xref: /dpdk/app/test-pmd/config.c (revision c9902a15bd005b6d4fe072cf7b60fe4ee679155f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_mtr.h>
42 #include <rte_errno.h>
43 #ifdef RTE_NET_IXGBE
44 #include <rte_pmd_ixgbe.h>
45 #endif
46 #ifdef RTE_NET_I40E
47 #include <rte_pmd_i40e.h>
48 #endif
49 #ifdef RTE_NET_BNXT
50 #include <rte_pmd_bnxt.h>
51 #endif
52 #include <rte_gro.h>
53 #include <rte_hexdump.h>
54 
55 #include "testpmd.h"
56 #include "cmdline_mtr.h"
57 
58 #define ETHDEV_FWVERS_LEN 32
59 
60 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
61 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
62 #else
63 #define CLOCK_TYPE_ID CLOCK_MONOTONIC
64 #endif
65 
66 #define NS_PER_SEC 1E9
67 
68 static char *flowtype_to_str(uint16_t flow_type);
69 
70 static const struct {
71 	enum tx_pkt_split split;
72 	const char *name;
73 } tx_split_name[] = {
74 	{
75 		.split = TX_PKT_SPLIT_OFF,
76 		.name = "off",
77 	},
78 	{
79 		.split = TX_PKT_SPLIT_ON,
80 		.name = "on",
81 	},
82 	{
83 		.split = TX_PKT_SPLIT_RND,
84 		.name = "rand",
85 	},
86 };
87 
88 const struct rss_type_info rss_type_table[] = {
89 	{ "all", ETH_RSS_ETH | ETH_RSS_VLAN | ETH_RSS_IP | ETH_RSS_TCP |
90 		ETH_RSS_UDP | ETH_RSS_SCTP | ETH_RSS_L2_PAYLOAD |
91 		ETH_RSS_L2TPV3 | ETH_RSS_ESP | ETH_RSS_AH | ETH_RSS_PFCP |
92 		ETH_RSS_GTPU | ETH_RSS_ECPRI | ETH_RSS_MPLS},
93 	{ "none", 0 },
94 	{ "eth", ETH_RSS_ETH },
95 	{ "l2-src-only", ETH_RSS_L2_SRC_ONLY },
96 	{ "l2-dst-only", ETH_RSS_L2_DST_ONLY },
97 	{ "vlan", ETH_RSS_VLAN },
98 	{ "s-vlan", ETH_RSS_S_VLAN },
99 	{ "c-vlan", ETH_RSS_C_VLAN },
100 	{ "ipv4", ETH_RSS_IPV4 },
101 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
102 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
103 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
104 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
105 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
106 	{ "ipv6", ETH_RSS_IPV6 },
107 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
108 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
109 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
110 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
111 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
112 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
113 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
114 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
115 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
116 	{ "port", ETH_RSS_PORT },
117 	{ "vxlan", ETH_RSS_VXLAN },
118 	{ "geneve", ETH_RSS_GENEVE },
119 	{ "nvgre", ETH_RSS_NVGRE },
120 	{ "ip", ETH_RSS_IP },
121 	{ "udp", ETH_RSS_UDP },
122 	{ "tcp", ETH_RSS_TCP },
123 	{ "sctp", ETH_RSS_SCTP },
124 	{ "tunnel", ETH_RSS_TUNNEL },
125 	{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
126 	{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
127 	{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
128 	{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
129 	{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
130 	{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
131 	{ "l3-src-only", ETH_RSS_L3_SRC_ONLY },
132 	{ "l3-dst-only", ETH_RSS_L3_DST_ONLY },
133 	{ "l4-src-only", ETH_RSS_L4_SRC_ONLY },
134 	{ "l4-dst-only", ETH_RSS_L4_DST_ONLY },
135 	{ "esp", ETH_RSS_ESP },
136 	{ "ah", ETH_RSS_AH },
137 	{ "l2tpv3", ETH_RSS_L2TPV3 },
138 	{ "pfcp", ETH_RSS_PFCP },
139 	{ "pppoe", ETH_RSS_PPPOE },
140 	{ "gtpu", ETH_RSS_GTPU },
141 	{ "ecpri", ETH_RSS_ECPRI },
142 	{ "mpls", ETH_RSS_MPLS },
143 	{ NULL, 0 },
144 };
145 
146 static const struct {
147 	enum rte_eth_fec_mode mode;
148 	const char *name;
149 } fec_mode_name[] = {
150 	{
151 		.mode = RTE_ETH_FEC_NOFEC,
152 		.name = "off",
153 	},
154 	{
155 		.mode = RTE_ETH_FEC_AUTO,
156 		.name = "auto",
157 	},
158 	{
159 		.mode = RTE_ETH_FEC_BASER,
160 		.name = "baser",
161 	},
162 	{
163 		.mode = RTE_ETH_FEC_RS,
164 		.name = "rs",
165 	},
166 };
167 
168 static void
169 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
170 {
171 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
172 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
173 	printf("%s%s", name, buf);
174 }
175 
176 void
177 nic_stats_display(portid_t port_id)
178 {
179 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
180 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
181 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
182 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
183 	static uint64_t prev_ns[RTE_MAX_ETHPORTS];
184 	struct timespec cur_time;
185 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
186 								diff_ns;
187 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
188 	struct rte_eth_stats stats;
189 
190 	static const char *nic_stats_border = "########################";
191 
192 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
193 		print_valid_ports();
194 		return;
195 	}
196 	rte_eth_stats_get(port_id, &stats);
197 	printf("\n  %s NIC statistics for port %-2d %s\n",
198 	       nic_stats_border, port_id, nic_stats_border);
199 
200 	printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
201 	       "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
202 	printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
203 	printf("  RX-nombuf:  %-10"PRIu64"\n", stats.rx_nombuf);
204 	printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
205 	       "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
206 
207 	diff_ns = 0;
208 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
209 		uint64_t ns;
210 
211 		ns = cur_time.tv_sec * NS_PER_SEC;
212 		ns += cur_time.tv_nsec;
213 
214 		if (prev_ns[port_id] != 0)
215 			diff_ns = ns - prev_ns[port_id];
216 		prev_ns[port_id] = ns;
217 	}
218 
219 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
220 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
221 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
222 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
223 	prev_pkts_rx[port_id] = stats.ipackets;
224 	prev_pkts_tx[port_id] = stats.opackets;
225 	mpps_rx = diff_ns > 0 ?
226 		(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
227 	mpps_tx = diff_ns > 0 ?
228 		(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
229 
230 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
231 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
232 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
233 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
234 	prev_bytes_rx[port_id] = stats.ibytes;
235 	prev_bytes_tx[port_id] = stats.obytes;
236 	mbps_rx = diff_ns > 0 ?
237 		(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
238 	mbps_tx = diff_ns > 0 ?
239 		(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
240 
241 	printf("\n  Throughput (since last show)\n");
242 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
243 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
244 	       mpps_tx, mbps_tx * 8);
245 
246 	printf("  %s############################%s\n",
247 	       nic_stats_border, nic_stats_border);
248 }
249 
250 void
251 nic_stats_clear(portid_t port_id)
252 {
253 	int ret;
254 
255 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
256 		print_valid_ports();
257 		return;
258 	}
259 
260 	ret = rte_eth_stats_reset(port_id);
261 	if (ret != 0) {
262 		fprintf(stderr,
263 			"%s: Error: failed to reset stats (port %u): %s",
264 			__func__, port_id, strerror(-ret));
265 		return;
266 	}
267 
268 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
269 	if (ret != 0) {
270 		if (ret < 0)
271 			ret = -ret;
272 		fprintf(stderr,
273 			"%s: Error: failed to get stats (port %u): %s",
274 			__func__, port_id, strerror(ret));
275 		return;
276 	}
277 	printf("\n  NIC statistics for port %d cleared\n", port_id);
278 }
279 
280 void
281 nic_xstats_display(portid_t port_id)
282 {
283 	struct rte_eth_xstat *xstats;
284 	int cnt_xstats, idx_xstat;
285 	struct rte_eth_xstat_name *xstats_names;
286 
287 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
288 		print_valid_ports();
289 		return;
290 	}
291 	printf("###### NIC extended statistics for port %-2d\n", port_id);
292 	if (!rte_eth_dev_is_valid_port(port_id)) {
293 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
294 		return;
295 	}
296 
297 	/* Get count */
298 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
299 	if (cnt_xstats  < 0) {
300 		fprintf(stderr, "Error: Cannot get count of xstats\n");
301 		return;
302 	}
303 
304 	/* Get id-name lookup table */
305 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
306 	if (xstats_names == NULL) {
307 		fprintf(stderr, "Cannot allocate memory for xstats lookup\n");
308 		return;
309 	}
310 	if (cnt_xstats != rte_eth_xstats_get_names(
311 			port_id, xstats_names, cnt_xstats)) {
312 		fprintf(stderr, "Error: Cannot get xstats lookup\n");
313 		free(xstats_names);
314 		return;
315 	}
316 
317 	/* Get stats themselves */
318 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
319 	if (xstats == NULL) {
320 		fprintf(stderr, "Cannot allocate memory for xstats\n");
321 		free(xstats_names);
322 		return;
323 	}
324 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
325 		fprintf(stderr, "Error: Unable to get xstats\n");
326 		free(xstats_names);
327 		free(xstats);
328 		return;
329 	}
330 
331 	/* Display xstats */
332 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
333 		if (xstats_hide_zero && !xstats[idx_xstat].value)
334 			continue;
335 		printf("%s: %"PRIu64"\n",
336 			xstats_names[idx_xstat].name,
337 			xstats[idx_xstat].value);
338 	}
339 	free(xstats_names);
340 	free(xstats);
341 }
342 
343 void
344 nic_xstats_clear(portid_t port_id)
345 {
346 	int ret;
347 
348 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
349 		print_valid_ports();
350 		return;
351 	}
352 
353 	ret = rte_eth_xstats_reset(port_id);
354 	if (ret != 0) {
355 		fprintf(stderr,
356 			"%s: Error: failed to reset xstats (port %u): %s\n",
357 			__func__, port_id, strerror(-ret));
358 		return;
359 	}
360 
361 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
362 	if (ret != 0) {
363 		if (ret < 0)
364 			ret = -ret;
365 		fprintf(stderr, "%s: Error: failed to get stats (port %u): %s",
366 			__func__, port_id, strerror(ret));
367 		return;
368 	}
369 }
370 
371 static const char *
372 get_queue_state_name(uint8_t queue_state)
373 {
374 	if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED)
375 		return "stopped";
376 	else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED)
377 		return "started";
378 	else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN)
379 		return "hairpin";
380 	else
381 		return "unknown";
382 }
383 
384 void
385 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
386 {
387 	struct rte_eth_burst_mode mode;
388 	struct rte_eth_rxq_info qinfo;
389 	int32_t rc;
390 	static const char *info_border = "*********************";
391 
392 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
393 	if (rc != 0) {
394 		fprintf(stderr,
395 			"Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n",
396 			port_id, queue_id, strerror(-rc), rc);
397 		return;
398 	}
399 
400 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
401 	       info_border, port_id, queue_id, info_border);
402 
403 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
404 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
405 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
406 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
407 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
408 	printf("\nRX drop packets: %s",
409 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
410 	printf("\nRX deferred start: %s",
411 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
412 	printf("\nRX scattered packets: %s",
413 		(qinfo.scattered_rx != 0) ? "on" : "off");
414 	printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state));
415 	if (qinfo.rx_buf_size != 0)
416 		printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
417 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
418 
419 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
420 		printf("\nBurst mode: %s%s",
421 		       mode.info,
422 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
423 				" (per queue)" : "");
424 
425 	printf("\n");
426 }
427 
428 void
429 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
430 {
431 	struct rte_eth_burst_mode mode;
432 	struct rte_eth_txq_info qinfo;
433 	int32_t rc;
434 	static const char *info_border = "*********************";
435 
436 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
437 	if (rc != 0) {
438 		fprintf(stderr,
439 			"Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n",
440 			port_id, queue_id, strerror(-rc), rc);
441 		return;
442 	}
443 
444 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
445 	       info_border, port_id, queue_id, info_border);
446 
447 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
448 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
449 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
450 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
451 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
452 	printf("\nTX deferred start: %s",
453 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
454 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
455 	printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state));
456 
457 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
458 		printf("\nBurst mode: %s%s",
459 		       mode.info,
460 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
461 				" (per queue)" : "");
462 
463 	printf("\n");
464 }
465 
466 static int bus_match_all(const struct rte_bus *bus, const void *data)
467 {
468 	RTE_SET_USED(bus);
469 	RTE_SET_USED(data);
470 	return 0;
471 }
472 
473 static void
474 device_infos_display_speeds(uint32_t speed_capa)
475 {
476 	printf("\n\tDevice speed capability:");
477 	if (speed_capa == ETH_LINK_SPEED_AUTONEG)
478 		printf(" Autonegotiate (all speeds)");
479 	if (speed_capa & ETH_LINK_SPEED_FIXED)
480 		printf(" Disable autonegotiate (fixed speed)  ");
481 	if (speed_capa & ETH_LINK_SPEED_10M_HD)
482 		printf(" 10 Mbps half-duplex  ");
483 	if (speed_capa & ETH_LINK_SPEED_10M)
484 		printf(" 10 Mbps full-duplex  ");
485 	if (speed_capa & ETH_LINK_SPEED_100M_HD)
486 		printf(" 100 Mbps half-duplex  ");
487 	if (speed_capa & ETH_LINK_SPEED_100M)
488 		printf(" 100 Mbps full-duplex  ");
489 	if (speed_capa & ETH_LINK_SPEED_1G)
490 		printf(" 1 Gbps  ");
491 	if (speed_capa & ETH_LINK_SPEED_2_5G)
492 		printf(" 2.5 Gbps  ");
493 	if (speed_capa & ETH_LINK_SPEED_5G)
494 		printf(" 5 Gbps  ");
495 	if (speed_capa & ETH_LINK_SPEED_10G)
496 		printf(" 10 Gbps  ");
497 	if (speed_capa & ETH_LINK_SPEED_20G)
498 		printf(" 20 Gbps  ");
499 	if (speed_capa & ETH_LINK_SPEED_25G)
500 		printf(" 25 Gbps  ");
501 	if (speed_capa & ETH_LINK_SPEED_40G)
502 		printf(" 40 Gbps  ");
503 	if (speed_capa & ETH_LINK_SPEED_50G)
504 		printf(" 50 Gbps  ");
505 	if (speed_capa & ETH_LINK_SPEED_56G)
506 		printf(" 56 Gbps  ");
507 	if (speed_capa & ETH_LINK_SPEED_100G)
508 		printf(" 100 Gbps  ");
509 	if (speed_capa & ETH_LINK_SPEED_200G)
510 		printf(" 200 Gbps  ");
511 }
512 
513 void
514 device_infos_display(const char *identifier)
515 {
516 	static const char *info_border = "*********************";
517 	struct rte_bus *start = NULL, *next;
518 	struct rte_dev_iterator dev_iter;
519 	char name[RTE_ETH_NAME_MAX_LEN];
520 	struct rte_ether_addr mac_addr;
521 	struct rte_device *dev;
522 	struct rte_devargs da;
523 	portid_t port_id;
524 	struct rte_eth_dev_info dev_info;
525 	char devstr[128];
526 
527 	memset(&da, 0, sizeof(da));
528 	if (!identifier)
529 		goto skip_parse;
530 
531 	if (rte_devargs_parsef(&da, "%s", identifier)) {
532 		fprintf(stderr, "cannot parse identifier\n");
533 		return;
534 	}
535 
536 skip_parse:
537 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
538 
539 		start = next;
540 		if (identifier && da.bus != next)
541 			continue;
542 
543 		/* Skip buses that don't have iterate method */
544 		if (!next->dev_iterate)
545 			continue;
546 
547 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
548 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
549 
550 			if (!dev->driver)
551 				continue;
552 			/* Check for matching device if identifier is present */
553 			if (identifier &&
554 			    strncmp(da.name, dev->name, strlen(dev->name)))
555 				continue;
556 			printf("\n%s Infos for device %s %s\n",
557 			       info_border, dev->name, info_border);
558 			printf("Bus name: %s", dev->bus->name);
559 			printf("\nDriver name: %s", dev->driver->name);
560 			printf("\nDevargs: %s",
561 			       dev->devargs ? dev->devargs->args : "");
562 			printf("\nConnect to socket: %d", dev->numa_node);
563 			printf("\n");
564 
565 			/* List ports with matching device name */
566 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
567 				printf("\n\tPort id: %-2d", port_id);
568 				if (eth_macaddr_get_print_err(port_id,
569 							      &mac_addr) == 0)
570 					print_ethaddr("\n\tMAC address: ",
571 						      &mac_addr);
572 				rte_eth_dev_get_name_by_port(port_id, name);
573 				printf("\n\tDevice name: %s", name);
574 				if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
575 					device_infos_display_speeds(dev_info.speed_capa);
576 				printf("\n");
577 			}
578 		}
579 	};
580 	rte_devargs_reset(&da);
581 }
582 
583 void
584 port_infos_display(portid_t port_id)
585 {
586 	struct rte_port *port;
587 	struct rte_ether_addr mac_addr;
588 	struct rte_eth_link link;
589 	struct rte_eth_dev_info dev_info;
590 	int vlan_offload;
591 	struct rte_mempool * mp;
592 	static const char *info_border = "*********************";
593 	uint16_t mtu;
594 	char name[RTE_ETH_NAME_MAX_LEN];
595 	int ret;
596 	char fw_version[ETHDEV_FWVERS_LEN];
597 
598 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
599 		print_valid_ports();
600 		return;
601 	}
602 	port = &ports[port_id];
603 	ret = eth_link_get_nowait_print_err(port_id, &link);
604 	if (ret < 0)
605 		return;
606 
607 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
608 	if (ret != 0)
609 		return;
610 
611 	printf("\n%s Infos for port %-2d %s\n",
612 	       info_border, port_id, info_border);
613 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
614 		print_ethaddr("MAC address: ", &mac_addr);
615 	rte_eth_dev_get_name_by_port(port_id, name);
616 	printf("\nDevice name: %s", name);
617 	printf("\nDriver name: %s", dev_info.driver_name);
618 
619 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
620 						ETHDEV_FWVERS_LEN) == 0)
621 		printf("\nFirmware-version: %s", fw_version);
622 	else
623 		printf("\nFirmware-version: %s", "not available");
624 
625 	if (dev_info.device->devargs && dev_info.device->devargs->args)
626 		printf("\nDevargs: %s", dev_info.device->devargs->args);
627 	printf("\nConnect to socket: %u", port->socket_id);
628 
629 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
630 		mp = mbuf_pool_find(port_numa[port_id], 0);
631 		if (mp)
632 			printf("\nmemory allocation on the socket: %d",
633 							port_numa[port_id]);
634 	} else
635 		printf("\nmemory allocation on the socket: %u",port->socket_id);
636 
637 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
638 	printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
639 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
640 	       ("full-duplex") : ("half-duplex"));
641 	printf("Autoneg status: %s\n", (link.link_autoneg == ETH_LINK_AUTONEG) ?
