xref: /dpdk/app/test-pmd/config.c (revision c7f5dba7d4bb7971fac51755aad09b71b10cef90)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 const struct rss_type_info rss_type_table[] = {
77 	{ "ipv4", ETH_RSS_IPV4 },
78 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83 	{ "ipv6", ETH_RSS_IPV6 },
84 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
90 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
91 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93 	{ "port", ETH_RSS_PORT },
94 	{ "vxlan", ETH_RSS_VXLAN },
95 	{ "geneve", ETH_RSS_GENEVE },
96 	{ "nvgre", ETH_RSS_NVGRE },
97 	{ "ip", ETH_RSS_IP },
98 	{ "udp", ETH_RSS_UDP },
99 	{ "tcp", ETH_RSS_TCP },
100 	{ "sctp", ETH_RSS_SCTP },
101 	{ "tunnel", ETH_RSS_TUNNEL },
102 	{ NULL, 0 },
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 
125 	static const char *nic_stats_border = "########################";
126 
127 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
128 		print_valid_ports();
129 		return;
130 	}
131 	rte_eth_stats_get(port_id, &stats);
132 	printf("\n  %s NIC statistics for port %-2d %s\n",
133 	       nic_stats_border, port_id, nic_stats_border);
134 
135 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
136 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
137 		       "%-"PRIu64"\n",
138 		       stats.ipackets, stats.imissed, stats.ibytes);
139 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
140 		printf("  RX-nombuf:  %-10"PRIu64"\n",
141 		       stats.rx_nombuf);
142 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
143 		       "%-"PRIu64"\n",
144 		       stats.opackets, stats.oerrors, stats.obytes);
145 	}
146 	else {
147 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
148 		       "    RX-bytes: %10"PRIu64"\n",
149 		       stats.ipackets, stats.ierrors, stats.ibytes);
150 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
151 		printf("  RX-nombuf:               %10"PRIu64"\n",
152 		       stats.rx_nombuf);
153 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
154 		       "    TX-bytes: %10"PRIu64"\n",
155 		       stats.opackets, stats.oerrors, stats.obytes);
156 	}
157 
158 	if (port->rx_queue_stats_mapping_enabled) {
159 		printf("\n");
160 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
161 			printf("  Stats reg %2d RX-packets: %10"PRIu64
162 			       "    RX-errors: %10"PRIu64
163 			       "    RX-bytes: %10"PRIu64"\n",
164 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
165 		}
166 	}
167 	if (port->tx_queue_stats_mapping_enabled) {
168 		printf("\n");
169 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
170 			printf("  Stats reg %2d TX-packets: %10"PRIu64
171 			       "                             TX-bytes: %10"PRIu64"\n",
172 			       i, stats.q_opackets[i], stats.q_obytes[i]);
173 		}
174 	}
175 
176 	diff_cycles = prev_cycles[port_id];
177 	prev_cycles[port_id] = rte_rdtsc();
178 	if (diff_cycles > 0)
179 		diff_cycles = prev_cycles[port_id] - diff_cycles;
180 
181 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
182 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
183 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
184 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
185 	prev_pkts_rx[port_id] = stats.ipackets;
186 	prev_pkts_tx[port_id] = stats.opackets;
187 	mpps_rx = diff_cycles > 0 ?
188 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
189 	mpps_tx = diff_cycles > 0 ?
190 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
191 	printf("\n  Throughput (since last show)\n");
192 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
193 			mpps_rx, mpps_tx);
194 
195 	printf("  %s############################%s\n",
196 	       nic_stats_border, nic_stats_border);
197 }
198 
199 void
200 nic_stats_clear(portid_t port_id)
201 {
202 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
203 		print_valid_ports();
204 		return;
205 	}
206 	rte_eth_stats_reset(port_id);
207 	printf("\n  NIC statistics for port %d cleared\n", port_id);
208 }
209 
210 void
211 nic_xstats_display(portid_t port_id)
212 {
213 	struct rte_eth_xstat *xstats;
214 	int cnt_xstats, idx_xstat;
215 	struct rte_eth_xstat_name *xstats_names;
216 
217 	printf("###### NIC extended statistics for port %-2d\n", port_id);
218 	if (!rte_eth_dev_is_valid_port(port_id)) {
219 		printf("Error: Invalid port number %i\n", port_id);
220 		return;
221 	}
222 
223 	/* Get count */
224 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
225 	if (cnt_xstats  < 0) {
226 		printf("Error: Cannot get count of xstats\n");
227 		return;
228 	}
229 
230 	/* Get id-name lookup table */
231 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
232 	if (xstats_names == NULL) {
233 		printf("Cannot allocate memory for xstats lookup\n");
234 		return;
235 	}
236 	if (cnt_xstats != rte_eth_xstats_get_names(
237 			port_id, xstats_names, cnt_xstats)) {
238 		printf("Error: Cannot get xstats lookup\n");
239 		free(xstats_names);
240 		return;
241 	}
242 
243 	/* Get stats themselves */
244 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
245 	if (xstats == NULL) {
246 		printf("Cannot allocate memory for xstats\n");
247 		free(xstats_names);
248 		return;
249 	}
250 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
251 		printf("Error: Unable to get xstats\n");
252 		free(xstats_names);
253 		free(xstats);
254 		return;
255 	}
256 
257 	/* Display xstats */
258 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
259 		if (xstats_hide_zero && !xstats[idx_xstat].value)
260 			continue;
261 		printf("%s: %"PRIu64"\n",
262 			xstats_names[idx_xstat].name,
263 			xstats[idx_xstat].value);
264 	}
265 	free(xstats_names);
266 	free(xstats);
267 }
268 
269 void
270 nic_xstats_clear(portid_t port_id)
271 {
272 	rte_eth_xstats_reset(port_id);
273 }
274 
275 void
276 nic_stats_mapping_display(portid_t port_id)
277 {
278 	struct rte_port *port = &ports[port_id];
279 	uint16_t i;
280 
281 	static const char *nic_stats_mapping_border = "########################";
282 
283 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
284 		print_valid_ports();
285 		return;
286 	}
287 
288 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
289 		printf("Port id %d - either does not support queue statistic mapping or"
290 		       " no queue statistic mapping set\n", port_id);
291 		return;
292 	}
293 
294 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
295 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
296 
297 	if (port->rx_queue_stats_mapping_enabled) {
298 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
299 			if (rx_queue_stats_mappings[i].port_id == port_id) {
300 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
301 				       rx_queue_stats_mappings[i].queue_id,
302 				       rx_queue_stats_mappings[i].stats_counter_id);
303 			}
304 		}
305 		printf("\n");
306 	}
307 
308 
309 	if (port->tx_queue_stats_mapping_enabled) {
310 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
311 			if (tx_queue_stats_mappings[i].port_id == port_id) {
312 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
313 				       tx_queue_stats_mappings[i].queue_id,
314 				       tx_queue_stats_mappings[i].stats_counter_id);
315 			}
316 		}
317 	}
318 
319 	printf("  %s####################################%s\n",
320 	       nic_stats_mapping_border, nic_stats_mapping_border);
321 }
322 
323 void
324 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
325 {
326 	struct rte_eth_rxq_info qinfo;
327 	int32_t rc;
328 	static const char *info_border = "*********************";
329 
330 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
331 	if (rc != 0) {
332 		printf("Failed to retrieve information for port: %u, "
333 			"RX queue: %hu\nerror desc: %s(%d)\n",
334 			port_id, queue_id, strerror(-rc), rc);
335 		return;
336 	}
337 
338 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
339 	       info_border, port_id, queue_id, info_border);
340 
341 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
342 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
343 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
344 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
345 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
346 	printf("\nRX drop packets: %s",
347 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
348 	printf("\nRX deferred start: %s",
349 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
350 	printf("\nRX scattered packets: %s",
351 		(qinfo.scattered_rx != 0) ? "on" : "off");
352 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
353 	printf("\n");
354 }
355 
356 void
357 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
358 {
359 	struct rte_eth_txq_info qinfo;
360 	int32_t rc;
361 	static const char *info_border = "*********************";
362 
363 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
364 	if (rc != 0) {
365 		printf("Failed to retrieve information for port: %u, "
366 			"TX queue: %hu\nerror desc: %s(%d)\n",
367 			port_id, queue_id, strerror(-rc), rc);
368 		return;
369 	}
370 
371 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
372 	       info_border, port_id, queue_id, info_border);
373 
374 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
375 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
376 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
377 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
378 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
379 	printf("\nTX deferred start: %s",
380 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
381 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
382 	printf("\n");
383 }
384 
385 void
386 port_infos_display(portid_t port_id)
387 {
388 	struct rte_port *port;
389 	struct ether_addr mac_addr;
390 	struct rte_eth_link link;
391 	struct rte_eth_dev_info dev_info;
392 	int vlan_offload;
393 	struct rte_mempool * mp;
394 	static const char *info_border = "*********************";
395 	uint16_t mtu;
396 	char name[RTE_ETH_NAME_MAX_LEN];
397 
398 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
399 		print_valid_ports();
400 		return;
401 	}
402 	port = &ports[port_id];
403 	rte_eth_link_get_nowait(port_id, &link);
404 	memset(&dev_info, 0, sizeof(dev_info));
405 	rte_eth_dev_info_get(port_id, &dev_info);
406 	printf("\n%s Infos for port %-2d %s\n",
407 	       info_border, port_id, info_border);
408 	rte_eth_macaddr_get(port_id, &mac_addr);
409 	print_ethaddr("MAC address: ", &mac_addr);
410 	rte_eth_dev_get_name_by_port(port_id, name);
411 	printf("\nDevice name: %s", name);
412 	printf("\nDriver name: %s", dev_info.driver_name);
413 	printf("\nConnect to socket: %u", port->socket_id);
414 
415 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
416 		mp = mbuf_pool_find(port_numa[port_id]);
417 		if (mp)
418 			printf("\nmemory allocation on the socket: %d",
419 							port_numa[port_id]);
420 	} else
421 		printf("\nmemory allocation on the socket: %u",port->socket_id);
422 
423 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
424 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
425 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
426 	       ("full-duplex") : ("half-duplex"));
427 
428 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
429 		printf("MTU: %u\n", mtu);
430 
431 	printf("Promiscuous mode: %s\n",
432 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
433 	printf("Allmulticast mode: %s\n",
434 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
435 	printf("Maximum number of MAC addresses: %u\n",
436 	       (unsigned int)(port->dev_info.max_mac_addrs));
437 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
438 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
439 
440 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
441 	if (vlan_offload >= 0){
442 		printf("VLAN offload: \n");
443 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
444 			printf("  strip on \n");
445 		else
446 			printf("  strip off \n");
447 
448 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
449 			printf("  filter on \n");
450 		else
451 			printf("  filter off \n");
452 
453 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
454 			printf("  qinq(extend) on \n");
455 		else
456 			printf("  qinq(extend) off \n");
457 	}
458 
459 	if (dev_info.hash_key_size > 0)
460 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
461 	if (dev_info.reta_size > 0)
462 		printf("Redirection table size: %u\n", dev_info.reta_size);
463 	if (!dev_info.flow_type_rss_offloads)
464 		printf("No flow type is supported.\n");
465 	else {
466 		uint16_t i;
467 		char *p;
468 
469 		printf("Supported flow types:\n");
470 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
471 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
472 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
473 				continue;
474 			p = flowtype_to_str(i);
475 			if (p)
476 				printf("  %s\n", p);
477 			else
478 				printf("  user defined %d\n", i);
479 		}
480 	}
481 
482 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
483 	printf("Maximum configurable length of RX packet: %u\n",
484 		dev_info.max_rx_pktlen);
485 	if (dev_info.max_vfs)
486 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
487 	if (dev_info.max_vmdq_pools)
488 		printf("Maximum number of VMDq pools: %u\n",
489 			dev_info.max_vmdq_pools);
490 
491 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
492 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
493 	printf("Max possible number of RXDs per queue: %hu\n",
494 		dev_info.rx_desc_lim.nb_max);
495 	printf("Min possible number of RXDs per queue: %hu\n",
496 		dev_info.rx_desc_lim.nb_min);
497 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
498 
499 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
500 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
501 	printf("Max possible number of TXDs per queue: %hu\n",
502 		dev_info.tx_desc_lim.nb_max);
503 	printf("Min possible number of TXDs per queue: %hu\n",
504 		dev_info.tx_desc_lim.nb_min);
505 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
506 
507 	/* Show switch info only if valid switch domain and port id is set */
508 	if (dev_info.switch_info.domain_id !=
509 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
510 		if (dev_info.switch_info.name)
511 			printf("Switch name: %s\n", dev_info.switch_info.name);
512 
513 		printf("Switch domain Id: %u\n",
514 			dev_info.switch_info.domain_id);
515 		printf("Switch Port Id: %u\n",
516 			dev_info.switch_info.port_id);
517 	}
518 }
519 
520 void
521 port_offload_cap_display(portid_t port_id)
