1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <string.h> 10 #include <stdint.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/types.h> 15 #include <sys/stat.h> 16 #include <fcntl.h> 17 #include <unistd.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_debug.h> 22 #include <rte_log.h> 23 #include <rte_memory.h> 24 #include <rte_memcpy.h> 25 #include <rte_memzone.h> 26 #include <rte_launch.h> 27 #include <rte_eal.h> 28 #include <rte_per_lcore.h> 29 #include <rte_lcore.h> 30 #include <rte_atomic.h> 31 #include <rte_branch_prediction.h> 32 #include <rte_mempool.h> 33 #include <rte_mbuf.h> 34 #include <rte_interrupts.h> 35 #include <rte_pci.h> 36 #include <rte_ether.h> 37 #include <rte_ethdev.h> 38 #include <rte_string_fns.h> 39 #include <rte_cycles.h> 40 #include <rte_flow.h> 41 #include <rte_mtr.h> 42 #include <rte_errno.h> 43 #ifdef RTE_NET_IXGBE 44 #include <rte_pmd_ixgbe.h> 45 #endif 46 #ifdef RTE_NET_I40E 47 #include <rte_pmd_i40e.h> 48 #endif 49 #ifdef RTE_NET_BNXT 50 #include <rte_pmd_bnxt.h> 51 #endif 52 #include <rte_gro.h> 53 #include <rte_hexdump.h> 54 55 #include "testpmd.h" 56 #include "cmdline_mtr.h" 57 58 #define ETHDEV_FWVERS_LEN 32 59 60 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */ 61 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW 62 #else 63 #define CLOCK_TYPE_ID CLOCK_MONOTONIC 64 #endif 65 66 #define NS_PER_SEC 1E9 67 68 static char *flowtype_to_str(uint16_t flow_type); 69 70 static const struct { 71 enum tx_pkt_split split; 72 const char *name; 73 } tx_split_name[] = { 74 { 75 .split = TX_PKT_SPLIT_OFF, 76 .name = "off", 77 }, 78 { 79 .split = TX_PKT_SPLIT_ON, 80 .name = "on", 81 }, 82 { 83 .split = TX_PKT_SPLIT_RND, 84 .name = "rand", 85 }, 86 }; 87 88 const struct rss_type_info rss_type_table[] = { 89 { "all", ETH_RSS_ETH | ETH_RSS_VLAN | ETH_RSS_IP | ETH_RSS_TCP | 90 ETH_RSS_UDP | ETH_RSS_SCTP | ETH_RSS_L2_PAYLOAD | 91 ETH_RSS_L2TPV3 | ETH_RSS_ESP | ETH_RSS_AH | ETH_RSS_PFCP | 92 ETH_RSS_GTPU | ETH_RSS_ECPRI | ETH_RSS_MPLS}, 93 { "none", 0 }, 94 { "eth", ETH_RSS_ETH }, 95 { "l2-src-only", ETH_RSS_L2_SRC_ONLY }, 96 { "l2-dst-only", ETH_RSS_L2_DST_ONLY }, 97 { "vlan", ETH_RSS_VLAN }, 98 { "s-vlan", ETH_RSS_S_VLAN }, 99 { "c-vlan", ETH_RSS_C_VLAN }, 100 { "ipv4", ETH_RSS_IPV4 }, 101 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 102 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 103 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 104 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 105 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 106 { "ipv6", ETH_RSS_IPV6 }, 107 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 108 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 109 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 110 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 111 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 112 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 113 { "ipv6-ex", ETH_RSS_IPV6_EX }, 114 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 115 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 116 { "port", ETH_RSS_PORT }, 117 { "vxlan", ETH_RSS_VXLAN }, 118 { "geneve", ETH_RSS_GENEVE }, 119 { "nvgre", ETH_RSS_NVGRE }, 120 { "ip", ETH_RSS_IP }, 121 { "udp", ETH_RSS_UDP }, 122 { "tcp", ETH_RSS_TCP }, 123 { "sctp", ETH_RSS_SCTP }, 124 { "tunnel", ETH_RSS_TUNNEL }, 125 { "l3-pre32", RTE_ETH_RSS_L3_PRE32 }, 126 { "l3-pre40", RTE_ETH_RSS_L3_PRE40 }, 127 { "l3-pre48", RTE_ETH_RSS_L3_PRE48 }, 128 { "l3-pre56", RTE_ETH_RSS_L3_PRE56 }, 129 { "l3-pre64", RTE_ETH_RSS_L3_PRE64 }, 130 { "l3-pre96", RTE_ETH_RSS_L3_PRE96 }, 131 { "l3-src-only", ETH_RSS_L3_SRC_ONLY }, 132 { "l3-dst-only", ETH_RSS_L3_DST_ONLY }, 133 { "l4-src-only", ETH_RSS_L4_SRC_ONLY }, 134 { "l4-dst-only", ETH_RSS_L4_DST_ONLY }, 135 { "esp", ETH_RSS_ESP }, 136 { "ah", ETH_RSS_AH }, 137 { "l2tpv3", ETH_RSS_L2TPV3 }, 138 { "pfcp", ETH_RSS_PFCP }, 139 { "pppoe", ETH_RSS_PPPOE }, 140 { "gtpu", ETH_RSS_GTPU }, 141 { "ecpri", ETH_RSS_ECPRI }, 142 { "mpls", ETH_RSS_MPLS }, 143 { NULL, 0 }, 144 }; 145 146 static const struct { 147 enum rte_eth_fec_mode mode; 148 const char *name; 149 } fec_mode_name[] = { 150 { 151 .mode = RTE_ETH_FEC_NOFEC, 152 .name = "off", 153 }, 154 { 155 .mode = RTE_ETH_FEC_AUTO, 156 .name = "auto", 157 }, 158 { 159 .mode = RTE_ETH_FEC_BASER, 160 .name = "baser", 161 }, 162 { 163 .mode = RTE_ETH_FEC_RS, 164 .name = "rs", 165 }, 166 }; 167 168 static void 169 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 170 { 171 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 172 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 173 printf("%s%s", name, buf); 174 } 175 176 void 177 nic_stats_display(portid_t port_id) 178 { 179 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 180 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 181 static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS]; 182 static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS]; 183 static uint64_t prev_ns[RTE_MAX_ETHPORTS]; 184 struct timespec cur_time; 185 uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx, 186 diff_ns; 187 uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx; 188 struct rte_eth_stats stats; 189 190 static const char *nic_stats_border = "########################"; 191 192 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 193 print_valid_ports(); 194 return; 195 } 196 rte_eth_stats_get(port_id, &stats); 197 printf("\n %s NIC statistics for port %-2d %s\n", 198 nic_stats_border, port_id, nic_stats_border); 199 200 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 201 "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes); 202 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 203 printf(" RX-nombuf: %-10"PRIu64"\n", stats.rx_nombuf); 204 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 205 "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes); 206 207 diff_ns = 0; 208 if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { 209 uint64_t ns; 210 211 ns = cur_time.tv_sec * NS_PER_SEC; 212 ns += cur_time.tv_nsec; 213 214 if (prev_ns[port_id] != 0) 215 diff_ns = ns - prev_ns[port_id]; 216 prev_ns[port_id] = ns; 217 } 218 219 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 220 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 221 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 222 (stats.opackets - prev_pkts_tx[port_id]) : 0; 223 prev_pkts_rx[port_id] = stats.ipackets; 224 prev_pkts_tx[port_id] = stats.opackets; 225 mpps_rx = diff_ns > 0 ? 226 (double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0; 227 mpps_tx = diff_ns > 0 ? 228 (double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0; 229 230 diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ? 231 (stats.ibytes - prev_bytes_rx[port_id]) : 0; 232 diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ? 233 (stats.obytes - prev_bytes_tx[port_id]) : 0; 234 prev_bytes_rx[port_id] = stats.ibytes; 235 prev_bytes_tx[port_id] = stats.obytes; 236 mbps_rx = diff_ns > 0 ? 237 (double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0; 238 mbps_tx = diff_ns > 0 ? 239 (double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0; 240 241 printf("\n Throughput (since last show)\n"); 242 printf(" Rx-pps: %12"PRIu64" Rx-bps: %12"PRIu64"\n Tx-pps: %12" 243 PRIu64" Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8, 244 mpps_tx, mbps_tx * 8); 245 246 printf(" %s############################%s\n", 247 nic_stats_border, nic_stats_border); 248 } 249 250 void 251 nic_stats_clear(portid_t port_id) 252 { 253 int ret; 254 255 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 256 print_valid_ports(); 257 return; 258 } 259 260 ret = rte_eth_stats_reset(port_id); 261 if (ret != 0) { 262 fprintf(stderr, 263 "%s: Error: failed to reset stats (port %u): %s", 264 __func__, port_id, strerror(-ret)); 265 return; 266 } 267 268 ret = rte_eth_stats_get(port_id, &ports[port_id].stats); 269 if (ret != 0) { 270 if (ret < 0) 271 ret = -ret; 272 fprintf(stderr, 273 "%s: Error: failed to get stats (port %u): %s", 274 __func__, port_id, strerror(ret)); 275 return; 276 } 277 printf("\n NIC statistics for port %d cleared\n", port_id); 278 } 279 280 void 281 nic_xstats_display(portid_t port_id) 282 { 283 struct rte_eth_xstat *xstats; 284 int cnt_xstats, idx_xstat; 285 struct rte_eth_xstat_name *xstats_names; 286 287 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 288 print_valid_ports(); 289 return; 290 } 291 printf("###### NIC extended statistics for port %-2d\n", port_id); 292 if (!rte_eth_dev_is_valid_port(port_id)) { 293 fprintf(stderr, "Error: Invalid port number %i\n", port_id); 294 return; 295 } 296 297 /* Get count */ 298 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 299 if (cnt_xstats < 0) { 300 fprintf(stderr, "Error: Cannot get count of xstats\n"); 301 return; 302 } 303 304 /* Get id-name lookup table */ 305 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 306 if (xstats_names == NULL) { 307 fprintf(stderr, "Cannot allocate memory for xstats lookup\n"); 308 return; 309 } 310 if (cnt_xstats != rte_eth_xstats_get_names( 311 port_id, xstats_names, cnt_xstats)) { 312 fprintf(stderr, "Error: Cannot get xstats lookup\n"); 313 free(xstats_names); 314 return; 315 } 316 317 /* Get stats themselves */ 318 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 319 if (xstats == NULL) { 320 fprintf(stderr, "Cannot allocate memory for xstats\n"); 321 free(xstats_names); 322 return; 323 } 324 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 325 fprintf(stderr, "Error: Unable to get xstats\n"); 326 free(xstats_names); 327 free(xstats); 328 return; 329 } 330 331 /* Display xstats */ 332 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 333 if (xstats_hide_zero && !xstats[idx_xstat].value) 334 continue; 335 printf("%s: %"PRIu64"\n", 336 xstats_names[idx_xstat].name, 337 xstats[idx_xstat].value); 338 } 339 free(xstats_names); 340 free(xstats); 341 } 342 343 void 344 nic_xstats_clear(portid_t port_id) 345 { 346 int ret; 347 348 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 349 print_valid_ports(); 350 return; 351 } 352 353 ret = rte_eth_xstats_reset(port_id); 354 if (ret != 0) { 355 fprintf(stderr, 356 "%s: Error: failed to reset xstats (port %u): %s\n", 357 __func__, port_id, strerror(-ret)); 358 return; 359 } 360 361 ret = rte_eth_stats_get(port_id, &ports[port_id].stats); 362 if (ret != 0) { 363 if (ret < 0) 364 ret = -ret; 365 fprintf(stderr, "%s: Error: failed to get stats (port %u): %s", 366 __func__, port_id, strerror(ret)); 367 return; 368 } 369 } 370 371 static const char * 372 get_queue_state_name(uint8_t queue_state) 373 { 374 if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED) 375 return "stopped"; 376 else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED) 377 return "started"; 378 else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN) 379 return "hairpin"; 380 else 381 return "unknown"; 382 } 383 384 void 385 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 386 { 387 struct rte_eth_burst_mode mode; 388 struct rte_eth_rxq_info qinfo; 389 int32_t rc; 390 static const char *info_border = "*********************"; 391 392 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 393 if (rc != 0) { 394 fprintf(stderr, 395 "Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n", 396 port_id, queue_id, strerror(-rc), rc); 397 return; 398 } 399 400 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 401 info_border, port_id, queue_id, info_border); 402 403 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 404 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 405 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 406 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 407 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 408 printf("\nRX drop packets: %s", 409 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 410 printf("\nRX deferred start: %s", 411 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 412 printf("\nRX scattered packets: %s", 413 (qinfo.scattered_rx != 0) ? "on" : "off"); 414 printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state)); 415 if (qinfo.rx_buf_size != 0) 416 printf("\nRX buffer size: %hu", qinfo.rx_buf_size); 417 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 418 419 if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0) 420 printf("\nBurst mode: %s%s", 421 mode.info, 422 mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? 423 " (per queue)" : ""); 424 425 printf("\n"); 426 } 427 428 void 429 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 430 { 431 struct rte_eth_burst_mode mode; 432 struct rte_eth_txq_info qinfo; 433 int32_t rc; 434 static const char *info_border = "*********************"; 435 436 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 437 if (rc != 0) { 438 fprintf(stderr, 439 "Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n", 440 port_id, queue_id, strerror(-rc), rc); 441 return; 442 } 443 444 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 445 info_border, port_id, queue_id, info_border); 446 447 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 448 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 449 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 450 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 451 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 452 printf("\nTX deferred start: %s", 453 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 454 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 455 printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state)); 456 457 if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0) 458 printf("\nBurst mode: %s%s", 459 mode.info, 460 mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? 461 " (per queue)" : ""); 462 463 printf("\n"); 464 } 465 466 static int bus_match_all(const struct rte_bus *bus, const void *data) 467 { 468 RTE_SET_USED(bus); 469 RTE_SET_USED(data); 470 return 0; 471 } 472 473 static void 474 device_infos_display_speeds(uint32_t speed_capa) 475 { 476 printf("\n\tDevice speed capability:"); 477 if (speed_capa == ETH_LINK_SPEED_AUTONEG) 478 printf(" Autonegotiate (all speeds)"); 479 if (speed_capa & ETH_LINK_SPEED_FIXED) 480 printf(" Disable autonegotiate (fixed speed) "); 481 if (speed_capa & ETH_LINK_SPEED_10M_HD) 482 printf(" 10 Mbps half-duplex "); 483 if (speed_capa & ETH_LINK_SPEED_10M) 484 printf(" 10 Mbps full-duplex "); 485 if (speed_capa & ETH_LINK_SPEED_100M_HD) 486 printf(" 100 Mbps half-duplex "); 487 if (speed_capa & ETH_LINK_SPEED_100M) 488 printf(" 100 Mbps full-duplex "); 489 if (speed_capa & ETH_LINK_SPEED_1G) 490 printf(" 1 Gbps "); 491 if (speed_capa & ETH_LINK_SPEED_2_5G) 492 printf(" 2.5 Gbps "); 493 if (speed_capa & ETH_LINK_SPEED_5G) 494 printf(" 5 Gbps "); 495 if (speed_capa & ETH_LINK_SPEED_10G) 496 printf(" 10 Gbps "); 497 if (speed_capa & ETH_LINK_SPEED_20G) 498 printf(" 20 Gbps "); 499 if (speed_capa & ETH_LINK_SPEED_25G) 500 printf(" 25 Gbps "); 501 if (speed_capa & ETH_LINK_SPEED_40G) 502 printf(" 40 Gbps "); 503 if (speed_capa & ETH_LINK_SPEED_50G) 504 printf(" 50 Gbps "); 505 if (speed_capa & ETH_LINK_SPEED_56G) 506 printf(" 56 Gbps "); 507 if (speed_capa & ETH_LINK_SPEED_100G) 508 printf(" 100 Gbps "); 509 if (speed_capa & ETH_LINK_SPEED_200G) 510 printf(" 200 Gbps "); 511 } 512 513 void 514 device_infos_display(const char *identifier) 515 { 516 static const char *info_border = "*********************"; 517 struct rte_bus *start = NULL, *next; 518 struct rte_dev_iterator dev_iter; 519 char name[RTE_ETH_NAME_MAX_LEN]; 520 struct rte_ether_addr mac_addr; 521 struct rte_device *dev; 522 struct rte_devargs da; 523 portid_t port_id; 524 struct rte_eth_dev_info dev_info; 525 char devstr[128]; 526 527 memset(&da, 0, sizeof(da)); 528 if (!identifier) 529 goto skip_parse; 530 531 if (rte_devargs_parsef(&da, "%s", identifier)) { 532 fprintf(stderr, "cannot parse identifier\n"); 533 return; 534 } 535 536 skip_parse: 537 while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) { 538 539 start = next; 540 if (identifier && da.bus != next) 541 continue; 542 543 /* Skip buses that don't have iterate method */ 544 if (!next->dev_iterate) 545 continue; 546 547 snprintf(devstr, sizeof(devstr), "bus=%s", next->name); 548 RTE_DEV_FOREACH(dev, devstr, &dev_iter) { 549 550 if (!dev->driver) 551 continue; 552 /* Check for matching device if identifier is present */ 553 if (identifier && 554 strncmp(da.name, dev->name, strlen(dev->name))) 555 continue; 556 printf("\n%s Infos for device %s %s\n", 557 info_border, dev->name, info_border); 558 printf("Bus name: %s", dev->bus->name); 559 printf("\nDriver name: %s", dev->driver->name); 560 printf("\nDevargs: %s", 561 dev->devargs ? dev->devargs->args : ""); 562 printf("\nConnect to socket: %d", dev->numa_node); 563 printf("\n"); 564 565 /* List ports with matching device name */ 566 RTE_ETH_FOREACH_DEV_OF(port_id, dev) { 567 printf("\n\tPort id: %-2d", port_id); 568 if (eth_macaddr_get_print_err(port_id, 569 &mac_addr) == 0) 570 print_ethaddr("\n\tMAC address: ", 571 &mac_addr); 572 rte_eth_dev_get_name_by_port(port_id, name); 573 printf("\n\tDevice name: %s", name); 574 if (rte_eth_dev_info_get(port_id, &dev_info) == 0) 575 device_infos_display_speeds(dev_info.speed_capa); 576 printf("\n"); 577 } 578 } 579 }; 580 rte_devargs_reset(&da); 581 } 582 583 void 584 port_infos_display(portid_t port_id) 585 { 586 struct rte_port *port; 587 struct rte_ether_addr mac_addr; 588 struct rte_eth_link link; 589 struct rte_eth_dev_info dev_info; 590 int vlan_offload; 591 struct rte_mempool * mp; 592 static const char *info_border = "*********************"; 593 uint16_t mtu; 594 char name[RTE_ETH_NAME_MAX_LEN]; 595 int ret; 596 char fw_version[ETHDEV_FWVERS_LEN]; 597 598 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 599 print_valid_ports(); 600 return; 601 } 602 port = &ports[port_id]; 603 ret = eth_link_get_nowait_print_err(port_id, &link); 604 if (ret < 0) 605 return; 606 607 ret = eth_dev_info_get_print_err(port_id, &dev_info); 608 if (ret != 0) 609 return; 610 611 printf("\n%s Infos for port %-2d %s\n", 612 info_border, port_id, info_border); 613 if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0) 614 print_ethaddr("MAC address: ", &mac_addr); 615 rte_eth_dev_get_name_by_port(port_id, name); 616 printf("\nDevice name: %s", name); 617 printf("\nDriver name: %s", dev_info.driver_name); 618 619 if (rte_eth_dev_fw_version_get(port_id, fw_version, 620 ETHDEV_FWVERS_LEN) == 0) 621 printf("\nFirmware-version: %s", fw_version); 622 else 623 printf("\nFirmware-version: %s", "not available"); 624 625 if (dev_info.device->devargs && dev_info.device->devargs->args) 626 printf("\nDevargs: %s", dev_info.device->devargs->args); 627 printf("\nConnect to socket: %u", port->socket_id); 628 629 if (port_numa[port_id] != NUMA_NO_CONFIG) { 630 mp = mbuf_pool_find(port_numa[port_id], 0); 631 if (mp) 632 printf("\nmemory allocation on the socket: %d", 633 port_numa[port_id]); 634 } else 635 printf("\nmemory allocation on the socket: %u",port->socket_id); 636 637 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 638 printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed)); 639 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 640 ("full-duplex") : ("half-duplex")); 641 printf("Autoneg status: %s\n", (link.link_autoneg == ETH_LINK_AUTONEG) ? 