642 	       ("On") : ("Off"));
643 
644 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
645 		printf("MTU: %u\n", mtu);
646 
647 	printf("Promiscuous mode: %s\n",
648 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
649 	printf("Allmulticast mode: %s\n",
650 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
651 	printf("Maximum number of MAC addresses: %u\n",
652 	       (unsigned int)(port->dev_info.max_mac_addrs));
653 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
654 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
655 
656 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
657 	if (vlan_offload >= 0){
658 		printf("VLAN offload: \n");
659 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
660 			printf("  strip on, ");
661 		else
662 			printf("  strip off, ");
663 
664 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
665 			printf("filter on, ");
666 		else
667 			printf("filter off, ");
668 
669 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
670 			printf("extend on, ");
671 		else
672 			printf("extend off, ");
673 
674 		if (vlan_offload & ETH_QINQ_STRIP_OFFLOAD)
675 			printf("qinq strip on\n");
676 		else
677 			printf("qinq strip off\n");
678 	}
679 
680 	if (dev_info.hash_key_size > 0)
681 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
682 	if (dev_info.reta_size > 0)
683 		printf("Redirection table size: %u\n", dev_info.reta_size);
684 	if (!dev_info.flow_type_rss_offloads)
685 		printf("No RSS offload flow type is supported.\n");
686 	else {
687 		uint16_t i;
688 		char *p;
689 
690 		printf("Supported RSS offload flow types:\n");
691 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
692 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
693 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
694 				continue;
695 			p = flowtype_to_str(i);
696 			if (p)
697 				printf("  %s\n", p);
698 			else
699 				printf("  user defined %d\n", i);
700 		}
701 	}
702 
703 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
704 	printf("Maximum configurable length of RX packet: %u\n",
705 		dev_info.max_rx_pktlen);
706 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
707 		dev_info.max_lro_pkt_size);
708 	if (dev_info.max_vfs)
709 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
710 	if (dev_info.max_vmdq_pools)
711 		printf("Maximum number of VMDq pools: %u\n",
712 			dev_info.max_vmdq_pools);
713 
714 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
715 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
716 	printf("Max possible number of RXDs per queue: %hu\n",
717 		dev_info.rx_desc_lim.nb_max);
718 	printf("Min possible number of RXDs per queue: %hu\n",
719 		dev_info.rx_desc_lim.nb_min);
720 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
721 
722 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
723 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
724 	printf("Max possible number of TXDs per queue: %hu\n",
725 		dev_info.tx_desc_lim.nb_max);
726 	printf("Min possible number of TXDs per queue: %hu\n",
727 		dev_info.tx_desc_lim.nb_min);
728 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
729 	printf("Max segment number per packet: %hu\n",
730 		dev_info.tx_desc_lim.nb_seg_max);
731 	printf("Max segment number per MTU/TSO: %hu\n",
732 		dev_info.tx_desc_lim.nb_mtu_seg_max);
733 
734 	/* Show switch info only if valid switch domain and port id is set */
735 	if (dev_info.switch_info.domain_id !=
736 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
737 		if (dev_info.switch_info.name)
738 			printf("Switch name: %s\n", dev_info.switch_info.name);
739 
740 		printf("Switch domain Id: %u\n",
741 			dev_info.switch_info.domain_id);
742 		printf("Switch Port Id: %u\n",
743 			dev_info.switch_info.port_id);
744 	}
745 }
746 
747 void
748 port_summary_header_display(void)
749 {
750 	uint16_t port_number;
751 
752 	port_number = rte_eth_dev_count_avail();
753 	printf("Number of available ports: %i\n", port_number);
754 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
755 			"Driver", "Status", "Link");
756 }
757 
758 void
759 port_summary_display(portid_t port_id)
760 {
761 	struct rte_ether_addr mac_addr;
762 	struct rte_eth_link link;
763 	struct rte_eth_dev_info dev_info;
764 	char name[RTE_ETH_NAME_MAX_LEN];
765 	int ret;
766 
767 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
768 		print_valid_ports();
769 		return;
770 	}
771 
772 	ret = eth_link_get_nowait_print_err(port_id, &link);
773 	if (ret < 0)
774 		return;
775 
776 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
777 	if (ret != 0)
778 		return;
779 
780 	rte_eth_dev_get_name_by_port(port_id, name);
781 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
782 	if (ret != 0)
783 		return;
784 
785 	printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n",
786 		port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name,
787 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
788 		rte_eth_link_speed_to_str(link.link_speed));
789 }
790 
791 void
792 port_eeprom_display(portid_t port_id)
793 {
794 	struct rte_dev_eeprom_info einfo;
795 	int ret;
796 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
797 		print_valid_ports();
798 		return;
799 	}
800 
801 	int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
802 	if (len_eeprom < 0) {
803 		switch (len_eeprom) {
804 		case -ENODEV:
805 			fprintf(stderr, "port index %d invalid\n", port_id);
806 			break;
807 		case -ENOTSUP:
808 			fprintf(stderr, "operation not supported by device\n");
809 			break;
810 		case -EIO:
811 			fprintf(stderr, "device is removed\n");
812 			break;
813 		default:
814 			fprintf(stderr, "Unable to get EEPROM: %d\n",
815 				len_eeprom);
816 			break;
817 		}
818 		return;
819 	}
820 
821 	char buf[len_eeprom];
822 	einfo.offset = 0;
823 	einfo.length = len_eeprom;
824 	einfo.data = buf;
825 
826 	ret = rte_eth_dev_get_eeprom(port_id, &einfo);
827 	if (ret != 0) {
828 		switch (ret) {
829 		case -ENODEV:
830 			fprintf(stderr, "port index %d invalid\n", port_id);
831 			break;
832 		case -ENOTSUP:
833 			fprintf(stderr, "operation not supported by device\n");
834 			break;
835 		case -EIO:
836 			fprintf(stderr, "device is removed\n");
837 			break;
838 		default:
839 			fprintf(stderr, "Unable to get EEPROM: %d\n", ret);
840 			break;
841 		}
842 		return;
843 	}
844 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
845 	printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
846 }
847 
848 void
849 port_module_eeprom_display(portid_t port_id)
850 {
851 	struct rte_eth_dev_module_info minfo;
852 	struct rte_dev_eeprom_info einfo;
853 	int ret;
854 
855 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
856 		print_valid_ports();
857 		return;
858 	}
859 
860 
861 	ret = rte_eth_dev_get_module_info(port_id, &minfo);
862 	if (ret != 0) {
863 		switch (ret) {
864 		case -ENODEV:
865 			fprintf(stderr, "port index %d invalid\n", port_id);
866 			break;
867 		case -ENOTSUP:
868 			fprintf(stderr, "operation not supported by device\n");
869 			break;
870 		case -EIO:
871 			fprintf(stderr, "device is removed\n");
872 			break;
873 		default:
874 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
875 				ret);
876 			break;
877 		}
878 		return;
879 	}
880 
881 	char buf[minfo.eeprom_len];
882 	einfo.offset = 0;
883 	einfo.length = minfo.eeprom_len;
884 	einfo.data = buf;
885 
886 	ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
887 	if (ret != 0) {
888 		switch (ret) {
889 		case -ENODEV:
890 			fprintf(stderr, "port index %d invalid\n", port_id);
891 			break;
892 		case -ENOTSUP:
893 			fprintf(stderr, "operation not supported by device\n");
894 			break;
895 		case -EIO:
896 			fprintf(stderr, "device is removed\n");
897 			break;
898 		default:
899 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
900 				ret);
901 			break;
902 		}
903 		return;
904 	}
905 
906 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
907 	printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
908 }
909 
910 int
911 port_id_is_invalid(portid_t port_id, enum print_warning warning)
912 {
913 	uint16_t pid;
914 
915 	if (port_id == (portid_t)RTE_PORT_ALL)
916 		return 0;
917 
918 	RTE_ETH_FOREACH_DEV(pid)
919 		if (port_id == pid)
920 			return 0;
921 
922 	if (warning == ENABLED_WARN)
923 		fprintf(stderr, "Invalid port %d\n", port_id);
924 
925 	return 1;
926 }
927 
928 void print_valid_ports(void)
929 {
930 	portid_t pid;
931 
932 	printf("The valid ports array is [");
933 	RTE_ETH_FOREACH_DEV(pid) {
934 		printf(" %d", pid);
935 	}
936 	printf(" ]\n");
937 }
938 
939 static int
940 vlan_id_is_invalid(uint16_t vlan_id)
941 {
942 	if (vlan_id < 4096)
943 		return 0;
944 	fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id);
945 	return 1;
946 }
947 
948 static int
949 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
950 {
951 	const struct rte_pci_device *pci_dev;
952 	const struct rte_bus *bus;
953 	uint64_t pci_len;
954 
955 	if (reg_off & 0x3) {
956 		fprintf(stderr,
957 			"Port register offset 0x%X not aligned on a 4-byte boundary\n",
958 			(unsigned int)reg_off);
959 		return 1;
960 	}
961 
962 	if (!ports[port_id].dev_info.device) {
963 		fprintf(stderr, "Invalid device\n");
964 		return 0;
965 	}
966 
967 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
968 	if (bus && !strcmp(bus->name, "pci")) {
969 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
970 	} else {
971 		fprintf(stderr, "Not a PCI device\n");
972 		return 1;
973 	}
974 
975 	pci_len = pci_dev->mem_resource[0].len;
976 	if (reg_off >= pci_len) {
977 		fprintf(stderr,
978 			"Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n",
979 			port_id, (unsigned int)reg_off, (unsigned int)reg_off,
980 			pci_len);
981 		return 1;
982 	}
983 	return 0;
984 }
985 
986 static int
987 reg_bit_pos_is_invalid(uint8_t bit_pos)
988 {
989 	if (bit_pos <= 31)
990 		return 0;
991 	fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos);
992 	return 1;
993 }
994 
995 #define display_port_and_reg_off(port_id, reg_off) \
996 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
997 
998 static inline void
999 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1000 {
1001 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1002 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1003 }
1004 
1005 void
1006 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1007 {
1008 	uint32_t reg_v;
1009 
1010 
1011 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1012 		return;
1013 	if (port_reg_off_is_invalid(port_id, reg_off))
1014 		return;
1015 	if (reg_bit_pos_is_invalid(bit_x))
1016 		return;
1017 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1018 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1019 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1020 }
1021 
1022 void
1023 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1024 			   uint8_t bit1_pos, uint8_t bit2_pos)
1025 {
1026 	uint32_t reg_v;
1027 	uint8_t  l_bit;
1028 	uint8_t  h_bit;
1029 
1030 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1031 		return;
1032 	if (port_reg_off_is_invalid(port_id, reg_off))
1033 		return;
1034 	if (reg_bit_pos_is_invalid(bit1_pos))
1035 		return;
1036 	if (reg_bit_pos_is_invalid(bit2_pos))
1037 		return;
1038 	if (bit1_pos > bit2_pos)
1039 		l_bit = bit2_pos, h_bit = bit1_pos;
1040 	else
1041 		l_bit = bit1_pos, h_bit = bit2_pos;
1042 
1043 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1044 	reg_v >>= l_bit;
1045 	if (h_bit < 31)
1046 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1047 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1048 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1049 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1050 }
1051 
1052 void
1053 port_reg_display(portid_t port_id, uint32_t reg_off)
1054 {
1055 	uint32_t reg_v;
1056 
1057 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1058 		return;
1059 	if (port_reg_off_is_invalid(port_id, reg_off))
1060 		return;
1061 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1062 	display_port_reg_value(port_id, reg_off, reg_v);
1063 }
1064 
1065 void
1066 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1067 		 uint8_t bit_v)
1068 {
1069 	uint32_t reg_v;
1070 
1071 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1072 		return;
1073 	if (port_reg_off_is_invalid(port_id, reg_off))
1074 		return;
1075 	if (reg_bit_pos_is_invalid(bit_pos))
1076 		return;
1077 	if (bit_v > 1) {
1078 		fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n",
1079 			(int) bit_v);
1080 		return;
1081 	}
1082 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1083 	if (bit_v == 0)
1084 		reg_v &= ~(1 << bit_pos);
1085 	else
1086 		reg_v |= (1 << bit_pos);
1087 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1088 	display_port_reg_value(port_id, reg_off, reg_v);
1089 }
1090 
1091 void
1092 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1093 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1094 {
1095 	uint32_t max_v;
1096 	uint32_t reg_v;
1097 	uint8_t  l_bit;
1098 	uint8_t  h_bit;
1099 
1100 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1101 		return;
1102 	if (port_reg_off_is_invalid(port_id, reg_off))
1103 		return;
1104 	if (reg_bit_pos_is_invalid(bit1_pos))
1105 		return;
1106 	if (reg_bit_pos_is_invalid(bit2_pos))
1107 		return;
1108 	if (bit1_pos > bit2_pos)
1109 		l_bit = bit2_pos, h_bit = bit1_pos;
1110 	else
1111 		l_bit = bit1_pos, h_bit = bit2_pos;
1112 
1113 	if ((h_bit - l_bit) < 31)
1114 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1115 	else
1116 		max_v = 0xFFFFFFFF;
1117 
1118 	if (value > max_v) {
1119 		fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n",
1120 				(unsigned)value, (unsigned)value,
1121 				(unsigned)max_v, (unsigned)max_v);
1122 		return;
1123 	}
1124 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1125 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1126 	reg_v |= (value << l_bit); /* Set changed bits */
1127 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1128 	display_port_reg_value(port_id, reg_off, reg_v);
1129 }
1130 
1131 void
1132 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1133 {
1134 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1135 		return;
1136 	if (port_reg_off_is_invalid(port_id, reg_off))
1137 		return;
1138 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1139 	display_port_reg_value(port_id, reg_off, reg_v);
1140 }
1141 
1142 void
1143 port_mtu_set(portid_t port_id, uint16_t mtu)
1144 {
1145 	int diag;
1146 	struct rte_port *rte_port = &ports[port_id];
1147 	struct rte_eth_dev_info dev_info;
1148 	uint16_t eth_overhead;
1149 	int ret;
1150 
1151 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1152 		return;
1153 
1154 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
1155 	if (ret != 0)
1156 		return;
1157 
1158 	if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) {
1159 		fprintf(stderr,
1160 			"Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n",
1161 			mtu, dev_info.min_mtu, dev_info.max_mtu);
1162 		return;
1163 	}
1164 	diag = rte_eth_dev_set_mtu(port_id, mtu);
1165 	if (diag)
1166 		fprintf(stderr, "Set MTU failed. diag=%d\n", diag);
1167 	else if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1168 		/*
1169 		 * Ether overhead in driver is equal to the difference of
1170 		 * max_rx_pktlen and max_mtu in rte_eth_dev_info when the
1171 		 * device supports jumbo frame.
1172 		 */
1173 		eth_overhead = dev_info.max_rx_pktlen - dev_info.max_mtu;
1174 		if (mtu > RTE_ETHER_MTU) {
1175 			rte_port->dev_conf.rxmode.offloads |=
1176 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1177 			rte_port->dev_conf.rxmode.max_rx_pkt_len =
1178 						mtu + eth_overhead;
1179 		} else
1180 			rte_port->dev_conf.rxmode.offloads &=
1181 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
1182 	}
1183 }
1184 
1185 /* Generic flow management functions. */
1186 
1187 static struct port_flow_tunnel *
1188 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
1189 {
1190 	struct port_flow_tunnel *flow_tunnel;
1191 
1192 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1193 		if (flow_tunnel->id == port_tunnel_id)
1194 			goto out;
1195 	}
1196 	flow_tunnel = NULL;
1197 
1198 out:
1199 	return flow_tunnel;
1200 }
1201 
1202 const char *
1203 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
1204 {
1205 	const char *type;
1206 	switch (tunnel->type) {
1207 	default:
1208 		type = "unknown";
1209 		break;
1210 	case RTE_FLOW_ITEM_TYPE_VXLAN:
1211 		type = "vxlan";
1212 		break;
1213 	}
1214 
1215 	return type;
1216 }
1217 
1218 struct port_flow_tunnel *
1219 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
1220 {
1221 	struct rte_port *port = &ports[port_id];
1222 	struct port_flow_tunnel *flow_tunnel;
1223 
1224 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1225 		if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
1226 			goto out;
1227 	}
1228 	flow_tunnel = NULL;
1229 
1230 out:
1231 	return flow_tunnel;
1232 }
1233 
1234 void port_flow_tunnel_list(portid_t port_id)
1235 {
1236 	struct rte_port *port = &ports[port_id];
1237 	struct port_flow_tunnel *flt;
1238 
1239 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1240 		printf("port %u tunnel #%u type=%s",
1241 			port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
1242 		if (flt->tunnel.tun_id)
1243 			printf(" id=%" PRIu64, flt->tunnel.tun_id);
1244 		printf("\n");
1245 	}
1246 }
1247 
1248 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
1249 {
1250 	struct rte_port *port = &ports[port_id];
1251 	struct port_flow_tunnel *flt;
1252 
1253 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1254 		if (flt->id == tunnel_id)
1255 			break;
1256 	}
1257 	if (flt) {
1258 		LIST_REMOVE(flt, chain);
1259 		free(flt);
1260 		printf("port %u: flow tunnel #%u destroyed\n",
1261 			port_id, tunnel_id);
1262 	}
1263 }
1264 
1265 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
1266 {
1267 	struct rte_port *port = &ports[port_id];
1268 	enum rte_flow_item_type	type;
1269 	struct port_flow_tunnel *flt;
1270 
1271 	if (!strcmp(ops->type, "vxlan"))
1272 		type = RTE_FLOW_ITEM_TYPE_VXLAN;
1273 	else {
1274 		fprintf(stderr, "cannot offload \"%s\" tunnel type\n",
1275 			ops->type);
1276 		return;
1277 	}
1278 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1279 		if (flt->tunnel.type == type)
1280 			break;
1281 	}
1282 	if (!flt) {
1283 		flt = calloc(1, sizeof(*flt));
1284 		if (!flt) {
1285 			fprintf(stderr, "failed to allocate port flt object\n");
1286 			return;
1287 		}
1288 		flt->tunnel.type = type;
1289 		flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
1290 				  LIST_FIRST(&port->flow_tunnel_list)->id + 1;
1291 		LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
1292 	}
1293 	printf("port %d: flow tunnel #%u type %s\n",
1294 		port_id, flt->id, ops->type);
1295 }
1296 
1297 /** Generate a port_flow entry from attributes/pattern/actions. */
1298 static struct port_flow *
1299 port_flow_new(const struct rte_flow_attr *attr,
1300 	      const struct rte_flow_item *pattern,
1301 	      const struct rte_flow_action *actions,
1302 	      struct rte_flow_error *error)
1303 {
1304 	const struct rte_flow_conv_rule rule = {
1305 		.attr_ro = attr,
1306 		.pattern_ro = pattern,
1307 		.actions_ro = actions,
1308 	};
1309 	struct port_flow *pf;
1310 	int ret;
1311 
1312 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1313 	if (ret < 0)
1314 		return NULL;
1315 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1316 	if (!pf) {
1317 		rte_flow_error_set
1318 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1319 			 "calloc() failed");
1320 		return NULL;
1321 	}
1322 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1323 			  error) >= 0)
1324 		return pf;
1325 	free(pf);
1326 	return NULL;
1327 }
1328 
1329 /** Print a message out of a flow error. */
1330 static int
1331 port_flow_complain(struct rte_flow_error *error)
1332 {
1333 	static const char *const errstrlist[] = {
1334 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1335 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1336 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1337 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1338 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1339 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1340 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1341 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1342 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1343 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1344 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1345 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1346 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1347 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1348 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1349 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1350 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1351 	};
1352 	const char *errstr;
1353 	char buf[32];
1354 	int err = rte_errno;
1355 
1356 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1357 	    !errstrlist[error->type])
1358 		errstr = "unknown type";
1359 	else
1360 		errstr = errstrlist[error->type];
1361 	fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n",
1362 		__func__, error->type, errstr,
1363 		error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1364 					 error->cause), buf) : "",
1365 		error->message ? error->message : "(no stated reason)",
1366 		rte_strerror(err));
1367 	return -err;
1368 }
1369 
1370 static void
1371 rss_config_display(struct rte_flow_action_rss *rss_conf)
1372 {
1373 	uint8_t i;
1374 
1375 	if (rss_conf == NULL) {
1376 		fprintf(stderr, "Invalid rule\n");
1377 		return;
1378 	}
1379 
1380 	printf("RSS:\n"
1381 	       " queues:");
1382 	if (rss_conf->queue_num == 0)
1383 		printf(" none");
1384 	for (i = 0; i < rss_conf->queue_num; i++)
1385 		printf(" %d", rss_conf->queue[i]);
1386 	printf("\n");
1387 
1388 	printf(" function: ");
1389 	switch (rss_conf->func) {
1390 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1391 		printf("default\n");
1392 		break;
1393 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1394 		printf("toeplitz\n");
1395 		break;
1396 	case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
1397 		printf("simple_xor\n");
1398 		break;
1399 	case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
1400 		printf("symmetric_toeplitz\n");
1401 		break;
1402 	default:
1403 		printf("Unknown function\n");
1404 		return;
1405 	}
1406 
1407 	printf(" types:\n");
1408 	if (rss_conf->types == 0) {
1409 		printf("  none\n");
1410 		return;
1411 	}
1412 	for (i = 0; rss_type_table[i].str; i++) {
1413 		if ((rss_conf->types &
1414 		    rss_type_table[i].rss_type) ==
1415 		    rss_type_table[i].rss_type &&
1416 		    rss_type_table[i].rss_type != 0)
1417 			printf("  %s\n", rss_type_table[i].str);
1418 	}
1419 }
1420 
1421 static struct port_indirect_action *
1422 action_get_by_id(portid_t port_id, uint32_t id)
1423 {
1424 	struct rte_port *port;
1425 	struct port_indirect_action **ppia;
1426 	struct port_indirect_action *pia = NULL;
1427 
1428 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1429 	    port_id == (portid_t)RTE_PORT_ALL)
1430 		return NULL;
1431 	port = &ports[port_id];
1432 	ppia = &port->actions_list;
1433 	while (*ppia) {
1434 		if ((*ppia)->id == id) {
1435 			pia = *ppia;
1436 			break;
1437 		}
1438 		ppia = &(*ppia)->next;
1439 	}
1440 	if (!pia)
1441 		fprintf(stderr,
1442 			"Failed to find indirect action #%u on port %u\n",
1443 			id, port_id);
1444 	return pia;
1445 }
1446 
1447 static int
1448 action_alloc(portid_t port_id, uint32_t id,
1449 	     struct port_indirect_action **action)
1450 {
1451 	struct rte_port *port;
1452 	struct port_indirect_action **ppia;
1453 	struct port_indirect_action *pia = NULL;
1454 
1455 	*action = NULL;
1456 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1457 	    port_id == (portid_t)RTE_PORT_ALL)
1458 		return -EINVAL;
1459 	port = &ports[port_id];
1460 	if (id == UINT32_MAX) {
1461 		/* taking first available ID */
1462 		if (port->actions_list) {
1463 			if (port->actions_list->id == UINT32_MAX - 1) {
1464 				fprintf(stderr,
1465 					"Highest indirect action ID is already assigned, delete it first\n");
1466 				return -ENOMEM;
1467 			}
1468 			id = port->actions_list->id + 1;
1469 		} else {
1470 			id = 0;
1471 		}
1472 	}
1473 	pia = calloc(1, sizeof(*pia));
1474 	if (!pia) {
1475 		fprintf(stderr,
1476 			"Allocation of port %u indirect action failed\n",
1477 			port_id);
1478 		return -ENOMEM;
1479 	}
1480 	ppia = &port->actions_list;
1481 	while (*ppia && (*ppia)->id > id)
1482 		ppia = &(*ppia)->next;
1483 	if (*ppia && (*ppia)->id == id) {
1484 		fprintf(stderr,
1485 			"Indirect action #%u is already assigned, delete it first\n",
1486 			id);
1487 		free(pia);
1488 		return -EINVAL;
1489 	}
1490 	pia->next = *ppia;
1491 	pia->id = id;
1492 	*ppia = pia;
1493 	*action = pia;
1494 	return 0;
1495 }
1496 
1497 /** Create indirect action */
1498 int
1499 port_action_handle_create(portid_t port_id, uint32_t id,
1500 			  const struct rte_flow_indir_action_conf *conf,
1501 			  const struct rte_flow_action *action)
1502 {
1503 	struct port_indirect_action *pia;
1504 	int ret;
1505 	struct rte_flow_error error;
1506 
1507 	ret = action_alloc(port_id, id, &pia);
1508 	if (ret)
1509 		return ret;
1510 	if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
1511 		struct rte_flow_action_age *age =
1512 			(struct rte_flow_action_age *)(uintptr_t)(action->conf);
1513 
1514 		pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
1515 		age->context = &pia->age_type;
1516 	} else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) {
1517 		struct rte_flow_action_conntrack *ct =
1518 		(struct rte_flow_action_conntrack *)(uintptr_t)(action->conf);
1519 
1520 		memcpy(ct, &conntrack_context, sizeof(*ct));
1521 	}
1522 	/* Poisoning to make sure PMDs update it in case of error. */
1523 	memset(&error, 0x22, sizeof(error));
1524 	pia->handle = rte_flow_action_handle_create(port_id, conf, action,
1525 						    &error);
1526 	if (!pia->handle) {
1527 		uint32_t destroy_id = pia->id;
1528 		port_action_handle_destroy(port_id, 1, &destroy_id);
1529 		return port_flow_complain(&error);
1530 	}
1531 	pia->type = action->type;
1532 	printf("Indirect action #%u created\n", pia->id);
1533 	return 0;
1534 }
1535 
1536 /** Destroy indirect action */
1537 int
1538 port_action_handle_destroy(portid_t port_id,
1539 			   uint32_t n,
1540 			   const uint32_t *actions)
1541 {
1542 	struct rte_port *port;
1543 	struct port_indirect_action **tmp;
1544 	uint32_t c = 0;
1545 	int ret = 0;
1546 
1547 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1548 	    port_id == (portid_t)RTE_PORT_ALL)
1549 		return -EINVAL;
1550 	port = &ports[port_id];
1551 	tmp = &port->actions_list;
1552 	while (*tmp) {
1553 		uint32_t i;
1554 
1555 		for (i = 0; i != n; ++i) {
1556 			struct rte_flow_error error;
1557 			struct port_indirect_action *pia = *tmp;
1558 
1559 			if (actions[i] != pia->id)
1560 				continue;
1561 			/*
1562 			 * Poisoning to make sure PMDs update it in case
1563 			 * of error.