522 {
523 	struct rte_eth_dev_info dev_info;
524 	static const char *info_border = "************";
525 
526 	if (port_id_is_invalid(port_id, ENABLED_WARN))
527 		return;
528 
529 	rte_eth_dev_info_get(port_id, &dev_info);
530 
531 	printf("\n%s Port %d supported offload features: %s\n",
532 		info_border, port_id, info_border);
533 
534 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
535 		printf("VLAN stripped:                 ");
536 		if (ports[port_id].dev_conf.rxmode.offloads &
537 		    DEV_RX_OFFLOAD_VLAN_STRIP)
538 			printf("on\n");
539 		else
540 			printf("off\n");
541 	}
542 
543 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
544 		printf("Double VLANs stripped:         ");
545 		if (ports[port_id].dev_conf.rxmode.offloads &
546 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
547 			printf("on\n");
548 		else
549 			printf("off\n");
550 	}
551 
552 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
553 		printf("RX IPv4 checksum:              ");
554 		if (ports[port_id].dev_conf.rxmode.offloads &
555 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
556 			printf("on\n");
557 		else
558 			printf("off\n");
559 	}
560 
561 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
562 		printf("RX UDP checksum:               ");
563 		if (ports[port_id].dev_conf.rxmode.offloads &
564 		    DEV_RX_OFFLOAD_UDP_CKSUM)
565 			printf("on\n");
566 		else
567 			printf("off\n");
568 	}
569 
570 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
571 		printf("RX TCP checksum:               ");
572 		if (ports[port_id].dev_conf.rxmode.offloads &
573 		    DEV_RX_OFFLOAD_TCP_CKSUM)
574 			printf("on\n");
575 		else
576 			printf("off\n");
577 	}
578 
579 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
580 		printf("RX Outer IPv4 checksum:        ");
581 		if (ports[port_id].dev_conf.rxmode.offloads &
582 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
583 			printf("on\n");
584 		else
585 			printf("off\n");
586 	}
587 
588 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
589 		printf("Large receive offload:         ");
590 		if (ports[port_id].dev_conf.rxmode.offloads &
591 		    DEV_RX_OFFLOAD_TCP_LRO)
592 			printf("on\n");
593 		else
594 			printf("off\n");
595 	}
596 
597 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
598 		printf("HW timestamp:                  ");
599 		if (ports[port_id].dev_conf.rxmode.offloads &
600 		    DEV_RX_OFFLOAD_TIMESTAMP)
601 			printf("on\n");
602 		else
603 			printf("off\n");
604 	}
605 
606 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) {
607 		printf("Rx Keep CRC:                   ");
608 		if (ports[port_id].dev_conf.rxmode.offloads &
609 		    DEV_RX_OFFLOAD_KEEP_CRC)
610 			printf("on\n");
611 		else
612 			printf("off\n");
613 	}
614 
615 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) {
616 		printf("RX offload security:           ");
617 		if (ports[port_id].dev_conf.rxmode.offloads &
618 		    DEV_RX_OFFLOAD_SECURITY)
619 			printf("on\n");
620 		else
621 			printf("off\n");
622 	}
623 
624 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
625 		printf("VLAN insert:                   ");
626 		if (ports[port_id].dev_conf.txmode.offloads &
627 		    DEV_TX_OFFLOAD_VLAN_INSERT)
628 			printf("on\n");
629 		else
630 			printf("off\n");
631 	}
632 
633 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
634 		printf("Double VLANs insert:           ");
635 		if (ports[port_id].dev_conf.txmode.offloads &
636 		    DEV_TX_OFFLOAD_QINQ_INSERT)
637 			printf("on\n");
638 		else
639 			printf("off\n");
640 	}
641 
642 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
643 		printf("TX IPv4 checksum:              ");
644 		if (ports[port_id].dev_conf.txmode.offloads &
645 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
646 			printf("on\n");
647 		else
648 			printf("off\n");
649 	}
650 
651 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
652 		printf("TX UDP checksum:               ");
653 		if (ports[port_id].dev_conf.txmode.offloads &
654 		    DEV_TX_OFFLOAD_UDP_CKSUM)
655 			printf("on\n");
656 		else
657 			printf("off\n");
658 	}
659 
660 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
661 		printf("TX TCP checksum:               ");
662 		if (ports[port_id].dev_conf.txmode.offloads &
663 		    DEV_TX_OFFLOAD_TCP_CKSUM)
664 			printf("on\n");
665 		else
666 			printf("off\n");
667 	}
668 
669 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
670 		printf("TX SCTP checksum:              ");
671 		if (ports[port_id].dev_conf.txmode.offloads &
672 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
673 			printf("on\n");
674 		else
675 			printf("off\n");
676 	}
677 
678 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
679 		printf("TX Outer IPv4 checksum:        ");
680 		if (ports[port_id].dev_conf.txmode.offloads &
681 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
682 			printf("on\n");
683 		else
684 			printf("off\n");
685 	}
686 
687 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
688 		printf("TX TCP segmentation:           ");
689 		if (ports[port_id].dev_conf.txmode.offloads &
690 		    DEV_TX_OFFLOAD_TCP_TSO)
691 			printf("on\n");
692 		else
693 			printf("off\n");
694 	}
695 
696 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
697 		printf("TX UDP segmentation:           ");
698 		if (ports[port_id].dev_conf.txmode.offloads &
699 		    DEV_TX_OFFLOAD_UDP_TSO)
700 			printf("on\n");
701 		else
702 			printf("off\n");
703 	}
704 
705 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
706 		printf("TSO for VXLAN tunnel packet:   ");
707 		if (ports[port_id].dev_conf.txmode.offloads &
708 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
709 			printf("on\n");
710 		else
711 			printf("off\n");
712 	}
713 
714 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
715 		printf("TSO for GRE tunnel packet:     ");
716 		if (ports[port_id].dev_conf.txmode.offloads &
717 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
718 			printf("on\n");
719 		else
720 			printf("off\n");
721 	}
722 
723 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
724 		printf("TSO for IPIP tunnel packet:    ");
725 		if (ports[port_id].dev_conf.txmode.offloads &
726 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
727 			printf("on\n");
728 		else
729 			printf("off\n");
730 	}
731 
732 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
733 		printf("TSO for GENEVE tunnel packet:  ");
734 		if (ports[port_id].dev_conf.txmode.offloads &
735 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
736 			printf("on\n");
737 		else
738 			printf("off\n");
739 	}
740 
741 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
742 		printf("IP tunnel TSO:  ");
743 		if (ports[port_id].dev_conf.txmode.offloads &
744 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
745 			printf("on\n");
746 		else
747 			printf("off\n");
748 	}
749 
750 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
751 		printf("UDP tunnel TSO:  ");
752 		if (ports[port_id].dev_conf.txmode.offloads &
753 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
754 			printf("on\n");
755 		else
756 			printf("off\n");
757 	}
758 }
759 
760 int
761 port_id_is_invalid(portid_t port_id, enum print_warning warning)
762 {
763 	uint16_t pid;
764 
765 	if (port_id == (portid_t)RTE_PORT_ALL)
766 		return 0;
767 
768 	RTE_ETH_FOREACH_DEV(pid)
769 		if (port_id == pid)
770 			return 0;
771 
772 	if (warning == ENABLED_WARN)
773 		printf("Invalid port %d\n", port_id);
774 
775 	return 1;
776 }
777 
778 void print_valid_ports(void)
779 {
780 	portid_t pid;
781 
782 	printf("The valid ports array is [");
783 	RTE_ETH_FOREACH_DEV(pid) {
784 		printf(" %d", pid);
785 	}
786 	printf(" ]\n");
787 }
788 
789 static int
790 vlan_id_is_invalid(uint16_t vlan_id)
791 {
792 	if (vlan_id < 4096)
793 		return 0;
794 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
795 	return 1;
796 }
797 
798 static int
799 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
800 {
801 	const struct rte_pci_device *pci_dev;
802 	const struct rte_bus *bus;
803 	uint64_t pci_len;
804 
805 	if (reg_off & 0x3) {
806 		printf("Port register offset 0x%X not aligned on a 4-byte "
807 		       "boundary\n",
808 		       (unsigned)reg_off);
809 		return 1;
810 	}
811 
812 	if (!ports[port_id].dev_info.device) {
813 		printf("Invalid device\n");
814 		return 0;
815 	}
816 
817 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
818 	if (bus && !strcmp(bus->name, "pci")) {
819 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
820 	} else {
821 		printf("Not a PCI device\n");
822 		return 1;
823 	}
824 
825 	pci_len = pci_dev->mem_resource[0].len;
826 	if (reg_off >= pci_len) {
827 		printf("Port %d: register offset %u (0x%X) out of port PCI "
828 		       "resource (length=%"PRIu64")\n",
829 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
830 		return 1;
831 	}
832 	return 0;
833 }
834 
835 static int
836 reg_bit_pos_is_invalid(uint8_t bit_pos)
837 {
838 	if (bit_pos <= 31)
839 		return 0;
840 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
841 	return 1;
842 }
843 
844 #define display_port_and_reg_off(port_id, reg_off) \
845 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
846 
847 static inline void
848 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
849 {
850 	display_port_and_reg_off(port_id, (unsigned)reg_off);
851 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
852 }
853 
854 void
855 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
856 {
857 	uint32_t reg_v;
858 
859 
860 	if (port_id_is_invalid(port_id, ENABLED_WARN))
861 		return;
862 	if (port_reg_off_is_invalid(port_id, reg_off))
863 		return;
864 	if (reg_bit_pos_is_invalid(bit_x))
865 		return;
866 	reg_v = port_id_pci_reg_read(port_id, reg_off);
867 	display_port_and_reg_off(port_id, (unsigned)reg_off);
868 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
869 }
870 
871 void
872 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
873 			   uint8_t bit1_pos, uint8_t bit2_pos)
874 {
875 	uint32_t reg_v;
876 	uint8_t  l_bit;
877 	uint8_t  h_bit;
878 
879 	if (port_id_is_invalid(port_id, ENABLED_WARN))
880 		return;
881 	if (port_reg_off_is_invalid(port_id, reg_off))
882 		return;
883 	if (reg_bit_pos_is_invalid(bit1_pos))
884 		return;
885 	if (reg_bit_pos_is_invalid(bit2_pos))
886 		return;
887 	if (bit1_pos > bit2_pos)
888 		l_bit = bit2_pos, h_bit = bit1_pos;
889 	else
890 		l_bit = bit1_pos, h_bit = bit2_pos;
891 
892 	reg_v = port_id_pci_reg_read(port_id, reg_off);
893 	reg_v >>= l_bit;
894 	if (h_bit < 31)
895 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
896 	display_port_and_reg_off(port_id, (unsigned)reg_off);
897 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
898 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
899 }
900 
901 void
902 port_reg_display(portid_t port_id, uint32_t reg_off)
903 {
904 	uint32_t reg_v;
905 
906 	if (port_id_is_invalid(port_id, ENABLED_WARN))
907 		return;
908 	if (port_reg_off_is_invalid(port_id, reg_off))
909 		return;
910 	reg_v = port_id_pci_reg_read(port_id, reg_off);
911 	display_port_reg_value(port_id, reg_off, reg_v);
912 }
913 
914 void
915 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
916 		 uint8_t bit_v)
917 {
918 	uint32_t reg_v;
919 
920 	if (port_id_is_invalid(port_id, ENABLED_WARN))
921 		return;
922 	if (port_reg_off_is_invalid(port_id, reg_off))
923 		return;
924 	if (reg_bit_pos_is_invalid(bit_pos))
925 		return;
926 	if (bit_v > 1) {
927 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
928 		return;
929 	}
930 	reg_v = port_id_pci_reg_read(port_id, reg_off);
931 	if (bit_v == 0)
932 		reg_v &= ~(1 << bit_pos);
933 	else
934 		reg_v |= (1 << bit_pos);
935 	port_id_pci_reg_write(port_id, reg_off, reg_v);
936 	display_port_reg_value(port_id, reg_off, reg_v);
937 }
938 
939 void
940 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
941 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
942 {
943 	uint32_t max_v;
944 	uint32_t reg_v;
945 	uint8_t  l_bit;
946 	uint8_t  h_bit;
947 
948 	if (port_id_is_invalid(port_id, ENABLED_WARN))
949 		return;
950 	if (port_reg_off_is_invalid(port_id, reg_off))
951 		return;
952 	if (reg_bit_pos_is_invalid(bit1_pos))
953 		return;
954 	if (reg_bit_pos_is_invalid(bit2_pos))
955 		return;
956 	if (bit1_pos > bit2_pos)
957 		l_bit = bit2_pos, h_bit = bit1_pos;
958 	else
959 		l_bit = bit1_pos, h_bit = bit2_pos;
960 
961 	if ((h_bit - l_bit) < 31)
962 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
963 	else
964 		max_v = 0xFFFFFFFF;
965 
966 	if (value > max_v) {
967 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
968 				(unsigned)value, (unsigned)value,
969 				(unsigned)max_v, (unsigned)max_v);
970 		return;
971 	}
972 	reg_v = port_id_pci_reg_read(port_id, reg_off);
973 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
974 	reg_v |= (value << l_bit); /* Set changed bits */
975 	port_id_pci_reg_write(port_id, reg_off, reg_v);
976 	display_port_reg_value(port_id, reg_off, reg_v);
977 }
978 
979 void
980 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
981 {
982 	if (port_id_is_invalid(port_id, ENABLED_WARN))
983 		return;
984 	if (port_reg_off_is_invalid(port_id, reg_off))
985 		return;
986 	port_id_pci_reg_write(port_id, reg_off, reg_v);
987 	display_port_reg_value(port_id, reg_off, reg_v);
988 }
989 
990 void
991 port_mtu_set(portid_t port_id, uint16_t mtu)
992 {
993 	int diag;
994 
995 	if (port_id_is_invalid(port_id, ENABLED_WARN))
996 		return;
997 	diag = rte_eth_dev_set_mtu(port_id, mtu);
998 	if (diag == 0)
999 		return;
1000 	printf("Set MTU failed. diag=%d\n", diag);
1001 }
1002 
1003 /* Generic flow management functions. */
1004 
1005 /** Generate flow_item[] entry. */
1006 #define MK_FLOW_ITEM(t, s) \
1007 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
1008 		.name = # t, \
1009 		.size = s, \
1010 	}
1011 
1012 /** Information about known flow pattern items. */
1013 static const struct {
1014 	const char *name;
1015 	size_t size;
1016 } flow_item[] = {
1017 	MK_FLOW_ITEM(END, 0),
1018 	MK_FLOW_ITEM(VOID, 0),
1019 	MK_FLOW_ITEM(INVERT, 0),
1020 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1021 	MK_FLOW_ITEM(PF, 0),
1022 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1023 	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
1024 	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
1025 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
