xref: /dpdk/app/test-pmd/config.c (revision bb44fb6fe7713ddcd023d5b9bacadf074d68092e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 const struct rss_type_info rss_type_table[] = {
77 	{ "ipv4", ETH_RSS_IPV4 },
78 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83 	{ "ipv6", ETH_RSS_IPV6 },
84 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
90 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
91 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93 	{ "port", ETH_RSS_PORT },
94 	{ "vxlan", ETH_RSS_VXLAN },
95 	{ "geneve", ETH_RSS_GENEVE },
96 	{ "nvgre", ETH_RSS_NVGRE },
97 	{ "ip", ETH_RSS_IP },
98 	{ "udp", ETH_RSS_UDP },
99 	{ "tcp", ETH_RSS_TCP },
100 	{ "sctp", ETH_RSS_SCTP },
101 	{ "tunnel", ETH_RSS_TUNNEL },
102 	{ NULL, 0 },
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 
125 	static const char *nic_stats_border = "########################";
126 
127 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
128 		print_valid_ports();
129 		return;
130 	}
131 	rte_eth_stats_get(port_id, &stats);
132 	printf("\n  %s NIC statistics for port %-2d %s\n",
133 	       nic_stats_border, port_id, nic_stats_border);
134 
135 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
136 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
137 		       "%-"PRIu64"\n",
138 		       stats.ipackets, stats.imissed, stats.ibytes);
139 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
140 		printf("  RX-nombuf:  %-10"PRIu64"\n",
141 		       stats.rx_nombuf);
142 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
143 		       "%-"PRIu64"\n",
144 		       stats.opackets, stats.oerrors, stats.obytes);
145 	}
146 	else {
147 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
148 		       "    RX-bytes: %10"PRIu64"\n",
149 		       stats.ipackets, stats.ierrors, stats.ibytes);
150 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
151 		printf("  RX-nombuf:               %10"PRIu64"\n",
152 		       stats.rx_nombuf);
153 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
154 		       "    TX-bytes: %10"PRIu64"\n",
155 		       stats.opackets, stats.oerrors, stats.obytes);
156 	}
157 
158 	if (port->rx_queue_stats_mapping_enabled) {
159 		printf("\n");
160 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
161 			printf("  Stats reg %2d RX-packets: %10"PRIu64
162 			       "    RX-errors: %10"PRIu64
163 			       "    RX-bytes: %10"PRIu64"\n",
164 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
165 		}
166 	}
167 	if (port->tx_queue_stats_mapping_enabled) {
168 		printf("\n");
169 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
170 			printf("  Stats reg %2d TX-packets: %10"PRIu64
171 			       "                             TX-bytes: %10"PRIu64"\n",
172 			       i, stats.q_opackets[i], stats.q_obytes[i]);
173 		}
174 	}
175 
176 	diff_cycles = prev_cycles[port_id];
177 	prev_cycles[port_id] = rte_rdtsc();
178 	if (diff_cycles > 0)
179 		diff_cycles = prev_cycles[port_id] - diff_cycles;
180 
181 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
182 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
183 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
184 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
185 	prev_pkts_rx[port_id] = stats.ipackets;
186 	prev_pkts_tx[port_id] = stats.opackets;
187 	mpps_rx = diff_cycles > 0 ?
188 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
189 	mpps_tx = diff_cycles > 0 ?
190 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
191 	printf("\n  Throughput (since last show)\n");
192 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
193 			mpps_rx, mpps_tx);
194 
195 	printf("  %s############################%s\n",
196 	       nic_stats_border, nic_stats_border);
197 }
198 
199 void
200 nic_stats_clear(portid_t port_id)
201 {
202 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
203 		print_valid_ports();
204 		return;
205 	}
206 	rte_eth_stats_reset(port_id);
207 	printf("\n  NIC statistics for port %d cleared\n", port_id);
208 }
209 
210 void
211 nic_xstats_display(portid_t port_id)
212 {
213 	struct rte_eth_xstat *xstats;
214 	int cnt_xstats, idx_xstat;
215 	struct rte_eth_xstat_name *xstats_names;
216 
217 	printf("###### NIC extended statistics for port %-2d\n", port_id);
218 	if (!rte_eth_dev_is_valid_port(port_id)) {
219 		printf("Error: Invalid port number %i\n", port_id);
220 		return;
221 	}
222 
223 	/* Get count */
224 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
225 	if (cnt_xstats  < 0) {
226 		printf("Error: Cannot get count of xstats\n");
227 		return;
228 	}
229 
230 	/* Get id-name lookup table */
231 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
232 	if (xstats_names == NULL) {
233 		printf("Cannot allocate memory for xstats lookup\n");
234 		return;
235 	}
236 	if (cnt_xstats != rte_eth_xstats_get_names(
237 			port_id, xstats_names, cnt_xstats)) {
238 		printf("Error: Cannot get xstats lookup\n");
239 		free(xstats_names);
240 		return;
241 	}
242 
243 	/* Get stats themselves */
244 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
245 	if (xstats == NULL) {
246 		printf("Cannot allocate memory for xstats\n");
247 		free(xstats_names);
248 		return;
249 	}
250 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
251 		printf("Error: Unable to get xstats\n");
252 		free(xstats_names);
253 		free(xstats);
254 		return;
255 	}
256 
257 	/* Display xstats */
258 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
259 		if (xstats_hide_zero && !xstats[idx_xstat].value)
260 			continue;
261 		printf("%s: %"PRIu64"\n",
262 			xstats_names[idx_xstat].name,
263 			xstats[idx_xstat].value);
264 	}
265 	free(xstats_names);
266 	free(xstats);
267 }
268 
269 void
270 nic_xstats_clear(portid_t port_id)
271 {
272 	rte_eth_xstats_reset(port_id);
273 }
274 
275 void
276 nic_stats_mapping_display(portid_t port_id)
277 {
278 	struct rte_port *port = &ports[port_id];
279 	uint16_t i;
280 
281 	static const char *nic_stats_mapping_border = "########################";
282 
283 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
284 		print_valid_ports();
285 		return;
286 	}
287 
288 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
289 		printf("Port id %d - either does not support queue statistic mapping or"
290 		       " no queue statistic mapping set\n", port_id);
291 		return;
292 	}
293 
294 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
295 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
296 
297 	if (port->rx_queue_stats_mapping_enabled) {
298 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
299 			if (rx_queue_stats_mappings[i].port_id == port_id) {
300 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
301 				       rx_queue_stats_mappings[i].queue_id,
302 				       rx_queue_stats_mappings[i].stats_counter_id);
303 			}
304 		}
305 		printf("\n");
306 	}
307 
308 
309 	if (port->tx_queue_stats_mapping_enabled) {
310 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
311 			if (tx_queue_stats_mappings[i].port_id == port_id) {
312 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
313 				       tx_queue_stats_mappings[i].queue_id,
314 				       tx_queue_stats_mappings[i].stats_counter_id);
315 			}
316 		}
317 	}
318 
319 	printf("  %s####################################%s\n",
320 	       nic_stats_mapping_border, nic_stats_mapping_border);
321 }
322 
323 void
324 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
325 {
326 	struct rte_eth_rxq_info qinfo;
327 	int32_t rc;
328 	static const char *info_border = "*********************";
329 
330 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
331 	if (rc != 0) {
332 		printf("Failed to retrieve information for port: %u, "
333 			"RX queue: %hu\nerror desc: %s(%d)\n",
334 			port_id, queue_id, strerror(-rc), rc);
335 		return;
336 	}
337 
338 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
339 	       info_border, port_id, queue_id, info_border);
340 
341 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
342 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
343 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
344 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
345 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
346 	printf("\nRX drop packets: %s",
347 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
348 	printf("\nRX deferred start: %s",
349 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
350 	printf("\nRX scattered packets: %s",
351 		(qinfo.scattered_rx != 0) ? "on" : "off");
352 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
353 	printf("\n");
354 }
355 
356 void
357 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
358 {
359 	struct rte_eth_txq_info qinfo;
360 	int32_t rc;
361 	static const char *info_border = "*********************";
362 
363 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
364 	if (rc != 0) {
365 		printf("Failed to retrieve information for port: %u, "
366 			"TX queue: %hu\nerror desc: %s(%d)\n",
367 			port_id, queue_id, strerror(-rc), rc);
368 		return;
369 	}
370 
371 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
372 	       info_border, port_id, queue_id, info_border);
373 
374 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
375 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
376 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
377 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
378 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
379 	printf("\nTX deferred start: %s",
380 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
381 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
382 	printf("\n");
383 }
384 
385 void
386 port_infos_display(portid_t port_id)
387 {
388 	struct rte_port *port;
389 	struct ether_addr mac_addr;
390 	struct rte_eth_link link;
391 	struct rte_eth_dev_info dev_info;
392 	int vlan_offload;
393 	struct rte_mempool * mp;
394 	static const char *info_border = "*********************";
395 	uint16_t mtu;
396 	char name[RTE_ETH_NAME_MAX_LEN];
397 
398 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
399 		print_valid_ports();
400 		return;
401 	}
402 	port = &ports[port_id];
403 	rte_eth_link_get_nowait(port_id, &link);
404 	memset(&dev_info, 0, sizeof(dev_info));
405 	rte_eth_dev_info_get(port_id, &dev_info);
406 	printf("\n%s Infos for port %-2d %s\n",
407 	       info_border, port_id, info_border);
408 	rte_eth_macaddr_get(port_id, &mac_addr);
409 	print_ethaddr("MAC address: ", &mac_addr);
410 	rte_eth_dev_get_name_by_port(port_id, name);
411 	printf("\nDevice name: %s", name);
412 	printf("\nDriver name: %s", dev_info.driver_name);
413 	printf("\nConnect to socket: %u", port->socket_id);
414 
415 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
416 		mp = mbuf_pool_find(port_numa[port_id]);
417 		if (mp)
418 			printf("\nmemory allocation on the socket: %d",
419 							port_numa[port_id]);
420 	} else
421 		printf("\nmemory allocation on the socket: %u",port->socket_id);
422 
423 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
424 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
425 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
426 	       ("full-duplex") : ("half-duplex"));
427 
428 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
429 		printf("MTU: %u\n", mtu);
430 
431 	printf("Promiscuous mode: %s\n",
432 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
433 	printf("Allmulticast mode: %s\n",
434 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
435 	printf("Maximum number of MAC addresses: %u\n",
436 	       (unsigned int)(port->dev_info.max_mac_addrs));
437 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
438 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
439 
440 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
441 	if (vlan_offload >= 0){
442 		printf("VLAN offload: \n");
443 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
444 			printf("  strip on \n");
445 		else
446 			printf("  strip off \n");
447 
448 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
449 			printf("  filter on \n");
450 		else
451 			printf("  filter off \n");
452 
453 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
454 			printf("  qinq(extend) on \n");
455 		else
456 			printf("  qinq(extend) off \n");
457 	}
458 
459 	if (dev_info.hash_key_size > 0)
460 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
461 	if (dev_info.reta_size > 0)
462 		printf("Redirection table size: %u\n", dev_info.reta_size);
463 	if (!dev_info.flow_type_rss_offloads)
464 		printf("No flow type is supported.\n");
465 	else {
466 		uint16_t i;
467 		char *p;
468 
469 		printf("Supported flow types:\n");
470 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
471 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
472 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
473 				continue;
474 			p = flowtype_to_str(i);
475 			if (p)
476 				printf("  %s\n", p);
477 			else
478 				printf("  user defined %d\n", i);
479 		}
480 	}
481 
482 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
483 	printf("Maximum configurable length of RX packet: %u\n",
484 		dev_info.max_rx_pktlen);
485 	if (dev_info.max_vfs)
486 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
487 	if (dev_info.max_vmdq_pools)
488 		printf("Maximum number of VMDq pools: %u\n",
489 			dev_info.max_vmdq_pools);
490 
491 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
492 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
493 	printf("Max possible number of RXDs per queue: %hu\n",
494 		dev_info.rx_desc_lim.nb_max);
495 	printf("Min possible number of RXDs per queue: %hu\n",
496 		dev_info.rx_desc_lim.nb_min);
497 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
498 
499 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
500 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
501 	printf("Max possible number of TXDs per queue: %hu\n",
502 		dev_info.tx_desc_lim.nb_max);
503 	printf("Min possible number of TXDs per queue: %hu\n",
504 		dev_info.tx_desc_lim.nb_min);
505 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
506 
507 	/* Show switch info only if valid switch domain and port id is set */
508 	if (dev_info.switch_info.domain_id !=
509 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
510 		if (dev_info.switch_info.name)
511 			printf("Switch name: %s\n", dev_info.switch_info.name);
512 