1564 			 */
1565 			memset(&error, 0x33, sizeof(error));
1566 
1567 			if (pia->handle && rte_flow_action_handle_destroy(
1568 					port_id, pia->handle, &error)) {
1569 				ret = port_flow_complain(&error);
1570 				continue;
1571 			}
1572 			*tmp = pia->next;
1573 			printf("Indirect action #%u destroyed\n", pia->id);
1574 			free(pia);
1575 			break;
1576 		}
1577 		if (i == n)
1578 			tmp = &(*tmp)->next;
1579 		++c;
1580 	}
1581 	return ret;
1582 }
1583 
1584 
1585 /** Get indirect action by port + id */
1586 struct rte_flow_action_handle *
1587 port_action_handle_get_by_id(portid_t port_id, uint32_t id)
1588 {
1589 
1590 	struct port_indirect_action *pia = action_get_by_id(port_id, id);
1591 
1592 	return (pia) ? pia->handle : NULL;
1593 }
1594 
1595 /** Update indirect action */
1596 int
1597 port_action_handle_update(portid_t port_id, uint32_t id,
1598 			  const struct rte_flow_action *action)
1599 {
1600 	struct rte_flow_error error;
1601 	struct rte_flow_action_handle *action_handle;
1602 	struct port_indirect_action *pia;
1603 	const void *update;
1604 
1605 	action_handle = port_action_handle_get_by_id(port_id, id);
1606 	if (!action_handle)
1607 		return -EINVAL;
1608 	pia = action_get_by_id(port_id, id);
1609 	if (!pia)
1610 		return -EINVAL;
1611 	switch (pia->type) {
1612 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1613 		update = action->conf;
1614 		break;
1615 	default:
1616 		update = action;
1617 		break;
1618 	}
1619 	if (rte_flow_action_handle_update(port_id, action_handle, update,
1620 					  &error)) {
1621 		return port_flow_complain(&error);
1622 	}
1623 	printf("Indirect action #%u updated\n", id);
1624 	return 0;
1625 }
1626 
1627 int
1628 port_action_handle_query(portid_t port_id, uint32_t id)
1629 {
1630 	struct rte_flow_error error;
1631 	struct port_indirect_action *pia;
1632 	union {
1633 		struct rte_flow_query_count count;
1634 		struct rte_flow_query_age age;
1635 		struct rte_flow_action_conntrack ct;
1636 	} query;
1637 
1638 	pia = action_get_by_id(port_id, id);
1639 	if (!pia)
1640 		return -EINVAL;
1641 	switch (pia->type) {
1642 	case RTE_FLOW_ACTION_TYPE_AGE:
1643 	case RTE_FLOW_ACTION_TYPE_COUNT:
1644 		break;
1645 	default:
1646 		fprintf(stderr,
1647 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1648 			id, pia->type, port_id);
1649 		return -ENOTSUP;
1650 	}
1651 	/* Poisoning to make sure PMDs update it in case of error. */
1652 	memset(&error, 0x55, sizeof(error));
1653 	memset(&query, 0, sizeof(query));
1654 	if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error))
1655 		return port_flow_complain(&error);
1656 	switch (pia->type) {
1657 	case RTE_FLOW_ACTION_TYPE_AGE:
1658 		printf("Indirect AGE action:\n"
1659 		       " aged: %u\n"
1660 		       " sec_since_last_hit_valid: %u\n"
1661 		       " sec_since_last_hit: %" PRIu32 "\n",
1662 		       query.age.aged,
1663 		       query.age.sec_since_last_hit_valid,
1664 		       query.age.sec_since_last_hit);
1665 		break;
1666 	case RTE_FLOW_ACTION_TYPE_COUNT:
1667 		printf("Indirect COUNT action:\n"
1668 		       " hits_set: %u\n"
1669 		       " bytes_set: %u\n"
1670 		       " hits: %" PRIu64 "\n"
1671 		       " bytes: %" PRIu64 "\n",
1672 		       query.count.hits_set,
1673 		       query.count.bytes_set,
1674 		       query.count.hits,
1675 		       query.count.bytes);
1676 		break;
1677 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1678 		printf("Conntrack Context:\n"
1679 		       "  Peer: %u, Flow dir: %s, Enable: %u\n"
1680 		       "  Live: %u, SACK: %u, CACK: %u\n"
1681 		       "  Packet dir: %s, Liberal: %u, State: %u\n"
1682 		       "  Factor: %u, Retrans: %u, TCP flags: %u\n"
1683 		       "  Last Seq: %u, Last ACK: %u\n"
1684 		       "  Last Win: %u, Last End: %u\n",
1685 		       query.ct.peer_port,
1686 		       query.ct.is_original_dir ? "Original" : "Reply",
1687 		       query.ct.enable, query.ct.live_connection,
1688 		       query.ct.selective_ack, query.ct.challenge_ack_passed,
1689 		       query.ct.last_direction ? "Original" : "Reply",
1690 		       query.ct.liberal_mode, query.ct.state,
1691 		       query.ct.max_ack_window, query.ct.retransmission_limit,
1692 		       query.ct.last_index, query.ct.last_seq,
1693 		       query.ct.last_ack, query.ct.last_window,
1694 		       query.ct.last_end);
1695 		printf("  Original Dir:\n"
1696 		       "    scale: %u, fin: %u, ack seen: %u\n"
1697 		       " unacked data: %u\n    Sent end: %u,"
1698 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1699 		       query.ct.original_dir.scale,
1700 		       query.ct.original_dir.close_initiated,
1701 		       query.ct.original_dir.last_ack_seen,
1702 		       query.ct.original_dir.data_unacked,
1703 		       query.ct.original_dir.sent_end,
1704 		       query.ct.original_dir.reply_end,
1705 		       query.ct.original_dir.max_win,
1706 		       query.ct.original_dir.max_ack);
1707 		printf("  Reply Dir:\n"
1708 		       "    scale: %u, fin: %u, ack seen: %u\n"
1709 		       " unacked data: %u\n    Sent end: %u,"
1710 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1711 		       query.ct.reply_dir.scale,
1712 		       query.ct.reply_dir.close_initiated,
1713 		       query.ct.reply_dir.last_ack_seen,
1714 		       query.ct.reply_dir.data_unacked,
1715 		       query.ct.reply_dir.sent_end,
1716 		       query.ct.reply_dir.reply_end,
1717 		       query.ct.reply_dir.max_win,
1718 		       query.ct.reply_dir.max_ack);
1719 		break;
1720 	default:
1721 		fprintf(stderr,
1722 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1723 			id, pia->type, port_id);
1724 		break;
1725 	}
1726 	return 0;
1727 }
1728 
1729 static struct port_flow_tunnel *
1730 port_flow_tunnel_offload_cmd_prep(portid_t port_id,
1731 				  const struct rte_flow_item *pattern,
1732 				  const struct rte_flow_action *actions,
1733 				  const struct tunnel_ops *tunnel_ops)
1734 {
1735 	int ret;
1736 	struct rte_port *port;
1737 	struct port_flow_tunnel *pft;
1738 	struct rte_flow_error error;
1739 
1740 	port = &ports[port_id];
1741 	pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
1742 	if (!pft) {
1743 		fprintf(stderr, "failed to locate port flow tunnel #%u\n",
1744 			tunnel_ops->id);
1745 		return NULL;
1746 	}
1747 	if (tunnel_ops->actions) {
1748 		uint32_t num_actions;
1749 		const struct rte_flow_action *aptr;
1750 
1751 		ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
1752 						&pft->pmd_actions,
1753 						&pft->num_pmd_actions,
1754 						&error);
1755 		if (ret) {
1756 			port_flow_complain(&error);
1757 			return NULL;
1758 		}
1759 		for (aptr = actions, num_actions = 1;
1760 		     aptr->type != RTE_FLOW_ACTION_TYPE_END;
1761 		     aptr++, num_actions++);
1762 		pft->actions = malloc(
1763 				(num_actions +  pft->num_pmd_actions) *
1764 				sizeof(actions[0]));
1765 		if (!pft->actions) {
1766 			rte_flow_tunnel_action_decap_release(
1767 					port_id, pft->actions,
1768 					pft->num_pmd_actions, &error);
1769 			return NULL;
1770 		}
1771 		rte_memcpy(pft->actions, pft->pmd_actions,
1772 			   pft->num_pmd_actions * sizeof(actions[0]));
1773 		rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
1774 			   num_actions * sizeof(actions[0]));
1775 	}
1776 	if (tunnel_ops->items) {
1777 		uint32_t num_items;
1778 		const struct rte_flow_item *iptr;
1779 
1780 		ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
1781 					    &pft->pmd_items,
1782 					    &pft->num_pmd_items,
1783 					    &error);
1784 		if (ret) {
1785 			port_flow_complain(&error);
1786 			return NULL;
1787 		}
1788 		for (iptr = pattern, num_items = 1;
1789 		     iptr->type != RTE_FLOW_ITEM_TYPE_END;
1790 		     iptr++, num_items++);
1791 		pft->items = malloc((num_items + pft->num_pmd_items) *
1792 				    sizeof(pattern[0]));
1793 		if (!pft->items) {
1794 			rte_flow_tunnel_item_release(
1795 					port_id, pft->pmd_items,
1796 					pft->num_pmd_items, &error);
1797 			return NULL;
1798 		}
1799 		rte_memcpy(pft->items, pft->pmd_items,
1800 			   pft->num_pmd_items * sizeof(pattern[0]));
1801 		rte_memcpy(pft->items + pft->num_pmd_items, pattern,
1802 			   num_items * sizeof(pattern[0]));
1803 	}
1804 
1805 	return pft;
1806 }
1807 
1808 static void
1809 port_flow_tunnel_offload_cmd_release(portid_t port_id,
1810 				     const struct tunnel_ops *tunnel_ops,
1811 				     struct port_flow_tunnel *pft)
1812 {
1813 	struct rte_flow_error error;
1814 
1815 	if (tunnel_ops->actions) {
1816 		free(pft->actions);
1817 		rte_flow_tunnel_action_decap_release(
1818 			port_id, pft->pmd_actions,
1819 			pft->num_pmd_actions, &error);
1820 		pft->actions = NULL;
1821 		pft->pmd_actions = NULL;
1822 	}
1823 	if (tunnel_ops->items) {
1824 		free(pft->items);
1825 		rte_flow_tunnel_item_release(port_id, pft->pmd_items,
1826 					     pft->num_pmd_items,
1827 					     &error);
1828 		pft->items = NULL;
1829 		pft->pmd_items = NULL;
1830 	}
1831 }
1832 
1833 /** Add port meter policy */
1834 int
1835 port_meter_policy_add(portid_t port_id, uint32_t policy_id,
1836 			const struct rte_flow_action *actions)
1837 {
1838 	struct rte_mtr_error error;
1839 	const struct rte_flow_action *act = actions;
1840 	const struct rte_flow_action *start;
1841 	struct rte_mtr_meter_policy_params policy;
1842 	uint32_t i = 0, act_n;
1843 	int ret;
1844 
1845 	for (i = 0; i < RTE_COLORS; i++) {
1846 		for (act_n = 0, start = act;
1847 			act->type != RTE_FLOW_ACTION_TYPE_END; act++)
1848 			act_n++;
1849 		if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END)
1850 			policy.actions[i] = start;
1851 		else
1852 			policy.actions[i] = NULL;
1853 		act++;
1854 	}
1855 	ret = rte_mtr_meter_policy_add(port_id,
1856 			policy_id,
1857 			&policy, &error);
1858 	if (ret)
1859 		print_mtr_err_msg(&error);
1860 	return ret;
1861 }
1862 
1863 /** Validate flow rule. */
1864 int
1865 port_flow_validate(portid_t port_id,
1866 		   const struct rte_flow_attr *attr,
1867 		   const struct rte_flow_item *pattern,
1868 		   const struct rte_flow_action *actions,
1869 		   const struct tunnel_ops *tunnel_ops)
1870 {
1871 	struct rte_flow_error error;
1872 	struct port_flow_tunnel *pft = NULL;
1873 
1874 	/* Poisoning to make sure PMDs update it in case of error. */
1875 	memset(&error, 0x11, sizeof(error));
1876 	if (tunnel_ops->enabled) {
1877 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
1878 							actions, tunnel_ops);
1879 		if (!pft)
1880 			return -ENOENT;
1881 		if (pft->items)
1882 			pattern = pft->items;
1883 		if (pft->actions)
1884 			actions = pft->actions;
1885 	}
1886 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1887 		return port_flow_complain(&error);
1888 	if (tunnel_ops->enabled)
1889 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
1890 	printf("Flow rule validated\n");
1891 	return 0;
1892 }
1893 
1894 /** Return age action structure if exists, otherwise NULL. */
1895 static struct rte_flow_action_age *
1896 age_action_get(const struct rte_flow_action *actions)
1897 {
1898 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1899 		switch (actions->type) {
1900 		case RTE_FLOW_ACTION_TYPE_AGE:
1901 			return (struct rte_flow_action_age *)
1902 				(uintptr_t)actions->conf;
1903 		default:
1904 			break;
1905 		}
1906 	}
1907 	return NULL;
1908 }
1909 
1910 /** Create flow rule. */
1911 int
1912 port_flow_create(portid_t port_id,
1913 		 const struct rte_flow_attr *attr,
1914 		 const struct rte_flow_item *pattern,
1915 		 const struct rte_flow_action *actions,
1916 		 const struct tunnel_ops *tunnel_ops)
1917 {
1918 	struct rte_flow *flow;
1919 	struct rte_port *port;
1920 	struct port_flow *pf;
1921 	uint32_t id = 0;
1922 	struct rte_flow_error error;
1923 	struct port_flow_tunnel *pft = NULL;
1924 	struct rte_flow_action_age *age = age_action_get(actions);
1925 
1926 	port = &ports[port_id];
1927 	if (port->flow_list) {
1928 		if (port->flow_list->id == UINT32_MAX) {
1929 			fprintf(stderr,
1930 				"Highest rule ID is already assigned, delete it first");
1931 			return -ENOMEM;
1932 		}
1933 		id = port->flow_list->id + 1;
1934 	}
1935 	if (tunnel_ops->enabled) {
1936 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
1937 							actions, tunnel_ops);
1938 		if (!pft)
1939 			return -ENOENT;
1940 		if (pft->items)
1941 			pattern = pft->items;
1942 		if (pft->actions)
1943 			actions = pft->actions;
1944 	}
1945 	pf = port_flow_new(attr, pattern, actions, &error);
1946 	if (!pf)
1947 		return port_flow_complain(&error);
1948 	if (age) {
1949 		pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
1950 		age->context = &pf->age_type;
1951 	}
1952 	/* Poisoning to make sure PMDs update it in case of error. */
1953 	memset(&error, 0x22, sizeof(error));
1954 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1955 	if (!flow) {
1956 		if (tunnel_ops->enabled)
1957 			port_flow_tunnel_offload_cmd_release(port_id,
1958 							     tunnel_ops, pft);
1959 		free(pf);
1960 		return port_flow_complain(&error);
1961 	}
1962 	pf->next = port->flow_list;
1963 	pf->id = id;
1964 	pf->flow = flow;
1965 	port->flow_list = pf;
1966 	if (tunnel_ops->enabled)
1967 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
1968 	printf("Flow rule #%u created\n", pf->id);
1969 	return 0;
1970 }
1971 
1972 /** Destroy a number of flow rules. */
1973 int
1974 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1975 {
1976 	struct rte_port *port;
1977 	struct port_flow **tmp;
1978 	uint32_t c = 0;
1979 	int ret = 0;
1980 
1981 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1982 	    port_id == (portid_t)RTE_PORT_ALL)
1983 		return -EINVAL;
1984 	port = &ports[port_id];
1985 	tmp = &port->flow_list;
1986 	while (*tmp) {
1987 		uint32_t i;
1988 
1989 		for (i = 0; i != n; ++i) {
1990 			struct rte_flow_error error;
1991 			struct port_flow *pf = *tmp;
1992 
1993 			if (rule[i] != pf->id)
1994 				continue;
1995 			/*
1996 			 * Poisoning to make sure PMDs update it in case
1997 			 * of error.