642 ("On") : ("Off")); 643 644 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 645 printf("MTU: %u\n", mtu); 646 647 printf("Promiscuous mode: %s\n", 648 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 649 printf("Allmulticast mode: %s\n", 650 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 651 printf("Maximum number of MAC addresses: %u\n", 652 (unsigned int)(port->dev_info.max_mac_addrs)); 653 printf("Maximum number of MAC addresses of hash filtering: %u\n", 654 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 655 656 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 657 if (vlan_offload >= 0){ 658 printf("VLAN offload: \n"); 659 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 660 printf(" strip on, "); 661 else 662 printf(" strip off, "); 663 664 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 665 printf("filter on, "); 666 else 667 printf("filter off, "); 668 669 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 670 printf("extend on, "); 671 else 672 printf("extend off, "); 673 674 if (vlan_offload & ETH_QINQ_STRIP_OFFLOAD) 675 printf("qinq strip on\n"); 676 else 677 printf("qinq strip off\n"); 678 } 679 680 if (dev_info.hash_key_size > 0) 681 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 682 if (dev_info.reta_size > 0) 683 printf("Redirection table size: %u\n", dev_info.reta_size); 684 if (!dev_info.flow_type_rss_offloads) 685 printf("No RSS offload flow type is supported.\n"); 686 else { 687 uint16_t i; 688 char *p; 689 690 printf("Supported RSS offload flow types:\n"); 691 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 692 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 693 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 694 continue; 695 p = flowtype_to_str(i); 696 if (p) 697 printf(" %s\n", p); 698 else 699 printf(" user defined %d\n", i); 700 } 701 } 702 703 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 704 printf("Maximum configurable length of RX packet: %u\n", 705 dev_info.max_rx_pktlen); 706 printf("Maximum configurable size of LRO aggregated packet: %u\n", 707 dev_info.max_lro_pkt_size); 708 if (dev_info.max_vfs) 709 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 710 if (dev_info.max_vmdq_pools) 711 printf("Maximum number of VMDq pools: %u\n", 712 dev_info.max_vmdq_pools); 713 714 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 715 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 716 printf("Max possible number of RXDs per queue: %hu\n", 717 dev_info.rx_desc_lim.nb_max); 718 printf("Min possible number of RXDs per queue: %hu\n", 719 dev_info.rx_desc_lim.nb_min); 720 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 721 722 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 723 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 724 printf("Max possible number of TXDs per queue: %hu\n", 725 dev_info.tx_desc_lim.nb_max); 726 printf("Min possible number of TXDs per queue: %hu\n", 727 dev_info.tx_desc_lim.nb_min); 728 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 729 printf("Max segment number per packet: %hu\n", 730 dev_info.tx_desc_lim.nb_seg_max); 731 printf("Max segment number per MTU/TSO: %hu\n", 732 dev_info.tx_desc_lim.nb_mtu_seg_max); 733 734 /* Show switch info only if valid switch domain and port id is set */ 735 if (dev_info.switch_info.domain_id != 736 RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { 737 if (dev_info.switch_info.name) 738 printf("Switch name: %s\n", dev_info.switch_info.name); 739 740 printf("Switch domain Id: %u\n", 741 dev_info.switch_info.domain_id); 742 printf("Switch Port Id: %u\n", 743 dev_info.switch_info.port_id); 744 } 745 } 746 747 void 748 port_summary_header_display(void) 749 { 750 uint16_t port_number; 751 752 port_number = rte_eth_dev_count_avail(); 753 printf("Number of available ports: %i\n", port_number); 754 printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", 755 "Driver", "Status", "Link"); 756 } 757 758 void 759 port_summary_display(portid_t port_id) 760 { 761 struct rte_ether_addr mac_addr; 762 struct rte_eth_link link; 763 struct rte_eth_dev_info dev_info; 764 char name[RTE_ETH_NAME_MAX_LEN]; 765 int ret; 766 767 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 768 print_valid_ports(); 769 return; 770 } 771 772 ret = eth_link_get_nowait_print_err(port_id, &link); 773 if (ret < 0) 774 return; 775 776 ret = eth_dev_info_get_print_err(port_id, &dev_info); 777 if (ret != 0) 778 return; 779 780 rte_eth_dev_get_name_by_port(port_id, name); 781 ret = eth_macaddr_get_print_err(port_id, &mac_addr); 782 if (ret != 0) 783 return; 784 785 printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n", 786 port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name, 787 dev_info.driver_name, (link.link_status) ? ("up") : ("down"), 788 rte_eth_link_speed_to_str(link.link_speed)); 789 } 790 791 void 792 port_eeprom_display(portid_t port_id) 793 { 794 struct rte_dev_eeprom_info einfo; 795 int ret; 796 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 797 print_valid_ports(); 798 return; 799 } 800 801 int len_eeprom = rte_eth_dev_get_eeprom_length(port_id); 802 if (len_eeprom < 0) { 803 switch (len_eeprom) { 804 case -ENODEV: 805 fprintf(stderr, "port index %d invalid\n", port_id); 806 break; 807 case -ENOTSUP: 808 fprintf(stderr, "operation not supported by device\n"); 809 break; 810 case -EIO: 811 fprintf(stderr, "device is removed\n"); 812 break; 813 default: 814 fprintf(stderr, "Unable to get EEPROM: %d\n", 815 len_eeprom); 816 break; 817 } 818 return; 819 } 820 821 char buf[len_eeprom]; 822 einfo.offset = 0; 823 einfo.length = len_eeprom; 824 einfo.data = buf; 825 826 ret = rte_eth_dev_get_eeprom(port_id, &einfo); 827 if (ret != 0) { 828 switch (ret) { 829 case -ENODEV: 830 fprintf(stderr, "port index %d invalid\n", port_id); 831 break; 832 case -ENOTSUP: 833 fprintf(stderr, "operation not supported by device\n"); 834 break; 835 case -EIO: 836 fprintf(stderr, "device is removed\n"); 837 break; 838 default: 839 fprintf(stderr, "Unable to get EEPROM: %d\n", ret); 840 break; 841 } 842 return; 843 } 844 rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); 845 printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom); 846 } 847 848 void 849 port_module_eeprom_display(portid_t port_id) 850 { 851 struct rte_eth_dev_module_info minfo; 852 struct rte_dev_eeprom_info einfo; 853 int ret; 854 855 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 856 print_valid_ports(); 857 return; 858 } 859 860 861 ret = rte_eth_dev_get_module_info(port_id, &minfo); 862 if (ret != 0) { 863 switch (ret) { 864 case -ENODEV: 865 fprintf(stderr, "port index %d invalid\n", port_id); 866 break; 867 case -ENOTSUP: 868 fprintf(stderr, "operation not supported by device\n"); 869 break; 870 case -EIO: 871 fprintf(stderr, "device is removed\n"); 872 break; 873 default: 874 fprintf(stderr, "Unable to get module EEPROM: %d\n", 875 ret); 876 break; 877 } 878 return; 879 } 880 881 char buf[minfo.eeprom_len]; 882 einfo.offset = 0; 883 einfo.length = minfo.eeprom_len; 884 einfo.data = buf; 885 886 ret = rte_eth_dev_get_module_eeprom(port_id, &einfo); 887 if (ret != 0) { 888 switch (ret) { 889 case -ENODEV: 890 fprintf(stderr, "port index %d invalid\n", port_id); 891 break; 892 case -ENOTSUP: 893 fprintf(stderr, "operation not supported by device\n"); 894 break; 895 case -EIO: 896 fprintf(stderr, "device is removed\n"); 897 break; 898 default: 899 fprintf(stderr, "Unable to get module EEPROM: %d\n", 900 ret); 901 break; 902 } 903 return; 904 } 905 906 rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); 907 printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length); 908 } 909 910 int 911 port_id_is_invalid(portid_t port_id, enum print_warning warning) 912 { 913 uint16_t pid; 914 915 if (port_id == (portid_t)RTE_PORT_ALL) 916 return 0; 917 918 RTE_ETH_FOREACH_DEV(pid) 919 if (port_id == pid) 920 return 0; 921 922 if (warning == ENABLED_WARN) 923 fprintf(stderr, "Invalid port %d\n", port_id); 924 925 return 1; 926 } 927 928 void print_valid_ports(void) 929 { 930 portid_t pid; 931 932 printf("The valid ports array is ["); 933 RTE_ETH_FOREACH_DEV(pid) { 934 printf(" %d", pid); 935 } 936 printf(" ]\n"); 937 } 938 939 static int 940 vlan_id_is_invalid(uint16_t vlan_id) 941 { 942 if (vlan_id < 4096) 943 return 0; 944 fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id); 945 return 1; 946 } 947 948 static int 949 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 950 { 951 const struct rte_pci_device *pci_dev; 952 const struct rte_bus *bus; 953 uint64_t pci_len; 954 955 if (reg_off & 0x3) { 956 fprintf(stderr, 957 "Port register offset 0x%X not aligned on a 4-byte boundary\n", 958 (unsigned int)reg_off); 959 return 1; 960 } 961 962 if (!ports[port_id].dev_info.device) { 963 fprintf(stderr, "Invalid device\n"); 964 return 0; 965 } 966 967 bus = rte_bus_find_by_device(ports[port_id].dev_info.device); 968 if (bus && !strcmp(bus->name, "pci")) { 969 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); 970 } else { 971 fprintf(stderr, "Not a PCI device\n"); 972 return 1; 973 } 974 975 pci_len = pci_dev->mem_resource[0].len; 976 if (reg_off >= pci_len) { 977 fprintf(stderr, 978 "Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n", 979 port_id, (unsigned int)reg_off, (unsigned int)reg_off, 980 pci_len); 981 return 1; 982 } 983 return 0; 984 } 985 986 static int 987 reg_bit_pos_is_invalid(uint8_t bit_pos) 988 { 989 if (bit_pos <= 31) 990 return 0; 991 fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos); 992 return 1; 993 } 994 995 #define display_port_and_reg_off(port_id, reg_off) \ 996 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 997 998 static inline void 999 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1000 { 1001 display_port_and_reg_off(port_id, (unsigned)reg_off); 1002 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 1003 } 1004 1005 void 1006 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 1007 { 1008 uint32_t reg_v; 1009 1010 1011 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1012 return; 1013 if (port_reg_off_is_invalid(port_id, reg_off)) 1014 return; 1015 if (reg_bit_pos_is_invalid(bit_x)) 1016 return; 1017 reg_v = port_id_pci_reg_read(port_id, reg_off); 1018 display_port_and_reg_off(port_id, (unsigned)reg_off); 1019 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 1020 } 1021 1022 void 1023 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 1024 uint8_t bit1_pos, uint8_t bit2_pos) 1025 { 1026 uint32_t reg_v; 1027 uint8_t l_bit; 1028 uint8_t h_bit; 1029 1030 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1031 return; 1032 if (port_reg_off_is_invalid(port_id, reg_off)) 1033 return; 1034 if (reg_bit_pos_is_invalid(bit1_pos)) 1035 return; 1036 if (reg_bit_pos_is_invalid(bit2_pos)) 1037 return; 1038 if (bit1_pos > bit2_pos) 1039 l_bit = bit2_pos, h_bit = bit1_pos; 1040 else 1041 l_bit = bit1_pos, h_bit = bit2_pos; 1042 1043 reg_v = port_id_pci_reg_read(port_id, reg_off); 1044 reg_v >>= l_bit; 1045 if (h_bit < 31) 1046 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 1047 display_port_and_reg_off(port_id, (unsigned)reg_off); 1048 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 1049 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 1050 } 1051 1052 void 1053 port_reg_display(portid_t port_id, uint32_t reg_off) 1054 { 1055 uint32_t reg_v; 1056 1057 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1058 return; 1059 if (port_reg_off_is_invalid(port_id, reg_off)) 1060 return; 1061 reg_v = port_id_pci_reg_read(port_id, reg_off); 1062 display_port_reg_value(port_id, reg_off, reg_v); 1063 } 1064 1065 void 1066 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 1067 uint8_t bit_v) 1068 { 1069 uint32_t reg_v; 1070 1071 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1072 return; 1073 if (port_reg_off_is_invalid(port_id, reg_off)) 1074 return; 1075 if (reg_bit_pos_is_invalid(bit_pos)) 1076 return; 1077 if (bit_v > 1) { 1078 fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n", 1079 (int) bit_v); 1080 return; 1081 } 1082 reg_v = port_id_pci_reg_read(port_id, reg_off); 1083 if (bit_v == 0) 1084 reg_v &= ~(1 << bit_pos); 1085 else 1086 reg_v |= (1 << bit_pos); 1087 port_id_pci_reg_write(port_id, reg_off, reg_v); 1088 display_port_reg_value(port_id, reg_off, reg_v); 1089 } 1090 1091 void 1092 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 1093 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 1094 { 1095 uint32_t max_v; 1096 uint32_t reg_v; 1097 uint8_t l_bit; 1098 uint8_t h_bit; 1099 1100 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1101 return; 1102 if (port_reg_off_is_invalid(port_id, reg_off)) 1103 return; 1104 if (reg_bit_pos_is_invalid(bit1_pos)) 1105 return; 1106 if (reg_bit_pos_is_invalid(bit2_pos)) 1107 return; 1108 if (bit1_pos > bit2_pos) 1109 l_bit = bit2_pos, h_bit = bit1_pos; 1110 else 1111 l_bit = bit1_pos, h_bit = bit2_pos; 1112 1113 if ((h_bit - l_bit) < 31) 1114 max_v = (1 << (h_bit - l_bit + 1)) - 1; 1115 else 1116 max_v = 0xFFFFFFFF; 1117 1118 if (value > max_v) { 1119 fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n", 1120 (unsigned)value, (unsigned)value, 1121 (unsigned)max_v, (unsigned)max_v); 1122 return; 1123 } 1124 reg_v = port_id_pci_reg_read(port_id, reg_off); 1125 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 1126 reg_v |= (value << l_bit); /* Set changed bits */ 1127 port_id_pci_reg_write(port_id, reg_off, reg_v); 1128 display_port_reg_value(port_id, reg_off, reg_v); 1129 } 1130 1131 void 1132 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1133 { 1134 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1135 return; 1136 if (port_reg_off_is_invalid(port_id, reg_off)) 1137 return; 1138 port_id_pci_reg_write(port_id, reg_off, reg_v); 1139 display_port_reg_value(port_id, reg_off, reg_v); 1140 } 1141 1142 void 1143 port_mtu_set(portid_t port_id, uint16_t mtu) 1144 { 1145 int diag; 1146 struct rte_port *rte_port = &ports[port_id]; 1147 struct rte_eth_dev_info dev_info; 1148 uint16_t eth_overhead; 1149 int ret; 1150 1151 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1152 return; 1153 1154 ret = eth_dev_info_get_print_err(port_id, &dev_info); 1155 if (ret != 0) 1156 return; 1157 1158 if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) { 1159 fprintf(stderr, 1160 "Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n", 1161 mtu, dev_info.min_mtu, dev_info.max_mtu); 1162 return; 1163 } 1164 diag = rte_eth_dev_set_mtu(port_id, mtu); 1165 if (diag) 1166 fprintf(stderr, "Set MTU failed. diag=%d\n", diag); 1167 else if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) { 1168 /* 1169 * Ether overhead in driver is equal to the difference of 1170 * max_rx_pktlen and max_mtu in rte_eth_dev_info when the 1171 * device supports jumbo frame. 1172 */ 1173 eth_overhead = dev_info.max_rx_pktlen - dev_info.max_mtu; 1174 if (mtu > RTE_ETHER_MTU) { 1175 rte_port->dev_conf.rxmode.offloads |= 1176 DEV_RX_OFFLOAD_JUMBO_FRAME; 1177 rte_port->dev_conf.rxmode.max_rx_pkt_len = 1178 mtu + eth_overhead; 1179 } else 1180 rte_port->dev_conf.rxmode.offloads &= 1181 ~DEV_RX_OFFLOAD_JUMBO_FRAME; 1182 } 1183 } 1184 1185 /* Generic flow management functions. */ 1186 1187 static struct port_flow_tunnel * 1188 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id) 1189 { 1190 struct port_flow_tunnel *flow_tunnel; 1191 1192 LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { 1193 if (flow_tunnel->id == port_tunnel_id) 1194 goto out; 1195 } 1196 flow_tunnel = NULL; 1197 1198 out: 1199 return flow_tunnel; 1200 } 1201 1202 const char * 1203 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel) 1204 { 1205 const char *type; 1206 switch (tunnel->type) { 1207 default: 1208 type = "unknown"; 1209 break; 1210 case RTE_FLOW_ITEM_TYPE_VXLAN: 1211 type = "vxlan"; 1212 break; 1213 } 1214 1215 return type; 1216 } 1217 1218 struct port_flow_tunnel * 1219 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun) 1220 { 1221 struct rte_port *port = &ports[port_id]; 1222 struct port_flow_tunnel *flow_tunnel; 1223 1224 LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { 1225 if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun))) 1226 goto out; 1227 } 1228 flow_tunnel = NULL; 1229 1230 out: 1231 return flow_tunnel; 1232 } 1233 1234 void port_flow_tunnel_list(portid_t port_id) 1235 { 1236 struct rte_port *port = &ports[port_id]; 1237 struct port_flow_tunnel *flt; 1238 1239 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1240 printf("port %u tunnel #%u type=%s", 1241 port_id, flt->id, port_flow_tunnel_type(&flt->tunnel)); 1242 if (flt->tunnel.tun_id) 1243 printf(" id=%" PRIu64, flt->tunnel.tun_id); 1244 printf("\n"); 1245 } 1246 } 1247 1248 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id) 1249 { 1250 struct rte_port *port = &ports[port_id]; 1251 struct port_flow_tunnel *flt; 1252 1253 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1254 if (flt->id == tunnel_id) 1255 break; 1256 } 1257 if (flt) { 1258 LIST_REMOVE(flt, chain); 1259 free(flt); 1260 printf("port %u: flow tunnel #%u destroyed\n", 1261 port_id, tunnel_id); 1262 } 1263 } 1264 1265 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops) 1266 { 1267 struct rte_port *port = &ports[port_id]; 1268 enum rte_flow_item_type type; 1269 struct port_flow_tunnel *flt; 1270 1271 if (!strcmp(ops->type, "vxlan")) 1272 type = RTE_FLOW_ITEM_TYPE_VXLAN; 1273 else { 1274 fprintf(stderr, "cannot offload \"%s\" tunnel type\n", 1275 ops->type); 1276 return; 1277 } 1278 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1279 if (flt->tunnel.type == type) 1280 break; 1281 } 1282 if (!flt) { 1283 flt = calloc(1, sizeof(*flt)); 1284 if (!flt) { 1285 fprintf(stderr, "failed to allocate port flt object\n"); 1286 return; 1287 } 1288 flt->tunnel.type = type; 1289 flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 : 1290 LIST_FIRST(&port->flow_tunnel_list)->id + 1; 1291 LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain); 1292 } 1293 printf("port %d: flow tunnel #%u type %s\n", 1294 port_id, flt->id, ops->type); 1295 } 1296 1297 /** Generate a port_flow entry from attributes/pattern/actions. */ 1298 static struct port_flow * 1299 port_flow_new(const struct rte_flow_attr *attr, 1300 const struct rte_flow_item *pattern, 1301 const struct rte_flow_action *actions, 1302 struct