xref: /dpdk/app/test-pmd/config.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_branch_prediction.h>
31 #include <rte_mempool.h>
32 #include <rte_mbuf.h>
33 #include <rte_interrupts.h>
34 #include <rte_pci.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_string_fns.h>
38 #include <rte_cycles.h>
39 #include <rte_flow.h>
40 #include <rte_mtr.h>
41 #include <rte_errno.h>
42 #ifdef RTE_NET_IXGBE
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_NET_I40E
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_NET_BNXT
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #ifdef RTE_LIB_GRO
52 #include <rte_gro.h>
53 #endif
54 #include <rte_hexdump.h>
55 
56 #include "testpmd.h"
57 #include "cmdline_mtr.h"
58 
59 #define ETHDEV_FWVERS_LEN 32
60 
61 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
62 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
63 #else
64 #define CLOCK_TYPE_ID CLOCK_MONOTONIC
65 #endif
66 
67 #define NS_PER_SEC 1E9
68 
69 static char *flowtype_to_str(uint16_t flow_type);
70 
71 static const struct {
72 	enum tx_pkt_split split;
73 	const char *name;
74 } tx_split_name[] = {
75 	{
76 		.split = TX_PKT_SPLIT_OFF,
77 		.name = "off",
78 	},
79 	{
80 		.split = TX_PKT_SPLIT_ON,
81 		.name = "on",
82 	},
83 	{
84 		.split = TX_PKT_SPLIT_RND,
85 		.name = "rand",
86 	},
87 };
88 
89 const struct rss_type_info rss_type_table[] = {
90 	{ "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP |
91 		RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD |
92 		RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP |
93 		RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS},
94 	{ "none", 0 },
95 	{ "eth", RTE_ETH_RSS_ETH },
96 	{ "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY },
97 	{ "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY },
98 	{ "vlan", RTE_ETH_RSS_VLAN },
99 	{ "s-vlan", RTE_ETH_RSS_S_VLAN },
100 	{ "c-vlan", RTE_ETH_RSS_C_VLAN },
101 	{ "ipv4", RTE_ETH_RSS_IPV4 },
102 	{ "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 },
103 	{ "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP },
104 	{ "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP },
105 	{ "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP },
106 	{ "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER },
107 	{ "ipv6", RTE_ETH_RSS_IPV6 },
108 	{ "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 },
109 	{ "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP },
110 	{ "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP },
111 	{ "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP },
112 	{ "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER },
113 	{ "l2-payload", RTE_ETH_RSS_L2_PAYLOAD },
114 	{ "ipv6-ex", RTE_ETH_RSS_IPV6_EX },
115 	{ "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX },
116 	{ "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX },
117 	{ "port", RTE_ETH_RSS_PORT },
118 	{ "vxlan", RTE_ETH_RSS_VXLAN },
119 	{ "geneve", RTE_ETH_RSS_GENEVE },
120 	{ "nvgre", RTE_ETH_RSS_NVGRE },
121 	{ "ip", RTE_ETH_RSS_IP },
122 	{ "udp", RTE_ETH_RSS_UDP },
123 	{ "tcp", RTE_ETH_RSS_TCP },
124 	{ "sctp", RTE_ETH_RSS_SCTP },
125 	{ "tunnel", RTE_ETH_RSS_TUNNEL },
126 	{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
127 	{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
128 	{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
129 	{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
130 	{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
131 	{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
132 	{ "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY },
133 	{ "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY },
134 	{ "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY },
135 	{ "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY },
136 	{ "esp", RTE_ETH_RSS_ESP },
137 	{ "ah", RTE_ETH_RSS_AH },
138 	{ "l2tpv3", RTE_ETH_RSS_L2TPV3 },
139 	{ "pfcp", RTE_ETH_RSS_PFCP },
140 	{ "pppoe", RTE_ETH_RSS_PPPOE },
141 	{ "gtpu", RTE_ETH_RSS_GTPU },
142 	{ "ecpri", RTE_ETH_RSS_ECPRI },
143 	{ "mpls", RTE_ETH_RSS_MPLS },
144 	{ "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM },
145 	{ "l4-chksum", RTE_ETH_RSS_L4_CHKSUM },
146 	{ NULL, 0 },
147 };
148 
149 static const struct {
150 	enum rte_eth_fec_mode mode;
151 	const char *name;
152 } fec_mode_name[] = {
153 	{
154 		.mode = RTE_ETH_FEC_NOFEC,
155 		.name = "off",
156 	},
157 	{
158 		.mode = RTE_ETH_FEC_AUTO,
159 		.name = "auto",
160 	},
161 	{
162 		.mode = RTE_ETH_FEC_BASER,
163 		.name = "baser",
164 	},
165 	{
166 		.mode = RTE_ETH_FEC_RS,
167 		.name = "rs",
168 	},
169 };
170 
171 static void
172 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
173 {
174 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
175 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
176 	printf("%s%s", name, buf);
177 }
178 
179 static void
180 nic_xstats_display_periodic(portid_t port_id)
181 {
182 	struct xstat_display_info *xstats_info;
183 	uint64_t *prev_values, *curr_values;
184 	uint64_t diff_value, value_rate;
185 	struct timespec cur_time;
186 	uint64_t *ids_supp;
187 	size_t ids_supp_sz;
188 	uint64_t diff_ns;
189 	unsigned int i;
190 	int rc;
191 
192 	xstats_info = &ports[port_id].xstats_info;
193 
194 	ids_supp_sz = xstats_info->ids_supp_sz;
195 	if (ids_supp_sz == 0)
196 		return;
197 
198 	printf("\n");
199 
200 	ids_supp = xstats_info->ids_supp;
201 	prev_values = xstats_info->prev_values;
202 	curr_values = xstats_info->curr_values;
203 
204 	rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values,
205 				      ids_supp_sz);
206 	if (rc != (int)ids_supp_sz) {
207 		fprintf(stderr,
208 			"Failed to get values of %zu xstats for port %u - return code %d\n",
209 			ids_supp_sz, port_id, rc);
210 		return;
211 	}
212 
213 	diff_ns = 0;
214 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
215 		uint64_t ns;
216 
217 		ns = cur_time.tv_sec * NS_PER_SEC;
218 		ns += cur_time.tv_nsec;
219 
220 		if (xstats_info->prev_ns != 0)
221 			diff_ns = ns - xstats_info->prev_ns;
222 		xstats_info->prev_ns = ns;
223 	}
224 
225 	printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)");
226 	for (i = 0; i < ids_supp_sz; i++) {
227 		diff_value = (curr_values[i] > prev_values[i]) ?
228 			     (curr_values[i] - prev_values[i]) : 0;
229 		prev_values[i] = curr_values[i];
230 		value_rate = diff_ns > 0 ?
231 				(double)diff_value / diff_ns * NS_PER_SEC : 0;
232 
233 		printf("  %-25s%12"PRIu64" %15"PRIu64"\n",
234 		       xstats_display[i].name, curr_values[i], value_rate);
235 	}
236 }
237 
238 void
239 nic_stats_display(portid_t port_id)
240 {
241 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
242 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
243 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
244 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
245 	static uint64_t prev_ns[RTE_MAX_ETHPORTS];
246 	struct timespec cur_time;
247 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
248 								diff_ns;
249 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
250 	struct rte_eth_stats stats;
251 
252 	static const char *nic_stats_border = "########################";
253 
254 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
255 		print_valid_ports();
256 		return;
257 	}
258 	rte_eth_stats_get(port_id, &stats);
259 	printf("\n  %s NIC statistics for port %-2d %s\n",
260 	       nic_stats_border, port_id, nic_stats_border);
261 
262 	printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
263 	       "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
264 	printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
265 	printf("  RX-nombuf:  %-10"PRIu64"\n", stats.rx_nombuf);
266 	printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
267 	       "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
268 
269 	diff_ns = 0;
270 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
271 		uint64_t ns;
272 
273 		ns = cur_time.tv_sec * NS_PER_SEC;
274 		ns += cur_time.tv_nsec;
275 
276 		if (prev_ns[port_id] != 0)
277 			diff_ns = ns - prev_ns[port_id];
278 		prev_ns[port_id] = ns;
279 	}
280 
281 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
282 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
283 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
284 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
285 	prev_pkts_rx[port_id] = stats.ipackets;
286 	prev_pkts_tx[port_id] = stats.opackets;
287 	mpps_rx = diff_ns > 0 ?
288 		(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
289 	mpps_tx = diff_ns > 0 ?
290 		(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
291 
292 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
293 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
294 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
295 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
296 	prev_bytes_rx[port_id] = stats.ibytes;
297 	prev_bytes_tx[port_id] = stats.obytes;
298 	mbps_rx = diff_ns > 0 ?
299 		(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
300 	mbps_tx = diff_ns > 0 ?