513 		printf("Switch domain Id: %u\n",
514 			dev_info.switch_info.domain_id);
515 		printf("Switch Port Id: %u\n",
516 			dev_info.switch_info.port_id);
517 	}
518 }
519 
520 void
521 port_offload_cap_display(portid_t port_id)
522 {
523 	struct rte_eth_dev_info dev_info;
524 	static const char *info_border = "************";
525 
526 	if (port_id_is_invalid(port_id, ENABLED_WARN))
527 		return;
528 
529 	rte_eth_dev_info_get(port_id, &dev_info);
530 
531 	printf("\n%s Port %d supported offload features: %s\n",
532 		info_border, port_id, info_border);
533 
534 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
535 		printf("VLAN stripped:                 ");
536 		if (ports[port_id].dev_conf.rxmode.offloads &
537 		    DEV_RX_OFFLOAD_VLAN_STRIP)
538 			printf("on\n");
539 		else
540 			printf("off\n");
541 	}
542 
543 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
544 		printf("Double VLANs stripped:         ");
545 		if (ports[port_id].dev_conf.rxmode.offloads &
546 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
547 			printf("on\n");
548 		else
549 			printf("off\n");
550 	}
551 
552 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
553 		printf("RX IPv4 checksum:              ");
554 		if (ports[port_id].dev_conf.rxmode.offloads &
555 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
556 			printf("on\n");
557 		else
558 			printf("off\n");
559 	}
560 
561 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
562 		printf("RX UDP checksum:               ");
563 		if (ports[port_id].dev_conf.rxmode.offloads &
564 		    DEV_RX_OFFLOAD_UDP_CKSUM)
565 			printf("on\n");
566 		else
567 			printf("off\n");
568 	}
569 
570 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
571 		printf("RX TCP checksum:               ");
572 		if (ports[port_id].dev_conf.rxmode.offloads &
573 		    DEV_RX_OFFLOAD_TCP_CKSUM)
574 			printf("on\n");
575 		else
576 			printf("off\n");
577 	}
578 
579 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
580 		printf("RX Outer IPv4 checksum:               ");
581 		if (ports[port_id].dev_conf.rxmode.offloads &
582 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
583 			printf("on\n");
584 		else
585 			printf("off\n");
586 	}
587 
588 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
589 		printf("Large receive offload:         ");
590 		if (ports[port_id].dev_conf.rxmode.offloads &
591 		    DEV_RX_OFFLOAD_TCP_LRO)
592 			printf("on\n");
593 		else
594 			printf("off\n");
595 	}
596 
597 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
598 		printf("VLAN insert:                   ");
599 		if (ports[port_id].dev_conf.txmode.offloads &
600 		    DEV_TX_OFFLOAD_VLAN_INSERT)
601 			printf("on\n");
602 		else
603 			printf("off\n");
604 	}
605 
606 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
607 		printf("HW timestamp:                  ");
608 		if (ports[port_id].dev_conf.rxmode.offloads &
609 		    DEV_RX_OFFLOAD_TIMESTAMP)
610 			printf("on\n");
611 		else
612 			printf("off\n");
613 	}
614 
615 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
616 		printf("Double VLANs insert:           ");
617 		if (ports[port_id].dev_conf.txmode.offloads &
618 		    DEV_TX_OFFLOAD_QINQ_INSERT)
619 			printf("on\n");
620 		else
621 			printf("off\n");
622 	}
623 
624 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
625 		printf("TX IPv4 checksum:              ");
626 		if (ports[port_id].dev_conf.txmode.offloads &
627 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
628 			printf("on\n");
629 		else
630 			printf("off\n");
631 	}
632 
633 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
634 		printf("TX UDP checksum:               ");
635 		if (ports[port_id].dev_conf.txmode.offloads &
636 		    DEV_TX_OFFLOAD_UDP_CKSUM)
637 			printf("on\n");
638 		else
639 			printf("off\n");
640 	}
641 
642 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
643 		printf("TX TCP checksum:               ");
644 		if (ports[port_id].dev_conf.txmode.offloads &
645 		    DEV_TX_OFFLOAD_TCP_CKSUM)
646 			printf("on\n");
647 		else
648 			printf("off\n");
649 	}
650 
651 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
652 		printf("TX SCTP checksum:              ");
653 		if (ports[port_id].dev_conf.txmode.offloads &
654 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
655 			printf("on\n");
656 		else
657 			printf("off\n");
658 	}
659 
660 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
661 		printf("TX Outer IPv4 checksum:        ");
662 		if (ports[port_id].dev_conf.txmode.offloads &
663 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
664 			printf("on\n");
665 		else
666 			printf("off\n");
667 	}
668 
669 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
670 		printf("TX TCP segmentation:           ");
671 		if (ports[port_id].dev_conf.txmode.offloads &
672 		    DEV_TX_OFFLOAD_TCP_TSO)
673 			printf("on\n");
674 		else
675 			printf("off\n");
676 	}
677 
678 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
679 		printf("TX UDP segmentation:           ");
680 		if (ports[port_id].dev_conf.txmode.offloads &
681 		    DEV_TX_OFFLOAD_UDP_TSO)
682 			printf("on\n");
683 		else
684 			printf("off\n");
685 	}
686 
687 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
688 		printf("TSO for VXLAN tunnel packet:   ");
689 		if (ports[port_id].dev_conf.txmode.offloads &
690 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
691 			printf("on\n");
692 		else
693 			printf("off\n");
694 	}
695 
696 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
697 		printf("TSO for GRE tunnel packet:     ");
698 		if (ports[port_id].dev_conf.txmode.offloads &
699 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
700 			printf("on\n");
701 		else
702 			printf("off\n");
703 	}
704 
705 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
706 		printf("TSO for IPIP tunnel packet:    ");
707 		if (ports[port_id].dev_conf.txmode.offloads &
708 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
709 			printf("on\n");
710 		else
711 			printf("off\n");
712 	}
713 
714 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
715 		printf("TSO for GENEVE tunnel packet:  ");
716 		if (ports[port_id].dev_conf.txmode.offloads &
717 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
718 			printf("on\n");
719 		else
720 			printf("off\n");
721 	}
722 
723 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
724 		printf("IP tunnel TSO:  ");
725 		if (ports[port_id].dev_conf.txmode.offloads &
726 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
727 			printf("on\n");
728 		else
729 			printf("off\n");
730 	}
731 
732 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
733 		printf("UDP tunnel TSO:  ");
734 		if (ports[port_id].dev_conf.txmode.offloads &
735 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
736 			printf("on\n");
737 		else
738 			printf("off\n");
739 	}
740 }
741 
742 int
743 port_id_is_invalid(portid_t port_id, enum print_warning warning)
744 {
745 	uint16_t pid;
746 
747 	if (port_id == (portid_t)RTE_PORT_ALL)
748 		return 0;
749 
750 	RTE_ETH_FOREACH_DEV(pid)
751 		if (port_id == pid)
752 			return 0;
753 
754 	if (warning == ENABLED_WARN)
755 		printf("Invalid port %d\n", port_id);
756 
757 	return 1;
758 }
759 
760 void print_valid_ports(void)
761 {
762 	portid_t pid;
763 
764 	printf("The valid ports array is [");
765 	RTE_ETH_FOREACH_DEV(pid) {
766 		printf(" %d", pid);
767 	}
768 	printf(" ]\n");
769 }
770 
771 static int
772 vlan_id_is_invalid(uint16_t vlan_id)
773 {
774 	if (vlan_id < 4096)
775 		return 0;
776 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
777 	return 1;
778 }
779 
780 static int
781 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
782 {
783 	const struct rte_pci_device *pci_dev;
784 	const struct rte_bus *bus;
785 	uint64_t pci_len;
786 
787 	if (reg_off & 0x3) {
788 		printf("Port register offset 0x%X not aligned on a 4-byte "
789 		       "boundary\n",
790 		       (unsigned)reg_off);
791 		return 1;
792 	}
793 
794 	if (!ports[port_id].dev_info.device) {
795 		printf("Invalid device\n");
796 		return 0;
797 	}
798 
799 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
800 	if (bus && !strcmp(bus->name, "pci")) {
801 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
802 	} else {
803 		printf("Not a PCI device\n");
804 		return 1;
805 	}
806 
807 	pci_len = pci_dev->mem_resource[0].len;
808 	if (reg_off >= pci_len) {
809 		printf("Port %d: register offset %u (0x%X) out of port PCI "
810 		       "resource (length=%"PRIu64")\n",
811 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
812 		return 1;
813 	}
814 	return 0;
815 }
816 
817 static int
818 reg_bit_pos_is_invalid(uint8_t bit_pos)
819 {
820 	if (bit_pos <= 31)
821 		return 0;
822 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
823 	return 1;
824 }
825 
826 #define display_port_and_reg_off(port_id, reg_off) \
827 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
828 
829 static inline void
830 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
831 {
832 	display_port_and_reg_off(port_id, (unsigned)reg_off);
833 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
834 }
835 
836 void
837 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
838 {
839 	uint32_t reg_v;
840 
841 
842 	if (port_id_is_invalid(port_id, ENABLED_WARN))
843 		return;
844 	if (port_reg_off_is_invalid(port_id, reg_off))
845 		return;
846 	if (reg_bit_pos_is_invalid(bit_x))
847 		return;
848 	reg_v = port_id_pci_reg_read(port_id, reg_off);
849 	display_port_and_reg_off(port_id, (unsigned)reg_off);
850 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
851 }
852 
853 void
854 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
855 			   uint8_t bit1_pos, uint8_t bit2_pos)
856 {
857 	uint32_t reg_v;
858 	uint8_t  l_bit;
859 	uint8_t  h_bit;
860 
861 	if (port_id_is_invalid(port_id, ENABLED_WARN))
862 		return;
863 	if (port_reg_off_is_invalid(port_id, reg_off))
864 		return;
865 	if (reg_bit_pos_is_invalid(bit1_pos))
866 		return;
867 	if (reg_bit_pos_is_invalid(bit2_pos))
868 		return;
869 	if (bit1_pos > bit2_pos)
870 		l_bit = bit2_pos, h_bit = bit1_pos;
871 	else
872 		l_bit = bit1_pos, h_bit = bit2_pos;
873 
874 	reg_v = port_id_pci_reg_read(port_id, reg_off);
875 	reg_v >>= l_bit;
876 	if (h_bit < 31)
877 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
878 	display_port_and_reg_off(port_id, (unsigned)reg_off);
879 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
880 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
881 }
882 
883 void
884 port_reg_display(portid_t port_id, uint32_t reg_off)
885 {
886 	uint32_t reg_v;
887 
888 	if (port_id_is_invalid(port_id, ENABLED_WARN))
889 		return;
890 	if (port_reg_off_is_invalid(port_id, reg_off))
891 		return;
892 	reg_v = port_id_pci_reg_read(port_id, reg_off);
893 	display_port_reg_value(port_id, reg_off, reg_v);
894 }
895 
896 void
897 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
898 		 uint8_t bit_v)
899 {
900 	uint32_t reg_v;
901 
902 	if (port_id_is_invalid(port_id, ENABLED_WARN))
903 		return;
904 	if (port_reg_off_is_invalid(port_id, reg_off))
905 		return;
906 	if (reg_bit_pos_is_invalid(bit_pos))
907 		return;
908 	if (bit_v > 1) {
909 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
910 		return;
911 	}
912 	reg_v = port_id_pci_reg_read(port_id, reg_off);
913 	if (bit_v == 0)
914 		reg_v &= ~(1 << bit_pos);
915 	else
916 		reg_v |= (1 << bit_pos);
917 	port_id_pci_reg_write(port_id, reg_off, reg_v);
918 	display_port_reg_value(port_id, reg_off, reg_v);
919 }
920 
921 void
922 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
923 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
924 {
925 	uint32_t max_v;
926 	uint32_t reg_v;
927 	uint8_t  l_bit;
928 	uint8_t  h_bit;
929 
930 	if (port_id_is_invalid(port_id, ENABLED_WARN))
931 		return;
932 	if (port_reg_off_is_invalid(port_id, reg_off))
933 		return;
934 	if (reg_bit_pos_is_invalid(bit1_pos))
935 		return;
936 	if (reg_bit_pos_is_invalid(bit2_pos))
937 		return;
938 	if (bit1_pos > bit2_pos)
939 		l_bit = bit2_pos, h_bit = bit1_pos;
940 	else
941 		l_bit = bit1_pos, h_bit = bit2_pos;
942 
943 	if ((h_bit - l_bit) < 31)
944 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
945 	else
946 		max_v = 0xFFFFFFFF;
947 
948 	if (value > max_v) {
949 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
950 				(unsigned)value, (unsigned)value,
951 				(unsigned)max_v, (unsigned)max_v);
952 		return;
953 	}
954 	reg_v = port_id_pci_reg_read(port_id, reg_off);
955 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
956 	reg_v |= (value << l_bit); /* Set changed bits */
957 	port_id_pci_reg_write(port_id, reg_off, reg_v);
958 	display_port_reg_value(port_id, reg_off, reg_v);
959 }
960 
961 void
962 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
963 {
964 	if (port_id_is_invalid(port_id, ENABLED_WARN))
965 		return;
966 	if (port_reg_off_is_invalid(port_id, reg_off))
967 		return;
968 	port_id_pci_reg_write(port_id, reg_off, reg_v);
969 	display_port_reg_value(port_id, reg_off, reg_v);
970 }
971 
972 void
973 port_mtu_set(portid_t port_id, uint16_t mtu)
974 {
975 	int diag;
976 
977 	if (port_id_is_invalid(port_id, ENABLED_WARN))
978 		return;
979 	diag = rte_eth_dev_set_mtu(port_id, mtu);
980 	if (diag == 0)
981 		return;
982 	printf("Set MTU failed. diag=%d\n", diag);
983 }
984 
985 /* Generic flow management functions. */
986 
987 /** Generate flow_item[] entry. */
988 #define MK_FLOW_ITEM(t, s) \
989 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
990 		.name = # t, \
991 		.size = s, \
992 	}
993 
994 /** Information about known flow pattern items. */
995 static const struct {
996 	const char *name;
997 	size_t size;
998 } flow_item[] = {
999 	MK_FLOW_ITEM(END, 0),
1000 	MK_FLOW_ITEM(VOID, 0),
1001 	MK_FLOW_ITEM(INVERT, 0),
1002 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1003 	MK_FLOW_ITEM(PF, 0),
1004 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1005 	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
1006 	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
1007 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