rte_flow_error *error) 1303 { 1304 const struct rte_flow_conv_rule rule = { 1305 .attr_ro = attr, 1306 .pattern_ro = pattern, 1307 .actions_ro = actions, 1308 }; 1309 struct port_flow *pf; 1310 int ret; 1311 1312 ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); 1313 if (ret < 0) 1314 return NULL; 1315 pf = calloc(1, offsetof(struct port_flow, rule) + ret); 1316 if (!pf) { 1317 rte_flow_error_set 1318 (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1319 "calloc() failed"); 1320 return NULL; 1321 } 1322 if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, 1323 error) >= 0) 1324 return pf; 1325 free(pf); 1326 return NULL; 1327 } 1328 1329 /** Print a message out of a flow error. */ 1330 static int 1331 port_flow_complain(struct rte_flow_error *error) 1332 { 1333 static const char *const errstrlist[] = { 1334 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1335 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1336 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1337 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1338 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1339 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1340 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1341 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", 1342 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1343 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1344 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", 1345 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", 1346 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", 1347 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1348 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1349 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", 1350 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1351 }; 1352 const char *errstr; 1353 char buf[32]; 1354 int err = rte_errno; 1355 1356 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1357 !errstrlist[error->type]) 1358 errstr = "unknown type"; 1359 else 1360 errstr = errstrlist[error->type]; 1361 fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n", 1362 __func__, error->type, errstr, 1363 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1364 error->cause), buf) : "", 1365 error->message ? error->message : "(no stated reason)", 1366 rte_strerror(err)); 1367 return -err; 1368 } 1369 1370 static void 1371 rss_config_display(struct rte_flow_action_rss *rss_conf) 1372 { 1373 uint8_t i; 1374 1375 if (rss_conf == NULL) { 1376 fprintf(stderr, "Invalid rule\n"); 1377 return; 1378 } 1379 1380 printf("RSS:\n" 1381 " queues:"); 1382 if (rss_conf->queue_num == 0) 1383 printf(" none"); 1384 for (i = 0; i < rss_conf->queue_num; i++) 1385 printf(" %d", rss_conf->queue[i]); 1386 printf("\n"); 1387 1388 printf(" function: "); 1389 switch (rss_conf->func) { 1390 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1391 printf("default\n"); 1392 break; 1393 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1394 printf("toeplitz\n"); 1395 break; 1396 case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR: 1397 printf("simple_xor\n"); 1398 break; 1399 case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ: 1400 printf("symmetric_toeplitz\n"); 1401 break; 1402 default: 1403 printf("Unknown function\n"); 1404 return; 1405 } 1406 1407 printf(" types:\n"); 1408 if (rss_conf->types == 0) { 1409 printf(" none\n"); 1410 return; 1411 } 1412 for (i = 0; rss_type_table[i].str; i++) { 1413 if ((rss_conf->types & 1414 rss_type_table[i].rss_type) == 1415 rss_type_table[i].rss_type && 1416 rss_type_table[i].rss_type != 0) 1417 printf(" %s\n", rss_type_table[i].str); 1418 } 1419 } 1420 1421 static struct port_indirect_action * 1422 action_get_by_id(portid_t port_id, uint32_t id) 1423 { 1424 struct rte_port *port; 1425 struct port_indirect_action **ppia; 1426 struct port_indirect_action *pia = NULL; 1427 1428 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1429 port_id == (portid_t)RTE_PORT_ALL) 1430 return NULL; 1431 port = &ports[port_id]; 1432 ppia = &port->actions_list; 1433 while (*ppia) { 1434 if ((*ppia)->id == id) { 1435 pia = *ppia; 1436 break; 1437 } 1438 ppia = &(*ppia)->next; 1439 } 1440 if (!pia) 1441 fprintf(stderr, 1442 "Failed to find indirect action #%u on port %u\n", 1443 id, port_id); 1444 return pia; 1445 } 1446 1447 static int 1448 action_alloc(portid_t port_id, uint32_t id, 1449 struct port_indirect_action **action) 1450 { 1451 struct rte_port *port; 1452 struct port_indirect_action **ppia; 1453 struct port_indirect_action *pia = NULL; 1454 1455 *action = NULL; 1456 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1457 port_id == (portid_t)RTE_PORT_ALL) 1458 return -EINVAL; 1459 port = &ports[port_id]; 1460 if (id == UINT32_MAX) { 1461 /* taking first available ID */ 1462 if (port->actions_list) { 1463 if (port->actions_list->id == UINT32_MAX - 1) { 1464 fprintf(stderr, 1465 "Highest indirect action ID is already assigned, delete it first\n"); 1466 return -ENOMEM; 1467 } 1468 id = port->actions_list->id + 1; 1469 } else { 1470 id = 0; 1471 } 1472 } 1473 pia = calloc(1, sizeof(*pia)); 1474 if (!pia) { 1475 fprintf(stderr, 1476 "Allocation of port %u indirect action failed\n", 1477 port_id); 1478 return -ENOMEM; 1479 } 1480 ppia = &port->actions_list; 1481 while (*ppia && (*ppia)->id > id) 1482 ppia = &(*ppia)->next; 1483 if (*ppia && (*ppia)->id == id) { 1484 fprintf(stderr, 1485 "Indirect action #%u is already assigned, delete it first\n", 1486 id); 1487 free(pia); 1488 return -EINVAL; 1489 } 1490 pia->next = *ppia; 1491 pia->id = id; 1492 *ppia = pia; 1493 *action = pia; 1494 return 0; 1495 } 1496 1497 /** Create indirect action */ 1498 int 1499 port_action_handle_create(portid_t port_id, uint32_t id, 1500 const struct rte_flow_indir_action_conf *conf, 1501 const struct rte_flow_action *action) 1502 { 1503 struct port_indirect_action *pia; 1504 int ret; 1505 struct rte_flow_error error; 1506 1507 ret = action_alloc(port_id, id, &pia); 1508 if (ret) 1509 return ret; 1510 if (action->type == RTE_FLOW_ACTION_TYPE_AGE) { 1511 struct rte_flow_action_age *age = 1512 (struct rte_flow_action_age *)(uintptr_t)(action->conf); 1513 1514 pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION; 1515 age->context = &pia->age_type; 1516 } else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) { 1517 struct rte_flow_action_conntrack *ct = 1518 (struct rte_flow_action_conntrack *)(uintptr_t)(action->conf); 1519 1520 memcpy(ct, &conntrack_context, sizeof(*ct)); 1521 } 1522 /* Poisoning to make sure PMDs update it in case of error. */ 1523 memset(&error, 0x22, sizeof(error)); 1524 pia->handle = rte_flow_action_handle_create(port_id, conf, action, 1525 &error); 1526 if (!pia->handle) { 1527 uint32_t destroy_id = pia->id; 1528 port_action_handle_destroy(port_id, 1, &destroy_id); 1529 return port_flow_complain(&error); 1530 } 1531 pia->type = action->type; 1532 printf("Indirect action #%u created\n", pia->id); 1533 return 0; 1534 } 1535 1536 /** Destroy indirect action */ 1537 int 1538 port_action_handle_destroy(portid_t port_id, 1539 uint32_t n, 1540 const uint32_t *actions) 1541 { 1542 struct rte_port *port; 1543 struct port_indirect_action **tmp; 1544 uint32_t c = 0; 1545 int ret = 0; 1546 1547 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1548 port_id == (portid_t)RTE_PORT_ALL) 1549 return -EINVAL; 1550 port = &ports[port_id]; 1551 tmp = &port->actions_list; 1552 while (*tmp) { 1553 uint32_t i; 1554 1555 for (i = 0; i != n; ++i) { 1556 struct rte_flow_error error; 1557 struct port_indirect_action *pia = *tmp; 1558 1559 if (actions[i] != pia->id) 1560 continue; 1561 /* 1562 * Poisoning to make sure PMDs update it in case 1563 * of error. 1564 */ 1565 memset(&error, 0x33, sizeof(error)); 1566 1567 if (pia->handle && rte_flow_action_handle_destroy( 1568 port_id, pia->handle, &error)) { 1569 ret = port_flow_complain(&error); 1570 continue; 1571 } 1572 *tmp = pia->next; 1573 printf("Indirect action #%u destroyed\n", pia->id); 1574 free(pia); 1575 break; 1576 } 1577 if (i == n) 1578 tmp = &(*tmp)->next; 1579 ++c; 1580 } 1581 return ret; 1582 } 1583 1584 1585 /** Get indirect action by port + id */ 1586 struct rte_flow_action_handle * 1587 port_action_handle_get_by_id(portid_t port_id, uint32_t id) 1588 { 1589 1590 struct port_indirect_action *pia = action_get_by_id(port_id, id); 1591 1592 return (pia) ? pia->handle : NULL; 1593 } 1594 1595 /** Update indirect action */ 1596 int 1597 port_action_handle_update(portid_t port_id, uint32_t id, 1598 const struct rte_flow_action *action) 1599 { 1600 struct rte_flow_error error; 1601 struct rte_flow_action_handle *action_handle; 1602 struct port_indirect_action *pia; 1603 const void *update; 1604 1605 action_handle = port_action_handle_get_by_id(port_id, id); 1606 if (!action_handle) 1607 return -EINVAL; 1608 pia = action_get_by_id(port_id, id); 1609 if (!pia) 1610 return -EINVAL; 1611 switch (pia->type) { 1612 case RTE_FLOW_ACTION_TYPE_CONNTRACK: 1613 update = action->conf; 1614 break; 1615 default: 1616 update = action; 1617 break; 1618 } 1619 if (rte_flow_action_handle_update(port_id, action_handle, update, 1620 &error)) { 1621 return port_flow_complain(&error); 1622 } 1623 printf("Indirect action #%u updated\n", id); 1624 return 0; 1625 } 1626 1627 int 1628 port_action_handle_query(portid_t port_id, uint32_t id) 1629 { 1630 struct rte_flow_error error; 1631 struct port_indirect_action *pia; 1632 union { 1633 struct rte_flow_query_count count; 1634 struct rte_flow_query_age age; 1635 struct rte_flow_action_conntrack ct; 1636 } query; 1637 1638 pia = action_get_by_id(port_id, id); 1639 if (!pia) 1640 return -EINVAL; 1641 switch (pia->type) { 1642 case RTE_FLOW_ACTION_TYPE_AGE: 1643 case RTE_FLOW_ACTION_TYPE_COUNT: 1644 break; 1645 default: 1646 fprintf(stderr, 1647 "Indirect action %u (type: %d) on port %u doesn't support query\n", 1648 id, pia->type, port_id); 1649 return -ENOTSUP; 1650 } 1651 /* Poisoning to make sure PMDs update it in case of error. */ 1652 memset(&error, 0x55, sizeof(error)); 1653 memset(&query, 0, sizeof(query)); 1654 if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error)) 1655 return port_flow_complain(&error); 1656 switch (pia->type) { 1657 case RTE_FLOW_ACTION_TYPE_AGE: 1658 printf("Indirect AGE action:\n" 1659 " aged: %u\n" 1660 " sec_since_last_hit_valid: %u\n" 1661 " sec_since_last_hit: %" PRIu32 "\n", 1662 query.age.aged, 1663 query.age.sec_since_last_hit_valid, 1664 query.age.sec_since_last_hit); 1665 break; 1666 case RTE_FLOW_ACTION_TYPE_COUNT: 1667 printf("Indirect COUNT action:\n" 1668 " hits_set: %u\n" 1669 " bytes_set: %u\n" 1670 " hits: %" PRIu64 "\n" 1671 " bytes: %" PRIu64 "\n", 1672 query.count.hits_set, 1673 query.count.bytes_set, 1674 query.count.hits, 1675 query.count.bytes); 1676 break; 1677 case RTE_FLOW_ACTION_TYPE_CONNTRACK: 1678 printf("Conntrack Context:\n" 1679 " Peer: %u, Flow dir: %s, Enable: %u\n" 1680 " Live: %u, SACK: %u, CACK: %u\n" 1681 " Packet dir: %s, Liberal: %u, State: %u\n" 1682 " Factor: %u, Retrans: %u, TCP flags: %u\n" 1683 " Last Seq: %u, Last ACK: %u\n" 1684 " Last Win: %u, Last End: %u\n", 1685 query.ct.peer_port, 1686 query.ct.is_original_dir ? "Original" : "Reply", 1687 query.ct.enable, query.ct.live_connection, 1688 query.ct.selective_ack, query.ct.challenge_ack_passed, 1689 query.ct.last_direction ? "Original" : "Reply", 1690 query.ct.liberal_mode, query.ct.state, 1691 query.ct.max_ack_window, query.ct.retransmission_limit, 1692 query.ct.last_index, query.ct.last_seq, 1693 query.ct.last_ack, query.ct.last_window, 1694 query.ct.last_end); 1695 printf(" Original Dir:\n" 1696 " scale: %u, fin: %u, ack seen: %u\n" 1697 " unacked data: %u\n Sent end: %u," 1698 " Reply end: %u, Max win: %u, Max ACK: %u\n", 1699 query.ct.original_dir.scale, 1700 query.ct.original_dir.close_initiated, 1701 query.ct.original_dir.last_ack_seen, 1702 query.ct.original_dir.data_unacked, 1703 query.ct.original_dir.sent_end, 1704 query.ct.original_dir.reply_end, 1705 query.ct.original_dir.max_win, 1706 query.ct.original_dir.max_ack); 1707 printf(" Reply Dir:\n" 1708 " scale: %u, fin: %u, ack seen: %u\n" 1709 " unacked data: %u\n Sent end: %u," 1710 " Reply end: %u, Max win: %u, Max ACK: %u\n", 1711 query.ct.reply_dir.scale, 1712 query.ct.reply_dir.close_initiated, 1713 query.ct.reply_dir.last_ack_seen, 1714 query.ct.reply_dir.data_unacked, 1715 query.ct.reply_dir.sent_end, 1716 query.ct.reply_dir.reply_end, 1717 query.ct.reply_dir.max_win, 1718 query.ct.reply_dir.max_ack); 1719 break; 1720 default: 1721 fprintf(stderr, 1722 "Indirect action %u (type: %d) on port %u doesn't support query\n", 1723 id, pia->type, port_id); 1724 break; 1725 } 1726 return 0; 1727 } 1728 1729 static struct port_flow_tunnel * 1730 port_flow_tunnel_offload_cmd_prep(portid_t port_id, 1731 const struct rte_flow_item *pattern, 1732 const struct rte_flow_action *actions, 1733 const struct tunnel_ops *tunnel_ops) 1734 { 1735 int ret; 1736 struct rte_port *port; 1737 struct port_flow_tunnel *pft; 1738 struct rte_flow_error error; 1739 1740 port = &ports[port_id]; 1741 pft = port_flow_locate_tunnel_id(port, tunnel_ops->id); 1742 if (!pft) { 1743 fprintf(stderr, "failed to locate port flow tunnel #%u\n", 1744 tunnel_ops->id); 1745 return NULL; 1746 } 1747 if (tunnel_ops->actions) { 1748 uint32_t num_actions; 1749 const struct rte_flow_action *aptr; 1750 1751 ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel, 1752 &pft->pmd_actions, 1753 &pft->num_pmd_actions, 1754 &error); 1755 if (ret) { 1756 port_flow_complain(&error); 1757 return NULL; 1758 } 1759 for (aptr = actions, num_actions = 1; 1760 aptr->type != RTE_FLOW_ACTION_TYPE_END; 1761 aptr++, num_actions++); 1762 pft->actions = malloc( 1763 (num_actions + pft->num_pmd_actions) * 1764 sizeof(actions[0])); 1765 if (!pft->actions) { 1766 rte_flow_tunnel_action_decap_release( 1767 port_id, pft->actions, 1768 pft->num_pmd_actions, &error); 1769 return NULL; 1770 } 1771 rte_memcpy(pft->actions, pft->pmd_actions, 1772 pft->num_pmd_actions * sizeof(actions[0])); 1773 rte_memcpy(pft->actions + pft->num_pmd_actions, actions, 1774 num_actions * sizeof(actions[0])); 1775 } 1776 if (tunnel_ops->items) { 1777 uint32_t num_items; 1778 const struct rte_flow_item *iptr; 1779 1780 ret = rte_flow_tunnel_match(port_id, &pft->tunnel, 1781 &pft->pmd_items, 1782 &pft->num_pmd_items, 1783 &error); 1784 if (ret) { 1785 port_flow_complain(&error); 1786 return NULL; 1787 } 1788 for (iptr = pattern, num_items = 1; 1789 iptr->type != RTE_FLOW_ITEM_TYPE_END; 1790 iptr++, num_items++); 1791 pft->items = malloc((num_items + pft->num_pmd_items) * 1792 sizeof(pattern[0])); 1793 if (!pft->items) { 1794 rte_flow_tunnel_item_release( 1795 port_id, pft->pmd_items, 1796 pft->num_pmd_items, &error); 1797 return NULL; 1798 } 1799 rte_memcpy(pft->items, pft->pmd_items, 1800 pft->num_pmd_items * sizeof(pattern[0])); 1801 rte_memcpy(pft->items + pft->num_pmd_items, pattern, 1802 num_items * sizeof(pattern[0])); 1803 } 1804 1805 return pft; 1806 } 1807 1808 static void 1809 port_flow_tunnel_offload_cmd_release(portid_t port_id, 1810 const struct tunnel_ops *tunnel_ops, 1811 struct port_flow_tunnel *pft) 1812 { 1813 struct rte_flow_error error; 1814 1815 if (tunnel_ops->actions) { 1816 free(pft->actions); 1817 rte_flow_tunnel_action_decap_release( 1818 port_id, pft->pmd_actions, 1819 pft->num_pmd_actions, &error); 1820 pft->actions = NULL; 1821 pft->pmd_actions = NULL; 1822 } 1823 if (tunnel_ops->items) { 1824 free(pft->items); 1825 rte_flow_tunnel_item_release(port_id, pft->pmd_items, 1826 pft->num_pmd_items, 1827 &error); 1828 pft->items = NULL; 1829 pft->pmd_items = NULL; 1830 } 1831 } 1832 1833 /** Add port meter policy */ 1834 int 1835 port_meter_policy_add(portid_t port_id, uint32_t policy_id, 1836 const struct rte_flow_action *actions) 1837 { 1838 struct rte_mtr_error error; 1839 const struct rte_flow_action *act = actions; 1840 const struct rte_flow_action *start; 1841 struct rte_mtr_meter_policy_params policy; 1842 uint32_t i = 0, act_n; 1843 int ret; 1844 1845 for (i = 0; i < RTE_COLORS; i++) { 1846 for (act_n = 0, start = act; 1847 act->type != RTE_FLOW_ACTION_TYPE_END; act++) 1848 act_n++; 1849 if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END) 1850 policy.actions[i] = start; 1851 else 1852 policy.actions[i] = NULL; 1853 act++; 1854 } 1855 ret = rte_mtr_meter_policy_add(port_id, 1856 policy_id, 1857 &policy, &error); 1858 if (ret) 1859 print_mtr_err_msg(&error); 1860 return ret; 1861 } 1862 1863 /** Validate flow rule. */ 1864 int 1865 port_flow_validate(portid_t port_id, 1866 const struct rte_flow_attr *attr, 1867 const struct rte_flow_item *pattern, 1868 const struct rte_flow_action *actions, 1869 const struct tunnel_ops *tunnel_ops) 1870 { 1871 struct rte_flow_error error; 1872 struct port_flow_tunnel *pft = NULL; 1873 1874 /* Poisoning to make sure PMDs update it in case of error. */ 1875 memset(&error, 0x11, sizeof(error)); 1876 if (tunnel_ops->enabled) { 1877 pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, 1878 actions, tunnel_ops); 1879 if (!pft) 1880 return -ENOENT; 1881 if (pft->items) 1882 pattern = pft->items; 1883 if (pft->actions) 1884 actions = pft->actions; 1885 } 1886 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1887 return port_flow_complain(&error); 1888 if (tunnel_ops->enabled) 1889 port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); 1890 printf("Flow rule validated\n"); 1891 return 0; 1892 } 1893 1894 /** Return age action structure if exists, otherwise NULL. */ 1895 static struct rte_flow_action_age * 1896 age_action_get(const struct rte_flow_action *actions) 1897 { 1898 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1899 switch (actions->type) { 1900 case RTE_FLOW_ACTION_TYPE_AGE: 1901 return (struct rte_flow_action_age *) 1902 (uintptr_t)actions->conf; 1903 default: 1904 break; 1905 } 1906 } 1907 return NULL; 1908 } 1909 1910 /** Create flow rule. */ 1911 int 1912 port_flow_create(portid_t port_id, 1913 const struct rte_flow_attr *attr, 1914 const struct rte_flow_item *pattern, 1915 const struct rte_flow_action *actions, 1916 const struct tunnel_ops *tunnel_ops) 1917 { 1918 struct rte_flow *flow; 1919 struct rte_port *port; 1920 struct port_flow *pf; 1921 uint32_t id = 0; 1922 struct rte_flow_error error; 1923 struct port_flow_tunnel *pft = NULL; 1924 struct rte_flow_action_age *age = age_action_get(actions); 1925 1926 port = &ports[port_id]; 1927 if (port->flow_list) { 1928 if (port->flow_list->id == UINT32_MAX) { 1929 fprintf(stderr, 1930 "Highest rule ID is already assigned, delete it first"); 1931 return -ENOMEM; 1932 } 1933 id = port->flow_list->id + 1; 1934 } 1935 if (tunnel_ops->enabled) { 1936 pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, 1937 actions, tunnel_ops); 1938 if (!pft) 1939 return -ENOENT; 1940 if (pft->items) 1941 pattern = pft->items; 1942 if (pft->actions) 1943 actions = pft->actions; 1944 } 1945 pf = port_flow_new(attr, pattern, actions, &error); 1946 if (!pf) 1947 return port_flow_complain(&error); 1948 if (age) { 1949 pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW; 1950 age->context = &pf->age_type; 1951 } 1952 /* Poisoning to make sure PMDs update it in case of error. */ 1953 memset(&error, 0x22, sizeof(error)); 1954 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1955 if (!flow) { 1956 if (tunnel_ops->enabled) 1957 port_flow_tunnel_offload_cmd_release(port_id, 1958 tunnel_ops, pft); 1959 free(pf); 1960 return port_flow_complain(&error); 1961 } 1962 pf->next = port->flow_list; 1963 pf->id = id; 1964 pf->flow = flow; 1965 port->flow_list = pf; 1966 if (tunnel_ops->enabled) 1967 port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); 1968 printf("Flow rule #%u created\n", pf->id); 1969 return 0; 1970 } 1971 1972 /** Destroy a number of flow rules. */ 1973 int 1974 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1975 { 1976 struct rte_port *port; 1977 struct port_flow **tmp; 1978 uint32_t c = 0; 1979 int ret = 0; 1980 1981 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1982 port_id == (portid_t)RTE_PORT_ALL) 1983 return -EINVAL; 1984 port = &ports[port_id]; 1985 tmp = &port->flow_list; 1986 while (*tmp) { 1987 uint32_t i; 1988 1989 for (i = 0; i != n; ++i) { 1990 struct rte_flow_error error; 1991 struct port_flow *pf = *tmp; 1992 1993 if (rule[i] != pf->id) 1994 continue; 1995 /* 1996 * Poisoning to make sure PMDs update it in case 1997 * of error. 