 
2883 void
2884 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2885 {
2886 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2887 		return;
2888 
2889 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2890 }
2891 
2892 void
2893 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2894 {
2895 	uint16_t i;
2896 	uint8_t existing_mapping_found = 0;
2897 
2898 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2899 		return;
2900 
2901 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2902 		return;
2903 
2904 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2905 		printf("map_value not in required range 0..%d\n",
2906 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2907 		return;
2908 	}
2909 
2910 	if (!is_rx) { /*then tx*/
2911 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2912 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2913 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2914 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2915 				existing_mapping_found = 1;
2916 				break;
2917 			}
2918 		}
2919 		if (!existing_mapping_found) { /* A new additional mapping... */
2920 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2921 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2922 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2923 			nb_tx_queue_stats_mappings++;
2924 		}
2925 	}
2926 	else { /*rx*/
2927 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2928 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2929 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2930 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2931 				existing_mapping_found = 1;
2932 				break;
2933 			}
2934 		}
2935 		if (!existing_mapping_found) { /* A new additional mapping... */
2936 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2937 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2938 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2939 			nb_rx_queue_stats_mappings++;
2940 		}
2941 	}
2942 }
2943 
2944 void
2945 set_xstats_hide_zero(uint8_t on_off)
2946 {
2947 	xstats_hide_zero = on_off;
2948 }
2949 
2950 static inline void
2951 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2952 {
2953 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2954 
2955 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2956 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2957 			" tunnel_id: 0x%08x",
2958 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2959 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2960 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2961 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2962 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2963 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2964 
2965 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2966 			rte_be_to_cpu_16(mask->src_port_mask),
2967 			rte_be_to_cpu_16(mask->dst_port_mask));
2968 
2969 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2970 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2971 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2972 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2973 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2974 
2975 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2976 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2977 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2978 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2979 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2980 	}
2981 
2982 	printf("\n");
2983 }
2984 
2985 static inline void
2986 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2987 {
2988 	struct rte_eth_flex_payload_cfg *cfg;
2989 	uint32_t i, j;
2990 
2991 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2992 		cfg = &flex_conf->flex_set[i];
2993 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2994 			printf("\n    RAW:  ");
2995 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2996 			printf("\n    L2_PAYLOAD:  ");
2997 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2998 			printf("\n    L3_PAYLOAD:  ");
2999 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3000 			printf("\n    L4_PAYLOAD:  ");
3001 		else
3002 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3003 		for (j = 0; j < num; j++)
3004 			printf("  %-5u", cfg->src_offset[j]);
3005 	}
3006 	printf("\n");
3007 }
3008 
3009 static char *
3010 flowtype_to_str(uint16_t flow_type)
3011 {
3012 	struct flow_type_info {
3013 		char str[32];
3014 		uint16_t ftype;
3015 	};
3016 
3017 	uint8_t i;
3018 	static struct flow_type_info flowtype_str_table[] = {
3019 		{"raw", RTE_ETH_FLOW_RAW},
3020 		{"ipv4", RTE_ETH_FLOW_IPV4},
3021 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3022 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3023 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3024 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3025 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3026 		{"ipv6", RTE_ETH_FLOW_IPV6},