1998 			 */
1999 			memset(&error, 0x33, sizeof(error));
2000 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
2001 				ret = port_flow_complain(&error);
2002 				continue;
2003 			}
2004 			printf("Flow rule #%u destroyed\n", pf->id);
2005 			*tmp = pf->next;
2006 			free(pf);
2007 			break;
2008 		}
2009 		if (i == n)
2010 			tmp = &(*tmp)->next;
2011 		++c;
2012 	}
2013 	return ret;
2014 }
2015 
2016 /** Remove all flow rules. */
2017 int
2018 port_flow_flush(portid_t port_id)
2019 {
2020 	struct rte_flow_error error;
2021 	struct rte_port *port;
2022 	int ret = 0;
2023 
2024 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2025 		port_id == (portid_t)RTE_PORT_ALL)
2026 		return -EINVAL;
2027 
2028 	port = &ports[port_id];
2029 
2030 	if (port->flow_list == NULL)
2031 		return ret;
2032 
2033 	/* Poisoning to make sure PMDs update it in case of error. */
2034 	memset(&error, 0x44, sizeof(error));
2035 	if (rte_flow_flush(port_id, &error)) {
2036 		port_flow_complain(&error);
2037 	}
2038 
2039 	while (port->flow_list) {
2040 		struct port_flow *pf = port->flow_list->next;
2041 
2042 		free(port->flow_list);
2043 		port->flow_list = pf;
2044 	}
2045 	return ret;
2046 }
2047 
2048 /** Dump flow rules. */
2049 int
2050 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id,
2051 		const char *file_name)
2052 {
2053 	int ret = 0;
2054 	FILE *file = stdout;
2055 	struct rte_flow_error error;
2056 	struct rte_port *port;
2057 	struct port_flow *pflow;
2058 	struct rte_flow *tmpFlow = NULL;
2059 	bool found = false;
2060 
2061 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2062 		port_id == (portid_t)RTE_PORT_ALL)
2063 		return -EINVAL;
2064 
2065 	if (!dump_all) {
2066 		port = &ports[port_id];
2067 		pflow = port->flow_list;
2068 		while (pflow) {
2069 			if (rule_id != pflow->id) {
2070 				pflow = pflow->next;
2071 			} else {
2072 				tmpFlow = pflow->flow;
2073 				if (tmpFlow)
2074 					found = true;
2075 				break;
2076 			}
2077 		}
2078 		if (found == false) {
2079 			fprintf(stderr, "Failed to dump to flow %d\n", rule_id);
2080 			return -EINVAL;
2081 		}
2082 	}
2083 
2084 	if (file_name && strlen(file_name)) {
2085 		file = fopen(file_name, "w");
2086 		if (!file) {
2087 			fprintf(stderr, "Failed to create file %s: %s\n",
2088 				file_name, strerror(errno));
2089 			return -errno;
2090 		}
2091 	}
2092 
2093 	if (!dump_all)
2094 		ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error);
2095 	else
2096 		ret = rte_flow_dev_dump(port_id, NULL, file, &error);
2097 	if (ret) {
2098 		port_flow_complain(&error);
2099 		fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret));
2100 	} else
2101 		printf("Flow dump finished\n");
2102 	if (file_name && strlen(file_name))
2103 		fclose(file);
2104 	return ret;
2105 }
2106 
2107 /** Query a flow rule. */
2108 int
2109 port_flow_query(portid_t port_id, uint32_t rule,
2110 		const struct rte_flow_action *action)
2111 {
2112 	struct rte_flow_error error;
2113 	struct rte_port *port;
2114 	struct port_flow *pf;
2115 	const char *name;
2116 	union {
2117 		struct rte_flow_query_count count;
2118 		struct rte_flow_action_rss rss_conf;
2119 		struct rte_flow_query_age age;
2120 	} query;
2121 	int ret;
2122 
2123 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2124 	    port_id == (portid_t)RTE_PORT_ALL)
2125 		return -EINVAL;
2126 	port = &ports[port_id];
2127 	for (pf = port->flow_list; pf; pf = pf->next)
2128 		if (pf->id == rule)
2129 			break;
2130 	if (!pf) {
2131 		fprintf(stderr, "Flow rule #%u not found\n", rule);
2132 		return -ENOENT;
2133 	}
2134 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2135 			    &name, sizeof(name),
2136 			    (void *)(uintptr_t)action->type, &error);
2137 	if (ret < 0)
2138 		return port_flow_complain(&error);
2139 	switch (action->type) {
2140 	case RTE_FLOW_ACTION_TYPE_COUNT:
2141 	case RTE_FLOW_ACTION_TYPE_RSS:
2142 	case RTE_FLOW_ACTION_TYPE_AGE:
2143 		break;
2144 	default:
2145 		fprintf(stderr, "Cannot query action type %d (%s)\n",
2146 			action->type, name);
2147 		return -ENOTSUP;
2148 	}
2149 	/* Poisoning to make sure PMDs update it in case of error. */
2150 	memset(&error, 0x55, sizeof(error));
2151 	memset(&query, 0, sizeof(query));
2152 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
2153 		return port_flow_complain(&error);
2154 	switch (action->type) {
2155 	case RTE_FLOW_ACTION_TYPE_COUNT:
2156 		printf("%s:\n"
2157 		       " hits_set: %u\n"
2158 		       " bytes_set: %u\n"
2159 		       " hits: %" PRIu64 "\n"
2160 		       " bytes: %" PRIu64 "\n",
2161 		       name,
2162 		       query.count.hits_set,
2163 		       query.count.bytes_set,
2164 		       query.count.hits,
2165 		       query.count.bytes);
2166 		break;
2167 	case RTE_FLOW_ACTION_TYPE_RSS:
2168 		rss_config_display(&query.rss_conf);
2169 		break;
2170 	case RTE_FLOW_ACTION_TYPE_AGE:
2171 		printf("%s:\n"
2172 		       " aged: %u\n"
2173 		       " sec_since_last_hit_valid: %u\n"
2174 		       " sec_since_last_hit: %" PRIu32 "\n",
2175 		       name,
2176 		       query.age.aged,
2177 		       query.age.sec_since_last_hit_valid,
2178 		       query.age.sec_since_last_hit);
2179 		break;
2180 	default:
2181 		fprintf(stderr,
2182 			"Cannot display result for action type %d (%s)\n",
2183 			action->type, name);
2184 		break;
2185 	}
2186 	return 0;
2187 }
2188 
2189 /** List simply and destroy all aged flows. */
2190 void
2191 port_flow_aged(portid_t port_id, uint8_t destroy)
2192 {
2193 	void **contexts;
2194 	int nb_context, total = 0, idx;
2195 	struct rte_flow_error error;
2196 	enum age_action_context_type *type;
2197 	union {
2198 		struct port_flow *pf;
2199 		struct port_indirect_action *pia;
2200 	} ctx;
2201 
2202 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2203 	    port_id == (portid_t)RTE_PORT_ALL)
2204 		return;
2205 	total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
2206 	printf("Port %u total aged flows: %d\n", port_id, total);
2207 	if (total < 0) {
2208 		port_flow_complain(&error);
2209 		return;
2210 	}
2211 	if (total == 0)
2212 		return;
2213 	contexts = malloc(sizeof(void *) * total);
2214 	if (contexts == NULL) {
2215 		fprintf(stderr, "Cannot allocate contexts for aged flow\n");
2216 		return;
2217 	}
2218 	printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
2219 	nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
2220 	if (nb_context != total) {
2221 		fprintf(stderr,
2222 			"Port:%d get aged flows count(%d) != total(%d)\n",
2223 			port_id, nb_context, total);
2224 		free(contexts);
2225 		return;
2226 	}
2227 	total = 0;
2228 	for (idx = 0; idx < nb_context; idx++) {
2229 		if (!contexts[idx]) {
2230 			fprintf(stderr, "Error: get Null context in port %u\n",
2231 				port_id);
2232 			continue;
2233 		}
2234 		type = (enum age_action_context_type *)contexts[idx];
2235 		switch (*type) {
2236 		case ACTION_AGE_CONTEXT_TYPE_FLOW:
2237 			ctx.pf = container_of(type, struct port_flow, age_type);
2238 			printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
2239 								 "\t%c%c%c\t\n",
2240 			       "Flow",
2241 			       ctx.pf->id,
2242 			       ctx.pf->rule.attr->group,
2243 			       ctx.pf->rule.attr->priority,
2244 			       ctx.pf->rule.attr->ingress ? 'i' : '-',
2245 			       ctx.pf->rule.attr->egress ? 'e' : '-',
2246 			       ctx.pf->rule.attr->transfer ? 't' : '-');
2247 			if (destroy && !port_flow_destroy(port_id, 1,
2248 							  &ctx.pf->id))
2249 				total++;
2250 			break;
2251 		case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION:
2252 			ctx.pia = container_of(type,
2253 					struct port_indirect_action, age_type);
2254 			printf("%-20s\t%" PRIu32 "\n", "Indirect action",
2255 			       ctx.pia->id);
2256 			break;
2257 		default:
2258 			fprintf(stderr, "Error: invalid context type %u\n",
2259 				port_id);
2260 			break;
2261 		}
2262 	}
2263 	printf("\n%d flows destroyed\n", total);
2264 	free(contexts);
2265 }
2266 
2267 /** List flow rules. */
2268 void
2269 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
2270 {
2271 	struct rte_port *port;
2272 	struct port_flow *pf;
2273 	struct port_flow *list = NULL;
2274 	uint32_t i;
2275 
2276 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2277 	    port_id == (portid_t)RTE_PORT_ALL)
2278 		return;
2279 	port = &ports[port_id];
2280 	if (!port->flow_list)
2281 		return;
2282 	/* Sort flows by group, priority and ID. */
2283 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2284 		struct port_flow **tmp;
2285 		const struct rte_flow_attr *curr = pf->rule.attr;
2286 
2287 		if (n) {
2288 			/* Filter out unwanted groups. */
2289 			for (i = 0; i != n; ++i)
2290 				if (curr->group == group[i])
2291 					break;
2292 			if (i == n)
2293 				continue;
2294 		}
2295 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
2296 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
2297 
2298 			if (curr->group > comp->group ||
2299 			    (curr->group == comp->group &&
2300 			     curr->priority > comp->priority) ||
2301 			    (curr->group == comp->group &&
2302 			     curr->priority == comp->priority &&
2303 			     pf->id > (*tmp)->id))
2304 				continue;
2305 			break;
2306 		}
2307 		pf->tmp = *tmp;
2308 		*tmp = pf;
2309 	}
2310 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
2311 	for (pf = list; pf != NULL; pf = pf->tmp) {
2312 		const struct rte_flow_item *item = pf->rule.pattern;
2313 		const struct rte_flow_action *action = pf->rule.actions;
2314 		const char *name;
2315 
2316 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
2317 		       pf->id,
2318 		       pf->rule.attr->group,
2319 		       pf->rule.attr->priority,
2320 		       pf->rule.attr->ingress ? 'i' : '-',
2321 		       pf->rule.attr->egress ? 'e' : '-',
2322 		       pf->rule.attr->transfer ? 't' : '-');
2323 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
2324 			if ((uint32_t)item->type > INT_MAX)
2325 				name = "PMD_INTERNAL";
2326 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
2327 					  &name, sizeof(name),
2328 					  (void *)(uintptr_t)item->type,
2329 					  NULL) <= 0)
2330 				name = "[UNKNOWN]";
2331 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
2332 				printf("%s ", name);
2333 			++item;
2334 		}
2335 		printf("=>");
2336 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
2337 			if ((uint32_t)action->type > INT_MAX)
2338 				name = "PMD_INTERNAL";
2339 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2340 					  &name, sizeof(name),
2341 					  (void *)(uintptr_t)action->type,
2342 					  NULL) <= 0)
2343 				name = "[UNKNOWN]";
2344 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
2345 				printf(" %s", name);
2346 			++action;
2347 		}
2348 		printf("\n");
2349 	}
2350 }
2351 
2352 /** Restrict ingress traffic to the defined flow rules. */
2353 int
2354 port_flow_isolate(portid_t port_id, int set)
2355 {
2356 	struct rte_flow_error error;
2357 
2358 	/* Poisoning to make sure PMDs update it in case of error. */
2359 	memset(&error, 0x66, sizeof(error));
2360 	if (rte_flow_isolate(port_id, set, &error))
2361 		return port_flow_complain(&error);
2362 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
2363 	       port_id,
2364 	       set ? "now restricted" : "not restricted anymore");
2365 	return 0;
2366 }
2367 
2368 /*
2369  * RX/TX ring descriptors display functions.
2370  */
2371 int
2372 rx_queue_id_is_invalid(queueid_t rxq_id)
2373 {
2374 	if (rxq_id < nb_rxq)
2375 		return 0;
2376 	fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n",
2377 		rxq_id, nb_rxq);
2378 	return 1;
2379 }
2380 
2381 int
2382 tx_queue_id_is_invalid(queueid_t txq_id)
2383 {
2384 	if (txq_id < nb_txq)
2385 		return 0;
2386 	fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n",
2387 		txq_id, nb_txq);
2388 	return 1;
2389 }
2390 
2391 static int
2392 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
2393 {
2394 	struct rte_port *port = &ports[port_id];
2395 	struct rte_eth_rxq_info rx_qinfo;
2396 	int ret;
2397 
2398 	ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
2399 	if (ret == 0) {
2400 		*ring_size = rx_qinfo.nb_desc;
2401 		return ret;
2402 	}
2403 
2404 	if (ret != -ENOTSUP)
2405 		return ret;
2406 	/*
2407 	 * If the rte_eth_rx_queue_info_get is not support for this PMD,
2408 	 * ring_size stored in testpmd will be used for validity verification.
2409 	 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
2410 	 * being 0, it will use a default value provided by PMDs to setup this
2411 	 * rxq. If the default value is 0, it will use the
2412 	 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
2413 	 */
2414 	if (port->nb_rx_desc[rxq_id])
2415 		*ring_size = port->nb_rx_desc[rxq_id];
2416 	else if (port->dev_info.default_rxportconf.ring_size)
2417 		*ring_size = port->dev_info.default_rxportconf.ring_size;
2418 	else
2419 		*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
2420 	return 0;
2421 }
2422 
2423 static int
2424 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
2425 {
2426 	struct rte_port *port = &ports[port_id];
2427 	struct rte_eth_txq_info tx_qinfo;
2428 	int ret;
2429 
2430 	ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
2431 	if (ret == 0) {
2432 		*ring_size = tx_qinfo.nb_desc;
2433 		return ret;
2434 	}
2435 
2436 	if (ret != -ENOTSUP)
2437 		return ret;
2438 	/*
2439 	 * If the rte_eth_tx_queue_info_get is not support for this PMD,
2440 	 * ring_size stored in testpmd will be used for validity verification.