301 		(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
302 
303 	printf("\n  Throughput (since last show)\n");
304 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
305 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
306 	       mpps_tx, mbps_tx * 8);
307 
308 	if (xstats_display_num > 0)
309 		nic_xstats_display_periodic(port_id);
310 
311 	printf("  %s############################%s\n",
312 	       nic_stats_border, nic_stats_border);
313 }
314 
315 void
316 nic_stats_clear(portid_t port_id)
317 {
318 	int ret;
319 
320 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
321 		print_valid_ports();
322 		return;
323 	}
324 
325 	ret = rte_eth_stats_reset(port_id);
326 	if (ret != 0) {
327 		fprintf(stderr,
328 			"%s: Error: failed to reset stats (port %u): %s",
329 			__func__, port_id, strerror(-ret));
330 		return;
331 	}
332 
333 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
334 	if (ret != 0) {
335 		if (ret < 0)
336 			ret = -ret;
337 		fprintf(stderr,
338 			"%s: Error: failed to get stats (port %u): %s",
339 			__func__, port_id, strerror(ret));
340 		return;
341 	}
342 	printf("\n  NIC statistics for port %d cleared\n", port_id);
343 }
344 
345 void
346 nic_xstats_display(portid_t port_id)
347 {
348 	struct rte_eth_xstat *xstats;
349 	int cnt_xstats, idx_xstat;
350 	struct rte_eth_xstat_name *xstats_names;
351 
352 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
353 		print_valid_ports();
354 		return;
355 	}
356 	printf("###### NIC extended statistics for port %-2d\n", port_id);
357 	if (!rte_eth_dev_is_valid_port(port_id)) {
358 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
359 		return;
360 	}
361 
362 	/* Get count */
363 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
364 	if (cnt_xstats  < 0) {
365 		fprintf(stderr, "Error: Cannot get count of xstats\n");
366 		return;
367 	}
368 
369 	/* Get id-name lookup table */
370 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
371 	if (xstats_names == NULL) {
372 		fprintf(stderr, "Cannot allocate memory for xstats lookup\n");
373 		return;
374 	}
375 	if (cnt_xstats != rte_eth_xstats_get_names(
376 			port_id, xstats_names, cnt_xstats)) {
377 		fprintf(stderr, "Error: Cannot get xstats lookup\n");
378 		free(xstats_names);
379 		return;
380 	}
381 
382 	/* Get stats themselves */
383 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
384 	if (xstats == NULL) {
385 		fprintf(stderr, "Cannot allocate memory for xstats\n");
386 		free(xstats_names);
387 		return;
388 	}
389 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
390 		fprintf(stderr, "Error: Unable to get xstats\n");
391 		free(xstats_names);
392 		free(xstats);
393 		return;
394 	}
395 
396 	/* Display xstats */
397 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
398 		if (xstats_hide_zero && !xstats[idx_xstat].value)
399 			continue;
400 		printf("%s: %"PRIu64"\n",
401 			xstats_names[idx_xstat].name,
402 			xstats[idx_xstat].value);
403 	}
404 	free(xstats_names);
405 	free(xstats);
406 }
407 
408 void
409 nic_xstats_clear(portid_t port_id)
410 {
411 	int ret;
412 
413 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
414 		print_valid_ports();
415 		return;
416 	}
417 
418 	ret = rte_eth_xstats_reset(port_id);
419 	if (ret != 0) {
420 		fprintf(stderr,
421 			"%s: Error: failed to reset xstats (port %u): %s\n",
422 			__func__, port_id, strerror(-ret));
423 		return;
424 	}
425 
426 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
427 	if (ret != 0) {
428 		if (ret < 0)
429 			ret = -ret;
430 		fprintf(stderr, "%s: Error: failed to get stats (port %u): %s",
431 			__func__, port_id, strerror(ret));
432 		return;
433 	}
434 }
435 
436 static const char *
437 get_queue_state_name(uint8_t queue_state)
438 {
439 	if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED)
440 		return "stopped";
441 	else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED)
442 		return "started";
443 	else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN)
444 		return "hairpin";
445 	else
446 		return "unknown";
447 }
448 
449 void
450 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
451 {
452 	struct rte_eth_burst_mode mode;
453 	struct rte_eth_rxq_info qinfo;
454 	int32_t rc;
455 	static const char *info_border = "*********************";
456 
457 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
458 	if (rc != 0) {
459 		fprintf(stderr,
460 			"Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n",
461 			port_id, queue_id, strerror(-rc), rc);
462 		return;
463 	}
464 
465 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
466 	       info_border, port_id, queue_id, info_border);
467 
468 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
469 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
470 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
471 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
472 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
473 	printf("\nRX drop packets: %s",
474 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
475 	printf("\nRX deferred start: %s",
476 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
477 	printf("\nRX scattered packets: %s",
478 		(qinfo.scattered_rx != 0) ? "on" : "off");
479 	printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state));
480 	if (qinfo.rx_buf_size != 0)
481 		printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
482 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
483 
484 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
485 		printf("\nBurst mode: %s%s",
486 		       mode.info,
487 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
488 				" (per queue)" : "");
489 
490 	printf("\n");
491 }
492 
493 void
494 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
495 {
496 	struct rte_eth_burst_mode mode;
497 	struct rte_eth_txq_info qinfo;
498 	int32_t rc;
499 	static const char *info_border = "*********************";
500 
501 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
502 	if (rc != 0) {
503 		fprintf(stderr,
504 			"Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n",
505 			port_id, queue_id, strerror(-rc), rc);
506 		return;
507 	}
508 
509 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
510 	       info_border, port_id, queue_id, info_border);
511 
512 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
513 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
514 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
515 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
516 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
517 	printf("\nTX deferred start: %s",
518 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
519 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
520 	printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state));
521 
522 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
523 		printf("\nBurst mode: %s%s",
524 		       mode.info,
525 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
526 				" (per queue)" : "");
527 
528 	printf("\n");
529 }
530 
531 static int bus_match_all(const struct rte_bus *bus, const void *data)
532 {
533 	RTE_SET_USED(bus);
534 	RTE_SET_USED(data);
535 	return 0;
536 }
537 
538 static void
539 device_infos_display_speeds(uint32_t speed_capa)
540 {
541 	printf("\n\tDevice speed capability:");
542 	if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG)
543 		printf(" Autonegotiate (all speeds)");
544 	if (speed_capa & RTE_ETH_LINK_SPEED_FIXED)
545 		printf(" Disable autonegotiate (fixed speed)  ");
546 	if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD)
547 		printf(" 10 Mbps half-duplex  ");
548 	if (speed_capa & RTE_ETH_LINK_SPEED_10M)
549 		printf(" 10 Mbps full-duplex  ");
550 	if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD)
551 		printf(" 100 Mbps half-duplex  ");
552 	if (speed_capa & RTE_ETH_LINK_SPEED_100M)
553 		printf(" 100 Mbps full-duplex  ");
554 	if (speed_capa & RTE_ETH_LINK_SPEED_1G)
555 		printf(" 1 Gbps  ");
556 	if (speed_capa & RTE_ETH_LINK_SPEED_2_5G)
557 		printf(" 2.5 Gbps  ");
558 	if (speed_capa & RTE_ETH_LINK_SPEED_5G)
559 		printf(" 5 Gbps  ");
560 	if (speed_capa & RTE_ETH_LINK_SPEED_10G)
561 		printf(" 10 Gbps  ");
562 	if (speed_capa & RTE_ETH_LINK_SPEED_20G)
563 		printf(" 20 Gbps  ");
564 	if (speed_capa & RTE_ETH_LINK_SPEED_25G)
565 		printf(" 25 Gbps  ");
566 	if (speed_capa & RTE_ETH_LINK_SPEED_40G)
567 		printf(" 40 Gbps  ");
568 	if (speed_capa & RTE_ETH_LINK_SPEED_50G)
569 		printf(" 50 Gbps  ");
570 	if (speed_capa & RTE_ETH_LINK_SPEED_56G)
571 		printf(" 56 Gbps  ");
572 	if (speed_capa & RTE_ETH_LINK_SPEED_100G)
573 		printf(" 100 Gbps  ");
574 	if (speed_capa & RTE_ETH_LINK_SPEED_200G)
575 		printf(" 200 Gbps  ");
576 }
577 
578 void
579 device_infos_display(const char *identifier)
580 {
581 	static const char *info_border = "*********************";
582 	struct rte_bus *start = NULL, *next;
583 	struct rte_dev_iterator dev_iter;
584 	char name[RTE_ETH_NAME_MAX_LEN];
585 	struct rte_ether_addr mac_addr;
586 	struct rte_device *dev;
587 	struct rte_devargs da;
588 	portid_t port_id;
589 	struct rte_eth_dev_info dev_info;
590 	char devstr[128];
591 
592 	memset(&da, 0, sizeof(da));
593 	if (!identifier)
594 		goto skip_parse;
595 
596 	if (rte_devargs_parsef(&da, "%s", identifier)) {
597 		fprintf(stderr, "cannot parse identifier\n");
598 		return;
599 	}
600 
601 skip_parse:
602 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
603 
604 		start = next;
605 		if (identifier && da.bus != next)
606 			continue;
607 
608 		/* Skip buses that don't have iterate method */
609 		if (!next->dev_iterate)
610 			continue;
611 
612 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
613 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
614 
615 			if (!dev->driver)
616 				continue;
617 			/* Check for matching device if identifier is present */
618 			if (identifier &&
619 			    strncmp(da.name, dev->name, strlen(dev->name)))
620 				continue;
621 			printf("\n%s Infos for device %s %s\n",
622 			       info_border, dev->name, info_border);
623 			printf("Bus name: %s", dev->bus->name);
624 			printf("\nDriver name: %s", dev->driver->name);
625 			printf("\nDevargs: %s",
626 			       dev->devargs ? dev->devargs->args : "");
627 			printf("\nConnect to socket: %d", dev->numa_node);
628 			printf("\n");
629 
630 			/* List ports with matching device name */
631 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
632 				printf("\n\tPort id: %-2d", port_id);
633 				if (eth_macaddr_get_print_err(port_id,
634 							      &mac_addr) == 0)
635 					print_ethaddr("\n\tMAC address: ",
636 						      &mac_addr);
637 				rte_eth_dev_get_name_by_port(port_id, name);
638 				printf("\n\tDevice name: %s", name);
639 				if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
640 					device_infos_display_speeds(dev_info.speed_capa);
641 				printf("\n");
642 			}
643 		}
644 	};
645 	rte_devargs_reset(&da);
646 }
647 
648 static void
649 print_dev_capabilities(uint64_t capabilities)
650 {
651 	uint64_t single_capa;
652 	int begin;
653 	int end;
654 	int bit;
655 
656 	if (capabilities == 0)
657 		return;
658 
659 	begin = __builtin_ctzll(capabilities);
660 	end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities);
661 
662 	single_capa = 1ULL << begin;
663 	for (bit = begin; bit < end; bit++) {
664 		if (capabilities & single_capa)
665 			printf(" %s",
666 			       rte_eth_dev_capability_name(single_capa));
667 		single_capa <<= 1;
668 	}
669 }
670 
671 void
672 port_infos_display(portid_t port_id)
673 {
674 	struct rte_port *port;
675 	struct rte_ether_addr mac_addr;
676 	struct rte_eth_link link;
677 	struct rte_eth_dev_info dev_info;
678 	int vlan_offload;
679 	struct rte_mempool * mp;
680 	static const char *info_border = "*********************";
681 	uint16_t mtu;
682 	char name[RTE_ETH_NAME_MAX_LEN];
683 	int ret;
684 	char fw_version[ETHDEV_FWVERS_LEN];
685 
686 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
687 		print_valid_ports();
688 		return;
689 	}
690 	port = &ports[port_id];
691 	ret = eth_link_get_nowait_print_err(port_id, &link);
692 	if (ret < 0)
693 		return;
694 
695 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
696 	if (ret != 0)
697 		return;
698 
699 	printf("\n%s Infos for port %-2d %s\n",
700 	       info_border, port_id, info_border);
701 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
702 		print_ethaddr("MAC address: ", &mac_addr);
703 	rte_eth_dev_get_name_by_port(port_id, name);
704 	printf("\nDevice name: %s", name);
705 	printf("\nDriver name: %s", dev_info.driver_name);
706 
707 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
708 						ETHDEV_FWVERS_LEN) == 0)
709 		printf("\nFirmware-version: %s", fw_version);
710 	else
711 		printf("\nFirmware-version: %s", "not available");
712 
713 	if (dev_info.device->devargs && dev_info.device->devargs->args)
714 		printf("\nDevargs: %s", dev_info.device->devargs->args);
715 	printf("\nConnect to socket: %u", port->socket_id);
716 
717 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
718 		mp = mbuf_pool_find(port_numa[port_id], 0);
719 		if (mp)
720 			printf("\nmemory allocation on the socket: %d",
721 							port_numa[port_id]);
722 	} else
723 		printf("\nmemory allocation on the socket: %u",port->socket_id);
724 
725 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
726 	printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
727 	printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ?