3027 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3028 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3029 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3030 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3031 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3032 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3033 		{"port", RTE_ETH_FLOW_PORT},
3034 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3035 		{"geneve", RTE_ETH_FLOW_GENEVE},
3036 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3037 	};
3038 
3039 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3040 		if (flowtype_str_table[i].ftype == flow_type)
3041 			return flowtype_str_table[i].str;
3042 	}
3043 
3044 	return NULL;
3045 }
3046 
3047 static inline void
3048 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3049 {
3050 	struct rte_eth_fdir_flex_mask *mask;
3051 	uint32_t i, j;
3052 	char *p;
3053 
3054 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3055 		mask = &flex_conf->flex_mask[i];
3056 		p = flowtype_to_str(mask->flow_type);
3057 		printf("\n    %s:\t", p ? p : "unknown");
3058 		for (j = 0; j < num; j++)
3059 			printf(" %02x", mask->mask[j]);
3060 	}
3061 	printf("\n");
3062 }
3063 
3064 static inline void
3065 print_fdir_flow_type(uint32_t flow_types_mask)
3066 {
3067 	int i;
3068 	char *p;
3069 
3070 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3071 		if (!(flow_types_mask & (1 << i)))
3072 			continue;
3073 		p = flowtype_to_str(i);
3074 		if (p)
3075 			printf(" %s", p);
3076 		else
3077 			printf(" unknown");
3078 	}
3079 	printf("\n");
3080 }
3081 
3082 void
3083 fdir_get_infos(portid_t port_id)
3084 {
3085 	struct rte_eth_fdir_stats fdir_stat;
3086 	struct rte_eth_fdir_info fdir_info;
3087 	int ret;
3088 
3089 	static const char *fdir_stats_border = "########################";
3090 
3091 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3092 		return;
3093 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3094 	if (ret < 0) {
3095 		printf("\n FDIR is not supported on port %-2d\n",
3096 			port_id);
3097 		return;
3098 	}
3099 
3100 	memset(&fdir_info, 0, sizeof(fdir_info));
3101 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3102 			       RTE_ETH_FILTER_INFO, &fdir_info);
3103 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3104 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3105 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3106 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3107 	       fdir_stats_border, port_id, fdir_stats_border);
3108 	printf("  MODE: ");
3109 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3110 		printf("  PERFECT\n");
3111 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3112 		printf("  PERFECT-MAC-VLAN\n");
3113 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3114 		printf("  PERFECT-TUNNEL\n");
3115 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3116 		printf("  SIGNATURE\n");
3117 	else
3118 		printf("  DISABLE\n");
3119 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3120 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3121 		printf("  SUPPORTED FLOW TYPE: ");
3122 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3123 	}
3124 	printf("  FLEX PAYLOAD INFO:\n");
3125 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3126 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3127 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3128 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3129 		fdir_info.flex_payload_unit,
3130 		fdir_info.max_flex_payload_segment_num,
3131 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3132 	printf("  MASK: ");
3133 	print_fdir_mask(&fdir_info.mask);
3134 	if (fdir_info.flex_conf.nb_payloads > 0) {
3135 		printf("  FLEX PAYLOAD SRC OFFSET:");
3136 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3137 	}
3138 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3139 		printf("  FLEX MASK CFG:");
3140 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3141 	}
3142 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3143 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3144 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3145 	       fdir_info.guarant_spc, fdir_info.best_spc);
3146 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3147 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3148 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3149 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3150 	       fdir_stat.collision, fdir_stat.free,
3151 	       fdir_stat.maxhash, fdir_stat.maxlen,
3152 	       fdir_stat.add, fdir_stat.remove,
3153 	       fdir_stat.f_add, fdir_stat.f_remove);
3154 	printf("  %s############################%s\n",
3155 	       fdir_stats_border, fdir_stats_border);
3156 }
3157 
3158 void
3159 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3160 {
3161 	struct rte_port *port;
3162 	struct rte_eth_fdir_flex_conf *flex_conf;