1008 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1009 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1010 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1011 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1012 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1013 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1014 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1015 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1016 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1017 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1018 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1019 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1020 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1021 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1022 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1023 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1024 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1025 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1026 	MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1027 	MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
1028 	MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
1029 	MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1030 	MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
1031 	MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
1032 	MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
1033 	MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
1034 		     sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1035 	MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
1036 		     sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1037 };
1038 
1039 /** Pattern item specification types. */
1040 enum item_spec_type {
1041 	ITEM_SPEC,
1042 	ITEM_LAST,
1043 	ITEM_MASK,
1044 };
1045 
1046 /** Compute storage space needed by item specification and copy it. */
1047 static size_t
1048 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1049 		    enum item_spec_type type)
1050 {
1051 	size_t size = 0;
1052 	const void *data =
1053 		type == ITEM_SPEC ? item->spec :
1054 		type == ITEM_LAST ? item->last :
1055 		type == ITEM_MASK ? item->mask :
1056 		NULL;
1057 
1058 	if (!item->spec || !data)
1059 		goto empty;
1060 	switch (item->type) {
1061 		union {
1062 			const struct rte_flow_item_raw *raw;
1063 		} spec;
1064 		union {
1065 			const struct rte_flow_item_raw *raw;
1066 		} last;
1067 		union {
1068 			const struct rte_flow_item_raw *raw;
1069 		} mask;
1070 		union {
1071 			const struct rte_flow_item_raw *raw;
1072 		} src;
1073 		union {
1074 			struct rte_flow_item_raw *raw;
1075 		} dst;
1076 		size_t off;
1077 
1078 	case RTE_FLOW_ITEM_TYPE_RAW:
1079 		spec.raw = item->spec;
1080 		last.raw = item->last ? item->last : item->spec;
1081 		mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
1082 		src.raw = data;
1083 		dst.raw = buf;
1084 		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1085 				     sizeof(*src.raw->pattern));
1086 		if (type == ITEM_SPEC ||
1087 		    (type == ITEM_MASK &&
1088 		     ((spec.raw->length & mask.raw->length) >=
1089 		      (last.raw->length & mask.raw->length))))
1090 			size = spec.raw->length & mask.raw->length;
1091 		else
1092 			size = last.raw->length & mask.raw->length;
1093 		size = off + size * sizeof(*src.raw->pattern);
1094 		if (dst.raw) {
1095 			memcpy(dst.raw, src.raw, sizeof(*src.raw));
1096 			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1097 						  src.raw->pattern,
1098 						  size - off);
1099 		}
1100 		break;
1101 	default:
1102 		size = flow_item[item->type].size;
1103 		if (buf)
1104 			memcpy(buf, data, size);
1105 		break;
1106 	}
1107 empty:
1108 	return RTE_ALIGN_CEIL(size, sizeof(double));
1109 }
1110 
1111 /** Generate flow_action[] entry. */
1112 #define MK_FLOW_ACTION(t, s) \
1113 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1114 		.name = # t, \
1115 		.size = s, \
1116 	}
1117 
1118 /** Information about known flow actions. */
1119 static const struct {
1120 	const char *name;
1121 	size_t size;
1122 } flow_action[] = {
1123 	MK_FLOW_ACTION(END, 0),
1124 	MK_FLOW_ACTION(VOID, 0),
1125 	MK_FLOW_ACTION(PASSTHRU, 0),
1126 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1127 	MK_FLOW_ACTION(FLAG, 0),
1128 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1129 	MK_FLOW_ACTION(DROP, 0),
1130 	MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
1131 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1132 	MK_FLOW_ACTION(PF, 0),
1133 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1134 	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1135 	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1136 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1137 	MK_FLOW_ACTION(OF_SET_MPLS_TTL,
1138 		       sizeof(struct rte_flow_action_of_set_mpls_ttl)),
1139 	MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
1140 	MK_FLOW_ACTION(OF_SET_NW_TTL,
1141 		       sizeof(struct rte_flow_action_of_set_nw_ttl)),
1142 	MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
1143 	MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
1144 	MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
1145 	MK_FLOW_ACTION(OF_POP_VLAN, 0),
1146 	MK_FLOW_ACTION(OF_PUSH_VLAN,
1147 		       sizeof(struct rte_flow_action_of_push_vlan)),
1148 	MK_FLOW_ACTION(OF_SET_VLAN_VID,
1149 		       sizeof(struct rte_flow_action_of_set_vlan_vid)),
1150 	MK_FLOW_ACTION(OF_SET_VLAN_PCP,
1151 		       sizeof(struct rte_flow_action_of_set_vlan_pcp)),
1152 	MK_FLOW_ACTION(OF_POP_MPLS,
1153 		       sizeof(struct rte_flow_action_of_pop_mpls)),
1154 	MK_FLOW_ACTION(OF_PUSH_MPLS,
1155 		       sizeof(struct rte_flow_action_of_push_mpls)),
1156 };
1157 
1158 /** Compute storage space needed by action configuration and copy it. */
1159 static size_t
1160 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1161 {
1162 	size_t size = 0;
1163 
1164 	if (!action->conf)
1165 		goto empty;
1166 	switch (action->type) {
1167 		union {
1168 			const struct rte_flow_action_rss *rss;
1169 		} src;
1170 		union {
1171 			struct rte_flow_action_rss *rss;
1172 		} dst;
1173 		size_t off;
1174 
1175 	case RTE_FLOW_ACTION_TYPE_RSS:
1176 		src.rss = action->conf;
1177 		dst.rss = buf;
1178 		off = 0;
1179 		if (dst.rss)
1180 			*dst.rss = (struct rte_flow_action_rss){
1181 				.func = src.rss->func,
1182 				.level = src.rss->level,
1183 				.types = src.rss->types,
1184 				.key_len = src.rss->key_len,
1185 				.queue_num = src.rss->queue_num,
1186 			};
1187 		off += sizeof(*src.rss);
1188 		if (src.rss->key_len) {
1189 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1190 			size = sizeof(*src.rss->key) * src.rss->key_len;
1191 			if (dst.rss)
1192 				dst.rss->key = memcpy
1193 					((void *)((uintptr_t)dst.rss + off),
1194 					 src.rss->key, size);
1195 			off += size;
1196 		}
1197 		if (src.rss->queue_num) {
1198 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1199 			size = sizeof(*src.rss->queue) * src.rss->queue_num;
1200 			if (dst.rss)
1201 				dst.rss->queue = memcpy
1202 					((void *)((uintptr_t)dst.rss + off),
1203 					 src.rss->queue, size);
1204 			off += size;
1205 		}
1206 		size = off;
1207 		break;
1208 	default:
1209 		size = flow_action[action->type].size;
1210 		if (buf)
1211 			memcpy(buf, action->conf, size);
1212 		break;
1213 	}
1214 empty:
1215 	return RTE_ALIGN_CEIL(size, sizeof(double));
1216 }
1217 
1218 /** Generate a port_flow entry from attributes/pattern/actions. */
1219 static struct port_flow *
1220 port_flow_new(const struct rte_flow_attr *attr,
1221 	      const struct rte_flow_item *pattern,
1222 	      const struct rte_flow_action *actions)
1223 {
1224 	const struct rte_flow_item *item;
1225 	const struct rte_flow_action *action;
1226 	struct port_flow *pf = NULL;
1227 	size_t tmp;
1228 	size_t off1 = 0;
1229 	size_t off2 = 0;
1230 	int err = ENOTSUP;
1231 
1232 store:
1233 	item = pattern;
1234 	if (pf)
1235 		pf->pattern = (void *)&pf->data[off1];
1236 	do {
1237 		struct rte_flow_item *dst = NULL;
1238 
1239 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1240 		    !flow_item[item->type].name)
1241 			goto notsup;
1242 		if (pf)
1243 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1244 		off1 += sizeof(*item);
1245 		if (item->spec) {
1246 			if (pf)
1247 				dst->spec = pf->data + off2;
1248 			off2 += flow_item_spec_copy
1249 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1250 		}
1251 		if (item->last) {
1252 			if (pf)
1253 				dst->last = pf->data + off2;
1254 			off2 += flow_item_spec_copy
1255 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1256 		}
1257 		if (item->mask) {
1258 			if (pf)
1259 				dst->mask = pf->data + off2;
1260 			off2 += flow_item_spec_copy
1261 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1262 		}
1263 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1264 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1265 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1266 	action = actions;
1267 	if (pf)
1268 		pf->actions = (void *)&pf->data[off1];
1269 	do {
1270 		struct rte_flow_action *dst = NULL;
1271 
1272 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1273 		    !flow_action[action->type].name)
1274 			goto notsup;
1275 		if (pf)
1276 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1277 		off1 += sizeof(*action);
1278 		if (action->conf) {
1279 			if (pf)
1280 				dst->conf = pf->data + off2;
1281 			off2 += flow_action_conf_copy
1282 				(pf ? pf->data + off2 : NULL, action);
1283 		}
1284 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1285 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1286 	if (pf != NULL)
1287 		return pf;
1288 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1289 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1290 	pf = calloc(1, tmp + off1 + off2);
1291 	if (pf == NULL)
1292 		err = errno;
1293 	else {
1294 		*pf = (const struct port_flow){
1295 			.size = tmp + off1 + off2,
1296 			.attr = *attr,
1297 		};
1298 		tmp -= offsetof(struct port_flow, data);
1299 		off2 = tmp + off1;
1300 		off1 = tmp;
1301 		goto store;
1302 	}
1303 notsup:
1304 	rte_errno = err;
1305 	return NULL;
1306 }
1307 
1308 /** Print a message out of a flow error. */
1309 static int
1310 port_flow_complain(struct rte_flow_error *error)
1311 {
1312 	static const char *const errstrlist[] = {
1313 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1314 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1315 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1316 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1317 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1318 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1319 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1320 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1321 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1322 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1323 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1324 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1325 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1326 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1327 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1328 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1329 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1330 	};
1331 	const char *errstr;
1332 	char buf[32];
1333 	int err = rte_errno;
1334 
1335 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1336 	    !errstrlist[error->type])
1337 		errstr = "unknown type";
1338 	else
1339 		errstr = errstrlist[error->type];
1340 	printf("Caught error type %d (%s): %s%s\n",
1341 	       error->type, errstr,
1342 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1343 					error->cause), buf) : "",
1344 	       error->message ? error->message : "(no stated reason)");
1345 	return -err;
1346 }
1347 
1348 /** Validate flow rule. */
1349 int
1350 port_flow_validate(portid_t port_id,
1351 		   const struct rte_flow_attr *attr,
1352 		   const struct rte_flow_item *pattern,
1353 		   const struct rte_flow_action *actions)
1354 {
1355 	struct rte_flow_error error;
1356 
1357 	/* Poisoning to make sure PMDs update it in case of error. */
1358 	memset(&error, 0x11, sizeof(error));
1359 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1360 		return port_flow_complain(&error);
1361 	printf("Flow rule validated\n");
1362 	return 0;
1363 }
1364 
1365 /** Create flow rule. */
1366 int
1367 port_flow_create(portid_t port_id,
1368 		 const struct rte_flow_attr *attr,
1369 		 const struct rte_flow_item *pattern,
1370 		 const struct rte_flow_action *actions)
1371 {
1372 	struct rte_flow *flow;
1373 	struct rte_port *port;
1374 	struct port_flow *pf;
1375 	uint32_t id;
1376 	struct rte_flow_error error;
1377 
1378 	/* Poisoning to make sure PMDs update it in case of error. */
1379 	memset(&error, 0x22, sizeof(error));
1380 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1381 	if (!flow)
1382 		return port_flow_complain(&error);
1383 	port = &ports[port_id];
1384 	if (port->flow_list) {
1385 		if (port->flow_list->id == UINT32_MAX) {
1386 			printf("Highest rule ID is already assigned, delete"
1387 			       " it first");
1388 			rte_flow_destroy(port_id, flow, NULL);
1389 			return -ENOMEM;
1390 		}
1391 		id = port->flow_list->id + 1;
1392 	} else
1393 		id = 0;
1394 	pf = port_flow_new(attr, pattern, actions);
1395 	if (!pf) {
1396 		int err = rte_errno;
1397 
1398 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1399 		rte_flow_destroy(port_id, flow, NULL);
1400 		return -err;
1401 	}
1402 	pf->next = port->flow_list;
1403 	pf->id = id;
1404 	pf->flow = flow;
1405 	port->flow_list = pf;
1406 	printf("Flow rule #%u created\n", pf->id);
1407 	return 0;
1408 }
1409 
1410 /** Destroy a number of flow rules. */
1411 int
1412 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1413 {
1414 	struct rte_port *port;
1415 	struct port_flow **tmp;
1416 	uint32_t c = 0;
1417 	int ret = 0;
1418 
1419 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1420 	    port_id == (portid_t)RTE_PORT_ALL)
1421 		return -EINVAL;
1422 	port = &ports[port_id];
1423 	tmp = &port->flow_list;
1424 	while (*tmp) {
1425 		uint32_t i;
1426 
1427 		for (i = 0; i != n; ++i) {
1428 			struct rte_flow_error error;
1429 			struct port_flow *pf = *tmp;
1430 
1431 			if (rule[i] != pf->id)
1432 				continue;
1433 			/*
1434 			 * Poisoning to make sure PMDs update it in case
1435 			 * of error.
