1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <string.h> 10 #include <stdint.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/types.h> 15 #include <sys/stat.h> 16 #include <fcntl.h> 17 #include <unistd.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_debug.h> 22 #include <rte_log.h> 23 #include <rte_memory.h> 24 #include <rte_memcpy.h> 25 #include <rte_memzone.h> 26 #include <rte_launch.h> 27 #include <rte_eal.h> 28 #include <rte_per_lcore.h> 29 #include <rte_lcore.h> 30 #include <rte_branch_prediction.h> 31 #include <rte_mempool.h> 32 #include <rte_mbuf.h> 33 #include <rte_interrupts.h> 34 #include <rte_pci.h> 35 #include <rte_ether.h> 36 #include <rte_ethdev.h> 37 #include <rte_string_fns.h> 38 #include <rte_cycles.h> 39 #include <rte_flow.h> 40 #include <rte_mtr.h> 41 #include <rte_errno.h> 42 #ifdef RTE_NET_IXGBE 43 #include <rte_pmd_ixgbe.h> 44 #endif 45 #ifdef RTE_NET_I40E 46 #include <rte_pmd_i40e.h> 47 #endif 48 #ifdef RTE_NET_BNXT 49 #include <rte_pmd_bnxt.h> 50 #endif 51 #ifdef RTE_LIB_GRO 52 #include <rte_gro.h> 53 #endif 54 #include <rte_hexdump.h> 55 56 #include "testpmd.h" 57 #include "cmdline_mtr.h" 58 59 #define ETHDEV_FWVERS_LEN 32 60 61 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */ 62 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW 63 #else 64 #define CLOCK_TYPE_ID CLOCK_MONOTONIC 65 #endif 66 67 #define NS_PER_SEC 1E9 68 69 static char *flowtype_to_str(uint16_t flow_type); 70 71 static const struct { 72 enum tx_pkt_split split; 73 const char *name; 74 } tx_split_name[] = { 75 { 76 .split = TX_PKT_SPLIT_OFF, 77 .name = "off", 78 }, 79 { 80 .split = TX_PKT_SPLIT_ON, 81 .name = "on", 82 }, 83 { 84 .split = TX_PKT_SPLIT_RND, 85 .name = "rand", 86 }, 87 }; 88 89 const struct rss_type_info rss_type_table[] = { 90 { "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP | 91 RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD | 92 RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP | 93 RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS}, 94 { "none", 0 }, 95 { "eth", RTE_ETH_RSS_ETH }, 96 { "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY }, 97 { "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY }, 98 { "vlan", RTE_ETH_RSS_VLAN }, 99 { "s-vlan", RTE_ETH_RSS_S_VLAN }, 100 { "c-vlan", RTE_ETH_RSS_C_VLAN }, 101 { "ipv4", RTE_ETH_RSS_IPV4 }, 102 { "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 }, 103 { "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP }, 104 { "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP }, 105 { "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP }, 106 { "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER }, 107 { "ipv6", RTE_ETH_RSS_IPV6 }, 108 { "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 }, 109 { "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP }, 110 { "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP }, 111 { "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP }, 112 { "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER }, 113 { "l2-payload", RTE_ETH_RSS_L2_PAYLOAD }, 114 { "ipv6-ex", RTE_ETH_RSS_IPV6_EX }, 115 { "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX }, 116 { "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX }, 117 { "port", RTE_ETH_RSS_PORT }, 118 { "vxlan", RTE_ETH_RSS_VXLAN }, 119 { "geneve", RTE_ETH_RSS_GENEVE }, 120 { "nvgre", RTE_ETH_RSS_NVGRE }, 121 { "ip", RTE_ETH_RSS_IP }, 122 { "udp", RTE_ETH_RSS_UDP }, 123 { "tcp", RTE_ETH_RSS_TCP }, 124 { "sctp", RTE_ETH_RSS_SCTP }, 125 { "tunnel", RTE_ETH_RSS_TUNNEL }, 126 { "l3-pre32", RTE_ETH_RSS_L3_PRE32 }, 127 { "l3-pre40", RTE_ETH_RSS_L3_PRE40 }, 128 { "l3-pre48", RTE_ETH_RSS_L3_PRE48 }, 129 { "l3-pre56", RTE_ETH_RSS_L3_PRE56 }, 130 { "l3-pre64", RTE_ETH_RSS_L3_PRE64 }, 131 { "l3-pre96", RTE_ETH_RSS_L3_PRE96 }, 132 { "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY }, 133 { "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY }, 134 { "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY }, 135 { "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY }, 136 { "esp", RTE_ETH_RSS_ESP }, 137 { "ah", RTE_ETH_RSS_AH }, 138 { "l2tpv3", RTE_ETH_RSS_L2TPV3 }, 139 { "pfcp", RTE_ETH_RSS_PFCP }, 140 { "pppoe", RTE_ETH_RSS_PPPOE }, 141 { "gtpu", RTE_ETH_RSS_GTPU }, 142 { "ecpri", RTE_ETH_RSS_ECPRI }, 143 { "mpls", RTE_ETH_RSS_MPLS }, 144 { "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM }, 145 { "l4-chksum", RTE_ETH_RSS_L4_CHKSUM }, 146 { NULL, 0 }, 147 }; 148 149 static const struct { 150 enum rte_eth_fec_mode mode; 151 const char *name; 152 } fec_mode_name[] = { 153 { 154 .mode = RTE_ETH_FEC_NOFEC, 155 .name = "off", 156 }, 157 { 158 .mode = RTE_ETH_FEC_AUTO, 159 .name = "auto", 160 }, 161 { 162 .mode = RTE_ETH_FEC_BASER, 163 .name = "baser", 164 }, 165 { 166 .mode = RTE_ETH_FEC_RS, 167 .name = "rs", 168 }, 169 }; 170 171 static void 172 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 173 { 174 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 175 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 176 printf("%s%s", name, buf); 177 } 178 179 static void 180 nic_xstats_display_periodic(portid_t port_id) 181 { 182 struct xstat_display_info *xstats_info; 183 uint64_t *prev_values, *curr_values; 184 uint64_t diff_value, value_rate; 185 struct timespec cur_time; 186 uint64_t *ids_supp; 187 size_t ids_supp_sz; 188 uint64_t diff_ns; 189 unsigned int i; 190 int rc; 191 192 xstats_info = &ports[port_id].xstats_info; 193 194 ids_supp_sz = xstats_info->ids_supp_sz; 195 if (ids_supp_sz == 0) 196 return; 197 198 printf("\n"); 199 200 ids_supp = xstats_info->ids_supp; 201 prev_values = xstats_info->prev_values; 202 curr_values = xstats_info->curr_values; 203 204 rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values, 205 ids_supp_sz); 206 if (rc != (int)ids_supp_sz) { 207 fprintf(stderr, 208 "Failed to get values of %zu xstats for port %u - return code %d\n", 209 ids_supp_sz, port_id, rc); 210 return; 211 } 212 213 diff_ns = 0; 214 if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { 215 uint64_t ns; 216 217 ns = cur_time.tv_sec * NS_PER_SEC; 218 ns += cur_time.tv_nsec; 219 220 if (xstats_info->prev_ns != 0) 221 diff_ns = ns - xstats_info->prev_ns; 222 xstats_info->prev_ns = ns; 223 } 224 225 printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)"); 226 for (i = 0; i < ids_supp_sz; i++) { 227 diff_value = (curr_values[i] > prev_values[i]) ? 228 (curr_values[i] - prev_values[i]) : 0; 229 prev_values[i] = curr_values[i]; 230 value_rate = diff_ns > 0 ? 231 (double)diff_value / diff_ns * NS_PER_SEC : 0; 232 233 printf(" %-25s%12"PRIu64" %15"PRIu64"\n", 234 xstats_display[i].name, curr_values[i], value_rate); 235 } 236 } 237 238 void 239 nic_stats_display(portid_t port_id) 240 { 241 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 242 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 243 static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS]; 244 static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS]; 245 static uint64_t prev_ns[RTE_MAX_ETHPORTS]; 246 struct timespec cur_time; 247 uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx, 248 diff_ns; 249 uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx; 250 struct rte_eth_stats stats; 251 252 static const char *nic_stats_border = "########################"; 253 254 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 255 print_valid_ports(); 256 return; 257 } 258 rte_eth_stats_get(port_id, &stats); 259 printf("\n %s NIC statistics for port %-2d %s\n", 260 nic_stats_border, port_id, nic_stats_border); 261 262 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 263 "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes); 264 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 265 printf(" RX-nombuf: %-10"PRIu64"\n", stats.rx_nombuf); 266 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 267 "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes); 268 269 diff_ns = 0; 270 if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { 271 uint64_t ns; 272 273 ns = cur_time.tv_sec * NS_PER_SEC; 274 ns += cur_time.tv_nsec; 275 276 if (prev_ns[port_id] != 0) 277 diff_ns = ns - prev_ns[port_id]; 278 prev_ns[port_id] = ns; 279 } 280 281 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 282 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 283 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 284 (stats.opackets - prev_pkts_tx[port_id]) : 0; 285 prev_pkts_rx[port_id] = stats.ipackets; 286 prev_pkts_tx[port_id] = stats.opackets; 287 mpps_rx = diff_ns > 0 ? 288 (double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0; 289 mpps_tx = diff_ns > 0 ? 290 (double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0; 291 292 diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ? 293 (stats.ibytes - prev_bytes_rx[port_id]) : 0; 294 diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ? 295 (stats.obytes - prev_bytes_tx[port_id]) : 0; 296 prev_bytes_rx[port_id] = stats.ibytes; 297 prev_bytes_tx[port_id] = stats.obytes; 298 mbps_rx = diff_ns > 0 ? 299 (double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0; 300 mbps_tx = diff_ns > 0 ? 301 (double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0; 302 303 printf("\n Throughput (since last show)\n"); 304 printf(" Rx-pps: %12"PRIu64" Rx-bps: %12"PRIu64"\n Tx-pps: %12" 305 PRIu64" Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8, 306 mpps_tx, mbps_tx * 8); 307 308 if (xstats_display_num > 0) 309 nic_xstats_display_periodic(port_id); 310 311 printf(" %s############################%s\n", 312 nic_stats_border, nic_stats_border); 313 } 314 315 void 316 nic_stats_clear(portid_t port_id) 317 { 318 int ret; 319 320 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 321 print_valid_ports(); 322 return; 323 } 324 325 ret = rte_eth_stats_reset(port_id); 326 if (ret != 0) { 327 fprintf(stderr, 328 "%s: Error: failed to reset stats (port %u): %s", 329 __func__, port_id, strerror(-ret)); 330 return; 331 } 332 333 ret = rte_eth_stats_get(port_id, &ports[port_id].stats); 334 if (ret != 0) { 335 if (ret < 0) 336 ret = -ret; 337 fprintf(stderr, 338 "%s: Error: failed to get stats (port %u): %s", 339 __func__, port_id, strerror(ret)); 340 return; 341 } 342 printf("\n NIC statistics for port %d cleared\n", port_id); 343 } 344 345 void 346 nic_xstats_display(portid_t port_id) 347 { 348 struct rte_eth_xstat *xstats; 349 int cnt_xstats, idx_xstat; 350 struct rte_eth_xstat_name *xstats_names; 351 352 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 353 print_valid_ports(); 354 return; 355 } 356 printf("###### NIC extended statistics for port %-2d\n", port_id); 357 if (!rte_eth_dev_is_valid_port(port_id)) { 358 fprintf(stderr, "Error: Invalid port number %i\n", port_id); 359 return; 360 } 361 362 /* Get count */ 363 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 364 if (cnt_xstats < 0) { 365 fprintf(stderr, "Error: Cannot get count of xstats\n"); 366 return; 367 } 368 369 /* Get id-name lookup table */ 370 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 371 if (xstats_names == NULL) { 372 fprintf(stderr, "Cannot allocate memory for xstats lookup\n"); 373 return; 374 } 375 if (cnt_xstats != rte_eth_xstats_get_names( 376 port_id, xstats_names, cnt_xstats)) { 377 fprintf(stderr, "Error: Cannot get xstats lookup\n"); 378 free(xstats_names); 379 return; 380 } 381 382 /* Get stats themselves */ 383 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 384 if (xstats == NULL) { 385 fprintf(stderr, "Cannot allocate memory for xstats\n"); 386 free(xstats_names); 387 return; 388 } 389 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 390 fprintf(stderr, "Error: Unable to get xstats\n"); 391 free(xstats_names); 392 free(xstats); 393 return; 394 } 395 396 /* Display xstats */ 397 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 398 if (xstats_hide_zero && !xstats[idx_xstat].value) 399 continue; 400 printf("%s: %"PRIu64"\n", 401 xstats_names[idx_xstat].name, 402 xstats[idx_xstat].value); 403 } 404 free(xstats_names); 405 free(xstats); 406 } 407 408 void 409 nic_xstats_clear(portid_t port_id) 410 { 411 int ret; 412 413 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 414 print_valid_ports(); 415 return; 416 } 417 418 ret = rte_eth_xstats_reset(port_id); 419 if (ret != 0) { 420 fprintf(stderr, 421 "%s: Error: failed to reset xstats (port %u): %s\n", 422 __func__, port_id, strerror(-ret)); 423 return; 424 } 425 426 ret = rte_eth_stats_get(port_id, &ports[port_id].stats); 427 if (ret != 0) { 428 if (ret < 0) 429 ret = -ret; 430 fprintf(stderr, "%s: Error: failed to get stats (port %u): %s", 431 __func__, port_id, strerror(ret)); 432 return; 433 } 434 } 435 436 static const char * 437 get_queue_state_name(uint8_t queue_state) 438 { 439 if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED) 440 return "stopped"; 441 else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED) 442 return "started"; 443 else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN) 444 return "hairpin"; 445 else 446 return "unknown"; 447 } 448 449 void 450 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 451 { 452 struct rte_eth_burst_mode mode; 453 struct rte_eth_rxq_info qinfo; 454 int32_t rc; 455 static const char *info_border = "*********************"; 456 457 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 458 if (rc != 0) { 459 fprintf(stderr, 460 "Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n", 461 port_id, queue_id, strerror(-rc), rc); 462 return; 463 } 464 465 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 466 info_border, port_id, queue_id, info_border); 467 468 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 469 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 470 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 471 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 472 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 473 printf("\nRX drop packets: %s", 474 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 475 printf("\nRX deferred start: %s", 476 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 477 printf("\nRX scattered packets: %s", 478 (qinfo.scattered_rx != 0) ? "on" : "off"); 479 printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state)); 480 if (qinfo.rx_buf_size != 0) 481 printf("\nRX buffer size: %hu", qinfo.rx_buf_size); 482 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 483 484 if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0) 485 printf("\nBurst mode: %s%s", 486 mode.info, 487 mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? 488 " (per queue)" : ""); 489 490 printf("\n"); 491 } 492 493 void 494 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 495 { 496 struct rte_eth_burst_mode mode; 497 struct rte_eth_txq_info qinfo; 498 int32_t rc; 499 static const char *info_border = "*********************"; 500 501 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 502 if (rc != 0) { 503 fprintf(stderr, 504 "Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n", 505 port_id, queue_id, strerror(-rc), rc); 506 return; 507 } 508 509 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 510 info_border, port_id, queue_id, info_border); 511 512 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 513 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 514 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 515 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 516 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 517 printf("\nTX deferred start: %s", 518 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 519 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 520 printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state)); 521 522 if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0) 523 printf("\nBurst mode: %s%s", 524 mode.info, 525 mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? 526 " (per queue)" : ""); 527 528 printf("\n"); 529 } 530 531 static int bus_match_all(const struct rte_bus *bus, const void *data) 532 { 533 RTE_SET_USED(bus); 534 RTE_SET_USED(data); 535 return 0; 536 } 537 538 static void 539 device_infos_display_speeds(uint32_t speed_capa) 540 { 541 printf("\n\tDevice speed capability:"); 542 if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG) 543 printf(" Autonegotiate (all speeds)"); 544 if (speed_capa & RTE_ETH_LINK_SPEED_FIXED) 545 printf(" Disable autonegotiate (fixed speed) "); 546 if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD) 547 printf(" 10 Mbps half-duplex "); 548 if (speed_capa & RTE_ETH_LINK_SPEED_10M) 549 printf(" 10 Mbps full-duplex "); 550 if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD) 551 printf(" 100 Mbps half-duplex "); 552 if (speed_capa & RTE_ETH_LINK_SPEED_100M) 553 printf(" 100 Mbps full-duplex "); 554 if (speed_capa & RTE_ETH_LINK_SPEED_1G) 555 printf(" 1 Gbps "); 556 if (speed_capa & RTE_ETH_LINK_SPEED_2_5G) 557 printf(" 2.5 Gbps "); 558 if (speed_capa & RTE_ETH_LINK_SPEED_5G) 559 printf(" 5 Gbps "); 560 if (speed_capa & RTE_ETH_LINK_SPEED_10G) 561 printf(" 10 Gbps "); 562 if (speed_capa & RTE_ETH_LINK_SPEED_20G) 563 printf(" 20 Gbps "); 564 if (speed_capa & RTE_ETH_LINK_SPEED_25G) 565 printf(" 25 Gbps "); 566 if (speed_capa & RTE_ETH_LINK_SPEED_40G) 567 printf(" 40 Gbps "); 568 if (speed_capa & RTE_ETH_LINK_SPEED_50G) 569 printf(" 50 Gbps "); 570 if (speed_capa & RTE_ETH_LINK_SPEED_56G) 571 printf(" 56 Gbps "); 572 if (speed_capa & RTE_ETH_LINK_SPEED_100G) 573 printf(" 100 Gbps "); 574 if (speed_capa & RTE_ETH_LINK_SPEED_200G) 575 printf(" 200 Gbps "); 576 } 577 578 void 579 device_infos_display(const char *identifier) 580 { 581 static const char *info_border = "*********************"; 582 struct rte_bus *start = NULL, *next; 583 struct rte_dev_iterator dev_iter; 584 char name[RTE_ETH_NAME_MAX_LEN]; 585 struct rte_ether_addr mac_addr; 586 struct rte_device *dev; 587 struct rte_devargs da; 588 portid_t port_id; 589 struct rte_eth_dev_info dev_info; 590 char devstr[128]; 591 592 memset(&da, 0, sizeof(da)); 593 if (!identifier) 594 goto skip_parse; 595 596 if (rte_devargs_parsef(&da, "%s", identifier)) { 597 fprintf(stderr, "cannot parse identifier\n"); 598 return; 599 } 600 601 skip_parse: 602 while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) { 603 604 start = next; 605 if (identifier && da.bus != next) 606 continue; 607 608 /* Skip buses that don't have iterate method */ 609 if (!next->dev_iterate) 610 continue; 611 612 snprintf(devstr, sizeof(devstr), "bus=%s", next->name); 613 RTE_DEV_FOREACH(dev, devstr, &dev_iter) { 614 615 if (!dev->driver) 616 continue; 617 /* Check for matching device if identifier is present */ 618 if (identifier && 619 strncmp(da.name, dev->name, strlen(dev->name))) 620 continue; 621 printf("\n%s Infos for device %s %s\n", 622 info_border, dev->name, info_border); 623 printf("Bus name: %s", dev->bus->name); 624 printf("\nDriver name: %s", dev->driver->name); 625 printf("\nDevargs: %s", 626 dev->devargs ? dev->devargs->args : ""); 627 printf("\nConnect to socket: %d", dev->numa_node); 628 printf("\n"); 629 630 /* List ports with matching device name */ 631 RTE_ETH_FOREACH_DEV_OF(port_id, dev) { 632 printf("\n\tPort id: %-2d", port_id); 633 if (eth_macaddr_get_print_err(port_id, 634 &mac_addr) == 0) 635 print_ethaddr("\n\tMAC address: ", 636 &mac_addr); 637 rte_eth_dev_get_name_by_port(port_id, name); 638 printf("\n\tDevice name: %s", name); 639 if (rte_eth_dev_info_get(port_id, &dev_info) == 0) 640 device_infos_display_speeds(dev_info.speed_capa); 641 printf("\n"); 642 } 643 } 644 }; 645 rte_devargs_reset(&da); 646 } 647 648 static void 649 print_dev_capabilities(uint64_t capabilities) 650 { 651 uint64_t single_capa; 652 int begin; 653 int end; 654 int bit; 655 656 if (capabilities == 0) 657 return; 658 659 begin = __builtin_ctzll(capabilities); 660 end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities); 661 662 single_capa = 1ULL << begin; 663 for (bit = begin; bit < end; bit++) { 664 if (capabilities & single_capa) 665 printf(" %s", 666 rte_eth_dev_capability_name(single_capa)); 667 single_capa <<= 1; 668 } 669 } 670 671 void 672 port_infos_display(portid_t port_id) 673 { 674 struct rte_port *port; 675 struct rte_ether_addr mac_addr; 676 struct rte_eth_link link; 677 struct rte_eth_dev_info dev_info; 678 int vlan_offload; 679 struct rte_mempool * mp; 680 static const char *info_border = "*********************"; 681 uint16_t mtu; 682 char name[RTE_ETH_NAME_MAX_LEN]; 683 int ret; 684 char fw_version[ETHDEV_FWVERS_LEN]; 685 686 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 687 print_valid_ports(); 688 return; 689 } 690 port = &ports[port_id]; 691 ret = eth_link_get_nowait_print_err(port_id, &link); 692 if (ret < 0) 693 return; 694 695 ret = eth_dev_info_get_print_err(port_id, &dev_info); 696 if (ret != 0) 697 return; 698 699 printf("\n%s Infos for port %-2d %s\n", 700 info_border, port_id, info_border); 701 if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0) 702 print_ethaddr("MAC address: ", &mac_addr); 703 rte_eth_dev_get_name_by_port(port_id, name); 704 printf("\nDevice name: %s", name); 705 printf("\nDriver name: %s", dev_info.driver_name); 706 707 if (rte_eth_dev_fw_version_get(port_id, fw_version, 708 ETHDEV_FWVERS_LEN) == 0) 709 printf("\nFirmware-version: %s", fw_version); 710 else 711 printf("\nFirmware-version: %s", "not available"); 712 713 if (dev_info.device->devargs && dev_info.device->devargs->args) 714 printf("\nDevargs: %s", dev_info.device->devargs->args); 715 printf("\nConnect to socket: %u", port->socket_id); 716 717 if (port_numa[port_id] != NUMA_NO_CONFIG) { 718 mp = mbuf_pool_find(port_numa[port_id], 0); 719 if (mp) 720 printf("\nmemory allocation on the socket: %d", 721 port_numa[port_id]); 722 } else 723 printf("\nmemory allocation on the socket: %u",port->socket_id); 724 725 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 726 printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed)); 727 printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ? 