1998 */ 1999 memset(&error, 0x33, sizeof(error)); 2000 if (rte_flow_destroy(port_id, pf->flow, &error)) { 2001 ret = port_flow_complain(&error); 2002 continue; 2003 } 2004 printf("Flow rule #%u destroyed\n", pf->id); 2005 *tmp = pf->next; 2006 free(pf); 2007 break; 2008 } 2009 if (i == n) 2010 tmp = &(*tmp)->next; 2011 ++c; 2012 } 2013 return ret; 2014 } 2015 2016 /** Remove all flow rules. */ 2017 int 2018 port_flow_flush(portid_t port_id) 2019 { 2020 struct rte_flow_error error; 2021 struct rte_port *port; 2022 int ret = 0; 2023 2024 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2025 port_id == (portid_t)RTE_PORT_ALL) 2026 return -EINVAL; 2027 2028 port = &ports[port_id]; 2029 2030 if (port->flow_list == NULL) 2031 return ret; 2032 2033 /* Poisoning to make sure PMDs update it in case of error. */ 2034 memset(&error, 0x44, sizeof(error)); 2035 if (rte_flow_flush(port_id, &error)) { 2036 port_flow_complain(&error); 2037 } 2038 2039 while (port->flow_list) { 2040 struct port_flow *pf = port->flow_list->next; 2041 2042 free(port->flow_list); 2043 port->flow_list = pf; 2044 } 2045 return ret; 2046 } 2047 2048 /** Dump flow rules. */ 2049 int 2050 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id, 2051 const char *file_name) 2052 { 2053 int ret = 0; 2054 FILE *file = stdout; 2055 struct rte_flow_error error; 2056 struct rte_port *port; 2057 struct port_flow *pflow; 2058 struct rte_flow *tmpFlow = NULL; 2059 bool found = false; 2060 2061 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2062 port_id == (portid_t)RTE_PORT_ALL) 2063 return -EINVAL; 2064 2065 if (!dump_all) { 2066 port = &ports[port_id]; 2067 pflow = port->flow_list; 2068 while (pflow) { 2069 if (rule_id != pflow->id) { 2070 pflow = pflow->next; 2071 } else { 2072 tmpFlow = pflow->flow; 2073 if (tmpFlow) 2074 found = true; 2075 break; 2076 } 2077 } 2078 if (found == false) { 2079 fprintf(stderr, "Failed to dump to flow %d\n", rule_id); 2080 return -EINVAL; 2081 } 2082 } 2083 2084 if (file_name && strlen(file_name)) { 2085 file = fopen(file_name, "w"); 2086 if (!file) { 2087 fprintf(stderr, "Failed to create file %s: %s\n", 2088 file_name, strerror(errno)); 2089 return -errno; 2090 } 2091 } 2092 2093 if (!dump_all) 2094 ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error); 2095 else 2096 ret = rte_flow_dev_dump(port_id, NULL, file, &error); 2097 if (ret) { 2098 port_flow_complain(&error); 2099 fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret)); 2100 } else 2101 printf("Flow dump finished\n"); 2102 if (file_name && strlen(file_name)) 2103 fclose(file); 2104 return ret; 2105 } 2106 2107 /** Query a flow rule. */ 2108 int 2109 port_flow_query(portid_t port_id, uint32_t rule, 2110 const struct rte_flow_action *action) 2111 { 2112 struct rte_flow_error error; 2113 struct rte_port *port; 2114 struct port_flow *pf; 2115 const char *name; 2116 union { 2117 struct rte_flow_query_count count; 2118 struct rte_flow_action_rss rss_conf; 2119 struct rte_flow_query_age age; 2120 } query; 2121 int ret; 2122 2123 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2124 port_id == (portid_t)RTE_PORT_ALL) 2125 return -EINVAL; 2126 port = &ports[port_id]; 2127 for (pf = port->flow_list; pf; pf = pf->next) 2128 if (pf->id == rule) 2129 break; 2130 if (!pf) { 2131 fprintf(stderr, "Flow rule #%u not found\n", rule); 2132 return -ENOENT; 2133 } 2134 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 2135 &name, sizeof(name), 2136 (void *)(uintptr_t)action->type, &error); 2137 if (ret < 0) 2138 return port_flow_complain(&error); 2139 switch (action->type) { 2140 case RTE_FLOW_ACTION_TYPE_COUNT: 2141 case RTE_FLOW_ACTION_TYPE_RSS: 2142 case RTE_FLOW_ACTION_TYPE_AGE: 2143 break; 2144 default: 2145 fprintf(stderr, "Cannot query action type %d (%s)\n", 2146 action->type, name); 2147 return -ENOTSUP; 2148 } 2149 /* Poisoning to make sure PMDs update it in case of error. */ 2150 memset(&error, 0x55, sizeof(error)); 2151 memset(&query, 0, sizeof(query)); 2152 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 2153 return port_flow_complain(&error); 2154 switch (action->type) { 2155 case RTE_FLOW_ACTION_TYPE_COUNT: 2156 printf("%s:\n" 2157 " hits_set: %u\n" 2158 " bytes_set: %u\n" 2159 " hits: %" PRIu64 "\n" 2160 " bytes: %" PRIu64 "\n", 2161 name, 2162 query.count.hits_set, 2163 query.count.bytes_set, 2164 query.count.hits, 2165 query.count.bytes); 2166 break; 2167 case RTE_FLOW_ACTION_TYPE_RSS: 2168 rss_config_display(&query.rss_conf); 2169 break; 2170 case RTE_FLOW_ACTION_TYPE_AGE: 2171 printf("%s:\n" 2172 " aged: %u\n" 2173 " sec_since_last_hit_valid: %u\n" 2174 " sec_since_last_hit: %" PRIu32 "\n", 2175 name, 2176 query.age.aged, 2177 query.age.sec_since_last_hit_valid, 2178 query.age.sec_since_last_hit); 2179 break; 2180 default: 2181 fprintf(stderr, 2182 "Cannot display result for action type %d (%s)\n", 2183 action->type, name); 2184 break; 2185 } 2186 return 0; 2187 } 2188 2189 /** List simply and destroy all aged flows. */ 2190 void 2191 port_flow_aged(portid_t port_id, uint8_t destroy) 2192 { 2193 void **contexts; 2194 int nb_context, total = 0, idx; 2195 struct rte_flow_error error; 2196 enum age_action_context_type *type; 2197 union { 2198 struct port_flow *pf; 2199 struct port_indirect_action *pia; 2200 } ctx; 2201 2202 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2203 port_id == (portid_t)RTE_PORT_ALL) 2204 return; 2205 total = rte_flow_get_aged_flows(port_id, NULL, 0, &error); 2206 printf("Port %u total aged flows: %d\n", port_id, total); 2207 if (total < 0) { 2208 port_flow_complain(&error); 2209 return; 2210 } 2211 if (total == 0) 2212 return; 2213 contexts = malloc(sizeof(void *) * total); 2214 if (contexts == NULL) { 2215 fprintf(stderr, "Cannot allocate contexts for aged flow\n"); 2216 return; 2217 } 2218 printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type"); 2219 nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error); 2220 if (nb_context != total) { 2221 fprintf(stderr, 2222 "Port:%d get aged flows count(%d) != total(%d)\n", 2223 port_id, nb_context, total); 2224 free(contexts); 2225 return; 2226 } 2227 total = 0; 2228 for (idx = 0; idx < nb_context; idx++) { 2229 if (!contexts[idx]) { 2230 fprintf(stderr, "Error: get Null context in port %u\n", 2231 port_id); 2232 continue; 2233 } 2234 type = (enum age_action_context_type *)contexts[idx]; 2235 switch (*type) { 2236 case ACTION_AGE_CONTEXT_TYPE_FLOW: 2237 ctx.pf = container_of(type, struct port_flow, age_type); 2238 printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 2239 "\t%c%c%c\t\n", 2240 "Flow", 2241 ctx.pf->id, 2242 ctx.pf->rule.attr->group, 2243 ctx.pf->rule.attr->priority, 2244 ctx.pf->rule.attr->ingress ? 'i' : '-', 2245 ctx.pf->rule.attr->egress ? 'e' : '-', 2246 ctx.pf->rule.attr->transfer ? 't' : '-'); 2247 if (destroy && !port_flow_destroy(port_id, 1, 2248 &ctx.pf->id)) 2249 total++; 2250 break; 2251 case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION: 2252 ctx.pia = container_of(type, 2253 struct port_indirect_action, age_type); 2254 printf("%-20s\t%" PRIu32 "\n", "Indirect action", 2255 ctx.pia->id); 2256 break; 2257 default: 2258 fprintf(stderr, "Error: invalid context type %u\n", 2259 port_id); 2260 break; 2261 } 2262 } 2263 printf("\n%d flows destroyed\n", total); 2264 free(contexts); 2265 } 2266 2267 /** List flow rules. */ 2268 void 2269 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group) 2270 { 2271 struct rte_port *port; 2272 struct port_flow *pf; 2273 struct port_flow *list = NULL; 2274 uint32_t i; 2275 2276 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2277 port_id == (portid_t)RTE_PORT_ALL) 2278 return; 2279 port = &ports[port_id]; 2280 if (!port->flow_list) 2281 return; 2282 /* Sort flows by group, priority and ID. */ 2283 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 2284 struct port_flow **tmp; 2285 const struct rte_flow_attr *curr = pf->rule.attr; 2286 2287 if (n) { 2288 /* Filter out unwanted groups. */ 2289 for (i = 0; i != n; ++i) 2290 if (curr->group == group[i]) 2291 break; 2292 if (i == n) 2293 continue; 2294 } 2295 for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { 2296 const struct rte_flow_attr *comp = (*tmp)->rule.attr; 2297 2298 if (curr->group > comp->group || 2299 (curr->group == comp->group && 2300 curr->priority > comp->priority) || 2301 (curr->group == comp->group && 2302 curr->priority == comp->priority && 2303 pf->id > (*tmp)->id)) 2304 continue; 2305 break; 2306 } 2307 pf->tmp = *tmp; 2308 *tmp = pf; 2309 } 2310 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 2311 for (pf = list; pf != NULL; pf = pf->tmp) { 2312 const struct rte_flow_item *item = pf->rule.pattern; 2313 const struct rte_flow_action *action = pf->rule.actions; 2314 const char *name; 2315 2316 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", 2317 pf->id, 2318 pf->rule.attr->group, 2319 pf->rule.attr->priority, 2320 pf->rule.attr->ingress ? 'i' : '-', 2321 pf->rule.attr->egress ? 'e' : '-', 2322 pf->rule.attr->transfer ? 't' : '-'); 2323 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 2324 if ((uint32_t)item->type > INT_MAX) 2325 name = "PMD_INTERNAL"; 2326 else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 2327 &name, sizeof(name), 2328 (void *)(uintptr_t)item->type, 2329 NULL) <= 0) 2330 name = "[UNKNOWN]"; 2331 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 2332 printf("%s ", name); 2333 ++item; 2334 } 2335 printf("=>"); 2336 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 2337 if ((uint32_t)action->type > INT_MAX) 2338 name = "PMD_INTERNAL"; 2339 else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 2340 &name, sizeof(name), 2341 (void *)(uintptr_t)action->type, 2342 NULL) <= 0) 2343 name = "[UNKNOWN]"; 2344 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 2345 printf(" %s", name); 2346 ++action; 2347 } 2348 printf("\n"); 2349 } 2350 } 2351 2352 /** Restrict ingress traffic to the defined flow rules. */ 2353 int 2354 port_flow_isolate(portid_t port_id, int set) 2355 { 2356 struct rte_flow_error error; 2357 2358 /* Poisoning to make sure PMDs update it in case of error. */ 2359 memset(&error, 0x66, sizeof(error)); 2360 if (rte_flow_isolate(port_id, set, &error)) 2361 return port_flow_complain(&error); 2362 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 2363 port_id, 2364 set ? "now restricted" : "not restricted anymore"); 2365 return 0; 2366 } 2367 2368 /* 2369 * RX/TX ring descriptors display functions. 2370 */ 2371 int 2372 rx_queue_id_is_invalid(queueid_t rxq_id) 2373 { 2374 if (rxq_id < nb_rxq) 2375 return 0; 2376 fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n", 2377 rxq_id, nb_rxq); 2378 return 1; 2379 } 2380 2381 int 2382 tx_queue_id_is_invalid(queueid_t txq_id) 2383 { 2384 if (txq_id < nb_txq) 2385 return 0; 2386 fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n", 2387 txq_id, nb_txq); 2388 return 1; 2389 } 2390 2391 static int 2392 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size) 2393 { 2394 struct rte_port *port = &ports[port_id]; 2395 struct rte_eth_rxq_info rx_qinfo; 2396 int ret; 2397 2398 ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo); 2399 if (ret == 0) { 2400 *ring_size = rx_qinfo.nb_desc; 2401 return ret; 2402 } 2403 2404 if (ret != -ENOTSUP) 2405 return ret; 2406 /* 2407 * If the rte_eth_rx_queue_info_get is not support for this PMD, 2408 * ring_size stored in testpmd will be used for validity verification. 2409 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc 2410 * being 0, it will use a default value provided by PMDs to setup this 2411 * rxq. If the default value is 0, it will use the 2412 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq. 2413 */ 2414 if (port->nb_rx_desc[rxq_id]) 2415 *ring_size = port->nb_rx_desc[rxq_id]; 2416 else if (port->dev_info.default_rxportconf.ring_size) 2417 *ring_size = port->dev_info.default_rxportconf.ring_size; 2418 else 2419 *ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE; 2420 return 0; 2421 } 2422 2423 static int 2424 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size) 2425 { 2426 struct rte_port *port = &ports[port_id]; 2427 struct rte_eth_txq_info tx_qinfo; 2428 int ret; 2429 2430 ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo); 2431 if (ret == 0) { 2432 *ring_size = tx_qinfo.nb_desc; 2433 return ret; 2434 } 2435 2436 if (ret != -ENOTSUP) 2437 return ret; 2438 /* 2439 * If the rte_eth_tx_queue_info_get is not support for this PMD, 2440 * ring_size stored in testpmd will be used for validity verification. 2441 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc 2442 * being 0, it will use a default value provided by PMDs to setup this 2443 * txq. If the default value is 0, it will use the 2444 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq. 2445 */ 2446 if (port->nb_tx_desc[txq_id]) 2447 *ring_size = port->nb_tx_desc[txq_id]; 2448 else if (port->dev_info.default_txportconf.ring_size) 2449 *ring_size = port->dev_info.default_txportconf.ring_size; 2450 else 2451 *ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE; 2452 return 0; 2453 } 2454 2455 static int 2456 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id) 2457 { 2458 uint16_t ring_size; 2459 int ret; 2460 2461 ret = get_rx_ring_size(port_id, rxq_id, &ring_size); 2462 if (ret) 2463 return 1; 2464 2465 if (rxdesc_id < ring_size) 2466 return 0; 2467 2468 fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n", 2469 rxdesc_id, ring_size); 2470 return 1; 2471 } 2472 2473 static int 2474 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id) 2475 { 2476 uint16_t ring_size; 2477 int ret; 2478 2479 ret = get_tx_ring_size(port_id, txq_id, &ring_size); 2480 if (ret) 2481 return 1; 2482 2483 if (txdesc_id < ring_size) 2484 return 0; 2485 2486 fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n", 2487 txdesc_id, ring_size); 2488 return 1; 2489 } 2490 2491 static const struct rte_memzone * 2492 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 2493 { 2494 char mz_name[RTE_MEMZONE_NAMESIZE]; 2495 const struct rte_memzone *mz; 2496 2497 snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", 2498 port_id, q_id, ring_name); 2499 mz = rte_memzone_lookup(mz_name); 2500 if (mz == NULL) 2501 fprintf(stderr, 2502 "%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n", 2503 ring_name, port_id, q_id, mz_name); 2504 return mz; 2505 } 2506 2507 union igb_ring_dword { 2508 uint64_t dword; 2509 struct { 2510 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 2511 uint32_t lo; 2512 uint32_t hi; 2513 #else 2514 uint32_t hi; 2515 uint32_t lo; 2516 #endif 2517 } words; 2518 }; 2519 2520 struct igb_ring_desc_32_bytes { 2521 union igb_ring_dword lo_dword; 2522 union igb_ring_dword hi_dword; 2523 union igb_ring_dword resv1; 2524 union igb_ring_dword resv2; 2525 }; 2526 2527 struct igb_ring_desc_16_bytes { 2528 union igb_ring_dword lo_dword; 2529 union igb_ring_dword hi_dword; 2530 }; 2531 2532 static void 2533 ring_rxd_display_dword(union igb_ring_dword dword) 2534 { 2535 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 2536 (unsigned)dword.words.hi); 2537 } 2538 2539 static void 2540 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 2541 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 2542 portid_t port_id, 2543 #else 2544 __rte_unused portid_t port_id, 2545 #endif 2546 uint16_t desc_id) 2547 { 2548 struct igb_ring_desc_16_bytes *ring = 2549 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 2550 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 2551 int ret; 2552 struct rte_eth_dev_info dev_info; 2553 2554 ret = eth_dev_info_get_print_err(port_id, &dev_info); 2555 if (ret != 0) 2556 return; 2557 2558 if (strstr(dev_info.driver_name, "i40e") != NULL) { 2559 /* 32 bytes RX descriptor, i40e only */ 2560 struct igb_ring_desc_32_bytes *ring = 2561 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 2562 ring[desc_id].lo_dword.dword = 2563 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 2564 ring_rxd_display_dword(ring[desc_id].lo_dword); 2565 ring[desc_id].hi_dword.dword = 2566 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 2567 ring_rxd_display_dword(ring[desc_id].hi_dword); 2568 ring[desc_id].resv1.dword = 2569 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 2570 ring_rxd_display_dword(ring[desc_id].resv1); 2571 ring[desc_id].resv2.dword = 2572 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 2573 ring_rxd_display_dword(ring[desc_id].resv2); 2574 2575 return; 2576 } 2577 #endif 2578 /* 16 bytes RX descriptor */ 2579 ring[desc_id].lo_dword.dword = 2580 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 2581 ring_rxd_display_dword(ring[desc_id].lo_dword); 2582 ring[desc_id].hi_dword.dword = 2583 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 2584 ring_rxd_display_dword(ring[desc_id].hi_dword); 2585 } 2586 2587 static void 2588 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 2589 { 2590 struct igb_ring_desc_16_bytes *ring; 2591 struct igb_ring_desc_16_bytes txd; 2592 2593 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 2594 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 2595 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 2596 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 2597 (unsigned)txd.lo_dword.words.lo, 