1436 			 */
1437 			memset(&error, 0x33, sizeof(error));
1438 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1439 				ret = port_flow_complain(&error);
1440 				continue;
1441 			}
1442 			printf("Flow rule #%u destroyed\n", pf->id);
1443 			*tmp = pf->next;
1444 			free(pf);
1445 			break;
1446 		}
1447 		if (i == n)
1448 			tmp = &(*tmp)->next;
1449 		++c;
1450 	}
1451 	return ret;
1452 }
1453 
1454 /** Remove all flow rules. */
1455 int
1456 port_flow_flush(portid_t port_id)
1457 {
1458 	struct rte_flow_error error;
1459 	struct rte_port *port;
1460 	int ret = 0;
1461 
1462 	/* Poisoning to make sure PMDs update it in case of error. */
1463 	memset(&error, 0x44, sizeof(error));
1464 	if (rte_flow_flush(port_id, &error)) {
1465 		ret = port_flow_complain(&error);
1466 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1467 		    port_id == (portid_t)RTE_PORT_ALL)
1468 			return ret;
1469 	}
1470 	port = &ports[port_id];
1471 	while (port->flow_list) {
1472 		struct port_flow *pf = port->flow_list->next;
1473 
1474 		free(port->flow_list);
1475 		port->flow_list = pf;
1476 	}
1477 	return ret;
1478 }
1479 
1480 /** Query a flow rule. */
1481 int
1482 port_flow_query(portid_t port_id, uint32_t rule,
1483 		const struct rte_flow_action *action)
1484 {
1485 	struct rte_flow_error error;
1486 	struct rte_port *port;
1487 	struct port_flow *pf;
1488 	const char *name;
1489 	union {
1490 		struct rte_flow_query_count count;
1491 	} query;
1492 
1493 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1494 	    port_id == (portid_t)RTE_PORT_ALL)
1495 		return -EINVAL;
1496 	port = &ports[port_id];
1497 	for (pf = port->flow_list; pf; pf = pf->next)
1498 		if (pf->id == rule)
1499 			break;
1500 	if (!pf) {
1501 		printf("Flow rule #%u not found\n", rule);
1502 		return -ENOENT;
1503 	}
1504 	if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1505 	    !flow_action[action->type].name)
1506 		name = "unknown";
1507 	else
1508 		name = flow_action[action->type].name;
1509 	switch (action->type) {
1510 	case RTE_FLOW_ACTION_TYPE_COUNT:
1511 		break;
1512 	default:
1513 		printf("Cannot query action type %d (%s)\n",
1514 			action->type, name);
1515 		return -ENOTSUP;
1516 	}
1517 	/* Poisoning to make sure PMDs update it in case of error. */
1518 	memset(&error, 0x55, sizeof(error));
1519 	memset(&query, 0, sizeof(query));
1520 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1521 		return port_flow_complain(&error);
1522 	switch (action->type) {
1523 	case RTE_FLOW_ACTION_TYPE_COUNT:
1524 		printf("%s:\n"
1525 		       " hits_set: %u\n"
1526 		       " bytes_set: %u\n"
1527 		       " hits: %" PRIu64 "\n"
1528 		       " bytes: %" PRIu64 "\n",
1529 		       name,
1530 		       query.count.hits_set,
1531 		       query.count.bytes_set,
1532 		       query.count.hits,
1533 		       query.count.bytes);
1534 		break;
1535 	default:
1536 		printf("Cannot display result for action type %d (%s)\n",
1537 		       action->type, name);
1538 		break;
1539 	}
1540 	return 0;
1541 }
1542 
1543 /** List flow rules. */
1544 void
1545 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1546 {
1547 	struct rte_port *port;
1548 	struct port_flow *pf;
1549 	struct port_flow *list = NULL;
1550 	uint32_t i;
1551 
1552 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1553 	    port_id == (portid_t)RTE_PORT_ALL)
1554 		return;
1555 	port = &ports[port_id];
1556 	if (!port->flow_list)
1557 		return;
1558 	/* Sort flows by group, priority and ID. */
1559 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1560 		struct port_flow **tmp;
1561 
1562 		if (n) {
1563 			/* Filter out unwanted groups. */
1564 			for (i = 0; i != n; ++i)
1565 				if (pf->attr.group == group[i])
1566 					break;
1567 			if (i == n)
1568 				continue;
1569 		}
1570 		tmp = &list;
1571 		while (*tmp &&
1572 		       (pf->attr.group > (*tmp)->attr.group ||
1573 			(pf->attr.group == (*tmp)->attr.group &&
1574 			 pf->attr.priority > (*tmp)->attr.priority) ||
1575 			(pf->attr.group == (*tmp)->attr.group &&
1576 			 pf->attr.priority == (*tmp)->attr.priority &&
1577 			 pf->id > (*tmp)->id)))
1578 			tmp = &(*tmp)->tmp;
1579 		pf->tmp = *tmp;
1580 		*tmp = pf;
1581 	}
1582 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1583 	for (pf = list; pf != NULL; pf = pf->tmp) {
1584 		const struct rte_flow_item *item = pf->pattern;
1585 		const struct rte_flow_action *action = pf->actions;
1586 
1587 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1588 		       pf->id,
1589 		       pf->attr.group,
1590 		       pf->attr.priority,
1591 		       pf->attr.ingress ? 'i' : '-',
1592 		       pf->attr.egress ? 'e' : '-',
1593 		       pf->attr.transfer ? 't' : '-');
1594 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1595 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1596 				printf("%s ", flow_item[item->type].name);
1597 			++item;
1598 		}
1599 		printf("=>");
1600 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1601 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1602 				printf(" %s", flow_action[action->type].name);
1603 			++action;
1604 		}
1605 		printf("\n");
1606 	}
1607 }
1608 
1609 /** Restrict ingress traffic to the defined flow rules. */
1610 int
1611 port_flow_isolate(portid_t port_id, int set)
1612 {
1613 	struct rte_flow_error error;
1614 
1615 	/* Poisoning to make sure PMDs update it in case of error. */
1616 	memset(&error, 0x66, sizeof(error));
1617 	if (rte_flow_isolate(port_id, set, &error))
1618 		return port_flow_complain(&error);
1619 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1620 	       port_id,
1621 	       set ? "now restricted" : "not restricted anymore");
1622 	return 0;
1623 }
1624 
1625 /*
1626  * RX/TX ring descriptors display functions.
1627  */
1628 int
1629 rx_queue_id_is_invalid(queueid_t rxq_id)
1630 {
1631 	if (rxq_id < nb_rxq)
1632 		return 0;
1633 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1634 	return 1;
1635 }
1636 
1637 int
1638 tx_queue_id_is_invalid(queueid_t txq_id)
1639 {
1640 	if (txq_id < nb_txq)
1641 		return 0;
1642 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1643 	return 1;
1644 }
1645 
1646 static int
1647 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1648 {
1649 	if (rxdesc_id < nb_rxd)
1650 		return 0;
1651 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1652 	       rxdesc_id, nb_rxd);
1653 	return 1;
1654 }
1655 
1656 static int
1657 tx_desc_id_is_invalid(uint16_t txdesc_id)
1658 {
1659 	if (txdesc_id < nb_txd)
1660 		return 0;
1661 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1662 	       txdesc_id, nb_txd);
1663 	return 1;
1664 }
1665 
1666 static const struct rte_memzone *
1667 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1668 {
1669 	char mz_name[RTE_MEMZONE_NAMESIZE];
1670 	const struct rte_memzone *mz;
1671 
1672 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1673 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1674 	mz = rte_memzone_lookup(mz_name);
1675 	if (mz == NULL)
1676 		printf("%s ring memory zoneof (port %d, queue %d) not"
1677 		       "found (zone name = %s\n",
1678 		       ring_name, port_id, q_id, mz_name);
1679 	return mz;
1680 }
1681 
1682 union igb_ring_dword {
1683 	uint64_t dword;
1684 	struct {
1685 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1686 		uint32_t lo;
1687 		uint32_t hi;
1688 #else
1689 		uint32_t hi;
1690 		uint32_t lo;
1691 #endif
1692 	} words;
1693 };
1694 
1695 struct igb_ring_desc_32_bytes {
1696 	union igb_ring_dword lo_dword;
1697 	union igb_ring_dword hi_dword;
1698 	union igb_ring_dword resv1;
1699 	union igb_ring_dword resv2;
1700 };
1701 
1702 struct igb_ring_desc_16_bytes {
1703 	union igb_ring_dword lo_dword;
1704 	union igb_ring_dword hi_dword;
1705 };
1706 
1707 static void
1708 ring_rxd_display_dword(union igb_ring_dword dword)
1709 {
1710 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1711 					(unsigned)dword.words.hi);
1712 }
1713 
1714 static void
1715 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1716 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1717 			   portid_t port_id,
1718 #else
1719 			   __rte_unused portid_t port_id,
1720 #endif
1721 			   uint16_t desc_id)
1722 {
1723 	struct igb_ring_desc_16_bytes *ring =
1724 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1725 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1726 	struct rte_eth_dev_info dev_info;
1727 
1728 	memset(&dev_info, 0, sizeof(dev_info));
1729 	rte_eth_dev_info_get(port_id, &dev_info);
1730 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1731 		/* 32 bytes RX descriptor, i40e only */
1732 		struct igb_ring_desc_32_bytes *ring =
1733 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1734 		ring[desc_id].lo_dword.dword =
1735 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1736 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1737 		ring[desc_id].hi_dword.dword =
1738 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1739 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1740 		ring[desc_id].resv1.dword =
1741 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1742 		ring_rxd_display_dword(ring[desc_id].resv1);
1743 		ring[desc_id].resv2.dword =
1744 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1745 		ring_rxd_display_dword(ring[desc_id].resv2);
1746 
1747 		return;
1748 	}
1749 #endif
1750 	/* 16 bytes RX descriptor */
1751 	ring[desc_id].lo_dword.dword =
1752 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1753 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1754 	ring[desc_id].hi_dword.dword =
1755 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1756 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1757 }
1758 
1759 static void
1760 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1761 {
1762 	struct igb_ring_desc_16_bytes *ring;
1763 	struct igb_ring_desc_16_bytes txd;
1764 
1765 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1766 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1767 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1768 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1769 			(unsigned)txd.lo_dword.words.lo,
1770 			(unsigned)txd.lo_dword.words.hi,
1771 			(unsigned)txd.hi_dword.words.lo,
1772 			(unsigned)txd.hi_dword.words.hi);
1773 }
1774 
1775 void
1776 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1777 {
1778 	const struct rte_memzone *rx_mz;
1779 
1780 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1781 		return;
1782 	if (rx_queue_id_is_invalid(rxq_id))
1783 		return;
1784 	if (rx_desc_id_is_invalid(rxd_id))
1785 		return;
1786 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1787 	if (rx_mz == NULL)
1788 		return;
1789 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1790 }
1791 
1792 void
1793 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1794 {
1795 	const struct rte_memzone *tx_mz;
1796 
1797 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1798 		return;
1799 	if (tx_queue_id_is_invalid(txq_id))
1800 		return;
1801 	if (tx_desc_id_is_invalid(txd_id))
1802 		return;
1803 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1804 	if (tx_mz == NULL)
1805 		return;
1806 	ring_tx_descriptor_display(tx_mz, txd_id);
1807 }
1808 
1809 void
1810 fwd_lcores_config_display(void)
1811 {
1812 	lcoreid_t lc_id;
1813 
1814 	printf("List of forwarding lcores:");
1815 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1816 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1817 	printf("\n");
1818 }
1819 void
1820 rxtx_config_display(void)
1821 {
1822 	portid_t pid;
1823 	queueid_t qid;
1824 
1825 	printf("  %s packet forwarding%s packets/burst=%d\n",
1826 	       cur_fwd_eng->fwd_mode_name,
1827 	       retry_enabled == 0 ? "" : " with retry",
1828 	       nb_pkt_per_burst);
1829 
1830 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1831 		printf("  packet len=%u - nb packet segments=%d\n",
1832 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1833 
1834 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1835 	       nb_fwd_lcores, nb_fwd_ports);
1836 
1837 	RTE_ETH_FOREACH_DEV(pid) {
1838 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1839 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1840 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1841 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1842 		uint16_t nb_rx_desc_tmp;
1843 		uint16_t nb_tx_desc_tmp;
1844 		struct rte_eth_rxq_info rx_qinfo;
1845 		struct rte_eth_txq_info tx_qinfo;
1846 		int32_t rc;
1847 
1848 		/* per port config */
1849 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1850 				(unsigned int)pid, nb_rxq, nb_txq);
1851 
1852 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1853 				ports[pid].dev_conf.rxmode.offloads,
1854 				ports[pid].dev_conf.txmode.offloads);
1855 
1856 		/* per rx queue config only for first queue to be less verbose */
1857 		for (qid = 0; qid < 1; qid++) {
1858 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
1859 			if (rc)
1860 				nb_rx_desc_tmp = nb_rx_desc[qid];
1861 			else
1862 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
1863 
1864 			printf("    RX queue: %d\n", qid);
1865 			printf("      RX desc=%d - RX free threshold=%d\n",
1866 				nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh);
1867 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1868 				" wthresh=%d\n",
1869 				rx_conf[qid].rx_thresh.pthresh,
1870 				rx_conf[qid].rx_thresh.hthresh,
1871 				rx_conf[qid].rx_thresh.wthresh);
1872 			printf("      RX Offloads=0x%"PRIx64"\n",
1873 				rx_conf[qid].offloads);
1874 		}
1875 
1876 		/* per tx queue config only for first queue to be less verbose */
1877 		for (qid = 0; qid < 1; qid++) {
1878 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
1879 			if (rc)
1880 				nb_tx_desc_tmp = nb_tx_desc[qid];
1881 			else
1882 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
1883 
1884 			printf("    TX queue: %d\n", qid);
1885 			printf("      TX desc=%d - TX free threshold=%d\n",
1886 				nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh);
1887 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1888 				" wthresh=%d\n",
1889 				tx_conf[qid].tx_thresh.pthresh,
1890 				tx_conf[qid].tx_thresh.hthresh,
1891 				tx_conf[qid].tx_thresh.wthresh);
1892 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1893 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1894 		}
1895 	}
1896 }
1897 
1898 void
1899 port_rss_reta_info(portid_t port_id,
1900 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1901 		   uint16_t nb_entries)
1902 {
1903 	uint16_t i, idx, shift;
1904 	int ret;
1905 
1906 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1907 		return;
1908 
1909 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1910 	if (ret != 0) {
1911 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1912 		return;
1913 	}
1914 
1915 	for (i = 0; i < nb_entries; i++) {
1916 		idx = i / RTE_RETA_GROUP_SIZE;
1917 		shift = i % RTE_RETA_GROUP_SIZE;
1918 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1919 			continue;
1920 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1921 					i, reta_conf[idx].reta[shift]);
1922 	}
1923 }
1924 
1925 /*
1926  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1927  * key of the port.