1026 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1027 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1028 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1029 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1030 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1031 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1032 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1033 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1034 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1035 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1036 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1037 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1038 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1039 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1040 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1041 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1042 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1043 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1044 	MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1045 	MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
1046 	MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
1047 	MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1048 	MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
1049 	MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
1050 	MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
1051 	MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
1052 		     sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1053 	MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
1054 		     sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1055 };
1056 
1057 /** Pattern item specification types. */
1058 enum item_spec_type {
1059 	ITEM_SPEC,
1060 	ITEM_LAST,
1061 	ITEM_MASK,
1062 };
1063 
1064 /** Compute storage space needed by item specification and copy it. */
1065 static size_t
1066 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1067 		    enum item_spec_type type)
1068 {
1069 	size_t size = 0;
1070 	const void *data =
1071 		type == ITEM_SPEC ? item->spec :
1072 		type == ITEM_LAST ? item->last :
1073 		type == ITEM_MASK ? item->mask :
1074 		NULL;
1075 
1076 	if (!item->spec || !data)
1077 		goto empty;
1078 	switch (item->type) {
1079 		union {
1080 			const struct rte_flow_item_raw *raw;
1081 		} spec;
1082 		union {
1083 			const struct rte_flow_item_raw *raw;
1084 		} last;
1085 		union {
1086 			const struct rte_flow_item_raw *raw;
1087 		} mask;
1088 		union {
1089 			const struct rte_flow_item_raw *raw;
1090 		} src;
1091 		union {
1092 			struct rte_flow_item_raw *raw;
1093 		} dst;
1094 		size_t off;
1095 
1096 	case RTE_FLOW_ITEM_TYPE_RAW:
1097 		spec.raw = item->spec;
1098 		last.raw = item->last ? item->last : item->spec;
1099 		mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
1100 		src.raw = data;
1101 		dst.raw = buf;
1102 		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1103 				     sizeof(*src.raw->pattern));
1104 		if (type == ITEM_SPEC ||
1105 		    (type == ITEM_MASK &&
1106 		     ((spec.raw->length & mask.raw->length) >=
1107 		      (last.raw->length & mask.raw->length))))
1108 			size = spec.raw->length & mask.raw->length;
1109 		else
1110 			size = last.raw->length & mask.raw->length;
1111 		size = off + size * sizeof(*src.raw->pattern);
1112 		if (dst.raw) {
1113 			memcpy(dst.raw, src.raw, sizeof(*src.raw));
1114 			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1115 						  src.raw->pattern,
1116 						  size - off);
1117 		}
1118 		break;
1119 	default:
1120 		size = flow_item[item->type].size;
1121 		if (buf)
1122 			memcpy(buf, data, size);
1123 		break;
1124 	}
1125 empty:
1126 	return RTE_ALIGN_CEIL(size, sizeof(double));
1127 }
1128 
1129 /** Generate flow_action[] entry. */
1130 #define MK_FLOW_ACTION(t, s) \
1131 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1132 		.name = # t, \
1133 		.size = s, \
1134 	}
1135 
1136 /** Information about known flow actions. */
1137 static const struct {
1138 	const char *name;
1139 	size_t size;
1140 } flow_action[] = {
1141 	MK_FLOW_ACTION(END, 0),
1142 	MK_FLOW_ACTION(VOID, 0),
1143 	MK_FLOW_ACTION(PASSTHRU, 0),
1144 	MK_FLOW_ACTION(JUMP, 0),
1145 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1146 	MK_FLOW_ACTION(FLAG, 0),
1147 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1148 	MK_FLOW_ACTION(DROP, 0),
1149 	MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
1150 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1151 	MK_FLOW_ACTION(PF, 0),
1152 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1153 	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1154 	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1155 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1156 	MK_FLOW_ACTION(OF_SET_MPLS_TTL,
1157 		       sizeof(struct rte_flow_action_of_set_mpls_ttl)),
1158 	MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
1159 	MK_FLOW_ACTION(OF_SET_NW_TTL,
1160 		       sizeof(struct rte_flow_action_of_set_nw_ttl)),
1161 	MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
1162 	MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
1163 	MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
1164 	MK_FLOW_ACTION(OF_POP_VLAN, 0),
1165 	MK_FLOW_ACTION(OF_PUSH_VLAN,
1166 		       sizeof(struct rte_flow_action_of_push_vlan)),
1167 	MK_FLOW_ACTION(OF_SET_VLAN_VID,
1168 		       sizeof(struct rte_flow_action_of_set_vlan_vid)),
1169 	MK_FLOW_ACTION(OF_SET_VLAN_PCP,
1170 		       sizeof(struct rte_flow_action_of_set_vlan_pcp)),
1171 	MK_FLOW_ACTION(OF_POP_MPLS,
1172 		       sizeof(struct rte_flow_action_of_pop_mpls)),
1173 	MK_FLOW_ACTION(OF_PUSH_MPLS,
1174 		       sizeof(struct rte_flow_action_of_push_mpls)),
1175 };
1176 
1177 /** Compute storage space needed by action configuration and copy it. */
1178 static size_t
1179 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1180 {
1181 	size_t size = 0;
1182 
1183 	if (!action->conf)
1184 		goto empty;
1185 	switch (action->type) {
1186 		union {
1187 			const struct rte_flow_action_rss *rss;
1188 		} src;
1189 		union {
1190 			struct rte_flow_action_rss *rss;
1191 		} dst;
1192 		size_t off;
1193 
1194 	case RTE_FLOW_ACTION_TYPE_RSS:
1195 		src.rss = action->conf;
1196 		dst.rss = buf;
1197 		off = 0;
1198 		if (dst.rss)
1199 			*dst.rss = (struct rte_flow_action_rss){
1200 				.func = src.rss->func,
1201 				.level = src.rss->level,
1202 				.types = src.rss->types,
1203 				.key_len = src.rss->key_len,
1204 				.queue_num = src.rss->queue_num,
1205 			};
1206 		off += sizeof(*src.rss);
1207 		if (src.rss->key_len) {
1208 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1209 			size = sizeof(*src.rss->key) * src.rss->key_len;
1210 			if (dst.rss)
1211 				dst.rss->key = memcpy
1212 					((void *)((uintptr_t)dst.rss + off),
1213 					 src.rss->key, size);
1214 			off += size;
1215 		}
1216 		if (src.rss->queue_num) {
1217 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1218 			size = sizeof(*src.rss->queue) * src.rss->queue_num;
1219 			if (dst.rss)
1220 				dst.rss->queue = memcpy
1221 					((void *)((uintptr_t)dst.rss + off),
1222 					 src.rss->queue, size);
1223 			off += size;
1224 		}
1225 		size = off;
1226 		break;
1227 	default:
1228 		size = flow_action[action->type].size;
1229 		if (buf)
1230 			memcpy(buf, action->conf, size);
1231 		break;
1232 	}
1233 empty:
1234 	return RTE_ALIGN_CEIL(size, sizeof(double));
1235 }
1236 
1237 /** Generate a port_flow entry from attributes/pattern/actions. */
1238 static struct port_flow *
1239 port_flow_new(const struct rte_flow_attr *attr,
1240 	      const struct rte_flow_item *pattern,
1241 	      const struct rte_flow_action *actions)
1242 {
1243 	const struct rte_flow_item *item;
1244 	const struct rte_flow_action *action;
1245 	struct port_flow *pf = NULL;
1246 	size_t tmp;
1247 	size_t off1 = 0;
1248 	size_t off2 = 0;
1249 	int err = ENOTSUP;
1250 
1251 store:
1252 	item = pattern;
1253 	if (pf)
1254 		pf->pattern = (void *)&pf->data[off1];
1255 	do {
1256 		struct rte_flow_item *dst = NULL;
1257 
1258 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1259 		    !flow_item[item->type].name)
1260 			goto notsup;
1261 		if (pf)
1262 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1263 		off1 += sizeof(*item);
1264 		if (item->spec) {
1265 			if (pf)
1266 				dst->spec = pf->data + off2;
1267 			off2 += flow_item_spec_copy
1268 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1269 		}
1270 		if (item->last) {
1271 			if (pf)
1272 				dst->last = pf->data + off2;
1273 			off2 += flow_item_spec_copy
1274 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1275 		}
1276 		if (item->mask) {
1277 			if (pf)
1278 				dst->mask = pf->data + off2;
1279 			off2 += flow_item_spec_copy
1280 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1281 		}
1282 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1283 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1284 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1285 	action = actions;
1286 	if (pf)
1287 		pf->actions = (void *)&pf->data[off1];
1288 	do {
1289 		struct rte_flow_action *dst = NULL;
1290 
1291 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1292 		    !flow_action[action->type].name)
1293 			goto notsup;
1294 		if (pf)
1295 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1296 		off1 += sizeof(*action);
1297 		if (action->conf) {
1298 			if (pf)
1299 				dst->conf = pf->data + off2;
1300 			off2 += flow_action_conf_copy
1301 				(pf ? pf->data + off2 : NULL, action);
1302 		}
1303 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1304 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1305 	if (pf != NULL)
1306 		return pf;
1307 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1308 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1309 	pf = calloc(1, tmp + off1 + off2);
1310 	if (pf == NULL)
1311 		err = errno;
1312 	else {
1313 		*pf = (const struct port_flow){
1314 			.size = tmp + off1 + off2,
1315 			.attr = *attr,
1316 		};
1317 		tmp -= offsetof(struct port_flow, data);
1318 		off2 = tmp + off1;
1319 		off1 = tmp;
1320 		goto store;
1321 	}
1322 notsup:
1323 	rte_errno = err;
1324 	return NULL;
1325 }
1326 
1327 /** Print a message out of a flow error. */
1328 static int
1329 port_flow_complain(struct rte_flow_error *error)
1330 {
1331 	static const char *const errstrlist[] = {
1332 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1333 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1334 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1335 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1336 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1337 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1338 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1339 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1340 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1341 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1342 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1343 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1344 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1345 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1346 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1347 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1348 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1349 	};
1350 	const char *errstr;
1351 	char buf[32];
1352 	int err = rte_errno;
1353 
1354 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1355 	    !errstrlist[error->type])
1356 		errstr = "unknown type";
1357 	else
1358 		errstr = errstrlist[error->type];
1359 	printf("Caught error type %d (%s): %s%s: %s\n",
1360 	       error->type, errstr,
1361 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1362 					error->cause), buf) : "",
1363 	       error->message ? error->message : "(no stated reason)",
1364 	       rte_strerror(err));
1365 	return -err;
1366 }
1367 
1368 /** Validate flow rule. */
1369 int
1370 port_flow_validate(portid_t port_id,
1371 		   const struct rte_flow_attr *attr,
1372 		   const struct rte_flow_item *pattern,
1373 		   const struct rte_flow_action *actions)
1374 {
1375 	struct rte_flow_error error;
1376 
1377 	/* Poisoning to make sure PMDs update it in case of error. */
1378 	memset(&error, 0x11, sizeof(error));
1379 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1380 		return port_flow_complain(&error);
1381 	printf("Flow rule validated\n");
1382 	return 0;
1383 }
1384 
1385 /** Create flow rule. */
1386 int
1387 port_flow_create(portid_t port_id,
1388 		 const struct rte_flow_attr *attr,
1389 		 const struct rte_flow_item *pattern,
1390 		 const struct rte_flow_action *actions)
1391 {
1392 	struct rte_flow *flow;
1393 	struct rte_port *port;
1394 	struct port_flow *pf;
1395 	uint32_t id;
1396 	struct rte_flow_error error;
1397 
1398 	/* Poisoning to make sure PMDs update it in case of error. */
1399 	memset(&error, 0x22, sizeof(error));
1400 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1401 	if (!flow)
1402 		return port_flow_complain(&error);
1403 	port = &ports[port_id];
1404 	if (port->flow_list) {
1405 		if (port->flow_list->id == UINT32_MAX) {
1406 			printf("Highest rule ID is already assigned, delete"
1407 			       " it first");
1408 			rte_flow_destroy(port_id, flow, NULL);
1409 			return -ENOMEM;
1410 		}
1411 		id = port->flow_list->id + 1;
1412 	} else
1413 		id = 0;
1414 	pf = port_flow_new(attr, pattern, actions);
1415 	if (!pf) {
1416 		int err = rte_errno;
1417 
1418 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1419 		rte_flow_destroy(port_id, flow, NULL);
1420 		return -err;
1421 	}
1422 	pf->next = port->flow_list;
1423 	pf->id = id;
1424 	pf->flow = flow;
1425 	port->flow_list = pf;
1426 	printf("Flow rule #%u created\n", pf->id);
1427 	return 0;
1428 }
1429 
1430 /** Destroy a number of flow rules. */
1431 int
1432 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1433 {
1434 	struct rte_port *port;
1435 	struct port_flow **tmp;
1436 	uint32_t c = 0;
1437 	int ret = 0;
1438 
1439 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1440 	    port_id == (portid_t)RTE_PORT_ALL)
1441 		return -EINVAL;
1442 	port = &ports[port_id];
1443 	tmp = &port->flow_list;
1444 	while (*tmp) {
1445 		uint32_t i;
1446 
1447 		for (i = 0; i != n; ++i) {
1448 			struct rte_flow_error error;
1449 			struct port_flow *pf = *tmp;
1450 
1451 			if (rule[i] != pf->id)
1452 				continue;
1453 			/*
1454 			 * Poisoning to make sure PMDs update it in case
1455 			 * of error.