2598 (unsigned)txd.lo_dword.words.hi, 2599 (unsigned)txd.hi_dword.words.lo, 2600 (unsigned)txd.hi_dword.words.hi); 2601 } 2602 2603 void 2604 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 2605 { 2606 const struct rte_memzone *rx_mz; 2607 2608 if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id)) 2609 return; 2610 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 2611 if (rx_mz == NULL) 2612 return; 2613 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 2614 } 2615 2616 void 2617 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 2618 { 2619 const struct rte_memzone *tx_mz; 2620 2621 if (tx_desc_id_is_invalid(port_id, txq_id, txd_id)) 2622 return; 2623 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 2624 if (tx_mz == NULL) 2625 return; 2626 ring_tx_descriptor_display(tx_mz, txd_id); 2627 } 2628 2629 void 2630 fwd_lcores_config_display(void) 2631 { 2632 lcoreid_t lc_id; 2633 2634 printf("List of forwarding lcores:"); 2635 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 2636 printf(" %2u", fwd_lcores_cpuids[lc_id]); 2637 printf("\n"); 2638 } 2639 void 2640 rxtx_config_display(void) 2641 { 2642 portid_t pid; 2643 queueid_t qid; 2644 2645 printf(" %s packet forwarding%s packets/burst=%d\n", 2646 cur_fwd_eng->fwd_mode_name, 2647 retry_enabled == 0 ? "" : " with retry", 2648 nb_pkt_per_burst); 2649 2650 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 2651 printf(" packet len=%u - nb packet segments=%d\n", 2652 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 2653 2654 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 2655 nb_fwd_lcores, nb_fwd_ports); 2656 2657 RTE_ETH_FOREACH_DEV(pid) { 2658 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0]; 2659 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0]; 2660 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; 2661 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; 2662 struct rte_eth_rxq_info rx_qinfo; 2663 struct rte_eth_txq_info tx_qinfo; 2664 uint16_t rx_free_thresh_tmp; 2665 uint16_t tx_free_thresh_tmp; 2666 uint16_t tx_rs_thresh_tmp; 2667 uint16_t nb_rx_desc_tmp; 2668 uint16_t nb_tx_desc_tmp; 2669 uint64_t offloads_tmp; 2670 uint8_t pthresh_tmp; 2671 uint8_t hthresh_tmp; 2672 uint8_t wthresh_tmp; 2673 int32_t rc; 2674 2675 /* per port config */ 2676 printf(" port %d: RX queue number: %d Tx queue number: %d\n", 2677 (unsigned int)pid, nb_rxq, nb_txq); 2678 2679 printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", 2680 ports[pid].dev_conf.rxmode.offloads, 2681 ports[pid].dev_conf.txmode.offloads); 2682 2683 /* per rx queue config only for first queue to be less verbose */ 2684 for (qid = 0; qid < 1; qid++) { 2685 rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); 2686 if (rc) { 2687 nb_rx_desc_tmp = nb_rx_desc[qid]; 2688 rx_free_thresh_tmp = 2689 rx_conf[qid].rx_free_thresh; 2690 pthresh_tmp = rx_conf[qid].rx_thresh.pthresh; 2691 hthresh_tmp = rx_conf[qid].rx_thresh.hthresh; 2692 wthresh_tmp = rx_conf[qid].rx_thresh.wthresh; 2693 offloads_tmp = rx_conf[qid].offloads; 2694 } else { 2695 nb_rx_desc_tmp = rx_qinfo.nb_desc; 2696 rx_free_thresh_tmp = 2697 rx_qinfo.conf.rx_free_thresh; 2698 pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh; 2699 hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh; 2700 wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh; 2701 offloads_tmp = rx_qinfo.conf.offloads; 2702 } 2703 2704 printf(" RX queue: %d\n", qid); 2705 printf(" RX desc=%d - RX free threshold=%d\n", 2706 nb_rx_desc_tmp, rx_free_thresh_tmp); 2707 printf(" RX threshold registers: pthresh=%d hthresh=%d " 2708 " wthresh=%d\n", 2709 pthresh_tmp, hthresh_tmp, wthresh_tmp); 2710 printf(" RX Offloads=0x%"PRIx64"\n", offloads_tmp); 2711 } 2712 2713 /* per tx queue config only for first queue to be less verbose */ 2714 for (qid = 0; qid < 1; qid++) { 2715 rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); 2716 if (rc) { 2717 nb_tx_desc_tmp = nb_tx_desc[qid]; 2718 tx_free_thresh_tmp = 2719 tx_conf[qid].tx_free_thresh; 2720 pthresh_tmp = tx_conf[qid].tx_thresh.pthresh; 2721 hthresh_tmp = tx_conf[qid].tx_thresh.hthresh; 2722 wthresh_tmp = tx_conf[qid].tx_thresh.wthresh; 2723 offloads_tmp = tx_conf[qid].offloads; 2724 tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh; 2725 } else { 2726 nb_tx_desc_tmp = tx_qinfo.nb_desc; 2727 tx_free_thresh_tmp = 2728 tx_qinfo.conf.tx_free_thresh; 2729 pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh; 2730 hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh; 2731 wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh; 2732 offloads_tmp = tx_qinfo.conf.offloads; 2733 tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh; 2734 } 2735 2736 printf(" TX queue: %d\n", qid); 2737 printf(" TX desc=%d - TX free threshold=%d\n", 2738 nb_tx_desc_tmp, tx_free_thresh_tmp); 2739 printf(" TX threshold registers: pthresh=%d hthresh=%d " 2740 " wthresh=%d\n", 2741 pthresh_tmp, hthresh_tmp, wthresh_tmp); 2742 printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", 2743 offloads_tmp, tx_rs_thresh_tmp); 2744 } 2745 } 2746 } 2747 2748 void 2749 port_rss_reta_info(portid_t port_id, 2750 struct rte_eth_rss_reta_entry64 *reta_conf, 2751 uint16_t nb_entries) 2752 { 2753 uint16_t i, idx, shift; 2754 int ret; 2755 2756 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2757 return; 2758 2759 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 2760 if (ret != 0) { 2761 fprintf(stderr, 2762 "Failed to get RSS RETA info, return code = %d\n", 2763 ret); 2764 return; 2765 } 2766 2767 for (i = 0; i < nb_entries; i++) { 2768 idx = i / RTE_RETA_GROUP_SIZE; 2769 shift = i % RTE_RETA_GROUP_SIZE; 2770 if (!(reta_conf[idx].mask & (1ULL << shift))) 2771 continue; 2772 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 2773 i, reta_conf[idx].reta[shift]); 2774 } 2775 } 2776 2777 /* 2778 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 2779 * key of the port. 2780 */ 2781 void 2782 port_rss_hash_conf_show(portid_t port_id, int show_rss_key) 2783 { 2784 struct rte_eth_rss_conf rss_conf = {0}; 2785 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 2786 uint64_t rss_hf; 2787 uint8_t i; 2788 int diag; 2789 struct rte_eth_dev_info dev_info; 2790 uint8_t hash_key_size; 2791 int ret; 2792 2793 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2794 return; 2795 2796 ret = eth_dev_info_get_print_err(port_id, &dev_info); 2797 if (ret != 0) 2798 return; 2799 2800 if (dev_info.hash_key_size > 0 && 2801 dev_info.hash_key_size <= sizeof(rss_key)) 2802 hash_key_size = dev_info.hash_key_size; 2803 else { 2804 fprintf(stderr, 2805 "dev_info did not provide a valid hash key size\n"); 2806 return; 2807 } 2808 2809 /* Get RSS hash key if asked to display it */ 2810 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 2811 rss_conf.rss_key_len = hash_key_size; 2812 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 2813 if (diag != 0) { 2814 switch (diag) { 2815 case -ENODEV: 2816 fprintf(stderr, "port index %d invalid\n", port_id); 2817 break; 2818 case -ENOTSUP: 2819 fprintf(stderr, "operation not supported by device\n"); 2820 break; 2821 default: 2822 fprintf(stderr, "operation failed - diag=%d\n", diag); 2823 break; 2824 } 2825 return; 2826 } 2827 rss_hf = rss_conf.rss_hf; 2828 if (rss_hf == 0) { 2829 printf("RSS disabled\n"); 2830 return; 2831 } 2832 printf("RSS functions:\n "); 2833 for (i = 0; rss_type_table[i].str; i++) { 2834 if (rss_hf & rss_type_table[i].rss_type) 2835 printf("%s ", rss_type_table[i].str); 2836 } 2837 printf("\n"); 2838 if (!show_rss_key) 2839 return; 2840 printf("RSS key:\n"); 2841 for (i = 0; i < hash_key_size; i++) 2842 printf("%02X", rss_key[i]); 2843 printf("\n"); 2844 } 2845 2846 void 2847 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 2848 uint8_t hash_key_len) 2849 { 2850 struct rte_eth_rss_conf rss_conf; 2851 int diag; 2852 unsigned int i; 2853 2854 rss_conf.rss_key = NULL; 2855 rss_conf.rss_key_len = hash_key_len; 2856 rss_conf.rss_hf = 0; 2857 for (i = 0; rss_type_table[i].str; i++) { 2858 if (!strcmp(rss_type_table[i].str, rss_type)) 2859 rss_conf.rss_hf = rss_type_table[i].rss_type; 2860 } 2861 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 2862 if (diag == 0) { 2863 rss_conf.rss_key = hash_key; 2864 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 2865 } 2866 if (diag == 0) 2867 return; 2868 2869 switch (diag) { 2870 case -ENODEV: 2871 fprintf(stderr, "port index %d invalid\n", port_id); 2872 break; 2873 case -ENOTSUP: 2874 fprintf(stderr, "operation not supported by device\n"); 2875 break; 2876 default: 2877 fprintf(stderr, "operation failed - diag=%d\n", diag); 2878 break; 2879 } 2880 } 2881 2882 /* 2883 * Setup forwarding configuration for each logical core. 2884 */ 2885 static void 2886 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 2887 { 2888 streamid_t nb_fs_per_lcore; 2889 streamid_t nb_fs; 2890 streamid_t sm_id; 2891 lcoreid_t nb_extra; 2892 lcoreid_t nb_fc; 2893 lcoreid_t nb_lc; 2894 lcoreid_t lc_id; 2895 2896 nb_fs = cfg->nb_fwd_streams; 2897 nb_fc = cfg->nb_fwd_lcores; 2898 if (nb_fs <= nb_fc) { 2899 nb_fs_per_lcore = 1; 2900 nb_extra = 0; 2901 } else { 2902 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 2903 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 2904 } 2905 2906 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 2907 sm_id = 0; 2908 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 2909 fwd_lcores[lc_id]->stream_idx = sm_id; 2910 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 2911 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 2912 } 2913 2914 /* 2915 * Assign extra remaining streams, if any. 2916 */ 2917 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 2918 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 2919 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 2920 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 2921 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 2922 } 2923 } 2924 2925 static portid_t 2926 fwd_topology_tx_port_get(portid_t rxp) 2927 { 2928 static int warning_once = 1; 2929 2930 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 2931 2932 switch (port_topology) { 2933 default: 2934 case PORT_TOPOLOGY_PAIRED: 2935 if ((rxp & 0x1) == 0) { 2936 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 2937 return rxp + 1; 2938 if (warning_once) { 2939 fprintf(stderr, 2940 "\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n"); 2941 warning_once = 0; 2942 } 2943 return rxp; 2944 } 2945 return rxp - 1; 2946 case PORT_TOPOLOGY_CHAINED: 2947 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 2948 case PORT_TOPOLOGY_LOOP: 2949 return rxp; 2950 } 2951 } 2952 2953 static void 2954 simple_fwd_config_setup(void) 2955 { 2956 portid_t i; 2957 2958 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 2959 cur_fwd_config.nb_fwd_streams = 2960 (streamid_t) cur_fwd_config.nb_fwd_ports; 2961 2962 /* reinitialize forwarding streams */ 2963 init_fwd_streams(); 2964 2965 /* 2966 * In the simple forwarding test, the number of forwarding cores 2967 * must be lower or equal to the number of forwarding ports. 2968 */ 2969 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2970 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 2971 cur_fwd_config.nb_fwd_lcores = 2972 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 2973 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2974 2975 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2976 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 2977 fwd_streams[i]->rx_queue = 0; 2978 fwd_streams[i]->tx_port = 2979 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 2980 fwd_streams[i]->tx_queue = 0; 2981 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 2982 fwd_streams[i]->retry_enabled = retry_enabled; 2983 } 2984 } 2985 2986 /** 2987 * For the RSS forwarding test all streams distributed over lcores. Each stream 2988 * being composed of a RX queue to poll on a RX port for input messages, 2989 * associated with a TX queue of a TX port where to send forwarded packets. 2990 */ 2991 static void 2992 rss_fwd_config_setup(void) 2993 { 2994 portid_t rxp; 2995 portid_t txp; 2996 queueid_t rxq; 2997 queueid_t nb_q; 2998 streamid_t sm_id; 2999 int start; 3000 int end; 3001 3002 nb_q = nb_rxq; 3003 if (nb_q > nb_txq) 3004 nb_q = nb_txq; 3005 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3006 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 3007 cur_fwd_config.nb_fwd_streams = 3008 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 3009 3010 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 3011 cur_fwd_config.nb_fwd_lcores = 3012 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 3013 3014 /* reinitialize forwarding streams */ 3015 init_fwd_streams(); 3016 3017 setup_fwd_config_of_each_lcore(&cur_fwd_config); 3018 3019 if (proc_id > 0 && nb_q % num_procs != 0) 3020 printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n"); 3021 3022 /** 3023 * In multi-process, All queues are allocated to different 3024 * processes based on num_procs and proc_id. For example: 3025 * if supports 4 queues(nb_q), 2 processes(num_procs), 3026 * the 0~1 queue for primary process. 3027 * the 2~3 queue for secondary process. 3028 */ 3029 start = proc_id * nb_q / num_procs; 3030 end = start + nb_q / num_procs; 3031 rxp = 0; 3032 rxq = start; 3033 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 3034 struct fwd_stream *fs; 3035 3036 fs = fwd_streams[sm_id]; 3037 txp = fwd_topology_tx_port_get(rxp); 3038 fs->rx_port = fwd_ports_ids[rxp]; 3039 fs->rx_queue = rxq; 3040 fs->tx_port = fwd_ports_ids[txp]; 3041 fs->tx_queue = rxq; 3042 fs->peer_addr = fs->tx_port; 3043 fs->retry_enabled = retry_enabled; 3044 rxp++; 3045 if (rxp < nb_fwd_ports) 3046 continue; 3047 rxp = 0; 3048 rxq++; 3049 if (rxq >= end) 3050 rxq = start; 3051 } 3052 } 3053 3054 static uint16_t 3055 get_fwd_port_total_tc_num(void) 3056 { 3057 struct rte_eth_dcb_info dcb_info; 3058 uint16_t total_tc_num = 0; 3059 unsigned int i; 3060 3061 for (i = 0; i < nb_fwd_ports; i++) { 3062 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info); 3063 total_tc_num += dcb_info.nb_tcs; 3064 } 3065 3066 return total_tc_num; 3067 } 3068 3069 /** 3070 * For the DCB forwarding test, each core is assigned on each traffic class. 3071 * 3072 * Each core is assigned a multi-stream, each stream being composed of 3073 * a RX queue to poll on a RX port for input messages, associated with 3074 * a TX queue of a TX port where to send forwarded packets. All RX and 3075 * TX queues are mapping to the same traffic class. 3076 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 3077 * the same core 3078 */ 3079 static void 3080 dcb_fwd_config_setup(void) 3081 { 3082 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 3083 portid_t txp, rxp = 0; 3084 queueid_t txq, rxq = 0; 3085 lcoreid_t lc_id; 3086 uint16_t nb_rx_queue, nb_tx_queue; 3087 uint16_t i, j, k, sm_id = 0; 3088 uint16_t total_tc_num; 3089 struct rte_port *port; 3090 uint8_t tc = 0; 3091 portid_t pid; 3092 int ret; 3093 3094 /* 3095 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED 3096 * or RTE_PORT_STOPPED. 3097 * 3098 * Re-configure ports to get updated mapping between tc and queue in 3099 * case the queue number of the port is changed. Skip for started ports 3100 * since modifying queue number and calling dev_configure need to stop 3101 * ports first. 3102 */ 3103 for (pid = 0; pid < nb_fwd_ports; pid++) { 3104 if (port_is_started(pid) == 1) 3105 continue; 3106 3107 port = &ports[pid]; 3108 ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq, 3109 &port->dev_conf); 3110 if (ret < 0) { 3111 fprintf(stderr, 3112 "Failed to re-configure port %d, ret = %d.\n", 3113 pid, ret); 3114 return; 3115 } 3116 } 3117 3118 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3119 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 3120 cur_fwd_config.nb_fwd_streams = 3121 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 3122 total_tc_num = get_fwd_port_total_tc_num(); 3123 if (cur_fwd_config.nb_fwd_lcores > total_tc_num) 3124 cur_fwd_config.nb_fwd_lcores = total_tc_num; 3125 3126 /* reinitialize forwarding streams */ 3127 init_fwd_streams(); 3128 sm_id = 0; 3129 txp = 1; 3130 /* get the dcb info on the first RX and TX ports */ 3131 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 3132 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 3133 3134 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 3135 fwd_lcores[lc_id]->stream_nb = 0; 3136 fwd_lcores[lc_id]->stream_idx = sm_id; 3137 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 3138 /* if the nb_queue is zero, means this tc is 3139 * not enabled on the POOL 3140 */ 3141 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 3142 break; 3143 k = fwd_lcores[lc_id]->stream_nb + 3144 fwd_lcores[lc_id]->stream_idx; 3145 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 3146 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 3147 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 3148 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 3149 for (j = 0; j < nb_rx_queue; j++) { 3150 struct fwd_stream *fs; 3151 3152 fs = fwd_streams[k + j]; 3153 fs->rx_port = fwd_ports_ids[rxp]; 3154 fs->rx_queue = rxq + j; 3155 fs->tx_port = fwd_ports_ids[txp]; 3156 fs->tx_queue = txq + j % nb_tx_queue; 3157 fs->peer_addr = fs->tx_port; 3158 fs->retry_enabled = retry_enabled; 3159 } 3160 fwd_lcores[lc_id]->stream_nb += 3161 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 3162 } 3163 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 3164 3165 tc++; 3166 if (tc < rxp_dcb_info.nb_tcs) 3167 continue; 3168 /* Restart from TC 0 on next RX port */ 3169 tc = 0; 3170 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 3171 rxp = (portid_t) 3172 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 3173 else 3174 rxp++; 3175 if (rxp >= nb_fwd_ports) 3176 return; 3177 /* get the dcb information on next RX and TX ports */ 3178 if ((rxp & 0x1) == 0) 3179 txp = (portid_t) (rxp + 1); 3180 else 3181 txp = (portid_t) (rxp - 1); 3182 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 3183 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 3184 } 3185 } 3186 3187 static void 3188 icmp_echo_config_setup(void) 3189 { 3190 portid_t rxp; 3191 queueid_t rxq; 3192 lcoreid_t lc_id; 3193 uint16_t sm_id; 3194 3195 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 3196 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 3197 (nb_txq * nb_fwd_ports); 3198 else 3199 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3200 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 3201 cur_fwd_config.nb_fwd_streams = 3202 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 3203 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 3204 cur_fwd_config.nb_fwd_lcores = 3205 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 3206 if (verbose_level > 0) { 3207 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 3208 __FUNCTION__, 3209 cur_fwd_config.nb_fwd_lcores, 3210 cur_fwd_config.nb_fwd_ports, 3211 cur_fwd_config.nb_fwd_streams); 3212 } 3213 3214 /* reinitialize forwarding streams */ 3215 init_fwd_streams(); 3216 setup_fwd_config_of_each_lcore(&cur_fwd_config); 3217 rxp = 0; rxq = 0; 3218 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 3219 if (verbose_level > 0) 3220 printf(" core=%d: \n", lc_id); 3221 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 3222 struct fwd_stream *fs; 3223 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 3224 fs->rx_port = fwd_ports_ids[rxp]; 3225 fs->rx_queue = rxq; 3226 fs->tx_port = fs->rx_port; 3227 fs->tx_queue = rxq; 3228 fs->peer_addr = fs->tx_port; 3229 fs->retry_enabled = retry_enabled; 3230 if (verbose_level > 0) 3231 printf(" stream=%d port=%d rxq=%d txq=%d\n", 3232 sm_id, fs->rx_port, fs->rx_queue, 3233 fs->tx_queue); 3234 rxq = (queueid_t) (rxq + 1); 3235 if (rxq == nb_rxq) { 3236 rxq = 0; 3237 rxp = (portid_t) (rxp + 1); 3238 } 3239 } 3240 } 3241 } 3242 3243 void 3244 fwd_config_setup(void) 3245 { 3246 struct rte_port *port; 3247 portid_t pt_id; 3248 unsigned int i; 3249 3250 cur_fwd_config.fwd_eng = cur_fwd_eng; 3251 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 3252 icmp_echo_config_setup(); 3253 return; 3254 } 3255 3256 if ((nb_rxq > 1) && (nb_txq > 1)){ 3257 if (dcb_config) { 3258 for (i = 0; i < nb_fwd_ports; i++) { 3259 pt_id = fwd_ports_ids[i]; 3260 port = &ports[pt_id]; 3261 if (!port->dcb_flag) { 3262 fprintf(stderr, 3263 "In DCB mode, all forwarding ports must be configured in this mode.