1928  */
1929 void
1930 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1931 {
1932 	struct rte_eth_rss_conf rss_conf;
1933 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1934 	uint64_t rss_hf;
1935 	uint8_t i;
1936 	int diag;
1937 	struct rte_eth_dev_info dev_info;
1938 	uint8_t hash_key_size;
1939 
1940 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1941 		return;
1942 
1943 	memset(&dev_info, 0, sizeof(dev_info));
1944 	rte_eth_dev_info_get(port_id, &dev_info);
1945 	if (dev_info.hash_key_size > 0 &&
1946 			dev_info.hash_key_size <= sizeof(rss_key))
1947 		hash_key_size = dev_info.hash_key_size;
1948 	else {
1949 		printf("dev_info did not provide a valid hash key size\n");
1950 		return;
1951 	}
1952 
1953 	rss_conf.rss_hf = 0;
1954 	for (i = 0; rss_type_table[i].str; i++) {
1955 		if (!strcmp(rss_info, rss_type_table[i].str))
1956 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1957 	}
1958 
1959 	/* Get RSS hash key if asked to display it */
1960 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1961 	rss_conf.rss_key_len = hash_key_size;
1962 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1963 	if (diag != 0) {
1964 		switch (diag) {
1965 		case -ENODEV:
1966 			printf("port index %d invalid\n", port_id);
1967 			break;
1968 		case -ENOTSUP:
1969 			printf("operation not supported by device\n");
1970 			break;
1971 		default:
1972 			printf("operation failed - diag=%d\n", diag);
1973 			break;
1974 		}
1975 		return;
1976 	}
1977 	rss_hf = rss_conf.rss_hf;
1978 	if (rss_hf == 0) {
1979 		printf("RSS disabled\n");
1980 		return;
1981 	}
1982 	printf("RSS functions:\n ");
1983 	for (i = 0; rss_type_table[i].str; i++) {
1984 		if (rss_hf & rss_type_table[i].rss_type)
1985 			printf("%s ", rss_type_table[i].str);
1986 	}
1987 	printf("\n");
1988 	if (!show_rss_key)
1989 		return;
1990 	printf("RSS key:\n");
1991 	for (i = 0; i < hash_key_size; i++)
1992 		printf("%02X", rss_key[i]);
1993 	printf("\n");
1994 }
1995 
1996 void
1997 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1998 			 uint hash_key_len)
1999 {
2000 	struct rte_eth_rss_conf rss_conf;
2001 	int diag;
2002 	unsigned int i;
2003 
2004 	rss_conf.rss_key = NULL;
2005 	rss_conf.rss_key_len = hash_key_len;
2006 	rss_conf.rss_hf = 0;
2007 	for (i = 0; rss_type_table[i].str; i++) {
2008 		if (!strcmp(rss_type_table[i].str, rss_type))
2009 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2010 	}
2011 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2012 	if (diag == 0) {
2013 		rss_conf.rss_key = hash_key;
2014 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2015 	}
2016 	if (diag == 0)
2017 		return;
2018 
2019 	switch (diag) {
2020 	case -ENODEV:
2021 		printf("port index %d invalid\n", port_id);
2022 		break;
2023 	case -ENOTSUP:
2024 		printf("operation not supported by device\n");
2025 		break;
2026 	default:
2027 		printf("operation failed - diag=%d\n", diag);
2028 		break;
2029 	}
2030 }
2031 
2032 /*
2033  * Setup forwarding configuration for each logical core.
2034  */
2035 static void
2036 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2037 {
2038 	streamid_t nb_fs_per_lcore;
2039 	streamid_t nb_fs;
2040 	streamid_t sm_id;
2041 	lcoreid_t  nb_extra;
2042 	lcoreid_t  nb_fc;
2043 	lcoreid_t  nb_lc;
2044 	lcoreid_t  lc_id;
2045 
2046 	nb_fs = cfg->nb_fwd_streams;
2047 	nb_fc = cfg->nb_fwd_lcores;
2048 	if (nb_fs <= nb_fc) {
2049 		nb_fs_per_lcore = 1;
2050 		nb_extra = 0;
2051 	} else {
2052 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2053 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2054 	}
2055 
2056 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2057 	sm_id = 0;
2058 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2059 		fwd_lcores[lc_id]->stream_idx = sm_id;
2060 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2061 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2062 	}
2063 
2064 	/*
2065 	 * Assign extra remaining streams, if any.
2066 	 */
2067 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2068 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2069 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2070 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2071 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2072 	}
2073 }
2074 
2075 static portid_t
2076 fwd_topology_tx_port_get(portid_t rxp)
2077 {
2078 	static int warning_once = 1;
2079 
2080 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2081 
2082 	switch (port_topology) {
2083 	default:
2084 	case PORT_TOPOLOGY_PAIRED:
2085 		if ((rxp & 0x1) == 0) {
2086 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2087 				return rxp + 1;
2088 			if (warning_once) {
2089 				printf("\nWarning! port-topology=paired"
2090 				       " and odd forward ports number,"
2091 				       " the last port will pair with"
2092 				       " itself.\n\n");
2093 				warning_once = 0;
2094 			}
2095 			return rxp;
2096 		}
2097 		return rxp - 1;
2098 	case PORT_TOPOLOGY_CHAINED:
2099 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2100 	case PORT_TOPOLOGY_LOOP:
2101 		return rxp;
2102 	}
2103 }
2104 
2105 static void
2106 simple_fwd_config_setup(void)
2107 {
2108 	portid_t i;
2109 
2110 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2111 	cur_fwd_config.nb_fwd_streams =
2112 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2113 
2114 	/* reinitialize forwarding streams */
2115 	init_fwd_streams();
2116 
2117 	/*
2118 	 * In the simple forwarding test, the number of forwarding cores
2119 	 * must be lower or equal to the number of forwarding ports.
2120 	 */
2121 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2122 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2123 		cur_fwd_config.nb_fwd_lcores =
2124 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2125 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2126 
2127 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2128 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2129 		fwd_streams[i]->rx_queue  = 0;
2130 		fwd_streams[i]->tx_port   =
2131 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2132 		fwd_streams[i]->tx_queue  = 0;
2133 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2134 		fwd_streams[i]->retry_enabled = retry_enabled;
2135 	}
2136 }
2137 
2138 /**
2139  * For the RSS forwarding test all streams distributed over lcores. Each stream
2140  * being composed of a RX queue to poll on a RX port for input messages,
2141  * associated with a TX queue of a TX port where to send forwarded packets.
2142  */
2143 static void
2144 rss_fwd_config_setup(void)
2145 {
2146 	portid_t   rxp;
2147 	portid_t   txp;
2148 	queueid_t  rxq;
2149 	queueid_t  nb_q;
2150 	streamid_t  sm_id;
2151 
2152 	nb_q = nb_rxq;
2153 	if (nb_q > nb_txq)
2154 		nb_q = nb_txq;
2155 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2156 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2157 	cur_fwd_config.nb_fwd_streams =
2158 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2159 
2160 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2161 		cur_fwd_config.nb_fwd_lcores =
2162 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2163 
2164 	/* reinitialize forwarding streams */
2165 	init_fwd_streams();
2166 
2167 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2168 	rxp = 0; rxq = 0;
2169 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2170 		struct fwd_stream *fs;
2171 
2172 		fs = fwd_streams[sm_id];
2173 		txp = fwd_topology_tx_port_get(rxp);
2174 		fs->rx_port = fwd_ports_ids[rxp];
2175 		fs->rx_queue = rxq;
2176 		fs->tx_port = fwd_ports_ids[txp];
2177 		fs->tx_queue = rxq;
2178 		fs->peer_addr = fs->tx_port;
2179 		fs->retry_enabled = retry_enabled;
2180 		rxp++;
2181 		if (rxp < nb_fwd_ports)
2182 			continue;
2183 		rxp = 0;
2184 		rxq++;
2185 	}
2186 }
2187 
2188 /**
2189  * For the DCB forwarding test, each core is assigned on each traffic class.
2190  *
2191  * Each core is assigned a multi-stream, each stream being composed of
2192  * a RX queue to poll on a RX port for input messages, associated with
2193  * a TX queue of a TX port where to send forwarded packets. All RX and
2194  * TX queues are mapping to the same traffic class.
2195  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2196  * the same core
2197  */
2198 static void
2199 dcb_fwd_config_setup(void)
2200 {
2201 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2202 	portid_t txp, rxp = 0;
2203 	queueid_t txq, rxq = 0;
2204 	lcoreid_t  lc_id;
2205 	uint16_t nb_rx_queue, nb_tx_queue;
2206 	uint16_t i, j, k, sm_id = 0;
2207 	uint8_t tc = 0;
2208 
2209 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2210 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2211 	cur_fwd_config.nb_fwd_streams =
2212 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2213 
2214 	/* reinitialize forwarding streams */
2215 	init_fwd_streams();
2216 	sm_id = 0;
2217 	txp = 1;
2218 	/* get the dcb info on the first RX and TX ports */
2219 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2220 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2221 
2222 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2223 		fwd_lcores[lc_id]->stream_nb = 0;
2224 		fwd_lcores[lc_id]->stream_idx = sm_id;
2225 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2226 			/* if the nb_queue is zero, means this tc is
2227 			 * not enabled on the POOL
2228 			 */
2229 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2230 				break;
2231 			k = fwd_lcores[lc_id]->stream_nb +
2232 				fwd_lcores[lc_id]->stream_idx;
2233 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2234 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2235 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2236 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2237 			for (j = 0; j < nb_rx_queue; j++) {
2238 				struct fwd_stream *fs;
2239 
2240 				fs = fwd_streams[k + j];
2241 				fs->rx_port = fwd_ports_ids[rxp];
2242 				fs->rx_queue = rxq + j;
2243 				fs->tx_port = fwd_ports_ids[txp];
2244 				fs->tx_queue = txq + j % nb_tx_queue;
2245 				fs->peer_addr = fs->tx_port;
2246 				fs->retry_enabled = retry_enabled;
2247 			}
2248 			fwd_lcores[lc_id]->stream_nb +=
2249 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2250 		}
2251 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2252 
2253 		tc++;
2254 		if (tc < rxp_dcb_info.nb_tcs)
2255 			continue;
2256 		/* Restart from TC 0 on next RX port */
2257 		tc = 0;
2258 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2259 			rxp = (portid_t)
2260 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2261 		else
2262 			rxp++;
2263 		if (rxp >= nb_fwd_ports)
2264 			return;
2265 		/* get the dcb information on next RX and TX ports */
2266 		if ((rxp & 0x1) == 0)
2267 			txp = (portid_t) (rxp + 1);
2268 		else
2269 			txp = (portid_t) (rxp - 1);
2270 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2271 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2272 	}
2273 }
2274 
2275 static void
2276 icmp_echo_config_setup(void)
2277 {
2278 	portid_t  rxp;
2279 	queueid_t rxq;
2280 	lcoreid_t lc_id;
2281 	uint16_t  sm_id;
2282 
2283 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2284 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2285 			(nb_txq * nb_fwd_ports);
2286 	else
2287 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2288 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2289 	cur_fwd_config.nb_fwd_streams =
2290 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2291 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2292 		cur_fwd_config.nb_fwd_lcores =
2293 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2294 	if (verbose_level > 0) {
2295 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2296 		       __FUNCTION__,
2297 		       cur_fwd_config.nb_fwd_lcores,
2298 		       cur_fwd_config.nb_fwd_ports,
2299 		       cur_fwd_config.nb_fwd_streams);
2300 	}
2301 
2302 	/* reinitialize forwarding streams */
2303 	init_fwd_streams();
2304 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2305 	rxp = 0; rxq = 0;
2306 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2307 		if (verbose_level > 0)
2308 			printf("  core=%d: \n", lc_id);
2309 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2310 			struct fwd_stream *fs;
2311 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2312 			fs->rx_port = fwd_ports_ids[rxp];
2313 			fs->rx_queue = rxq;
2314 			fs->tx_port = fs->rx_port;
2315 			fs->tx_queue = rxq;
2316 			fs->peer_addr = fs->tx_port;
2317 			fs->retry_enabled = retry_enabled;
2318 			if (verbose_level > 0)
2319 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2320 				       sm_id, fs->rx_port, fs->rx_queue,
2321 				       fs->tx_queue);
2322 			rxq = (queueid_t) (rxq + 1);
2323 			if (rxq == nb_rxq) {
2324 				rxq = 0;
2325 				rxp = (portid_t) (rxp + 1);
2326 			}
2327 		}
2328 	}
2329 }
2330 
2331 #if defined RTE_LIBRTE_PMD_SOFTNIC
2332 static void
2333 softnic_fwd_config_setup(void)
2334 {
2335 	struct rte_port *port;
2336 	portid_t pid, softnic_portid;
2337 	queueid_t i;
2338 	uint8_t softnic_enable = 0;
2339 
2340 	RTE_ETH_FOREACH_DEV(pid) {
2341 			port = &ports[pid];
2342 			const char *driver = port->dev_info.driver_name;
2343 
2344 			if (strcmp(driver, "net_softnic") == 0) {
2345 				softnic_portid = pid;
2346 				softnic_enable = 1;
2347 				break;
2348 			}
2349 	}
2350 
2351 	if (softnic_enable == 0) {
2352 		printf("Softnic mode not configured(%s)!\n", __func__);
2353 		return;
2354 	}
2355 
2356 	cur_fwd_config.nb_fwd_ports = 1;
2357 	cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq;
2358 
2359 	/* Re-initialize forwarding streams */
2360 	init_fwd_streams();
2361 
2362 	/*
2363 	 * In the softnic forwarding test, the number of forwarding cores
2364 	 * is set to one and remaining are used for softnic packet processing.