3163 	int i, idx = 0;
3164 
3165 	port = &ports[port_id];
3166 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3167 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3168 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3169 			idx = i;
3170 			break;
3171 		}
3172 	}
3173 	if (i >= RTE_ETH_FLOW_MAX) {
3174 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3175 			idx = flex_conf->nb_flexmasks;
3176 			flex_conf->nb_flexmasks++;
3177 		} else {
3178 			printf("The flex mask table is full. Can not set flex"
3179 				" mask for flow_type(%u).", cfg->flow_type);
3180 			return;
3181 		}
3182 	}
3183 	rte_memcpy(&flex_conf->flex_mask[idx],
3184 			 cfg,
3185 			 sizeof(struct rte_eth_fdir_flex_mask));
3186 }
3187 
3188 void
3189 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3190 {
3191 	struct rte_port *port;
3192 	struct rte_eth_fdir_flex_conf *flex_conf;
3193 	int i, idx = 0;
3194 
3195 	port = &ports[port_id];
3196 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3197 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3198 		if (cfg->type == flex_conf->flex_set[i].type) {
3199 			idx = i;
3200 			break;
3201 		}
3202 	}
3203 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3204 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3205 			idx = flex_conf->nb_payloads;
3206 			flex_conf->nb_payloads++;
3207 		} else {
3208 			printf("The flex payload table is full. Can not set"
3209 				" flex payload for type(%u).", cfg->type);
3210 			return;
3211 		}
3212 	}
3213 	rte_memcpy(&flex_conf->flex_set[idx],
3214 			 cfg,
3215 			 sizeof(struct rte_eth_flex_payload_cfg));
3216 
3217 }
3218 
3219 void
3220 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3221 {
3222 #ifdef RTE_LIBRTE_IXGBE_PMD
3223 	int diag;
3224 
3225 	if (is_rx)
3226 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3227 	else
3228 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3229 
3230 	if (diag == 0)
3231 		return;
3232 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3233 			is_rx ? "rx" : "tx", port_id, diag);
3234 	return;
3235 #endif
3236 	printf("VF %s setting not supported for port %d\n",
3237 			is_rx ? "Rx" : "Tx", port_id);
3238 	RTE_SET_USED(vf);
3239 	RTE_SET_USED(on);
3240 }
3241 
3242 int
3243 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3244 {
3245 	int diag;
3246 	struct rte_eth_link link;
3247 
3248 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3249 		return 1;
3250 	rte_eth_link_get_nowait(port_id, &link);
3251 	if (rate > link.link_speed) {
3252 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3253 			rate, link.link_speed);
3254 		return 1;
3255 	}
3256 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3257 	if (diag == 0)
3258 		return diag;
3259 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3260 		port_id, diag);
3261 	return diag;
3262 }
3263 
3264 int
3265 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3266 {
3267 	int diag = -ENOTSUP;
3268 
3269 	RTE_SET_USED(vf);
3270 	RTE_SET_USED(rate);
3271 	RTE_SET_USED(q_msk);
3272 
3273 #ifdef RTE_LIBRTE_IXGBE_PMD
3274 	if (diag == -ENOTSUP)
3275 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3276 						       q_msk);
3277 #endif
3278 #ifdef RTE_LIBRTE_BNXT_PMD
3279 	if (diag == -ENOTSUP)
3280 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3281 #endif
3282 	if (diag == 0)
3283 		return diag;
3284 
3285 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3286 		port_id, diag);
3287 	return diag;
3288 }
3289 
3290 /*
3291  * Functions to manage the set of filtered Multicast MAC addresses.
3292  *
3293  * A pool of filtered multicast MAC addresses is associated with each port.
3294  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3295  * The address of the pool and the number of valid multicast MAC addresses
3296  * recorded in the pool are stored in the fields "mc_addr_pool" and
3297  * "mc_addr_nb" of the "rte_port" data structure.
3298  *
3299  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3300  * to be supplied a contiguous array of multicast MAC addresses.
3301  * To comply with this constraint, the set of multicast addresses recorded
3302  * into the pool are systematically compacted at the beginning of the pool.
3303  * Hence, when a multicast address is removed from the pool, all following
3304  * addresses, if any, are copied back to keep the set contiguous.
3305  */
3306 #define MCAST_POOL_INC 32
3307 
3308 static int
3309 mcast_addr_pool_extend(struct rte_port *port)
3310 {
3311 	struct ether_addr *mc_pool;
3312 	size_t mc_pool_size;
3313 
3314 	/*
3315 	 * If a free entry is available at the end of the pool, just
3316 	 * increment the number of recorded multicast addresses.
3317 	 */
3318 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3319 		port->mc_addr_nb++;
3320 		return 0;
3321 	}
3322 
3323 	/*
3324 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3325 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3326 	 * of MCAST_POOL_INC.