728 	       ("full-duplex") : ("half-duplex"));
729 	printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ?
730 	       ("On") : ("Off"));
731 
732 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
733 		printf("MTU: %u\n", mtu);
734 
735 	printf("Promiscuous mode: %s\n",
736 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
737 	printf("Allmulticast mode: %s\n",
738 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
739 	printf("Maximum number of MAC addresses: %u\n",
740 	       (unsigned int)(port->dev_info.max_mac_addrs));
741 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
742 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
743 
744 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
745 	if (vlan_offload >= 0){
746 		printf("VLAN offload: \n");
747 		if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD)
748 			printf("  strip on, ");
749 		else
750 			printf("  strip off, ");
751 
752 		if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD)
753 			printf("filter on, ");
754 		else
755 			printf("filter off, ");
756 
757 		if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD)
758 			printf("extend on, ");
759 		else
760 			printf("extend off, ");
761 
762 		if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD)
763 			printf("qinq strip on\n");
764 		else
765 			printf("qinq strip off\n");
766 	}
767 
768 	if (dev_info.hash_key_size > 0)
769 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
770 	if (dev_info.reta_size > 0)
771 		printf("Redirection table size: %u\n", dev_info.reta_size);
772 	if (!dev_info.flow_type_rss_offloads)
773 		printf("No RSS offload flow type is supported.\n");
774 	else {
775 		uint16_t i;
776 		char *p;
777 
778 		printf("Supported RSS offload flow types:\n");
779 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
780 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
781 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
782 				continue;
783 			p = flowtype_to_str(i);
784 			if (p)
785 				printf("  %s\n", p);
786 			else
787 				printf("  user defined %d\n", i);
788 		}
789 	}
790 
791 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
792 	printf("Maximum configurable length of RX packet: %u\n",
793 		dev_info.max_rx_pktlen);
794 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
795 		dev_info.max_lro_pkt_size);
796 	if (dev_info.max_vfs)
797 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
798 	if (dev_info.max_vmdq_pools)
799 		printf("Maximum number of VMDq pools: %u\n",
800 			dev_info.max_vmdq_pools);
801 
802 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
803 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
804 	printf("Max possible number of RXDs per queue: %hu\n",
805 		dev_info.rx_desc_lim.nb_max);
806 	printf("Min possible number of RXDs per queue: %hu\n",
807 		dev_info.rx_desc_lim.nb_min);
808 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
809 
810 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
811 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
812 	printf("Max possible number of TXDs per queue: %hu\n",
813 		dev_info.tx_desc_lim.nb_max);
814 	printf("Min possible number of TXDs per queue: %hu\n",
815 		dev_info.tx_desc_lim.nb_min);
816 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
817 	printf("Max segment number per packet: %hu\n",
818 		dev_info.tx_desc_lim.nb_seg_max);
819 	printf("Max segment number per MTU/TSO: %hu\n",
820 		dev_info.tx_desc_lim.nb_mtu_seg_max);
821 
822 	printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa);
823 	print_dev_capabilities(dev_info.dev_capa);
824 	printf(" )\n");
825 	/* Show switch info only if valid switch domain and port id is set */
826 	if (dev_info.switch_info.domain_id !=
827 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
828 		if (dev_info.switch_info.name)
829 			printf("Switch name: %s\n", dev_info.switch_info.name);
830 
831 		printf("Switch domain Id: %u\n",
832 			dev_info.switch_info.domain_id);
833 		printf("Switch Port Id: %u\n",
834 			dev_info.switch_info.port_id);
835 		if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0)
836 			printf("Switch Rx domain: %u\n",
837 			       dev_info.switch_info.rx_domain);
838 	}
839 }
840 
841 void
842 port_summary_header_display(void)
843 {
844 	uint16_t port_number;
845 
846 	port_number = rte_eth_dev_count_avail();
847 	printf("Number of available ports: %i\n", port_number);
848 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
849 			"Driver", "Status", "Link");
850 }
851 
852 void
853 port_summary_display(portid_t port_id)
854 {
855 	struct rte_ether_addr mac_addr;
856 	struct rte_eth_link link;
857 	struct rte_eth_dev_info dev_info;
858 	char name[RTE_ETH_NAME_MAX_LEN];
859 	int ret;
860 
861 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
862 		print_valid_ports();
863 		return;
864 	}
865 
866 	ret = eth_link_get_nowait_print_err(port_id, &link);
867 	if (ret < 0)
868 		return;
869 
870 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
871 	if (ret != 0)
872 		return;
873 
874 	rte_eth_dev_get_name_by_port(port_id, name);
875 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
876 	if (ret != 0)
877 		return;
878 
879 	printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n",
880 		port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name,
881 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
882 		rte_eth_link_speed_to_str(link.link_speed));
883 }
884 
885 void
886 port_eeprom_display(portid_t port_id)
887 {
888 	struct rte_dev_eeprom_info einfo;
889 	int ret;
890 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
891 		print_valid_ports();
892 		return;
893 	}
894 
895 	int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
896 	if (len_eeprom < 0) {
897 		switch (len_eeprom) {
898 		case -ENODEV:
899 			fprintf(stderr, "port index %d invalid\n", port_id);
900 			break;
901 		case -ENOTSUP:
902 			fprintf(stderr, "operation not supported by device\n");
903 			break;
904 		case -EIO:
905 			fprintf(stderr, "device is removed\n");
906 			break;
907 		default:
908 			fprintf(stderr, "Unable to get EEPROM: %d\n",
909 				len_eeprom);
910 			break;
911 		}
912 		return;
913 	}
914 
915 	char buf[len_eeprom];
916 	einfo.offset = 0;
917 	einfo.length = len_eeprom;
918 	einfo.data = buf;
919 
920 	ret = rte_eth_dev_get_eeprom(port_id, &einfo);
921 	if (ret != 0) {
922 		switch (ret) {
923 		case -ENODEV:
924 			fprintf(stderr, "port index %d invalid\n", port_id);
925 			break;
926 		case -ENOTSUP:
927 			fprintf(stderr, "operation not supported by device\n");
928 			break;
929 		case -EIO:
930 			fprintf(stderr, "device is removed\n");
931 			break;
932 		default:
933 			fprintf(stderr, "Unable to get EEPROM: %d\n", ret);
934 			break;
935 		}
936 		return;
937 	}
938 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
939 	printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
940 }
941 
942 void
943 port_module_eeprom_display(portid_t port_id)
944 {
945 	struct rte_eth_dev_module_info minfo;
946 	struct rte_dev_eeprom_info einfo;
947 	int ret;
948 
949 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
950 		print_valid_ports();
951 		return;
952 	}
953 
954 
955 	ret = rte_eth_dev_get_module_info(port_id, &minfo);
956 	if (ret != 0) {
957 		switch (ret) {
958 		case -ENODEV:
959 			fprintf(stderr, "port index %d invalid\n", port_id);
960 			break;
961 		case -ENOTSUP:
962 			fprintf(stderr, "operation not supported by device\n");
963 			break;
964 		case -EIO:
965 			fprintf(stderr, "device is removed\n");
966 			break;
967 		default:
968 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
969 				ret);
970 			break;
971 		}
972 		return;
973 	}
974 
975 	char buf[minfo.eeprom_len];
976 	einfo.offset = 0;
977 	einfo.length = minfo.eeprom_len;
978 	einfo.data = buf;
979 
980 	ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
981 	if (ret != 0) {
982 		switch (ret) {
983 		case -ENODEV:
984 			fprintf(stderr, "port index %d invalid\n", port_id);
985 			break;
986 		case -ENOTSUP:
987 			fprintf(stderr, "operation not supported by device\n");
988 			break;
989 		case -EIO:
990 			fprintf(stderr, "device is removed\n");
991 			break;
992 		default:
993 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
994 				ret);
995 			break;
996 		}
997 		return;
998 	}
999 
1000 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
1001 	printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
1002 }
1003 
1004 int
1005 port_id_is_invalid(portid_t port_id, enum print_warning warning)
1006 {
1007 	uint16_t pid;
1008 
1009 	if (port_id == (portid_t)RTE_PORT_ALL)
1010 		return 0;
1011 
1012 	RTE_ETH_FOREACH_DEV(pid)
1013 		if (port_id == pid)
1014 			return 0;
1015 
1016 	if (warning == ENABLED_WARN)
1017 		fprintf(stderr, "Invalid port %d\n", port_id);
1018 
1019 	return 1;
1020 }
1021 
1022 void print_valid_ports(void)
1023 {
1024 	portid_t pid;
1025 
1026 	printf("The valid ports array is [");
1027 	RTE_ETH_FOREACH_DEV(pid) {
1028 		printf(" %d", pid);
1029 	}
1030 	printf(" ]\n");
1031 }
1032 
1033 static int
1034 vlan_id_is_invalid(uint16_t vlan_id)
1035 {
1036 	if (vlan_id < 4096)
1037 		return 0;
1038 	fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id);
1039 	return 1;
1040 }
1041 
1042 static int