728 ("full-duplex") : ("half-duplex")); 729 printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ? 730 ("On") : ("Off")); 731 732 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 733 printf("MTU: %u\n", mtu); 734 735 printf("Promiscuous mode: %s\n", 736 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 737 printf("Allmulticast mode: %s\n", 738 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 739 printf("Maximum number of MAC addresses: %u\n", 740 (unsigned int)(port->dev_info.max_mac_addrs)); 741 printf("Maximum number of MAC addresses of hash filtering: %u\n", 742 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 743 744 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 745 if (vlan_offload >= 0){ 746 printf("VLAN offload: \n"); 747 if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD) 748 printf(" strip on, "); 749 else 750 printf(" strip off, "); 751 752 if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD) 753 printf("filter on, "); 754 else 755 printf("filter off, "); 756 757 if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD) 758 printf("extend on, "); 759 else 760 printf("extend off, "); 761 762 if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD) 763 printf("qinq strip on\n"); 764 else 765 printf("qinq strip off\n"); 766 } 767 768 if (dev_info.hash_key_size > 0) 769 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 770 if (dev_info.reta_size > 0) 771 printf("Redirection table size: %u\n", dev_info.reta_size); 772 if (!dev_info.flow_type_rss_offloads) 773 printf("No RSS offload flow type is supported.\n"); 774 else { 775 uint16_t i; 776 char *p; 777 778 printf("Supported RSS offload flow types:\n"); 779 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 780 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 781 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 782 continue; 783 p = flowtype_to_str(i); 784 if (p) 785 printf(" %s\n", p); 786 else 787 printf(" user defined %d\n", i); 788 } 789 } 790 791 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 792 printf("Maximum configurable length of RX packet: %u\n", 793 dev_info.max_rx_pktlen); 794 printf("Maximum configurable size of LRO aggregated packet: %u\n", 795 dev_info.max_lro_pkt_size); 796 if (dev_info.max_vfs) 797 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 798 if (dev_info.max_vmdq_pools) 799 printf("Maximum number of VMDq pools: %u\n", 800 dev_info.max_vmdq_pools); 801 802 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 803 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 804 printf("Max possible number of RXDs per queue: %hu\n", 805 dev_info.rx_desc_lim.nb_max); 806 printf("Min possible number of RXDs per queue: %hu\n", 807 dev_info.rx_desc_lim.nb_min); 808 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 809 810 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 811 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 812 printf("Max possible number of TXDs per queue: %hu\n", 813 dev_info.tx_desc_lim.nb_max); 814 printf("Min possible number of TXDs per queue: %hu\n", 815 dev_info.tx_desc_lim.nb_min); 816 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 817 printf("Max segment number per packet: %hu\n", 818 dev_info.tx_desc_lim.nb_seg_max); 819 printf("Max segment number per MTU/TSO: %hu\n", 820 dev_info.tx_desc_lim.nb_mtu_seg_max); 821 822 printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa); 823 print_dev_capabilities(dev_info.dev_capa); 824 printf(" )\n"); 825 /* Show switch info only if valid switch domain and port id is set */ 826 if (dev_info.switch_info.domain_id != 827 RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { 828 if (dev_info.switch_info.name) 829 printf("Switch name: %s\n", dev_info.switch_info.name); 830 831 printf("Switch domain Id: %u\n", 832 dev_info.switch_info.domain_id); 833 printf("Switch Port Id: %u\n", 834 dev_info.switch_info.port_id); 835 if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0) 836 printf("Switch Rx domain: %u\n", 837 dev_info.switch_info.rx_domain); 838 } 839 } 840 841 void 842 port_summary_header_display(void) 843 { 844 uint16_t port_number; 845 846 port_number = rte_eth_dev_count_avail(); 847 printf("Number of available ports: %i\n", port_number); 848 printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", 849 "Driver", "Status", "Link"); 850 } 851 852 void 853 port_summary_display(portid_t port_id) 854 { 855 struct rte_ether_addr mac_addr; 856 struct rte_eth_link link; 857 struct rte_eth_dev_info dev_info; 858 char name[RTE_ETH_NAME_MAX_LEN]; 859 int ret; 860 861 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 862 print_valid_ports(); 863 return; 864 } 865 866 ret = eth_link_get_nowait_print_err(port_id, &link); 867 if (ret < 0) 868 return; 869 870 ret = eth_dev_info_get_print_err(port_id, &dev_info); 871 if (ret != 0) 872 return; 873 874 rte_eth_dev_get_name_by_port(port_id, name); 875 ret = eth_macaddr_get_print_err(port_id, &mac_addr); 876 if (ret != 0) 877 return; 878 879 printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n", 880 port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name, 881 dev_info.driver_name, (link.link_status) ? ("up") : ("down"), 882 rte_eth_link_speed_to_str(link.link_speed)); 883 } 884 885 void 886 port_eeprom_display(portid_t port_id) 887 { 888 struct rte_dev_eeprom_info einfo; 889 int ret; 890 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 891 print_valid_ports(); 892 return; 893 } 894 895 int len_eeprom = rte_eth_dev_get_eeprom_length(port_id); 896 if (len_eeprom < 0) { 897 switch (len_eeprom) { 898 case -ENODEV: 899 fprintf(stderr, "port index %d invalid\n", port_id); 900 break; 901 case -ENOTSUP: 902 fprintf(stderr, "operation not supported by device\n"); 903 break; 904 case -EIO: 905 fprintf(stderr, "device is removed\n"); 906 break; 907 default: 908 fprintf(stderr, "Unable to get EEPROM: %d\n", 909 len_eeprom); 910 break; 911 } 912 return; 913 } 914 915 char buf[len_eeprom]; 916 einfo.offset = 0; 917 einfo.length = len_eeprom; 918 einfo.data = buf; 919 920 ret = rte_eth_dev_get_eeprom(port_id, &einfo); 921 if (ret != 0) { 922 switch (ret) { 923 case -ENODEV: 924 fprintf(stderr, "port index %d invalid\n", port_id); 925 break; 926 case -ENOTSUP: 927 fprintf(stderr, "operation not supported by device\n"); 928 break; 929 case -EIO: 930 fprintf(stderr, "device is removed\n"); 931 break; 932 default: 933 fprintf(stderr, "Unable to get EEPROM: %d\n", ret); 934 break; 935 } 936 return; 937 } 938 rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); 939 printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom); 940 } 941 942 void 943 port_module_eeprom_display(portid_t port_id) 944 { 945 struct rte_eth_dev_module_info minfo; 946 struct rte_dev_eeprom_info einfo; 947 int ret; 948 949 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 950 print_valid_ports(); 951 return; 952 } 953 954 955 ret = rte_eth_dev_get_module_info(port_id, &minfo); 956 if (ret != 0) { 957 switch (ret) { 958 case -ENODEV: 959 fprintf(stderr, "port index %d invalid\n", port_id); 960 break; 961 case -ENOTSUP: 962 fprintf(stderr, "operation not supported by device\n"); 963 break; 964 case -EIO: 965 fprintf(stderr, "device is removed\n"); 966 break; 967 default: 968 fprintf(stderr, "Unable to get module EEPROM: %d\n", 969 ret); 970 break; 971 } 972 return; 973 } 974 975 char buf[minfo.eeprom_len]; 976 einfo.offset = 0; 977 einfo.length = minfo.eeprom_len; 978 einfo.data = buf; 979 980 ret = rte_eth_dev_get_module_eeprom(port_id, &einfo); 981 if (ret != 0) { 982 switch (ret) { 983 case -ENODEV: 984 fprintf(stderr, "port index %d invalid\n", port_id); 985 break; 986 case -ENOTSUP: 987 fprintf(stderr, "operation not supported by device\n"); 988 break; 989 case -EIO: 990 fprintf(stderr, "device is removed\n"); 991 break; 992 default: 993 fprintf(stderr, "Unable to get module EEPROM: %d\n", 994 ret); 995 break; 996 } 997 return; 998 } 999 1000 rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); 1001 printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length); 1002 } 1003 1004 int 1005 port_id_is_invalid(portid_t port_id, enum print_warning warning) 1006 { 1007 uint16_t pid; 1008 1009 if (port_id == (portid_t)RTE_PORT_ALL) 1010 return 0; 1011 1012 RTE_ETH_FOREACH_DEV(pid) 1013 if (port_id == pid) 1014 return 0; 1015 1016 if (warning == ENABLED_WARN) 1017 fprintf(stderr, "Invalid port %d\n", port_id); 1018 1019 return 1; 1020 } 1021 1022 void print_valid_ports(void) 1023 { 1024 portid_t pid; 1025 1026 printf("The valid ports array is ["); 1027 RTE_ETH_FOREACH_DEV(pid) { 1028 printf(" %d", pid); 1029 } 1030 printf(" ]\n"); 1031 } 1032 1033 static int 1034 vlan_id_is_invalid(uint16_t vlan_id) 1035 { 1036 if (vlan_id < 4096) 1037 return 0; 1038 fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id); 1039 return 1; 1040 } 1041 1042 static int 1043 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 1044 { 1045 const struct rte_pci_device *pci_dev; 1046 const struct rte_bus *bus; 1047 uint64_t pci_len; 1048 1049 if (reg_off & 0x3) { 1050 fprintf(stderr, 1051 "Port register offset 0x%X not aligned on a 4-byte boundary\n", 1052 (unsigned int)reg_off); 1053 return 1; 1054 } 1055 1056 if (!ports[port_id].dev_info.device) { 1057 fprintf(stderr, "Invalid device\n"); 1058 return 0; 1059 } 1060 1061 bus = rte_bus_find_by_device(ports[port_id].dev_info.device); 1062 if (bus && !strcmp(bus->name, "pci")) { 1063 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); 1064 } else { 1065 fprintf(stderr, "Not a PCI device\n"); 1066 return 1; 1067 } 1068 1069 pci_len = pci_dev->mem_resource[0].len; 1070 if (reg_off >= pci_len) { 1071 fprintf(stderr, 1072 "Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n", 1073 port_id, (unsigned int)reg_off, (unsigned int)reg_off, 1074 pci_len); 1075 return 1; 1076 } 1077 return 0; 1078 } 1079 1080 static int 1081 reg_bit_pos_is_invalid(uint8_t bit_pos) 1082 { 1083 if (bit_pos <= 31) 1084 return 0; 1085 fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos); 1086 return 1; 1087 } 1088 1089 #define display_port_and_reg_off(port_id, reg_off) \ 1090 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 1091 1092 static inline void 1093 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1094 { 1095 display_port_and_reg_off(port_id, (unsigned)reg_off); 1096 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 1097 } 1098 1099 void 1100 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 1101 { 1102 uint32_t reg_v; 1103 1104 1105 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1106 return; 1107 if (port_reg_off_is_invalid(port_id, reg_off)) 1108 return; 1109 if (reg_bit_pos_is_invalid(bit_x)) 1110 return; 1111 reg_v = port_id_pci_reg_read(port_id, reg_off); 1112 display_port_and_reg_off(port_id, (unsigned)reg_off); 1113 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 1114 } 1115 1116 void 1117 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 1118 uint8_t bit1_pos, uint8_t bit2_pos) 1119 { 1120 uint32_t reg_v; 1121 uint8_t l_bit; 1122 uint8_t h_bit; 1123 1124 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1125 return; 1126 if (port_reg_off_is_invalid(port_id, reg_off)) 1127 return; 1128 if (reg_bit_pos_is_invalid(bit1_pos)) 1129 return; 1130 if (reg_bit_pos_is_invalid(bit2_pos)) 1131 return; 1132 if (bit1_pos > bit2_pos) 1133 l_bit = bit2_pos, h_bit = bit1_pos; 1134 else 1135 l_bit = bit1_pos, h_bit = bit2_pos; 1136 1137 reg_v = port_id_pci_reg_read(port_id, reg_off); 1138 reg_v >>= l_bit; 1139 if (h_bit < 31) 1140 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 1141 display_port_and_reg_off(port_id, (unsigned)reg_off); 1142 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 1143 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 1144 } 1145 1146 void 1147 port_reg_display(portid_t port_id, uint32_t reg_off) 1148 { 1149 uint32_t reg_v; 1150 1151 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1152 return; 1153 if (port_reg_off_is_invalid(port_id, reg_off)) 1154 return; 1155 reg_v = port_id_pci_reg_read(port_id, reg_off); 1156 display_port_reg_value(port_id, reg_off, reg_v); 1157 } 1158 1159 void 1160 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 1161 uint8_t bit_v) 1162 { 1163 uint32_t reg_v; 1164 1165 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1166 return; 1167 if (port_reg_off_is_invalid(port_id, reg_off)) 1168 return; 1169 if (reg_bit_pos_is_invalid(bit_pos)) 1170 return; 1171 if (bit_v > 1) { 1172 fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n", 1173 (int) bit_v); 1174 return; 1175 } 1176 reg_v = port_id_pci_reg_read(port_id, reg_off); 1177 if (bit_v == 0) 1178 reg_v &= ~(1 << bit_pos); 1179 else 1180 reg_v |= (1 << bit_pos); 1181 port_id_pci_reg_write(port_id, reg_off, reg_v); 1182 display_port_reg_value(port_id, reg_off, reg_v); 1183 } 1184 1185 void 1186 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 1187 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 1188 { 1189 uint32_t max_v; 1190 uint32_t reg_v; 1191 uint8_t l_bit; 1192 uint8_t h_bit; 1193 1194 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1195 return; 1196 if (port_reg_off_is_invalid(port_id, reg_off)) 1197 return; 1198 if (reg_bit_pos_is_invalid(bit1_pos)) 1199 return; 1200 if (reg_bit_pos_is_invalid(bit2_pos)) 1201 return; 1202 if (bit1_pos > bit2_pos) 1203 l_bit = bit2_pos, h_bit = bit1_pos; 1204 else 1205 l_bit = bit1_pos, h_bit = bit2_pos; 1206 1207 if ((h_bit - l_bit) < 31) 1208 max_v = (1 << (h_bit - l_bit + 1)) - 1; 1209 else 1210 max_v = 0xFFFFFFFF; 1211 1212 if (value > max_v) { 1213 fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n", 1214 (unsigned)value, (unsigned)value, 1215 (unsigned)max_v, (unsigned)max_v); 1216 return; 1217 } 1218 reg_v = port_id_pci_reg_read(port_id, reg_off); 1219 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 1220 reg_v |= (value << l_bit); /* Set changed bits */ 1221 port_id_pci_reg_write(port_id, reg_off, reg_v); 1222 display_port_reg_value(port_id, reg_off, reg_v); 1223 } 1224 1225 void 1226 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1227 { 1228 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1229 return; 1230 if (port_reg_off_is_invalid(port_id, reg_off)) 1231 return; 1232 port_id_pci_reg_write(port_id, reg_off, reg_v); 1233 display_port_reg_value(port_id, reg_off, reg_v); 1234 } 1235 1236 void 1237 port_mtu_set(portid_t port_id, uint16_t mtu) 1238 { 1239 struct rte_port *port = &ports[port_id]; 1240 int diag; 1241 1242 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1243 return; 1244 1245 if (port->need_reconfig == 0) { 1246 diag = rte_eth_dev_set_mtu(port_id, mtu); 1247 if (diag != 0) { 1248 fprintf(stderr, "Set MTU failed. diag=%d\n", diag); 1249 return; 1250 } 1251 } 1252 1253 port->dev_conf.rxmode.mtu = mtu; 1254 } 1255 1256 /* Generic flow management functions. */ 1257 1258 static struct port_flow_tunnel * 1259 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id) 1260 { 1261 struct port_flow_tunnel *flow_tunnel; 1262 1263 LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { 1264 if (flow_tunnel->id == port_tunnel_id) 1265 goto out; 1266 } 1267 flow_tunnel = NULL; 1268 1269 out: 1270 return flow_tunnel; 1271 } 1272 1273 const char * 1274 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel) 1275 { 1276 const char *type; 1277 switch (tunnel->type) { 1278 default: 1279 type = "unknown"; 1280 break; 1281 case RTE_FLOW_ITEM_TYPE_VXLAN: 1282 type = "vxlan"; 1283 break; 1284 case RTE_FLOW_ITEM_TYPE_GRE: 1285 type = "gre"; 1286 break; 1287 case RTE_FLOW_ITEM_TYPE_NVGRE: 1288 type = "nvgre"; 1289 break; 1290 case RTE_FLOW_ITEM_TYPE_GENEVE: 1291 type = "geneve"; 1292 break; 1293 } 1294 1295 return type; 1296 } 1297 1298 struct port_flow_tunnel * 1299 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun) 1300 { 1301 struct rte_port *port = &ports[port_id]; 1302 struct port_flow_tunnel *flow_tunnel; 1303 1304 LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { 1305 if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun))) 1306 goto out; 1307 } 1308 flow_tunnel = NULL; 1309 1310 out: 1311 return flow_tunnel; 1312 } 1313 1314 void port_flow_tunnel_list(portid_t port_id) 1315 { 1316 struct rte_port *port = &ports[port_id]; 1317 struct port_flow_tunnel *flt; 1318 1319 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1320 printf("port %u tunnel #%u type=%s", 1321 port_id, flt->id, port_flow_tunnel_type(&flt->tunnel)); 1322 if (flt->tunnel.tun_id) 1323 printf(" id=%" PRIu64, flt->tunnel.tun_id); 1324 printf("\n"); 1325 } 1326 } 1327 1328 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id) 1329 { 1330 struct rte_port *port = &ports[port_id]; 1331 struct port_flow_tunnel *flt; 1332 1333 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1334 if (flt->id == tunnel_id) 1335 break; 1336 } 1337 if (flt) { 1338 LIST_REMOVE(flt, chain); 1339 free(flt); 1340 printf("port %u: flow tunnel #%u destroyed\n", 1341 port_id, tunnel_id); 1342 } 1343 } 1344 1345 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops) 1346 { 1347 struct rte_port *port = &ports[port_id]; 1348 enum rte_flow_item_type type; 1349 struct port_flow_tunnel *flt; 1350 1351 if (!strcmp(ops->type, "vxlan")) 1352 type = RTE_FLOW_ITEM_TYPE_VXLAN; 1353 else if (!strcmp(ops->type, "gre")) 1354 type = RTE_FLOW_ITEM_TYPE_GRE; 1355 else if (!strcmp(ops->type, "nvgre")) 1356 type = RTE_FLOW_ITEM_TYPE_NVGRE; 1357 else if (!strcmp(ops->type, "geneve")) 1358 type = RTE_FLOW_ITEM_TYPE_GENEVE; 1359 else { 1360 fprintf(stderr, "cannot offload \"%s\" tunnel type\n", 1361 ops->type); 1362 return; 1363 } 1364 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1365 if (flt->tunnel.type == type) 1366 break; 1367 } 1368 if (!flt) { 1369 flt = calloc(1, sizeof(*flt)); 1370 if (!flt) { 1371 fprintf(stderr, "failed to allocate port flt object\n"); 1372 return; 1373 } 1374 flt->tunnel.type = type; 1375 flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 : 1376 LIST_FIRST(&port->flow_tunnel_list)->id + 1; 1377 LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain); 1378 } 1379 printf("port %d: flow tunnel #%u type %s\n", 1380 port_id, flt->id, ops->type); 1381 } 1382 1383 /** Generate a port_flow entry from attributes/pattern/actions. */ 1384 static struct port_flow * 1385 port_flow_new(const struct rte_flow_attr *attr, 1386 const struct rte_flow_item *pattern, 1387 const struct rte_flow_action *actions, 1388 struct rte_flow_error *error) 1389 { 1390 const struct rte_flow_conv_rule rule = { 1391 .attr_ro = attr, 1392 .pattern_ro = pattern, 1393 .actions_ro = actions, 1394 }; 1395 struct port_flow *pf; 1396 int ret; 1397 1398 ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); 1399 if (ret < 0) 1400 return NULL; 1401 pf = calloc(1, offsetof(struct port_flow, rule) + ret); 1402 if (!pf) { 1403 rte_flow_error_set 1404 (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1405 "calloc() failed"); 1406 return NULL; 1407 } 1408 if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, 1409 error) >= 0) 1410 return pf; 1411 free(pf); 1412 return NULL; 1413 } 1414 1415 /** Print a message out of a flow error. */ 1416 static int 1417 port_flow_complain(struct rte_flow_error *error) 1418 { 1419 static const char *const errstrlist[] = { 1420 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1421 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1422 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1423 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1424 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1425 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1426 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1427 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", 1428 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1429 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1430 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", 1431 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", 1432 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", 1433 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1434 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1435 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", 1436 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1437 }; 1438 const char *errstr; 1439 char buf[32]; 1440 int err = rte_errno; 1441 1442 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1443 !errstrlist[error->type]) 1444 errstr = "unknown type"; 1445 else 1446 errstr = errstrlist[error->type]; 1447 fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n", 1448 __func__, error->type, errstr, 1449 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1450 error->cause), buf) : "", 1451 error->message ? error->message : "(no stated reason)", 1452 rte_strerror(err)); 1453 1454 switch (error->type) { 1455 case RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER: 1456 fprintf(stderr, "The status suggests the use of \"transfer\" " 1457 "as the possible cause of the failure. Make " 1458 "sure that the flow in question and its " 1459 "indirect components (if any) are managed " 1460 "via \"transfer\" proxy port. Use command " 1461 "\"show port (port_id) flow transfer proxy\" " 1462 "to figure out the proxy port ID\n"); 1463 break; 1464 default: 1465 break; 1466 } 1467 1468 return -err; 1469 } 1470 1471 static void 1472 rss_config_display(struct rte_flow_action_rss *rss_conf) 1473 { 1474 uint8_t i; 1475 1476 if (rss_conf == NULL) { 1477 fprintf(stderr, "Invalid rule\n"); 1478 return; 1479 } 1480 1481 printf("RSS:\n" 1482 " queues:"); 1483 if (rss_conf->queue_num == 0) 1484 printf(" none"); 1485 for (i = 0; i < rss_conf->queue_num; i++) 1486 printf(" %d", rss_conf->queue[i]); 1487 printf("\n"); 1488 1489 printf(" function: "); 1490 switch (rss_conf->func) { 1491 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1492 printf("default\n"); 1493 break; 1494 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1495 printf("toeplitz\n"); 1496 break; 1497 case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR: 1498 printf("simple_xor\n"); 1499 break; 1500 case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ: 1501 printf("symmetric_toeplitz\n"); 1502 break; 1503 default: 1504 printf("Unknown function\n"); 1505 return; 1506 } 1507 1508 printf(" types:\n"); 1509 if (rss_conf->types == 0) { 1510 printf(" none\n"); 1511 return; 1512 } 1513 for (i = 0; rss_type_table[i].str; i++) { 1514 if ((rss_conf->types & 1515 rss_type_table[i].rss_type) == 1516 rss_type_table[i].rss_type && 1517 rss_type_table[i].rss_type != 0) 1518 printf(" %s\n", rss_type_table[i].str); 1519 } 1520 } 1521 1522 static struct port_indirect_action * 1523 action_get_by_id(portid_t port_id, uint32_t id) 1524 { 1525 struct rte_port *port; 1526 struct port_indirect_action **ppia; 1527 struct port_indirect_action *pia = NULL; 1528 1529 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1530 port_id == (portid_t)RTE_PORT_ALL) 1531 return NULL; 1532 port = &ports[port_id]; 1533 ppia = &port->actions_list; 1534 while (*ppia) { 1535 if ((*ppia)->id == id) { 1536 pia = *ppia; 1537 break; 1538 } 1539 ppia = &(*ppia)->next; 1540 } 1541 if (!pia) 1542 fprintf(stderr, 1543 "Failed to find indirect action #%u on port %u\n", 1544 id, port_id); 1545 return pia; 1546 } 1547 1548 static int 1549 action_alloc(portid_t port_id, uint32_t id, 1550 struct port_indirect_action **action) 1551 { 1552 struct rte_port *port; 1553 struct port_indirect_action **ppia; 1554 struct port_indirect_action *pia = NULL; 1555 1556 *action = NULL; 1557 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1558 port_id == (portid_t)RTE_PORT_ALL) 1559 return -EINVAL; 1560 port = &ports[port_id]; 1561 if (id == UINT32_MAX) { 1562 /* taking first available ID */ 1563 if (port->actions_list) { 1564 if (port->actions_list->id == UINT32_MAX - 1) { 1565 fprintf(stderr, 1566 "Highest indirect action ID is already assigned, delete it first\n"); 1567 return -ENOMEM; 1568 } 1569 id = port->actions_list->id + 1; 1570 } else { 1571 id = 0; 1572 } 1573 } 1574 pia = calloc(1, sizeof(*pia)); 1575 if (!pia) { 1576 fprintf(stderr, 1577 "Allocation of port %u indirect action failed\n", 1578 port_id); 1579 return -ENOMEM; 1580 } 1581 ppia = &port->actions_list; 1582 while (*ppia && (*ppia)->id > id) 1583 ppia = &(*ppia)->next; 1584 if (*ppia && (*ppia)->id == id) { 1585 fprintf(stderr, 1586 "Indirect action #%u is already assigned, delete it first\n", 1587 id); 1588 free(pia); 1589 return -EINVAL; 1590 } 1591 pia->next = *ppia; 1592 pia->id = id; 1593 *ppia = pia; 1594 *action = pia; 1595 return 0; 1596 } 1597 1598 /** Create indirect action */ 1599 int 1600 port_action_handle_create(portid_t port_id, uint32_t id, 1601 const struct rte_flow_indir_action_conf *conf, 1602 const struct rte_flow_action *action) 1603 { 1604 struct port_indirect_action *pia; 1605 int ret; 1606 struct rte_flow_error error; 1607 1608 ret = action_alloc(port_id, id, &pia); 1609 if (ret) 1610 return ret; 1611 if (action->type == RTE_FLOW_ACTION_TYPE_AGE) { 1612 struct rte_flow_action_age *age = 1613 (struct rte_flow_action_age *)(uintptr_t)(action->conf); 1614 1615 pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION; 1616 age->context = &pia->age_type; 1617 } else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) { 1618 struct rte_flow_action_conntrack *ct = 1619 (struct rte_flow_action_conntrack *)(uintptr_t)(action->conf); 1620 1621 memcpy(ct, &conntrack_context, sizeof(*ct)); 1622 } 1623 /* Poisoning to make sure PMDs update it in case of error. */ 1624 memset(&error, 0x22, sizeof(error)); 1625 pia->handle = rte_flow_action_handle_create(port_id, conf, action, 1626 &error); 1627 if (!pia->handle) { 1628 uint32_t destroy_id = pia->id; 1629 port_action_handle_destroy(port_id, 1, &destroy_id); 1630 return port_flow_complain(&error); 1631 } 1632 pia->type = action->type; 1633 printf("Indirect action #%u created\n", pia->id); 1634 return 0; 1635 } 1636 1637 /** Destroy indirect action */ 1638 int 1639 port_action_handle_destroy(portid_t port_id, 1640 uint32_t n, 1641 const uint32_t *actions) 1642 { 1643 struct rte_port *port; 1644 struct port_indirect_action **tmp; 1645 uint32_t c = 0; 1646 int ret = 0; 1647 1648 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1649 port_id == (portid_t)RTE_PORT_ALL) 1650 return -EINVAL; 1651 port = &ports[port_id]; 1652 tmp = &port->actions_list; 1653 while (*tmp) { 1654 uint32_t i; 1655 1656 for (i = 0; i != n; ++i) { 1657 struct rte_flow_error error; 1658 struct port_indirect_action *pia = *tmp; 1659 1660 if (actions[i] != pia->id) 1661 continue; 1662 /* 1663 * Poisoning to make sure PMDs update it in case 1664 * of error. 1665 */ 1666 memset(&error, 0x33, sizeof(error)); 1667 1668 if (pia->handle && rte_flow_action_handle_destroy( 1669 port_id, pia->handle, &error)) { 1670 ret = port_flow_complain(&error); 1671 continue; 1672 } 1673 *tmp = pia->next; 1674 printf("Indirect action #%u destroyed\n", pia->id); 1675 free(pia); 1676 break; 1677 } 1678 if (i == n) 1679 tmp = &(*tmp)->next; 1680 ++c; 1681 } 1682 return ret; 1683 } 1684 1685 1686 /** Get indirect action by port + id */ 1687 struct rte_flow_action_handle * 1688 port_action_handle_get_by_id(portid_t port_id, uint32_t id) 1689 { 1690 1691 struct port_indirect_action *pia = action_get_by_id(port_id, id); 1692 1693 return (pia) ? pia->handle : NULL; 1694 } 1695 1696 /** Update indirect action */ 1697 int 1698 port_action_handle_update(portid_t port_id, uint32_t id, 1699 const struct rte_flow_action *action) 1700 { 1701 struct rte_flow_error error; 1702 struct rte_flow_action_handle *action_handle; 1703 struct port_indirect_action *pia; 1704 const void *update; 1705 1706 action_handle = port_action_handle_get_by_id(port_id, id); 1707 if (!action_handle) 1708 return -EINVAL; 1709 pia = action_get_by_id(port_id, id); 1710 if (!pia) 1711 return -EINVAL; 1712 switch (pia->type) { 1713 case RTE_FLOW_ACTION_TYPE_CONNTRACK: 1714 update = action->conf; 1715 break; 1716 default: 1717 update = action; 1718 break; 1719 } 1720 if (rte_flow_action_handle_update(port_id, action_handle, update, 1721 &error)) { 1722 return port_flow_complain(&error); 1723 } 1724 printf("Indirect action #%u updated\n", id); 1725 return 0; 1726 } 1727 1728 int 1729 port_action_handle_query(portid_t port_id, uint32_t id) 1730 { 1731 struct rte_flow_error error; 1732 struct port_indirect_action *pia; 1733 union { 1734 struct rte_flow_query_count count; 1735 struct rte_flow_query_age age; 1736 struct rte_flow_action_conntrack ct; 1737 } query; 1738 1739 pia = action_get_by_id(port_id, id); 1740 if (!pia) 1741 return -EINVAL; 1742 switch (pia->type) { 1743 case RTE_FLOW_ACTION_TYPE_AGE: 1744 case RTE_FLOW_ACTION_TYPE_COUNT: 1745 break; 1746 default: 1747 fprintf(stderr, 1748 "Indirect action %u (type: %d) on port %u doesn't support query\n", 1749 id, pia->type, port_id); 1750 return -ENOTSUP; 1751 } 1752 /* Poisoning to make sure PMDs update it in case of error. */ 1753 memset(&error, 0x55, sizeof(error)); 1754 memset(&query, 0, sizeof(query)); 1755 if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error)) 1756 return port_flow_complain(&error); 1757 switch (pia->type) { 1758 case RTE_FLOW_ACTION_TYPE_AGE: 1759 printf("Indirect AGE action:\n" 1760 " aged: %u\n" 1761 " sec_since_last_hit_valid: %u\n" 1762 " sec_since_last_hit: %" PRIu32 "\n", 1763 query.age.aged, 1764 query.age.sec_since_last_hit_valid, 1765 query.age.sec_since_last_hit); 1766 break; 1767 case RTE_FLOW_ACTION_TYPE_COUNT: 1768 printf("Indirect COUNT action:\n" 1769 " hits_set: %u\n" 1770 " bytes_set: %u\n" 1771 " hits: %" PRIu64 "\n" 1772 " bytes: %" PRIu64 "\n", 1773 query.count.hits_set, 1774 query.count.bytes_set, 1775 query.count.hits, 1776 query.count.bytes); 1777 break; 1778 case RTE_FLOW_ACTION_TYPE_CONNTRACK: 1779 printf("Conntrack Context:\n" 1780 " Peer: %u, Flow dir: %s, Enable: %u\n" 1781 " Live: %u, SACK: %u, CACK: %u\n" 1782 " Packet dir: %s, Liberal: %u, State: %u\n" 1783 " Factor: %u, Retrans: %u, TCP flags: %u\n" 1784 " Last Seq: %u, Last ACK: %u\n" 1785 " Last Win: %u, Last End: %u\n", 1786 query.ct.peer_port, 1787 query.ct.is_original_dir ? "Original" : "Reply", 1788 query.ct.enable, query.ct.live_connection, 1789 query.ct.selective_ack, query.ct.challenge_ack_passed, 1790 query.ct.last_direction ? "Original" : "Reply", 1791 query.ct.liberal_mode, query.ct.state, 1792 query.ct.max_ack_window, query.ct.retransmission_limit, 1793 query.ct.last_index, query.ct.last_seq, 1794 query.ct.last_ack, query.ct.last_window, 1795 query.ct.last_end); 1796 printf(" Original Dir:\n" 1797 " scale: %u, fin: %u, ack seen: %u\n" 1798 " unacked data: %u\n Sent end: %u," 1799 " Reply end: %u, Max win: %u, Max ACK: %u\n", 1800 query.ct.original_dir.scale, 1801 query.ct.original_dir.close_initiated, 1802 query.ct.original_dir.last_ack_seen, 1803 query.ct.original_dir.data_unacked, 1804 query.ct.original_dir.sent_end, 1805 query.ct.original_dir.reply_end, 1806 query.ct.original_dir.max_win, 1807 query.ct.original_dir.max_ack); 1808 printf(" Reply Dir:\n" 1809 " scale: %u, fin: %u, ack seen: %u\n" 1810 " unacked data: %u\n Sent end: %u," 1811 " Reply end: %u, Max win: %u, Max ACK: %u\n", 1812 query.ct.reply_dir.scale, 1813 query.ct.reply_dir.close_initiated, 1814 query.ct.reply_dir.last_ack_seen, 1815 query.ct.reply_dir.data_unacked, 1816 query.ct.reply_dir.sent_end, 1817 query.ct.reply_dir.reply_end, 1818 query.ct.reply_dir.max_win, 1819 query.ct.reply_dir.max_ack); 1820 break; 1821 default: 1822 fprintf(stderr, 1823 "Indirect action %u (type: %d) on port %u doesn't support query\n", 1824 id, pia->type, port_id); 1825 break; 1826 } 1827 return 0; 1828 } 1829 1830 static struct port_flow_tunnel * 1831 port_flow_tunnel_offload_cmd_prep(portid_t port_id, 1832 const struct rte_flow_item *pattern, 1833 const struct rte_flow_action *actions, 1834 const struct tunnel_ops *tunnel_ops) 1835 { 1836 int ret; 1837 struct rte_port *port; 1838 struct port_flow_tunnel *pft; 1839 struct rte_flow_error error; 1840 1841 port = &ports[port_id]; 1842 pft = port_flow_locate_tunnel_id(port, tunnel_ops->id); 1843 if (!pft) { 1844 fprintf(stderr, "failed to locate port flow tunnel #%u\n", 1845 tunnel_ops->id); 1846 return NULL; 1847 } 1848 if (tunnel_ops->actions) { 1849 uint32_t num_actions; 1850 const struct rte_flow_action *aptr; 1851 1852 ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel, 1853 &pft->pmd_actions, 1854 &pft->num_pmd_actions, 1855 &error); 1856 if (ret) { 1857 port_flow_complain(&error); 1858 return NULL; 1859 } 1860 for (aptr = actions, num_actions = 1; 1861 aptr->type != RTE_FLOW_ACTION_TYPE_END; 1862 aptr++, num_actions++); 1863 pft->actions = malloc( 1864 (num_actions + pft->num_pmd_actions) * 1865 sizeof(actions[0])); 1866 if (!pft->actions) { 1867 rte_flow_tunnel_action_decap_release( 1868 port_id, pft->actions, 1869 pft->num_pmd_actions, &error); 1870 return NULL; 1871 } 1872 rte_memcpy(pft->actions, pft->pmd_actions, 1873 pft->num_pmd_actions * sizeof(actions[0])); 1874 rte_memcpy(pft->actions + pft->num_pmd_actions, actions, 1875 num_actions * sizeof(actions[0])); 1876 } 1877 if (tunnel_ops->items) { 1878 uint32_t num_items; 1879 const struct rte_flow_item *iptr; 1880 1881 ret = rte_flow_tunnel_match(port_id, &pft->tunnel, 1882 &pft->pmd_items, 1883 &pft->num_pmd_items, 1884 &error); 1885 if (ret) { 1886 port_flow_complain(&error); 1887 return NULL; 1888 } 1889 for (iptr = pattern, num_items = 1; 1890 iptr->type != RTE_FLOW_ITEM_TYPE_END; 1891 iptr++, num_items++); 1892 pft->items = malloc((num_items + pft->num_pmd_items) * 1893 sizeof(pattern[0])); 1894 if (!pft->items) { 1895 rte_flow_tunnel_item_release( 1896 port_id, pft->pmd_items, 1897 pft->num_pmd_items, &error); 1898 return NULL; 1899 } 1900 rte_memcpy(pft->items, pft->pmd_items, 1901 pft->num_pmd_items * sizeof(pattern[0])); 1902 rte_memcpy(pft->items + pft->num_pmd_items, pattern, 1903 num_items * sizeof(pattern[0])); 1904 } 1905 1906 return pft; 1907 } 1908 1909 static void 1910 port_flow_tunnel_offload_cmd_release(portid_t port_id, 1911 const struct tunnel_ops *tunnel_ops, 1912 struct port_flow_tunnel *pft) 1913 { 1914 struct rte_flow_error error; 1915 1916 if (tunnel_ops->actions) { 1917 free(pft->actions); 1918 rte_flow_tunnel_action_decap_release( 1919 port_id, pft->pmd_actions, 1920 pft->num_pmd_actions, &error); 1921 pft->actions = NULL; 1922 pft->pmd_actions = NULL; 1923 } 1924 if (tunnel_ops->items) { 1925 free(pft->items); 1926 rte_flow_tunnel_item_release(port_id, pft->pmd_items, 1927 pft->num_pmd_items, 1928 &error); 1929 pft->items = NULL; 1930 pft->pmd_items = NULL; 1931 } 1932 } 1933 1934 /** Add port meter policy */ 1935 int 1936 port_meter_policy_add(portid_t port_id, uint32_t policy_id, 1937 const struct rte_flow_action *actions) 1938 { 1939 struct rte_mtr_error error; 1940 const struct rte_flow_action *act = actions; 1941 const struct rte_flow_action *start; 1942 struct rte_mtr_meter_policy_params policy; 1943 uint32_t i = 0, act_n; 1944 int ret; 1945 1946 for (i = 0; i < RTE_COLORS; i++) { 1947 for (act_n = 0, start = act; 1948 act->type != RTE_FLOW_ACTION_TYPE_END; act++) 1949 act_n++; 1950 if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END) 1951 policy.actions[i] = start; 1952 else 1953 policy.actions[i] = NULL; 1954 act++; 1955 } 1956 ret = rte_mtr_meter_policy_add(port_id, 1957 policy_id, 1958 &policy, &error); 1959 if (ret) 1960 print_mtr_err_msg(&error); 1961 return ret; 1962 } 1963 1964 /** Validate flow rule. */ 1965 int 1966 port_flow_validate(portid_t port_id, 1967 const struct rte_flow_attr *attr, 1968 const struct rte_flow_item *pattern, 1969 const struct rte_flow_action *actions, 1970 const struct tunnel_ops *tunnel_ops) 1971 { 1972 struct rte_flow_error error; 1973 struct port_flow_tunnel *pft = NULL; 1974 int ret; 1975 1976 /* Poisoning to make sure PMDs update it in case of error. */ 1977 memset(&error, 0x11, sizeof(error)); 1978 if (tunnel_ops->enabled) { 1979 pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, 1980 actions, tunnel_ops); 1981 if (!pft) 1982 return -ENOENT; 1983 if (pft->items) 1984 pattern = pft->items; 1985 if (pft->actions) 1986 actions = pft->actions; 1987 } 1988 ret = rte_flow_validate(port_id, attr, pattern, actions, &error); 1989 if (tunnel_ops->enabled) 1990 port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); 1991 if (ret) 1992 return port_flow_complain(&error); 1993 printf("Flow rule validated\n"); 1994 return 0; 1995 } 1996 1997 /** Return age action structure if exists, otherwise NULL. */ 1998 static struct rte_flow_action_age * 1999 age_action_get(const struct rte_flow_action *actions) 2000 { 2001 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 2002 switch (actions->type) { 2003 case RTE_FLOW_ACTION_TYPE_AGE: 2004 return (struct rte_flow_action_age *) 2005 (uintptr_t)actions->conf; 2006 default: 2007 break; 2008 } 2009 } 2010 return NULL; 2011 } 2012 2013 /** Create flow rule. */ 2014 int 2015 port_flow_create(portid_t port_id, 2016 const struct rte_flow_attr *attr, 2017 const struct rte_flow_item *pattern, 2018 const struct rte_flow_action *actions, 2019 const struct tunnel_ops *tunnel_ops) 2020 { 2021 struct rte_flow *flow; 2022 struct rte_port *port; 2023 struct port_flow *pf; 2024 uint32_t id = 0; 2025 struct rte_flow_error error; 2026 struct port_flow_tunnel *pft = NULL; 2027 struct rte_flow_action_age *age = age_action_get(actions); 2028 2029 port = &ports[port_id]; 2030 if (port->flow_list) { 2031 if (port->flow_list->id == UINT32_MAX) { 2032 fprintf(stderr, 2033 "Highest rule ID is already assigned, delete it first"); 2034 return -ENOMEM; 2035 } 2036 id = port->flow_list->id + 1; 2037 } 2038 if (tunnel_ops->enabled) { 2039 pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, 2040 actions, tunnel_ops); 2041 if (!pft) 2042 return -ENOENT; 2043 if (pft->items) 2044 pattern = pft->items; 2045 if (pft->actions) 2046 actions = pft->actions; 2047 } 2048 pf = port_flow_new(attr, pattern, actions, &error); 2049 if (!pf) 2050 return port_flow_complain(&error); 2051 if (age) { 2052 pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW; 2053 age->context = &pf->age_type; 2054 } 2055 /* Poisoning to make sure PMDs update it in case of error. */ 2056 memset(&error, 0x22, sizeof(error)); 2057 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 2058 if (!flow) { 2059 if (tunnel_ops->enabled) 2060 port_flow_tunnel_offload_cmd_release(port_id, 2061 tunnel_ops, pft); 2062 free(pf); 2063 return port_flow_complain(&error); 2064 } 2065 pf->next = port->flow_list; 2066 pf->id = id; 2067 pf->flow = flow; 2068 port->flow_list = pf; 2069 if (tunnel_ops->enabled) 2070 port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); 2071 printf("Flow rule #%u created\n", pf->id); 2072 return 0; 2073 } 2074 2075 /** Destroy a number of flow rules. */ 2076 int 2077 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 2078 { 2079 struct rte_port *port; 2080 struct port_flow **tmp; 2081 uint32_t c = 0; 2082 int ret = 0; 2083 2084 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2085 port_id == (portid_t)RTE_PORT_ALL) 2086 return -EINVAL; 2087 port = &ports[port_id]; 2088 tmp = &port->flow_list; 2089 while (*tmp) { 2090 uint32_t i; 2091 2092 for (i = 0; i != n; ++i) { 2093 struct rte_flow_error error; 2094 struct port_flow *pf = *tmp; 2095 2096 if (rule[i] != pf->id) 2097 continue; 2098 /* 2099 * Poisoning to make sure PMDs update it in case 2100 * of error. 