2441 	 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
2442 	 * being 0, it will use a default value provided by PMDs to setup this
2443 	 * txq. If the default value is 0, it will use the
2444 	 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
2445 	 */
2446 	if (port->nb_tx_desc[txq_id])
2447 		*ring_size = port->nb_tx_desc[txq_id];
2448 	else if (port->dev_info.default_txportconf.ring_size)
2449 		*ring_size = port->dev_info.default_txportconf.ring_size;
2450 	else
2451 		*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
2452 	return 0;
2453 }
2454 
2455 static int
2456 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
2457 {
2458 	uint16_t ring_size;
2459 	int ret;
2460 
2461 	ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
2462 	if (ret)
2463 		return 1;
2464 
2465 	if (rxdesc_id < ring_size)
2466 		return 0;
2467 
2468 	fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n",
2469 		rxdesc_id, ring_size);
2470 	return 1;
2471 }
2472 
2473 static int
2474 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
2475 {
2476 	uint16_t ring_size;
2477 	int ret;
2478 
2479 	ret = get_tx_ring_size(port_id, txq_id, &ring_size);
2480 	if (ret)
2481 		return 1;
2482 
2483 	if (txdesc_id < ring_size)
2484 		return 0;
2485 
2486 	fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n",
2487 		txdesc_id, ring_size);
2488 	return 1;
2489 }
2490 
2491 static const struct rte_memzone *
2492 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
2493 {
2494 	char mz_name[RTE_MEMZONE_NAMESIZE];
2495 	const struct rte_memzone *mz;
2496 
2497 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
2498 			port_id, q_id, ring_name);
2499 	mz = rte_memzone_lookup(mz_name);
2500 	if (mz == NULL)
2501 		fprintf(stderr,
2502 			"%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n",
2503 			ring_name, port_id, q_id, mz_name);
2504 	return mz;
2505 }
2506 
2507 union igb_ring_dword {
2508 	uint64_t dword;
2509 	struct {
2510 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
2511 		uint32_t lo;
2512 		uint32_t hi;
2513 #else
2514 		uint32_t hi;
2515 		uint32_t lo;
2516 #endif
2517 	} words;
2518 };
2519 
2520 struct igb_ring_desc_32_bytes {
2521 	union igb_ring_dword lo_dword;
2522 	union igb_ring_dword hi_dword;
2523 	union igb_ring_dword resv1;
2524 	union igb_ring_dword resv2;
2525 };
2526 
2527 struct igb_ring_desc_16_bytes {
2528 	union igb_ring_dword lo_dword;
2529 	union igb_ring_dword hi_dword;
2530 };
2531 
2532 static void
2533 ring_rxd_display_dword(union igb_ring_dword dword)
2534 {
2535 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
2536 					(unsigned)dword.words.hi);
2537 }
2538 
2539 static void
2540 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
2541 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2542 			   portid_t port_id,
2543 #else
2544 			   __rte_unused portid_t port_id,
2545 #endif
2546 			   uint16_t desc_id)
2547 {
2548 	struct igb_ring_desc_16_bytes *ring =
2549 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
2550 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2551 	int ret;
2552 	struct rte_eth_dev_info dev_info;
2553 
2554 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2555 	if (ret != 0)
2556 		return;
2557 
2558 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
2559 		/* 32 bytes RX descriptor, i40e only */
2560 		struct igb_ring_desc_32_bytes *ring =
2561 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
2562 		ring[desc_id].lo_dword.dword =
2563 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2564 		ring_rxd_display_dword(ring[desc_id].lo_dword);
2565 		ring[desc_id].hi_dword.dword =
2566 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2567 		ring_rxd_display_dword(ring[desc_id].hi_dword);
2568 		ring[desc_id].resv1.dword =
2569 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
2570 		ring_rxd_display_dword(ring[desc_id].resv1);
2571 		ring[desc_id].resv2.dword =
2572 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
2573 		ring_rxd_display_dword(ring[desc_id].resv2);
2574 
2575 		return;
2576 	}
2577 #endif
2578 	/* 16 bytes RX descriptor */
2579 	ring[desc_id].lo_dword.dword =
2580 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2581 	ring_rxd_display_dword(ring[desc_id].lo_dword);
2582 	ring[desc_id].hi_dword.dword =
2583 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2584 	ring_rxd_display_dword(ring[desc_id].hi_dword);
2585 }
2586 
2587 static void
2588 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
2589 {
2590 	struct igb_ring_desc_16_bytes *ring;
2591 	struct igb_ring_desc_16_bytes txd;
2592 
2593 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
2594 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2595 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2596 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
2597 			(unsigned)txd.lo_dword.words.lo,
2598 			(unsigned)txd.lo_dword.words.hi,
2599 			(unsigned)txd.hi_dword.words.lo,
2600 			(unsigned)txd.hi_dword.words.hi);
2601 }
2602 
2603 void
2604 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
2605 {
2606 	const struct rte_memzone *rx_mz;
2607 
2608 	if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
2609 		return;
2610 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
2611 	if (rx_mz == NULL)
2612 		return;
2613 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
2614 }
2615 
2616 void
2617 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
2618 {
2619 	const struct rte_memzone *tx_mz;
2620 
2621 	if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
2622 		return;
2623 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
2624 	if (tx_mz == NULL)
2625 		return;
2626 	ring_tx_descriptor_display(tx_mz, txd_id);
2627 }
2628 
2629 void
2630 fwd_lcores_config_display(void)
2631 {
2632 	lcoreid_t lc_id;
2633 
2634 	printf("List of forwarding lcores:");
2635 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
2636 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
2637 	printf("\n");
2638 }
2639 void
2640 rxtx_config_display(void)
2641 {
2642 	portid_t pid;
2643 	queueid_t qid;
2644 
2645 	printf("  %s packet forwarding%s packets/burst=%d\n",
2646 	       cur_fwd_eng->fwd_mode_name,
2647 	       retry_enabled == 0 ? "" : " with retry",
2648 	       nb_pkt_per_burst);
2649 
2650 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
2651 		printf("  packet len=%u - nb packet segments=%d\n",
2652 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
2653 
2654 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
2655 	       nb_fwd_lcores, nb_fwd_ports);
2656 
2657 	RTE_ETH_FOREACH_DEV(pid) {
2658 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
2659 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
2660 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
2661 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
2662 		struct rte_eth_rxq_info rx_qinfo;
2663 		struct rte_eth_txq_info tx_qinfo;
2664 		uint16_t rx_free_thresh_tmp;
2665 		uint16_t tx_free_thresh_tmp;
2666 		uint16_t tx_rs_thresh_tmp;
2667 		uint16_t nb_rx_desc_tmp;
2668 		uint16_t nb_tx_desc_tmp;
2669 		uint64_t offloads_tmp;
2670 		uint8_t pthresh_tmp;
2671 		uint8_t hthresh_tmp;
2672 		uint8_t wthresh_tmp;
2673 		int32_t rc;
2674 
2675 		/* per port config */
2676 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
2677 				(unsigned int)pid, nb_rxq, nb_txq);
2678 
2679 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
2680 				ports[pid].dev_conf.rxmode.offloads,
2681 				ports[pid].dev_conf.txmode.offloads);
2682 
2683 		/* per rx queue config only for first queue to be less verbose */
2684 		for (qid = 0; qid < 1; qid++) {
2685 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
2686 			if (rc) {
2687 				nb_rx_desc_tmp = nb_rx_desc[qid];
2688 				rx_free_thresh_tmp =
2689 					rx_conf[qid].rx_free_thresh;
2690 				pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
2691 				hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
2692 				wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
2693 				offloads_tmp = rx_conf[qid].offloads;
2694 			} else {
2695 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
2696 				rx_free_thresh_tmp =
2697 						rx_qinfo.conf.rx_free_thresh;
2698 				pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
2699 				hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
2700 				wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
2701 				offloads_tmp = rx_qinfo.conf.offloads;
2702 			}
2703 
2704 			printf("    RX queue: %d\n", qid);
2705 			printf("      RX desc=%d - RX free threshold=%d\n",
2706 				nb_rx_desc_tmp, rx_free_thresh_tmp);
2707 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
2708 				" wthresh=%d\n",
2709 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2710 			printf("      RX Offloads=0x%"PRIx64"\n", offloads_tmp);
2711 		}
2712 
2713 		/* per tx queue config only for first queue to be less verbose */
2714 		for (qid = 0; qid < 1; qid++) {
2715 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
2716 			if (rc) {
2717 				nb_tx_desc_tmp = nb_tx_desc[qid];
2718 				tx_free_thresh_tmp =
2719 					tx_conf[qid].tx_free_thresh;
2720 				pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
2721 				hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
2722 				wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
2723 				offloads_tmp = tx_conf[qid].offloads;
2724 				tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
2725 			} else {
2726 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
2727 				tx_free_thresh_tmp =
2728 						tx_qinfo.conf.tx_free_thresh;
2729 				pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
2730 				hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
2731 				wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
2732 				offloads_tmp = tx_qinfo.conf.offloads;
2733 				tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
2734 			}
2735 
2736 			printf("    TX queue: %d\n", qid);
2737 			printf("      TX desc=%d - TX free threshold=%d\n",
2738 				nb_tx_desc_tmp, tx_free_thresh_tmp);
2739 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
2740 				" wthresh=%d\n",
2741 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2742 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
2743 				offloads_tmp, tx_rs_thresh_tmp);
2744 		}
2745 	}
2746 }
2747 
2748 void
2749 port_rss_reta_info(portid_t port_id,
2750 		   struct rte_eth_rss_reta_entry64 *reta_conf,
2751 		   uint16_t nb_entries)
2752 {
2753 	uint16_t i, idx, shift;
2754 	int ret;
2755 
2756 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2757 		return;
2758 
2759 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
2760 	if (ret != 0) {
2761 		fprintf(stderr,
2762 			"Failed to get RSS RETA info, return code = %d\n",
2763 			ret);
2764 		return;
2765 	}
2766 
2767 	for (i = 0; i < nb_entries; i++) {
2768 		idx = i / RTE_RETA_GROUP_SIZE;
2769 		shift = i % RTE_RETA_GROUP_SIZE;
2770 		if (!(reta_conf[idx].mask & (1ULL << shift)))
2771 			continue;
2772 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
2773 					i, reta_conf[idx].reta[shift]);
2774 	}
2775 }
2776 
2777 /*
2778  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
2779  * key of the port.
2780  */
2781 void
2782 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
2783 {
2784 	struct rte_eth_rss_conf rss_conf = {0};
2785 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
2786 	uint64_t rss_hf;
2787 	uint8_t i;
2788 	int diag;
2789 	struct rte_eth_dev_info dev_info;
2790 	uint8_t hash_key_size;
2791 	int ret;
2792 
2793 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2794 		return;
2795 
2796 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2797 	if (ret != 0)
2798 		return;
2799 
2800 	if (dev_info.hash_key_size > 0 &&
2801 			dev_info.hash_key_size <= sizeof(rss_key))
2802 		hash_key_size = dev_info.hash_key_size;
2803 	else {
2804 		fprintf(stderr,
2805 			"dev_info did not provide a valid hash key size\n");
2806 		return;
2807 	}
2808 
2809 	/* Get RSS hash key if asked to display it */
2810 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2811 	rss_conf.rss_key_len = hash_key_size;
2812 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2813 	if (diag != 0) {
2814 		switch (diag) {
2815 		case -ENODEV:
2816 			fprintf(stderr, "port index %d invalid\n", port_id);
2817 			break;
2818 		case -ENOTSUP:
2819 			fprintf(stderr, "operation not supported by device\n");
2820 			break;
2821 		default:
2822 			fprintf(stderr, "operation failed - diag=%d\n", diag);
2823 			break;
2824 		}
2825 		return;
2826 	}
2827 	rss_hf = rss_conf.rss_hf;
2828 	if (rss_hf == 0) {
2829 		printf("RSS disabled\n");
2830 		return;
2831 	}
2832 	printf("RSS functions:\n ");
2833 	for (i = 0; rss_type_table[i].str; i++) {
2834 		if (rss_hf & rss_type_table[i].rss_type)
2835 			printf("%s ", rss_type_table[i].str);
2836 	}
2837 	printf("\n");
2838 	if (!show_rss_key)
2839 		return;
2840 	printf("RSS key:\n");
2841 	for (i = 0; i < hash_key_size; i++)
2842 		printf("%02X", rss_key[i]);
2843 	printf("\n");
2844 }
2845 
2846 void
2847 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2848 			 uint8_t hash_key_len)
2849 {
2850 	struct rte_eth_rss_conf rss_conf;
2851 	int diag;
2852 	unsigned int i;
2853 
2854 	rss_conf.rss_key = NULL;
2855 	rss_conf.rss_key_len = hash_key_len;
2856 	rss_conf.rss_hf = 0;
2857 	for (i = 0; rss_type_table[i].str; i++) {
2858 		if (!strcmp(rss_type_table[i].str, rss_type))
2859 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2860 	}
2861 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2862 	if (diag == 0) {
2863 		rss_conf.rss_key = hash_key;
2864 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2865 	}
2866 	if (diag == 0)
2867 		return;
2868 
2869 	switch (diag) {
2870 	case -ENODEV:
2871 		fprintf(stderr, "port index %d invalid\n", port_id);
2872 		break;
2873 	case -ENOTSUP:
2874 		fprintf(stderr, "operation not supported by device\n");
2875 		break;
2876 	default:
2877 		fprintf(stderr, "operation failed - diag=%d\n", diag);
2878 		break;
2879 	}
2880 }
2881 
2882 /*
2883  * Setup forwarding configuration for each logical core.
2884  */
2885 static void
2886 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2887 {
2888 	streamid_t nb_fs_per_lcore;
2889 	streamid_t nb_fs;
2890 	streamid_t sm_id;
2891 	lcoreid_t  nb_extra;
2892 	lcoreid_t  nb_fc;
2893 	lcoreid_t  nb_lc;
2894 	lcoreid_t  lc_id;
2895 
2896 	nb_fs = cfg->nb_fwd_streams;
2897 	nb_fc = cfg->nb_fwd_lcores;
2898 	if (nb_fs <= nb_fc) {
2899 		nb_fs_per_lcore = 1;
2900 		nb_extra = 0;
2901 	} else {
2902 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2903 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2904 	}
2905 
2906 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2907 	sm_id = 0;
2908 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2909 		fwd_lcores[lc_id]->stream_idx = sm_id;
2910 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2911 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2912 	}
2913 
2914 	/*
2915 	 * Assign extra remaining streams, if any.
2916 	 */
2917 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2918 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2919 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2920 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2921 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2922 	}
2923 }
2924 
2925 static portid_t
2926 fwd_topology_tx_port_get(portid_t rxp)
2927 {
2928 	static int warning_once = 1;
2929 
2930 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2931 
2932 	switch (port_topology) {
2933 	default:
2934 	case PORT_TOPOLOGY_PAIRED:
2935 		if ((rxp & 0x1) == 0) {
2936 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2937 				return rxp + 1;
2938 			if (warning_once) {
2939 				fprintf(stderr,
2940 					"\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n");
2941 				warning_once = 0;
2942 			}
2943 			return rxp;
2944 		}
2945 		return rxp - 1;
2946 	case PORT_TOPOLOGY_CHAINED:
2947 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2948 	case PORT_TOPOLOGY_LOOP:
2949 		return rxp;
2950 	}
2951 }
2952 
2953 static void
2954 simple_fwd_config_setup(void)
2955 {
2956 	portid_t i;
2957 
2958 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2959 	cur_fwd_config.nb_fwd_streams =
2960 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2961 
2962 	/* reinitialize forwarding streams */
2963 	init_fwd_streams();
2964 
2965 	/*
2966 	 * In the simple forwarding test, the number of forwarding cores
2967 	 * must be lower or equal to the number of forwarding ports.
2968 	 */
2969 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2970 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2971 		cur_fwd_config.nb_fwd_lcores =
2972 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2973 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2974 
2975 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2976 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2977 		fwd_streams[i]->rx_queue  = 0;
2978 		fwd_streams[i]->tx_port   =
2979 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2980 		fwd_streams[i]->tx_queue  = 0;
2981 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2982 		fwd_streams[i]->retry_enabled = retry_enabled;
2983 	}
2984 }
2985 
2986 /**
2987  * For the RSS forwarding test all streams distributed over lcores. Each stream
2988  * being composed of a RX queue to poll on a RX port for input messages,
2989  * associated with a TX queue of a TX port where to send forwarded packets.
2990  */
2991 static void
2992 rss_fwd_config_setup(void)
2993 {
2994 	portid_t   rxp;
2995 	portid_t   txp;
2996 	queueid_t  rxq;
2997 	queueid_t  nb_q;
2998 	streamid_t  sm_id;
2999 	int start;
3000 	int end;
3001 
3002 	nb_q = nb_rxq;
3003 	if (nb_q > nb_txq)
3004 		nb_q = nb_txq;
3005 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3006 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3007 	cur_fwd_config.nb_fwd_streams =
3008 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
3009 
3010 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3011 		cur_fwd_config.nb_fwd_lcores =
3012 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3013 
3014 	/* reinitialize forwarding streams */
3015 	init_fwd_streams();
3016 
3017 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3018 
3019 	if (proc_id > 0 && nb_q % num_procs != 0)
3020 		printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n");
3021 
3022 	/**
3023 	 * In multi-process, All queues are allocated to different
3024 	 * processes based on num_procs and proc_id. For example:
3025 	 * if supports 4 queues(nb_q), 2 processes(num_procs),
3026 	 * the 0~1 queue for primary process.
3027 	 * the 2~3 queue for secondary process.
3028 	 */
3029 	start = proc_id * nb_q / num_procs;
3030 	end = start + nb_q / num_procs;
3031 	rxp = 0;
3032 	rxq = start;
3033 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
3034 		struct fwd_stream *fs;
3035 
3036 		fs = fwd_streams[sm_id];
3037 		txp = fwd_topology_tx_port_get(rxp);
3038 		fs->rx_port = fwd_ports_ids[rxp];
3039 		fs->rx_queue = rxq;
3040 		fs->tx_port = fwd_ports_ids[txp];
3041 		fs->tx_queue = rxq;
3042 		fs->peer_addr = fs->tx_port;
3043 		fs->retry_enabled = retry_enabled;
3044 		rxp++;
3045 		if (rxp < nb_fwd_ports)
3046 			continue;
3047 		rxp = 0;
3048 		rxq++;
3049 		if (rxq >= end)
3050 			rxq = start;
3051 	}
3052 }
3053 
3054 static uint16_t
3055 get_fwd_port_total_tc_num(void)
3056 {
3057 	struct rte_eth_dcb_info dcb_info;
3058 	uint16_t total_tc_num = 0;
3059 	unsigned int i;
3060 
3061 	for (i = 0; i < nb_fwd_ports; i++) {
3062 		(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info);
3063 		total_tc_num += dcb_info.nb_tcs;
3064 	}
3065 
3066 	return total_tc_num;
3067 }
3068 
3069 /**
3070  * For the DCB forwarding test, each core is assigned on each traffic class.
3071  *
3072  * Each core is assigned a multi-stream, each stream being composed of
3073  * a RX queue to poll on a RX port for input messages, associated with
3074  * a TX queue of a TX port where to send forwarded packets. All RX and
3075  * TX queues are mapping to the same traffic class.
3076  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
3077  * the same core
3078  */
3079 static void
3080 dcb_fwd_config_setup(void)
3081 {
3082 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
3083 	portid_t txp, rxp = 0;
3084 	queueid_t txq, rxq = 0;
3085 	lcoreid_t  lc_id;
3086 	uint16_t nb_rx_queue, nb_tx_queue;
3087 	uint16_t i, j, k, sm_id = 0;
3088 	uint16_t total_tc_num;
3089 	struct rte_port *port;
3090 	uint8_t tc = 0;
3091 	portid_t pid;
3092 	int ret;
3093 
3094 	/*
3095 	 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED
3096 	 * or RTE_PORT_STOPPED.
3097 	 *
3098 	 * Re-configure ports to get updated mapping between tc and queue in
3099 	 * case the queue number of the port is changed. Skip for started ports
3100 	 * since modifying queue number and calling dev_configure need to stop
3101 	 * ports first.