1043 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
1044 {
1045 	const struct rte_pci_device *pci_dev;
1046 	const struct rte_bus *bus;
1047 	uint64_t pci_len;
1048 
1049 	if (reg_off & 0x3) {
1050 		fprintf(stderr,
1051 			"Port register offset 0x%X not aligned on a 4-byte boundary\n",
1052 			(unsigned int)reg_off);
1053 		return 1;
1054 	}
1055 
1056 	if (!ports[port_id].dev_info.device) {
1057 		fprintf(stderr, "Invalid device\n");
1058 		return 0;
1059 	}
1060 
1061 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
1062 	if (bus && !strcmp(bus->name, "pci")) {
1063 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
1064 	} else {
1065 		fprintf(stderr, "Not a PCI device\n");
1066 		return 1;
1067 	}
1068 
1069 	pci_len = pci_dev->mem_resource[0].len;
1070 	if (reg_off >= pci_len) {
1071 		fprintf(stderr,
1072 			"Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n",
1073 			port_id, (unsigned int)reg_off, (unsigned int)reg_off,
1074 			pci_len);
1075 		return 1;
1076 	}
1077 	return 0;
1078 }
1079 
1080 static int
1081 reg_bit_pos_is_invalid(uint8_t bit_pos)
1082 {
1083 	if (bit_pos <= 31)
1084 		return 0;
1085 	fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos);
1086 	return 1;
1087 }
1088 
1089 #define display_port_and_reg_off(port_id, reg_off) \
1090 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
1091 
1092 static inline void
1093 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1094 {
1095 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1096 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1097 }
1098 
1099 void
1100 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1101 {
1102 	uint32_t reg_v;
1103 
1104 
1105 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1106 		return;
1107 	if (port_reg_off_is_invalid(port_id, reg_off))
1108 		return;
1109 	if (reg_bit_pos_is_invalid(bit_x))
1110 		return;
1111 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1112 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1113 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1114 }
1115 
1116 void
1117 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1118 			   uint8_t bit1_pos, uint8_t bit2_pos)
1119 {
1120 	uint32_t reg_v;
1121 	uint8_t  l_bit;
1122 	uint8_t  h_bit;
1123 
1124 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1125 		return;
1126 	if (port_reg_off_is_invalid(port_id, reg_off))
1127 		return;
1128 	if (reg_bit_pos_is_invalid(bit1_pos))
1129 		return;
1130 	if (reg_bit_pos_is_invalid(bit2_pos))
1131 		return;
1132 	if (bit1_pos > bit2_pos)
1133 		l_bit = bit2_pos, h_bit = bit1_pos;
1134 	else
1135 		l_bit = bit1_pos, h_bit = bit2_pos;
1136 
1137 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1138 	reg_v >>= l_bit;
1139 	if (h_bit < 31)
1140 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1141 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1142 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1143 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1144 }
1145 
1146 void
1147 port_reg_display(portid_t port_id, uint32_t reg_off)
1148 {
1149 	uint32_t reg_v;
1150 
1151 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1152 		return;
1153 	if (port_reg_off_is_invalid(port_id, reg_off))
1154 		return;
1155 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1156 	display_port_reg_value(port_id, reg_off, reg_v);
1157 }
1158 
1159 void
1160 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1161 		 uint8_t bit_v)
1162 {
1163 	uint32_t reg_v;
1164 
1165 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1166 		return;
1167 	if (port_reg_off_is_invalid(port_id, reg_off))
1168 		return;
1169 	if (reg_bit_pos_is_invalid(bit_pos))
1170 		return;
1171 	if (bit_v > 1) {
1172 		fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n",
1173 			(int) bit_v);
1174 		return;
1175 	}
1176 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1177 	if (bit_v == 0)
1178 		reg_v &= ~(1 << bit_pos);
1179 	else
1180 		reg_v |= (1 << bit_pos);
1181 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1182 	display_port_reg_value(port_id, reg_off, reg_v);
1183 }
1184 
1185 void
1186 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1187 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1188 {
1189 	uint32_t max_v;
1190 	uint32_t reg_v;
1191 	uint8_t  l_bit;
1192 	uint8_t  h_bit;
1193 
1194 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1195 		return;
1196 	if (port_reg_off_is_invalid(port_id, reg_off))
1197 		return;
1198 	if (reg_bit_pos_is_invalid(bit1_pos))
1199 		return;
1200 	if (reg_bit_pos_is_invalid(bit2_pos))
1201 		return;
1202 	if (bit1_pos > bit2_pos)
1203 		l_bit = bit2_pos, h_bit = bit1_pos;
1204 	else
1205 		l_bit = bit1_pos, h_bit = bit2_pos;
1206 
1207 	if ((h_bit - l_bit) < 31)
1208 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1209 	else
1210 		max_v = 0xFFFFFFFF;
1211 
1212 	if (value > max_v) {
1213 		fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n",
1214 				(unsigned)value, (unsigned)value,
1215 				(unsigned)max_v, (unsigned)max_v);
1216 		return;
1217 	}
1218 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1219 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1220 	reg_v |= (value << l_bit); /* Set changed bits */
1221 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1222 	display_port_reg_value(port_id, reg_off, reg_v);
1223 }
1224 
1225 void
1226 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1227 {
1228 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1229 		return;
1230 	if (port_reg_off_is_invalid(port_id, reg_off))
1231 		return;
1232 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1233 	display_port_reg_value(port_id, reg_off, reg_v);
1234 }
1235 
1236 void
1237 port_mtu_set(portid_t port_id, uint16_t mtu)
1238 {
1239 	struct rte_port *port = &ports[port_id];
1240 	int diag;
1241 
1242 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1243 		return;
1244 
1245 	if (port->need_reconfig == 0) {
1246 		diag = rte_eth_dev_set_mtu(port_id, mtu);
1247 		if (diag != 0) {
1248 			fprintf(stderr, "Set MTU failed. diag=%d\n", diag);
1249 			return;
1250 		}
1251 	}
1252 
1253 	port->dev_conf.rxmode.mtu = mtu;
1254 }
1255 
1256 /* Generic flow management functions. */
1257 
1258 static struct port_flow_tunnel *
1259 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
1260 {
1261 	struct port_flow_tunnel *flow_tunnel;
1262 
1263 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1264 		if (flow_tunnel->id == port_tunnel_id)
1265 			goto out;
1266 	}
1267 	flow_tunnel = NULL;
1268 
1269 out:
1270 	return flow_tunnel;
1271 }
1272 
1273 const char *
1274 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
1275 {
1276 	const char *type;
1277 	switch (tunnel->type) {
1278 	default:
1279 		type = "unknown";
1280 		break;
1281 	case RTE_FLOW_ITEM_TYPE_VXLAN:
1282 		type = "vxlan";
1283 		break;
1284 	case RTE_FLOW_ITEM_TYPE_GRE:
1285 		type = "gre";
1286 		break;
1287 	case RTE_FLOW_ITEM_TYPE_NVGRE:
1288 		type = "nvgre";
1289 		break;
1290 	case RTE_FLOW_ITEM_TYPE_GENEVE:
1291 		type = "geneve";
1292 		break;
1293 	}
1294 
1295 	return type;
1296 }
1297 
1298 struct port_flow_tunnel *
1299 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
1300 {
1301 	struct rte_port *port = &ports[port_id];
1302 	struct port_flow_tunnel *flow_tunnel;
1303 
1304 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1305 		if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
1306 			goto out;
1307 	}
1308 	flow_tunnel = NULL;
1309 
1310 out:
1311 	return flow_tunnel;
1312 }
1313 
1314 void port_flow_tunnel_list(portid_t port_id)
1315 {
1316 	struct rte_port *port = &ports[port_id];
1317 	struct port_flow_tunnel *flt;
1318 
1319 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1320 		printf("port %u tunnel #%u type=%s",
1321 			port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
1322 		if (flt->tunnel.tun_id)
1323 			printf(" id=%" PRIu64, flt->tunnel.tun_id);
1324 		printf("\n");
1325 	}
1326 }
1327 
1328 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
1329 {
1330 	struct rte_port *port = &ports[port_id];
1331 	struct port_flow_tunnel *flt;
1332 
1333 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1334 		if (flt->id == tunnel_id)
1335 			break;
1336 	}
1337 	if (flt) {
1338 		LIST_REMOVE(flt, chain);
1339 		free(flt);
1340 		printf("port %u: flow tunnel #%u destroyed\n",
1341 			port_id, tunnel_id);
1342 	}
1343 }
1344 
1345 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
1346 {
1347 	struct rte_port *port = &ports[port_id];
1348 	enum rte_flow_item_type	type;
1349 	struct port_flow_tunnel *flt;
1350 
1351 	if (!strcmp(ops->type, "vxlan"))
1352 		type = RTE_FLOW_ITEM_TYPE_VXLAN;
1353 	else if (!strcmp(ops->type, "gre"))
1354 		type = RTE_FLOW_ITEM_TYPE_GRE;
1355 	else if (!strcmp(ops->type, "nvgre"))
1356 		type = RTE_FLOW_ITEM_TYPE_NVGRE;
1357 	else if (!strcmp(ops->type, "geneve"))
1358 		type = RTE_FLOW_ITEM_TYPE_GENEVE;
1359 	else {
1360 		fprintf(stderr, "cannot offload \"%s\" tunnel type\n",
1361 			ops->type);
1362 		return;
1363 	}
1364 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1365 		if (flt->tunnel.type == type)
1366 			break;
1367 	}
1368 	if (!flt) {
1369 		flt = calloc(1, sizeof(*flt));
1370 		if (!flt) {
1371 			fprintf(stderr, "failed to allocate port flt object\n");