2365 	 */
2366 	cur_fwd_config.nb_fwd_lcores = 1;
2367 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2368 
2369 	for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) {
2370 		fwd_streams[i]->rx_port   = softnic_portid;
2371 		fwd_streams[i]->rx_queue  = i;
2372 		fwd_streams[i]->tx_port   = softnic_portid;
2373 		fwd_streams[i]->tx_queue  = i;
2374 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2375 		fwd_streams[i]->retry_enabled = retry_enabled;
2376 	}
2377 }
2378 #endif
2379 
2380 void
2381 fwd_config_setup(void)
2382 {
2383 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2384 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2385 		icmp_echo_config_setup();
2386 		return;
2387 	}
2388 
2389 #if defined RTE_LIBRTE_PMD_SOFTNIC
2390 	if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) {
2391 		softnic_fwd_config_setup();
2392 		return;
2393 	}
2394 #endif
2395 
2396 	if ((nb_rxq > 1) && (nb_txq > 1)){
2397 		if (dcb_config)
2398 			dcb_fwd_config_setup();
2399 		else
2400 			rss_fwd_config_setup();
2401 	}
2402 	else
2403 		simple_fwd_config_setup();
2404 }
2405 
2406 void
2407 pkt_fwd_config_display(struct fwd_config *cfg)
2408 {
2409 	struct fwd_stream *fs;
2410 	lcoreid_t  lc_id;
2411 	streamid_t sm_id;
2412 
2413 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2414 		"NUMA support %s, MP over anonymous pages %s\n",
2415 		cfg->fwd_eng->fwd_mode_name,
2416 		retry_enabled == 0 ? "" : " with retry",
2417 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2418 		numa_support == 1 ? "enabled" : "disabled",
2419 		mp_anon != 0 ? "enabled" : "disabled");
2420 
2421 	if (retry_enabled)
2422 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2423 			burst_tx_retry_num, burst_tx_delay_time);
2424 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2425 		printf("Logical Core %u (socket %u) forwards packets on "
2426 		       "%d streams:",
2427 		       fwd_lcores_cpuids[lc_id],
2428 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2429 		       fwd_lcores[lc_id]->stream_nb);
2430 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2431 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2432 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2433 			       "P=%d/Q=%d (socket %u) ",
2434 			       fs->rx_port, fs->rx_queue,
2435 			       ports[fs->rx_port].socket_id,
2436 			       fs->tx_port, fs->tx_queue,
2437 			       ports[fs->tx_port].socket_id);
2438 			print_ethaddr("peer=",
2439 				      &peer_eth_addrs[fs->peer_addr]);
2440 		}
2441 		printf("\n");
2442 	}
2443 	printf("\n");
2444 }
2445 
2446 void
2447 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2448 {
2449 	uint8_t c, new_peer_addr[6];
2450 	if (!rte_eth_dev_is_valid_port(port_id)) {
2451 		printf("Error: Invalid port number %i\n", port_id);
2452 		return;
2453 	}
2454 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2455 					sizeof(new_peer_addr)) < 0) {
2456 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2457 		return;
2458 	}
2459 	for (c = 0; c < 6; c++)
2460 		peer_eth_addrs[port_id].addr_bytes[c] =
2461 			new_peer_addr[c];
2462 }
2463 
2464 int
2465 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2466 {
2467 	unsigned int i;
2468 	unsigned int lcore_cpuid;
2469 	int record_now;
2470 
2471 	record_now = 0;
2472  again:
2473 	for (i = 0; i < nb_lc; i++) {
2474 		lcore_cpuid = lcorelist[i];
2475 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2476 			printf("lcore %u not enabled\n", lcore_cpuid);
2477 			return -1;
2478 		}
2479 		if (lcore_cpuid == rte_get_master_lcore()) {
2480 			printf("lcore %u cannot be masked on for running "
2481 			       "packet forwarding, which is the master lcore "
2482 			       "and reserved for command line parsing only\n",
2483 			       lcore_cpuid);
2484 			return -1;
2485 		}
2486 		if (record_now)
2487 			fwd_lcores_cpuids[i] = lcore_cpuid;
2488 	}
2489 	if (record_now == 0) {
2490 		record_now = 1;
2491 		goto again;
2492 	}
2493 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2494 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2495 		printf("previous number of forwarding cores %u - changed to "
2496 		       "number of configured cores %u\n",
2497 		       (unsigned int) nb_fwd_lcores, nb_lc);
2498 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 int
2505 set_fwd_lcores_mask(uint64_t lcoremask)
2506 {
2507 	unsigned int lcorelist[64];
2508 	unsigned int nb_lc;
2509 	unsigned int i;
2510 
2511 	if (lcoremask == 0) {
2512 		printf("Invalid NULL mask of cores\n");
2513 		return -1;
2514 	}
2515 	nb_lc = 0;
2516 	for (i = 0; i < 64; i++) {
2517 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2518 			continue;
2519 		lcorelist[nb_lc++] = i;
2520 	}
2521 	return set_fwd_lcores_list(lcorelist, nb_lc);
2522 }
2523 
2524 void
2525 set_fwd_lcores_number(uint16_t nb_lc)
2526 {
2527 	if (nb_lc > nb_cfg_lcores) {
2528 		printf("nb fwd cores %u > %u (max. number of configured "
2529 		       "lcores) - ignored\n",
2530 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2531 		return;
2532 	}
2533 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2534 	printf("Number of forwarding cores set to %u\n",
2535 	       (unsigned int) nb_fwd_lcores);
2536 }
2537 
2538 void
2539 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2540 {
2541 	unsigned int i;
2542 	portid_t port_id;
2543 	int record_now;
2544 
2545 	record_now = 0;
2546  again:
2547 	for (i = 0; i < nb_pt; i++) {
2548 		port_id = (portid_t) portlist[i];
2549 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2550 			return;
2551 		if (record_now)
2552 			fwd_ports_ids[i] = port_id;
2553 	}
2554 	if (record_now == 0) {
2555 		record_now = 1;
2556 		goto again;
2557 	}
2558 	nb_cfg_ports = (portid_t) nb_pt;
2559 	if (nb_fwd_ports != (portid_t) nb_pt) {
2560 		printf("previous number of forwarding ports %u - changed to "
2561 		       "number of configured ports %u\n",
2562 		       (unsigned int) nb_fwd_ports, nb_pt);
2563 		nb_fwd_ports = (portid_t) nb_pt;
2564 	}
2565 }
2566 
2567 void
2568 set_fwd_ports_mask(uint64_t portmask)
2569 {
2570 	unsigned int portlist[64];
2571 	unsigned int nb_pt;
2572 	unsigned int i;
2573 
2574 	if (portmask == 0) {
2575 		printf("Invalid NULL mask of ports\n");
2576 		return;
2577 	}
2578 	nb_pt = 0;
2579 	RTE_ETH_FOREACH_DEV(i) {
2580 		if (! ((uint64_t)(1ULL << i) & portmask))
2581 			continue;
2582 		portlist[nb_pt++] = i;
2583 	}
2584 	set_fwd_ports_list(portlist, nb_pt);
2585 }
2586 
2587 void
2588 set_fwd_ports_number(uint16_t nb_pt)
2589 {
2590 	if (nb_pt > nb_cfg_ports) {
2591 		printf("nb fwd ports %u > %u (number of configured "
2592 		       "ports) - ignored\n",
2593 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2594 		return;
2595 	}
2596 	nb_fwd_ports = (portid_t) nb_pt;
2597 	printf("Number of forwarding ports set to %u\n",
2598 	       (unsigned int) nb_fwd_ports);
2599 }
2600 
2601 int
2602 port_is_forwarding(portid_t port_id)
2603 {
2604 	unsigned int i;
2605 
2606 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2607 		return -1;
2608 
2609 	for (i = 0; i < nb_fwd_ports; i++) {
2610 		if (fwd_ports_ids[i] == port_id)
2611 			return 1;
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 void
2618 set_nb_pkt_per_burst(uint16_t nb)
2619 {
2620 	if (nb > MAX_PKT_BURST) {
2621 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2622 		       " ignored\n",
2623 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2624 		return;
2625 	}
2626 	nb_pkt_per_burst = nb;
2627 	printf("Number of packets per burst set to %u\n",
2628 	       (unsigned int) nb_pkt_per_burst);
2629 }
2630 
2631 static const char *
2632 tx_split_get_name(enum tx_pkt_split split)
2633 {
2634 	uint32_t i;
2635 
2636 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2637 		if (tx_split_name[i].split == split)
2638 			return tx_split_name[i].name;
2639 	}
2640 	return NULL;
2641 }
2642 
2643 void
2644 set_tx_pkt_split(const char *name)
2645 {
2646 	uint32_t i;
2647 
2648 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2649 		if (strcmp(tx_split_name[i].name, name) == 0) {
2650 			tx_pkt_split = tx_split_name[i].split;
2651 			return;
2652 		}
2653 	}
2654 	printf("unknown value: \"%s\"\n", name);
2655 }
2656 
2657 void
2658 show_tx_pkt_segments(void)
2659 {
2660 	uint32_t i, n;
2661 	const char *split;
2662 
2663 	n = tx_pkt_nb_segs;
2664 	split = tx_split_get_name(tx_pkt_split);
2665 
2666 	printf("Number of segments: %u\n", n);
2667 	printf("Segment sizes: ");
2668 	for (i = 0; i != n - 1; i++)
2669 		printf("%hu,", tx_pkt_seg_lengths[i]);
2670 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2671 	printf("Split packet: %s\n", split);
2672 }
2673 
2674 void
2675 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2676 {
2677 	uint16_t tx_pkt_len;
2678 	unsigned i;
2679 
2680 	if (nb_segs >= (unsigned) nb_txd) {
2681 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2682 		       nb_segs, (unsigned int) nb_txd);
2683 		return;
2684 	}
2685 
2686 	/*
2687 	 * Check that each segment length is greater or equal than
2688 	 * the mbuf data sise.