3102 	 */
3103 	for (pid = 0; pid < nb_fwd_ports; pid++) {
3104 		if (port_is_started(pid) == 1)
3105 			continue;
3106 
3107 		port = &ports[pid];
3108 		ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq,
3109 					    &port->dev_conf);
3110 		if (ret < 0) {
3111 			fprintf(stderr,
3112 				"Failed to re-configure port %d, ret = %d.\n",
3113 				pid, ret);
3114 			return;
3115 		}
3116 	}
3117 
3118 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3119 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3120 	cur_fwd_config.nb_fwd_streams =
3121 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3122 	total_tc_num = get_fwd_port_total_tc_num();
3123 	if (cur_fwd_config.nb_fwd_lcores > total_tc_num)
3124 		cur_fwd_config.nb_fwd_lcores = total_tc_num;
3125 
3126 	/* reinitialize forwarding streams */
3127 	init_fwd_streams();
3128 	sm_id = 0;
3129 	txp = 1;
3130 	/* get the dcb info on the first RX and TX ports */
3131 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3132 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3133 
3134 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3135 		fwd_lcores[lc_id]->stream_nb = 0;
3136 		fwd_lcores[lc_id]->stream_idx = sm_id;
3137 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
3138 			/* if the nb_queue is zero, means this tc is
3139 			 * not enabled on the POOL
3140 			 */
3141 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
3142 				break;
3143 			k = fwd_lcores[lc_id]->stream_nb +
3144 				fwd_lcores[lc_id]->stream_idx;
3145 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
3146 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
3147 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3148 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
3149 			for (j = 0; j < nb_rx_queue; j++) {
3150 				struct fwd_stream *fs;
3151 
3152 				fs = fwd_streams[k + j];
3153 				fs->rx_port = fwd_ports_ids[rxp];
3154 				fs->rx_queue = rxq + j;
3155 				fs->tx_port = fwd_ports_ids[txp];
3156 				fs->tx_queue = txq + j % nb_tx_queue;
3157 				fs->peer_addr = fs->tx_port;
3158 				fs->retry_enabled = retry_enabled;
3159 			}
3160 			fwd_lcores[lc_id]->stream_nb +=
3161 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3162 		}
3163 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
3164 
3165 		tc++;
3166 		if (tc < rxp_dcb_info.nb_tcs)
3167 			continue;
3168 		/* Restart from TC 0 on next RX port */
3169 		tc = 0;
3170 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
3171 			rxp = (portid_t)
3172 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
3173 		else
3174 			rxp++;
3175 		if (rxp >= nb_fwd_ports)
3176 			return;
3177 		/* get the dcb information on next RX and TX ports */
3178 		if ((rxp & 0x1) == 0)
3179 			txp = (portid_t) (rxp + 1);
3180 		else
3181 			txp = (portid_t) (rxp - 1);
3182 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3183 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3184 	}
3185 }
3186 
3187 static void
3188 icmp_echo_config_setup(void)
3189 {
3190 	portid_t  rxp;
3191 	queueid_t rxq;
3192 	lcoreid_t lc_id;
3193 	uint16_t  sm_id;
3194 
3195 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
3196 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
3197 			(nb_txq * nb_fwd_ports);
3198 	else
3199 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3200 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3201 	cur_fwd_config.nb_fwd_streams =
3202 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3203 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3204 		cur_fwd_config.nb_fwd_lcores =
3205 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3206 	if (verbose_level > 0) {
3207 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
3208 		       __FUNCTION__,
3209 		       cur_fwd_config.nb_fwd_lcores,
3210 		       cur_fwd_config.nb_fwd_ports,
3211 		       cur_fwd_config.nb_fwd_streams);
3212 	}
3213 
3214 	/* reinitialize forwarding streams */
3215 	init_fwd_streams();
3216 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3217 	rxp = 0; rxq = 0;
3218 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3219 		if (verbose_level > 0)
3220 			printf("  core=%d: \n", lc_id);
3221 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3222 			struct fwd_stream *fs;
3223 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3224 			fs->rx_port = fwd_ports_ids[rxp];
3225 			fs->rx_queue = rxq;
3226 			fs->tx_port = fs->rx_port;
3227 			fs->tx_queue = rxq;
3228 			fs->peer_addr = fs->tx_port;
3229 			fs->retry_enabled = retry_enabled;
3230 			if (verbose_level > 0)
3231 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
3232 				       sm_id, fs->rx_port, fs->rx_queue,
3233 				       fs->tx_queue);
3234 			rxq = (queueid_t) (rxq + 1);
3235 			if (rxq == nb_rxq) {
3236 				rxq = 0;
3237 				rxp = (portid_t) (rxp + 1);
3238 			}
3239 		}
3240 	}
3241 }
3242 
3243 void
3244 fwd_config_setup(void)
3245 {
3246 	struct rte_port *port;
3247 	portid_t pt_id;
3248 	unsigned int i;
3249 
3250 	cur_fwd_config.fwd_eng = cur_fwd_eng;
3251 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
3252 		icmp_echo_config_setup();
3253 		return;
3254 	}
3255 
3256 	if ((nb_rxq > 1) && (nb_txq > 1)){
3257 		if (dcb_config) {
3258 			for (i = 0; i < nb_fwd_ports; i++) {
3259 				pt_id = fwd_ports_ids[i];
3260 				port = &ports[pt_id];
3261 				if (!port->dcb_flag) {
3262 					fprintf(stderr,
3263 						"In DCB mode, all forwarding ports must be configured in this mode.\n");
3264 					return;
3265 				}
3266 			}
3267 			if (nb_fwd_lcores == 1) {
3268 				fprintf(stderr,
3269 					"In DCB mode,the nb forwarding cores should be larger than 1.\n");
3270 				return;
3271 			}
3272 
3273 			dcb_fwd_config_setup();
3274 		} else
3275 			rss_fwd_config_setup();
3276 	}
3277 	else
3278 		simple_fwd_config_setup();
3279 }
3280 
3281 static const char *
3282 mp_alloc_to_str(uint8_t mode)
3283 {
3284 	switch (mode) {
3285 	case MP_ALLOC_NATIVE:
3286 		return "native";
3287 	case MP_ALLOC_ANON:
3288 		return "anon";
3289 	case MP_ALLOC_XMEM:
3290 		return "xmem";
3291 	case MP_ALLOC_XMEM_HUGE:
3292 		return "xmemhuge";
3293 	case MP_ALLOC_XBUF:
3294 		return "xbuf";
3295 	default:
3296 		return "invalid";
3297 	}
3298 }
3299 
3300 void
3301 pkt_fwd_config_display(struct fwd_config *cfg)
3302 {
3303 	struct fwd_stream *fs;
3304 	lcoreid_t  lc_id;
3305 	streamid_t sm_id;
3306 
3307 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
3308 		"NUMA support %s, MP allocation mode: %s\n",
3309 		cfg->fwd_eng->fwd_mode_name,
3310 		retry_enabled == 0 ? "" : " with retry",
3311 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
3312 		numa_support == 1 ? "enabled" : "disabled",
3313 		mp_alloc_to_str(mp_alloc_type));
3314 
3315 	if (retry_enabled)
3316 		printf("TX retry num: %u, delay between TX retries: %uus\n",
3317 			burst_tx_retry_num, burst_tx_delay_time);
3318 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
3319 		printf("Logical Core %u (socket %u) forwards packets on "
3320 		       "%d streams:",
3321 		       fwd_lcores_cpuids[lc_id],
3322 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
3323 		       fwd_lcores[lc_id]->stream_nb);
3324 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3325 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3326 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
3327 			       "P=%d/Q=%d (socket %u) ",
3328 			       fs->rx_port, fs->rx_queue,
3329 			       ports[fs->rx_port].socket_id,
3330 			       fs->tx_port, fs->tx_queue,
3331 			       ports[fs->tx_port].socket_id);
3332 			print_ethaddr("peer=",
3333 				      &peer_eth_addrs[fs->peer_addr]);
3334 		}
3335 		printf("\n");
3336 	}
3337 	printf("\n");
3338 }
3339 
3340 void
3341 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
3342 {
3343 	struct rte_ether_addr new_peer_addr;
3344 	if (!rte_eth_dev_is_valid_port(port_id)) {
3345 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
3346 		return;
3347 	}
3348 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
3349 		fprintf(stderr, "Error: Invalid ethernet address: %s\n",
3350 			peer_addr);
3351 		return;
3352 	}
3353 	peer_eth_addrs[port_id] = new_peer_addr;
3354 }
3355 
3356 int
3357 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
3358 {
3359 	unsigned int i;
3360 	unsigned int lcore_cpuid;
3361 	int record_now;
3362 
3363 	record_now = 0;
3364  again:
3365 	for (i = 0; i < nb_lc; i++) {
3366 		lcore_cpuid = lcorelist[i];
3367 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
3368 			fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid);
3369 			return -1;
3370 		}
3371 		if (lcore_cpuid == rte_get_main_lcore()) {
3372 			fprintf(stderr,
3373 				"lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n",
3374 				lcore_cpuid);
3375 			return -1;
3376 		}
3377 		if (record_now)
3378 			fwd_lcores_cpuids[i] = lcore_cpuid;
3379 	}
3380 	if (record_now == 0) {
3381 		record_now = 1;
3382 		goto again;
3383 	}
3384 	nb_cfg_lcores = (lcoreid_t) nb_lc;
3385 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
3386 		printf("previous number of forwarding cores %u - changed to "
3387 		       "number of configured cores %u\n",
3388 		       (unsigned int) nb_fwd_lcores, nb_lc);
3389 		nb_fwd_lcores = (lcoreid_t) nb_lc;
3390 	}
3391 
3392 	return 0;
3393 }
3394 
3395 int
3396 set_fwd_lcores_mask(uint64_t lcoremask)
3397 {
3398 	unsigned int lcorelist[64];
3399 	unsigned int nb_lc;
3400 	unsigned int i;
3401 
3402 	if (lcoremask == 0) {
3403 		fprintf(stderr, "Invalid NULL mask of cores\n");
3404 		return -1;
3405 	}
3406 	nb_lc = 0;
3407 	for (i = 0; i < 64; i++) {
3408 		if (! ((uint64_t)(1ULL << i) & lcoremask))
3409 			continue;
3410 		lcorelist[nb_lc++] = i;
3411 	}
3412 	return set_fwd_lcores_list(lcorelist, nb_lc);
3413 }
3414 
3415 void
3416 set_fwd_lcores_number(uint16_t nb_lc)
3417 {
3418 	if (test_done == 0) {
3419 		fprintf(stderr, "Please stop forwarding first\n");
3420 		return;
3421 	}
3422 	if (nb_lc > nb_cfg_lcores) {
3423 		fprintf(stderr,
3424 			"nb fwd cores %u > %u (max. number of configured lcores) - ignored\n",
3425 			(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
3426 		return;
3427 	}
3428 	nb_fwd_lcores = (lcoreid_t) nb_lc;
3429 	printf("Number of forwarding cores set to %u\n",
3430 	       (unsigned int) nb_fwd_lcores);
3431 }
3432 
3433 void
3434 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
3435 {
3436 	unsigned int i;
3437 	portid_t port_id;
3438 	int record_now;
3439 
3440 	record_now = 0;
3441  again:
3442 	for (i = 0; i < nb_pt; i++) {
3443 		port_id = (portid_t) portlist[i];
3444 		if (port_id_is_invalid(port_id, ENABLED_WARN))
3445 			return;
3446 		if (record_now)
3447 			fwd_ports_ids[i] = port_id;
3448 	}
3449 	if (record_now == 0) {
3450 		record_now = 1;
3451 		goto again;
3452 	}
3453 	nb_cfg_ports = (portid_t) nb_pt;
3454 	if (nb_fwd_ports != (portid_t) nb_pt) {
3455 		printf("previous number of forwarding ports %u - changed to "
3456 		       "number of configured ports %u\n",
3457 		       (unsigned int) nb_fwd_ports, nb_pt);
3458 		nb_fwd_ports = (portid_t) nb_pt;
3459 	}
3460 }
3461 
3462 /**
3463  * Parse the user input and obtain the list of forwarding ports
3464  *
3465  * @param[in] list
3466  *   String containing the user input. User can specify
3467  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
3468  *   For example, if the user wants to use all the available
3469  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
3470  *   If the user wants to use only the ports 1,2 then the input
3471  *   is 1,2.
3472  *   valid characters are '-' and ','
3473  * @param[out] values
3474  *   This array will be filled with a list of port IDs
3475  *   based on the user input
3476  *   Note that duplicate entries are discarded and only the first
3477  *   count entries in this array are port IDs and all the rest
3478  *   will contain default values
3479  * @param[in] maxsize
3480  *   This parameter denotes 2 things
3481  *   1) Number of elements in the values array
3482  *   2) Maximum value of each element in the values array
3483  * @return
3484  *   On success, returns total count of parsed port IDs
3485  *   On failure, returns 0
3486  */
3487 static unsigned int
3488 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
3489 {
3490 	unsigned int count = 0;
3491 	char *end = NULL;
3492 	int min, max;
3493 	int value, i;
3494 	unsigned int marked[maxsize];
3495 
3496 	if (list == NULL || values == NULL)
3497 		return 0;
3498 
3499 	for (i = 0; i < (int)maxsize; i++)
3500 		marked[i] = 0;
3501 
3502 	min = INT_MAX;
3503 
3504 	do {
3505 		/*Remove the blank spaces if any*/
3506 		while (isblank(*list))
3507 			list++;
3508 		if (*list == '\0')
3509 			break;
3510 		errno = 0;
3511 		value = strtol(list, &end, 10);
3512 		if (errno || end == NULL)
3513 			return 0;
3514 		if (value < 0 || value >= (int)maxsize)
3515 			return 0;
3516 		while (isblank(*end))
3517 			end++;
3518 		if (*end == '-' && min == INT_MAX) {
3519 			min = value;
3520 		} else if ((*end == ',') || (*end == '\0')) {
3521 			max = value;
3522 			if (min == INT_MAX)
3523 				min = value;
3524 			for (i = min; i <= max; i++) {
3525 				if (count < maxsize) {
3526 					if (marked[i])
3527 						continue;
3528 					values[count] = i;
3529 					marked[i] = 1;
3530 					count++;
3531 				}
3532 			}
3533 			min = INT_MAX;
3534 		} else
3535 			return 0;
3536 		list = end + 1;
3537 	} while (*end != '\0');
3538 
3539 	return count;
3540 }
3541 
3542 void
3543 parse_fwd_portlist(const char *portlist)
3544 {
3545 	unsigned int portcount;
3546 	unsigned int portindex[RTE_MAX_ETHPORTS];
3547 	unsigned int i, valid_port_count = 0;
3548 
3549 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
3550 	if (!portcount)
3551 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
3552 
3553 	/*
3554 	 * Here we verify the validity of the ports
3555 	 * and thereby calculate the total number of
3556 	 * valid ports
3557 	 */
3558 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
3559 		if (rte_eth_dev_is_valid_port(portindex[i])) {
3560 			portindex[valid_port_count] = portindex[i];
3561 			valid_port_count++;
3562 		}
3563 	}
3564 
3565 	set_fwd_ports_list(portindex, valid_port_count);
3566 }
3567 
3568 void
3569 set_fwd_ports_mask(uint64_t portmask)
3570 {
3571 	unsigned int portlist[64];
3572 	unsigned int nb_pt;
3573 	unsigned int i;
3574 
3575 	if (portmask == 0) {
3576 		fprintf(stderr, "Invalid NULL mask of ports\n");
3577 		return;
3578 	}
3579 	nb_pt = 0;
3580 	RTE_ETH_FOREACH_DEV(i) {
3581 		if (! ((uint64_t)(1ULL << i) & portmask))
3582 			continue;
3583 		portlist[nb_pt++] = i;
3584 	}
3585 	set_fwd_ports_list(portlist, nb_pt);
3586 }
3587 
3588 void
3589 set_fwd_ports_number(uint16_t nb_pt)
3590 {
3591 	if (nb_pt > nb_cfg_ports) {
3592 		fprintf(stderr,
3593 			"nb fwd ports %u > %u (number of configured ports) - ignored\n",
3594 			(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
3595 		return;
3596 	}
3597 	nb_fwd_ports = (portid_t) nb_pt;
3598 	printf("Number of forwarding ports set to %u\n",
3599 	       (unsigned int) nb_fwd_ports);
3600 }
3601 
3602 int
3603 port_is_forwarding(portid_t port_id)
3604 {
3605 	unsigned int i;
3606 
3607 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3608 		return -1;
3609 
3610 	for (i = 0; i < nb_fwd_ports; i++) {
3611 		if (fwd_ports_ids[i] == port_id)
3612 			return 1;
3613 	}
3614 
3615 	return 0;
3616 }
3617 
3618 void
3619 set_nb_pkt_per_burst(uint16_t nb)
3620 {
3621 	if (nb > MAX_PKT_BURST) {
3622 		fprintf(stderr,
3623 			"nb pkt per burst: %u > %u (maximum packet per burst)  ignored\n",
3624 			(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
3625 		return;
3626 	}
3627 	nb_pkt_per_burst = nb;
3628 	printf("Number of packets per burst set to %u\n",
3629 	       (unsigned int) nb_pkt_per_burst);
3630 }
3631 
3632 static const char *
3633 tx_split_get_name(enum tx_pkt_split split)
3634 {
3635 	uint32_t i;
3636 
3637 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3638 		if (tx_split_name[i].split == split)
3639 			return tx_split_name[i].name;
3640 	}
3641 	return NULL;
3642 }
3643 
3644 void
3645 set_tx_pkt_split(const char *name)
3646 {
3647 	uint32_t i;
3648 
3649 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3650 		if (strcmp(tx_split_name[i].name, name) == 0) {
3651 			tx_pkt_split = tx_split_name[i].split;
3652 			return;
3653 		}
3654 	}
3655 	fprintf(stderr, "unknown value: \"%s\"\n", name);
3656 }
3657 
3658 int
3659 parse_fec_mode(const char *name, uint32_t *fec_capa)
3660 {
3661 	uint8_t i;
3662 
3663 	for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
3664 		if (strcmp(fec_mode_name[i].name, name) == 0) {
3665 			*fec_capa =
3666 				RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
3667 			return 0;
3668 		}
3669 	}
3670 	return -1;
3671 }
3672 
3673 void
3674 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
3675 {
3676 	unsigned int i, j;
3677 
3678 	printf("FEC capabilities:\n");
3679 
3680 	for (i = 0; i < num; i++) {
3681 		printf("%s : ",
3682 			rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
3683 
3684 		for (j = 0; j < RTE_DIM(fec_mode_name); j++) {
3685 			if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
3686 						speed_fec_capa[i].capa)
3687 				printf("%s ", fec_mode_name[j].name);
3688 		}
3689 		printf("\n");
3690 	}
3691 }
3692 
3693 void
3694 show_rx_pkt_offsets(void)
3695 {
3696 	uint32_t i, n;
3697 
3698 	n = rx_pkt_nb_offs;
3699 	printf("Number of offsets: %u\n", n);
3700 	if (n) {
3701 		printf("Segment offsets: ");
3702 		for (i = 0; i != n - 1; i++)
3703 			printf("%hu,", rx_pkt_seg_offsets[i]);
3704 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3705 	}
3706 }
3707 
3708 void
3709 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
3710 {
3711 	unsigned int i;
3712 
3713 	if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
3714 		printf("nb segments per RX packets=%u >= "
3715 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
3716 		return;
3717 	}
3718 
3719 	/*
3720 	 * No extra check here, the segment length will be checked by PMD
3721 	 * in the extended queue setup.
3722 	 */
3723 	for (i = 0; i < nb_offs; i++) {
3724 		if (seg_offsets[i] >= UINT16_MAX) {
3725 			printf("offset[%u]=%u > UINT16_MAX - give up\n",
3726 			       i, seg_offsets[i]);
3727 			return;
3728 		}
3729 	}
3730 
3731 	for (i = 0; i < nb_offs; i++)
3732 		rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
3733 
3734 	rx_pkt_nb_offs = (uint8_t) nb_offs;
3735 }
3736 
3737 void
3738 show_rx_pkt_segments(void)
3739 {
3740 	uint32_t i, n;
3741 
3742 	n = rx_pkt_nb_segs;
3743 	printf("Number of segments: %u\n", n);
3744 	if (n) {
3745 		printf("Segment sizes: ");
3746 		for (i = 0; i != n - 1; i++)
3747 			printf("%hu,", rx_pkt_seg_lengths[i]);
3748 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3749 	}
3750 }
3751 
3752 void
3753 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3754 {
3755 	unsigned int i;
3756 
3757 	if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
3758 		printf("nb segments per RX packets=%u >= "
3759 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
3760 		return;
3761 	}
3762 
3763 	/*
3764 	 * No extra check here, the segment length will be checked by PMD
3765 	 * in the extended queue setup.
3766 	 */
3767 	for (i = 0; i < nb_segs; i++) {
3768 		if (seg_lengths[i] >= UINT16_MAX) {
3769 			printf("length[%u]=%u > UINT16_MAX - give up\n",
3770 			       i, seg_lengths[i]);
3771 			return;
3772 		}
3773 	}
3774 
3775 	for (i = 0; i < nb_segs; i++)
3776 		rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3777 
3778 	rx_pkt_nb_segs = (uint8_t) nb_segs;
3779 }
3780 
3781 void
3782 show_tx_pkt_segments(void)
3783 {
3784 	uint32_t i, n;
3785 	const char *split;
3786 
3787 	n = tx_pkt_nb_segs;
3788 	split = tx_split_get_name(tx_pkt_split);
3789 
3790 	printf("Number of segments: %u\n", n);
3791 	printf("Segment sizes: ");
3792 	for (i = 0; i != n - 1; i++)
3793 		printf("%hu,", tx_pkt_seg_lengths[i]);
3794 	printf("%hu\n", tx_pkt_seg_lengths[i]);
3795 	printf("Split packet: %s\n", split);
3796 }
3797 
3798 static bool
3799 nb_segs_is_invalid(unsigned int nb_segs)
3800 {
3801 	uint16_t ring_size;
3802 	uint16_t queue_id;
3803 	uint16_t port_id;
3804 	int ret;
3805 
3806 	RTE_ETH_FOREACH_DEV(port_id) {
3807 		for (queue_id = 0; queue_id < nb_txq; queue_id++) {
3808 			ret = get_tx_ring_size(port_id, queue_id, &ring_size);
3809 			if (ret) {
3810 				/* Port may not be initialized yet, can't say
3811 				 * the port is invalid in this stage.
3812 				 */
3813 				continue;
3814 			}
3815 			if (ring_size < nb_segs) {
3816 				printf("nb segments per TX packets=%u >= TX "
3817 				       "queue(%u) ring_size=%u - txpkts ignored\n",
3818 				       nb_segs, queue_id, ring_size);
3819 				return true;
3820 			}
3821 		}
3822 	}
3823 
3824 	return false;
3825 }
3826 
3827 void
3828 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3829 {
3830 	uint16_t tx_pkt_len;
3831 	unsigned int i;
3832 
3833 	/*
3834 	 * For single segment settings failed check is ignored.
3835 	 * It is a very basic capability to send the single segment
3836 	 * packets, suppose it is always supported.
3837 	 */
3838 	if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) {
3839 		fprintf(stderr,
3840 			"Tx segment size(%u) is not supported - txpkts ignored\n",
3841 			nb_segs);
3842 		return;
3843 	}
3844 
3845 	if (nb_segs > RTE_MAX_SEGS_PER_PKT) {
3846 		fprintf(stderr,
3847 			"Tx segment size(%u) is bigger than max number of segment(%u)\n",
3848 			nb_segs, RTE_MAX_SEGS_PER_PKT);
3849 		return;
3850 	}
3851 
3852 	/*
3853 	 * Check that each segment length is greater or equal than
3854 	 * the mbuf data size.