1372 			return;
1373 		}
1374 		flt->tunnel.type = type;
1375 		flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
1376 				  LIST_FIRST(&port->flow_tunnel_list)->id + 1;
1377 		LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
1378 	}
1379 	printf("port %d: flow tunnel #%u type %s\n",
1380 		port_id, flt->id, ops->type);
1381 }
1382 
1383 /** Generate a port_flow entry from attributes/pattern/actions. */
1384 static struct port_flow *
1385 port_flow_new(const struct rte_flow_attr *attr,
1386 	      const struct rte_flow_item *pattern,
1387 	      const struct rte_flow_action *actions,
1388 	      struct rte_flow_error *error)
1389 {
1390 	const struct rte_flow_conv_rule rule = {
1391 		.attr_ro = attr,
1392 		.pattern_ro = pattern,
1393 		.actions_ro = actions,
1394 	};
1395 	struct port_flow *pf;
1396 	int ret;
1397 
1398 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1399 	if (ret < 0)
1400 		return NULL;
1401 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1402 	if (!pf) {
1403 		rte_flow_error_set
1404 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1405 			 "calloc() failed");
1406 		return NULL;
1407 	}
1408 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1409 			  error) >= 0)
1410 		return pf;
1411 	free(pf);
1412 	return NULL;
1413 }
1414 
1415 /** Print a message out of a flow error. */
1416 static int
1417 port_flow_complain(struct rte_flow_error *error)
1418 {
1419 	static const char *const errstrlist[] = {
1420 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1421 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1422 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1423 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1424 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1425 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1426 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1427 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1428 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1429 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1430 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1431 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1432 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1433 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1434 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1435 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1436 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1437 	};
1438 	const char *errstr;
1439 	char buf[32];
1440 	int err = rte_errno;
1441 
1442 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1443 	    !errstrlist[error->type])
1444 		errstr = "unknown type";
1445 	else
1446 		errstr = errstrlist[error->type];
1447 	fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n",
1448 		__func__, error->type, errstr,
1449 		error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1450 					 error->cause), buf) : "",
1451 		error->message ? error->message : "(no stated reason)",
1452 		rte_strerror(err));
1453 
1454 	switch (error->type) {
1455 	case RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER:
1456 		fprintf(stderr, "The status suggests the use of \"transfer\" "
1457 				"as the possible cause of the failure. Make "
1458 				"sure that the flow in question and its "
1459 				"indirect components (if any) are managed "
1460 				"via \"transfer\" proxy port. Use command "
1461 				"\"show port (port_id) flow transfer proxy\" "
1462 				"to figure out the proxy port ID\n");
1463 		break;
1464 	default:
1465 		break;
1466 	}
1467 
1468 	return -err;
1469 }
1470 
1471 static void
1472 rss_config_display(struct rte_flow_action_rss *rss_conf)
1473 {
1474 	uint8_t i;
1475 
1476 	if (rss_conf == NULL) {
1477 		fprintf(stderr, "Invalid rule\n");
1478 		return;
1479 	}
1480 
1481 	printf("RSS:\n"
1482 	       " queues:");
1483 	if (rss_conf->queue_num == 0)
1484 		printf(" none");
1485 	for (i = 0; i < rss_conf->queue_num; i++)
1486 		printf(" %d", rss_conf->queue[i]);
1487 	printf("\n");
1488 
1489 	printf(" function: ");
1490 	switch (rss_conf->func) {
1491 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1492 		printf("default\n");
1493 		break;
1494 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1495 		printf("toeplitz\n");
1496 		break;
1497 	case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
1498 		printf("simple_xor\n");
1499 		break;
1500 	case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
1501 		printf("symmetric_toeplitz\n");
1502 		break;
1503 	default:
1504 		printf("Unknown function\n");
1505 		return;
1506 	}
1507 
1508 	printf(" types:\n");
1509 	if (rss_conf->types == 0) {
1510 		printf("  none\n");
1511 		return;
1512 	}
1513 	for (i = 0; rss_type_table[i].str; i++) {
1514 		if ((rss_conf->types &
1515 		    rss_type_table[i].rss_type) ==
1516 		    rss_type_table[i].rss_type &&
1517 		    rss_type_table[i].rss_type != 0)
1518 			printf("  %s\n", rss_type_table[i].str);
1519 	}
1520 }
1521 
1522 static struct port_indirect_action *
1523 action_get_by_id(portid_t port_id, uint32_t id)
1524 {
1525 	struct rte_port *port;
1526 	struct port_indirect_action **ppia;
1527 	struct port_indirect_action *pia = NULL;
1528 
1529 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1530 	    port_id == (portid_t)RTE_PORT_ALL)
1531 		return NULL;
1532 	port = &ports[port_id];
1533 	ppia = &port->actions_list;
1534 	while (*ppia) {
1535 		if ((*ppia)->id == id) {
1536 			pia = *ppia;
1537 			break;
1538 		}
1539 		ppia = &(*ppia)->next;
1540 	}
1541 	if (!pia)
1542 		fprintf(stderr,
1543 			"Failed to find indirect action #%u on port %u\n",
1544 			id, port_id);
1545 	return pia;
1546 }
1547 
1548 static int
1549 action_alloc(portid_t port_id, uint32_t id,
1550 	     struct port_indirect_action **action)
1551 {
1552 	struct rte_port *port;
1553 	struct port_indirect_action **ppia;
1554 	struct port_indirect_action *pia = NULL;
1555 
1556 	*action = NULL;
1557 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1558 	    port_id == (portid_t)RTE_PORT_ALL)
1559 		return -EINVAL;
1560 	port = &ports[port_id];
1561 	if (id == UINT32_MAX) {
1562 		/* taking first available ID */
1563 		if (port->actions_list) {
1564 			if (port->actions_list->id == UINT32_MAX - 1) {
1565 				fprintf(stderr,
1566 					"Highest indirect action ID is already assigned, delete it first\n");
1567 				return -ENOMEM;
1568 			}
1569 			id = port->actions_list->id + 1;
1570 		} else {
1571 			id = 0;
1572 		}
1573 	}
1574 	pia = calloc(1, sizeof(*pia));
1575 	if (!pia) {
1576 		fprintf(stderr,
1577 			"Allocation of port %u indirect action failed\n",
1578 			port_id);
1579 		return -ENOMEM;
1580 	}
1581 	ppia = &port->actions_list;
1582 	while (*ppia && (*ppia)->id > id)
1583 		ppia = &(*ppia)->next;
1584 	if (*ppia && (*ppia)->id == id) {
1585 		fprintf(stderr,
1586 			"Indirect action #%u is already assigned, delete it first\n",
1587 			id);
1588 		free(pia);
1589 		return -EINVAL;
1590 	}
1591 	pia->next = *ppia;
1592 	pia->id = id;
1593 	*ppia = pia;
1594 	*action = pia;
1595 	return 0;
1596 }
1597 
1598 /** Create indirect action */
1599 int
1600 port_action_handle_create(portid_t port_id, uint32_t id,
1601 			  const struct rte_flow_indir_action_conf *conf,
1602 			  const struct rte_flow_action *action)
1603 {
1604 	struct port_indirect_action *pia;
1605 	int ret;
1606 	struct rte_flow_error error;
1607 
1608 	ret = action_alloc(port_id, id, &pia);
1609 	if (ret)
1610 		return ret;
1611 	if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
1612 		struct rte_flow_action_age *age =
1613 			(struct rte_flow_action_age *)(uintptr_t)(action->conf);
1614 
1615 		pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
1616 		age->context = &pia->age_type;
1617 	} else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) {
1618 		struct rte_flow_action_conntrack *ct =
1619 		(struct rte_flow_action_conntrack *)(uintptr_t)(action->conf);
1620 
1621 		memcpy(ct, &conntrack_context, sizeof(*ct));
1622 	}
1623 	/* Poisoning to make sure PMDs update it in case of error. */
1624 	memset(&error, 0x22, sizeof(error));
1625 	pia->handle = rte_flow_action_handle_create(port_id, conf, action,
1626 						    &error);
1627 	if (!pia->handle) {
1628 		uint32_t destroy_id = pia->id;
1629 		port_action_handle_destroy(port_id, 1, &destroy_id);
1630 		return port_flow_complain(&error);
1631 	}
1632 	pia->type = action->type;
1633 	printf("Indirect action #%u created\n", pia->id);
1634 	return 0;
1635 }
1636 
1637 /** Destroy indirect action */
1638 int
1639 port_action_handle_destroy(portid_t port_id,
1640 			   uint32_t n,
1641 			   const uint32_t *actions)
1642 {
1643 	struct rte_port *port;
1644 	struct port_indirect_action **tmp;
1645 	uint32_t c = 0;
1646 	int ret = 0;
1647 
1648 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1649 	    port_id == (portid_t)RTE_PORT_ALL)
1650 		return -EINVAL;
1651 	port = &ports[port_id];
1652 	tmp = &port->actions_list;
1653 	while (*tmp) {
1654 		uint32_t i;
1655 
1656 		for (i = 0; i != n; ++i) {
1657 			struct rte_flow_error error;
1658 			struct port_indirect_action *pia = *tmp;
1659 
1660 			if (actions[i] != pia->id)
1661 				continue;
1662 			/*
1663 			 * Poisoning to make sure PMDs update it in case
1664 			 * of error.