2689 	 * Check also that the total packet length is greater or equal than the
2690 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2691 	 */
2692 	tx_pkt_len = 0;
2693 	for (i = 0; i < nb_segs; i++) {
2694 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2695 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2696 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2697 			return;
2698 		}
2699 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2700 	}
2701 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2702 		printf("total packet length=%u < %d - give up\n",
2703 				(unsigned) tx_pkt_len,
2704 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2705 		return;
2706 	}
2707 
2708 	for (i = 0; i < nb_segs; i++)
2709 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2710 
2711 	tx_pkt_length  = tx_pkt_len;
2712 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2713 }
2714 
2715 void
2716 setup_gro(const char *onoff, portid_t port_id)
2717 {
2718 	if (!rte_eth_dev_is_valid_port(port_id)) {
2719 		printf("invalid port id %u\n", port_id);
2720 		return;
2721 	}
2722 	if (test_done == 0) {
2723 		printf("Before enable/disable GRO,"
2724 				" please stop forwarding first\n");
2725 		return;
2726 	}
2727 	if (strcmp(onoff, "on") == 0) {
2728 		if (gro_ports[port_id].enable != 0) {
2729 			printf("Port %u has enabled GRO. Please"
2730 					" disable GRO first\n", port_id);
2731 			return;
2732 		}
2733 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2734 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2735 			gro_ports[port_id].param.max_flow_num =
2736 				GRO_DEFAULT_FLOW_NUM;
2737 			gro_ports[port_id].param.max_item_per_flow =
2738 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2739 		}
2740 		gro_ports[port_id].enable = 1;
2741 	} else {
2742 		if (gro_ports[port_id].enable == 0) {
2743 			printf("Port %u has disabled GRO\n", port_id);
2744 			return;
2745 		}
2746 		gro_ports[port_id].enable = 0;
2747 	}
2748 }
2749 
2750 void
2751 setup_gro_flush_cycles(uint8_t cycles)
2752 {
2753 	if (test_done == 0) {
2754 		printf("Before change flush interval for GRO,"
2755 				" please stop forwarding first.\n");
2756 		return;
2757 	}
2758 
2759 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2760 			GRO_DEFAULT_FLUSH_CYCLES) {
2761 		printf("The flushing cycle be in the range"
2762 				" of 1 to %u. Revert to the default"
2763 				" value %u.\n",
2764 				GRO_MAX_FLUSH_CYCLES,
2765 				GRO_DEFAULT_FLUSH_CYCLES);
2766 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2767 	}
2768 
2769 	gro_flush_cycles = cycles;
2770 }
2771 
2772 void
2773 show_gro(portid_t port_id)
2774 {
2775 	struct rte_gro_param *param;
2776 	uint32_t max_pkts_num;
2777 
2778 	param = &gro_ports[port_id].param;
2779 
2780 	if (!rte_eth_dev_is_valid_port(port_id)) {
2781 		printf("Invalid port id %u.\n", port_id);
2782 		return;
2783 	}
2784 	if (gro_ports[port_id].enable) {
2785 		printf("GRO type: TCP/IPv4\n");
2786 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2787 			max_pkts_num = param->max_flow_num *
2788 				param->max_item_per_flow;
2789 		} else
2790 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2791 		printf("Max number of packets to perform GRO: %u\n",
2792 				max_pkts_num);
2793 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2794 	} else
2795 		printf("Port %u doesn't enable GRO.\n", port_id);
2796 }
2797 
2798 void
2799 setup_gso(const char *mode, portid_t port_id)
2800 {
2801 	if (!rte_eth_dev_is_valid_port(port_id)) {
2802 		printf("invalid port id %u\n", port_id);
2803 		return;
2804 	}
2805 	if (strcmp(mode, "on") == 0) {
2806 		if (test_done == 0) {
2807 			printf("before enabling GSO,"
2808 					" please stop forwarding first\n");
2809 			return;
2810 		}
2811 		gso_ports[port_id].enable = 1;
2812 	} else if (strcmp(mode, "off") == 0) {
2813 		if (test_done == 0) {
2814 			printf("before disabling GSO,"
2815 					" please stop forwarding first\n");
2816 			return;
2817 		}
2818 		gso_ports[port_id].enable = 0;
2819 	}
2820 }
2821 
2822 char*
2823 list_pkt_forwarding_modes(void)
2824 {
2825 	static char fwd_modes[128] = "";
2826 	const char *separator = "|";
2827 	struct fwd_engine *fwd_eng;
2828 	unsigned i = 0;
2829 
2830 	if (strlen (fwd_modes) == 0) {
2831 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2832 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2833 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2834 			strncat(fwd_modes, separator,
2835 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2836 		}
2837 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2838 	}
2839 
2840 	return fwd_modes;
2841 }
2842 
2843 char*
2844 list_pkt_forwarding_retry_modes(void)
2845 {
2846 	static char fwd_modes[128] = "";
2847 	const char *separator = "|";
2848 	struct fwd_engine *fwd_eng;
2849 	unsigned i = 0;
2850 
2851 	if (strlen(fwd_modes) == 0) {
2852 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2853 			if (fwd_eng == &rx_only_engine)
2854 				continue;
2855 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2856 					sizeof(fwd_modes) -
2857 					strlen(fwd_modes) - 1);
2858 			strncat(fwd_modes, separator,
2859 					sizeof(fwd_modes) -
2860 					strlen(fwd_modes) - 1);
2861 		}
2862 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2863 	}
2864 
2865 	return fwd_modes;
2866 }
2867 
2868 void
2869 set_pkt_forwarding_mode(const char *fwd_mode_name)
2870 {
2871 	struct fwd_engine *fwd_eng;
2872 	unsigned i;
2873 
2874 	i = 0;
2875 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2876 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2877 			printf("Set %s packet forwarding mode%s\n",
2878 			       fwd_mode_name,
2879 			       retry_enabled == 0 ? "" : " with retry");
2880 			cur_fwd_eng = fwd_eng;
2881 			return;
2882 		}
2883 		i++;
2884 	}
2885 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2886 }
2887 
2888 void
2889 set_verbose_level(uint16_t vb_level)
2890 {
2891 	printf("Change verbose level from %u to %u\n",
2892 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2893 	verbose_level = vb_level;
2894 }
2895 
2896 void
2897 vlan_extend_set(portid_t port_id, int on)
2898 {
2899 	int diag;
2900 	int vlan_offload;
2901 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2902 
2903 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2904 		return;
2905 
2906 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2907 
2908 	if (on) {
2909 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2910 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2911 	} else {
2912 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2913 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2914 	}
2915 
2916 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2917 	if (diag < 0)
2918 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2919 	       "diag=%d\n", port_id, on, diag);
2920 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2921 }
2922 
2923 void
2924 rx_vlan_strip_set(portid_t port_id, int on)
2925 {
2926 	int diag;
2927 	int vlan_offload;
2928 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2929 
2930 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2931 		return;
2932 
2933 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2934 
2935 	if (on) {
2936 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2937 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2938 	} else {
2939 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2940 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2941 	}
2942 
2943 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2944 	if (diag < 0)
2945 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2946 	       "diag=%d\n", port_id, on, diag);
2947 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2948 }
2949 
2950 void
2951 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2952 {
2953 	int diag;
2954 
2955 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2956 		return;
2957 
2958 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2959 	if (diag < 0)
2960 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2961 	       "diag=%d\n", port_id, queue_id, on, diag);
2962 }
2963 
2964 void
2965 rx_vlan_filter_set(portid_t port_id, int on)
2966 {
2967 	int diag;
2968 	int vlan_offload;
2969 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2970 
2971 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2972 		return;
2973 
2974 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2975 
2976 	if (on) {
2977 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2978 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2979 	} else {
2980 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2981 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2982 	}
2983 
2984 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2985 	if (diag < 0)
2986 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2987 	       "diag=%d\n", port_id, on, diag);
2988 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2989 }
2990 
2991 int
2992 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2993 {
2994 	int diag;
2995 
2996 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2997 		return 1;
2998 	if (vlan_id_is_invalid(vlan_id))
2999 		return 1;
3000 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
3001 	if (diag == 0)
3002 		return 0;
3003 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
3004 	       "diag=%d\n",
3005 	       port_id, vlan_id, on, diag);
3006 	return -1;
3007 }
3008 
3009 void
3010 rx_vlan_all_filter_set(portid_t port_id, int on)
3011 {
3012 	uint16_t vlan_id;
3013 
3014 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3015 		return;
3016 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
3017 		if (rx_vft_set(port_id, vlan_id, on))
3018 			break;
3019 	}
3020 }
3021 
3022 void
3023 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
3024 {
3025 	int diag;
3026 
3027 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3028 		return;
3029 
3030 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
3031 	if (diag == 0)
3032 		return;
3033 
3034 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
3035 	       "diag=%d\n",
3036 	       port_id, vlan_type, tp_id, diag);
3037 }
3038 
3039 void
3040 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
3041 {
3042 	int vlan_offload;
3043 	struct rte_eth_dev_info dev_info;
3044 
3045 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3046 		return;
3047 	if (vlan_id_is_invalid(vlan_id))
3048 		return;
3049 
3050 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3051 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
3052 		printf("Error, as QinQ has been enabled.\n");
3053 		return;
3054 	}
3055 	rte_eth_dev_info_get(port_id, &dev_info);
3056 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
3057 		printf("Error: vlan insert is not supported by port %d\n",
3058 			port_id);
3059 		return;
3060 	}
3061 
3062 	tx_vlan_reset(port_id);
3063 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
3064 	ports[port_id].tx_vlan_id = vlan_id;
3065 }
3066 
3067 void
3068 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
3069 {
3070 	int vlan_offload;
3071 	struct rte_eth_dev_info dev_info;
3072 
3073 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3074 		return;
3075 	if (vlan_id_is_invalid(vlan_id))
3076 		return;
3077 	if (vlan_id_is_invalid(vlan_id_outer))
3078 		return;
3079 
3080 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
3081 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
3082 		printf("Error, as QinQ hasn't been enabled.\n");
3083 		return;
3084 	}
3085 	rte_eth_dev_info_get(port_id, &dev_info);
3086 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
3087 		printf("Error: qinq insert not supported by port %d\n",
3088 			port_id);
3089 		return;
3090 	}
3091 
3092 	tx_vlan_reset(port_id);
3093 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
3094 	ports[port_id].tx_vlan_id = vlan_id;
3095 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
3096 }
3097 
3098 void
3099 tx_vlan_reset(portid_t port_id)
3100 {
3101 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3102 		return;
3103 	ports[port_id].dev_conf.txmode.offloads &=
3104 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
3105 				  DEV_TX_OFFLOAD_QINQ_INSERT);
3106 	ports[port_id].tx_vlan_id = 0;
3107 	ports[port_id].tx_vlan_id_outer = 0;
3108 }
3109 
3110 void
3111 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
3112 {
3113 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3114 		return;
3115 
3116 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
3117 }
3118 
3119 void
3120 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
3121 {
3122 	uint16_t i;
3123 	uint8_t existing_mapping_found = 0;
3124 
3125 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3126 		return;
3127 
3128 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3129 		return;
3130 
3131 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3132 		printf("map_value not in required range 0..%d\n",
3133 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3134 		return;
3135 	}
3136 
3137 	if (!is_rx) { /*then tx*/
3138 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3139 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3140 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3141 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3142 				existing_mapping_found = 1;
3143 				break;
3144 			}
3145 		}
3146 		if (!existing_mapping_found) { /* A new additional mapping... */
3147 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3148 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3149 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3150 			nb_tx_queue_stats_mappings++;
3151 		}
3152 	}
3153 	else { /*rx*/
3154 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3155 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3156 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3157 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3158 				existing_mapping_found = 1;
3159 				break;
3160 			}
3161 		}
3162 		if (!existing_mapping_found) { /* A new additional mapping... */
3163 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3164 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3165 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3166 			nb_rx_queue_stats_mappings++;
3167 		}
3168 	}
3169 }
3170 
3171 void
3172 set_xstats_hide_zero(uint8_t on_off)
3173 {
3174 	xstats_hide_zero = on_off;
3175 }
3176 
3177 static inline void
3178 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3179 {
3180 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3181 
3182 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3183 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3184 			" tunnel_id: 0x%08x",
3185 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3186 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3187 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3188 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3189 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3190 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3191 
3192 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3193 			rte_be_to_cpu_16(mask->src_port_mask),
3194 			rte_be_to_cpu_16(mask->dst_port_mask));
3195 
3196 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3197 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3198 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3199 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3200 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3201 
3202 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3203 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3204 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3205 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3206 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3207 	}
3208 
3209 	printf("\n");
3210 }
3211 
3212 static inline void
3213 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3214 {
3215 	struct rte_eth_flex_payload_cfg *cfg;
3216 	uint32_t i, j;
3217 
3218 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3219 		cfg = &flex_conf->flex_set[i];
3220 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3221 			printf("\n    RAW:  ");
3222 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3223 			printf("\n    L2_PAYLOAD:  ");
3224 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3225 			printf("\n    L3_PAYLOAD:  ");
3226 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3227 			printf("\n    L4_PAYLOAD:  ");
3228 		else
3229 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3230 		for (j = 0; j < num; j++)
3231 			printf("  %-5u", cfg->src_offset[j]);
3232 	}
3233 	printf("\n");
3234 }
3235 
3236 static char *
3237 flowtype_to_str(uint16_t flow_type)
3238 {
3239 	struct flow_type_info {
3240 		char str[32];
3241 		uint16_t ftype;
3242 	};
3243 
3244 	uint8_t i;
3245 	static struct flow_type_info flowtype_str_table[] = {
3246 		{"raw", RTE_ETH_FLOW_RAW},
3247 		{"ipv4", RTE_ETH_FLOW_IPV4},
3248 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3249 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3250 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3251 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3252 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3253 		{"ipv6", RTE_ETH_FLOW_IPV6},