3327 	 */
3328 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3329 						    MCAST_POOL_INC);
3330 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3331 						mc_pool_size);
3332 	if (mc_pool == NULL) {
3333 		printf("allocation of pool of %u multicast addresses failed\n",
3334 		       port->mc_addr_nb + MCAST_POOL_INC);
3335 		return -ENOMEM;
3336 	}
3337 
3338 	port->mc_addr_pool = mc_pool;
3339 	port->mc_addr_nb++;
3340 	return 0;
3341 
3342 }
3343 
3344 static void
3345 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3346 {
3347 	port->mc_addr_nb--;
3348 	if (addr_idx == port->mc_addr_nb) {
3349 		/* No need to recompact the set of multicast addressses. */
3350 		if (port->mc_addr_nb == 0) {
3351 			/* free the pool of multicast addresses. */
3352 			free(port->mc_addr_pool);
3353 			port->mc_addr_pool = NULL;
3354 		}
3355 		return;
3356 	}
3357 	memmove(&port->mc_addr_pool[addr_idx],
3358 		&port->mc_addr_pool[addr_idx + 1],
3359 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3360 }
3361 
3362 static void
3363 eth_port_multicast_addr_list_set(portid_t port_id)
3364 {
3365 	struct rte_port *port;
3366 	int diag;
3367 
3368 	port = &ports[port_id];
3369 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3370 					    port->mc_addr_nb);
3371 	if (diag == 0)
3372 		return;
3373 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3374 	       port->mc_addr_nb, port_id, -diag);
3375 }
3376 
3377 void
3378 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3379 {
3380 	struct rte_port *port;
3381 	uint32_t i;
3382 
3383 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3384 		return;
3385 
3386 	port = &ports[port_id];
3387 
3388 	/*
3389 	 * Check that the added multicast MAC address is not already recorded
3390 	 * in the pool of multicast addresses.
3391 	 */
3392 	for (i = 0; i < port->mc_addr_nb; i++) {
3393 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3394 			printf("multicast address already filtered by port\n");
3395 			return;
3396 		}
3397 	}
3398 
3399 	if (mcast_addr_pool_extend(port) != 0)
3400 		return;
3401 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3402 	eth_port_multicast_addr_list_set(port_id);
3403 }
3404 
3405 void
3406 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3407 {
3408 	struct rte_port *port;
3409 	uint32_t i;
3410 
3411 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3412 		return;
3413 
3414 	port = &ports[port_id];
3415 
3416 	/*
3417 	 * Search the pool of multicast MAC addresses for the removed address.
3418 	 */
3419 	for (i = 0; i < port->mc_addr_nb; i++) {
3420 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3421 			break;
3422 	}
3423 	if (i == port->mc_addr_nb) {
3424 		printf("multicast address not filtered by port %d\n", port_id);
3425 		return;
3426 	}
3427 
3428 	mcast_addr_pool_remove(port, i);
3429 	eth_port_multicast_addr_list_set(port_id);
3430 }
3431 
3432 void
3433 port_dcb_info_display(portid_t port_id)
3434 {
3435 	struct rte_eth_dcb_info dcb_info;
3436 	uint16_t i;
3437 	int ret;
3438 	static const char *border = "================";
3439 
3440 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3441 		return;
3442 
3443 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3444 	if (ret) {
3445 		printf("\n Failed to get dcb infos on port %-2d\n",
3446 			port_id);
3447 		return;
3448 	}
3449 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3450 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3451 	printf("\n  TC :        ");
3452 	for (i = 0; i < dcb_info.nb_tcs; i++)
3453 		printf("\t%4d", i);
3454 	printf("\n  Priority :  ");
3455 	for (i = 0; i < dcb_info.nb_tcs; i++)
3456 		printf("\t%4d", dcb_info.prio_tc[i]);
3457 	printf("\n  BW percent :");
3458 	for (i = 0; i < dcb_info.nb_tcs; i++)
3459 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3460 	printf("\n  RXQ base :  ");