1456 			 */
1457 			memset(&error, 0x33, sizeof(error));
1458 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1459 				ret = port_flow_complain(&error);
1460 				continue;
1461 			}
1462 			printf("Flow rule #%u destroyed\n", pf->id);
1463 			*tmp = pf->next;
1464 			free(pf);
1465 			break;
1466 		}
1467 		if (i == n)
1468 			tmp = &(*tmp)->next;
1469 		++c;
1470 	}
1471 	return ret;
1472 }
1473 
1474 /** Remove all flow rules. */
1475 int
1476 port_flow_flush(portid_t port_id)
1477 {
1478 	struct rte_flow_error error;
1479 	struct rte_port *port;
1480 	int ret = 0;
1481 
1482 	/* Poisoning to make sure PMDs update it in case of error. */
1483 	memset(&error, 0x44, sizeof(error));
1484 	if (rte_flow_flush(port_id, &error)) {
1485 		ret = port_flow_complain(&error);
1486 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1487 		    port_id == (portid_t)RTE_PORT_ALL)
1488 			return ret;
1489 	}
1490 	port = &ports[port_id];
1491 	while (port->flow_list) {
1492 		struct port_flow *pf = port->flow_list->next;
1493 
1494 		free(port->flow_list);
1495 		port->flow_list = pf;
1496 	}
1497 	return ret;
1498 }
1499 
1500 /** Query a flow rule. */
1501 int
1502 port_flow_query(portid_t port_id, uint32_t rule,
1503 		const struct rte_flow_action *action)
1504 {
1505 	struct rte_flow_error error;
1506 	struct rte_port *port;
1507 	struct port_flow *pf;
1508 	const char *name;
1509 	union {
1510 		struct rte_flow_query_count count;
1511 	} query;
1512 
1513 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1514 	    port_id == (portid_t)RTE_PORT_ALL)
1515 		return -EINVAL;
1516 	port = &ports[port_id];
1517 	for (pf = port->flow_list; pf; pf = pf->next)
1518 		if (pf->id == rule)
1519 			break;
1520 	if (!pf) {
1521 		printf("Flow rule #%u not found\n", rule);
1522 		return -ENOENT;
1523 	}
1524 	if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1525 	    !flow_action[action->type].name)
1526 		name = "unknown";
1527 	else
1528 		name = flow_action[action->type].name;
1529 	switch (action->type) {
1530 	case RTE_FLOW_ACTION_TYPE_COUNT:
1531 		break;
1532 	default:
1533 		printf("Cannot query action type %d (%s)\n",
1534 			action->type, name);
1535 		return -ENOTSUP;
1536 	}
1537 	/* Poisoning to make sure PMDs update it in case of error. */
1538 	memset(&error, 0x55, sizeof(error));
1539 	memset(&query, 0, sizeof(query));
1540 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1541 		return port_flow_complain(&error);
1542 	switch (action->type) {
1543 	case RTE_FLOW_ACTION_TYPE_COUNT:
1544 		printf("%s:\n"
1545 		       " hits_set: %u\n"
1546 		       " bytes_set: %u\n"
1547 		       " hits: %" PRIu64 "\n"
1548 		       " bytes: %" PRIu64 "\n",
1549 		       name,
1550 		       query.count.hits_set,
1551 		       query.count.bytes_set,
1552 		       query.count.hits,
1553 		       query.count.bytes);
1554 		break;
1555 	default:
1556 		printf("Cannot display result for action type %d (%s)\n",
1557 		       action->type, name);
1558 		break;
1559 	}
1560 	return 0;
1561 }
1562 
1563 /** List flow rules. */
1564 void
1565 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1566 {
1567 	struct rte_port *port;
1568 	struct port_flow *pf;
1569 	struct port_flow *list = NULL;
1570 	uint32_t i;
1571 
1572 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1573 	    port_id == (portid_t)RTE_PORT_ALL)
1574 		return;
1575 	port = &ports[port_id];
1576 	if (!port->flow_list)
1577 		return;
1578 	/* Sort flows by group, priority and ID. */
1579 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1580 		struct port_flow **tmp;
1581 
1582 		if (n) {
1583 			/* Filter out unwanted groups. */
1584 			for (i = 0; i != n; ++i)
1585 				if (pf->attr.group == group[i])
1586 					break;
1587 			if (i == n)
1588 				continue;
1589 		}
1590 		tmp = &list;
1591 		while (*tmp &&
1592 		       (pf->attr.group > (*tmp)->attr.group ||
1593 			(pf->attr.group == (*tmp)->attr.group &&
1594 			 pf->attr.priority > (*tmp)->attr.priority) ||
1595 			(pf->attr.group == (*tmp)->attr.group &&
1596 			 pf->attr.priority == (*tmp)->attr.priority &&
1597 			 pf->id > (*tmp)->id)))
1598 			tmp = &(*tmp)->tmp;
1599 		pf->tmp = *tmp;
1600 		*tmp = pf;
1601 	}
1602 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1603 	for (pf = list; pf != NULL; pf = pf->tmp) {
1604 		const struct rte_flow_item *item = pf->pattern;
1605 		const struct rte_flow_action *action = pf->actions;
1606 
1607 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1608 		       pf->id,
1609 		       pf->attr.group,
1610 		       pf->attr.priority,
1611 		       pf->attr.ingress ? 'i' : '-',
1612 		       pf->attr.egress ? 'e' : '-',
1613 		       pf->attr.transfer ? 't' : '-');
1614 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1615 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1616 				printf("%s ", flow_item[item->type].name);
1617 			++item;
1618 		}
1619 		printf("=>");
1620 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1621 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1622 				printf(" %s", flow_action[action->type].name);
1623 			++action;
1624 		}
1625 		printf("\n");
1626 	}
1627 }
1628 
1629 /** Restrict ingress traffic to the defined flow rules. */
1630 int
1631 port_flow_isolate(portid_t port_id, int set)
1632 {
1633 	struct rte_flow_error error;
1634 
1635 	/* Poisoning to make sure PMDs update it in case of error. */
1636 	memset(&error, 0x66, sizeof(error));
1637 	if (rte_flow_isolate(port_id, set, &error))
1638 		return port_flow_complain(&error);
1639 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1640 	       port_id,
1641 	       set ? "now restricted" : "not restricted anymore");
1642 	return 0;
1643 }
1644 
1645 /*
1646  * RX/TX ring descriptors display functions.
1647  */
1648 int
1649 rx_queue_id_is_invalid(queueid_t rxq_id)
1650 {
1651 	if (rxq_id < nb_rxq)
1652 		return 0;
1653 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1654 	return 1;
1655 }
1656 
1657 int
1658 tx_queue_id_is_invalid(queueid_t txq_id)
1659 {
1660 	if (txq_id < nb_txq)
1661 		return 0;
1662 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1663 	return 1;
1664 }
1665 
1666 static int
1667 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1668 {
1669 	if (rxdesc_id < nb_rxd)
1670 		return 0;
1671 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1672 	       rxdesc_id, nb_rxd);
1673 	return 1;
1674 }
1675 
1676 static int
1677 tx_desc_id_is_invalid(uint16_t txdesc_id)
1678 {
1679 	if (txdesc_id < nb_txd)
1680 		return 0;
1681 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1682 	       txdesc_id, nb_txd);
1683 	return 1;
1684 }
1685 
1686 static const struct rte_memzone *
1687 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1688 {
1689 	char mz_name[RTE_MEMZONE_NAMESIZE];
1690 	const struct rte_memzone *mz;
1691 
1692 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1693 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1694 	mz = rte_memzone_lookup(mz_name);
1695 	if (mz == NULL)
1696 		printf("%s ring memory zoneof (port %d, queue %d) not"
1697 		       "found (zone name = %s\n",
1698 		       ring_name, port_id, q_id, mz_name);
1699 	return mz;
1700 }
1701 
1702 union igb_ring_dword {
1703 	uint64_t dword;
1704 	struct {
1705 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1706 		uint32_t lo;
1707 		uint32_t hi;
1708 #else
1709 		uint32_t hi;
1710 		uint32_t lo;
1711 #endif
1712 	} words;
1713 };
1714 
1715 struct igb_ring_desc_32_bytes {
1716 	union igb_ring_dword lo_dword;
1717 	union igb_ring_dword hi_dword;
1718 	union igb_ring_dword resv1;
1719 	union igb_ring_dword resv2;
1720 };
1721 
1722 struct igb_ring_desc_16_bytes {
1723 	union igb_ring_dword lo_dword;
1724 	union igb_ring_dword hi_dword;
1725 };
1726 
1727 static void
1728 ring_rxd_display_dword(union igb_ring_dword dword)
1729 {
1730 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1731 					(unsigned)dword.words.hi);
1732 }
1733 
1734 static void
1735 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1736 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1737 			   portid_t port_id,
1738 #else
1739 			   __rte_unused portid_t port_id,
1740 #endif
1741 			   uint16_t desc_id)
1742 {
1743 	struct igb_ring_desc_16_bytes *ring =
1744 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1745 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1746 	struct rte_eth_dev_info dev_info;
1747 
1748 	memset(&dev_info, 0, sizeof(dev_info));
1749 	rte_eth_dev_info_get(port_id, &dev_info);
1750 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1751 		/* 32 bytes RX descriptor, i40e only */
1752 		struct igb_ring_desc_32_bytes *ring =
1753 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1754 		ring[desc_id].lo_dword.dword =
1755 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1756 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1757 		ring[desc_id].hi_dword.dword =
1758 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1759 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1760 		ring[desc_id].resv1.dword =
1761 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1762 		ring_rxd_display_dword(ring[desc_id].resv1);
1763 		ring[desc_id].resv2.dword =
1764 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1765 		ring_rxd_display_dword(ring[desc_id].resv2);
1766 
1767 		return;
1768 	}
1769 #endif
1770 	/* 16 bytes RX descriptor */
1771 	ring[desc_id].lo_dword.dword =
1772 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1773 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1774 	ring[desc_id].hi_dword.dword =
1775 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1776 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1777 }
1778 
1779 static void
1780 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1781 {
1782 	struct igb_ring_desc_16_bytes *ring;
1783 	struct igb_ring_desc_16_bytes txd;
1784 
1785 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1786 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1787 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1788 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1789 			(unsigned)txd.lo_dword.words.lo,
1790 			(unsigned)txd.lo_dword.words.hi,
1791 			(unsigned)txd.hi_dword.words.lo,
1792 			(unsigned)txd.hi_dword.words.hi);
1793 }
1794 
1795 void
1796 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1797 {
1798 	const struct rte_memzone *rx_mz;
1799 
1800 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1801 		return;
1802 	if (rx_queue_id_is_invalid(rxq_id))
1803 		return;
1804 	if (rx_desc_id_is_invalid(rxd_id))
1805 		return;
1806 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1807 	if (rx_mz == NULL)
1808 		return;
1809 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1810 }
1811 
1812 void
1813 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1814 {
1815 	const struct rte_memzone *tx_mz;
1816 
1817 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1818 		return;
1819 	if (tx_queue_id_is_invalid(txq_id))
1820 		return;
1821 	if (tx_desc_id_is_invalid(txd_id))
1822 		return;
1823 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1824 	if (tx_mz == NULL)
1825 		return;
1826 	ring_tx_descriptor_display(tx_mz, txd_id);
1827 }
1828 
1829 void
1830 fwd_lcores_config_display(void)
1831 {
1832 	lcoreid_t lc_id;
1833 
1834 	printf("List of forwarding lcores:");
1835 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1836 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1837 	printf("\n");
1838 }
1839 void
1840 rxtx_config_display(void)
1841 {
1842 	portid_t pid;
1843 	queueid_t qid;
1844 
1845 	printf("  %s packet forwarding%s packets/burst=%d\n",
1846 	       cur_fwd_eng->fwd_mode_name,
1847 	       retry_enabled == 0 ? "" : " with retry",
1848 	       nb_pkt_per_burst);
1849 
1850 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1851 		printf("  packet len=%u - nb packet segments=%d\n",
1852 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1853 
1854 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1855 	       nb_fwd_lcores, nb_fwd_ports);
1856 
1857 	RTE_ETH_FOREACH_DEV(pid) {
1858 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1859 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1860 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1861 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1862 		uint16_t nb_rx_desc_tmp;
1863 		uint16_t nb_tx_desc_tmp;
1864 		struct rte_eth_rxq_info rx_qinfo;
1865 		struct rte_eth_txq_info tx_qinfo;
1866 		int32_t rc;
1867 
1868 		/* per port config */
1869 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1870 				(unsigned int)pid, nb_rxq, nb_txq);
1871 
1872 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1873 				ports[pid].dev_conf.rxmode.offloads,
1874 				ports[pid].dev_conf.txmode.offloads);
1875 
1876 		/* per rx queue config only for first queue to be less verbose */
1877 		for (qid = 0; qid < 1; qid++) {
1878 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
1879 			if (rc)
1880 				nb_rx_desc_tmp = nb_rx_desc[qid];
1881 			else
1882 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
1883 
1884 			printf("    RX queue: %d\n", qid);
1885 			printf("      RX desc=%d - RX free threshold=%d\n",
1886 				nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh);
1887 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1888 				" wthresh=%d\n",
1889 				rx_conf[qid].rx_thresh.pthresh,
1890 				rx_conf[qid].rx_thresh.hthresh,
1891 				rx_conf[qid].rx_thresh.wthresh);
1892 			printf("      RX Offloads=0x%"PRIx64"\n",
1893 				rx_conf[qid].offloads);
1894 		}
1895 
1896 		/* per tx queue config only for first queue to be less verbose */
1897 		for (qid = 0; qid < 1; qid++) {
1898 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
1899 			if (rc)
1900 				nb_tx_desc_tmp = nb_tx_desc[qid];
1901 			else
1902 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
1903 
1904 			printf("    TX queue: %d\n", qid);
1905 			printf("      TX desc=%d - TX free threshold=%d\n",
1906 				nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh);
1907 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1908 				" wthresh=%d\n",
1909 				tx_conf[qid].tx_thresh.pthresh,
1910 				tx_conf[qid].tx_thresh.hthresh,
1911 				tx_conf[qid].tx_thresh.wthresh);
1912 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1913 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1914 		}
1915 	}
1916 }
1917 
1918 void
1919 port_rss_reta_info(portid_t port_id,
1920 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1921 		   uint16_t nb_entries)
1922 {
1923 	uint16_t i, idx, shift;
1924 	int ret;
1925 
1926 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1927 		return;
1928 
1929 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1930 	if (ret != 0) {
1931 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1932 		return;
1933 	}
1934 
1935 	for (i = 0; i < nb_entries; i++) {
1936 		idx = i / RTE_RETA_GROUP_SIZE;
1937 		shift = i % RTE_RETA_GROUP_SIZE;
1938 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1939 			continue;
1940 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1941 					i, reta_conf[idx].reta[shift]);
1942 	}
1943 }
1944 
1945 /*
1946  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1947  * key of the port.