3254 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3255 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3256 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3257 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3258 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3259 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3260 		{"port", RTE_ETH_FLOW_PORT},
3261 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3262 		{"geneve", RTE_ETH_FLOW_GENEVE},
3263 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3264 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3265 	};
3266 
3267 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3268 		if (flowtype_str_table[i].ftype == flow_type)
3269 			return flowtype_str_table[i].str;
3270 	}
3271 
3272 	return NULL;
3273 }
3274 
3275 static inline void
3276 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3277 {
3278 	struct rte_eth_fdir_flex_mask *mask;
3279 	uint32_t i, j;
3280 	char *p;
3281 
3282 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3283 		mask = &flex_conf->flex_mask[i];
3284 		p = flowtype_to_str(mask->flow_type);
3285 		printf("\n    %s:\t", p ? p : "unknown");
3286 		for (j = 0; j < num; j++)
3287 			printf(" %02x", mask->mask[j]);
3288 	}
3289 	printf("\n");
3290 }
3291 
3292 static inline void
3293 print_fdir_flow_type(uint32_t flow_types_mask)
3294 {
3295 	int i;
3296 	char *p;
3297 
3298 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3299 		if (!(flow_types_mask & (1 << i)))
3300 			continue;
3301 		p = flowtype_to_str(i);
3302 		if (p)
3303 			printf(" %s", p);
3304 		else
3305 			printf(" unknown");
3306 	}
3307 	printf("\n");
3308 }
3309 
3310 void
3311 fdir_get_infos(portid_t port_id)
3312 {
3313 	struct rte_eth_fdir_stats fdir_stat;
3314 	struct rte_eth_fdir_info fdir_info;
3315 	int ret;
3316 
3317 	static const char *fdir_stats_border = "########################";
3318 
3319 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3320 		return;
3321 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3322 	if (ret < 0) {
3323 		printf("\n FDIR is not supported on port %-2d\n",
3324 			port_id);
3325 		return;
3326 	}
3327 
3328 	memset(&fdir_info, 0, sizeof(fdir_info));
3329 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3330 			       RTE_ETH_FILTER_INFO, &fdir_info);
3331 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3332 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3333 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3334 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3335 	       fdir_stats_border, port_id, fdir_stats_border);
3336 	printf("  MODE: ");
3337 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3338 		printf("  PERFECT\n");
3339 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3340 		printf("  PERFECT-MAC-VLAN\n");
3341 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3342 		printf("  PERFECT-TUNNEL\n");
3343 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3344 		printf("  SIGNATURE\n");
3345 	else
3346 		printf("  DISABLE\n");
3347 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3348 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3349 		printf("  SUPPORTED FLOW TYPE: ");
3350 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3351 	}
3352 	printf("  FLEX PAYLOAD INFO:\n");
3353 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3354 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3355 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3356 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3357 		fdir_info.flex_payload_unit,
3358 		fdir_info.max_flex_payload_segment_num,
3359 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3360 	printf("  MASK: ");
3361 	print_fdir_mask(&fdir_info.mask);
3362 	if (fdir_info.flex_conf.nb_payloads > 0) {
3363 		printf("  FLEX PAYLOAD SRC OFFSET:");
3364 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3365 	}
3366 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3367 		printf("  FLEX MASK CFG:");
3368 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3369 	}
3370 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3371 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3372 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3373 	       fdir_info.guarant_spc, fdir_info.best_spc);
3374 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3375 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3376 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3377 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3378 	       fdir_stat.collision, fdir_stat.free,
3379 	       fdir_stat.maxhash, fdir_stat.maxlen,
3380 	       fdir_stat.add, fdir_stat.remove,
3381 	       fdir_stat.f_add, fdir_stat.f_remove);
3382 	printf("  %s############################%s\n",
3383 	       fdir_stats_border, fdir_stats_border);
3384 }
3385 
3386 void
3387 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3388 {
3389 	struct rte_port *port;
3390 	struct rte_eth_fdir_flex_conf *flex_conf;
3391 	int i, idx = 0;
3392 
3393 	port = &ports[port_id];
3394 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3395 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3396 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3397 			idx = i;
3398 			break;
3399 		}
3400 	}
3401 	if (i >= RTE_ETH_FLOW_MAX) {
3402 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3403 			idx = flex_conf->nb_flexmasks;
3404 			flex_conf->nb_flexmasks++;
3405 		} else {
3406 			printf("The flex mask table is full. Can not set flex"
3407 				" mask for flow_type(%u).", cfg->flow_type);
3408 			return;
3409 		}
3410 	}
3411 	rte_memcpy(&flex_conf->flex_mask[idx],
3412 			 cfg,
3413 			 sizeof(struct rte_eth_fdir_flex_mask));
3414 }
3415 
3416 void
3417 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3418 {
3419 	struct rte_port *port;
3420 	struct rte_eth_fdir_flex_conf *flex_conf;
3421 	int i, idx = 0;
3422 
3423 	port = &ports[port_id];
3424 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3425 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3426 		if (cfg->type == flex_conf->flex_set[i].type) {
3427 			idx = i;
3428 			break;
3429 		}
3430 	}
3431 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3432 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3433 			idx = flex_conf->nb_payloads;
3434 			flex_conf->nb_payloads++;
3435 		} else {
3436 			printf("The flex payload table is full. Can not set"
3437 				" flex payload for type(%u).", cfg->type);
3438 			return;
3439 		}
3440 	}
3441 	rte_memcpy(&flex_conf->flex_set[idx],
3442 			 cfg,
3443 			 sizeof(struct rte_eth_flex_payload_cfg));
3444 
3445 }
3446 
3447 void
3448 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3449 {
3450 #ifdef RTE_LIBRTE_IXGBE_PMD
3451 	int diag;
3452 
3453 	if (is_rx)
3454 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3455 	else
3456 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3457 
3458 	if (diag == 0)
3459 		return;
3460 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3461 			is_rx ? "rx" : "tx", port_id, diag);
3462 	return;
3463 #endif
3464 	printf("VF %s setting not supported for port %d\n",
3465 			is_rx ? "Rx" : "Tx", port_id);
3466 	RTE_SET_USED(vf);
3467 	RTE_SET_USED(on);
3468 }
3469 
3470 int
3471 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3472 {
3473 	int diag;
3474 	struct rte_eth_link link;
3475 
3476 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3477 		return 1;
3478 	rte_eth_link_get_nowait(port_id, &link);
3479 	if (rate > link.link_speed) {
3480 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3481 			rate, link.link_speed);
3482 		return 1;
3483 	}
3484 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3485 	if (diag == 0)
3486 		return diag;
3487 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3488 		port_id, diag);
3489 	return diag;
3490 }
3491 
3492 int
3493 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3494 {
3495 	int diag = -ENOTSUP;
3496 
3497 	RTE_SET_USED(vf);
3498 	RTE_SET_USED(rate);
3499 	RTE_SET_USED(q_msk);
3500 
3501 #ifdef RTE_LIBRTE_IXGBE_PMD
3502 	if (diag == -ENOTSUP)
3503 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3504 						       q_msk);
3505 #endif
3506 #ifdef RTE_LIBRTE_BNXT_PMD
3507 	if (diag == -ENOTSUP)
3508 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3509 #endif
3510 	if (diag == 0)
3511 		return diag;
3512 
3513 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3514 		port_id, diag);
3515 	return diag;
3516 }
3517 
3518 /*
3519  * Functions to manage the set of filtered Multicast MAC addresses.
3520  *
3521  * A pool of filtered multicast MAC addresses is associated with each port.
3522  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3523  * The address of the pool and the number of valid multicast MAC addresses
3524  * recorded in the pool are stored in the fields "mc_addr_pool" and
3525  * "mc_addr_nb" of the "rte_port" data structure.
3526  *
3527  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3528  * to be supplied a contiguous array of multicast MAC addresses.
3529  * To comply with this constraint, the set of multicast addresses recorded
3530  * into the pool are systematically compacted at the beginning of the pool.
3531  * Hence, when a multicast address is removed from the pool, all following
3532  * addresses, if any, are copied back to keep the set contiguous.
3533  */
3534 #define MCAST_POOL_INC 32
3535 
3536 static int
3537 mcast_addr_pool_extend(struct rte_port *port)
3538 {
3539 	struct ether_addr *mc_pool;
3540 	size_t mc_pool_size;
3541 
3542 	/*
3543 	 * If a free entry is available at the end of the pool, just
3544 	 * increment the number of recorded multicast addresses.
3545 	 */
3546 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3547 		port->mc_addr_nb++;
3548 		return 0;
3549 	}
3550 
3551 	/*
3552 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3553 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3554 	 * of MCAST_POOL_INC.
3555 	 */
3556 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3557 						    MCAST_POOL_INC);
3558 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3559 						mc_pool_size);
3560 	if (mc_pool == NULL) {
3561 		printf("allocation of pool of %u multicast addresses failed\n",
3562 		       port->mc_addr_nb + MCAST_POOL_INC);
3563 		return -ENOMEM;
3564 	}
3565 
3566 	port->mc_addr_pool = mc_pool;
3567 	port->mc_addr_nb++;
3568 	return 0;
3569 
3570 }
3571 
3572 static void
3573 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3574 {
3575 	port->mc_addr_nb--;
3576 	if (addr_idx == port->mc_addr_nb) {
3577 		/* No need to recompact the set of multicast addressses. */
3578 		if (port->mc_addr_nb == 0) {
3579 			/* free the pool of multicast addresses. */
3580 			free(port->mc_addr_pool);
3581 			port->mc_addr_pool = NULL;
3582 		}
3583 		return;
3584 	}
3585 	memmove(&port->mc_addr_pool[addr_idx],
3586 		&port->mc_addr_pool[addr_idx + 1],
3587 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3588 }
3589 
3590 static void
3591 eth_port_multicast_addr_list_set(portid_t port_id)
3592 {
3593 	struct rte_port *port;
3594 	int diag;
3595 
3596 	port = &ports[port_id];
3597 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3598 					    port->mc_addr_nb);
3599 	if (diag == 0)
3600 		return;
3601 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3602 	       port->mc_addr_nb, port_id, -diag);
3603 }
3604 
3605 void
3606 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3607 {
3608 	struct rte_port *port;
3609 	uint32_t i;
3610 
3611 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3612 		return;
3613 
3614 	port = &ports[port_id];
3615 
3616 	/*
3617 	 * Check that the added multicast MAC address is not already recorded
3618 	 * in the pool of multicast addresses.
3619 	 */
3620 	for (i = 0; i < port->mc_addr_nb; i++) {
3621 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3622 			printf("multicast address already filtered by port\n");
3623 			return;
3624 		}
3625 	}
3626 
3627 	if (mcast_addr_pool_extend(port) != 0)
3628 		return;
3629 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3630 	eth_port_multicast_addr_list_set(port_id);
3631 }
3632 
3633 void
3634 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3635 {
3636 	struct rte_port *port;
3637 	uint32_t i;
3638 
3639 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3640 		return;
3641 
3642 	port = &ports[port_id];
3643 
3644 	/*
3645 	 * Search the pool of multicast MAC addresses for the removed address.
3646 	 */
3647 	for (i = 0; i < port->mc_addr_nb; i++) {
3648 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3649 			break;
3650 	}
3651 	if (i == port->mc_addr_nb) {
3652 		printf("multicast address not filtered by port %d\n", port_id);
3653 		return;
3654 	}
3655 
3656 	mcast_addr_pool_remove(port, i);
3657 	eth_port_multicast_addr_list_set(port_id);
3658 }
3659 
3660 void
3661 port_dcb_info_display(portid_t port_id)
3662 {
3663 	struct rte_eth_dcb_info dcb_info;
3664 	uint16_t i;
3665 	int ret;
3666 	static const char *border = "================";
3667 
3668 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3669 		return;
3670 
3671 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3672 	if (ret) {
3673 		printf("\n Failed to get dcb infos on port %-2d\n",
3674 			port_id);
3675 		return;
3676 	}
3677 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3678 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3679 	printf("\n  TC :        ");
3680 	for (i = 0; i < dcb_info.nb_tcs; i++)
3681 		printf("\t%4d", i);
3682 	printf("\n  Priority :  ");
3683 	for (i = 0; i < dcb_info.nb_tcs; i++)
3684 		printf("\t%4d", dcb_info.prio_tc[i]);
3685 	printf("\n  BW percent :");
3686 	for (i = 0; i < dcb_info.nb_tcs; i++)
3687 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3688 	printf("\n  RXQ base :  ");
3689 	for (i = 0; i < dcb_info.nb_tcs; i++)
3690 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3691 	printf("\n  RXQ number :");
3692 	for (i = 0; i < dcb_info.nb_tcs; i++)
3693 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3694 	printf("\n  TXQ base :  ");
3695 	for (i = 0; i < dcb_info.nb_tcs; i++)
3696 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3697 	printf("\n  TXQ number :");
3698 	for (i = 0; i < dcb_info.nb_tcs; i++)
3699 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3700 	printf("\n");
3701 }
3702 
3703 uint8_t *
3704 open_file(const char *file_path, uint32_t *size)
3705 {
3706 	int fd = open(file_path, O_RDONLY);
3707 	off_t pkg_size;
3708 	uint8_t *buf = NULL;
3709 	int ret = 0;
3710 	struct stat st_buf;
3711 
3712 	if (size)
3713 		*size = 0;
3714 
3715 	if (fd == -1) {
3716 		printf("%s: Failed to open %s\n", __func__, file_path);
3717 		return buf;
3718 	}
3719 
3720 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3721 		close(fd);
3722 		printf("%s: File operations failed\n", __func__);
3723 		return buf;
3724 	}
3725 
3726 	pkg_size = st_buf.st_size;
3727 	if (pkg_size < 0) {
3728 		close(fd);
3729 		printf("%s: File operations failed\n", __func__);
3730 		return buf;
3731 	}
3732 
3733 	buf = (uint8_t *)malloc(pkg_size);
3734 	if (!buf) {
3735 		close(fd);
3736 		printf("%s: Failed to malloc memory\n",	__func__);
3737 		return buf;
3738 	}
3739 
3740 	ret = read(fd, buf, pkg_size);
3741 	if (ret < 0) {
3742 		close(fd);
3743 		printf("%s: File read operation failed\n", __func__);
3744 		close_file(buf);
3745 		return NULL;
3746 	}
3747 
3748 	if (size)
3749 		*size = pkg_size;
3750 
3751 	close(fd);
3752 
3753 	return buf;
3754 }
3755 
3756 int
3757 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3758 {
3759 	FILE *fh = fopen(file_path, "wb");
3760 
3761 	if (fh == NULL) {
3762 		printf("%s: Failed to open %s\n", __func__, file_path);
3763 		return -1;
3764 	}
3765 
3766 	if (fwrite(buf, 1, size, fh) != size) {
3767 		fclose(fh);
3768 		printf("%s: File write operation failed\n", __func__);
3769 		return -1;
3770 	}
3771 
3772 	fclose(fh);
3773 
3774 	return 0;
3775 }
3776 
3777 int
3778 close_file(uint8_t *buf)
3779 {
3780 	if (buf) {
3781 		free((void *)buf);
3782 		return 0;
3783 	}
3784 
3785 	return -1;
3786 }
3787 
3788 void
3789 port_queue_region_info_display(portid_t port_id, void *buf)
3790 {
3791 #ifdef RTE_LIBRTE_I40E_PMD
3792 	uint16_t i, j;
3793 	struct rte_pmd_i40e_queue_regions *info =
3794 		(struct rte_pmd_i40e_queue_regions *)buf;
3795 	static const char *queue_region_info_stats_border = "-------";
3796 
3797 	if (!info->queue_region_number)
3798 		printf("there is no region has been set before");
3799 
3800 	printf("\n	%s All queue region info for port=%2d %s",
3801 			queue_region_info_stats_border, port_id,
3802 			queue_region_info_stats_border);
3803 	printf("\n	queue_region_number: %-14u \n",
3804 			info->queue_region_number);
3805 
3806 	for (i = 0; i < info->queue_region_number; i++) {
3807 		printf("\n	region_id: %-14u queue_number: %-14u "
3808 			"queue_start_index: %-14u \n",
3809 			info->region[i].region_id,
3810 			info->region[i].queue_num,
3811 			info->region[i].queue_start_index);
3812 
3813 		printf("  user_priority_num is	%-14u :",
3814 					info->region[i].user_priority_num);
3815 		for (j = 0; j < info->region[i].user_priority_num; j++)
3816 			printf(" %-14u ", info->region[i].user_priority[j]);
3817 
3818 		printf("\n	flowtype_num is  %-14u :",
3819 				info->region[i].flowtype_num);
3820 		for (j = 0; j < info->region[i].flowtype_num; j++)
3821 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3822 	}
3823 #else
3824 	RTE_SET_USED(port_id);
3825 	RTE_SET_USED(buf);
3826 #endif
3827 
3828 	printf("\n\n");
3829 }
3830