2101 */ 2102 memset(&error, 0x33, sizeof(error)); 2103 if (rte_flow_destroy(port_id, pf->flow, &error)) { 2104 ret = port_flow_complain(&error); 2105 continue; 2106 } 2107 printf("Flow rule #%u destroyed\n", pf->id); 2108 *tmp = pf->next; 2109 free(pf); 2110 break; 2111 } 2112 if (i == n) 2113 tmp = &(*tmp)->next; 2114 ++c; 2115 } 2116 return ret; 2117 } 2118 2119 /** Remove all flow rules. */ 2120 int 2121 port_flow_flush(portid_t port_id) 2122 { 2123 struct rte_flow_error error; 2124 struct rte_port *port; 2125 int ret = 0; 2126 2127 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2128 port_id == (portid_t)RTE_PORT_ALL) 2129 return -EINVAL; 2130 2131 port = &ports[port_id]; 2132 2133 if (port->flow_list == NULL) 2134 return ret; 2135 2136 /* Poisoning to make sure PMDs update it in case of error. */ 2137 memset(&error, 0x44, sizeof(error)); 2138 if (rte_flow_flush(port_id, &error)) { 2139 port_flow_complain(&error); 2140 } 2141 2142 while (port->flow_list) { 2143 struct port_flow *pf = port->flow_list->next; 2144 2145 free(port->flow_list); 2146 port->flow_list = pf; 2147 } 2148 return ret; 2149 } 2150 2151 /** Dump flow rules. */ 2152 int 2153 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id, 2154 const char *file_name) 2155 { 2156 int ret = 0; 2157 FILE *file = stdout; 2158 struct rte_flow_error error; 2159 struct rte_port *port; 2160 struct port_flow *pflow; 2161 struct rte_flow *tmpFlow = NULL; 2162 bool found = false; 2163 2164 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2165 port_id == (portid_t)RTE_PORT_ALL) 2166 return -EINVAL; 2167 2168 if (!dump_all) { 2169 port = &ports[port_id]; 2170 pflow = port->flow_list; 2171 while (pflow) { 2172 if (rule_id != pflow->id) { 2173 pflow = pflow->next; 2174 } else { 2175 tmpFlow = pflow->flow; 2176 if (tmpFlow) 2177 found = true; 2178 break; 2179 } 2180 } 2181 if (found == false) { 2182 fprintf(stderr, "Failed to dump to flow %d\n", rule_id); 2183 return -EINVAL; 2184 } 2185 } 2186 2187 if (file_name && strlen(file_name)) { 2188 file = fopen(file_name, "w"); 2189 if (!file) { 2190 fprintf(stderr, "Failed to create file %s: %s\n", 2191 file_name, strerror(errno)); 2192 return -errno; 2193 } 2194 } 2195 2196 if (!dump_all) 2197 ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error); 2198 else 2199 ret = rte_flow_dev_dump(port_id, NULL, file, &error); 2200 if (ret) { 2201 port_flow_complain(&error); 2202 fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret)); 2203 } else 2204 printf("Flow dump finished\n"); 2205 if (file_name && strlen(file_name)) 2206 fclose(file); 2207 return ret; 2208 } 2209 2210 /** Query a flow rule. */ 2211 int 2212 port_flow_query(portid_t port_id, uint32_t rule, 2213 const struct rte_flow_action *action) 2214 { 2215 struct rte_flow_error error; 2216 struct rte_port *port; 2217 struct port_flow *pf; 2218 const char *name; 2219 union { 2220 struct rte_flow_query_count count; 2221 struct rte_flow_action_rss rss_conf; 2222 struct rte_flow_query_age age; 2223 } query; 2224 int ret; 2225 2226 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2227 port_id == (portid_t)RTE_PORT_ALL) 2228 return -EINVAL; 2229 port = &ports[port_id]; 2230 for (pf = port->flow_list; pf; pf = pf->next) 2231 if (pf->id == rule) 2232 break; 2233 if (!pf) { 2234 fprintf(stderr, "Flow rule #%u not found\n", rule); 2235 return -ENOENT; 2236 } 2237 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 2238 &name, sizeof(name), 2239 (void *)(uintptr_t)action->type, &error); 2240 if (ret < 0) 2241 return port_flow_complain(&error); 2242 switch (action->type) { 2243 case RTE_FLOW_ACTION_TYPE_COUNT: 2244 case RTE_FLOW_ACTION_TYPE_RSS: 2245 case RTE_FLOW_ACTION_TYPE_AGE: 2246 break; 2247 default: 2248 fprintf(stderr, "Cannot query action type %d (%s)\n", 2249 action->type, name); 2250 return -ENOTSUP; 2251 } 2252 /* Poisoning to make sure PMDs update it in case of error. */ 2253 memset(&error, 0x55, sizeof(error)); 2254 memset(&query, 0, sizeof(query)); 2255 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 2256 return port_flow_complain(&error); 2257 switch (action->type) { 2258 case RTE_FLOW_ACTION_TYPE_COUNT: 2259 printf("%s:\n" 2260 " hits_set: %u\n" 2261 " bytes_set: %u\n" 2262 " hits: %" PRIu64 "\n" 2263 " bytes: %" PRIu64 "\n", 2264 name, 2265 query.count.hits_set, 2266 query.count.bytes_set, 2267 query.count.hits, 2268 query.count.bytes); 2269 break; 2270 case RTE_FLOW_ACTION_TYPE_RSS: 2271 rss_config_display(&query.rss_conf); 2272 break; 2273 case RTE_FLOW_ACTION_TYPE_AGE: 2274 printf("%s:\n" 2275 " aged: %u\n" 2276 " sec_since_last_hit_valid: %u\n" 2277 " sec_since_last_hit: %" PRIu32 "\n", 2278 name, 2279 query.age.aged, 2280 query.age.sec_since_last_hit_valid, 2281 query.age.sec_since_last_hit); 2282 break; 2283 default: 2284 fprintf(stderr, 2285 "Cannot display result for action type %d (%s)\n", 2286 action->type, name); 2287 break; 2288 } 2289 return 0; 2290 } 2291 2292 /** List simply and destroy all aged flows. */ 2293 void 2294 port_flow_aged(portid_t port_id, uint8_t destroy) 2295 { 2296 void **contexts; 2297 int nb_context, total = 0, idx; 2298 struct rte_flow_error error; 2299 enum age_action_context_type *type; 2300 union { 2301 struct port_flow *pf; 2302 struct port_indirect_action *pia; 2303 } ctx; 2304 2305 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2306 port_id == (portid_t)RTE_PORT_ALL) 2307 return; 2308 total = rte_flow_get_aged_flows(port_id, NULL, 0, &error); 2309 printf("Port %u total aged flows: %d\n", port_id, total); 2310 if (total < 0) { 2311 port_flow_complain(&error); 2312 return; 2313 } 2314 if (total == 0) 2315 return; 2316 contexts = malloc(sizeof(void *) * total); 2317 if (contexts == NULL) { 2318 fprintf(stderr, "Cannot allocate contexts for aged flow\n"); 2319 return; 2320 } 2321 printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type"); 2322 nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error); 2323 if (nb_context != total) { 2324 fprintf(stderr, 2325 "Port:%d get aged flows count(%d) != total(%d)\n", 2326 port_id, nb_context, total); 2327 free(contexts); 2328 return; 2329 } 2330 total = 0; 2331 for (idx = 0; idx < nb_context; idx++) { 2332 if (!contexts[idx]) { 2333 fprintf(stderr, "Error: get Null context in port %u\n", 2334 port_id); 2335 continue; 2336 } 2337 type = (enum age_action_context_type *)contexts[idx]; 2338 switch (*type) { 2339 case ACTION_AGE_CONTEXT_TYPE_FLOW: 2340 ctx.pf = container_of(type, struct port_flow, age_type); 2341 printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 2342 "\t%c%c%c\t\n", 2343 "Flow", 2344 ctx.pf->id, 2345 ctx.pf->rule.attr->group, 2346 ctx.pf->rule.attr->priority, 2347 ctx.pf->rule.attr->ingress ? 'i' : '-', 2348 ctx.pf->rule.attr->egress ? 'e' : '-', 2349 ctx.pf->rule.attr->transfer ? 't' : '-'); 2350 if (destroy && !port_flow_destroy(port_id, 1, 2351 &ctx.pf->id)) 2352 total++; 2353 break; 2354 case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION: 2355 ctx.pia = container_of(type, 2356 struct port_indirect_action, age_type); 2357 printf("%-20s\t%" PRIu32 "\n", "Indirect action", 2358 ctx.pia->id); 2359 break; 2360 default: 2361 fprintf(stderr, "Error: invalid context type %u\n", 2362 port_id); 2363 break; 2364 } 2365 } 2366 printf("\n%d flows destroyed\n", total); 2367 free(contexts); 2368 } 2369 2370 /** List flow rules. */ 2371 void 2372 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group) 2373 { 2374 struct rte_port *port; 2375 struct port_flow *pf; 2376 struct port_flow *list = NULL; 2377 uint32_t i; 2378 2379 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2380 port_id == (portid_t)RTE_PORT_ALL) 2381 return; 2382 port = &ports[port_id]; 2383 if (!port->flow_list) 2384 return; 2385 /* Sort flows by group, priority and ID. */ 2386 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 2387 struct port_flow **tmp; 2388 const struct rte_flow_attr *curr = pf->rule.attr; 2389 2390 if (n) { 2391 /* Filter out unwanted groups. */ 2392 for (i = 0; i != n; ++i) 2393 if (curr->group == group[i]) 2394 break; 2395 if (i == n) 2396 continue; 2397 } 2398 for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { 2399 const struct rte_flow_attr *comp = (*tmp)->rule.attr; 2400 2401 if (curr->group > comp->group || 2402 (curr->group == comp->group && 2403 curr->priority > comp->priority) || 2404 (curr->group == comp->group && 2405 curr->priority == comp->priority && 2406 pf->id > (*tmp)->id)) 2407 continue; 2408 break; 2409 } 2410 pf->tmp = *tmp; 2411 *tmp = pf; 2412 } 2413 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 2414 for (pf = list; pf != NULL; pf = pf->tmp) { 2415 const struct rte_flow_item *item = pf->rule.pattern; 2416 const struct rte_flow_action *action = pf->rule.actions; 2417 const char *name; 2418 2419 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", 2420 pf->id, 2421 pf->rule.attr->group, 2422 pf->rule.attr->priority, 2423 pf->rule.attr->ingress ? 'i' : '-', 2424 pf->rule.attr->egress ? 'e' : '-', 2425 pf->rule.attr->transfer ? 't' : '-'); 2426 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 2427 if ((uint32_t)item->type > INT_MAX) 2428 name = "PMD_INTERNAL"; 2429 else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 2430 &name, sizeof(name), 2431 (void *)(uintptr_t)item->type, 2432 NULL) <= 0) 2433 name = "[UNKNOWN]"; 2434 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 2435 printf("%s ", name); 2436 ++item; 2437 } 2438 printf("=>"); 2439 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 2440 if ((uint32_t)action->type > INT_MAX) 2441 name = "PMD_INTERNAL"; 2442 else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 2443 &name, sizeof(name), 2444 (void *)(uintptr_t)action->type, 2445 NULL) <= 0) 2446 name = "[UNKNOWN]"; 2447 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 2448 printf(" %s", name); 2449 ++action; 2450 } 2451 printf("\n"); 2452 } 2453 } 2454 2455 /** Restrict ingress traffic to the defined flow rules. */ 2456 int 2457 port_flow_isolate(portid_t port_id, int set) 2458 { 2459 struct rte_flow_error error; 2460 2461 /* Poisoning to make sure PMDs update it in case of error. */ 2462 memset(&error, 0x66, sizeof(error)); 2463 if (rte_flow_isolate(port_id, set, &error)) 2464 return port_flow_complain(&error); 2465 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 2466 port_id, 2467 set ? "now restricted" : "not restricted anymore"); 2468 return 0; 2469 } 2470 2471 /* 2472 * RX/TX ring descriptors display functions. 2473 */ 2474 int 2475 rx_queue_id_is_invalid(queueid_t rxq_id) 2476 { 2477 if (rxq_id < nb_rxq) 2478 return 0; 2479 fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n", 2480 rxq_id, nb_rxq); 2481 return 1; 2482 } 2483 2484 int 2485 tx_queue_id_is_invalid(queueid_t txq_id) 2486 { 2487 if (txq_id < nb_txq) 2488 return 0; 2489 fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n", 2490 txq_id, nb_txq); 2491 return 1; 2492 } 2493 2494 static int 2495 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size) 2496 { 2497 struct rte_port *port = &ports[port_id]; 2498 struct rte_eth_rxq_info rx_qinfo; 2499 int ret; 2500 2501 ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo); 2502 if (ret == 0) { 2503 *ring_size = rx_qinfo.nb_desc; 2504 return ret; 2505 } 2506 2507 if (ret != -ENOTSUP) 2508 return ret; 2509 /* 2510 * If the rte_eth_rx_queue_info_get is not support for this PMD, 2511 * ring_size stored in testpmd will be used for validity verification. 2512 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc 2513 * being 0, it will use a default value provided by PMDs to setup this 2514 * rxq. If the default value is 0, it will use the 2515 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq. 2516 */ 2517 if (port->nb_rx_desc[rxq_id]) 2518 *ring_size = port->nb_rx_desc[rxq_id]; 2519 else if (port->dev_info.default_rxportconf.ring_size) 2520 *ring_size = port->dev_info.default_rxportconf.ring_size; 2521 else 2522 *ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE; 2523 return 0; 2524 } 2525 2526 static int 2527 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size) 2528 { 2529 struct rte_port *port = &ports[port_id]; 2530 struct rte_eth_txq_info tx_qinfo; 2531 int ret; 2532 2533 ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo); 2534 if (ret == 0) { 2535 *ring_size = tx_qinfo.nb_desc; 2536 return ret; 2537 } 2538 2539 if (ret != -ENOTSUP) 2540 return ret; 2541 /* 2542 * If the rte_eth_tx_queue_info_get is not support for this PMD, 2543 * ring_size stored in testpmd will be used for validity verification. 2544 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc 2545 * being 0, it will use a default value provided by PMDs to setup this 2546 * txq. If the default value is 0, it will use the 2547 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq. 2548 */ 2549 if (port->nb_tx_desc[txq_id]) 2550 *ring_size = port->nb_tx_desc[txq_id]; 2551 else if (port->dev_info.default_txportconf.ring_size) 2552 *ring_size = port->dev_info.default_txportconf.ring_size; 2553 else 2554 *ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE; 2555 return 0; 2556 } 2557 2558 static int 2559 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id) 2560 { 2561 uint16_t ring_size; 2562 int ret; 2563 2564 ret = get_rx_ring_size(port_id, rxq_id, &ring_size); 2565 if (ret) 2566 return 1; 2567 2568 if (rxdesc_id < ring_size) 2569 return 0; 2570 2571 fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n", 2572 rxdesc_id, ring_size); 2573 return 1; 2574 } 2575 2576 static int 2577 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id) 2578 { 2579 uint16_t ring_size; 2580 int ret; 2581 2582 ret = get_tx_ring_size(port_id, txq_id, &ring_size); 2583 if (ret) 2584 return 1; 2585 2586 if (txdesc_id < ring_size) 2587 return 0; 2588 2589 fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n", 2590 txdesc_id, ring_size); 2591 return 1; 2592 } 2593 2594 static const struct rte_memzone * 2595 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 2596 { 2597 char mz_name[RTE_MEMZONE_NAMESIZE]; 2598 const struct rte_memzone *mz; 2599 2600 snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", 2601 port_id, q_id, ring_name); 2602 mz = rte_memzone_lookup(mz_name); 2603 if (mz == NULL) 2604 fprintf(stderr, 2605 "%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n", 2606 ring_name, port_id, q_id, mz_name); 2607 return mz; 2608 } 2609 2610 union igb_ring_dword { 2611 uint64_t dword; 2612 struct { 2613 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 2614 uint32_t lo; 2615 uint32_t hi; 2616 #else 2617 uint32_t hi; 2618 uint32_t lo; 2619 #endif 2620 } words; 2621 }; 2622 2623 struct igb_ring_desc_32_bytes { 2624 union igb_ring_dword lo_dword; 2625 union igb_ring_dword hi_dword; 2626 union igb_ring_dword resv1; 2627 union igb_ring_dword resv2; 2628 }; 2629 2630 struct igb_ring_desc_16_bytes { 2631 union igb_ring_dword lo_dword; 2632 union igb_ring_dword hi_dword; 2633 }; 2634 2635 static void 2636 ring_rxd_display_dword(union igb_ring_dword dword) 2637 { 2638 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 2639 (unsigned)dword.words.hi); 2640 } 2641 2642 static void 2643 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 2644 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 2645 portid_t port_id, 2646 #else 2647 __rte_unused portid_t port_id, 2648 #endif 2649 uint16_t desc_id) 2650 { 2651 struct igb_ring_desc_16_bytes *ring = 2652 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 2653 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 2654 int ret; 2655 struct rte_eth_dev_info dev_info; 2656 2657 ret = eth_dev_info_get_print_err(port_id, &dev_info); 2658 if (ret != 0) 2659 return; 2660 2661 if (strstr(dev_info.driver_name, "i40e") != NULL) { 2662 /* 32 bytes RX descriptor, i40e only */ 2663 struct igb_ring_desc_32_bytes *ring = 2664 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 2665 ring[desc_id].lo_dword.dword = 2666 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 2667 ring_rxd_display_dword(ring[desc_id].lo_dword); 2668 ring[desc_id].hi_dword.dword = 2669 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 2670 ring_rxd_display_dword(ring[desc_id].hi_dword); 2671 ring[desc_id].resv1.dword = 2672 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 2673 ring_rxd_display_dword(ring[desc_id].resv1); 2674 ring[desc_id].resv2.dword = 2675 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 2676 ring_rxd_display_dword(ring[desc_id].resv2); 2677 2678 return; 2679 } 2680 #endif 2681 /* 16 bytes RX descriptor */ 2682 ring[desc_id].lo_dword.dword = 2683 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 2684 ring_rxd_display_dword(ring[desc_id].lo_dword); 2685 ring[desc_id].hi_dword.dword = 2686 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 2687 ring_rxd_display_dword(ring[desc_id].hi_dword); 2688 } 2689 2690 static void 2691 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 2692 { 2693 struct igb_ring_desc_16_bytes *ring; 2694 struct igb_ring_desc_16_bytes txd; 2695 2696 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 2697 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 2698 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 2699 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 2700 (unsigned)txd.lo_dword.words.lo, 2701 (unsigned)txd.lo_dword.words.hi, 2702 (unsigned)txd.hi_dword.words.lo, 2703 (unsigned)txd.hi_dword.words.hi); 2704 } 2705 2706 void 2707 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 2708 { 2709 const struct rte_memzone *rx_mz; 2710 2711 if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id)) 2712 return; 2713 