1665 			 */
1666 			memset(&error, 0x33, sizeof(error));
1667 
1668 			if (pia->handle && rte_flow_action_handle_destroy(
1669 					port_id, pia->handle, &error)) {
1670 				ret = port_flow_complain(&error);
1671 				continue;
1672 			}
1673 			*tmp = pia->next;
1674 			printf("Indirect action #%u destroyed\n", pia->id);
1675 			free(pia);
1676 			break;
1677 		}
1678 		if (i == n)
1679 			tmp = &(*tmp)->next;
1680 		++c;
1681 	}
1682 	return ret;
1683 }
1684 
1685 
1686 /** Get indirect action by port + id */
1687 struct rte_flow_action_handle *
1688 port_action_handle_get_by_id(portid_t port_id, uint32_t id)
1689 {
1690 
1691 	struct port_indirect_action *pia = action_get_by_id(port_id, id);
1692 
1693 	return (pia) ? pia->handle : NULL;
1694 }
1695 
1696 /** Update indirect action */
1697 int
1698 port_action_handle_update(portid_t port_id, uint32_t id,
1699 			  const struct rte_flow_action *action)
1700 {
1701 	struct rte_flow_error error;
1702 	struct rte_flow_action_handle *action_handle;
1703 	struct port_indirect_action *pia;
1704 	const void *update;
1705 
1706 	action_handle = port_action_handle_get_by_id(port_id, id);
1707 	if (!action_handle)
1708 		return -EINVAL;
1709 	pia = action_get_by_id(port_id, id);
1710 	if (!pia)
1711 		return -EINVAL;
1712 	switch (pia->type) {
1713 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1714 		update = action->conf;
1715 		break;
1716 	default:
1717 		update = action;
1718 		break;
1719 	}
1720 	if (rte_flow_action_handle_update(port_id, action_handle, update,
1721 					  &error)) {
1722 		return port_flow_complain(&error);
1723 	}
1724 	printf("Indirect action #%u updated\n", id);
1725 	return 0;
1726 }
1727 
1728 int
1729 port_action_handle_query(portid_t port_id, uint32_t id)
1730 {
1731 	struct rte_flow_error error;
1732 	struct port_indirect_action *pia;
1733 	union {
1734 		struct rte_flow_query_count count;
1735 		struct rte_flow_query_age age;
1736 		struct rte_flow_action_conntrack ct;
1737 	} query;
1738 
1739 	pia = action_get_by_id(port_id, id);
1740 	if (!pia)
1741 		return -EINVAL;
1742 	switch (pia->type) {
1743 	case RTE_FLOW_ACTION_TYPE_AGE:
1744 	case RTE_FLOW_ACTION_TYPE_COUNT:
1745 		break;
1746 	default:
1747 		fprintf(stderr,
1748 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1749 			id, pia->type, port_id);
1750 		return -ENOTSUP;
1751 	}
1752 	/* Poisoning to make sure PMDs update it in case of error. */
1753 	memset(&error, 0x55, sizeof(error));
1754 	memset(&query, 0, sizeof(query));
1755 	if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error))
1756 		return port_flow_complain(&error);
1757 	switch (pia->type) {
1758 	case RTE_FLOW_ACTION_TYPE_AGE:
1759 		printf("Indirect AGE action:\n"
1760 		       " aged: %u\n"
1761 		       " sec_since_last_hit_valid: %u\n"
1762 		       " sec_since_last_hit: %" PRIu32 "\n",
1763 		       query.age.aged,
1764 		       query.age.sec_since_last_hit_valid,
1765 		       query.age.sec_since_last_hit);
1766 		break;
1767 	case RTE_FLOW_ACTION_TYPE_COUNT:
1768 		printf("Indirect COUNT action:\n"
1769 		       " hits_set: %u\n"
1770 		       " bytes_set: %u\n"
1771 		       " hits: %" PRIu64 "\n"
1772 		       " bytes: %" PRIu64 "\n",
1773 		       query.count.hits_set,
1774 		       query.count.bytes_set,
1775 		       query.count.hits,
1776 		       query.count.bytes);
1777 		break;
1778 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1779 		printf("Conntrack Context:\n"
1780 		       "  Peer: %u, Flow dir: %s, Enable: %u\n"
1781 		       "  Live: %u, SACK: %u, CACK: %u\n"
1782 		       "  Packet dir: %s, Liberal: %u, State: %u\n"
1783 		       "  Factor: %u, Retrans: %u, TCP flags: %u\n"
1784 		       "  Last Seq: %u, Last ACK: %u\n"
1785 		       "  Last Win: %u, Last End: %u\n",
1786 		       query.ct.peer_port,
1787 		       query.ct.is_original_dir ? "Original" : "Reply",
1788 		       query.ct.enable, query.ct.live_connection,
1789 		       query.ct.selective_ack, query.ct.challenge_ack_passed,
1790 		       query.ct.last_direction ? "Original" : "Reply",
1791 		       query.ct.liberal_mode, query.ct.state,
1792 		       query.ct.max_ack_window, query.ct.retransmission_limit,
1793 		       query.ct.last_index, query.ct.last_seq,
1794 		       query.ct.last_ack, query.ct.last_window,
1795 		       query.ct.last_end);
1796 		printf("  Original Dir:\n"
1797 		       "    scale: %u, fin: %u, ack seen: %u\n"
1798 		       " unacked data: %u\n    Sent end: %u,"
1799 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1800 		       query.ct.original_dir.scale,
1801 		       query.ct.original_dir.close_initiated,
1802 		       query.ct.original_dir.last_ack_seen,
1803 		       query.ct.original_dir.data_unacked,
1804 		       query.ct.original_dir.sent_end,
1805 		       query.ct.original_dir.reply_end,
1806 		       query.ct.original_dir.max_win,
1807 		       query.ct.original_dir.max_ack);
1808 		printf("  Reply Dir:\n"
1809 		       "    scale: %u, fin: %u, ack seen: %u\n"
1810 		       " unacked data: %u\n    Sent end: %u,"
1811 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1812 		       query.ct.reply_dir.scale,
1813 		       query.ct.reply_dir.close_initiated,
1814 		       query.ct.reply_dir.last_ack_seen,
1815 		       query.ct.reply_dir.data_unacked,
1816 		       query.ct.reply_dir.sent_end,
1817 		       query.ct.reply_dir.reply_end,
1818 		       query.ct.reply_dir.max_win,
1819 		       query.ct.reply_dir.max_ack);
1820 		break;
1821 	default:
1822 		fprintf(stderr,
1823 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1824 			id, pia->type, port_id);
1825 		break;
1826 	}
1827 	return 0;
1828 }
1829 
1830 static struct port_flow_tunnel *
1831 port_flow_tunnel_offload_cmd_prep(portid_t port_id,
1832 				  const struct rte_flow_item *pattern,
1833 				  const struct rte_flow_action *actions,
1834 				  const struct tunnel_ops *tunnel_ops)
1835 {
1836 	int ret;
1837 	struct rte_port *port;
1838 	struct port_flow_tunnel *pft;
1839 	struct rte_flow_error error;
1840 
1841 	port = &ports[port_id];
1842 	pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
1843 	if (!pft) {
1844 		fprintf(stderr, "failed to locate port flow tunnel #%u\n",
1845 			tunnel_ops->id);
1846 		return NULL;
1847 	}
1848 	if (tunnel_ops->actions) {
1849 		uint32_t num_actions;
1850 		const struct rte_flow_action *aptr;
1851 
1852 		ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
1853 						&pft->pmd_actions,
1854 						&pft->num_pmd_actions,
1855 						&error);
1856 		if (ret) {
1857 			port_flow_complain(&error);
1858 			return NULL;
1859 		}
1860 		for (aptr = actions, num_actions = 1;
1861 		     aptr->type != RTE_FLOW_ACTION_TYPE_END;
1862 		     aptr++, num_actions++);
1863 		pft->actions = malloc(
1864 				(num_actions +  pft->num_pmd_actions) *
1865 				sizeof(actions[0]));
1866 		if (!pft->actions) {
1867 			rte_flow_tunnel_action_decap_release(
1868 					port_id, pft->actions,
1869 					pft->num_pmd_actions, &error);
1870 			return NULL;
1871 		}
1872 		rte_memcpy(pft->actions, pft->pmd_actions,
1873 			   pft->num_pmd_actions * sizeof(actions[0]));
1874 		rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
1875 			   num_actions * sizeof(actions[0]));
1876 	}
1877 	if (tunnel_ops->items) {
1878 		uint32_t num_items;
1879 		const struct rte_flow_item *iptr;
1880 
1881 		ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
1882 					    &pft->pmd_items,
1883 					    &pft->num_pmd_items,
1884 					    &error);
1885 		if (ret) {
1886 			port_flow_complain(&error);
1887 			return NULL;
1888 		}
1889 		for (iptr = pattern, num_items = 1;
1890 		     iptr->type != RTE_FLOW_ITEM_TYPE_END;
1891 		     iptr++, num_items++);
1892 		pft->items = malloc((num_items + pft->num_pmd_items) *
1893 				    sizeof(pattern[0]));
1894 		if (!pft->items) {
1895 			rte_flow_tunnel_item_release(
1896 					port_id, pft->pmd_items,
1897 					pft->num_pmd_items, &error);
1898 			return NULL;
1899 		}
1900 		rte_memcpy(pft->items, pft->pmd_items,
1901 			   pft->num_pmd_items * sizeof(pattern[0]));
1902 		rte_memcpy(pft->items + pft->num_pmd_items, pattern,
1903 			   num_items * sizeof(pattern[0]));
1904 	}
1905 
1906 	return pft;
1907 }
1908 
1909 static void
1910 port_flow_tunnel_offload_cmd_release(portid_t port_id,
1911 				     const struct tunnel_ops *tunnel_ops,
1912 				     struct port_flow_tunnel *pft)
1913 {
1914 	struct rte_flow_error error;
1915 
1916 	if (tunnel_ops->actions) {
1917 		free(pft->actions);
1918 		rte_flow_tunnel_action_decap_release(
1919 			port_id, pft->pmd_actions,
1920 			pft->num_pmd_actions, &error);
1921 		pft->actions = NULL;
1922 		pft->pmd_actions = NULL;
1923 	}
1924 	if (tunnel_ops->items) {
1925 		free(pft->items);
1926 		rte_flow_tunnel_item_release(port_id, pft->pmd_items,
1927 					     pft->num_pmd_items,
1928 					     &error);
1929 		pft->items = NULL;
1930 		pft->pmd_items = NULL;
1931 	}
1932 }
1933 
1934 /** Add port meter policy */
1935 int