\n"); 3264 return; 3265 } 3266 } 3267 if (nb_fwd_lcores == 1) { 3268 fprintf(stderr, 3269 "In DCB mode,the nb forwarding cores should be larger than 1.\n"); 3270 return; 3271 } 3272 3273 dcb_fwd_config_setup(); 3274 } else 3275 rss_fwd_config_setup(); 3276 } 3277 else 3278 simple_fwd_config_setup(); 3279 } 3280 3281 static const char * 3282 mp_alloc_to_str(uint8_t mode) 3283 { 3284 switch (mode) { 3285 case MP_ALLOC_NATIVE: 3286 return "native"; 3287 case MP_ALLOC_ANON: 3288 return "anon"; 3289 case MP_ALLOC_XMEM: 3290 return "xmem"; 3291 case MP_ALLOC_XMEM_HUGE: 3292 return "xmemhuge"; 3293 case MP_ALLOC_XBUF: 3294 return "xbuf"; 3295 default: 3296 return "invalid"; 3297 } 3298 } 3299 3300 void 3301 pkt_fwd_config_display(struct fwd_config *cfg) 3302 { 3303 struct fwd_stream *fs; 3304 lcoreid_t lc_id; 3305 streamid_t sm_id; 3306 3307 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 3308 "NUMA support %s, MP allocation mode: %s\n", 3309 cfg->fwd_eng->fwd_mode_name, 3310 retry_enabled == 0 ? "" : " with retry", 3311 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 3312 numa_support == 1 ? "enabled" : "disabled", 3313 mp_alloc_to_str(mp_alloc_type)); 3314 3315 if (retry_enabled) 3316 printf("TX retry num: %u, delay between TX retries: %uus\n", 3317 burst_tx_retry_num, burst_tx_delay_time); 3318 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 3319 printf("Logical Core %u (socket %u) forwards packets on " 3320 "%d streams:", 3321 fwd_lcores_cpuids[lc_id], 3322 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 3323 fwd_lcores[lc_id]->stream_nb); 3324 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 3325 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 3326 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 3327 "P=%d/Q=%d (socket %u) ", 3328 fs->rx_port, fs->rx_queue, 3329 ports[fs->rx_port].socket_id, 3330 fs->tx_port, fs->tx_queue, 3331 ports[fs->tx_port].socket_id); 3332 print_ethaddr("peer=", 3333 &peer_eth_addrs[fs->peer_addr]); 3334 } 3335 printf("\n"); 3336 } 3337 printf("\n"); 3338 } 3339 3340 void 3341 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 3342 { 3343 struct rte_ether_addr new_peer_addr; 3344 if (!rte_eth_dev_is_valid_port(port_id)) { 3345 fprintf(stderr, "Error: Invalid port number %i\n", port_id); 3346 return; 3347 } 3348 if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) { 3349 fprintf(stderr, "Error: Invalid ethernet address: %s\n", 3350 peer_addr); 3351 return; 3352 } 3353 peer_eth_addrs[port_id] = new_peer_addr; 3354 } 3355 3356 int 3357 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 3358 { 3359 unsigned int i; 3360 unsigned int lcore_cpuid; 3361 int record_now; 3362 3363 record_now = 0; 3364 again: 3365 for (i = 0; i < nb_lc; i++) { 3366 lcore_cpuid = lcorelist[i]; 3367 if (! rte_lcore_is_enabled(lcore_cpuid)) { 3368 fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid); 3369 return -1; 3370 } 3371 if (lcore_cpuid == rte_get_main_lcore()) { 3372 fprintf(stderr, 3373 "lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n", 3374 lcore_cpuid); 3375 return -1; 3376 } 3377 if (record_now) 3378 fwd_lcores_cpuids[i] = lcore_cpuid; 3379 } 3380 if (record_now == 0) { 3381 record_now = 1; 3382 goto again; 3383 } 3384 nb_cfg_lcores = (lcoreid_t) nb_lc; 3385 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 3386 printf("previous number of forwarding cores %u - changed to " 3387 "number of configured cores %u\n", 3388 (unsigned int) nb_fwd_lcores, nb_lc); 3389 nb_fwd_lcores = (lcoreid_t) nb_lc; 3390 } 3391 3392 return 0; 3393 } 3394 3395 int 3396 set_fwd_lcores_mask(uint64_t lcoremask) 3397 { 3398 unsigned int lcorelist[64]; 3399 unsigned int nb_lc; 3400 unsigned int i; 3401 3402 if (lcoremask == 0) { 3403 fprintf(stderr, "Invalid NULL mask of cores\n"); 3404 return -1; 3405 } 3406 nb_lc = 0; 3407 for (i = 0; i < 64; i++) { 3408 if (! ((uint64_t)(1ULL << i) & lcoremask)) 3409 continue; 3410 lcorelist[nb_lc++] = i; 3411 } 3412 return set_fwd_lcores_list(lcorelist, nb_lc); 3413 } 3414 3415 void 3416 set_fwd_lcores_number(uint16_t nb_lc) 3417 { 3418 if (test_done == 0) { 3419 fprintf(stderr, "Please stop forwarding first\n"); 3420 return; 3421 } 3422 if (nb_lc > nb_cfg_lcores) { 3423 fprintf(stderr, 3424 "nb fwd cores %u > %u (max. number of configured lcores) - ignored\n", 3425 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 3426 return; 3427 } 3428 nb_fwd_lcores = (lcoreid_t) nb_lc; 3429 printf("Number of forwarding cores set to %u\n", 3430 (unsigned int) nb_fwd_lcores); 3431 } 3432 3433 void 3434 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 3435 { 3436 unsigned int i; 3437 portid_t port_id; 3438 int record_now; 3439 3440 record_now = 0; 3441 again: 3442 for (i = 0; i < nb_pt; i++) { 3443 port_id = (portid_t) portlist[i]; 3444 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3445 return; 3446 if (record_now) 3447 fwd_ports_ids[i] = port_id; 3448 } 3449 if (record_now == 0) { 3450 record_now = 1; 3451 goto again; 3452 } 3453 nb_cfg_ports = (portid_t) nb_pt; 3454 if (nb_fwd_ports != (portid_t) nb_pt) { 3455 printf("previous number of forwarding ports %u - changed to " 3456 "number of configured ports %u\n", 3457 (unsigned int) nb_fwd_ports, nb_pt); 3458 nb_fwd_ports = (portid_t) nb_pt; 3459 } 3460 } 3461 3462 /** 3463 * Parse the user input and obtain the list of forwarding ports 3464 * 3465 * @param[in] list 3466 * String containing the user input. User can specify 3467 * in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6. 3468 * For example, if the user wants to use all the available 3469 * 4 ports in his system, then the input can be 0-3 or 0,1,2,3. 3470 * If the user wants to use only the ports 1,2 then the input 3471 * is 1,2. 3472 * valid characters are '-' and ',' 3473 * @param[out] values 3474 * This array will be filled with a list of port IDs 3475 * based on the user input 3476 * Note that duplicate entries are discarded and only the first 3477 * count entries in this array are port IDs and all the rest 3478 * will contain default values 3479 * @param[in] maxsize 3480 * This parameter denotes 2 things 3481 * 1) Number of elements in the values array 3482 * 2) Maximum value of each element in the values array 3483 * @return 3484 * On success, returns total count of parsed port IDs 3485 * On failure, returns 0 3486 */ 3487 static unsigned int 3488 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize) 3489 { 3490 unsigned int count = 0; 3491 char *end = NULL; 3492 int min, max; 3493 int value, i; 3494 unsigned int marked[maxsize]; 3495 3496 if (list == NULL || values == NULL) 3497 return 0; 3498 3499 for (i = 0; i < (int)maxsize; i++) 3500 marked[i] = 0; 3501 3502 min = INT_MAX; 3503 3504 do { 3505 /*Remove the blank spaces if any*/ 3506 while (isblank(*list)) 3507 list++; 3508 if (*list == '\0') 3509 break; 3510 errno = 0; 3511 value = strtol(list, &end, 10); 3512 if (errno || end == NULL) 3513 return 0; 3514 if (value < 0 || value >= (int)maxsize) 3515 return 0; 3516 while (isblank(*end)) 3517 end++; 3518 if (*end == '-' && min == INT_MAX) { 3519 min = value; 3520 } else if ((*end == ',') || (*end == '\0')) { 3521 max = value; 3522 if (min == INT_MAX) 3523 min = value; 3524 for (i = min; i <= max; i++) { 3525 if (count < maxsize) { 3526 if (marked[i]) 3527 continue; 3528 values[count] = i; 3529 marked[i] = 1; 3530 count++; 3531 } 3532 } 3533 min = INT_MAX; 3534 } else 3535 return 0; 3536 list = end + 1; 3537 } while (*end != '\0'); 3538 3539 return count; 3540 } 3541 3542 void 3543 parse_fwd_portlist(const char *portlist) 3544 { 3545 unsigned int portcount; 3546 unsigned int portindex[RTE_MAX_ETHPORTS]; 3547 unsigned int i, valid_port_count = 0; 3548 3549 portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS); 3550 if (!portcount) 3551 rte_exit(EXIT_FAILURE, "Invalid fwd port list\n"); 3552 3553 /* 3554 * Here we verify the validity of the ports 3555 * and thereby calculate the total number of 3556 * valid ports 3557 */ 3558 for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) { 3559 if (rte_eth_dev_is_valid_port(portindex[i])) { 3560 portindex[valid_port_count] = portindex[i]; 3561 valid_port_count++; 3562 } 3563 } 3564 3565 set_fwd_ports_list(portindex, valid_port_count); 3566 } 3567 3568 void 3569 set_fwd_ports_mask(uint64_t portmask) 3570 { 3571 unsigned int portlist[64]; 3572 unsigned int nb_pt; 3573 unsigned int i; 3574 3575 if (portmask == 0) { 3576 fprintf(stderr, "Invalid NULL mask of ports\n"); 3577 return; 3578 } 3579 nb_pt = 0; 3580 RTE_ETH_FOREACH_DEV(i) { 3581 if (! ((uint64_t)(1ULL << i) & portmask)) 3582 continue; 3583 portlist[nb_pt++] = i; 3584 } 3585 set_fwd_ports_list(portlist, nb_pt); 3586 } 3587 3588 void 3589 set_fwd_ports_number(uint16_t nb_pt) 3590 { 3591 if (nb_pt > nb_cfg_ports) { 3592 fprintf(stderr, 3593 "nb fwd ports %u > %u (number of configured ports) - ignored\n", 3594 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 3595 return; 3596 } 3597 nb_fwd_ports = (portid_t) nb_pt; 3598 printf("Number of forwarding ports set to %u\n", 3599 (unsigned int) nb_fwd_ports); 3600 } 3601 3602 int 3603 port_is_forwarding(portid_t port_id) 3604 { 3605 unsigned int i; 3606 3607 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3608 return -1; 3609 3610 for (i = 0; i < nb_fwd_ports; i++) { 3611 if (fwd_ports_ids[i] == port_id) 3612 return 1; 3613 } 3614 3615 return 0; 3616 } 3617 3618 void 3619 set_nb_pkt_per_burst(uint16_t nb) 3620 { 3621 if (nb > MAX_PKT_BURST) { 3622 fprintf(stderr, 3623 "nb pkt per burst: %u > %u (maximum packet per burst) ignored\n", 3624 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 3625 return; 3626 } 3627 nb_pkt_per_burst = nb; 3628 printf("Number of packets per burst set to %u\n", 3629 (unsigned int) nb_pkt_per_burst); 3630 } 3631 3632 static const char * 3633 tx_split_get_name(enum tx_pkt_split split) 3634 { 3635 uint32_t i; 3636 3637 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 3638 if (tx_split_name[i].split == split) 3639 return tx_split_name[i].name; 3640 } 3641 return NULL; 3642 } 3643 3644 void 3645 set_tx_pkt_split(const char *name) 3646 { 3647 uint32_t i; 3648 3649 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 3650 if (strcmp(tx_split_name[i].name, name) == 0) { 3651 tx_pkt_split = tx_split_name[i].split; 3652 return; 3653 } 3654 } 3655 fprintf(stderr, "unknown value: \"%s\"\n", name); 3656 } 3657 3658 int 3659 parse_fec_mode(const char *name, uint32_t *fec_capa) 3660 { 3661 uint8_t i; 3662 3663 for (i = 0; i < RTE_DIM(fec_mode_name); i++) { 3664 if (strcmp(fec_mode_name[i].name, name) == 0) { 3665 *fec_capa = 3666 RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode); 3667 return 0; 3668 } 3669 } 3670 return -1; 3671 } 3672 3673 void 3674 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa) 3675 { 3676 unsigned int i, j; 3677 3678 printf("FEC capabilities:\n"); 3679 3680 for (i = 0; i < num; i++) { 3681 printf("%s : ", 3682 rte_eth_link_speed_to_str(speed_fec_capa[i].speed)); 3683 3684 for (j = 0; j < RTE_DIM(fec_mode_name); j++) { 3685 if (RTE_ETH_FEC_MODE_TO_CAPA(j) & 3686 speed_fec_capa[i].capa) 3687 printf("%s ", fec_mode_name[j].name); 3688 } 3689 printf("\n"); 3690 } 3691 } 3692 3693 void 3694 show_rx_pkt_offsets(void) 3695 { 3696 uint32_t i, n; 3697 3698 n = rx_pkt_nb_offs; 3699 printf("Number of offsets: %u\n", n); 3700 if (n) { 3701 printf("Segment offsets: "); 3702 for (i = 0; i != n - 1; i++) 3703 printf("%hu,", rx_pkt_seg_offsets[i]); 3704 printf("%hu\n", rx_pkt_seg_lengths[i]); 3705 } 3706 } 3707 3708 void 3709 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs) 3710 { 3711 unsigned int i; 3712 3713 if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) { 3714 printf("nb segments per RX packets=%u >= " 3715 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs); 3716 return; 3717 } 3718 3719 /* 3720 * No extra check here, the segment length will be checked by PMD 3721 * in the extended queue setup. 3722 */ 3723 for (i = 0; i < nb_offs; i++) { 3724 if (seg_offsets[i] >= UINT16_MAX) { 3725 printf("offset[%u]=%u > UINT16_MAX - give up\n", 3726 i, seg_offsets[i]); 3727 return; 3728 } 3729 } 3730 3731 for (i = 0; i < nb_offs; i++) 3732 rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i]; 3733 3734 rx_pkt_nb_offs = (uint8_t) nb_offs; 3735 } 3736 3737 void 3738 show_rx_pkt_segments(void) 3739 { 3740 uint32_t i, n; 3741 3742 n = rx_pkt_nb_segs; 3743 printf("Number of segments: %u\n", n); 3744 if (n) { 3745 printf("Segment sizes: "); 3746 for (i = 0; i != n - 1; i++) 3747 printf("%hu,", rx_pkt_seg_lengths[i]); 3748 printf("%hu\n", rx_pkt_seg_lengths[i]); 3749 } 3750 } 3751 3752 void 3753 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) 3754 { 3755 unsigned int i; 3756 3757 if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) { 3758 printf("nb segments per RX packets=%u >= " 3759 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs); 3760 return; 3761 } 3762 3763 /* 3764 * No extra check here, the segment length will be checked by PMD 3765 * in the extended queue setup. 3766 */ 3767 for (i = 0; i < nb_segs; i++) { 3768 if (seg_lengths[i] >= UINT16_MAX) { 3769 printf("length[%u]=%u > UINT16_MAX - give up\n", 3770 i, seg_lengths[i]); 3771 return; 3772 } 3773 } 3774 3775 for (i = 0; i < nb_segs; i++) 3776 rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 3777 3778 rx_pkt_nb_segs = (uint8_t) nb_segs; 3779 } 3780 3781 void 3782 show_tx_pkt_segments(void) 3783 { 3784 uint32_t i, n; 3785 const char *split; 3786 3787 n = tx_pkt_nb_segs; 3788 split = tx_split_get_name(tx_pkt_split); 3789 3790 printf("Number of segments: %u\n", n); 3791 printf("Segment sizes: "); 3792 for (i = 0; i != n - 1; i++) 3793 printf("%hu,", tx_pkt_seg_lengths[i]); 3794 printf("%hu\n", tx_pkt_seg_lengths[i]); 3795 printf("Split packet: %s\n", split); 3796 } 3797 3798 static bool 3799 nb_segs_is_invalid(unsigned int nb_segs) 3800 { 3801 uint16_t ring_size; 3802 uint16_t queue_id; 3803 uint16_t port_id; 3804 int ret; 3805 3806 RTE_ETH_FOREACH_DEV(port_id) { 3807 for (queue_id = 0; queue_id < nb_txq; queue_id++) { 3808 ret = get_tx_ring_size(port_id, queue_id, &ring_size); 3809 if (ret) { 3810 /* Port may not be initialized yet, can't say 3811 * the port is invalid in this stage. 3812 */ 3813 continue; 3814 } 3815 if (ring_size < nb_segs) { 3816 printf("nb segments per TX packets=%u >= TX " 3817 "queue(%u) ring_size=%u - txpkts ignored\n", 3818 nb_segs, queue_id, ring_size); 3819 return true; 3820 } 3821 } 3822 } 3823 3824 return false; 3825 } 3826 3827 void 3828 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) 3829 { 3830 uint16_t tx_pkt_len; 3831 unsigned int i; 3832 3833 /* 3834 * For single segment settings failed check is ignored. 3835 * It is a very basic capability to send the single segment 3836 * packets, suppose it is always supported. 3837 */ 3838 if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) { 3839 fprintf(stderr, 3840 "Tx segment size(%u) is not supported - txpkts ignored\n", 3841 nb_segs); 3842 return; 3843 } 3844 3845 if (nb_segs > RTE_MAX_SEGS_PER_PKT) { 3846 fprintf(stderr, 3847 "Tx segment size(%u) is bigger than max number of segment(%u)\n", 3848 nb_segs, RTE_MAX_SEGS_PER_PKT); 3849 return; 3850 } 3851 3852 /* 3853 * Check that each segment length is greater or equal than 3854 * the mbuf data size. 3855 * Check also that the total packet length is greater or equal than the 3856 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + 3857 * 20 + 8). 3858 */ 3859 tx_pkt_len = 0; 3860 for (i = 0; i < nb_segs; i++) { 3861 if (seg_lengths[i] > mbuf_data_size[0]) { 3862 fprintf(stderr, 3863 "length[%u]=%u > mbuf_data_size=%u - give up\n", 3864 i, seg_lengths[i], mbuf_data_size[0]); 3865 return; 3866 } 3867 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 3868 } 3869 if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { 3870 fprintf(stderr, "total packet length=%u < %d - give up\n", 3871 (unsigned) tx_pkt_len, 3872 (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); 3873 return; 3874 } 3875 3876 for (i = 0; i < nb_segs; i++) 3877 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 3878 3879 tx_pkt_length = tx_pkt_len; 3880 tx_pkt_nb_segs = (uint8_t) nb_segs; 3881 } 3882 3883 void 3884 show_tx_pkt_times(void) 3885 { 3886 printf("Interburst gap: %u\n", tx_pkt_times_inter); 3887 printf("Intraburst gap: %u\n", tx_pkt_times_intra); 3888 } 3889 3890 void 3891 set_tx_pkt_times(unsigned int *tx_times) 3892 { 3893 tx_pkt_times_inter = tx_times[0]; 3894 tx_pkt_times_intra = tx_times[1]; 3895 } 3896 3897 void 3898 setup_gro(const char *onoff, portid_t port_id) 3899 { 3900 if (!rte_eth_dev_is_valid_port(port_id)) { 3901 fprintf(stderr, "invalid port id %u\n", port_id); 3902 return; 3903 } 3904 if (test_done == 0) { 3905 fprintf(stderr, 3906 "Before enable/disable GRO, please stop forwarding first\n"); 3907 return; 3908 } 3909 if (strcmp(onoff, "on") == 0) { 3910 if (gro_ports[port_id].enable != 0) { 3911 fprintf(stderr, 3912 "Port %u has enabled GRO. Please disable GRO first\n", 3913 port_id); 3914 return; 3915 } 3916 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 3917 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 3918 gro_ports[port_id].param.max_flow_num = 3919 GRO_DEFAULT_FLOW_NUM; 3920 gro_ports[port_id].param.max_item_per_flow = 3921 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 3922 } 3923 gro_ports[port_id].enable = 1; 3924 } else { 3925 if (gro_ports[port_id].enable == 0) { 3926 fprintf(stderr, "Port %u has disabled GRO\n", port_id); 3927 return; 3928 } 3929 gro_ports[port_id].enable = 0; 3930 } 3931 } 3932 3933 void 3934 setup_gro_flush_cycles(uint8_t cycles) 3935 { 3936 if (test_done == 0) { 3937 fprintf(stderr, 3938 "Before change flush interval for GRO, please stop forwarding first.