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 2714 if (rx_mz == NULL) 2715 return; 2716 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 2717 } 2718 2719 void 2720 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 2721 { 2722 const struct rte_memzone *tx_mz; 2723 2724 if (tx_desc_id_is_invalid(port_id, txq_id, txd_id)) 2725 return; 2726 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 2727 if (tx_mz == NULL) 2728 return; 2729 ring_tx_descriptor_display(tx_mz, txd_id); 2730 } 2731 2732 void 2733 fwd_lcores_config_display(void) 2734 { 2735 lcoreid_t lc_id; 2736 2737 printf("List of forwarding lcores:"); 2738 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 2739 printf(" %2u", fwd_lcores_cpuids[lc_id]); 2740 printf("\n"); 2741 } 2742 void 2743 rxtx_config_display(void) 2744 { 2745 portid_t pid; 2746 queueid_t qid; 2747 2748 printf(" %s packet forwarding%s packets/burst=%d\n", 2749 cur_fwd_eng->fwd_mode_name, 2750 retry_enabled == 0 ? "" : " with retry", 2751 nb_pkt_per_burst); 2752 2753 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 2754 printf(" packet len=%u - nb packet segments=%d\n", 2755 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 2756 2757 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 2758 nb_fwd_lcores, nb_fwd_ports); 2759 2760 RTE_ETH_FOREACH_DEV(pid) { 2761 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0]; 2762 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0]; 2763 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; 2764 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; 2765 struct rte_eth_rxq_info rx_qinfo; 2766 struct rte_eth_txq_info tx_qinfo; 2767 uint16_t rx_free_thresh_tmp; 2768 uint16_t tx_free_thresh_tmp; 2769 uint16_t tx_rs_thresh_tmp; 2770 uint16_t nb_rx_desc_tmp; 2771 uint16_t nb_tx_desc_tmp; 2772 uint64_t offloads_tmp; 2773 uint8_t pthresh_tmp; 2774 uint8_t hthresh_tmp; 2775 uint8_t wthresh_tmp; 2776 int32_t rc; 2777 2778 /* per port config */ 2779 printf(" port %d: RX queue number: %d Tx queue number: %d\n", 2780 (unsigned int)pid, nb_rxq, nb_txq); 2781 2782 printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", 2783 ports[pid].dev_conf.rxmode.offloads, 2784 ports[pid].dev_conf.txmode.offloads); 2785 2786 /* per rx queue config only for first queue to be less verbose */ 2787 for (qid = 0; qid < 1; qid++) { 2788 rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); 2789 if (rc) { 2790 nb_rx_desc_tmp = nb_rx_desc[qid]; 2791 rx_free_thresh_tmp = 2792 rx_conf[qid].rx_free_thresh; 2793 pthresh_tmp = rx_conf[qid].rx_thresh.pthresh; 2794 hthresh_tmp = rx_conf[qid].rx_thresh.hthresh; 2795 wthresh_tmp = rx_conf[qid].rx_thresh.wthresh; 2796 offloads_tmp = rx_conf[qid].offloads; 2797 } else { 2798 nb_rx_desc_tmp = rx_qinfo.nb_desc; 2799 rx_free_thresh_tmp = 2800 rx_qinfo.conf.rx_free_thresh; 2801 pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh; 2802 hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh; 2803 wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh; 2804 offloads_tmp = rx_qinfo.conf.offloads; 2805 } 2806 2807 printf(" RX queue: %d\n", qid); 2808 printf(" RX desc=%d - RX free threshold=%d\n", 2809 nb_rx_desc_tmp, rx_free_thresh_tmp); 2810 printf(" RX threshold registers: pthresh=%d hthresh=%d " 2811 " wthresh=%d\n", 2812 pthresh_tmp, hthresh_tmp, wthresh_tmp); 2813 printf(" RX Offloads=0x%"PRIx64, offloads_tmp); 2814 if (rx_conf->share_group > 0) 2815 printf(" share_group=%u share_qid=%u", 2816 rx_conf->share_group, 2817 rx_conf->share_qid); 2818 printf("\n"); 2819 } 2820 2821 /* per tx queue config only for first queue to be less verbose */ 2822 for (qid = 0; qid < 1; qid++) { 2823 rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); 2824 if (rc) { 2825 nb_tx_desc_tmp = nb_tx_desc[qid]; 2826 tx_free_thresh_tmp = 2827 tx_conf[qid].tx_free_thresh; 2828 pthresh_tmp = tx_conf[qid].tx_thresh.pthresh; 2829 hthresh_tmp = tx_conf[qid].tx_thresh.hthresh; 2830 wthresh_tmp = tx_conf[qid].tx_thresh.wthresh; 2831 offloads_tmp = tx_conf[qid].offloads; 2832 tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh; 2833 } else { 2834 nb_tx_desc_tmp = tx_qinfo.nb_desc; 2835 tx_free_thresh_tmp = 2836 tx_qinfo.conf.tx_free_thresh; 2837 pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh; 2838 hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh; 2839 wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh; 2840 offloads_tmp = tx_qinfo.conf.offloads; 2841 tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh; 2842 } 2843 2844 printf(" TX queue: %d\n", qid); 2845 printf(" TX desc=%d - TX free threshold=%d\n", 2846 nb_tx_desc_tmp, tx_free_thresh_tmp); 2847 printf(" TX threshold registers: pthresh=%d hthresh=%d " 2848 " wthresh=%d\n", 2849 pthresh_tmp, hthresh_tmp, wthresh_tmp); 2850 printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", 2851 offloads_tmp, tx_rs_thresh_tmp); 2852 } 2853 } 2854 } 2855 2856 void 2857 port_rss_reta_info(portid_t port_id, 2858 struct rte_eth_rss_reta_entry64 *reta_conf, 2859 uint16_t nb_entries) 2860 { 2861 uint16_t i, idx, shift; 2862 int ret; 2863 2864 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2865 return; 2866 2867 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 2868 if (ret != 0) { 2869 fprintf(stderr, 2870 "Failed to get RSS RETA info, return code = %d\n", 2871 ret); 2872 return; 2873 } 2874 2875 for (i = 0; i < nb_entries; i++) { 2876 idx = i / RTE_ETH_RETA_GROUP_SIZE; 2877 shift = i % RTE_ETH_RETA_GROUP_SIZE; 2878 if (!(reta_conf[idx].mask & (1ULL << shift))) 2879 continue; 2880 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 2881 i, reta_conf[idx].reta[shift]); 2882 } 2883 } 2884 2885 /* 2886 * Displays the RSS hash functions of a port, and, optionally, the RSS hash 2887 * key of the port. 2888 */ 2889 void 2890 port_rss_hash_conf_show(portid_t port_id, int show_rss_key) 2891 { 2892 struct rte_eth_rss_conf rss_conf = {0}; 2893 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 2894 uint64_t rss_hf; 2895 uint8_t i; 2896 int diag; 2897 struct rte_eth_dev_info dev_info; 2898 uint8_t hash_key_size; 2899 int ret; 2900 2901 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2902 return; 2903 2904 ret = eth_dev_info_get_print_err(port_id, &dev_info); 2905 if (ret != 0) 2906 return; 2907 2908 if (dev_info.hash_key_size > 0 && 2909 dev_info.hash_key_size <= sizeof(rss_key)) 2910 hash_key_size = dev_info.hash_key_size; 2911 else { 2912 fprintf(stderr, 2913 "dev_info did not provide a valid hash key size\n"); 2914 return; 2915 } 2916 2917 /* Get RSS hash key if asked to display it */ 2918 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 2919 rss_conf.rss_key_len = hash_key_size; 2920 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 2921 if (diag != 0) { 2922 switch (diag) { 2923 case -ENODEV: 2924 fprintf(stderr, "port index %d invalid\n", port_id); 2925 break; 2926 case -ENOTSUP: 2927 fprintf(stderr, "operation not supported by device\n"); 2928 break; 2929 default: 2930 fprintf(stderr, "operation failed - diag=%d\n", diag); 2931 break; 2932 } 2933 return; 2934 } 2935 rss_hf = rss_conf.rss_hf; 2936 if (rss_hf == 0) { 2937 printf("RSS disabled\n"); 2938 return; 2939 } 2940 printf("RSS functions:\n "); 2941 for (i = 0; rss_type_table[i].str; i++) { 2942 if (rss_type_table[i].rss_type == 0) 2943 continue; 2944 if ((rss_hf & rss_type_table[i].rss_type) == rss_type_table[i].rss_type) 2945 printf("%s ", rss_type_table[i].str); 2946 } 2947 printf("\n"); 2948 if (!show_rss_key) 2949 return; 2950 printf("RSS key:\n"); 2951 for (i = 0; i < hash_key_size; i++) 2952 printf("%02X", rss_key[i]); 2953 printf("\n"); 2954 } 2955 2956 void 2957 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 2958 uint8_t hash_key_len) 2959 { 2960 struct rte_eth_rss_conf rss_conf; 2961 int diag; 2962 unsigned int i; 2963 2964 rss_conf.rss_key = NULL; 2965 rss_conf.rss_key_len = 0; 2966 rss_conf.rss_hf = 0; 2967 for (i = 0; rss_type_table[i].str; i++) { 2968 if (!strcmp(rss_type_table[i].str, rss_type)) 2969 rss_conf.rss_hf = rss_type_table[i].rss_type; 2970 } 2971 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 2972 if (diag == 0) { 2973 rss_conf.rss_key = hash_key; 2974 rss_conf.rss_key_len = hash_key_len; 2975 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 2976 } 2977 if (diag == 0) 2978 return; 2979 2980 switch (diag) { 2981 case -ENODEV: 2982 fprintf(stderr, "port index %d invalid\n", port_id); 2983 break; 2984 case -ENOTSUP: 2985 fprintf(stderr, "operation not supported by device\n"); 2986 break; 2987 default: 2988 fprintf(stderr, "operation failed - diag=%d\n", diag); 2989 break; 2990 } 2991 } 2992 2993 /* 2994 * Check whether a shared rxq scheduled on other lcores. 2995 */ 2996 static bool 2997 fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc, 2998 portid_t src_port, queueid_t src_rxq, 2999 uint32_t share_group, queueid_t share_rxq) 3000 { 3001 streamid_t sm_id; 3002 streamid_t nb_fs_per_lcore; 3003 lcoreid_t nb_fc; 3004 lcoreid_t lc_id; 3005 struct fwd_stream *fs; 3006 struct rte_port *port; 3007 struct rte_eth_dev_info *dev_info; 3008 struct rte_eth_rxconf *rxq_conf; 3009 3010 nb_fc = cur_fwd_config.nb_fwd_lcores; 3011 /* Check remaining cores. */ 3012 for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) { 3013 sm_id = fwd_lcores[lc_id]->stream_idx; 3014 nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb; 3015 for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore; 3016 sm_id++) { 3017 fs = fwd_streams[sm_id]; 3018 port = &ports[fs->rx_port]; 3019 dev_info = &port->dev_info; 3020 rxq_conf = &port->rx_conf[fs->rx_queue]; 3021 if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) 3022 == 0 || rxq_conf->share_group == 0) 3023 /* Not shared rxq. */ 3024 continue; 3025 if (domain_id != port->dev_info.switch_info.domain_id) 3026 continue; 3027 if (rxq_conf->share_group != share_group) 3028 continue; 3029 if (rxq_conf->share_qid != share_rxq) 3030 continue; 3031 printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n", 3032 share_group, share_rxq); 3033 printf(" lcore %hhu Port %hu queue %hu\n", 3034 src_lc, src_port, src_rxq); 3035 printf(" lcore %hhu Port %hu queue %hu\n", 3036 lc_id, fs->rx_port, fs->rx_queue); 3037 printf("Please use --nb-cores=%hu to limit number of forwarding cores\n", 3038 nb_rxq); 3039 return true; 3040 } 3041 } 3042 return false; 3043 } 3044 3045 /* 3046 * Check shared rxq configuration. 3047 * 3048 * Shared group must not being scheduled on different core. 3049 */ 3050 bool 3051 pkt_fwd_shared_rxq_check(void) 3052 { 3053 streamid_t sm_id; 3054 streamid_t nb_fs_per_lcore; 3055 lcoreid_t nb_fc; 3056 lcoreid_t lc_id; 3057 struct fwd_stream *fs; 3058 uint16_t domain_id; 3059 struct rte_port *port; 3060 struct rte_eth_dev_info *dev_info; 3061 struct rte_eth_rxconf *rxq_conf; 3062 3063 if (rxq_share == 0) 3064 return true; 3065 nb_fc = cur_fwd_config.nb_fwd_lcores; 3066 /* 3067 * Check streams on each core, make sure the same switch domain + 3068 * group + queue doesn't get scheduled on other cores. 3069 */ 3070 for (lc_id = 0; lc_id < nb_fc; lc_id++) { 3071 sm_id = fwd_lcores[lc_id]->stream_idx; 3072 nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb; 3073 for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore; 3074 sm_id++) { 3075 fs = fwd_streams[sm_id]; 3076 /* Update lcore info stream being scheduled. */ 3077 fs->lcore = fwd_lcores[lc_id]; 3078 port = &ports[fs->rx_port]; 3079 dev_info = &port->dev_info; 3080 rxq_conf = &port->rx_conf[fs->rx_queue]; 3081 if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) 3082 == 0 || rxq_conf->share_group == 0) 3083 /* Not shared rxq. */ 3084 continue; 3085 /* Check shared rxq not scheduled on remaining cores. */ 3086 domain_id = port->dev_info.switch_info.domain_id; 3087 if (fwd_stream_on_other_lcores(domain_id, lc_id, 3088 fs->rx_port, 3089 fs->rx_queue, 3090 rxq_conf->share_group, 3091 rxq_conf->share_qid)) 3092 return false; 3093 } 3094 } 3095 return true; 3096 } 3097 3098 /* 3099 * Setup forwarding configuration for each logical core. 3100 */ 3101 static void 3102 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 3103 { 3104 streamid_t nb_fs_per_lcore; 3105 streamid_t nb_fs; 3106 streamid_t sm_id; 3107 lcoreid_t nb_extra; 3108 lcoreid_t nb_fc; 3109 lcoreid_t nb_lc; 3110 lcoreid_t lc_id; 3111 3112 nb_fs = cfg->nb_fwd_streams; 3113 nb_fc = cfg->nb_fwd_lcores; 3114 if (nb_fs <= nb_fc) { 3115 nb_fs_per_lcore = 1; 3116 nb_extra = 0; 3117 } else { 3118 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 3119 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 3120 } 3121 3122 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 3123 sm_id = 0; 3124 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 3125 fwd_lcores[lc_id]->stream_idx = sm_id; 3126 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 3127 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 3128 } 3129 3130 /* 3131 * Assign extra remaining streams, if any. 3132 */ 3133 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 3134 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 3135 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 3136 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 3137 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 3138 } 3139 } 3140 3141 static portid_t 3142 fwd_topology_tx_port_get(portid_t rxp) 3143 { 3144 static int warning_once = 1; 3145 3146 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 3147 3148 switch (port_topology) { 3149 default: 3150 case PORT_TOPOLOGY_PAIRED: 3151 if ((rxp & 0x1) == 0) { 3152 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 3153 return rxp + 1; 3154 if (warning_once) { 3155 fprintf(stderr, 3156 "\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n"); 3157 warning_once = 0; 3158 } 3159 return rxp; 3160 } 3161 return rxp - 1; 3162 case PORT_TOPOLOGY_CHAINED: 3163 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 3164 case PORT_TOPOLOGY_LOOP: 3165 return rxp; 3166 } 3167 } 3168 3169 static void 3170 simple_fwd_config_setup(void) 3171 { 3172 portid_t i; 3173 3174 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 3175 cur_fwd_config.nb_fwd_streams = 3176 (streamid_t) cur_fwd_config.nb_fwd_ports; 3177 3178 /* reinitialize forwarding streams */ 3179 init_fwd_streams(); 3180 3181 /* 3182 * In the simple forwarding test, the number of forwarding cores 3183 * must be lower or equal to the number of forwarding ports. 3184 */ 3185 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3186 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 3187 cur_fwd_config.nb_fwd_lcores = 3188 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 3189 setup_fwd_config_of_each_lcore(&cur_fwd_config); 3190 3191 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 3192 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 3193 fwd_streams[i]->rx_queue = 0; 3194 fwd_streams[i]->tx_port = 3195 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 3196 fwd_streams[i]->tx_queue = 0; 3197 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 3198 fwd_streams[i]->retry_enabled = retry_enabled; 3199 } 3200 } 3201 3202 /** 3203 * For the RSS forwarding test all streams distributed over lcores. Each stream 3204 * being composed of a RX queue to poll on a RX port for input messages, 3205 * associated with a TX queue of a TX port where to send forwarded packets. 3206 */ 3207 static void 3208 rss_fwd_config_setup(void) 3209 { 3210 portid_t rxp; 3211 portid_t txp; 3212 queueid_t rxq; 3213 queueid_t nb_q; 3214 streamid_t sm_id; 3215 int start; 3216 int end; 3217 3218 nb_q = nb_rxq; 3219 if (nb_q > nb_txq) 3220 nb_q = nb_txq; 3221 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3222 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 3223 cur_fwd_config.nb_fwd_streams = 3224 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 3225 3226 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 3227 cur_fwd_config.nb_fwd_lcores = 3228 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 3229 3230 /* reinitialize forwarding streams */ 3231 init_fwd_streams(); 3232 3233 setup_fwd_config_of_each_lcore(&cur_fwd_config); 3234 3235 if (proc_id > 0 && nb_q % num_procs != 0) 3236 printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n"); 3237 3238 /** 3239 * In multi-process, All queues are allocated to different 3240 * processes based on num_procs and proc_id. For example: 3241 * if supports 4 queues(nb_q), 2 processes(num_procs), 3242 * the 0~1 queue for primary process. 3243 * the 2~3 queue for secondary process. 3244 */ 3245 start = proc_id * nb_q / num_procs; 3246 end = start + nb_q / num_procs; 3247 rxp = 0; 3248 rxq = start; 3249 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 3250 struct fwd_stream *fs; 3251 3252 fs = fwd_streams[sm_id]; 3253 txp = fwd_topology_tx_port_get(rxp); 3254 fs->rx_port = fwd_ports_ids[rxp]; 3255 fs->rx_queue = rxq; 3256 fs->tx_port = fwd_ports_ids[txp]; 3257 fs->tx_queue = rxq; 3258 fs->peer_addr = fs->tx_port; 3259 fs->retry_enabled = retry_enabled; 3260 rxp++; 3261 if (rxp < nb_fwd_ports) 3262 continue; 3263 rxp = 0; 3264 rxq++; 3265 if (rxq >= end) 3266 rxq = start; 3267 } 3268 } 3269 3270 static uint16_t 3271 get_fwd_port_total_tc_num(void) 3272 { 3273 struct rte_eth_dcb_info dcb_info; 3274 uint16_t total_tc_num = 0; 3275 unsigned int i; 3276 3277 for (i = 0; i < nb_fwd_ports; i++) { 3278 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info); 3279 total_tc_num += dcb_info.nb_tcs; 3280 } 3281 3282 return total_tc_num; 3283 } 3284 3285 /** 3286 * For the DCB forwarding test, each core is assigned on each traffic class. 3287 * 3288 * Each core is assigned a multi-stream, each stream being composed of 3289 * a RX queue to poll on a RX port for input messages, associated with 3290 * a TX queue of a TX port where to send forwarded packets. All RX and 3291 * TX queues are mapping to the same traffic class. 3292 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 3293 * the same core 3294 */ 3295 static void 3296 dcb_fwd_config_setup(void) 3297 { 3298 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 3299 portid_t txp, rxp = 0; 3300 queueid_t txq, rxq = 0; 3301 lcoreid_t lc_id; 3302 uint16_t nb_rx_queue, nb_tx_queue; 3303 uint16_t i, j, k, sm_id = 0; 3304 uint16_t total_tc_num; 3305 struct rte_port *port; 3306 uint8_t tc = 0; 3307 portid_t pid; 3308 int ret; 3309 3310 /* 3311 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED 3312 * or RTE_PORT_STOPPED. 3313 * 3314 * Re-configure ports to get updated mapping between tc and queue in 3315 * case the queue number of the port is changed. Skip for started ports 3316 * since modifying queue number and calling dev_configure need to stop 3317 * ports first. 3318 */ 3319 for (pid = 0; pid < nb_fwd_ports; pid++) { 3320 if (port_is_started(pid) == 1) 3321 continue; 3322 3323 port = &ports[pid]; 3324 ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq, 3325 &port->dev_conf); 3326 if (ret < 0) { 3327 fprintf(stderr, 3328 "Failed to re-configure port %d, ret = %d.