3855 	 * Check also that the total packet length is greater or equal than the
3856 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
3857 	 * 20 + 8).
3858 	 */
3859 	tx_pkt_len = 0;
3860 	for (i = 0; i < nb_segs; i++) {
3861 		if (seg_lengths[i] > mbuf_data_size[0]) {
3862 			fprintf(stderr,
3863 				"length[%u]=%u > mbuf_data_size=%u - give up\n",
3864 				i, seg_lengths[i], mbuf_data_size[0]);
3865 			return;
3866 		}
3867 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
3868 	}
3869 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
3870 		fprintf(stderr, "total packet length=%u < %d - give up\n",
3871 				(unsigned) tx_pkt_len,
3872 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
3873 		return;
3874 	}
3875 
3876 	for (i = 0; i < nb_segs; i++)
3877 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3878 
3879 	tx_pkt_length  = tx_pkt_len;
3880 	tx_pkt_nb_segs = (uint8_t) nb_segs;
3881 }
3882 
3883 void
3884 show_tx_pkt_times(void)
3885 {
3886 	printf("Interburst gap: %u\n", tx_pkt_times_inter);
3887 	printf("Intraburst gap: %u\n", tx_pkt_times_intra);
3888 }
3889 
3890 void
3891 set_tx_pkt_times(unsigned int *tx_times)
3892 {
3893 	tx_pkt_times_inter = tx_times[0];
3894 	tx_pkt_times_intra = tx_times[1];
3895 }
3896 
3897 void
3898 setup_gro(const char *onoff, portid_t port_id)
3899 {
3900 	if (!rte_eth_dev_is_valid_port(port_id)) {
3901 		fprintf(stderr, "invalid port id %u\n", port_id);
3902 		return;
3903 	}
3904 	if (test_done == 0) {
3905 		fprintf(stderr,
3906 			"Before enable/disable GRO, please stop forwarding first\n");
3907 		return;
3908 	}
3909 	if (strcmp(onoff, "on") == 0) {
3910 		if (gro_ports[port_id].enable != 0) {
3911 			fprintf(stderr,
3912 				"Port %u has enabled GRO. Please disable GRO first\n",
3913 				port_id);
3914 			return;
3915 		}
3916 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
3917 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
3918 			gro_ports[port_id].param.max_flow_num =
3919 				GRO_DEFAULT_FLOW_NUM;
3920 			gro_ports[port_id].param.max_item_per_flow =
3921 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
3922 		}
3923 		gro_ports[port_id].enable = 1;
3924 	} else {
3925 		if (gro_ports[port_id].enable == 0) {
3926 			fprintf(stderr, "Port %u has disabled GRO\n", port_id);
3927 			return;
3928 		}
3929 		gro_ports[port_id].enable = 0;
3930 	}
3931 }
3932 
3933 void
3934 setup_gro_flush_cycles(uint8_t cycles)
3935 {
3936 	if (test_done == 0) {
3937 		fprintf(stderr,
3938 			"Before change flush interval for GRO, please stop forwarding first.\n");
3939 		return;
3940 	}
3941 
3942 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
3943 			GRO_DEFAULT_FLUSH_CYCLES) {
3944 		fprintf(stderr,
3945 			"The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n",
3946 			GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES);
3947 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
3948 	}
3949 
3950 	gro_flush_cycles = cycles;
3951 }
3952 
3953 void
3954 show_gro(portid_t port_id)
3955 {
3956 	struct rte_gro_param *param;
3957 	uint32_t max_pkts_num;
3958 
3959 	param = &gro_ports[port_id].param;
3960 
3961 	if (!rte_eth_dev_is_valid_port(port_id)) {
3962 		fprintf(stderr, "Invalid port id %u.\n", port_id);
3963 		return;
3964 	}
3965 	if (gro_ports[port_id].enable) {
3966 		printf("GRO type: TCP/IPv4\n");
3967 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
3968 			max_pkts_num = param->max_flow_num *
3969 				param->max_item_per_flow;
3970 		} else
3971 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
3972 		printf("Max number of packets to perform GRO: %u\n",
3973 				max_pkts_num);
3974 		printf("Flushing cycles: %u\n", gro_flush_cycles);
3975 	} else
3976 		printf("Port %u doesn't enable GRO.\n", port_id);
3977 }
3978 
3979 void
3980 setup_gso(const char *mode, portid_t port_id)
3981 {
3982 	if (!rte_eth_dev_is_valid_port(port_id)) {
3983 		fprintf(stderr, "invalid port id %u\n", port_id);
3984 		return;
3985 	}
3986 	if (strcmp(mode, "on") == 0) {
3987 		if (test_done == 0) {
3988 			fprintf(stderr,
3989 				"before enabling GSO, please stop forwarding first\n");
3990 			return;
3991 		}
3992 		gso_ports[port_id].enable = 1;
3993 	} else if (strcmp(mode, "off") == 0) {
3994 		if (test_done == 0) {
3995 			fprintf(stderr,
3996 				"before disabling GSO, please stop forwarding first\n");
3997 			return;
3998 		}
3999 		gso_ports[port_id].enable = 0;
4000 	}
4001 }
4002 
4003 char*
4004 list_pkt_forwarding_modes(void)
4005 {
4006 	static char fwd_modes[128] = "";
4007 	const char *separator = "|";
4008 	struct fwd_engine *fwd_eng;
4009 	unsigned i = 0;
4010 
4011 	if (strlen (fwd_modes) == 0) {
4012 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4013 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4014 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4015 			strncat(fwd_modes, separator,
4016 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4017 		}
4018 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4019 	}
4020 
4021 	return fwd_modes;
4022 }
4023 
4024 char*
4025 list_pkt_forwarding_retry_modes(void)
4026 {
4027 	static char fwd_modes[128] = "";
4028 	const char *separator = "|";
4029 	struct fwd_engine *fwd_eng;
4030 	unsigned i = 0;
4031 
4032 	if (strlen(fwd_modes) == 0) {
4033 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4034 			if (fwd_eng == &rx_only_engine)
4035 				continue;
4036 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4037 					sizeof(fwd_modes) -
4038 					strlen(fwd_modes) - 1);
4039 			strncat(fwd_modes, separator,
4040 					sizeof(fwd_modes) -
4041 					strlen(fwd_modes) - 1);
4042 		}
4043 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4044 	}
4045 
4046 	return fwd_modes;
4047 }
4048 
4049 void
4050 set_pkt_forwarding_mode(const char *fwd_mode_name)
4051 {
4052 	struct fwd_engine *fwd_eng;
4053 	unsigned i;
4054 
4055 	i = 0;
4056 	while ((fwd_eng = fwd_engines[i]) != NULL) {
4057 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
4058 			printf("Set %s packet forwarding mode%s\n",
4059 			       fwd_mode_name,
4060 			       retry_enabled == 0 ? "" : " with retry");
4061 			cur_fwd_eng = fwd_eng;
4062 			return;
4063 		}
4064 		i++;
4065 	}
4066 	fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name);
4067 }
4068 
4069 void
4070 add_rx_dump_callbacks(portid_t portid)
4071 {
4072 	struct rte_eth_dev_info dev_info;
4073 	uint16_t queue;
4074 	int ret;
4075 
4076 	if (port_id_is_invalid(portid, ENABLED_WARN))
4077 		return;
4078 
4079 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4080 	if (ret != 0)
4081 		return;
4082 
4083 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4084 		if (!ports[portid].rx_dump_cb[queue])
4085 			ports[portid].rx_dump_cb[queue] =
4086 				rte_eth_add_rx_callback(portid, queue,
4087 					dump_rx_pkts, NULL);
4088 }
4089 
4090 void
4091 add_tx_dump_callbacks(portid_t portid)
4092 {
4093 	struct rte_eth_dev_info dev_info;
4094 	uint16_t queue;
4095 	int ret;
4096 
4097 	if (port_id_is_invalid(portid, ENABLED_WARN))
4098 		return;
4099 
4100 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4101 	if (ret != 0)
4102 		return;
4103 
4104 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4105 		if (!ports[portid].tx_dump_cb[queue])
4106 			ports[portid].tx_dump_cb[queue] =
4107 				rte_eth_add_tx_callback(portid, queue,
4108 							dump_tx_pkts, NULL);
4109 }
4110 
4111 void
4112 remove_rx_dump_callbacks(portid_t portid)
4113 {
4114 	struct rte_eth_dev_info dev_info;
4115 	uint16_t queue;
4116 	int ret;
4117 
4118 	if (port_id_is_invalid(portid, ENABLED_WARN))
4119 		return;
4120 
4121 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4122 	if (ret != 0)
4123 		return;
4124 
4125 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4126 		if (ports[portid].rx_dump_cb[queue]) {
4127 			rte_eth_remove_rx_callback(portid, queue,
4128 				ports[portid].rx_dump_cb[queue]);
4129 			ports[portid].rx_dump_cb[queue] = NULL;
4130 		}
4131 }
4132 
4133 void
4134 remove_tx_dump_callbacks(portid_t portid)
4135 {
4136 	struct rte_eth_dev_info dev_info;
4137 	uint16_t queue;
4138 	int ret;
4139 
4140 	if (port_id_is_invalid(portid, ENABLED_WARN))
4141 		return;
4142 
4143 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4144 	if (ret != 0)
4145 		return;
4146 
4147 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4148 		if (ports[portid].tx_dump_cb[queue]) {
4149 			rte_eth_remove_tx_callback(portid, queue,
4150 				ports[portid].tx_dump_cb[queue]);
4151 			ports[portid].tx_dump_cb[queue] = NULL;
4152 		}
4153 }
4154 
4155 void
4156 configure_rxtx_dump_callbacks(uint16_t verbose)
4157 {
4158 	portid_t portid;
4159 
4160 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
4161 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
4162 		return;
4163 #endif
4164 
4165 	RTE_ETH_FOREACH_DEV(portid)
4166 	{
4167 		if (verbose == 1 || verbose > 2)
4168 			add_rx_dump_callbacks(portid);
4169 		else
4170 			remove_rx_dump_callbacks(portid);
4171 		if (verbose >= 2)
4172 			add_tx_dump_callbacks(portid);
4173 		else
4174 			remove_tx_dump_callbacks(portid);
4175 	}
4176 }
4177 
4178 void
4179 set_verbose_level(uint16_t vb_level)
4180 {
4181 	printf("Change verbose level from %u to %u\n",
4182 	       (unsigned int) verbose_level, (unsigned int) vb_level);
4183 	verbose_level = vb_level;
4184 	configure_rxtx_dump_callbacks(verbose_level);
4185 }
4186 
4187 void
4188 vlan_extend_set(portid_t port_id, int on)
4189 {
4190 	int diag;
4191 	int vlan_offload;
4192 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4193 
4194 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4195 		return;
4196 
4197 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4198 
4199 	if (on) {
4200 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
4201 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
4202 	} else {
4203 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
4204 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
4205 	}
4206 
4207 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4208 	if (diag < 0) {
4209 		fprintf(stderr,
4210 			"rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n",
4211 			port_id, on, diag);
4212 		return;
4213 	}
4214 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4215 }
4216 
4217 void
4218 rx_vlan_strip_set(portid_t port_id, int on)
4219 {
4220 	int diag;
4221 	int vlan_offload;
4222 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4223 
4224 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4225 		return;
4226 
4227 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4228 
4229 	if (on) {
4230 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
4231 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4232 	} else {
4233 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
4234 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4235 	}
4236 
4237 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4238 	if (diag < 0) {
4239 		fprintf(stderr,
4240 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4241 			__func__, port_id, on, diag);
4242 		return;
4243 	}
4244 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4245 }
4246 
4247 void
4248 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
4249 {
4250 	int diag;
4251 
4252 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4253 		return;
4254 
4255 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
4256 	if (diag < 0)
4257 		fprintf(stderr,
4258 			"%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n",
4259 			__func__, port_id, queue_id, on, diag);
4260 }
4261 
4262 void
4263 rx_vlan_filter_set(portid_t port_id, int on)
4264 {
4265 	int diag;
4266 	int vlan_offload;
4267 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4268 
4269 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4270 		return;
4271 
4272 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4273 
4274 	if (on) {
4275 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
4276 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
4277 	} else {
4278 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
4279 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
4280 	}
4281 
4282 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4283 	if (diag < 0) {
4284 		fprintf(stderr,
4285 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4286 			__func__, port_id, on, diag);
4287 		return;
4288 	}
4289 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4290 }
4291 
4292 void
4293 rx_vlan_qinq_strip_set(portid_t port_id, int on)
4294 {
4295 	int diag;
4296 	int vlan_offload;
4297 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4298 
4299 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4300 		return;
4301 
4302 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4303 
4304 	if (on) {
4305 		vlan_offload |= ETH_QINQ_STRIP_OFFLOAD;
4306 		port_rx_offloads |= DEV_RX_OFFLOAD_QINQ_STRIP;
4307 	} else {
4308 		vlan_offload &= ~ETH_QINQ_STRIP_OFFLOAD;
4309 		port_rx_offloads &= ~DEV_RX_OFFLOAD_QINQ_STRIP;
4310 	}
4311 
4312 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4313 	if (diag < 0) {
4314 		fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n",
4315 			__func__, port_id, on, diag);
4316 		return;
4317 	}
4318 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4319 }
4320 
4321 int
4322 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
4323 {
4324 	int diag;
4325 
4326 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4327 		return 1;
4328 	if (vlan_id_is_invalid(vlan_id))
4329 		return 1;
4330 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
4331 	if (diag == 0)
4332 		return 0;
4333 	fprintf(stderr,
4334 		"rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n",
4335 		port_id, vlan_id, on, diag);
4336 	return -1;
4337 }
4338 
4339 void
4340 rx_vlan_all_filter_set(portid_t port_id, int on)
4341 {
4342 	uint16_t vlan_id;
4343 
4344 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4345 		return;
4346 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
4347 		if (rx_vft_set(port_id, vlan_id, on))
4348 			break;
4349 	}
4350 }
4351 
4352 void
4353 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
4354 {
4355 	int diag;
4356 
4357 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4358 		return;
4359 
4360 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
4361 	if (diag == 0)
4362 		return;
4363 
4364 	fprintf(stderr,
4365 		"tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n",
4366 		port_id, vlan_type, tp_id, diag);
4367 }
4368 
4369 void
4370 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
4371 {
4372 	struct rte_eth_dev_info dev_info;
4373 	int ret;
4374 
4375 	if (vlan_id_is_invalid(vlan_id))
4376 		return;
4377 
4378 	if (ports[port_id].dev_conf.txmode.offloads &
4379 	    DEV_TX_OFFLOAD_QINQ_INSERT) {
4380 		fprintf(stderr, "Error, as QinQ has been enabled.\n");
4381 		return;
4382 	}
4383 
4384 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4385 	if (ret != 0)
4386 		return;
4387 
4388 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
4389 		fprintf(stderr,
4390 			"Error: vlan insert is not supported by port %d\n",
4391 			port_id);
4392 		return;
4393 	}
4394 
4395 	tx_vlan_reset(port_id);
4396 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
4397 	ports[port_id].tx_vlan_id = vlan_id;
4398 }
4399 
4400 void
4401 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
4402 {
4403 	struct rte_eth_dev_info dev_info;
4404 	int ret;
4405 
4406 	if (vlan_id_is_invalid(vlan_id))
4407 		return;
4408 	if (vlan_id_is_invalid(vlan_id_outer))
4409 		return;
4410 
4411 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4412 	if (ret != 0)
4413 		return;
4414 
4415 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
4416 		fprintf(stderr,
4417 			"Error: qinq insert not supported by port %d\n",
4418 			port_id);
4419 		return;
4420 	}
4421 
4422 	tx_vlan_reset(port_id);
4423 	ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT |
4424 						    DEV_TX_OFFLOAD_QINQ_INSERT);
4425 	ports[port_id].tx_vlan_id = vlan_id;
4426 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
4427 }
4428 
4429 void
4430 tx_vlan_reset(portid_t port_id)
4431 {
4432 	ports[port_id].dev_conf.txmode.offloads &=
4433 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
4434 				  DEV_TX_OFFLOAD_QINQ_INSERT);
4435 	ports[port_id].tx_vlan_id = 0;
4436 	ports[port_id].tx_vlan_id_outer = 0;
4437 }
4438 
4439 void
4440 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
4441 {
4442 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4443 		return;
4444 
4445 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
4446 }
4447 
4448 void
4449 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
4450 {
4451 	int ret;
4452 
4453 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4454 		return;
4455 
4456 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
4457 		return;
4458 
4459 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
4460 		fprintf(stderr, "map_value not in required range 0..%d\n",
4461 			RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
4462 		return;
4463 	}
4464 
4465 	if (!is_rx) { /* tx */
4466 		ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
4467 							     map_value);
4468 		if (ret) {
4469 			fprintf(stderr,
4470 				"failed to set tx queue stats mapping.\n");
4471 			return;
4472 		}
4473 	} else { /* rx */
4474 		ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
4475 							     map_value);
4476 		if (ret) {
4477 			fprintf(stderr,
4478 				"failed to set rx queue stats mapping.\n");
4479 			return;
4480 		}
4481 	}
4482 }
4483 
4484 void
4485 set_xstats_hide_zero(uint8_t on_off)
4486 {
4487 	xstats_hide_zero = on_off;
4488 }
4489 
4490 void
4491 set_record_core_cycles(uint8_t on_off)
4492 {
4493 	record_core_cycles = on_off;
4494 }
4495 
4496 void
4497 set_record_burst_stats(uint8_t on_off)
4498 {
4499 	record_burst_stats = on_off;
4500 }
4501 
4502 static char*
4503 flowtype_to_str(uint16_t flow_type)
4504 {
4505 	struct flow_type_info {
4506 		char str[32];
4507 		uint16_t ftype;
4508 	};
4509 
4510 	uint8_t i;
4511 	static struct flow_type_info flowtype_str_table[] = {
4512 		{"raw", RTE_ETH_FLOW_RAW},
4513 		{"ipv4", RTE_ETH_FLOW_IPV4},
4514 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
4515 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
4516 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
4517 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
4518 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
4519 		{"ipv6", RTE_ETH_FLOW_IPV6},
4520 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
4521 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
4522 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
4523 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
4524 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
4525 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
4526 		{"port", RTE_ETH_FLOW_PORT},
4527 		{"vxlan", RTE_ETH_FLOW_VXLAN},
4528 		{"geneve", RTE_ETH_FLOW_GENEVE},
4529 		{"nvgre", RTE_ETH_FLOW_NVGRE},
4530 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
4531 	};
4532 
4533 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
4534 		if (flowtype_str_table[i].ftype == flow_type)
4535 			return flowtype_str_table[i].str;
4536 	}
4537 
4538 	return NULL;
4539 }
4540 
4541 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
4542 
4543 static inline void
4544 print_fdir_mask(struct rte_eth_fdir_masks *mask)
4545 {
4546 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
4547 
4548 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4549 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
4550 			" tunnel_id: 0x%08x",
4551 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
4552 			rte_be_to_cpu_32(mask->tunnel_id_mask));
4553 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
4554 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
4555 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
4556 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
4557 
4558 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
4559 			rte_be_to_cpu_16(mask->src_port_mask),
4560 			rte_be_to_cpu_16(mask->dst_port_mask));
4561 
4562 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4563 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
4564 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
4565 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
4566 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
4567 
4568 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4569 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
4570 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