\n"); 3939 return; 3940 } 3941 3942 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 3943 GRO_DEFAULT_FLUSH_CYCLES) { 3944 fprintf(stderr, 3945 "The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n", 3946 GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES); 3947 cycles = GRO_DEFAULT_FLUSH_CYCLES; 3948 } 3949 3950 gro_flush_cycles = cycles; 3951 } 3952 3953 void 3954 show_gro(portid_t port_id) 3955 { 3956 struct rte_gro_param *param; 3957 uint32_t max_pkts_num; 3958 3959 param = &gro_ports[port_id].param; 3960 3961 if (!rte_eth_dev_is_valid_port(port_id)) { 3962 fprintf(stderr, "Invalid port id %u.\n", port_id); 3963 return; 3964 } 3965 if (gro_ports[port_id].enable) { 3966 printf("GRO type: TCP/IPv4\n"); 3967 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 3968 max_pkts_num = param->max_flow_num * 3969 param->max_item_per_flow; 3970 } else 3971 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 3972 printf("Max number of packets to perform GRO: %u\n", 3973 max_pkts_num); 3974 printf("Flushing cycles: %u\n", gro_flush_cycles); 3975 } else 3976 printf("Port %u doesn't enable GRO.\n", port_id); 3977 } 3978 3979 void 3980 setup_gso(const char *mode, portid_t port_id) 3981 { 3982 if (!rte_eth_dev_is_valid_port(port_id)) { 3983 fprintf(stderr, "invalid port id %u\n", port_id); 3984 return; 3985 } 3986 if (strcmp(mode, "on") == 0) { 3987 if (test_done == 0) { 3988 fprintf(stderr, 3989 "before enabling GSO, please stop forwarding first\n"); 3990 return; 3991 } 3992 gso_ports[port_id].enable = 1; 3993 } else if (strcmp(mode, "off") == 0) { 3994 if (test_done == 0) { 3995 fprintf(stderr, 3996 "before disabling GSO, please stop forwarding first\n"); 3997 return; 3998 } 3999 gso_ports[port_id].enable = 0; 4000 } 4001 } 4002 4003 char* 4004 list_pkt_forwarding_modes(void) 4005 { 4006 static char fwd_modes[128] = ""; 4007 const char *separator = "|"; 4008 struct fwd_engine *fwd_eng; 4009 unsigned i = 0; 4010 4011 if (strlen (fwd_modes) == 0) { 4012 while ((fwd_eng = fwd_engines[i++]) != NULL) { 4013 strncat(fwd_modes, fwd_eng->fwd_mode_name, 4014 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 4015 strncat(fwd_modes, separator, 4016 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 4017 } 4018 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 4019 } 4020 4021 return fwd_modes; 4022 } 4023 4024 char* 4025 list_pkt_forwarding_retry_modes(void) 4026 { 4027 static char fwd_modes[128] = ""; 4028 const char *separator = "|"; 4029 struct fwd_engine *fwd_eng; 4030 unsigned i = 0; 4031 4032 if (strlen(fwd_modes) == 0) { 4033 while ((fwd_eng = fwd_engines[i++]) != NULL) { 4034 if (fwd_eng == &rx_only_engine) 4035 continue; 4036 strncat(fwd_modes, fwd_eng->fwd_mode_name, 4037 sizeof(fwd_modes) - 4038 strlen(fwd_modes) - 1); 4039 strncat(fwd_modes, separator, 4040 sizeof(fwd_modes) - 4041 strlen(fwd_modes) - 1); 4042 } 4043 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 4044 } 4045 4046 return fwd_modes; 4047 } 4048 4049 void 4050 set_pkt_forwarding_mode(const char *fwd_mode_name) 4051 { 4052 struct fwd_engine *fwd_eng; 4053 unsigned i; 4054 4055 i = 0; 4056 while ((fwd_eng = fwd_engines[i]) != NULL) { 4057 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 4058 printf("Set %s packet forwarding mode%s\n", 4059 fwd_mode_name, 4060 retry_enabled == 0 ? "" : " with retry"); 4061 cur_fwd_eng = fwd_eng; 4062 return; 4063 } 4064 i++; 4065 } 4066 fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name); 4067 } 4068 4069 void 4070 add_rx_dump_callbacks(portid_t portid) 4071 { 4072 struct rte_eth_dev_info dev_info; 4073 uint16_t queue; 4074 int ret; 4075 4076 if (port_id_is_invalid(portid, ENABLED_WARN)) 4077 return; 4078 4079 ret = eth_dev_info_get_print_err(portid, &dev_info); 4080 if (ret != 0) 4081 return; 4082 4083 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 4084 if (!ports[portid].rx_dump_cb[queue]) 4085 ports[portid].rx_dump_cb[queue] = 4086 rte_eth_add_rx_callback(portid, queue, 4087 dump_rx_pkts, NULL); 4088 } 4089 4090 void 4091 add_tx_dump_callbacks(portid_t portid) 4092 { 4093 struct rte_eth_dev_info dev_info; 4094 uint16_t queue; 4095 int ret; 4096 4097 if (port_id_is_invalid(portid, ENABLED_WARN)) 4098 return; 4099 4100 ret = eth_dev_info_get_print_err(portid, &dev_info); 4101 if (ret != 0) 4102 return; 4103 4104 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 4105 if (!ports[portid].tx_dump_cb[queue]) 4106 ports[portid].tx_dump_cb[queue] = 4107 rte_eth_add_tx_callback(portid, queue, 4108 dump_tx_pkts, NULL); 4109 } 4110 4111 void 4112 remove_rx_dump_callbacks(portid_t portid) 4113 { 4114 struct rte_eth_dev_info dev_info; 4115 uint16_t queue; 4116 int ret; 4117 4118 if (port_id_is_invalid(portid, ENABLED_WARN)) 4119 return; 4120 4121 ret = eth_dev_info_get_print_err(portid, &dev_info); 4122 if (ret != 0) 4123 return; 4124 4125 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 4126 if (ports[portid].rx_dump_cb[queue]) { 4127 rte_eth_remove_rx_callback(portid, queue, 4128 ports[portid].rx_dump_cb[queue]); 4129 ports[portid].rx_dump_cb[queue] = NULL; 4130 } 4131 } 4132 4133 void 4134 remove_tx_dump_callbacks(portid_t portid) 4135 { 4136 struct rte_eth_dev_info dev_info; 4137 uint16_t queue; 4138 int ret; 4139 4140 if (port_id_is_invalid(portid, ENABLED_WARN)) 4141 return; 4142 4143 ret = eth_dev_info_get_print_err(portid, &dev_info); 4144 if (ret != 0) 4145 return; 4146 4147 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 4148 if (ports[portid].tx_dump_cb[queue]) { 4149 rte_eth_remove_tx_callback(portid, queue, 4150 ports[portid].tx_dump_cb[queue]); 4151 ports[portid].tx_dump_cb[queue] = NULL; 4152 } 4153 } 4154 4155 void 4156 configure_rxtx_dump_callbacks(uint16_t verbose) 4157 { 4158 portid_t portid; 4159 4160 #ifndef RTE_ETHDEV_RXTX_CALLBACKS 4161 TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); 4162 return; 4163 #endif 4164 4165 RTE_ETH_FOREACH_DEV(portid) 4166 { 4167 if (verbose == 1 || verbose > 2) 4168 add_rx_dump_callbacks(portid); 4169 else 4170 remove_rx_dump_callbacks(portid); 4171 if (verbose >= 2) 4172 add_tx_dump_callbacks(portid); 4173 else 4174 remove_tx_dump_callbacks(portid); 4175 } 4176 } 4177 4178 void 4179 set_verbose_level(uint16_t vb_level) 4180 { 4181 printf("Change verbose level from %u to %u\n", 4182 (unsigned int) verbose_level, (unsigned int) vb_level); 4183 verbose_level = vb_level; 4184 configure_rxtx_dump_callbacks(verbose_level); 4185 } 4186 4187 void 4188 vlan_extend_set(portid_t port_id, int on) 4189 { 4190 int diag; 4191 int vlan_offload; 4192 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4193 4194 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4195 return; 4196 4197 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4198 4199 if (on) { 4200 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 4201 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND; 4202 } else { 4203 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 4204 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND; 4205 } 4206 4207 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4208 if (diag < 0) { 4209 fprintf(stderr, 4210 "rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n", 4211 port_id, on, diag); 4212 return; 4213 } 4214 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4215 } 4216 4217 void 4218 rx_vlan_strip_set(portid_t port_id, int on) 4219 { 4220 int diag; 4221 int vlan_offload; 4222 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4223 4224 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4225 return; 4226 4227 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4228 4229 if (on) { 4230 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 4231 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP; 4232 } else { 4233 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 4234 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; 4235 } 4236 4237 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4238 if (diag < 0) { 4239 fprintf(stderr, 4240 "%s(port_pi=%d, on=%d) failed diag=%d\n", 4241 __func__, port_id, on, diag); 4242 return; 4243 } 4244 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4245 } 4246 4247 void 4248 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 4249 { 4250 int diag; 4251 4252 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4253 return; 4254 4255 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 4256 if (diag < 0) 4257 fprintf(stderr, 4258 "%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n", 4259 __func__, port_id, queue_id, on, diag); 4260 } 4261 4262 void 4263 rx_vlan_filter_set(portid_t port_id, int on) 4264 { 4265 int diag; 4266 int vlan_offload; 4267 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4268 4269 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4270 return; 4271 4272 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4273 4274 if (on) { 4275 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 4276 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 4277 } else { 4278 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 4279 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER; 4280 } 4281 4282 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4283 if (diag < 0) { 4284 fprintf(stderr, 4285 "%s(port_pi=%d, on=%d) failed diag=%d\n", 4286 __func__, port_id, on, diag); 4287 return; 4288 } 4289 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4290 } 4291 4292 void 4293 rx_vlan_qinq_strip_set(portid_t port_id, int on) 4294 { 4295 int diag; 4296 int vlan_offload; 4297 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4298 4299 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4300 return; 4301 4302 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4303 4304 if (on) { 4305 vlan_offload |= ETH_QINQ_STRIP_OFFLOAD; 4306 port_rx_offloads |= DEV_RX_OFFLOAD_QINQ_STRIP; 4307 } else { 4308 vlan_offload &= ~ETH_QINQ_STRIP_OFFLOAD; 4309 port_rx_offloads &= ~DEV_RX_OFFLOAD_QINQ_STRIP; 4310 } 4311 4312 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4313 if (diag < 0) { 4314 fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n", 4315 __func__, port_id, on, diag); 4316 return; 4317 } 4318 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4319 } 4320 4321 int 4322 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 4323 { 4324 int diag; 4325 4326 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4327 return 1; 4328 if (vlan_id_is_invalid(vlan_id)) 4329 return 1; 4330 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 4331 if (diag == 0) 4332 return 0; 4333 fprintf(stderr, 4334 "rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n", 4335 port_id, vlan_id, on, diag); 4336 return -1; 4337 } 4338 4339 void 4340 rx_vlan_all_filter_set(portid_t port_id, int on) 4341 { 4342 uint16_t vlan_id; 4343 4344 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4345 return; 4346 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 4347 if (rx_vft_set(port_id, vlan_id, on)) 4348 break; 4349 } 4350 } 4351 4352 void 4353 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 4354 { 4355 int diag; 4356 4357 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4358 return; 4359 4360 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 4361 if (diag == 0) 4362 return; 4363 4364 fprintf(stderr, 4365 "tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n", 4366 port_id, vlan_type, tp_id, diag); 4367 } 4368 4369 void 4370 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 4371 { 4372 struct rte_eth_dev_info dev_info; 4373 int ret; 4374 4375 if (vlan_id_is_invalid(vlan_id)) 4376 return; 4377 4378 if (ports[port_id].dev_conf.txmode.offloads & 4379 DEV_TX_OFFLOAD_QINQ_INSERT) { 4380 fprintf(stderr, "Error, as QinQ has been enabled.\n"); 4381 return; 4382 } 4383 4384 ret = eth_dev_info_get_print_err(port_id, &dev_info); 4385 if (ret != 0) 4386 return; 4387 4388 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) { 4389 fprintf(stderr, 4390 "Error: vlan insert is not supported by port %d\n", 4391 port_id); 4392 return; 4393 } 4394 4395 tx_vlan_reset(port_id); 4396 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT; 4397 ports[port_id].tx_vlan_id = vlan_id; 4398 } 4399 4400 void 4401 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 4402 { 4403 struct rte_eth_dev_info dev_info; 4404 int ret; 4405 4406 if (vlan_id_is_invalid(vlan_id)) 4407 return; 4408 if (vlan_id_is_invalid(vlan_id_outer)) 4409 return; 4410 4411 ret = eth_dev_info_get_print_err(port_id, &dev_info); 4412 if (ret != 0) 4413 return; 4414 4415 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) { 4416 fprintf(stderr, 4417 "Error: qinq insert not supported by port %d\n", 4418 port_id); 4419 return; 4420 } 4421 4422 tx_vlan_reset(port_id); 4423 ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT | 4424 DEV_TX_OFFLOAD_QINQ_INSERT); 4425 ports[port_id].tx_vlan_id = vlan_id; 4426 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 4427 } 4428 4429 void 4430 tx_vlan_reset(portid_t port_id) 4431 { 4432 ports[port_id].dev_conf.txmode.offloads &= 4433 ~(DEV_TX_OFFLOAD_VLAN_INSERT | 4434 DEV_TX_OFFLOAD_QINQ_INSERT); 4435 ports[port_id].tx_vlan_id = 0; 4436 ports[port_id].tx_vlan_id_outer = 0; 4437 } 4438 4439 void 4440 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 4441 { 4442 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4443 return; 4444 4445 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 4446 } 4447 4448 void 4449 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 4450 { 4451 int ret; 4452 4453 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4454 return; 4455 4456 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 4457 return; 4458 4459 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 4460 fprintf(stderr, "map_value not in required range 0..%d\n", 4461 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 4462 return; 4463 } 4464 4465 if (!is_rx) { /* tx */ 4466 ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id, 4467 map_value); 4468 if (ret) { 4469 fprintf(stderr, 4470 "failed to set tx queue stats mapping.\n"); 4471 return; 4472 } 4473 } else { /* rx */ 4474 ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id, 4475 map_value); 4476 if (ret) { 4477 fprintf(stderr, 4478 "failed to set rx queue stats mapping.\n"); 4479 return; 4480 } 4481 } 4482 } 4483 4484 void 4485 set_xstats_hide_zero(uint8_t on_off) 4486 { 4487 xstats_hide_zero = on_off; 4488 } 4489 4490 void 4491 set_record_core_cycles(uint8_t on_off) 4492 { 4493 record_core_cycles = on_off; 4494 } 4495 4496 void 4497 set_record_burst_stats(uint8_t on_off) 4498 { 4499 record_burst_stats = on_off; 4500 } 4501 4502 static char* 4503 flowtype_to_str(uint16_t flow_type) 4504 { 4505 struct flow_type_info { 4506 char str[32]; 4507 uint16_t ftype; 4508 }; 4509 4510 uint8_t i; 4511 static struct flow_type_info flowtype_str_table[] = { 4512 {"raw", RTE_ETH_FLOW_RAW}, 4513 {"ipv4", RTE_ETH_FLOW_IPV4}, 4514 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 4515 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 4516 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 4517 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 4518 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 4519 {"ipv6", RTE_ETH_FLOW_IPV6}, 4520 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 4521 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 4522 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 4523 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 4524 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 4525 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 4526 {"port", RTE_ETH_FLOW_PORT}, 4527 {"vxlan", RTE_ETH_FLOW_VXLAN}, 4528 {"geneve", RTE_ETH_FLOW_GENEVE}, 4529 {"nvgre", RTE_ETH_FLOW_NVGRE}, 4530 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, 4531 }; 4532 4533 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 4534 if (flowtype_str_table[i].ftype == flow_type) 4535 return flowtype_str_table[i].str; 4536 } 4537 4538 return NULL; 4539 } 4540 4541 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE) 4542 4543 static inline void 4544 print_fdir_mask(struct rte_eth_fdir_masks *mask) 4545 { 4546 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 4547 4548 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 4549 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 4550 " tunnel_id: 0x%08x", 4551 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 4552 rte_be_to_cpu_32(mask->tunnel_id_mask)); 4553 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 4554 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 4555 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 4556 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 4557 4558 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 4559 rte_be_to_cpu_16(mask->src_port_mask), 4560 rte_be_to_cpu_16(mask->dst_port_mask)); 4561 4562 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 4563 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 4564 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 4565 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 4566 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 4567 4568 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 4569 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 4570 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 4571 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 4572 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 4573 } 4574 4575 printf("\n"); 4576 } 4577 4578 static inline void 4579 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 4580 { 4581 struct rte_eth_flex_payload_cfg *cfg; 4582 uint32_t i, j; 4583 4584 for (i = 0; i < flex_conf->nb_payloads; i++) { 4585 cfg = &flex_conf->flex_set[i]; 4586 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 4587 printf("\n RAW: "); 4588 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 4589 printf("\n L2_PAYLOAD: "); 4590 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 4591 printf("\n L3_PAYLOAD: "); 4592 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 4593 printf("\n L4_PAYLOAD: "); 4594 else 4595 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 4596 for (j = 0; j < num; j++) 4597 printf(" %-5u", cfg->src_offset[j]); 4598 } 4599 printf("\n"); 4600 } 4601 4602 static inline void 4603 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 4604 { 4605 struct rte_eth_fdir_flex_mask *mask; 4606 uint32_t i, j; 4607 char *p; 4608 4609 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 4610 mask = &flex_conf->flex_mask[i]; 4611 p = flowtype_to_str(mask->flow_type); 4612 printf("\n %s:\t", p ? p : "unknown"); 4613 for (j = 0; j < num; j++) 4614 printf(" %02x", mask->mask[j]); 4615 } 4616 printf("\n"); 4617 } 4618 4619 static inline void 4620 print_fdir_flow_type(uint32_t flow_types_mask) 4621 { 4622 int i; 4623 char *p; 4624 4625 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 4626 if (!