\n", 3329 pid, ret); 3330 return; 3331 } 3332 } 3333 3334 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3335 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 3336 cur_fwd_config.nb_fwd_streams = 3337 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 3338 total_tc_num = get_fwd_port_total_tc_num(); 3339 if (cur_fwd_config.nb_fwd_lcores > total_tc_num) 3340 cur_fwd_config.nb_fwd_lcores = total_tc_num; 3341 3342 /* reinitialize forwarding streams */ 3343 init_fwd_streams(); 3344 sm_id = 0; 3345 txp = 1; 3346 /* get the dcb info on the first RX and TX ports */ 3347 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 3348 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 3349 3350 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 3351 fwd_lcores[lc_id]->stream_nb = 0; 3352 fwd_lcores[lc_id]->stream_idx = sm_id; 3353 for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) { 3354 /* if the nb_queue is zero, means this tc is 3355 * not enabled on the POOL 3356 */ 3357 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 3358 break; 3359 k = fwd_lcores[lc_id]->stream_nb + 3360 fwd_lcores[lc_id]->stream_idx; 3361 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 3362 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 3363 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 3364 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 3365 for (j = 0; j < nb_rx_queue; j++) { 3366 struct fwd_stream *fs; 3367 3368 fs = fwd_streams[k + j]; 3369 fs->rx_port = fwd_ports_ids[rxp]; 3370 fs->rx_queue = rxq + j; 3371 fs->tx_port = fwd_ports_ids[txp]; 3372 fs->tx_queue = txq + j % nb_tx_queue; 3373 fs->peer_addr = fs->tx_port; 3374 fs->retry_enabled = retry_enabled; 3375 } 3376 fwd_lcores[lc_id]->stream_nb += 3377 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 3378 } 3379 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 3380 3381 tc++; 3382 if (tc < rxp_dcb_info.nb_tcs) 3383 continue; 3384 /* Restart from TC 0 on next RX port */ 3385 tc = 0; 3386 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 3387 rxp = (portid_t) 3388 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 3389 else 3390 rxp++; 3391 if (rxp >= nb_fwd_ports) 3392 return; 3393 /* get the dcb information on next RX and TX ports */ 3394 if ((rxp & 0x1) == 0) 3395 txp = (portid_t) (rxp + 1); 3396 else 3397 txp = (portid_t) (rxp - 1); 3398 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 3399 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 3400 } 3401 } 3402 3403 static void 3404 icmp_echo_config_setup(void) 3405 { 3406 portid_t rxp; 3407 queueid_t rxq; 3408 lcoreid_t lc_id; 3409 uint16_t sm_id; 3410 3411 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 3412 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 3413 (nb_txq * nb_fwd_ports); 3414 else 3415 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 3416 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 3417 cur_fwd_config.nb_fwd_streams = 3418 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 3419 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 3420 cur_fwd_config.nb_fwd_lcores = 3421 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 3422 if (verbose_level > 0) { 3423 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 3424 __FUNCTION__, 3425 cur_fwd_config.nb_fwd_lcores, 3426 cur_fwd_config.nb_fwd_ports, 3427 cur_fwd_config.nb_fwd_streams); 3428 } 3429 3430 /* reinitialize forwarding streams */ 3431 init_fwd_streams(); 3432 setup_fwd_config_of_each_lcore(&cur_fwd_config); 3433 rxp = 0; rxq = 0; 3434 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 3435 if (verbose_level > 0) 3436 printf(" core=%d: \n", lc_id); 3437 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 3438 struct fwd_stream *fs; 3439 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 3440 fs->rx_port = fwd_ports_ids[rxp]; 3441 fs->rx_queue = rxq; 3442 fs->tx_port = fs->rx_port; 3443 fs->tx_queue = rxq; 3444 fs->peer_addr = fs->tx_port; 3445 fs->retry_enabled = retry_enabled; 3446 if (verbose_level > 0) 3447 printf(" stream=%d port=%d rxq=%d txq=%d\n", 3448 sm_id, fs->rx_port, fs->rx_queue, 3449 fs->tx_queue); 3450 rxq = (queueid_t) (rxq + 1); 3451 if (rxq == nb_rxq) { 3452 rxq = 0; 3453 rxp = (portid_t) (rxp + 1); 3454 } 3455 } 3456 } 3457 } 3458 3459 void 3460 fwd_config_setup(void) 3461 { 3462 struct rte_port *port; 3463 portid_t pt_id; 3464 unsigned int i; 3465 3466 cur_fwd_config.fwd_eng = cur_fwd_eng; 3467 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 3468 icmp_echo_config_setup(); 3469 return; 3470 } 3471 3472 if ((nb_rxq > 1) && (nb_txq > 1)){ 3473 if (dcb_config) { 3474 for (i = 0; i < nb_fwd_ports; i++) { 3475 pt_id = fwd_ports_ids[i]; 3476 port = &ports[pt_id]; 3477 if (!port->dcb_flag) { 3478 fprintf(stderr, 3479 "In DCB mode, all forwarding ports must be configured in this mode.\n"); 3480 return; 3481 } 3482 } 3483 if (nb_fwd_lcores == 1) { 3484 fprintf(stderr, 3485 "In DCB mode,the nb forwarding cores should be larger than 1.\n"); 3486 return; 3487 } 3488 3489 dcb_fwd_config_setup(); 3490 } else 3491 rss_fwd_config_setup(); 3492 } 3493 else 3494 simple_fwd_config_setup(); 3495 } 3496 3497 static const char * 3498 mp_alloc_to_str(uint8_t mode) 3499 { 3500 switch (mode) { 3501 case MP_ALLOC_NATIVE: 3502 return "native"; 3503 case MP_ALLOC_ANON: 3504 return "anon"; 3505 case MP_ALLOC_XMEM: 3506 return "xmem"; 3507 case MP_ALLOC_XMEM_HUGE: 3508 return "xmemhuge"; 3509 case MP_ALLOC_XBUF: 3510 return "xbuf"; 3511 default: 3512 return "invalid"; 3513 } 3514 } 3515 3516 void 3517 pkt_fwd_config_display(struct fwd_config *cfg) 3518 { 3519 struct fwd_stream *fs; 3520 lcoreid_t lc_id; 3521 streamid_t sm_id; 3522 3523 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 3524 "NUMA support %s, MP allocation mode: %s\n", 3525 cfg->fwd_eng->fwd_mode_name, 3526 retry_enabled == 0 ? "" : " with retry", 3527 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 3528 numa_support == 1 ? "enabled" : "disabled", 3529 mp_alloc_to_str(mp_alloc_type)); 3530 3531 if (retry_enabled) 3532 printf("TX retry num: %u, delay between TX retries: %uus\n", 3533 burst_tx_retry_num, burst_tx_delay_time); 3534 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 3535 printf("Logical Core %u (socket %u) forwards packets on " 3536 "%d streams:", 3537 fwd_lcores_cpuids[lc_id], 3538 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 3539 fwd_lcores[lc_id]->stream_nb); 3540 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 3541 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 3542 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 3543 "P=%d/Q=%d (socket %u) ", 3544 fs->rx_port, fs->rx_queue, 3545 ports[fs->rx_port].socket_id, 3546 fs->tx_port, fs->tx_queue, 3547 ports[fs->tx_port].socket_id); 3548 print_ethaddr("peer=", 3549 &peer_eth_addrs[fs->peer_addr]); 3550 } 3551 printf("\n"); 3552 } 3553 printf("\n"); 3554 } 3555 3556 void 3557 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 3558 { 3559 struct rte_ether_addr new_peer_addr; 3560 if (!rte_eth_dev_is_valid_port(port_id)) { 3561 fprintf(stderr, "Error: Invalid port number %i\n", port_id); 3562 return; 3563 } 3564 if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) { 3565 fprintf(stderr, "Error: Invalid ethernet address: %s\n", 3566 peer_addr); 3567 return; 3568 } 3569 peer_eth_addrs[port_id] = new_peer_addr; 3570 } 3571 3572 int 3573 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 3574 { 3575 unsigned int i; 3576 unsigned int lcore_cpuid; 3577 int record_now; 3578 3579 record_now = 0; 3580 again: 3581 for (i = 0; i < nb_lc; i++) { 3582 lcore_cpuid = lcorelist[i]; 3583 if (! rte_lcore_is_enabled(lcore_cpuid)) { 3584 fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid); 3585 return -1; 3586 } 3587 if (lcore_cpuid == rte_get_main_lcore()) { 3588 fprintf(stderr, 3589 "lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n", 3590 lcore_cpuid); 3591 return -1; 3592 } 3593 if (record_now) 3594 fwd_lcores_cpuids[i] = lcore_cpuid; 3595 } 3596 if (record_now == 0) { 3597 record_now = 1; 3598 goto again; 3599 } 3600 nb_cfg_lcores = (lcoreid_t) nb_lc; 3601 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 3602 printf("previous number of forwarding cores %u - changed to " 3603 "number of configured cores %u\n", 3604 (unsigned int) nb_fwd_lcores, nb_lc); 3605 nb_fwd_lcores = (lcoreid_t) nb_lc; 3606 } 3607 3608 return 0; 3609 } 3610 3611 int 3612 set_fwd_lcores_mask(uint64_t lcoremask) 3613 { 3614 unsigned int lcorelist[64]; 3615 unsigned int nb_lc; 3616 unsigned int i; 3617 3618 if (lcoremask == 0) { 3619 fprintf(stderr, "Invalid NULL mask of cores\n"); 3620 return -1; 3621 } 3622 nb_lc = 0; 3623 for (i = 0; i < 64; i++) { 3624 if (! ((uint64_t)(1ULL << i) & lcoremask)) 3625 continue; 3626 lcorelist[nb_lc++] = i; 3627 } 3628 return set_fwd_lcores_list(lcorelist, nb_lc); 3629 } 3630 3631 void 3632 set_fwd_lcores_number(uint16_t nb_lc) 3633 { 3634 if (test_done == 0) { 3635 fprintf(stderr, "Please stop forwarding first\n"); 3636 return; 3637 } 3638 if (nb_lc > nb_cfg_lcores) { 3639 fprintf(stderr, 3640 "nb fwd cores %u > %u (max. number of configured lcores) - ignored\n", 3641 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 3642 return; 3643 } 3644 nb_fwd_lcores = (lcoreid_t) nb_lc; 3645 printf("Number of forwarding cores set to %u\n", 3646 (unsigned int) nb_fwd_lcores); 3647 } 3648 3649 void 3650 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 3651 { 3652 unsigned int i; 3653 portid_t port_id; 3654 int record_now; 3655 3656 record_now = 0; 3657 again: 3658 for (i = 0; i < nb_pt; i++) { 3659 port_id = (portid_t) portlist[i]; 3660 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3661 return; 3662 if (record_now) 3663 fwd_ports_ids[i] = port_id; 3664 } 3665 if (record_now == 0) { 3666 record_now = 1; 3667 goto again; 3668 } 3669 nb_cfg_ports = (portid_t) nb_pt; 3670 if (nb_fwd_ports != (portid_t) nb_pt) { 3671 printf("previous number of forwarding ports %u - changed to " 3672 "number of configured ports %u\n", 3673 (unsigned int) nb_fwd_ports, nb_pt); 3674 nb_fwd_ports = (portid_t) nb_pt; 3675 } 3676 } 3677 3678 /** 3679 * Parse the user input and obtain the list of forwarding ports 3680 * 3681 * @param[in] list 3682 * String containing the user input. User can specify 3683 * in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6. 3684 * For example, if the user wants to use all the available 3685 * 4 ports in his system, then the input can be 0-3 or 0,1,2,3. 3686 * If the user wants to use only the ports 1,2 then the input 3687 * is 1,2. 3688 * valid characters are '-' and ',' 3689 * @param[out] values 3690 * This array will be filled with a list of port IDs 3691 * based on the user input 3692 * Note that duplicate entries are discarded and only the first 3693 * count entries in this array are port IDs and all the rest 3694 * will contain default values 3695 * @param[in] maxsize 3696 * This parameter denotes 2 things 3697 * 1) Number of elements in the values array 3698 * 2) Maximum value of each element in the values array 3699 * @return 3700 * On success, returns total count of parsed port IDs 3701 * On failure, returns 0 3702 */ 3703 static unsigned int 3704 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize) 3705 { 3706 unsigned int count = 0; 3707 char *end = NULL; 3708 int min, max; 3709 int value, i; 3710 unsigned int marked[maxsize]; 3711 3712 if (list == NULL || values == NULL) 3713 return 0; 3714 3715 for (i = 0; i < (int)maxsize; i++) 3716 marked[i] = 0; 3717 3718 min = INT_MAX; 3719 3720 do { 3721 /*Remove the blank spaces if any*/ 3722 while (isblank(*list)) 3723 list++; 3724 if (*list == '\0') 3725 break; 3726 errno = 0; 3727 value = strtol(list, &end, 10); 3728 if (errno || end == NULL) 3729 return 0; 3730 if (value < 0 || value >= (int)maxsize) 3731 return 0; 3732 while (isblank(*end)) 3733 end++; 3734 if (*end == '-' && min == INT_MAX) { 3735 min = value; 3736 } else if ((*end == ',') || (*end == '\0')) { 3737 max = value; 3738 if (min == INT_MAX) 3739 min = value; 3740 for (i = min; i <= max; i++) { 3741 if (count < maxsize) { 3742 if (marked[i]) 3743 continue; 3744 values[count] = i; 3745 marked[i] = 1; 3746 count++; 3747 } 3748 } 3749 min = INT_MAX; 3750 } else 3751 return 0; 3752 list = end + 1; 3753 } while (*end != '\0'); 3754 3755 return count; 3756 } 3757 3758 void 3759 parse_fwd_portlist(const char *portlist) 3760 { 3761 unsigned int portcount; 3762 unsigned int portindex[RTE_MAX_ETHPORTS]; 3763 unsigned int i, valid_port_count = 0; 3764 3765 portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS); 3766 if (!portcount) 3767 rte_exit(EXIT_FAILURE, "Invalid fwd port list\n"); 3768 3769 /* 3770 * Here we verify the validity of the ports 3771 * and thereby calculate the total number of 3772 * valid ports 3773 */ 3774 for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) { 3775 if (rte_eth_dev_is_valid_port(portindex[i])) { 3776 portindex[valid_port_count] = portindex[i]; 3777 valid_port_count++; 3778 } 3779 } 3780 3781 set_fwd_ports_list(portindex, valid_port_count); 3782 } 3783 3784 void 3785 set_fwd_ports_mask(uint64_t portmask) 3786 { 3787 unsigned int portlist[64]; 3788 unsigned int nb_pt; 3789 unsigned int i; 3790 3791 if (portmask == 0) { 3792 fprintf(stderr, "Invalid NULL mask of ports\n"); 3793 return; 3794 } 3795 nb_pt = 0; 3796 RTE_ETH_FOREACH_DEV(i) { 3797 if (! ((uint64_t)(1ULL << i) & portmask)) 3798 continue; 3799 portlist[nb_pt++] = i; 3800 } 3801 set_fwd_ports_list(portlist, nb_pt); 3802 } 3803 3804 void 3805 set_fwd_ports_number(uint16_t nb_pt) 3806 { 3807 if (nb_pt > nb_cfg_ports) { 3808 fprintf(stderr, 3809 "nb fwd ports %u > %u (number of configured ports) - ignored\n", 3810 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 3811 return; 3812 } 3813 nb_fwd_ports = (portid_t) nb_pt; 3814 printf("Number of forwarding ports set to %u\n", 3815 (unsigned int) nb_fwd_ports); 3816 } 3817 3818 int 3819 port_is_forwarding(portid_t port_id) 3820 { 3821 unsigned int i; 3822 3823 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3824 return -1; 3825 3826 for (i = 0; i < nb_fwd_ports; i++) { 3827 if (fwd_ports_ids[i] == port_id) 3828 return 1; 3829 } 3830 3831 return 0; 3832 } 3833 3834 void 3835 set_nb_pkt_per_burst(uint16_t nb) 3836 { 3837 if (nb > MAX_PKT_BURST) { 3838 fprintf(stderr, 3839 "nb pkt per burst: %u > %u (maximum packet per burst) ignored\n", 3840 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 3841 return; 3842 } 3843 nb_pkt_per_burst = nb; 3844 printf("Number of packets per burst set to %u\n", 3845 (unsigned int) nb_pkt_per_burst); 3846 } 3847 3848 static const char * 3849 tx_split_get_name(enum tx_pkt_split split) 3850 { 3851 uint32_t i; 3852 3853 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 3854 if (tx_split_name[i].split == split) 3855 return tx_split_name[i].name; 3856 } 3857 return NULL; 3858 } 3859 3860 void 3861 set_tx_pkt_split(const char *name) 3862 { 3863 uint32_t i; 3864 3865 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 3866 if (strcmp(tx_split_name[i].name, name) == 0) { 3867 tx_pkt_split = tx_split_name[i].split; 3868 return; 3869 } 3870 } 3871 fprintf(stderr, "unknown value: \"%s\"\n", name); 3872 } 3873 3874 int 3875 parse_fec_mode(const char *name, uint32_t *fec_capa) 3876 { 3877 uint8_t i; 3878 3879 for (i = 0; i < RTE_DIM(fec_mode_name); i++) { 3880 if (strcmp(fec_mode_name[i].name, name) == 0) { 3881 *fec_capa = 3882 RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode); 3883 return 0; 3884 } 3885 } 3886 return -1; 3887 } 3888 3889 void 3890 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa) 3891 { 3892 unsigned int i, j; 3893 3894 printf("FEC capabilities:\n"); 3895 3896 for (i = 0; i < num; i++) { 3897 printf("%s : ", 3898 rte_eth_link_speed_to_str(speed_fec_capa[i].speed)); 3899 3900 for (j = 0; j < RTE_DIM(fec_mode_name); j++) { 3901 if (RTE_ETH_FEC_MODE_TO_CAPA(j) & 3902 speed_fec_capa[i].capa) 3903 printf("%s ", fec_mode_name[j].name); 3904 } 3905 printf("\n"); 3906 } 3907 } 3908 3909 void 3910 show_rx_pkt_offsets(void) 3911 { 3912 uint32_t i, n; 3913 3914 n = rx_pkt_nb_offs; 3915 printf("Number of offsets: %u\n", n); 3916 if (n) { 3917 printf("Segment offsets: "); 3918 for (i = 0; i != n - 1; i++) 3919 printf("%hu,", rx_pkt_seg_offsets[i]); 3920 printf("%hu\n", rx_pkt_seg_lengths[i]); 3921 } 3922 } 3923 3924 void 3925 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs) 3926 { 3927 unsigned int i; 3928 3929 if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) { 3930 printf("nb segments per RX packets=%u >= " 3931 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs); 3932 return; 3933 } 3934 3935 /* 3936 * No extra check here, the segment length will be checked by PMD 3937 * in the extended queue setup. 3938 */ 3939 for (i = 0; i < nb_offs; i++) { 3940 if (seg_offsets[i] >= UINT16_MAX) { 3941 printf("offset[%u]=%u > UINT16_MAX - give up\n", 3942 i, seg_offsets[i]); 3943 return; 3944 } 3945 } 3946 3947 for (i = 0; i < nb_offs; i++) 3948 rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i]; 3949 3950 rx_pkt_nb_offs = (uint8_t) nb_offs; 3951 } 3952 3953 void 3954 show_rx_pkt_segments(void) 3955 { 3956 uint32_t i, n; 3957 3958 n = rx_pkt_nb_segs; 3959 printf("Number of segments: %u\n", n); 3960 if (n) { 3961 printf("Segment sizes: "); 3962 for (i = 0; i != n - 1; i++) 3963 printf("%hu,", rx_pkt_seg_lengths[i]); 3964 printf("%hu\n", rx_pkt_seg_lengths[i]); 3965 } 3966 } 3967 3968 void 3969 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) 3970 { 3971 unsigned int i; 3972 3973 if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) { 3974 printf("nb segments per RX packets=%u >= " 3975 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs); 3976 return; 3977 } 3978 3979 /* 3980 * No extra check here, the segment length will be checked by PMD 3981 * in the extended queue setup. 3982 */ 3983 for (i = 0; i < nb_segs; i++) { 3984 if (seg_lengths[i] >= UINT16_MAX) { 3985 printf("length[%u]=%u > UINT16_MAX - give up\n", 3986 i, seg_lengths[i]); 3987 return; 3988 } 3989 } 3990 3991 for (i = 0; i < nb_segs; i++) 3992 rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 3993 3994 rx_pkt_nb_segs = (uint8_t) nb_segs; 3995 } 3996 3997 void 3998 show_tx_pkt_segments(void) 3999 { 4000 uint32_t i, n; 4001 const char *split; 4002 4003 n = tx_pkt_nb_segs; 4004 split = tx_split_get_name(tx_pkt_split); 4005 4006 printf("Number of segments: %u\n", n); 4007 printf("Segment sizes: "); 4008 for (i = 0; i != n - 1; i++) 4009 printf("%hu,", tx_pkt_seg_lengths[i]); 4010 printf("%hu\n", tx_pkt_seg_lengths[i]); 4011 printf("Split packet: %s\n", split); 4012 } 4013 4014 static bool 4015 nb_segs_is_invalid(unsigned int nb_segs) 4016 { 4017 uint16_t ring_size; 4018 uint16_t queue_id; 4019 uint16_t port_id; 4020 int ret; 4021 4022 RTE_ETH_FOREACH_DEV(port_id) { 4023 for (queue_id = 0; queue_id < nb_txq; queue_id++) { 4024 ret = get_tx_ring_size(port_id, queue_id, &ring_size); 4025 if (ret) { 4026 /* Port may not be initialized yet, can't say 4027 * the port is invalid in this stage. 4028 */ 4029 continue; 4030 } 4031 if (ring_size < nb_segs) { 4032 printf("nb segments per TX packets=%u >= TX " 4033 "queue(%u) ring_size=%u - txpkts ignored\n", 4034 nb_segs, queue_id, ring_size); 4035 return true; 4036 } 4037 } 4038 } 4039 4040 return false; 4041 } 4042 4043 void 4044 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) 4045 { 4046 uint16_t tx_pkt_len; 4047 unsigned int i; 4048 4049 /* 4050 * For single segment settings failed check is ignored. 4051 * It is a very basic capability to send the single segment 4052 * packets, suppose it is always supported. 4053 */ 4054 if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) { 4055 fprintf(stderr, 4056 "Tx segment size(%u) is not supported - txpkts ignored\n", 4057 nb_segs); 4058 return; 4059 } 4060 4061 if (nb_segs > RTE_MAX_SEGS_PER_PKT) { 4062 fprintf(stderr, 4063 "Tx segment size(%u) is bigger than max number of segment(%u)\n", 4064 nb_segs, RTE_MAX_SEGS_PER_PKT); 4065 return; 4066 } 4067 4068 /* 4069 * Check that each segment length is greater or equal than 4070 * the mbuf data size. 4071 * Check also that the total packet length is greater or equal than the 4072 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + 4073 * 20 + 8). 