4571 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
4572 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
4573 	}
4574 
4575 	printf("\n");
4576 }
4577 
4578 static inline void
4579 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4580 {
4581 	struct rte_eth_flex_payload_cfg *cfg;
4582 	uint32_t i, j;
4583 
4584 	for (i = 0; i < flex_conf->nb_payloads; i++) {
4585 		cfg = &flex_conf->flex_set[i];
4586 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
4587 			printf("\n    RAW:  ");
4588 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
4589 			printf("\n    L2_PAYLOAD:  ");
4590 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
4591 			printf("\n    L3_PAYLOAD:  ");
4592 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
4593 			printf("\n    L4_PAYLOAD:  ");
4594 		else
4595 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
4596 		for (j = 0; j < num; j++)
4597 			printf("  %-5u", cfg->src_offset[j]);
4598 	}
4599 	printf("\n");
4600 }
4601 
4602 static inline void
4603 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4604 {
4605 	struct rte_eth_fdir_flex_mask *mask;
4606 	uint32_t i, j;
4607 	char *p;
4608 
4609 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
4610 		mask = &flex_conf->flex_mask[i];
4611 		p = flowtype_to_str(mask->flow_type);
4612 		printf("\n    %s:\t", p ? p : "unknown");
4613 		for (j = 0; j < num; j++)
4614 			printf(" %02x", mask->mask[j]);
4615 	}
4616 	printf("\n");
4617 }
4618 
4619 static inline void
4620 print_fdir_flow_type(uint32_t flow_types_mask)
4621 {
4622 	int i;
4623 	char *p;
4624 
4625 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
4626 		if (!(flow_types_mask & (1 << i)))
4627 			continue;
4628 		p = flowtype_to_str(i);
4629 		if (p)
4630 			printf(" %s", p);
4631 		else
4632 			printf(" unknown");
4633 	}
4634 	printf("\n");
4635 }
4636 
4637 static int
4638 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
4639 		    struct rte_eth_fdir_stats *fdir_stat)
4640 {
4641 	int ret = -ENOTSUP;
4642 
4643 #ifdef RTE_NET_I40E
4644 	if (ret == -ENOTSUP) {
4645 		ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
4646 		if (!ret)
4647 			ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
4648 	}
4649 #endif
4650 #ifdef RTE_NET_IXGBE
4651 	if (ret == -ENOTSUP) {
4652 		ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
4653 		if (!ret)
4654 			ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
4655 	}
4656 #endif
4657 	switch (ret) {
4658 	case 0:
4659 		break;
4660 	case -ENOTSUP:
4661 		fprintf(stderr, "\n FDIR is not supported on port %-2d\n",
4662 			port_id);
4663 		break;
4664 	default:
4665 		fprintf(stderr, "programming error: (%s)\n", strerror(-ret));
4666 		break;
4667 	}
4668 	return ret;
4669 }
4670 
4671 void
4672 fdir_get_infos(portid_t port_id)
4673 {
4674 	struct rte_eth_fdir_stats fdir_stat;
4675 	struct rte_eth_fdir_info fdir_info;
4676 
4677 	static const char *fdir_stats_border = "########################";
4678 
4679 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4680 		return;
4681 
4682 	memset(&fdir_info, 0, sizeof(fdir_info));
4683 	memset(&fdir_stat, 0, sizeof(fdir_stat));
4684 	if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
4685 		return;
4686 
4687 	printf("\n  %s FDIR infos for port %-2d     %s\n",
4688 	       fdir_stats_border, port_id, fdir_stats_border);
4689 	printf("  MODE: ");
4690 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
4691 		printf("  PERFECT\n");
4692 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
4693 		printf("  PERFECT-MAC-VLAN\n");
4694 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4695 		printf("  PERFECT-TUNNEL\n");
4696 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
4697 		printf("  SIGNATURE\n");
4698 	else
4699 		printf("  DISABLE\n");
4700 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
4701 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
4702 		printf("  SUPPORTED FLOW TYPE: ");
4703 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
4704 	}
4705 	printf("  FLEX PAYLOAD INFO:\n");
4706 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
4707 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
4708 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
4709 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
4710 		fdir_info.flex_payload_unit,
4711 		fdir_info.max_flex_payload_segment_num,
4712 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
4713 	printf("  MASK: ");
4714 	print_fdir_mask(&fdir_info.mask);
4715 	if (fdir_info.flex_conf.nb_payloads > 0) {
4716 		printf("  FLEX PAYLOAD SRC OFFSET:");
4717 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4718 	}
4719 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
4720 		printf("  FLEX MASK CFG:");
4721 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4722 	}
4723 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
4724 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
4725 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
4726 	       fdir_info.guarant_spc, fdir_info.best_spc);
4727 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
4728 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
4729 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
4730 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
4731 	       fdir_stat.collision, fdir_stat.free,
4732 	       fdir_stat.maxhash, fdir_stat.maxlen,
4733 	       fdir_stat.add, fdir_stat.remove,
4734 	       fdir_stat.f_add, fdir_stat.f_remove);
4735 	printf("  %s############################%s\n",
4736 	       fdir_stats_border, fdir_stats_border);
4737 }
4738 
4739 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */
4740 
4741 void
4742 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
4743 {
4744 	struct rte_port *port;
4745 	struct rte_eth_fdir_flex_conf *flex_conf;
4746 	int i, idx = 0;
4747 
4748 	port = &ports[port_id];
4749 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4750 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
4751 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
4752 			idx = i;
4753 			break;
4754 		}
4755 	}
4756 	if (i >= RTE_ETH_FLOW_MAX) {
4757 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
4758 			idx = flex_conf->nb_flexmasks;
4759 			flex_conf->nb_flexmasks++;
4760 		} else {
4761 			fprintf(stderr,
4762 				"The flex mask table is full. Can not set flex mask for flow_type(%u).",
4763 				cfg->flow_type);
4764 			return;
4765 		}
4766 	}
4767 	rte_memcpy(&flex_conf->flex_mask[idx],
4768 			 cfg,
4769 			 sizeof(struct rte_eth_fdir_flex_mask));
4770 }
4771 
4772 void
4773 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
4774 {
4775 	struct rte_port *port;
4776 	struct rte_eth_fdir_flex_conf *flex_conf;
4777 	int i, idx = 0;
4778 
4779 	port = &ports[port_id];
4780 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4781 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
4782 		if (cfg->type == flex_conf->flex_set[i].type) {
4783 			idx = i;
4784 			break;
4785 		}
4786 	}
4787 	if (i >= RTE_ETH_PAYLOAD_MAX) {
4788 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
4789 			idx = flex_conf->nb_payloads;
4790 			flex_conf->nb_payloads++;
4791 		} else {
4792 			fprintf(stderr,
4793 				"The flex payload table is full. Can not set flex payload for type(%u).",
4794 				cfg->type);
4795 			return;
4796 		}
4797 	}
4798 	rte_memcpy(&flex_conf->flex_set[idx],
4799 			 cfg,
4800 			 sizeof(struct rte_eth_flex_payload_cfg));
4801 
4802 }
4803 
4804 void
4805 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
4806 {
4807 #ifdef RTE_NET_IXGBE
4808 	int diag;
4809 
4810 	if (is_rx)
4811 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
4812 	else
4813 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
4814 
4815 	if (diag == 0)
4816 		return;
4817 	fprintf(stderr,
4818 		"rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
4819 		is_rx ? "rx" : "tx", port_id, diag);
4820 	return;
4821 #endif
4822 	fprintf(stderr, "VF %s setting not supported for port %d\n",
4823 		is_rx ? "Rx" : "Tx", port_id);
4824 	RTE_SET_USED(vf);
4825 	RTE_SET_USED(on);
4826 }
4827 
4828 int
4829 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
4830 {
4831 	int diag;
4832 	struct rte_eth_link link;
4833 	int ret;
4834 
4835 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4836 		return 1;
4837 	ret = eth_link_get_nowait_print_err(port_id, &link);
4838 	if (ret < 0)
4839 		return 1;
4840 	if (link.link_speed != ETH_SPEED_NUM_UNKNOWN &&
4841 	    rate > link.link_speed) {
4842 		fprintf(stderr,
4843 			"Invalid rate value:%u bigger than link speed: %u\n",
4844 			rate, link.link_speed);
4845 		return 1;
4846 	}
4847 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
4848 	if (diag == 0)
4849 		return diag;
4850 	fprintf(stderr,
4851 		"rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
4852 		port_id, diag);
4853 	return diag;
4854 }
4855 
4856 int
4857 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
4858 {
4859 	int diag = -ENOTSUP;
4860 
4861 	RTE_SET_USED(vf);
4862 	RTE_SET_USED(rate);
4863 	RTE_SET_USED(q_msk);
4864 
4865 #ifdef RTE_NET_IXGBE
4866 	if (diag == -ENOTSUP)
4867 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
4868 						       q_msk);
4869 #endif
4870 #ifdef RTE_NET_BNXT
4871 	if (diag == -ENOTSUP)
4872 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
4873 #endif
4874 	if (diag == 0)
4875 		return diag;
4876 
4877 	fprintf(stderr,
4878 		"%s for port_id=%d failed diag=%d\n",
4879 		__func__, port_id, diag);
4880 	return diag;
4881 }
4882 
4883 /*
4884  * Functions to manage the set of filtered Multicast MAC addresses.
4885  *
4886  * A pool of filtered multicast MAC addresses is associated with each port.
4887  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
4888  * The address of the pool and the number of valid multicast MAC addresses
4889  * recorded in the pool are stored in the fields "mc_addr_pool" and
4890  * "mc_addr_nb" of the "rte_port" data structure.
4891  *
4892  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
4893  * to be supplied a contiguous array of multicast MAC addresses.
4894  * To comply with this constraint, the set of multicast addresses recorded
4895  * into the pool are systematically compacted at the beginning of the pool.
4896  * Hence, when a multicast address is removed from the pool, all following
4897  * addresses, if any, are copied back to keep the set contiguous.
4898  */
4899 #define MCAST_POOL_INC 32
4900 
4901 static int
4902 mcast_addr_pool_extend(struct rte_port *port)
4903 {
4904 	struct rte_ether_addr *mc_pool;
4905 	size_t mc_pool_size;
4906 
4907 	/*
4908 	 * If a free entry is available at the end of the pool, just
4909 	 * increment the number of recorded multicast addresses.
4910 	 */
4911 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
4912 		port->mc_addr_nb++;
4913 		return 0;
4914 	}
4915 
4916 	/*
4917 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
4918 	 * The previous test guarantees that port->mc_addr_nb is a multiple
4919 	 * of MCAST_POOL_INC.
4920 	 */
4921 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
4922 						    MCAST_POOL_INC);
4923 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
4924 						mc_pool_size);
4925 	if (mc_pool == NULL) {
4926 		fprintf(stderr,
4927 			"allocation of pool of %u multicast addresses failed\n",
4928 			port->mc_addr_nb + MCAST_POOL_INC);
4929 		return -ENOMEM;
4930 	}
4931 
4932 	port->mc_addr_pool = mc_pool;
4933 	port->mc_addr_nb++;
4934 	return 0;
4935 
4936 }
4937 
4938 static void
4939 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
4940 {
4941 	if (mcast_addr_pool_extend(port) != 0)
4942 		return;
4943 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
4944 }
4945 
4946 static void
4947 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
4948 {
4949 	port->mc_addr_nb--;
4950 	if (addr_idx == port->mc_addr_nb) {
4951 		/* No need to recompact the set of multicast addressses. */
4952 		if (port->mc_addr_nb == 0) {
4953 			/* free the pool of multicast addresses. */
4954 			free(port->mc_addr_pool);
4955 			port->mc_addr_pool = NULL;
4956 		}
4957 		return;
4958 	}
4959 	memmove(&port->mc_addr_pool[addr_idx],
4960 		&port->mc_addr_pool[addr_idx + 1],
4961 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
4962 }
4963 
4964 static int
4965 eth_port_multicast_addr_list_set(portid_t port_id)
4966 {
4967 	struct rte_port *port;
4968 	int diag;
4969 
4970 	port = &ports[port_id];
4971 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
4972 					    port->mc_addr_nb);
4973 	if (diag < 0)
4974 		fprintf(stderr,
4975 			"rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
4976 			port_id, port->mc_addr_nb, diag);
4977 
4978 	return diag;
4979 }
4980 
4981 void
4982 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
4983 {
4984 	struct rte_port *port;
4985 	uint32_t i;
4986 
4987 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4988 		return;
4989 
4990 	port = &ports[port_id];
4991 
4992 	/*
4993 	 * Check that the added multicast MAC address is not already recorded
4994 	 * in the pool of multicast addresses.
4995 	 */
4996 	for (i = 0; i < port->mc_addr_nb; i++) {
4997 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
4998 			fprintf(stderr,
4999 				"multicast address already filtered by port\n");
5000 			return;
5001 		}
5002 	}
5003 
5004 	mcast_addr_pool_append(port, mc_addr);
5005 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5006 		/* Rollback on failure, remove the address from the pool */
5007 		mcast_addr_pool_remove(port, i);
5008 }
5009 
5010 void
5011 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
5012 {
5013 	struct rte_port *port;
5014 	uint32_t i;
5015 
5016 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5017 		return;
5018 
5019 	port = &ports[port_id];
5020 
5021 	/*
5022 	 * Search the pool of multicast MAC addresses for the removed address.
5023 	 */
5024 	for (i = 0; i < port->mc_addr_nb; i++) {
5025 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
5026 			break;
5027 	}
5028 	if (i == port->mc_addr_nb) {
5029 		fprintf(stderr, "multicast address not filtered by port %d\n",
5030 			port_id);
5031 		return;
5032 	}
5033 
5034 	mcast_addr_pool_remove(port, i);
5035 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5036 		/* Rollback on failure, add the address back into the pool */
5037 		mcast_addr_pool_append(port, mc_addr);
5038 }
5039 
5040 void
5041 port_dcb_info_display(portid_t port_id)
5042 {
5043 	struct rte_eth_dcb_info dcb_info;
5044 	uint16_t i;
5045 	int ret;
5046 	static const char *border = "================";
5047 
5048 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5049 		return;
5050 
5051 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
5052 	if (ret) {
5053 		fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n",
5054 			port_id);
5055 		return;
5056 	}
5057 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
5058 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
5059 	printf("\n  TC :        ");
5060 	for (i = 0; i < dcb_info.nb_tcs; i++)
5061 		printf("\t%4d", i);
5062 	printf("\n  Priority :  ");
5063 	for (i = 0; i < dcb_info.nb_tcs; i++)
5064 		printf("\t%4d", dcb_info.prio_tc[i]);
5065 	printf("\n  BW percent :");
5066 	for (i = 0; i < dcb_info.nb_tcs; i++)
5067 		printf("\t%4d%%", dcb_info.tc_bws[i]);
5068 	printf("\n  RXQ base :  ");
5069 	for (i = 0; i < dcb_info.nb_tcs; i++)
5070 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
5071 	printf("\n  RXQ number :");
5072 	for (i = 0; i < dcb_info.nb_tcs; i++)
5073 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
5074 	printf("\n  TXQ base :  ");
5075 	for (i = 0; i < dcb_info.nb_tcs; i++)
5076 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
5077 	printf("\n  TXQ number :");
5078 	for (i = 0; i < dcb_info.nb_tcs; i++)
5079 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
5080 	printf("\n");
5081 }
5082 
5083 uint8_t *
5084 open_file(const char *file_path, uint32_t *size)
5085 {
5086 	int fd = open(file_path, O_RDONLY);
5087 	off_t pkg_size;
5088 	uint8_t *buf = NULL;
5089 	int ret = 0;
5090 	struct stat st_buf;
5091 
5092 	if (size)
5093 		*size = 0;
5094 
5095 	if (fd == -1) {
5096 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5097 		return buf;
5098 	}
5099 
5100 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
5101 		close(fd);
5102 		fprintf(stderr, "%s: File operations failed\n", __func__);
5103 		return buf;
5104 	}
5105 
5106 	pkg_size = st_buf.st_size;
5107 	if (pkg_size < 0) {
5108 		close(fd);
5109 		fprintf(stderr, "%s: File operations failed\n", __func__);
5110 		return buf;
5111 	}
5112 
5113 	buf = (uint8_t *)malloc(pkg_size);
5114 	if (!buf) {
5115 		close(fd);
5116 		fprintf(stderr, "%s: Failed to malloc memory\n", __func__);
5117 		return buf;
5118 	}
5119 
5120 	ret = read(fd, buf, pkg_size);
5121 	if (ret < 0) {
5122 		close(fd);
5123 		fprintf(stderr, "%s: File read operation failed\n", __func__);
5124 		close_file(buf);
5125 		return NULL;
5126 	}
5127 
5128 	if (size)
5129 		*size = pkg_size;
5130 
5131 	close(fd);
5132 
5133 	return buf;
5134 }
5135 
5136 int
5137 save_file(const char *file_path, uint8_t *buf, uint32_t size)
5138 {
5139 	FILE *fh = fopen(file_path, "wb");
5140 
5141 	if (fh == NULL) {
5142 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5143 		return -1;
5144 	}
5145 
5146 	if (fwrite(buf, 1, size, fh) != size) {
5147 		fclose(fh);
5148 		fprintf(stderr, "%s: File write operation failed\n", __func__);
5149 		return -1;
5150 	}
5151 
5152 	fclose(fh);
5153 
5154 	return 0;
5155 }
5156 
5157 int
5158 close_file(uint8_t *buf)
5159 {
5160 	if (buf) {
5161 		free((void *)buf);
5162 		return 0;
5163 	}
5164 
5165 	return -1;
5166 }
5167 
5168 void
5169 port_queue_region_info_display(portid_t port_id, void *buf)
5170 {
5171 #ifdef RTE_NET_I40E
5172 	uint16_t i, j;
5173 	struct rte_pmd_i40e_queue_regions *info =
5174 		(struct rte_pmd_i40e_queue_regions *)buf;
5175 	static const char *queue_region_info_stats_border = "-------";
5176 
5177 	if (!info->queue_region_number)
5178 		printf("there is no region has been set before");
5179 
5180 	printf("\n	%s All queue region info for port=%2d %s",
5181 			queue_region_info_stats_border, port_id,
5182 			queue_region_info_stats_border);
5183 	printf("\n	queue_region_number: %-14u \n",
5184 			info->queue_region_number);
5185 
5186 	for (i = 0; i < info->queue_region_number; i++) {
5187 		printf("\n	region_id: %-14u queue_number: %-14u "
5188 			"queue_start_index: %-14u \n",
5189 			info->region[i].region_id,
5190 			info->region[i].queue_num,
5191 			info->region[i].queue_start_index);
5192 
5193 		printf("  user_priority_num is	%-14u :",
5194 					info->region[i].user_priority_num);
5195 		for (j = 0; j < info->region[i].user_priority_num; j++)
5196 			printf(" %-14u ", info->region[i].user_priority[j]);
5197 
5198 		printf("\n	flowtype_num is  %-14u :",
5199 				info->region[i].flowtype_num);
5200 		for (j = 0; j < info->region[i].flowtype_num; j++)
5201 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
5202 	}
5203 #else
5204 	RTE_SET_USED(port_id);
5205 	RTE_SET_USED(buf);
5206 #endif
5207 
5208 	printf("\n\n");
5209 }
5210 
5211 void
5212 show_macs(portid_t port_id)
5213 {
5214 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5215 	struct rte_eth_dev_info dev_info;
5216 	struct rte_ether_addr *addr;
5217 	uint32_t i, num_macs = 0;
5218 	struct rte_eth_dev *dev;
5219 
5220 	dev = &rte_eth_devices[port_id];
5221 
5222 	if (eth_dev_info_get_print_err(port_id, &dev_info))
5223 		return;
5224 
5225 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
5226 		addr = &dev->data->mac_addrs[i];
5227 
5228 		/* skip zero address */
5229 		if (rte_is_zero_ether_addr(addr))
5230 			continue;
5231 
5232 		num_macs++;
5233 	}
5234 
5235 	printf("Number of MAC address added: %d\n", num_macs);
5236 
5237 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
5238 		addr = &dev->data->mac_addrs[i];
5239 
5240 		/* skip zero address */
5241 		if (rte_is_zero_ether_addr(addr))
5242 			continue;
5243 
5244 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5245 		printf("  %s\n", buf);
5246 	}
5247 }
5248 
5249 void
5250 show_mcast_macs(portid_t port_id)
5251 {
5252 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5253 	struct rte_ether_addr *addr;
5254 	struct rte_port *port;
5255 	uint32_t i;
5256 
5257 	port = &ports[port_id];
5258 
5259 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
5260 
5261 	for (i = 0; i < port->mc_addr_nb; i++) {
5262 		addr = &port->mc_addr_pool[i];
5263 
5264 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5265 		printf("  %s\n", buf);
5266 	}
5267 }
5268