(flow_types_mask & (1 << i))) 4627 continue; 4628 p = flowtype_to_str(i); 4629 if (p) 4630 printf(" %s", p); 4631 else 4632 printf(" unknown"); 4633 } 4634 printf("\n"); 4635 } 4636 4637 static int 4638 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info, 4639 struct rte_eth_fdir_stats *fdir_stat) 4640 { 4641 int ret = -ENOTSUP; 4642 4643 #ifdef RTE_NET_I40E 4644 if (ret == -ENOTSUP) { 4645 ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info); 4646 if (!ret) 4647 ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat); 4648 } 4649 #endif 4650 #ifdef RTE_NET_IXGBE 4651 if (ret == -ENOTSUP) { 4652 ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info); 4653 if (!ret) 4654 ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat); 4655 } 4656 #endif 4657 switch (ret) { 4658 case 0: 4659 break; 4660 case -ENOTSUP: 4661 fprintf(stderr, "\n FDIR is not supported on port %-2d\n", 4662 port_id); 4663 break; 4664 default: 4665 fprintf(stderr, "programming error: (%s)\n", strerror(-ret)); 4666 break; 4667 } 4668 return ret; 4669 } 4670 4671 void 4672 fdir_get_infos(portid_t port_id) 4673 { 4674 struct rte_eth_fdir_stats fdir_stat; 4675 struct rte_eth_fdir_info fdir_info; 4676 4677 static const char *fdir_stats_border = "########################"; 4678 4679 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4680 return; 4681 4682 memset(&fdir_info, 0, sizeof(fdir_info)); 4683 memset(&fdir_stat, 0, sizeof(fdir_stat)); 4684 if (get_fdir_info(port_id, &fdir_info, &fdir_stat)) 4685 return; 4686 4687 printf("\n %s FDIR infos for port %-2d %s\n", 4688 fdir_stats_border, port_id, fdir_stats_border); 4689 printf(" MODE: "); 4690 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 4691 printf(" PERFECT\n"); 4692 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 4693 printf(" PERFECT-MAC-VLAN\n"); 4694 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 4695 printf(" PERFECT-TUNNEL\n"); 4696 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 4697 printf(" SIGNATURE\n"); 4698 else 4699 printf(" DISABLE\n"); 4700 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 4701 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 4702 printf(" SUPPORTED FLOW TYPE: "); 4703 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 4704 } 4705 printf(" FLEX PAYLOAD INFO:\n"); 4706 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 4707 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 4708 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 4709 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 4710 fdir_info.flex_payload_unit, 4711 fdir_info.max_flex_payload_segment_num, 4712 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 4713 printf(" MASK: "); 4714 print_fdir_mask(&fdir_info.mask); 4715 if (fdir_info.flex_conf.nb_payloads > 0) { 4716 printf(" FLEX PAYLOAD SRC OFFSET:"); 4717 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 4718 } 4719 if (fdir_info.flex_conf.nb_flexmasks > 0) { 4720 printf(" FLEX MASK CFG:"); 4721 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 4722 } 4723 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 4724 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 4725 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 4726 fdir_info.guarant_spc, fdir_info.best_spc); 4727 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 4728 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 4729 " add: %-10"PRIu64" remove: %"PRIu64"\n" 4730 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 4731 fdir_stat.collision, fdir_stat.free, 4732 fdir_stat.maxhash, fdir_stat.maxlen, 4733 fdir_stat.add, fdir_stat.remove, 4734 fdir_stat.f_add, fdir_stat.f_remove); 4735 printf(" %s############################%s\n", 4736 fdir_stats_border, fdir_stats_border); 4737 } 4738 4739 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */ 4740 4741 void 4742 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 4743 { 4744 struct rte_port *port; 4745 struct rte_eth_fdir_flex_conf *flex_conf; 4746 int i, idx = 0; 4747 4748 port = &ports[port_id]; 4749 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 4750 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 4751 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 4752 idx = i; 4753 break; 4754 } 4755 } 4756 if (i >= RTE_ETH_FLOW_MAX) { 4757 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 4758 idx = flex_conf->nb_flexmasks; 4759 flex_conf->nb_flexmasks++; 4760 } else { 4761 fprintf(stderr, 4762 "The flex mask table is full. Can not set flex mask for flow_type(%u).", 4763 cfg->flow_type); 4764 return; 4765 } 4766 } 4767 rte_memcpy(&flex_conf->flex_mask[idx], 4768 cfg, 4769 sizeof(struct rte_eth_fdir_flex_mask)); 4770 } 4771 4772 void 4773 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 4774 { 4775 struct rte_port *port; 4776 struct rte_eth_fdir_flex_conf *flex_conf; 4777 int i, idx = 0; 4778 4779 port = &ports[port_id]; 4780 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 4781 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 4782 if (cfg->type == flex_conf->flex_set[i].type) { 4783 idx = i; 4784 break; 4785 } 4786 } 4787 if (i >= RTE_ETH_PAYLOAD_MAX) { 4788 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 4789 idx = flex_conf->nb_payloads; 4790 flex_conf->nb_payloads++; 4791 } else { 4792 fprintf(stderr, 4793 "The flex payload table is full. Can not set flex payload for type(%u).", 4794 cfg->type); 4795 return; 4796 } 4797 } 4798 rte_memcpy(&flex_conf->flex_set[idx], 4799 cfg, 4800 sizeof(struct rte_eth_flex_payload_cfg)); 4801 4802 } 4803 4804 void 4805 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 4806 { 4807 #ifdef RTE_NET_IXGBE 4808 int diag; 4809 4810 if (is_rx) 4811 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 4812 else 4813 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 4814 4815 if (diag == 0) 4816 return; 4817 fprintf(stderr, 4818 "rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 4819 is_rx ? "rx" : "tx", port_id, diag); 4820 return; 4821 #endif 4822 fprintf(stderr, "VF %s setting not supported for port %d\n", 4823 is_rx ? "Rx" : "Tx", port_id); 4824 RTE_SET_USED(vf); 4825 RTE_SET_USED(on); 4826 } 4827 4828 int 4829 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 4830 { 4831 int diag; 4832 struct rte_eth_link link; 4833 int ret; 4834 4835 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4836 return 1; 4837 ret = eth_link_get_nowait_print_err(port_id, &link); 4838 if (ret < 0) 4839 return 1; 4840 if (link.link_speed != ETH_SPEED_NUM_UNKNOWN && 4841 rate > link.link_speed) { 4842 fprintf(stderr, 4843 "Invalid rate value:%u bigger than link speed: %u\n", 4844 rate, link.link_speed); 4845 return 1; 4846 } 4847 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 4848 if (diag == 0) 4849 return diag; 4850 fprintf(stderr, 4851 "rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 4852 port_id, diag); 4853 return diag; 4854 } 4855 4856 int 4857 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 4858 { 4859 int diag = -ENOTSUP; 4860 4861 RTE_SET_USED(vf); 4862 RTE_SET_USED(rate); 4863 RTE_SET_USED(q_msk); 4864 4865 #ifdef RTE_NET_IXGBE 4866 if (diag == -ENOTSUP) 4867 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 4868 q_msk); 4869 #endif 4870 #ifdef RTE_NET_BNXT 4871 if (diag == -ENOTSUP) 4872 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 4873 #endif 4874 if (diag == 0) 4875 return diag; 4876 4877 fprintf(stderr, 4878 "%s for port_id=%d failed diag=%d\n", 4879 __func__, port_id, diag); 4880 return diag; 4881 } 4882 4883 /* 4884 * Functions to manage the set of filtered Multicast MAC addresses. 4885 * 4886 * A pool of filtered multicast MAC addresses is associated with each port. 4887 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 4888 * The address of the pool and the number of valid multicast MAC addresses 4889 * recorded in the pool are stored in the fields "mc_addr_pool" and 4890 * "mc_addr_nb" of the "rte_port" data structure. 4891 * 4892 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 4893 * to be supplied a contiguous array of multicast MAC addresses. 4894 * To comply with this constraint, the set of multicast addresses recorded 4895 * into the pool are systematically compacted at the beginning of the pool. 4896 * Hence, when a multicast address is removed from the pool, all following 4897 * addresses, if any, are copied back to keep the set contiguous. 4898 */ 4899 #define MCAST_POOL_INC 32 4900 4901 static int 4902 mcast_addr_pool_extend(struct rte_port *port) 4903 { 4904 struct rte_ether_addr *mc_pool; 4905 size_t mc_pool_size; 4906 4907 /* 4908 * If a free entry is available at the end of the pool, just 4909 * increment the number of recorded multicast addresses. 4910 */ 4911 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 4912 port->mc_addr_nb++; 4913 return 0; 4914 } 4915 4916 /* 4917 * [re]allocate a pool with MCAST_POOL_INC more entries. 4918 * The previous test guarantees that port->mc_addr_nb is a multiple 4919 * of MCAST_POOL_INC. 4920 */ 4921 mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + 4922 MCAST_POOL_INC); 4923 mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, 4924 mc_pool_size); 4925 if (mc_pool == NULL) { 4926 fprintf(stderr, 4927 "allocation of pool of %u multicast addresses failed\n", 4928 port->mc_addr_nb + MCAST_POOL_INC); 4929 return -ENOMEM; 4930 } 4931 4932 port->mc_addr_pool = mc_pool; 4933 port->mc_addr_nb++; 4934 return 0; 4935 4936 } 4937 4938 static void 4939 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr) 4940 { 4941 if (mcast_addr_pool_extend(port) != 0) 4942 return; 4943 rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]); 4944 } 4945 4946 static void 4947 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 4948 { 4949 port->mc_addr_nb--; 4950 if (addr_idx == port->mc_addr_nb) { 4951 /* No need to recompact the set of multicast addressses. */ 4952 if (port->mc_addr_nb == 0) { 4953 /* free the pool of multicast addresses. */ 4954 free(port->mc_addr_pool); 4955 port->mc_addr_pool = NULL; 4956 } 4957 return; 4958 } 4959 memmove(&port->mc_addr_pool[addr_idx], 4960 &port->mc_addr_pool[addr_idx + 1], 4961 sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); 4962 } 4963 4964 static int 4965 eth_port_multicast_addr_list_set(portid_t port_id) 4966 { 4967 struct rte_port *port; 4968 int diag; 4969 4970 port = &ports[port_id]; 4971 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 4972 port->mc_addr_nb); 4973 if (diag < 0) 4974 fprintf(stderr, 4975 "rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 4976 port_id, port->mc_addr_nb, diag); 4977 4978 return diag; 4979 } 4980 4981 void 4982 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) 4983 { 4984 struct rte_port *port; 4985 uint32_t i; 4986 4987 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4988 return; 4989 4990 port = &ports[port_id]; 4991 4992 /* 4993 * Check that the added multicast MAC address is not already recorded 4994 * in the pool of multicast addresses. 4995 */ 4996 for (i = 0; i < port->mc_addr_nb; i++) { 4997 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 4998 fprintf(stderr, 4999 "multicast address already filtered by port\n"); 5000 return; 5001 } 5002 } 5003 5004 mcast_addr_pool_append(port, mc_addr); 5005 if (eth_port_multicast_addr_list_set(port_id) < 0) 5006 /* Rollback on failure, remove the address from the pool */ 5007 mcast_addr_pool_remove(port, i); 5008 } 5009 5010 void 5011 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) 5012 { 5013 struct rte_port *port; 5014 uint32_t i; 5015 5016 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5017 return; 5018 5019 port = &ports[port_id]; 5020 5021 /* 5022 * Search the pool of multicast MAC addresses for the removed address. 5023 */ 5024 for (i = 0; i < port->mc_addr_nb; i++) { 5025 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 5026 break; 5027 } 5028 if (i == port->mc_addr_nb) { 5029 fprintf(stderr, "multicast address not filtered by port %d\n", 5030 port_id); 5031 return; 5032 } 5033 5034 mcast_addr_pool_remove(port, i); 5035 if (eth_port_multicast_addr_list_set(port_id) < 0) 5036 /* Rollback on failure, add the address back into the pool */ 5037 mcast_addr_pool_append(port, mc_addr); 5038 } 5039 5040 void 5041 port_dcb_info_display(portid_t port_id) 5042 { 5043 struct rte_eth_dcb_info dcb_info; 5044 uint16_t i; 5045 int ret; 5046 static const char *border = "================"; 5047 5048 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5049 return; 5050 5051 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 5052 if (ret) { 5053 fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n", 5054 port_id); 5055 return; 5056 } 5057 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 5058 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 5059 printf("\n TC : "); 5060 for (i = 0; i < dcb_info.nb_tcs; i++) 5061 printf("\t%4d", i); 5062 printf("\n Priority : "); 5063 for (i = 0; i < dcb_info.nb_tcs; i++) 5064 printf("\t%4d", dcb_info.prio_tc[i]); 5065 printf("\n BW percent :"); 5066 for (i = 0; i < dcb_info.nb_tcs; i++) 5067 printf("\t%4d%%", dcb_info.tc_bws[i]); 5068 printf("\n RXQ base : "); 5069 for (i = 0; i < dcb_info.nb_tcs; i++) 5070 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 5071 printf("\n RXQ number :"); 5072 for (i = 0; i < dcb_info.nb_tcs; i++) 5073 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 5074 printf("\n TXQ base : "); 5075 for (i = 0; i < dcb_info.nb_tcs; i++) 5076 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 5077 printf("\n TXQ number :"); 5078 for (i = 0; i < dcb_info.nb_tcs; i++) 5079 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 5080 printf("\n"); 5081 } 5082 5083 uint8_t * 5084 open_file(const char *file_path, uint32_t *size) 5085 { 5086 int fd = open(file_path, O_RDONLY); 5087 off_t pkg_size; 5088 uint8_t *buf = NULL; 5089 int ret = 0; 5090 struct stat st_buf; 5091 5092 if (size) 5093 *size = 0; 5094 5095 if (fd == -1) { 5096 fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); 5097 return buf; 5098 } 5099 5100 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 5101 close(fd); 5102 fprintf(stderr, "%s: File operations failed\n", __func__); 5103 return buf; 5104 } 5105 5106 pkg_size = st_buf.st_size; 5107 if (pkg_size < 0) { 5108 close(fd); 5109 fprintf(stderr, "%s: File operations failed\n", __func__); 5110 return buf; 5111 } 5112 5113 buf = (uint8_t *)malloc(pkg_size); 5114 if (!buf) { 5115 close(fd); 5116 fprintf(stderr, "%s: Failed to malloc memory\n", __func__); 5117 return buf; 5118 } 5119 5120 ret = read(fd, buf, pkg_size); 5121 if (ret < 0) { 5122 close(fd); 5123 fprintf(stderr, "%s: File read operation failed\n", __func__); 5124 close_file(buf); 5125 return NULL; 5126 } 5127 5128 if (size) 5129 *size = pkg_size; 5130 5131 close(fd); 5132 5133 return buf; 5134 } 5135 5136 int 5137 save_file(const char *file_path, uint8_t *buf, uint32_t size) 5138 { 5139 FILE *fh = fopen(file_path, "wb"); 5140 5141 if (fh == NULL) { 5142 fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); 5143 return -1; 5144 } 5145 5146 if (fwrite(buf, 1, size, fh) != size) { 5147 fclose(fh); 5148 fprintf(stderr, "%s: File write operation failed\n", __func__); 5149 return -1; 5150 } 5151 5152 fclose(fh); 5153 5154 return 0; 5155 } 5156 5157 int 5158 close_file(uint8_t *buf) 5159 { 5160 if (buf) { 5161 free((void *)buf); 5162 return 0; 5163 } 5164 5165 return -1; 5166 } 5167 5168 void 5169 port_queue_region_info_display(portid_t port_id, void *buf) 5170 { 5171 #ifdef RTE_NET_I40E 5172 uint16_t i, j; 5173 struct rte_pmd_i40e_queue_regions *info = 5174 (struct rte_pmd_i40e_queue_regions *)buf; 5175 static const char *queue_region_info_stats_border = "-------"; 5176 5177 if (!info->queue_region_number) 5178 printf("there is no region has been set before"); 5179 5180 printf("\n %s All queue region info for port=%2d %s", 5181 queue_region_info_stats_border, port_id, 5182 queue_region_info_stats_border); 5183 printf("\n queue_region_number: %-14u \n", 5184 info->queue_region_number); 5185 5186 for (i = 0; i < info->queue_region_number; i++) { 5187 printf("\n region_id: %-14u queue_number: %-14u " 5188 "queue_start_index: %-14u \n", 5189 info->region[i].region_id, 5190 info->region[i].queue_num, 5191 info->region[i].queue_start_index); 5192 5193 printf(" user_priority_num is %-14u :", 5194 info->region[i].user_priority_num); 5195 for (j = 0; j < info->region[i].user_priority_num; j++) 5196 printf(" %-14u ", info->region[i].user_priority[j]); 5197 5198 printf("\n flowtype_num is %-14u :", 5199 info->region[i].flowtype_num); 5200 for (j = 0; j < info->region[i].flowtype_num; j++) 5201 printf(" %-14u ", info->region[i].hw_flowtype[j]); 5202 } 5203 #else 5204 RTE_SET_USED(port_id); 5205 RTE_SET_USED(buf); 5206 #endif 5207 5208 printf("\n\n"); 5209 } 5210 5211 void 5212 show_macs(portid_t port_id) 5213 { 5214 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 5215 struct rte_eth_dev_info dev_info; 5216 struct rte_ether_addr *addr; 5217 uint32_t i, num_macs = 0; 5218 struct rte_eth_dev *dev; 5219 5220 dev = &rte_eth_devices[port_id]; 5221 5222 if (eth_dev_info_get_print_err(port_id, &dev_info)) 5223 return; 5224 5225 for (i = 0; i < dev_info.max_mac_addrs; i++) { 5226 addr = &dev->data->mac_addrs[i]; 5227 5228 /* skip zero address */ 5229 if (rte_is_zero_ether_addr(addr)) 5230 continue; 5231 5232 num_macs++; 5233 } 5234 5235 printf("Number of MAC address added: %d\n", num_macs); 5236 5237 for (i = 0; i < dev_info.max_mac_addrs; i++) { 5238 addr = &dev->data->mac_addrs[i]; 5239 5240 /* skip zero address */ 5241 if (rte_is_zero_ether_addr(addr)) 5242 continue; 5243 5244 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr); 5245 printf(" %s\n", buf); 5246 } 5247 } 5248 5249 void 5250 show_mcast_macs(portid_t port_id) 5251 { 5252 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 5253 struct rte_ether_addr *addr; 5254 struct rte_port *port; 5255 uint32_t i; 5256 5257 port = &ports[port_id]; 5258 5259 printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb); 5260 5261 for (i = 0; i < port->mc_addr_nb; i++) { 5262 addr = &port->mc_addr_pool[i]; 5263 5264 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr); 5265 printf(" %s\n", buf); 5266 } 5267 } 5268