4074 */ 4075 tx_pkt_len = 0; 4076 for (i = 0; i < nb_segs; i++) { 4077 if (seg_lengths[i] > mbuf_data_size[0]) { 4078 fprintf(stderr, 4079 "length[%u]=%u > mbuf_data_size=%u - give up\n", 4080 i, seg_lengths[i], mbuf_data_size[0]); 4081 return; 4082 } 4083 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 4084 } 4085 if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { 4086 fprintf(stderr, "total packet length=%u < %d - give up\n", 4087 (unsigned) tx_pkt_len, 4088 (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); 4089 return; 4090 } 4091 4092 for (i = 0; i < nb_segs; i++) 4093 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 4094 4095 tx_pkt_length = tx_pkt_len; 4096 tx_pkt_nb_segs = (uint8_t) nb_segs; 4097 } 4098 4099 void 4100 show_tx_pkt_times(void) 4101 { 4102 printf("Interburst gap: %u\n", tx_pkt_times_inter); 4103 printf("Intraburst gap: %u\n", tx_pkt_times_intra); 4104 } 4105 4106 void 4107 set_tx_pkt_times(unsigned int *tx_times) 4108 { 4109 tx_pkt_times_inter = tx_times[0]; 4110 tx_pkt_times_intra = tx_times[1]; 4111 } 4112 4113 #ifdef RTE_LIB_GRO 4114 void 4115 setup_gro(const char *onoff, portid_t port_id) 4116 { 4117 if (!rte_eth_dev_is_valid_port(port_id)) { 4118 fprintf(stderr, "invalid port id %u\n", port_id); 4119 return; 4120 } 4121 if (test_done == 0) { 4122 fprintf(stderr, 4123 "Before enable/disable GRO, please stop forwarding first\n"); 4124 return; 4125 } 4126 if (strcmp(onoff, "on") == 0) { 4127 if (gro_ports[port_id].enable != 0) { 4128 fprintf(stderr, 4129 "Port %u has enabled GRO. Please disable GRO first\n", 4130 port_id); 4131 return; 4132 } 4133 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 4134 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 4135 gro_ports[port_id].param.max_flow_num = 4136 GRO_DEFAULT_FLOW_NUM; 4137 gro_ports[port_id].param.max_item_per_flow = 4138 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 4139 } 4140 gro_ports[port_id].enable = 1; 4141 } else { 4142 if (gro_ports[port_id].enable == 0) { 4143 fprintf(stderr, "Port %u has disabled GRO\n", port_id); 4144 return; 4145 } 4146 gro_ports[port_id].enable = 0; 4147 } 4148 } 4149 4150 void 4151 setup_gro_flush_cycles(uint8_t cycles) 4152 { 4153 if (test_done == 0) { 4154 fprintf(stderr, 4155 "Before change flush interval for GRO, please stop forwarding first.\n"); 4156 return; 4157 } 4158 4159 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 4160 GRO_DEFAULT_FLUSH_CYCLES) { 4161 fprintf(stderr, 4162 "The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n", 4163 GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES); 4164 cycles = GRO_DEFAULT_FLUSH_CYCLES; 4165 } 4166 4167 gro_flush_cycles = cycles; 4168 } 4169 4170 void 4171 show_gro(portid_t port_id) 4172 { 4173 struct rte_gro_param *param; 4174 uint32_t max_pkts_num; 4175 4176 param = &gro_ports[port_id].param; 4177 4178 if (!rte_eth_dev_is_valid_port(port_id)) { 4179 fprintf(stderr, "Invalid port id %u.\n", port_id); 4180 return; 4181 } 4182 if (gro_ports[port_id].enable) { 4183 printf("GRO type: TCP/IPv4\n"); 4184 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 4185 max_pkts_num = param->max_flow_num * 4186 param->max_item_per_flow; 4187 } else 4188 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 4189 printf("Max number of packets to perform GRO: %u\n", 4190 max_pkts_num); 4191 printf("Flushing cycles: %u\n", gro_flush_cycles); 4192 } else 4193 printf("Port %u doesn't enable GRO.\n", port_id); 4194 } 4195 #endif /* RTE_LIB_GRO */ 4196 4197 #ifdef RTE_LIB_GSO 4198 void 4199 setup_gso(const char *mode, portid_t port_id) 4200 { 4201 if (!rte_eth_dev_is_valid_port(port_id)) { 4202 fprintf(stderr, "invalid port id %u\n", port_id); 4203 return; 4204 } 4205 if (strcmp(mode, "on") == 0) { 4206 if (test_done == 0) { 4207 fprintf(stderr, 4208 "before enabling GSO, please stop forwarding first\n"); 4209 return; 4210 } 4211 gso_ports[port_id].enable = 1; 4212 } else if (strcmp(mode, "off") == 0) { 4213 if (test_done == 0) { 4214 fprintf(stderr, 4215 "before disabling GSO, please stop forwarding first\n"); 4216 return; 4217 } 4218 gso_ports[port_id].enable = 0; 4219 } 4220 } 4221 #endif /* RTE_LIB_GSO */ 4222 4223 char* 4224 list_pkt_forwarding_modes(void) 4225 { 4226 static char fwd_modes[128] = ""; 4227 const char *separator = "|"; 4228 struct fwd_engine *fwd_eng; 4229 unsigned i = 0; 4230 4231 if (strlen (fwd_modes) == 0) { 4232 while ((fwd_eng = fwd_engines[i++]) != NULL) { 4233 strncat(fwd_modes, fwd_eng->fwd_mode_name, 4234 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 4235 strncat(fwd_modes, separator, 4236 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 4237 } 4238 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 4239 } 4240 4241 return fwd_modes; 4242 } 4243 4244 char* 4245 list_pkt_forwarding_retry_modes(void) 4246 { 4247 static char fwd_modes[128] = ""; 4248 const char *separator = "|"; 4249 struct fwd_engine *fwd_eng; 4250 unsigned i = 0; 4251 4252 if (strlen(fwd_modes) == 0) { 4253 while ((fwd_eng = fwd_engines[i++]) != NULL) { 4254 if (fwd_eng == &rx_only_engine) 4255 continue; 4256 strncat(fwd_modes, fwd_eng->fwd_mode_name, 4257 sizeof(fwd_modes) - 4258 strlen(fwd_modes) - 1); 4259 strncat(fwd_modes, separator, 4260 sizeof(fwd_modes) - 4261 strlen(fwd_modes) - 1); 4262 } 4263 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 4264 } 4265 4266 return fwd_modes; 4267 } 4268 4269 void 4270 set_pkt_forwarding_mode(const char *fwd_mode_name) 4271 { 4272 struct fwd_engine *fwd_eng; 4273 unsigned i; 4274 4275 i = 0; 4276 while ((fwd_eng = fwd_engines[i]) != NULL) { 4277 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 4278 printf("Set %s packet forwarding mode%s\n", 4279 fwd_mode_name, 4280 retry_enabled == 0 ? "" : " with retry"); 4281 cur_fwd_eng = fwd_eng; 4282 return; 4283 } 4284 i++; 4285 } 4286 fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name); 4287 } 4288 4289 void 4290 add_rx_dump_callbacks(portid_t portid) 4291 { 4292 struct rte_eth_dev_info dev_info; 4293 uint16_t queue; 4294 int ret; 4295 4296 if (port_id_is_invalid(portid, ENABLED_WARN)) 4297 return; 4298 4299 ret = eth_dev_info_get_print_err(portid, &dev_info); 4300 if (ret != 0) 4301 return; 4302 4303 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 4304 if (!ports[portid].rx_dump_cb[queue]) 4305 ports[portid].rx_dump_cb[queue] = 4306 rte_eth_add_rx_callback(portid, queue, 4307 dump_rx_pkts, NULL); 4308 } 4309 4310 void 4311 add_tx_dump_callbacks(portid_t portid) 4312 { 4313 struct rte_eth_dev_info dev_info; 4314 uint16_t queue; 4315 int ret; 4316 4317 if (port_id_is_invalid(portid, ENABLED_WARN)) 4318 return; 4319 4320 ret = eth_dev_info_get_print_err(portid, &dev_info); 4321 if (ret != 0) 4322 return; 4323 4324 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 4325 if (!ports[portid].tx_dump_cb[queue]) 4326 ports[portid].tx_dump_cb[queue] = 4327 rte_eth_add_tx_callback(portid, queue, 4328 dump_tx_pkts, NULL); 4329 } 4330 4331 void 4332 remove_rx_dump_callbacks(portid_t portid) 4333 { 4334 struct rte_eth_dev_info dev_info; 4335 uint16_t queue; 4336 int ret; 4337 4338 if (port_id_is_invalid(portid, ENABLED_WARN)) 4339 return; 4340 4341 ret = eth_dev_info_get_print_err(portid, &dev_info); 4342 if (ret != 0) 4343 return; 4344 4345 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 4346 if (ports[portid].rx_dump_cb[queue]) { 4347 rte_eth_remove_rx_callback(portid, queue, 4348 ports[portid].rx_dump_cb[queue]); 4349 ports[portid].rx_dump_cb[queue] = NULL; 4350 } 4351 } 4352 4353 void 4354 remove_tx_dump_callbacks(portid_t portid) 4355 { 4356 struct rte_eth_dev_info dev_info; 4357 uint16_t queue; 4358 int ret; 4359 4360 if (port_id_is_invalid(portid, ENABLED_WARN)) 4361 return; 4362 4363 ret = eth_dev_info_get_print_err(portid, &dev_info); 4364 if (ret != 0) 4365 return; 4366 4367 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 4368 if (ports[portid].tx_dump_cb[queue]) { 4369 rte_eth_remove_tx_callback(portid, queue, 4370 ports[portid].tx_dump_cb[queue]); 4371 ports[portid].tx_dump_cb[queue] = NULL; 4372 } 4373 } 4374 4375 void 4376 configure_rxtx_dump_callbacks(uint16_t verbose) 4377 { 4378 portid_t portid; 4379 4380 #ifndef RTE_ETHDEV_RXTX_CALLBACKS 4381 TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); 4382 return; 4383 #endif 4384 4385 RTE_ETH_FOREACH_DEV(portid) 4386 { 4387 if (verbose == 1 || verbose > 2) 4388 add_rx_dump_callbacks(portid); 4389 else 4390 remove_rx_dump_callbacks(portid); 4391 if (verbose >= 2) 4392 add_tx_dump_callbacks(portid); 4393 else 4394 remove_tx_dump_callbacks(portid); 4395 } 4396 } 4397 4398 void 4399 set_verbose_level(uint16_t vb_level) 4400 { 4401 printf("Change verbose level from %u to %u\n", 4402 (unsigned int) verbose_level, (unsigned int) vb_level); 4403 verbose_level = vb_level; 4404 configure_rxtx_dump_callbacks(verbose_level); 4405 } 4406 4407 void 4408 vlan_extend_set(portid_t port_id, int on) 4409 { 4410 int diag; 4411 int vlan_offload; 4412 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4413 4414 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4415 return; 4416 4417 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4418 4419 if (on) { 4420 vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD; 4421 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND; 4422 } else { 4423 vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD; 4424 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND; 4425 } 4426 4427 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4428 if (diag < 0) { 4429 fprintf(stderr, 4430 "rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n", 4431 port_id, on, diag); 4432 return; 4433 } 4434 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4435 } 4436 4437 void 4438 rx_vlan_strip_set(portid_t port_id, int on) 4439 { 4440 int diag; 4441 int vlan_offload; 4442 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4443 4444 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4445 return; 4446 4447 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4448 4449 if (on) { 4450 vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD; 4451 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP; 4452 } else { 4453 vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD; 4454 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP; 4455 } 4456 4457 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4458 if (diag < 0) { 4459 fprintf(stderr, 4460 "%s(port_pi=%d, on=%d) failed diag=%d\n", 4461 __func__, port_id, on, diag); 4462 return; 4463 } 4464 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4465 } 4466 4467 void 4468 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 4469 { 4470 int diag; 4471 4472 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4473 return; 4474 4475 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 4476 if (diag < 0) 4477 fprintf(stderr, 4478 "%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n", 4479 __func__, port_id, queue_id, on, diag); 4480 } 4481 4482 void 4483 rx_vlan_filter_set(portid_t port_id, int on) 4484 { 4485 int diag; 4486 int vlan_offload; 4487 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4488 4489 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4490 return; 4491 4492 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4493 4494 if (on) { 4495 vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD; 4496 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER; 4497 } else { 4498 vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD; 4499 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER; 4500 } 4501 4502 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4503 if (diag < 0) { 4504 fprintf(stderr, 4505 "%s(port_pi=%d, on=%d) failed diag=%d\n", 4506 __func__, port_id, on, diag); 4507 return; 4508 } 4509 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4510 } 4511 4512 void 4513 rx_vlan_qinq_strip_set(portid_t port_id, int on) 4514 { 4515 int diag; 4516 int vlan_offload; 4517 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 4518 4519 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4520 return; 4521 4522 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 4523 4524 if (on) { 4525 vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD; 4526 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP; 4527 } else { 4528 vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD; 4529 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP; 4530 } 4531 4532 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 4533 if (diag < 0) { 4534 fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n", 4535 __func__, port_id, on, diag); 4536 return; 4537 } 4538 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 4539 } 4540 4541 int 4542 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 4543 { 4544 int diag; 4545 4546 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4547 return 1; 4548 if (vlan_id_is_invalid(vlan_id)) 4549 return 1; 4550 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 4551 if (diag == 0) 4552 return 0; 4553 fprintf(stderr, 4554 "rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n", 4555 port_id, vlan_id, on, diag); 4556 return -1; 4557 } 4558 4559 void 4560 rx_vlan_all_filter_set(portid_t port_id, int on) 4561 { 4562 uint16_t vlan_id; 4563 4564 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4565 return; 4566 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 4567 if (rx_vft_set(port_id, vlan_id, on)) 4568 break; 4569 } 4570 } 4571 4572 void 4573 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 4574 { 4575 int diag; 4576 4577 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4578 return; 4579 4580 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 4581 if (diag == 0) 4582 return; 4583 4584 fprintf(stderr, 4585 "tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n", 4586 port_id, vlan_type, tp_id, diag); 4587 } 4588 4589 void 4590 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 4591 { 4592 struct rte_eth_dev_info dev_info; 4593 int ret; 4594 4595 if (vlan_id_is_invalid(vlan_id)) 4596 return; 4597 4598 if (ports[port_id].dev_conf.txmode.offloads & 4599 RTE_ETH_TX_OFFLOAD_QINQ_INSERT) { 4600 fprintf(stderr, "Error, as QinQ has been enabled.\n"); 4601 return; 4602 } 4603 4604 ret = eth_dev_info_get_print_err(port_id, &dev_info); 4605 if (ret != 0) 4606 return; 4607 4608 if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) { 4609 fprintf(stderr, 4610 "Error: vlan insert is not supported by port %d\n", 4611 port_id); 4612 return; 4613 } 4614 4615 tx_vlan_reset(port_id); 4616 ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT; 4617 ports[port_id].tx_vlan_id = vlan_id; 4618 } 4619 4620 void 4621 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 4622 { 4623 struct rte_eth_dev_info dev_info; 4624 int ret; 4625 4626 if (vlan_id_is_invalid(vlan_id)) 4627 return; 4628 if (vlan_id_is_invalid(vlan_id_outer)) 4629 return; 4630 4631 ret = eth_dev_info_get_print_err(port_id, &dev_info); 4632 if (ret != 0) 4633 return; 4634 4635 if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) { 4636 fprintf(stderr, 4637 "Error: qinq insert not supported by port %d\n", 4638 port_id); 4639 return; 4640 } 4641 4642 tx_vlan_reset(port_id); 4643 ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT | 4644 RTE_ETH_TX_OFFLOAD_QINQ_INSERT); 4645 ports[port_id].tx_vlan_id = vlan_id; 4646 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 4647 } 4648 4649 void 4650 tx_vlan_reset(portid_t port_id) 4651 { 4652 ports[port_id].dev_conf.txmode.offloads &= 4653 ~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT | 4654 RTE_ETH_TX_OFFLOAD_QINQ_INSERT); 4655 ports[port_id].tx_vlan_id = 0; 4656 ports[port_id].tx_vlan_id_outer = 0; 4657 } 4658 4659 void 4660 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 4661 { 4662 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4663 return; 4664 4665 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 4666 } 4667 4668 void 4669 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 4670 { 4671 int ret; 4672 4673 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4674 return; 4675 4676 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 4677 return; 4678 4679 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 4680 fprintf(stderr, "map_value not in required range 0..%d\n", 4681 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 4682 return; 4683 } 4684 4685 if (!is_rx) { /* tx */ 4686 ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id, 4687 map_value); 4688 if (ret) { 4689 fprintf(stderr, 4690 "failed to set tx queue stats mapping.\n"); 4691 return; 4692 } 4693 } else { /* rx */ 4694 ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id, 4695 map_value); 4696 if (ret) { 4697 fprintf(stderr, 4698 "failed to set rx queue stats mapping.\n"); 4699 return; 4700 } 4701 } 4702 } 4703 4704 void 4705 set_xstats_hide_zero(uint8_t on_off) 4706 { 4707 xstats_hide_zero = on_off; 4708 } 4709 4710 void 4711 set_record_core_cycles(uint8_t on_off) 4712 { 4713 record_core_cycles = on_off; 4714 } 4715 4716 void 4717 set_record_burst_stats(uint8_t on_off) 4718 { 4719 record_burst_stats = on_off; 4720 } 4721 4722 static char* 4723 flowtype_to_str(uint16_t flow_type) 4724 { 4725 struct flow_type_info { 4726 char str[32]; 4727 uint16_t ftype; 4728 }; 4729 4730 uint8_t i; 4731 static struct flow_type_info flowtype_str_table[] = { 4732 {"raw", RTE_ETH_FLOW_RAW}, 4733 {"ipv4", RTE_ETH_FLOW_IPV4}, 4734 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 4735 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 4736 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 4737 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 4738 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 4739 {"ipv6", RTE_ETH_FLOW_IPV6}, 4740 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 4741 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 4742 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 4743 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 4744 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 4745 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 4746 {"ipv6-ex", RTE_ETH_FLOW_IPV6_EX}, 4747 {"ipv6-tcp-ex", RTE_ETH_FLOW_IPV6_TCP_EX}, 4748 {"ipv6-udp-ex", RTE_ETH_FLOW_IPV6_UDP_EX}, 4749 {"port", RTE_ETH_FLOW_PORT}, 4750 {"vxlan", RTE_ETH_FLOW_VXLAN}, 4751 {"geneve", RTE_ETH_FLOW_GENEVE}, 4752 {"nvgre", RTE_ETH_FLOW_NVGRE}, 4753 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, 4754 {"gtpu", RTE_ETH_FLOW_GTPU}, 4755 }; 4756 4757 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 4758 if (flowtype_str_table[i].ftype == flow_type) 4759 return flowtype_str_table[i].str; 4760 } 4761 4762 return NULL; 4763 } 4764 4765 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE) 4766 4767 static inline void 4768 print_fdir_mask(struct rte_eth_fdir_masks *mask) 4769 { 4770 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 4771 4772 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 4773 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 4774 " tunnel_id: 0x%08x", 4775 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 4776 rte_be_to_cpu_32(mask->tunnel_id_mask)); 4777 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 4778 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 4779 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 4780 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 4781 4782 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 4783 rte_be_to_cpu_16(mask->src_port_mask), 4784 rte_be_to_cpu_16(mask->dst_port_mask)); 4785 4786 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 4787 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 4788 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 4789 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 4790 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 4791 4792 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 4793 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 4794 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 4795 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 4796 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 4797 } 4798 4799 printf("\n"); 4800 } 4801 4802 static inline void 4803 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 4804 { 4805 struct rte_eth_flex_payload_cfg *cfg; 4806 uint32_t i, j; 4807 4808 for (i = 0; i < flex_conf->nb_payloads; i++) { 4809 cfg = &flex_conf->flex_set[i]; 4810 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 4811 printf("\n RAW: "); 4812 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 4813 printf("\n L2_PAYLOAD: "); 4814 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 4815 printf("\n L3_PAYLOAD: "); 4816 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 4817 printf("\n L4_PAYLOAD: "); 4818 else 4819 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 4820 for (j = 0; j < num; j++) 4821 printf(" %-5u", cfg->src_offset[j]); 4822 } 4823 printf("\n"); 4824 } 4825 4826 static inline void 4827 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 4828 { 4829 struct rte_eth_fdir_flex_mask *mask; 4830 uint32_t i, j; 4831 char *p; 4832 4833 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 4834 mask = &flex_conf->flex_mask[i]; 4835 p = flowtype_to_str(mask->flow_type); 4836 printf("\n %s:\t", p ? p : "unknown"); 4837 for (j = 0; j < num; j++) 4838 printf(" %02x", mask->mask[j]); 4839 } 4840 printf("\n"); 4841 } 4842 4843 static inline void 4844 print_fdir_flow_type(uint32_t flow_types_mask) 4845 { 4846 int i; 4847 char *p; 4848 4849 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 4850 if (!