1948  */
1949 void
1950 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1951 {
1952 	struct rte_eth_rss_conf rss_conf;
1953 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1954 	uint64_t rss_hf;
1955 	uint8_t i;
1956 	int diag;
1957 	struct rte_eth_dev_info dev_info;
1958 	uint8_t hash_key_size;
1959 
1960 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1961 		return;
1962 
1963 	memset(&dev_info, 0, sizeof(dev_info));
1964 	rte_eth_dev_info_get(port_id, &dev_info);
1965 	if (dev_info.hash_key_size > 0 &&
1966 			dev_info.hash_key_size <= sizeof(rss_key))
1967 		hash_key_size = dev_info.hash_key_size;
1968 	else {
1969 		printf("dev_info did not provide a valid hash key size\n");
1970 		return;
1971 	}
1972 
1973 	rss_conf.rss_hf = 0;
1974 	for (i = 0; rss_type_table[i].str; i++) {
1975 		if (!strcmp(rss_info, rss_type_table[i].str))
1976 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1977 	}
1978 
1979 	/* Get RSS hash key if asked to display it */
1980 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1981 	rss_conf.rss_key_len = hash_key_size;
1982 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1983 	if (diag != 0) {
1984 		switch (diag) {
1985 		case -ENODEV:
1986 			printf("port index %d invalid\n", port_id);
1987 			break;
1988 		case -ENOTSUP:
1989 			printf("operation not supported by device\n");
1990 			break;
1991 		default:
1992 			printf("operation failed - diag=%d\n", diag);
1993 			break;
1994 		}
1995 		return;
1996 	}
1997 	rss_hf = rss_conf.rss_hf;
1998 	if (rss_hf == 0) {
1999 		printf("RSS disabled\n");
2000 		return;
2001 	}
2002 	printf("RSS functions:\n ");
2003 	for (i = 0; rss_type_table[i].str; i++) {
2004 		if (rss_hf & rss_type_table[i].rss_type)
2005 			printf("%s ", rss_type_table[i].str);
2006 	}
2007 	printf("\n");
2008 	if (!show_rss_key)
2009 		return;
2010 	printf("RSS key:\n");
2011 	for (i = 0; i < hash_key_size; i++)
2012 		printf("%02X", rss_key[i]);
2013 	printf("\n");
2014 }
2015 
2016 void
2017 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2018 			 uint hash_key_len)
2019 {
2020 	struct rte_eth_rss_conf rss_conf;
2021 	int diag;
2022 	unsigned int i;
2023 
2024 	rss_conf.rss_key = NULL;
2025 	rss_conf.rss_key_len = hash_key_len;
2026 	rss_conf.rss_hf = 0;
2027 	for (i = 0; rss_type_table[i].str; i++) {
2028 		if (!strcmp(rss_type_table[i].str, rss_type))
2029 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2030 	}
2031 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2032 	if (diag == 0) {
2033 		rss_conf.rss_key = hash_key;
2034 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2035 	}
2036 	if (diag == 0)
2037 		return;
2038 
2039 	switch (diag) {
2040 	case -ENODEV:
2041 		printf("port index %d invalid\n", port_id);
2042 		break;
2043 	case -ENOTSUP:
2044 		printf("operation not supported by device\n");
2045 		break;
2046 	default:
2047 		printf("operation failed - diag=%d\n", diag);
2048 		break;
2049 	}
2050 }
2051 
2052 /*
2053  * Setup forwarding configuration for each logical core.
2054  */
2055 static void
2056 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2057 {
2058 	streamid_t nb_fs_per_lcore;
2059 	streamid_t nb_fs;
2060 	streamid_t sm_id;
2061 	lcoreid_t  nb_extra;
2062 	lcoreid_t  nb_fc;
2063 	lcoreid_t  nb_lc;
2064 	lcoreid_t  lc_id;
2065 
2066 	nb_fs = cfg->nb_fwd_streams;
2067 	nb_fc = cfg->nb_fwd_lcores;
2068 	if (nb_fs <= nb_fc) {
2069 		nb_fs_per_lcore = 1;
2070 		nb_extra = 0;
2071 	} else {
2072 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2073 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2074 	}
2075 
2076 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2077 	sm_id = 0;
2078 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2079 		fwd_lcores[lc_id]->stream_idx = sm_id;
2080 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2081 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2082 	}
2083 
2084 	/*
2085 	 * Assign extra remaining streams, if any.
2086 	 */
2087 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2088 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2089 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2090 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2091 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2092 	}
2093 }
2094 
2095 static portid_t
2096 fwd_topology_tx_port_get(portid_t rxp)
2097 {
2098 	static int warning_once = 1;
2099 
2100 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2101 
2102 	switch (port_topology) {
2103 	default:
2104 	case PORT_TOPOLOGY_PAIRED:
2105 		if ((rxp & 0x1) == 0) {
2106 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2107 				return rxp + 1;
2108 			if (warning_once) {
2109 				printf("\nWarning! port-topology=paired"
2110 				       " and odd forward ports number,"
2111 				       " the last port will pair with"
2112 				       " itself.\n\n");
2113 				warning_once = 0;
2114 			}
2115 			return rxp;
2116 		}
2117 		return rxp - 1;
2118 	case PORT_TOPOLOGY_CHAINED:
2119 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2120 	case PORT_TOPOLOGY_LOOP:
2121 		return rxp;
2122 	}
2123 }
2124 
2125 static void
2126 simple_fwd_config_setup(void)
2127 {
2128 	portid_t i;
2129 
2130 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2131 	cur_fwd_config.nb_fwd_streams =
2132 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2133 
2134 	/* reinitialize forwarding streams */
2135 	init_fwd_streams();
2136 
2137 	/*
2138 	 * In the simple forwarding test, the number of forwarding cores
2139 	 * must be lower or equal to the number of forwarding ports.
2140 	 */
2141 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2142 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2143 		cur_fwd_config.nb_fwd_lcores =
2144 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2145 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2146 
2147 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2148 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2149 		fwd_streams[i]->rx_queue  = 0;
2150 		fwd_streams[i]->tx_port   =
2151 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2152 		fwd_streams[i]->tx_queue  = 0;
2153 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2154 		fwd_streams[i]->retry_enabled = retry_enabled;
2155 	}
2156 }
2157 
2158 /**
2159  * For the RSS forwarding test all streams distributed over lcores. Each stream
2160  * being composed of a RX queue to poll on a RX port for input messages,
2161  * associated with a TX queue of a TX port where to send forwarded packets.
2162  */
2163 static void
2164 rss_fwd_config_setup(void)
2165 {
2166 	portid_t   rxp;
2167 	portid_t   txp;
2168 	queueid_t  rxq;
2169 	queueid_t  nb_q;
2170 	streamid_t  sm_id;
2171 
2172 	nb_q = nb_rxq;
2173 	if (nb_q > nb_txq)
2174 		nb_q = nb_txq;
2175 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2176 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2177 	cur_fwd_config.nb_fwd_streams =
2178 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2179 
2180 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2181 		cur_fwd_config.nb_fwd_lcores =
2182 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2183 
2184 	/* reinitialize forwarding streams */
2185 	init_fwd_streams();
2186 
2187 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2188 	rxp = 0; rxq = 0;
2189 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2190 		struct fwd_stream *fs;
2191 
2192 		fs = fwd_streams[sm_id];
2193 		txp = fwd_topology_tx_port_get(rxp);
2194 		fs->rx_port = fwd_ports_ids[rxp];
2195 		fs->rx_queue = rxq;
2196 		fs->tx_port = fwd_ports_ids[txp];
2197 		fs->tx_queue = rxq;
2198 		fs->peer_addr = fs->tx_port;
2199 		fs->retry_enabled = retry_enabled;
2200 		rxp++;
2201 		if (rxp < nb_fwd_ports)
2202 			continue;
2203 		rxp = 0;
2204 		rxq++;
2205 	}
2206 }
2207 
2208 /**
2209  * For the DCB forwarding test, each core is assigned on each traffic class.
2210  *
2211  * Each core is assigned a multi-stream, each stream being composed of
2212  * a RX queue to poll on a RX port for input messages, associated with
2213  * a TX queue of a TX port where to send forwarded packets. All RX and
2214  * TX queues are mapping to the same traffic class.
2215  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2216  * the same core
2217  */
2218 static void
2219 dcb_fwd_config_setup(void)
2220 {
2221 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2222 	portid_t txp, rxp = 0;
2223 	queueid_t txq, rxq = 0;
2224 	lcoreid_t  lc_id;
2225 	uint16_t nb_rx_queue, nb_tx_queue;
2226 	uint16_t i, j, k, sm_id = 0;
2227 	uint8_t tc = 0;
2228 
2229 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2230 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2231 	cur_fwd_config.nb_fwd_streams =
2232 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2233 
2234 	/* reinitialize forwarding streams */
2235 	init_fwd_streams();
2236 	sm_id = 0;
2237 	txp = 1;
2238 	/* get the dcb info on the first RX and TX ports */
2239 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2240 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2241 
2242 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2243 		fwd_lcores[lc_id]->stream_nb = 0;
2244 		fwd_lcores[lc_id]->stream_idx = sm_id;
2245 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2246 			/* if the nb_queue is zero, means this tc is
2247 			 * not enabled on the POOL
2248 			 */
2249 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2250 				break;
2251 			k = fwd_lcores[lc_id]->stream_nb +
2252 				fwd_lcores[lc_id]->stream_idx;
2253 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2254 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2255 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2256 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2257 			for (j = 0; j < nb_rx_queue; j++) {
2258 				struct fwd_stream *fs;
2259 
2260 				fs = fwd_streams[k + j];
2261 				fs->rx_port = fwd_ports_ids[rxp];
2262 				fs->rx_queue = rxq + j;
2263 				fs->tx_port = fwd_ports_ids[txp];
2264 				fs->tx_queue = txq + j % nb_tx_queue;
2265 				fs->peer_addr = fs->tx_port;
2266 				fs->retry_enabled = retry_enabled;
2267 			}
2268 			fwd_lcores[lc_id]->stream_nb +=
2269 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2270 		}
2271 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2272 
2273 		tc++;
2274 		if (tc < rxp_dcb_info.nb_tcs)
2275 			continue;
2276 		/* Restart from TC 0 on next RX port */
2277 		tc = 0;
2278 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2279 			rxp = (portid_t)
2280 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2281 		else
2282 			rxp++;
2283 		if (rxp >= nb_fwd_ports)
2284 			return;
2285 		/* get the dcb information on next RX and TX ports */
2286 		if ((rxp & 0x1) == 0)
2287 			txp = (portid_t) (rxp + 1);
2288 		else
2289 			txp = (portid_t) (rxp - 1);
2290 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2291 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2292 	}
2293 }
2294 
2295 static void
2296 icmp_echo_config_setup(void)
2297 {
2298 	portid_t  rxp;
2299 	queueid_t rxq;
2300 	lcoreid_t lc_id;
2301 	uint16_t  sm_id;
2302 
2303 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2304 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2305 			(nb_txq * nb_fwd_ports);
2306 	else
2307 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2308 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2309 	cur_fwd_config.nb_fwd_streams =
2310 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2311 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2312 		cur_fwd_config.nb_fwd_lcores =
2313 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2314 	if (verbose_level > 0) {
2315 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2316 		       __FUNCTION__,
2317 		       cur_fwd_config.nb_fwd_lcores,
2318 		       cur_fwd_config.nb_fwd_ports,
2319 		       cur_fwd_config.nb_fwd_streams);
2320 	}
2321 
2322 	/* reinitialize forwarding streams */
2323 	init_fwd_streams();
2324 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2325 	rxp = 0; rxq = 0;
2326 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2327 		if (verbose_level > 0)
2328 			printf("  core=%d: \n", lc_id);
2329 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2330 			struct fwd_stream *fs;
2331 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2332 			fs->rx_port = fwd_ports_ids[rxp];
2333 			fs->rx_queue = rxq;
2334 			fs->tx_port = fs->rx_port;
2335 			fs->tx_queue = rxq;
2336 			fs->peer_addr = fs->tx_port;
2337 			fs->retry_enabled = retry_enabled;
2338 			if (verbose_level > 0)
2339 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2340 				       sm_id, fs->rx_port, fs->rx_queue,
2341 				       fs->tx_queue);
2342 			rxq = (queueid_t) (rxq + 1);
2343 			if (rxq == nb_rxq) {
2344 				rxq = 0;
2345 				rxp = (portid_t) (rxp + 1);
2346 			}
2347 		}
2348 	}
2349 }
2350 
2351 #if defined RTE_LIBRTE_PMD_SOFTNIC
2352 static void
2353 softnic_fwd_config_setup(void)
2354 {
2355 	struct rte_port *port;
2356 	portid_t pid, softnic_portid;
2357 	queueid_t i;
2358 	uint8_t softnic_enable = 0;
2359 
2360 	RTE_ETH_FOREACH_DEV(pid) {
2361 			port = &ports[pid];
2362 			const char *driver = port->dev_info.driver_name;
2363 
2364 			if (strcmp(driver, "net_softnic") == 0) {
2365 				softnic_portid = pid;
2366 				softnic_enable = 1;
2367 				break;
2368 			}
2369 	}
2370 
2371 	if (softnic_enable == 0) {
2372 		printf("Softnic mode not configured(%s)!\n", __func__);
2373 		return;
2374 	}
2375 
2376 	cur_fwd_config.nb_fwd_ports = 1;
2377 	cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq;
2378 
2379 	/* Re-initialize forwarding streams */
2380 	init_fwd_streams();
2381 
2382 	/*
2383 	 * In the softnic forwarding test, the number of forwarding cores
2384 	 * is set to one and remaining are used for softnic packet processing.