3461 	for (i = 0; i < dcb_info.nb_tcs; i++)
3462 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3463 	printf("\n  RXQ number :");
3464 	for (i = 0; i < dcb_info.nb_tcs; i++)
3465 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3466 	printf("\n  TXQ base :  ");
3467 	for (i = 0; i < dcb_info.nb_tcs; i++)
3468 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3469 	printf("\n  TXQ number :");
3470 	for (i = 0; i < dcb_info.nb_tcs; i++)
3471 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3472 	printf("\n");
3473 }
3474 
3475 uint8_t *
3476 open_file(const char *file_path, uint32_t *size)
3477 {
3478 	int fd = open(file_path, O_RDONLY);
3479 	off_t pkg_size;
3480 	uint8_t *buf = NULL;
3481 	int ret = 0;
3482 	struct stat st_buf;
3483 
3484 	if (size)
3485 		*size = 0;
3486 
3487 	if (fd == -1) {
3488 		printf("%s: Failed to open %s\n", __func__, file_path);
3489 		return buf;
3490 	}
3491 
3492 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3493 		close(fd);
3494 		printf("%s: File operations failed\n", __func__);
3495 		return buf;
3496 	}
3497 
3498 	pkg_size = st_buf.st_size;
3499 	if (pkg_size < 0) {
3500 		close(fd);
3501 		printf("%s: File operations failed\n", __func__);
3502 		return buf;
3503 	}
3504 
3505 	buf = (uint8_t *)malloc(pkg_size);
3506 	if (!buf) {
3507 		close(fd);
3508 		printf("%s: Failed to malloc memory\n",	__func__);
3509 		return buf;
3510 	}
3511 
3512 	ret = read(fd, buf, pkg_size);
3513 	if (ret < 0) {
3514 		close(fd);
3515 		printf("%s: File read operation failed\n", __func__);
3516 		close_file(buf);
3517 		return NULL;
3518 	}
3519 
3520 	if (size)
3521 		*size = pkg_size;
3522 
3523 	close(fd);
3524 
3525 	return buf;
3526 }
3527 
3528 int
3529 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3530 {
3531 	FILE *fh = fopen(file_path, "wb");
3532 
3533 	if (fh == NULL) {
3534 		printf("%s: Failed to open %s\n", __func__, file_path);
3535 		return -1;
3536 	}
3537 
3538 	if (fwrite(buf, 1, size, fh) != size) {
3539 		fclose(fh);
3540 		printf("%s: File write operation failed\n", __func__);
3541 		return -1;
3542 	}
3543 
3544 	fclose(fh);
3545 
3546 	return 0;
3547 }
3548 
3549 int
3550 close_file(uint8_t *buf)
3551 {
3552 	if (buf) {
3553 		free((void *)buf);
3554 		return 0;
3555 	}
3556 
3557 	return -1;
3558 }
3559 
3560 void
3561 port_queue_region_info_display(portid_t port_id, void *buf)
3562 {
3563 #ifdef RTE_LIBRTE_I40E_PMD
3564 	uint16_t i, j;
3565 	struct rte_pmd_i40e_queue_regions *info =
3566 		(struct rte_pmd_i40e_queue_regions *)buf;
3567 	static const char *queue_region_info_stats_border = "-------";
3568 
3569 	if (!info->queue_region_number)
3570 		printf("there is no region has been set before");
3571 
3572 	printf("\n	%s All queue region info for port=%2d %s",
3573 			queue_region_info_stats_border, port_id,
3574 			queue_region_info_stats_border);
3575 	printf("\n	queue_region_number: %-14u \n",
3576 			info->queue_region_number);
3577 
3578 	for (i = 0; i < info->queue_region_number; i++) {
3579 		printf("\n	region_id: %-14u queue_number: %-14u "
3580 			"queue_start_index: %-14u \n",
3581 			info->region[i].region_id,
3582 			info->region[i].queue_num,
3583 			info->region[i].queue_start_index);
3584 
3585 		printf("  user_priority_num is	%-14u :",
3586 					info->region[i].user_priority_num);
3587 		for (j = 0; j < info->region[i].user_priority_num; j++)
3588 			printf(" %-14u ", info->region[i].user_priority[j]);
3589 
3590 		printf("\n	flowtype_num is  %-14u :",
3591 				info->region[i].flowtype_num);
3592 		for (j = 0; j < info->region[i].flowtype_num; j++)
3593 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3594 	}
3595 #else
3596 	RTE_SET_USED(port_id);
3597 	RTE_SET_USED(buf);
3598 #endif
3599 
3600 	printf("\n\n");
3601 }
3602