(flow_types_mask & (1 << i))) 4851 continue; 4852 p = flowtype_to_str(i); 4853 if (p) 4854 printf(" %s", p); 4855 else 4856 printf(" unknown"); 4857 } 4858 printf("\n"); 4859 } 4860 4861 static int 4862 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info, 4863 struct rte_eth_fdir_stats *fdir_stat) 4864 { 4865 int ret = -ENOTSUP; 4866 4867 #ifdef RTE_NET_I40E 4868 if (ret == -ENOTSUP) { 4869 ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info); 4870 if (!ret) 4871 ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat); 4872 } 4873 #endif 4874 #ifdef RTE_NET_IXGBE 4875 if (ret == -ENOTSUP) { 4876 ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info); 4877 if (!ret) 4878 ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat); 4879 } 4880 #endif 4881 switch (ret) { 4882 case 0: 4883 break; 4884 case -ENOTSUP: 4885 fprintf(stderr, "\n FDIR is not supported on port %-2d\n", 4886 port_id); 4887 break; 4888 default: 4889 fprintf(stderr, "programming error: (%s)\n", strerror(-ret)); 4890 break; 4891 } 4892 return ret; 4893 } 4894 4895 void 4896 fdir_get_infos(portid_t port_id) 4897 { 4898 struct rte_eth_fdir_stats fdir_stat; 4899 struct rte_eth_fdir_info fdir_info; 4900 4901 static const char *fdir_stats_border = "########################"; 4902 4903 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4904 return; 4905 4906 memset(&fdir_info, 0, sizeof(fdir_info)); 4907 memset(&fdir_stat, 0, sizeof(fdir_stat)); 4908 if (get_fdir_info(port_id, &fdir_info, &fdir_stat)) 4909 return; 4910 4911 printf("\n %s FDIR infos for port %-2d %s\n", 4912 fdir_stats_border, port_id, fdir_stats_border); 4913 printf(" MODE: "); 4914 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 4915 printf(" PERFECT\n"); 4916 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 4917 printf(" PERFECT-MAC-VLAN\n"); 4918 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 4919 printf(" PERFECT-TUNNEL\n"); 4920 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 4921 printf(" SIGNATURE\n"); 4922 else 4923 printf(" DISABLE\n"); 4924 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 4925 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 4926 printf(" SUPPORTED FLOW TYPE: "); 4927 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 4928 } 4929 printf(" FLEX PAYLOAD INFO:\n"); 4930 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 4931 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 4932 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 4933 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 4934 fdir_info.flex_payload_unit, 4935 fdir_info.max_flex_payload_segment_num, 4936 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 4937 printf(" MASK: "); 4938 print_fdir_mask(&fdir_info.mask); 4939 if (fdir_info.flex_conf.nb_payloads > 0) { 4940 printf(" FLEX PAYLOAD SRC OFFSET:"); 4941 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 4942 } 4943 if (fdir_info.flex_conf.nb_flexmasks > 0) { 4944 printf(" FLEX MASK CFG:"); 4945 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 4946 } 4947 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 4948 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 4949 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 4950 fdir_info.guarant_spc, fdir_info.best_spc); 4951 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 4952 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 4953 " add: %-10"PRIu64" remove: %"PRIu64"\n" 4954 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 4955 fdir_stat.collision, fdir_stat.free, 4956 fdir_stat.maxhash, fdir_stat.maxlen, 4957 fdir_stat.add, fdir_stat.remove, 4958 fdir_stat.f_add, fdir_stat.f_remove); 4959 printf(" %s############################%s\n", 4960 fdir_stats_border, fdir_stats_border); 4961 } 4962 4963 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */ 4964 4965 void 4966 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 4967 { 4968 struct rte_port *port; 4969 struct rte_eth_fdir_flex_conf *flex_conf; 4970 int i, idx = 0; 4971 4972 port = &ports[port_id]; 4973 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 4974 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 4975 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 4976 idx = i; 4977 break; 4978 } 4979 } 4980 if (i >= RTE_ETH_FLOW_MAX) { 4981 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 4982 idx = flex_conf->nb_flexmasks; 4983 flex_conf->nb_flexmasks++; 4984 } else { 4985 fprintf(stderr, 4986 "The flex mask table is full. Can not set flex mask for flow_type(%u).", 4987 cfg->flow_type); 4988 return; 4989 } 4990 } 4991 rte_memcpy(&flex_conf->flex_mask[idx], 4992 cfg, 4993 sizeof(struct rte_eth_fdir_flex_mask)); 4994 } 4995 4996 void 4997 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 4998 { 4999 struct rte_port *port; 5000 struct rte_eth_fdir_flex_conf *flex_conf; 5001 int i, idx = 0; 5002 5003 port = &ports[port_id]; 5004 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 5005 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 5006 if (cfg->type == flex_conf->flex_set[i].type) { 5007 idx = i; 5008 break; 5009 } 5010 } 5011 if (i >= RTE_ETH_PAYLOAD_MAX) { 5012 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 5013 idx = flex_conf->nb_payloads; 5014 flex_conf->nb_payloads++; 5015 } else { 5016 fprintf(stderr, 5017 "The flex payload table is full. Can not set flex payload for type(%u).", 5018 cfg->type); 5019 return; 5020 } 5021 } 5022 rte_memcpy(&flex_conf->flex_set[idx], 5023 cfg, 5024 sizeof(struct rte_eth_flex_payload_cfg)); 5025 5026 } 5027 5028 void 5029 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 5030 { 5031 #ifdef RTE_NET_IXGBE 5032 int diag; 5033 5034 if (is_rx) 5035 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 5036 else 5037 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 5038 5039 if (diag == 0) 5040 return; 5041 fprintf(stderr, 5042 "rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 5043 is_rx ? "rx" : "tx", port_id, diag); 5044 return; 5045 #endif 5046 fprintf(stderr, "VF %s setting not supported for port %d\n", 5047 is_rx ? "Rx" : "Tx", port_id); 5048 RTE_SET_USED(vf); 5049 RTE_SET_USED(on); 5050 } 5051 5052 int 5053 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 5054 { 5055 int diag; 5056 struct rte_eth_link link; 5057 int ret; 5058 5059 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5060 return 1; 5061 ret = eth_link_get_nowait_print_err(port_id, &link); 5062 if (ret < 0) 5063 return 1; 5064 if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN && 5065 rate > link.link_speed) { 5066 fprintf(stderr, 5067 "Invalid rate value:%u bigger than link speed: %u\n", 5068 rate, link.link_speed); 5069 return 1; 5070 } 5071 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 5072 if (diag == 0) 5073 return diag; 5074 fprintf(stderr, 5075 "rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 5076 port_id, diag); 5077 return diag; 5078 } 5079 5080 int 5081 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 5082 { 5083 int diag = -ENOTSUP; 5084 5085 RTE_SET_USED(vf); 5086 RTE_SET_USED(rate); 5087 RTE_SET_USED(q_msk); 5088 5089 #ifdef RTE_NET_IXGBE 5090 if (diag == -ENOTSUP) 5091 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 5092 q_msk); 5093 #endif 5094 #ifdef RTE_NET_BNXT 5095 if (diag == -ENOTSUP) 5096 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 5097 #endif 5098 if (diag == 0) 5099 return diag; 5100 5101 fprintf(stderr, 5102 "%s for port_id=%d failed diag=%d\n", 5103 __func__, port_id, diag); 5104 return diag; 5105 } 5106 5107 /* 5108 * Functions to manage the set of filtered Multicast MAC addresses. 5109 * 5110 * A pool of filtered multicast MAC addresses is associated with each port. 5111 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 5112 * The address of the pool and the number of valid multicast MAC addresses 5113 * recorded in the pool are stored in the fields "mc_addr_pool" and 5114 * "mc_addr_nb" of the "rte_port" data structure. 5115 * 5116 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 5117 * to be supplied a contiguous array of multicast MAC addresses. 5118 * To comply with this constraint, the set of multicast addresses recorded 5119 * into the pool are systematically compacted at the beginning of the pool. 5120 * Hence, when a multicast address is removed from the pool, all following 5121 * addresses, if any, are copied back to keep the set contiguous. 5122 */ 5123 #define MCAST_POOL_INC 32 5124 5125 static int 5126 mcast_addr_pool_extend(struct rte_port *port) 5127 { 5128 struct rte_ether_addr *mc_pool; 5129 size_t mc_pool_size; 5130 5131 /* 5132 * If a free entry is available at the end of the pool, just 5133 * increment the number of recorded multicast addresses. 5134 */ 5135 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 5136 port->mc_addr_nb++; 5137 return 0; 5138 } 5139 5140 /* 5141 * [re]allocate a pool with MCAST_POOL_INC more entries. 5142 * The previous test guarantees that port->mc_addr_nb is a multiple 5143 * of MCAST_POOL_INC. 5144 */ 5145 mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + 5146 MCAST_POOL_INC); 5147 mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, 5148 mc_pool_size); 5149 if (mc_pool == NULL) { 5150 fprintf(stderr, 5151 "allocation of pool of %u multicast addresses failed\n", 5152 port->mc_addr_nb + MCAST_POOL_INC); 5153 return -ENOMEM; 5154 } 5155 5156 port->mc_addr_pool = mc_pool; 5157 port->mc_addr_nb++; 5158 return 0; 5159 5160 } 5161 5162 static void 5163 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr) 5164 { 5165 if (mcast_addr_pool_extend(port) != 0) 5166 return; 5167 rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]); 5168 } 5169 5170 static void 5171 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 5172 { 5173 port->mc_addr_nb--; 5174 if (addr_idx == port->mc_addr_nb) { 5175 /* No need to recompact the set of multicast addresses. */ 5176 if (port->mc_addr_nb == 0) { 5177 /* free the pool of multicast addresses. */ 5178 free(port->mc_addr_pool); 5179 port->mc_addr_pool = NULL; 5180 } 5181 return; 5182 } 5183 memmove(&port->mc_addr_pool[addr_idx], 5184 &port->mc_addr_pool[addr_idx + 1], 5185 sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); 5186 } 5187 5188 static int 5189 eth_port_multicast_addr_list_set(portid_t port_id) 5190 { 5191 struct rte_port *port; 5192 int diag; 5193 5194 port = &ports[port_id]; 5195 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 5196 port->mc_addr_nb); 5197 if (diag < 0) 5198 fprintf(stderr, 5199 "rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 5200 port_id, port->mc_addr_nb, diag); 5201 5202 return diag; 5203 } 5204 5205 void 5206 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) 5207 { 5208 struct rte_port *port; 5209 uint32_t i; 5210 5211 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5212 return; 5213 5214 port = &ports[port_id]; 5215 5216 /* 5217 * Check that the added multicast MAC address is not already recorded 5218 * in the pool of multicast addresses. 5219 */ 5220 for (i = 0; i < port->mc_addr_nb; i++) { 5221 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 5222 fprintf(stderr, 5223 "multicast address already filtered by port\n"); 5224 return; 5225 } 5226 } 5227 5228 mcast_addr_pool_append(port, mc_addr); 5229 if (eth_port_multicast_addr_list_set(port_id) < 0) 5230 /* Rollback on failure, remove the address from the pool */ 5231 mcast_addr_pool_remove(port, i); 5232 } 5233 5234 void 5235 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) 5236 { 5237 struct rte_port *port; 5238 uint32_t i; 5239 5240 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5241 return; 5242 5243 port = &ports[port_id]; 5244 5245 /* 5246 * Search the pool of multicast MAC addresses for the removed address. 5247 */ 5248 for (i = 0; i < port->mc_addr_nb; i++) { 5249 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 5250 break; 5251 } 5252 if (i == port->mc_addr_nb) { 5253 fprintf(stderr, "multicast address not filtered by port %d\n", 5254 port_id); 5255 return; 5256 } 5257 5258 mcast_addr_pool_remove(port, i); 5259 if (eth_port_multicast_addr_list_set(port_id) < 0) 5260 /* Rollback on failure, add the address back into the pool */ 5261 mcast_addr_pool_append(port, mc_addr); 5262 } 5263 5264 void 5265 port_dcb_info_display(portid_t port_id) 5266 { 5267 struct rte_eth_dcb_info dcb_info; 5268 uint16_t i; 5269 int ret; 5270 static const char *border = "================"; 5271 5272 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5273 return; 5274 5275 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 5276 if (ret) { 5277 fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n", 5278 port_id); 5279 return; 5280 } 5281 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 5282 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 5283 printf("\n TC : "); 5284 for (i = 0; i < dcb_info.nb_tcs; i++) 5285 printf("\t%4d", i); 5286 printf("\n Priority : "); 5287 for (i = 0; i < dcb_info.nb_tcs; i++) 5288 printf("\t%4d", dcb_info.prio_tc[i]); 5289 printf("\n BW percent :"); 5290 for (i = 0; i < dcb_info.nb_tcs; i++) 5291 printf("\t%4d%%", dcb_info.tc_bws[i]); 5292 printf("\n RXQ base : "); 5293 for (i = 0; i < dcb_info.nb_tcs; i++) 5294 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 5295 printf("\n RXQ number :"); 5296 for (i = 0; i < dcb_info.nb_tcs; i++) 5297 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 5298 printf("\n TXQ base : "); 5299 for (i = 0; i < dcb_info.nb_tcs; i++) 5300 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 5301 printf("\n TXQ number :"); 5302 for (i = 0; i < dcb_info.nb_tcs; i++) 5303 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 5304 printf("\n"); 5305 } 5306 5307 uint8_t * 5308 open_file(const char *file_path, uint32_t *size) 5309 { 5310 int fd = open(file_path, O_RDONLY); 5311 off_t pkg_size; 5312 uint8_t *buf = NULL; 5313 int ret = 0; 5314 struct stat st_buf; 5315 5316 if (size) 5317 *size = 0; 5318 5319 if (fd == -1) { 5320 fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); 5321 return buf; 5322 } 5323 5324 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 5325 close(fd); 5326 fprintf(stderr, "%s: File operations failed\n", __func__); 5327 return buf; 5328 } 5329 5330 pkg_size = st_buf.st_size; 5331 if (pkg_size < 0) { 5332 close(fd); 5333 fprintf(stderr, "%s: File operations failed\n", __func__); 5334 return buf; 5335 } 5336 5337 buf = (uint8_t *)malloc(pkg_size); 5338 if (!buf) { 5339 close(fd); 5340 fprintf(stderr, "%s: Failed to malloc memory\n", __func__); 5341 return buf; 5342 } 5343 5344 ret = read(fd, buf, pkg_size); 5345 if (ret < 0) { 5346 close(fd); 5347 fprintf(stderr, "%s: File read operation failed\n", __func__); 5348 close_file(buf); 5349 return NULL; 5350 } 5351 5352 if (size) 5353 *size = pkg_size; 5354 5355 close(fd); 5356 5357 return buf; 5358 } 5359 5360 int 5361 save_file(const char *file_path, uint8_t *buf, uint32_t size) 5362 { 5363 FILE *fh = fopen(file_path, "wb"); 5364 5365 if (fh == NULL) { 5366 fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); 5367 return -1; 5368 } 5369 5370 if (fwrite(buf, 1, size, fh) != size) { 5371 fclose(fh); 5372 fprintf(stderr, "%s: File write operation failed\n", __func__); 5373 return -1; 5374 } 5375 5376 fclose(fh); 5377 5378 return 0; 5379 } 5380 5381 int 5382 close_file(uint8_t *buf) 5383 { 5384 if (buf) { 5385 free((void *)buf); 5386 return 0; 5387 } 5388 5389 return -1; 5390 } 5391 5392 void 5393 port_queue_region_info_display(portid_t port_id, void *buf) 5394 { 5395 #ifdef RTE_NET_I40E 5396 uint16_t i, j; 5397 struct rte_pmd_i40e_queue_regions *info = 5398 (struct rte_pmd_i40e_queue_regions *)buf; 5399 static const char *queue_region_info_stats_border = "-------"; 5400 5401 if (!info->queue_region_number) 5402 printf("there is no region has been set before"); 5403 5404 printf("\n %s All queue region info for port=%2d %s", 5405 queue_region_info_stats_border, port_id, 5406 queue_region_info_stats_border); 5407 printf("\n queue_region_number: %-14u \n", 5408 info->queue_region_number); 5409 5410 for (i = 0; i < info->queue_region_number; i++) { 5411 printf("\n region_id: %-14u queue_number: %-14u " 5412 "queue_start_index: %-14u \n", 5413 info->region[i].region_id, 5414 info->region[i].queue_num, 5415 info->region[i].queue_start_index); 5416 5417 printf(" user_priority_num is %-14u :", 5418 info->region[i].user_priority_num); 5419 for (j = 0; j < info->region[i].user_priority_num; j++) 5420 printf(" %-14u ", info->region[i].user_priority[j]); 5421 5422 printf("\n flowtype_num is %-14u :", 5423 info->region[i].flowtype_num); 5424 for (j = 0; j < info->region[i].flowtype_num; j++) 5425 printf(" %-14u ", info->region[i].hw_flowtype[j]); 5426 } 5427 #else 5428 RTE_SET_USED(port_id); 5429 RTE_SET_USED(buf); 5430 #endif 5431 5432 printf("\n\n"); 5433 } 5434 5435 void 5436 show_macs(portid_t port_id) 5437 { 5438 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 5439 struct rte_eth_dev_info dev_info; 5440 int32_t i, rc, num_macs = 0; 5441 5442 if (eth_dev_info_get_print_err(port_id, &dev_info)) 5443 return; 5444 5445 struct rte_ether_addr addr[dev_info.max_mac_addrs]; 5446 rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs); 5447 if (rc < 0) 5448 return; 5449 5450 for (i = 0; i < rc; i++) { 5451 5452 /* skip zero address */ 5453 if (rte_is_zero_ether_addr(&addr[i])) 5454 continue; 5455 5456 num_macs++; 5457 } 5458 5459 printf("Number of MAC address added: %d\n", num_macs); 5460 5461 for (i = 0; i < rc; i++) { 5462 5463 /* skip zero address */ 5464 if (rte_is_zero_ether_addr(&addr[i])) 5465 continue; 5466 5467 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]); 5468 printf(" %s\n", buf); 5469 } 5470 } 5471 5472 void 5473 show_mcast_macs(portid_t port_id) 5474 { 5475 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 5476 struct rte_ether_addr *addr; 5477 struct rte_port *port; 5478 uint32_t i; 5479 5480 port = &ports[port_id]; 5481 5482 printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb); 5483 5484 for (i = 0; i < port->mc_addr_nb; i++) { 5485 addr = &port->mc_addr_pool[i]; 5486 5487 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr); 5488 printf(" %s\n", buf); 5489 } 5490 } 5491