2385 	 */
2386 	cur_fwd_config.nb_fwd_lcores = 1;
2387 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2388 
2389 	for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) {
2390 		fwd_streams[i]->rx_port   = softnic_portid;
2391 		fwd_streams[i]->rx_queue  = i;
2392 		fwd_streams[i]->tx_port   = softnic_portid;
2393 		fwd_streams[i]->tx_queue  = i;
2394 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2395 		fwd_streams[i]->retry_enabled = retry_enabled;
2396 	}
2397 }
2398 #endif
2399 
2400 void
2401 fwd_config_setup(void)
2402 {
2403 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2404 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2405 		icmp_echo_config_setup();
2406 		return;
2407 	}
2408 
2409 #if defined RTE_LIBRTE_PMD_SOFTNIC
2410 	if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) {
2411 		softnic_fwd_config_setup();
2412 		return;
2413 	}
2414 #endif
2415 
2416 	if ((nb_rxq > 1) && (nb_txq > 1)){
2417 		if (dcb_config)
2418 			dcb_fwd_config_setup();
2419 		else
2420 			rss_fwd_config_setup();
2421 	}
2422 	else
2423 		simple_fwd_config_setup();
2424 }
2425 
2426 static const char *
2427 mp_alloc_to_str(uint8_t mode)
2428 {
2429 	switch (mode) {
2430 	case MP_ALLOC_NATIVE:
2431 		return "native";
2432 	case MP_ALLOC_ANON:
2433 		return "anon";
2434 	case MP_ALLOC_XMEM:
2435 		return "xmem";
2436 	case MP_ALLOC_XMEM_HUGE:
2437 		return "xmemhuge";
2438 	default:
2439 		return "invalid";
2440 	}
2441 }
2442 
2443 void
2444 pkt_fwd_config_display(struct fwd_config *cfg)
2445 {
2446 	struct fwd_stream *fs;
2447 	lcoreid_t  lc_id;
2448 	streamid_t sm_id;
2449 
2450 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2451 		"NUMA support %s, MP allocation mode: %s\n",
2452 		cfg->fwd_eng->fwd_mode_name,
2453 		retry_enabled == 0 ? "" : " with retry",
2454 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2455 		numa_support == 1 ? "enabled" : "disabled",
2456 		mp_alloc_to_str(mp_alloc_type));
2457 
2458 	if (retry_enabled)
2459 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2460 			burst_tx_retry_num, burst_tx_delay_time);
2461 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2462 		printf("Logical Core %u (socket %u) forwards packets on "
2463 		       "%d streams:",
2464 		       fwd_lcores_cpuids[lc_id],
2465 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2466 		       fwd_lcores[lc_id]->stream_nb);
2467 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2468 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2469 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2470 			       "P=%d/Q=%d (socket %u) ",
2471 			       fs->rx_port, fs->rx_queue,
2472 			       ports[fs->rx_port].socket_id,
2473 			       fs->tx_port, fs->tx_queue,
2474 			       ports[fs->tx_port].socket_id);
2475 			print_ethaddr("peer=",
2476 				      &peer_eth_addrs[fs->peer_addr]);
2477 		}
2478 		printf("\n");
2479 	}
2480 	printf("\n");
2481 }
2482 
2483 void
2484 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2485 {
2486 	uint8_t c, new_peer_addr[6];
2487 	if (!rte_eth_dev_is_valid_port(port_id)) {
2488 		printf("Error: Invalid port number %i\n", port_id);
2489 		return;
2490 	}
2491 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2492 					sizeof(new_peer_addr)) < 0) {
2493 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2494 		return;
2495 	}
2496 	for (c = 0; c < 6; c++)
2497 		peer_eth_addrs[port_id].addr_bytes[c] =
2498 			new_peer_addr[c];
2499 }
2500 
2501 int
2502 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2503 {
2504 	unsigned int i;
2505 	unsigned int lcore_cpuid;
2506 	int record_now;
2507 
2508 	record_now = 0;
2509  again:
2510 	for (i = 0; i < nb_lc; i++) {
2511 		lcore_cpuid = lcorelist[i];
2512 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2513 			printf("lcore %u not enabled\n", lcore_cpuid);
2514 			return -1;
2515 		}
2516 		if (lcore_cpuid == rte_get_master_lcore()) {
2517 			printf("lcore %u cannot be masked on for running "
2518 			       "packet forwarding, which is the master lcore "
2519 			       "and reserved for command line parsing only\n",
2520 			       lcore_cpuid);
2521 			return -1;
2522 		}
2523 		if (record_now)
2524 			fwd_lcores_cpuids[i] = lcore_cpuid;
2525 	}
2526 	if (record_now == 0) {
2527 		record_now = 1;
2528 		goto again;
2529 	}
2530 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2531 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2532 		printf("previous number of forwarding cores %u - changed to "
2533 		       "number of configured cores %u\n",
2534 		       (unsigned int) nb_fwd_lcores, nb_lc);
2535 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 int
2542 set_fwd_lcores_mask(uint64_t lcoremask)
2543 {
2544 	unsigned int lcorelist[64];
2545 	unsigned int nb_lc;
2546 	unsigned int i;
2547 
2548 	if (lcoremask == 0) {
2549 		printf("Invalid NULL mask of cores\n");
2550 		return -1;
2551 	}
2552 	nb_lc = 0;
2553 	for (i = 0; i < 64; i++) {
2554 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2555 			continue;
2556 		lcorelist[nb_lc++] = i;
2557 	}
2558 	return set_fwd_lcores_list(lcorelist, nb_lc);
2559 }
2560 
2561 void
2562 set_fwd_lcores_number(uint16_t nb_lc)
2563 {
2564 	if (nb_lc > nb_cfg_lcores) {
2565 		printf("nb fwd cores %u > %u (max. number of configured "
2566 		       "lcores) - ignored\n",
2567 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2568 		return;
2569 	}
2570 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2571 	printf("Number of forwarding cores set to %u\n",
2572 	       (unsigned int) nb_fwd_lcores);
2573 }
2574 
2575 void
2576 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2577 {
2578 	unsigned int i;
2579 	portid_t port_id;
2580 	int record_now;
2581 
2582 	record_now = 0;
2583  again:
2584 	for (i = 0; i < nb_pt; i++) {
2585 		port_id = (portid_t) portlist[i];
2586 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2587 			return;
2588 		if (record_now)
2589 			fwd_ports_ids[i] = port_id;
2590 	}
2591 	if (record_now == 0) {
2592 		record_now = 1;
2593 		goto again;
2594 	}
2595 	nb_cfg_ports = (portid_t) nb_pt;
2596 	if (nb_fwd_ports != (portid_t) nb_pt) {
2597 		printf("previous number of forwarding ports %u - changed to "
2598 		       "number of configured ports %u\n",
2599 		       (unsigned int) nb_fwd_ports, nb_pt);
2600 		nb_fwd_ports = (portid_t) nb_pt;
2601 	}
2602 }
2603 
2604 void
2605 set_fwd_ports_mask(uint64_t portmask)
2606 {
2607 	unsigned int portlist[64];
2608 	unsigned int nb_pt;
2609 	unsigned int i;
2610 
2611 	if (portmask == 0) {
2612 		printf("Invalid NULL mask of ports\n");
2613 		return;
2614 	}
2615 	nb_pt = 0;
2616 	RTE_ETH_FOREACH_DEV(i) {
2617 		if (! ((uint64_t)(1ULL << i) & portmask))
2618 			continue;
2619 		portlist[nb_pt++] = i;
2620 	}
2621 	set_fwd_ports_list(portlist, nb_pt);
2622 }
2623 
2624 void
2625 set_fwd_ports_number(uint16_t nb_pt)
2626 {
2627 	if (nb_pt > nb_cfg_ports) {
2628 		printf("nb fwd ports %u > %u (number of configured "
2629 		       "ports) - ignored\n",
2630 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2631 		return;
2632 	}
2633 	nb_fwd_ports = (portid_t) nb_pt;
2634 	printf("Number of forwarding ports set to %u\n",
2635 	       (unsigned int) nb_fwd_ports);
2636 }
2637 
2638 int
2639 port_is_forwarding(portid_t port_id)
2640 {
2641 	unsigned int i;
2642 
2643 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2644 		return -1;
2645 
2646 	for (i = 0; i < nb_fwd_ports; i++) {
2647 		if (fwd_ports_ids[i] == port_id)
2648 			return 1;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 void
2655 set_nb_pkt_per_burst(uint16_t nb)
2656 {
2657 	if (nb > MAX_PKT_BURST) {
2658 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2659 		       " ignored\n",
2660 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2661 		return;
2662 	}
2663 	nb_pkt_per_burst = nb;
2664 	printf("Number of packets per burst set to %u\n",
2665 	       (unsigned int) nb_pkt_per_burst);
2666 }
2667 
2668 static const char *
2669 tx_split_get_name(enum tx_pkt_split split)
2670 {
2671 	uint32_t i;
2672 
2673 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2674 		if (tx_split_name[i].split == split)
2675 			return tx_split_name[i].name;
2676 	}
2677 	return NULL;
2678 }
2679 
2680 void
2681 set_tx_pkt_split(const char *name)
2682 {
2683 	uint32_t i;
2684 
2685 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2686 		if (strcmp(tx_split_name[i].name, name) == 0) {
2687 			tx_pkt_split = tx_split_name[i].split;
2688 			return;
2689 		}
2690 	}
2691 	printf("unknown value: \"%s\"\n", name);
2692 }
2693 
2694 void
2695 show_tx_pkt_segments(void)
2696 {
2697 	uint32_t i, n;
2698 	const char *split;
2699 
2700 	n = tx_pkt_nb_segs;
2701 	split = tx_split_get_name(tx_pkt_split);
2702 
2703 	printf("Number of segments: %u\n", n);
2704 	printf("Segment sizes: ");
2705 	for (i = 0; i != n - 1; i++)
2706 		printf("%hu,", tx_pkt_seg_lengths[i]);
2707 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2708 	printf("Split packet: %s\n", split);
2709 }
2710 
2711 void
2712 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2713 {
2714 	uint16_t tx_pkt_len;
2715 	unsigned i;
2716 
2717 	if (nb_segs >= (unsigned) nb_txd) {
2718 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2719 		       nb_segs, (unsigned int) nb_txd);
2720 		return;
2721 	}
2722 
2723 	/*
2724 	 * Check that each segment length is greater or equal than
2725 	 * the mbuf data sise.
2726 	 * Check also that the total packet length is greater or equal than the
2727 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2728 	 */
2729 	tx_pkt_len = 0;
2730 	for (i = 0; i < nb_segs; i++) {
2731 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2732 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2733 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2734 			return;
2735 		}
2736 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2737 	}
2738 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2739 		printf("total packet length=%u < %d - give up\n",
2740 				(unsigned) tx_pkt_len,
2741 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2742 		return;
2743 	}
2744 
2745 	for (i = 0; i < nb_segs; i++)
2746 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2747 
2748 	tx_pkt_length  = tx_pkt_len;
2749 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2750 }
2751 
2752 void
2753 setup_gro(const char *onoff, portid_t port_id)
2754 {
2755 	if (!rte_eth_dev_is_valid_port(port_id)) {
2756 		printf("invalid port id %u\n", port_id);
2757 		return;
2758 	}
2759 	if (test_done == 0) {
2760 		printf("Before enable/disable GRO,"
2761 				" please stop forwarding first\n");
2762 		return;
2763 	}
2764 	if (strcmp(onoff, "on") == 0) {
2765 		if (gro_ports[port_id].enable != 0) {
2766 			printf("Port %u has enabled GRO. Please"
2767 					" disable GRO first\n", port_id);
2768 			return;
2769 		}
2770 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2771 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2772 			gro_ports[port_id].param.max_flow_num =
2773 				GRO_DEFAULT_FLOW_NUM;
2774 			gro_ports[port_id].param.max_item_per_flow =
2775 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2776 		}
2777 		gro_ports[port_id].enable = 1;
2778 	} else {
2779 		if (gro_ports[port_id].enable == 0) {
2780 			printf("Port %u has disabled GRO\n", port_id);
2781 			return;
2782 		}
2783 		gro_ports[port_id].enable = 0;
2784 	}
2785 }
2786 
2787 void
2788 setup_gro_flush_cycles(uint8_t cycles)
2789 {
2790 	if (test_done == 0) {
2791 		printf("Before change flush interval for GRO,"
2792 				" please stop forwarding first.\n");
2793 		return;
2794 	}
2795 
2796 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2797 			GRO_DEFAULT_FLUSH_CYCLES) {
2798 		printf("The flushing cycle be in the range"
2799 				" of 1 to %u. Revert to the default"
2800 				" value %u.\n",
2801 				GRO_MAX_FLUSH_CYCLES,
2802 				GRO_DEFAULT_FLUSH_CYCLES);
2803 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2804 	}
2805 
2806 	gro_flush_cycles = cycles;
2807 }
2808 
2809 void
2810 show_gro(portid_t port_id)
2811 {
2812 	struct rte_gro_param *param;
2813 	uint32_t max_pkts_num;
2814 
2815 	param = &gro_ports[port_id].param;
2816 
2817 	if (!rte_eth_dev_is_valid_port(port_id)) {
2818 		printf("Invalid port id %u.\n", port_id);
2819 		return;
2820 	}
2821 	if (gro_ports[port_id].enable) {
2822 		printf("GRO type: TCP/IPv4\n");
2823 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2824 			max_pkts_num = param->max_flow_num *
2825 				param->max_item_per_flow;
2826 		} else
2827 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2828 		printf("Max number of packets to perform GRO: %u\n",
2829 				max_pkts_num);
2830 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2831 	} else
2832 		printf("Port %u doesn't enable GRO.\n", port_id);
2833 }
2834 
2835 void
2836 setup_gso(const char *mode, portid_t port_id)
2837 {
2838 	if (!rte_eth_dev_is_valid_port(port_id)) {
2839 		printf("invalid port id %u\n", port_id);
2840 		return;
2841 	}
2842 	if (strcmp(mode, "on") == 0) {
2843 		if (test_done == 0) {
2844 			printf("before enabling GSO,"
2845 					" please stop forwarding first\n");
2846 			return;
2847 		}
2848 		gso_ports[port_id].enable = 1;
2849 	} else if (strcmp(mode, "off") == 0) {
2850 		if (test_done == 0) {
2851 			printf("before disabling GSO,"
2852 					" please stop forwarding first\n");
2853 			return;
2854 		}
2855 		gso_ports[port_id].enable = 0;
2856 	}
2857 }
2858 
2859 char*
2860 list_pkt_forwarding_modes(void)
2861 {
2862 	static char fwd_modes[128] = "";
2863 	const char *separator = "|";
2864 	struct fwd_engine *fwd_eng;
2865 	unsigned i = 0;
2866 
2867 	if (strlen (fwd_modes) == 0) {
2868 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2869 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2870 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2871 			strncat(fwd_modes, separator,
2872 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2873 		}
2874 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2875 	}
2876 
2877 	return fwd_modes;
2878 }
2879 
2880 char*
2881 list_pkt_forwarding_retry_modes(void)
2882 {
2883 	static char fwd_modes[128] = "";
2884 	const char *separator = "|";
2885 	struct fwd_engine *fwd_eng;
2886 	unsigned i = 0;
2887 
2888 	if (strlen(fwd_modes) == 0) {
2889 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2890 			if (fwd_eng == &rx_only_engine)
2891 				continue;
2892 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2893 					sizeof(fwd_modes) -
2894 					strlen(fwd_modes) - 1);
2895 			strncat(fwd_modes, separator,
2896 					sizeof(fwd_modes) -
2897 					strlen(fwd_modes) - 1);
2898 		}
2899 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2900 	}
2901 
2902 	return fwd_modes;
2903 }
2904 
2905 void
2906 set_pkt_forwarding_mode(const char *fwd_mode_name)
2907 {
2908 	struct fwd_engine *fwd_eng;
2909 	unsigned i;
2910 
2911 	i = 0;
2912 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2913 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2914 			printf("Set %s packet forwarding mode%s\n",
2915 			       fwd_mode_name,
2916 			       retry_enabled == 0 ? "" : " with retry");
2917 			cur_fwd_eng = fwd_eng;
2918 			return;
2919 		}
2920 		i++;
2921 	}
2922 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2923 }
2924 
2925 void
2926 set_verbose_level(uint16_t vb_level)
2927 {
2928 	printf("Change verbose level from %u to %u\n",
2929 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2930 	verbose_level = vb_level;
2931 }
2932 
2933 void
2934 vlan_extend_set(portid_t port_id, int on)
2935 {
2936 	int diag;
2937 	int vlan_offload;
2938 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2939 
2940 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2941 		return;
2942 
2943 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2944 
2945 	if (on) {
2946 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2947 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2948 	} else {
2949 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2950 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2951 	}
2952 
2953 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2954 	if (diag < 0)
2955 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2956 	       "diag=%d\n", port_id, on, diag);
2957 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2958 }
2959 
2960 void
2961 rx_vlan_strip_set(portid_t port_id, int on)
2962 {
2963 	int diag;
2964 	int vlan_offload;
2965 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2966 
2967 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2968 		return;
2969 
2970 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2971 
2972 	if (on) {
2973 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2974 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2975 	} else {
2976 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2977 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2978 	}
2979 
2980 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2981 	if (diag < 0)
2982 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2983 	       "diag=%d\n", port_id, on, diag);
2984 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2985 }
2986 
2987 void
2988 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2989 {
2990 	int diag;
2991 
2992 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2993 		return;
2994 
2995 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2996 	if (diag < 0)
2997 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2998 	       "diag=%d\n", port_id, queue_id, on, diag);
2999 }
3000 
3001 void
3002 rx_vlan_filter_set(portid_t port_id, int on)
3003 {
3004 	int diag;
3005 	int vlan_offload;
3006 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
3007 
3008 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3009 		return;
3010 
3011 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3012 
3013 	if (on) {
3014 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
3015 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
3016 	} else {
3017 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
3018 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
3019 	}
3020 
3021 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
3022 	if (diag < 0)
3023 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
3024 	       "diag=%d\n", port_id, on, diag);
3025 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
3026 }
3027 
3028 int
3029 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
3030 {
3031 	int diag;
3032 
3033 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3034 		return 1;
3035 	if (vlan_id_is_invalid(vlan_id))
3036 		return 1;
3037 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
3038 	if (diag == 0)
3039 		return 0;
3040 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
3041 	       "diag=%d\n",
3042 	       port_id, vlan_id, on, diag);
3043 	return -1;
3044 }
3045 
3046 void
3047 rx_vlan_all_filter_set(portid_t port_id, int on)
3048 {
3049 	uint16_t vlan_id;
3050 
3051 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3052 		return;
3053 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
3054 		if (rx_vft_set(port_id, vlan_id, on))
3055 			break;
3056 	}
3057 }
3058 
3059 void
3060 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
3061 {
3062 	int diag;
3063 
3064 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3065 		return;
3066 
3067 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
3068 	if (diag == 0)
3069 		return;
3070 
3071 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
3072 	       "diag=%d\n",
3073 	       port_id, vlan_type, tp_id, diag);
3074 }
3075 
3076 void
3077 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
3078 {
3079 	int vlan_offload;
3080 	struct rte_eth_dev_info dev_info;
3081 
3082 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3083 		return;
3084 	if (vlan_id_is_invalid(vlan_id))
3085 		return;
3086 
3087 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3088 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
3089 		printf("Error, as QinQ has been enabled.\n");
3090 		return;
3091 	}
3092 	rte_eth_dev_info_get(port_id, &dev_info);
3093 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
3094 		printf("Error: vlan insert is not supported by port %d\n",
3095 			port_id);
3096 		return;
3097 	}
3098 
3099 	tx_vlan_reset(port_id);
3100 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
3101 	ports[port_id].tx_vlan_id = vlan_id;
3102 }
3103 
3104 void
3105 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
3106 {
3107 	int vlan_offload;
3108 	struct rte_eth_dev_info dev_info;
3109 
3110 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3111 		return;
3112 	if (vlan_id_is_invalid(vlan_id))
3113 		return;
3114 	if (vlan_id_is_invalid(vlan_id_outer))
3115 		return;
3116 
3117 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3118 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
3119 		printf("Error, as QinQ hasn't been enabled.\n");
3120 		return;
3121 	}
3122 	rte_eth_dev_info_get(port_id, &dev_info);
3123 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
3124 		printf("Error: qinq insert not supported by port %d\n",
3125 			port_id);
3126 		return;
3127 	}
3128 
3129 	tx_vlan_reset(port_id);
3130 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
3131 	ports[port_id].tx_vlan_id = vlan_id;
3132 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
3133 }
3134 
3135 void
3136 tx_vlan_reset(portid_t port_id)
3137 {
3138 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3139 		return;
3140 	ports[port_id].dev_conf.txmode.offloads &=
3141 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
3142 				  DEV_TX_OFFLOAD_QINQ_INSERT);
3143 	ports[port_id].tx_vlan_id = 0;
3144 	ports[port_id].tx_vlan_id_outer = 0;
3145 }
3146 
3147 void
3148 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
3149 {
3150 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3151 		return;
3152 
3153 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
3154 }
3155 
3156 void
3157 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
3158 {
3159 	uint16_t i;
3160 	uint8_t existing_mapping_found = 0;
3161 
3162 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3163 		return;
3164 
3165 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3166 		return;
3167 
3168 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3169 		printf("map_value not in required range 0..%d\n",
3170 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3171 		return;
3172 	}
3173 
3174 	if (!is_rx) { /*then tx*/
3175 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3176 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3177 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3178 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3179 				existing_mapping_found = 1;
3180 				break;
3181 			}
3182 		}
3183 		if (!existing_mapping_found) { /* A new additional mapping... */
3184 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3185 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3186 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3187 			nb_tx_queue_stats_mappings++;
3188 		}
3189 	}
3190 	else { /*rx*/
3191 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3192 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3193 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3194 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3195 				existing_mapping_found = 1;
3196 				break;
3197 			}
3198 		}
3199 		if (!existing_mapping_found) { /* A new additional mapping... */
3200 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3201 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3202 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3203 			nb_rx_queue_stats_mappings++;
3204 		}
3205 	}
3206 }
3207 
3208 void
3209 set_xstats_hide_zero(uint8_t on_off)
3210 {
3211 	xstats_hide_zero = on_off;
3212 }
3213 
3214 static inline void
3215 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3216 {
3217 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3218 
3219 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3220 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3221 			" tunnel_id: 0x%08x",
3222 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3223 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3224 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3225 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3226 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3227 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3228 
3229 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3230 			rte_be_to_cpu_16(mask->src_port_mask),
3231 			rte_be_to_cpu_16(mask->dst_port_mask));
3232 
3233 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3234 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3235 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3236 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3237 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3238 
3239 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3240 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3241 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3242 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3243 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3244 	}
3245 
3246 	printf("\n");
3247 }
3248 
3249 static inline void
3250 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3251 {
3252 	struct rte_eth_flex_payload_cfg *cfg;
3253 	uint32_t i, j;
3254 
3255 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3256 		cfg = &flex_conf->flex_set[i];
3257 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3258 			printf("\n    RAW:  ");
3259 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3260 			printf("\n    L2_PAYLOAD:  ");
3261 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3262 			printf("\n    L3_PAYLOAD:  ");
3263 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3264 			printf("\n    L4_PAYLOAD:  ");
3265 		else
3266 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3267 		for (j = 0; j < num; j++)
3268 			printf("  %-5u", cfg->src_offset[j]);
3269 	}
3270 	printf("\n");
3271 }
3272 
3273 static char *
3274 flowtype_to_str(uint16_t flow_type)
3275 {
3276 	struct flow_type_info {
3277 		char str[32];
3278 		uint16_t ftype;
3279 	};
3280 
3281 	uint8_t i;
3282 	static struct flow_type_info flowtype_str_table[] = {
3283 		{"raw", RTE_ETH_FLOW_RAW},
3284 		{"ipv4", RTE_ETH_FLOW_IPV4},
3285 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3286 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3287 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3288 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3289 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3290 		{"ipv6", RTE_ETH_FLOW_IPV6},
3291 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3292 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3293 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3294 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3295 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3296 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3297 		{"port", RTE_ETH_FLOW_PORT},
3298 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3299 		{"geneve", RTE_ETH_FLOW_GENEVE},
3300 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3301 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3302 	};
3303 
3304 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3305 		if (flowtype_str_table[i].ftype == flow_type)
3306 			return flowtype_str_table[i].str;
3307 	}
3308 
3309 	return NULL;
3310 }
3311 
3312 static inline void
3313 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3314 {
3315 	struct rte_eth_fdir_flex_mask *mask;
3316 	uint32_t i, j;
3317 	char *p;
3318 
3319 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3320 		mask = &flex_conf->flex_mask[i];
3321 		p = flowtype_to_str(mask->flow_type);
3322 		printf("\n    %s:\t", p ? p : "unknown");
3323 		for (j = 0; j < num; j++)
3324 			printf(" %02x", mask->mask[j]);
3325 	}
3326 	printf("\n");
3327 }
3328 
3329 static inline void
3330 print_fdir_flow_type(uint32_t flow_types_mask)
3331 {
3332 	int i;
3333 	char *p;
3334 
3335 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3336 		if (!(flow_types_mask & (1 << i)))
3337 			continue;
3338 		p = flowtype_to_str(i);
3339 		if (p)
3340 			printf(" %s", p);
3341 		else
3342 			printf(" unknown");
3343 	}
3344 	printf("\n");
3345 }
3346 
3347 void
3348 fdir_get_infos(portid_t port_id)
3349 {
3350 	struct rte_eth_fdir_stats fdir_stat;
3351 	struct rte_eth_fdir_info fdir_info;
3352 	int ret;
3353 
3354 	static const char *fdir_stats_border = "########################";
3355 
3356 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3357 		return;
3358 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3359 	if (ret < 0) {
3360 		printf("\n FDIR is not supported on port %-2d\n",
3361 			port_id);
3362 		return;
3363 	}
3364 
3365 	memset(&fdir_info, 0, sizeof(fdir_info));
3366 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3367 			       RTE_ETH_FILTER_INFO, &fdir_info);
3368 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3369 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3370 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3371 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3372 	       fdir_stats_border, port_id, fdir_stats_border);
3373 	printf("  MODE: ");
3374 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3375 		printf("  PERFECT\n");
3376 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3377 		printf("  PERFECT-MAC-VLAN\n");
3378 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3379 		printf("  PERFECT-TUNNEL\n");
3380 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3381 		printf("  SIGNATURE\n");
3382 	else
3383 		printf("  DISABLE\n");
3384 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3385 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3386 		printf("  SUPPORTED FLOW TYPE: ");
3387 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3388 	}
3389 	printf("  FLEX PAYLOAD INFO:\n");
3390 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3391 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3392 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3393 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3394 		fdir_info.flex_payload_unit,
3395 		fdir_info.max_flex_payload_segment_num,
3396 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3397 	printf("  MASK: ");
3398 	print_fdir_mask(&fdir_info.mask);
3399 	if (fdir_info.flex_conf.nb_payloads > 0) {
3400 		printf("  FLEX PAYLOAD SRC OFFSET:");
3401 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3402 	}
3403 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3404 		printf("  FLEX MASK CFG:");
3405 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3406 	}
3407 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3408 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3409 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3410 	       fdir_info.guarant_spc, fdir_info.best_spc);
3411 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3412 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3413 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3414 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3415 	       fdir_stat.collision, fdir_stat.free,
3416 	       fdir_stat.maxhash, fdir_stat.maxlen,
3417 	       fdir_stat.add, fdir_stat.remove,
3418 	       fdir_stat.f_add, fdir_stat.f_remove);
3419 	printf("  %s############################%s\n",
3420 	       fdir_stats_border, fdir_stats_border);
3421 }
3422 
3423 void
3424 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3425 {
3426 	struct rte_port *port;
3427 	struct rte_eth_fdir_flex_conf *flex_conf;
3428 	int i, idx = 0;
3429 
3430 	port = &ports[port_id];
3431 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3432 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3433 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3434 			idx = i;
3435 			break;
3436 		}
3437 	}
3438 	if (i >= RTE_ETH_FLOW_MAX) {
3439 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3440 			idx = flex_conf->nb_flexmasks;
3441 			flex_conf->nb_flexmasks++;
3442 		} else {
3443 			printf("The flex mask table is full. Can not set flex"
3444 				" mask for flow_type(%u).", cfg->flow_type);
3445 			return;
3446 		}
3447 	}
3448 	rte_memcpy(&flex_conf->flex_mask[idx],
3449 			 cfg,
3450 			 sizeof(struct rte_eth_fdir_flex_mask));
3451 }
3452 
3453 void
3454 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3455 {
3456 	struct rte_port *port;
3457 	struct rte_eth_fdir_flex_conf *flex_conf;
3458 	int i, idx = 0;
3459 
3460 	port = &ports[port_id];
3461 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3462 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3463 		if (cfg->type == flex_conf->flex_set[i].type) {
3464 			idx = i;
3465 			break;
3466 		}
3467 	}
3468 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3469 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3470 			idx = flex_conf->nb_payloads;
3471 			flex_conf->nb_payloads++;
3472 		} else {
3473 			printf("The flex payload table is full. Can not set"
3474 				" flex payload for type(%u).", cfg->type);
3475 			return;
3476 		}
3477 	}
3478 	rte_memcpy(&flex_conf->flex_set[idx],
3479 			 cfg,
3480 			 sizeof(struct rte_eth_flex_payload_cfg));
3481 
3482 }
3483 
3484 void
3485 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3486 {
3487 #ifdef RTE_LIBRTE_IXGBE_PMD
3488 	int diag;
3489 
3490 	if (is_rx)
3491 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3492 	else
3493 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3494 
3495 	if (diag == 0)
3496 		return;
3497 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3498 			is_rx ? "rx" : "tx", port_id, diag);
3499 	return;
3500 #endif
3501 	printf("VF %s setting not supported for port %d\n",
3502 			is_rx ? "Rx" : "Tx", port_id);
3503 	RTE_SET_USED(vf);
3504 	RTE_SET_USED(on);
3505 }
3506 
3507 int
3508 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3509 {
3510 	int diag;
3511 	struct rte_eth_link link;
3512 
3513 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3514 		return 1;
3515 	rte_eth_link_get_nowait(port_id, &link);
3516 	if (rate > link.link_speed) {
3517 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3518 			rate, link.link_speed);
3519 		return 1;
3520 	}
3521 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3522 	if (diag == 0)
3523 		return diag;
3524 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3525 		port_id, diag);
3526 	return diag;
3527 }
3528 
3529 int
3530 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3531 {
3532 	int diag = -ENOTSUP;
3533 
3534 	RTE_SET_USED(vf);
3535 	RTE_SET_USED(rate);
3536 	RTE_SET_USED(q_msk);
3537 
3538 #ifdef RTE_LIBRTE_IXGBE_PMD
3539 	if (diag == -ENOTSUP)
3540 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3541 						       q_msk);
3542 #endif
3543 #ifdef RTE_LIBRTE_BNXT_PMD
3544 	if (diag == -ENOTSUP)
3545 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3546 #endif
3547 	if (diag == 0)
3548 		return diag;
3549 
3550 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3551 		port_id, diag);
3552 	return diag;
3553 }
3554 
3555 /*
3556  * Functions to manage the set of filtered Multicast MAC addresses.
3557  *
3558  * A pool of filtered multicast MAC addresses is associated with each port.
3559  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3560  * The address of the pool and the number of valid multicast MAC addresses
3561  * recorded in the pool are stored in the fields "mc_addr_pool" and
3562  * "mc_addr_nb" of the "rte_port" data structure.
3563  *
3564  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3565  * to be supplied a contiguous array of multicast MAC addresses.
3566  * To comply with this constraint, the set of multicast addresses recorded
3567  * into the pool are systematically compacted at the beginning of the pool.
3568  * Hence, when a multicast address is removed from the pool, all following
3569  * addresses, if any, are copied back to keep the set contiguous.
3570  */
3571 #define MCAST_POOL_INC 32
3572 
3573 static int
3574 mcast_addr_pool_extend(struct rte_port *port)
3575 {
3576 	struct ether_addr *mc_pool;
3577 	size_t mc_pool_size;
3578 
3579 	/*
3580 	 * If a free entry is available at the end of the pool, just
3581 	 * increment the number of recorded multicast addresses.
3582 	 */
3583 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3584 		port->mc_addr_nb++;
3585 		return 0;
3586 	}
3587 
3588 	/*
3589 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3590 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3591 	 * of MCAST_POOL_INC.
3592 	 */
3593 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3594 						    MCAST_POOL_INC);
3595 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3596 						mc_pool_size);
3597 	if (mc_pool == NULL) {
3598 		printf("allocation of pool of %u multicast addresses failed\n",
3599 		       port->mc_addr_nb + MCAST_POOL_INC);
3600 		return -ENOMEM;
3601 	}
3602 
3603 	port->mc_addr_pool = mc_pool;
3604 	port->mc_addr_nb++;
3605 	return 0;
3606 
3607 }
3608 
3609 static void
3610 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3611 {
3612 	port->mc_addr_nb--;
3613 	if (addr_idx == port->mc_addr_nb) {
3614 		/* No need to recompact the set of multicast addressses. */
3615 		if (port->mc_addr_nb == 0) {
3616 			/* free the pool of multicast addresses. */
3617 			free(port->mc_addr_pool);
3618 			port->mc_addr_pool = NULL;
3619 		}
3620 		return;
3621 	}
3622 	memmove(&port->mc_addr_pool[addr_idx],
3623 		&port->mc_addr_pool[addr_idx + 1],
3624 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3625 }
3626 
3627 static void
3628 eth_port_multicast_addr_list_set(portid_t port_id)
3629 {
3630 	struct rte_port *port;
3631 	int diag;
3632 
3633 	port = &ports[port_id];
3634 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3635 					    port->mc_addr_nb);
3636 	if (diag == 0)
3637 		return;
3638 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3639 	       port->mc_addr_nb, port_id, -diag);
3640 }
3641 
3642 void
3643 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3644 {
3645 	struct rte_port *port;
3646 	uint32_t i;
3647 
3648 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3649 		return;
3650 
3651 	port = &ports[port_id];
3652 
3653 	/*
3654 	 * Check that the added multicast MAC address is not already recorded
3655 	 * in the pool of multicast addresses.
3656 	 */
3657 	for (i = 0; i < port->mc_addr_nb; i++) {
3658 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3659 			printf("multicast address already filtered by port\n");
3660 			return;
3661 		}
3662 	}
3663 
3664 	if (mcast_addr_pool_extend(port) != 0)
3665 		return;
3666 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3667 	eth_port_multicast_addr_list_set(port_id);
3668 }
3669 
3670 void
3671 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3672 {
3673 	struct rte_port *port;
3674 	uint32_t i;
3675 
3676 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3677 		return;
3678 
3679 	port = &ports[port_id];
3680 
3681 	/*
3682 	 * Search the pool of multicast MAC addresses for the removed address.
3683 	 */
3684 	for (i = 0; i < port->mc_addr_nb; i++) {
3685 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3686 			break;
3687 	}
3688 	if (i == port->mc_addr_nb) {
3689 		printf("multicast address not filtered by port %d\n", port_id);
3690 		return;
3691 	}
3692 
3693 	mcast_addr_pool_remove(port, i);
3694 	eth_port_multicast_addr_list_set(port_id);
3695 }
3696 
3697 void
3698 port_dcb_info_display(portid_t port_id)
3699 {
3700 	struct rte_eth_dcb_info dcb_info;
3701 	uint16_t i;
3702 	int ret;
3703 	static const char *border = "================";
3704 
3705 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3706 		return;
3707 
3708 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3709 	if (ret) {
3710 		printf("\n Failed to get dcb infos on port %-2d\n",
3711 			port_id);
3712 		return;
3713 	}
3714 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3715 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3716 	printf("\n  TC :        ");
3717 	for (i = 0; i < dcb_info.nb_tcs; i++)
3718 		printf("\t%4d", i);
3719 	printf("\n  Priority :  ");
3720 	for (i = 0; i < dcb_info.nb_tcs; i++)
3721 		printf("\t%4d", dcb_info.prio_tc[i]);
3722 	printf("\n  BW percent :");
3723 	for (i = 0; i < dcb_info.nb_tcs; i++)
3724 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3725 	printf("\n  RXQ base :  ");
3726 	for (i = 0; i < dcb_info.nb_tcs; i++)
3727 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3728 	printf("\n  RXQ number :");
3729 	for (i = 0; i < dcb_info.nb_tcs; i++)
3730 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3731 	printf("\n  TXQ base :  ");
3732 	for (i = 0; i < dcb_info.nb_tcs; i++)
3733 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3734 	printf("\n  TXQ number :");
3735 	for (i = 0; i < dcb_info.nb_tcs; i++)
3736 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3737 	printf("\n");
3738 }
3739 
3740 uint8_t *
3741 open_file(const char *file_path, uint32_t *size)
3742 {
3743 	int fd = open(file_path, O_RDONLY);
3744 	off_t pkg_size;
3745 	uint8_t *buf = NULL;
3746 	int ret = 0;
3747 	struct stat st_buf;
3748 
3749 	if (size)
3750 		*size = 0;
3751 
3752 	if (fd == -1) {
3753 		printf("%s: Failed to open %s\n", __func__, file_path);
3754 		return buf;
3755 	}
3756 
3757 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3758 		close(fd);
3759 		printf("%s: File operations failed\n", __func__);
3760 		return buf;
3761 	}
3762 
3763 	pkg_size = st_buf.st_size;
3764 	if (pkg_size < 0) {
3765 		close(fd);
3766 		printf("%s: File operations failed\n", __func__);
3767 		return buf;
3768 	}
3769 
3770 	buf = (uint8_t *)malloc(pkg_size);
3771 	if (!buf) {
3772 		close(fd);
3773 		printf("%s: Failed to malloc memory\n",	__func__);
3774 		return buf;
3775 	}
3776 
3777 	ret = read(fd, buf, pkg_size);
3778 	if (ret < 0) {
3779 		close(fd);
3780 		printf("%s: File read operation failed\n", __func__);
3781 		close_file(buf);
3782 		return NULL;
3783 	}
3784 
3785 	if (size)
3786 		*size = pkg_size;
3787 
3788 	close(fd);
3789 
3790 	return buf;
3791 }
3792 
3793 int
3794 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3795 {
3796 	FILE *fh = fopen(file_path, "wb");
3797 
3798 	if (fh == NULL) {
3799 		printf("%s: Failed to open %s\n", __func__, file_path);
3800 		return -1;
3801 	}
3802 
3803 	if (fwrite(buf, 1, size, fh) != size) {
3804 		fclose(fh);
3805 		printf("%s: File write operation failed\n", __func__);
3806 		return -1;
3807 	}
3808 
3809 	fclose(fh);
3810 
3811 	return 0;
3812 }
3813 
3814 int
3815 close_file(uint8_t *buf)
3816 {
3817 	if (buf) {
3818 		free((void *)buf);
3819 		return 0;
3820 	}
3821 
3822 	return -1;
3823 }
3824 
3825 void
3826 port_queue_region_info_display(portid_t port_id, void *buf)
3827 {
3828 #ifdef RTE_LIBRTE_I40E_PMD
3829 	uint16_t i, j;
3830 	struct rte_pmd_i40e_queue_regions *info =
3831 		(struct rte_pmd_i40e_queue_regions *)buf;
3832 	static const char *queue_region_info_stats_border = "-------";
3833 
3834 	if (!info->queue_region_number)
3835 		printf("there is no region has been set before");
3836 
3837 	printf("\n	%s All queue region info for port=%2d %s",
3838 			queue_region_info_stats_border, port_id,
3839 			queue_region_info_stats_border);
3840 	printf("\n	queue_region_number: %-14u \n",
3841 			info->queue_region_number);
3842 
3843 	for (i = 0; i < info->queue_region_number; i++) {
3844 		printf("\n	region_id: %-14u queue_number: %-14u "
3845 			"queue_start_index: %-14u \n",
3846 			info->region[i].region_id,
3847 			info->region[i].queue_num,
3848 			info->region[i].queue_start_index);
3849 
3850 		printf("  user_priority_num is	%-14u :",
3851 					info->region[i].user_priority_num);
3852 		for (j = 0; j < info->region[i].user_priority_num; j++)
3853 			printf(" %-14u ", info->region[i].user_priority[j]);
3854 
3855 		printf("\n	flowtype_num is  %-14u :",
3856 				info->region[i].flowtype_num);
3857 		for (j = 0; j < info->region[i].flowtype_num; j++)
3858 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3859 	}
3860 #else
3861 	RTE_SET_USED(port_id);
3862 	RTE_SET_USED(buf);
3863 #endif
3864 
3865 	printf("\n\n");
3866 }
3867