1936 port_meter_policy_add(portid_t port_id, uint32_t policy_id,
1937 			const struct rte_flow_action *actions)
1938 {
1939 	struct rte_mtr_error error;
1940 	const struct rte_flow_action *act = actions;
1941 	const struct rte_flow_action *start;
1942 	struct rte_mtr_meter_policy_params policy;
1943 	uint32_t i = 0, act_n;
1944 	int ret;
1945 
1946 	for (i = 0; i < RTE_COLORS; i++) {
1947 		for (act_n = 0, start = act;
1948 			act->type != RTE_FLOW_ACTION_TYPE_END; act++)
1949 			act_n++;
1950 		if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END)
1951 			policy.actions[i] = start;
1952 		else
1953 			policy.actions[i] = NULL;
1954 		act++;
1955 	}
1956 	ret = rte_mtr_meter_policy_add(port_id,
1957 			policy_id,
1958 			&policy, &error);
1959 	if (ret)
1960 		print_mtr_err_msg(&error);
1961 	return ret;
1962 }
1963 
1964 /** Validate flow rule. */
1965 int
1966 port_flow_validate(portid_t port_id,
1967 		   const struct rte_flow_attr *attr,
1968 		   const struct rte_flow_item *pattern,
1969 		   const struct rte_flow_action *actions,
1970 		   const struct tunnel_ops *tunnel_ops)
1971 {
1972 	struct rte_flow_error error;
1973 	struct port_flow_tunnel *pft = NULL;
1974 	int ret;
1975 
1976 	/* Poisoning to make sure PMDs update it in case of error. */
1977 	memset(&error, 0x11, sizeof(error));
1978 	if (tunnel_ops->enabled) {
1979 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
1980 							actions, tunnel_ops);
1981 		if (!pft)
1982 			return -ENOENT;
1983 		if (pft->items)
1984 			pattern = pft->items;
1985 		if (pft->actions)
1986 			actions = pft->actions;
1987 	}
1988 	ret = rte_flow_validate(port_id, attr, pattern, actions, &error);
1989 	if (tunnel_ops->enabled)
1990 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
1991 	if (ret)
1992 		return port_flow_complain(&error);
1993 	printf("Flow rule validated\n");
1994 	return 0;
1995 }
1996 
1997 /** Return age action structure if exists, otherwise NULL. */
1998 static struct rte_flow_action_age *
1999 age_action_get(const struct rte_flow_action *actions)
2000 {
2001 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2002 		switch (actions->type) {
2003 		case RTE_FLOW_ACTION_TYPE_AGE:
2004 			return (struct rte_flow_action_age *)
2005 				(uintptr_t)actions->conf;
2006 		default:
2007 			break;
2008 		}
2009 	}
2010 	return NULL;
2011 }
2012 
2013 /** Create flow rule. */
2014 int
2015 port_flow_create(portid_t port_id,
2016 		 const struct rte_flow_attr *attr,
2017 		 const struct rte_flow_item *pattern,
2018 		 const struct rte_flow_action *actions,
2019 		 const struct tunnel_ops *tunnel_ops)
2020 {
2021 	struct rte_flow *flow;
2022 	struct rte_port *port;
2023 	struct port_flow *pf;
2024 	uint32_t id = 0;
2025 	struct rte_flow_error error;
2026 	struct port_flow_tunnel *pft = NULL;
2027 	struct rte_flow_action_age *age = age_action_get(actions);
2028 
2029 	port = &ports[port_id];
2030 	if (port->flow_list) {
2031 		if (port->flow_list->id == UINT32_MAX) {
2032 			fprintf(stderr,
2033 				"Highest rule ID is already assigned, delete it first");
2034 			return -ENOMEM;
2035 		}
2036 		id = port->flow_list->id + 1;
2037 	}
2038 	if (tunnel_ops->enabled) {
2039 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
2040 							actions, tunnel_ops);
2041 		if (!pft)
2042 			return -ENOENT;
2043 		if (pft->items)
2044 			pattern = pft->items;
2045 		if (pft->actions)
2046 			actions = pft->actions;
2047 	}
2048 	pf = port_flow_new(attr, pattern, actions, &error);
2049 	if (!pf)
2050 		return port_flow_complain(&error);
2051 	if (age) {
2052 		pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
2053 		age->context = &pf->age_type;
2054 	}
2055 	/* Poisoning to make sure PMDs update it in case of error. */
2056 	memset(&error, 0x22, sizeof(error));
2057 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
2058 	if (!flow) {
2059 		if (tunnel_ops->enabled)
2060 			port_flow_tunnel_offload_cmd_release(port_id,
2061 							     tunnel_ops, pft);
2062 		free(pf);
2063 		return port_flow_complain(&error);
2064 	}
2065 	pf->next = port->flow_list;
2066 	pf->id = id;
2067 	pf->flow = flow;
2068 	port->flow_list = pf;
2069 	if (tunnel_ops->enabled)
2070 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
2071 	printf("Flow rule #%u created\n", pf->id);
2072 	return 0;
2073 }
2074 
2075 /** Destroy a number of flow rules. */
2076 int
2077 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
2078 {
2079 	struct rte_port *port;
2080 	struct port_flow **tmp;
2081 	uint32_t c = 0;
2082 	int ret = 0;
2083 
2084 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2085 	    port_id == (portid_t)RTE_PORT_ALL)
2086 		return -EINVAL;
2087 	port = &ports[port_id];
2088 	tmp = &port->flow_list;
2089 	while (*tmp) {
2090 		uint32_t i;
2091 
2092 		for (i = 0; i != n; ++i) {
2093 			struct rte_flow_error error;
2094 			struct port_flow *pf = *tmp;
2095 
2096 			if (rule[i] != pf->id)
2097 				continue;
2098 			/*
2099 			 * Poisoning to make sure PMDs update it in case
2100 			 * of error.
2101 			 */
2102 			memset(&error, 0x33, sizeof(error));
2103 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
2104 				ret = port_flow_complain(&error);
2105 				continue;
2106 			}
2107 			printf("Flow rule #%u destroyed\n", pf->id);
2108 			*tmp = pf->next;
2109 			free(pf);
2110 			break;
2111 		}
2112 		if (i == n)
2113 			tmp = &(*tmp)->next;
2114 		++c;
2115 	}
2116 	return ret;
2117 }
2118 
2119 /** Remove all flow rules. */
2120 int
2121 port_flow_flush(portid_t port_id)
2122 {
2123 	struct rte_flow_error error;
2124 	struct rte_port *port;
2125 	int ret = 0;
2126 
2127 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2128 		port_id == (portid_t)RTE_PORT_ALL)
2129 		return -EINVAL;
2130 
2131 	port = &ports[port_id];
2132 
2133 	if (port->flow_list == NULL)
2134 		return ret;
2135 
2136 	/* Poisoning to make sure PMDs update it in case of error. */
2137 	memset(&error, 0x44, sizeof(error));
2138 	if (rte_flow_flush(port_id, &error)) {
2139 		port_flow_complain(&error);
2140 	}
2141 
2142 	while (port->flow_list) {
2143 		struct port_flow *pf = port->flow_list->next;
2144 
2145 		free(port->flow_list);
2146 		port->flow_list = pf;
2147 	}
2148 	return ret;
2149 }
2150 
2151 /** Dump flow rules. */
2152 int
2153 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id,
2154 		const char *file_name)
2155 {
2156 	int ret = 0;
2157 	FILE *file = stdout;
2158 	struct rte_flow_error error;
2159 	struct rte_port *port;
2160 	struct port_flow *pflow;
2161 	struct rte_flow *tmpFlow = NULL;
2162 	bool found = false;
2163 
2164 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2165 		port_id == (portid_t)RTE_PORT_ALL)
2166 		return -EINVAL;
2167 
2168 	if (!dump_all) {
2169 		port = &ports[port_id];
2170 		pflow = port->flow_list;
2171 		while (pflow) {
2172 			if (rule_id != pflow->id) {
2173 				pflow = pflow->next;
2174 			} else {
2175 				tmpFlow = pflow->flow;
2176 				if (tmpFlow)
2177 					found = true;
2178 				break;
2179 			}
2180 		}
2181 		if (found == false) {
2182 			fprintf(stderr, "Failed to dump to flow %d\n", rule_id);
2183 			return -EINVAL;
2184 		}
2185 	}
2186 
2187 	if (file_name && strlen(file_name)) {
2188 		file = fopen(file_name, "w");
2189 		if (!file) {
2190 			fprintf(stderr, "Failed to create file %s: %s\n",
2191 				file_name, strerror(errno));
2192 			return -errno;
2193 		}
2194 	}
2195 
2196 	if (!dump_all)
2197 		ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error);
2198 	else
2199 		ret = rte_flow_dev_dump(port_id, NULL, file, &error);
2200 	if (ret) {
2201 		port_flow_complain(&error);
2202 		fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret));
2203 	} else
2204 		printf("Flow dump finished\n");
2205 	if (file_name && strlen(file_name))
2206 		fclose(file);
2207 	return ret;
2208 }
2209 
2210 /** Query a flow rule. */
2211 int
2212 port_flow_query(portid_t port_id, uint32_t rule,
2213 		const struct rte_flow_action *action)
2214 {
2215 	struct rte_flow_error error;
2216 	struct rte_port *port;
2217 	struct port_flow *pf;
2218 	const char *name;
2219 	union {
2220 		struct rte_flow_query_count count;
2221 		struct rte_flow_action_rss rss_conf;
2222 		struct rte_flow_query_age age;
2223 	} query;
2224 	int ret;
2225 
2226 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2227 	    port_id == (portid_t)RTE_PORT_ALL)
2228 		return -EINVAL;
2229 	port = &ports[port_id];
2230 	for (pf = port->flow_list; pf; pf = pf->next)
2231 		if (pf->id == rule)
2232 			break;
2233 	if (!pf) {
2234 		fprintf(stderr, "Flow rule #%u not found\n", rule);
2235 		return -ENOENT;
2236 	}
2237 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2238 			    &name, sizeof(name),
2239 			    (void *)(uintptr_t)action->type, &error);
2240 	if (ret < 0)
2241 		return port_flow_complain(&error);
2242 	switch (action->type) {
2243 	case RTE_FLOW_ACTION_TYPE_COUNT:
2244 	case RTE_FLOW_ACTION_TYPE_RSS:
2245 	case RTE_FLOW_ACTION_TYPE_AGE:
2246 		break;
2247 	default:
2248 		fprintf(stderr, "Cannot query action type %d (%s)\n",
2249 			action->type, name);
2250 		return -ENOTSUP;
2251 	}
2252 	/* Poisoning to make sure PMDs update it in case of error. */
2253 	memset(&error, 0x55, sizeof(error));
2254 	memset(&query, 0, sizeof(query));
2255 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
2256 		return port_flow_complain(&error);
2257 	switch (action->type) {
2258 	case RTE_FLOW_ACTION_TYPE_COUNT:
2259 		printf("%s:\n"
2260 		       " hits_set: %u\n"
2261 		       " bytes_set: %u\n"
2262 		       " hits: %" PRIu64 "\n"
2263 		       " bytes: %" PRIu64 "\n",
2264 		       name,
2265 		       query.count.hits_set,
2266 		       query.count.bytes_set,
2267 		       query.count.hits,
2268 		       query.count.bytes);
2269 		break;
2270 	case RTE_FLOW_ACTION_TYPE_RSS:
2271 		rss_config_display(&query.rss_conf);
2272 		break;
2273 	case RTE_FLOW_ACTION_TYPE_AGE:
2274 		printf("%s:\n"
2275 		       " aged: %u\n"
2276 		       " sec_since_last_hit_valid: %u\n"
2277 		       " sec_since_last_hit: %" PRIu32 "\n",
2278 		       name,
2279 		       query.age.aged,
2280 		       query.age.sec_since_last_hit_valid,
2281 		       query.age.sec_since_last_hit);
2282 		break;
2283 	default:
2284 		fprintf(stderr,
2285 			"Cannot display result for action type %d (%s)\n",
2286 			action->type, name);
2287 		break;
2288 	}
2289 	return 0;
2290 }
2291 
2292 /** List simply and destroy all aged flows. */
2293 void
2294 port_flow_aged(portid_t port_id, uint8_t destroy)
2295 {
2296 	void **contexts;
2297 	int nb_context, total = 0, idx;
2298 	struct rte_flow_error error;
2299 	enum age_action_context_type *type;
2300 	union {
2301 		struct port_flow *pf;
2302 		struct port_indirect_action *pia;
2303 	} ctx;
2304 
2305 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2306 	    port_id == (portid_t)RTE_PORT_ALL)
2307 		return;
2308 	total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
2309 	printf("Port %u total aged flows: %d\n", port_id, total);
2310 	if (total < 0) {
2311 		port_flow_complain(&error);
2312 		return;
2313 	}
2314 	if (total == 0)
2315 		return;
2316 	contexts = malloc(sizeof(void *) * total);
2317 	if (contexts == NULL) {
2318 		fprintf(stderr, "Cannot allocate contexts for aged flow\n");
2319 		return;
2320 	}
2321 	printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
2322 	nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
2323 	if (nb_context != total) {
2324 		fprintf(stderr,
2325 			"Port:%d get aged flows count(%d) != total(%d)\n",
2326 			port_id, nb_context, total);
2327 		free(contexts);
2328 		return;
2329 	}
2330 	total = 0;
2331 	for (idx = 0; idx < nb_context; idx++) {
2332 		if (!contexts[idx]) {
2333 			fprintf(stderr, "Error: get Null context in port %u\n",
2334 				port_id);
2335 			continue;
2336 		}
2337 		type = (enum age_action_context_type *)contexts[idx];
2338 		switch (*type) {
2339 		case ACTION_AGE_CONTEXT_TYPE_FLOW:
2340 			ctx.pf = container_of(type, struct port_flow, age_type);
2341 			printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
2342 								 "\t%c%c%c\t\n",
2343 			       "Flow",
2344 			       ctx.pf->id,
2345 			       ctx.pf->rule.attr->group,
2346 			       ctx.pf->rule.attr->priority,
2347 			       ctx.pf->rule.attr->ingress ? 'i' : '-',
2348 			       ctx.pf->rule.attr->egress ? 'e' : '-',
2349 			       ctx.pf->rule.attr->transfer ? 't' : '-');
2350 			if (destroy && !port_flow_destroy(port_id, 1,
2351 							  &ctx.pf->id))
2352 				total++;
2353 			break;
2354 		case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION:
2355 			ctx.pia = container_of(type,
2356 					struct port_indirect_action, age_type);
2357 			printf("%-20s\t%" PRIu32 "\n", "Indirect action",
2358 			       ctx.pia->id);
2359 			break;
2360 		default:
2361 			fprintf(stderr, "Error: invalid context type %u\n",
2362 				port_id);
2363 			break;
2364 		}
2365 	}
2366 	printf("\n%d flows destroyed\n", total);
2367 	free(contexts);
2368 }
2369 
2370 /** List flow rules. */
2371 void
2372 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
2373 {
2374 	struct rte_port *port;
2375 	struct port_flow *pf;
2376 	struct port_flow *list = NULL;
2377 	uint32_t i;
2378 
2379 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2380 	    port_id == (portid_t)RTE_PORT_ALL)
2381 		return;
2382 	port = &ports[port_id];
2383 	if (!port->flow_list)
2384 		return;
2385 	/* Sort flows by group, priority and ID. */
2386 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2387 		struct port_flow **tmp;
2388 		const struct rte_flow_attr *curr = pf->rule.attr;
2389 
2390 		if (n) {
2391 			/* Filter out unwanted groups. */
2392 			for (i = 0; i != n; ++i)
2393 				if (curr->group == group[i])
2394 					break;
2395 			if (i == n)
2396 				continue;
2397 		}
2398 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
2399 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
2400 
2401 			if (curr->group > comp->group ||
2402 			    (curr->group == comp->group &&
2403 			     curr->priority > comp->priority) ||
2404 			    (curr->group == comp->group &&
2405 			     curr->priority == comp->priority &&
2406 			     pf->id > (*tmp)->id))
2407 				continue;
2408 			break;
2409 		}
2410 		pf->tmp = *tmp;
2411 		*tmp = pf;
2412 	}
2413 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
2414 	for (pf = list; pf != NULL; pf = pf->tmp) {
2415 		const struct rte_flow_item *item = pf->rule.pattern;
2416 		const struct rte_flow_action *action = pf->rule.actions;
2417 		const char *name;
2418 
2419 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
2420 		       pf->id,
2421 		       pf->rule.attr->group,
2422 		       pf->rule.attr->priority,
2423 		       pf->rule.attr->ingress ? 'i' : '-',
2424 		       pf->rule.attr->egress ? 'e' : '-',
2425 		       pf->rule.attr->transfer ? 't' : '-');
2426 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
2427 			if ((uint32_t)item->type > INT_MAX)
2428 				name = "PMD_INTERNAL";
2429 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
2430 					  &name, sizeof(name),
2431 					  (void *)(uintptr_t)item->type,
2432 					  NULL) <= 0)
2433 				name = "[UNKNOWN]";
2434 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
2435 				printf("%s ", name);
2436 			++item;
2437 		}
2438 		printf("=>");
2439 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
2440 			if ((uint32_t)action->type > INT_MAX)
2441 				name = "PMD_INTERNAL";
2442 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2443 					  &name, sizeof(name),
2444 					  (void *)(uintptr_t)action->type,
2445 					  NULL) <= 0)
2446 				name = "[UNKNOWN]";
2447 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
2448 				printf(" %s", name);
2449 			++action;
2450 		}
2451 		printf("\n");
2452 	}
2453 }
2454 
2455 /** Restrict ingress traffic to the defined flow rules. */
2456 int
2457 port_flow_isolate(portid_t port_id, int set)
2458 {
2459 	struct rte_flow_error error;
2460 
2461 	/* Poisoning to make sure PMDs update it in case of error. */
2462 	memset(&error, 0x66, sizeof(error));
2463 	if (rte_flow_isolate(port_id, set, &error))
2464 		return port_flow_complain(&error);
2465 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
2466 	       port_id,
2467 	       set ? "now restricted" : "not restricted anymore");
2468 	return 0;
2469 }
2470 
2471 /*
2472  * RX/TX ring descriptors display functions.
2473  */
2474 int
2475 rx_queue_id_is_invalid(queueid_t rxq_id)
2476 {
2477 	if (rxq_id < nb_rxq)
2478 		return 0;
2479 	fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n",
2480 		rxq_id, nb_rxq);
2481 	return 1;
2482 }
2483 
2484 int
2485 tx_queue_id_is_invalid(queueid_t txq_id)
2486 {
2487 	if (txq_id < nb_txq)
2488 		return 0;
2489 	fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n",
2490 		txq_id, nb_txq);
2491 	return 1;
2492 }
2493 
2494 static int
2495 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
2496 {
2497 	struct rte_port *port = &ports[port_id];
2498 	struct rte_eth_rxq_info rx_qinfo;
2499 	int ret;
2500 
2501 	ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
2502 	if (ret == 0) {
2503 		*ring_size = rx_qinfo.nb_desc;
2504 		return ret;
2505 	}
2506 
2507 	if (ret != -ENOTSUP)
2508 		return ret;
2509 	/*
2510 	 * If the rte_eth_rx_queue_info_get is not support for this PMD,
2511 	 * ring_size stored in testpmd will be used for validity verification.
2512 	 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
2513 	 * being 0, it will use a default value provided by PMDs to setup this
2514 	 * rxq. If the default value is 0, it will use the
2515 	 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
2516 	 */
2517 	if (port->nb_rx_desc[rxq_id])
2518 		*ring_size = port->nb_rx_desc[rxq_id];
2519 	else if (port->dev_info.default_rxportconf.ring_size)
2520 		*ring_size = port->dev_info.default_rxportconf.ring_size;
2521 	else
2522 		*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
2523 	return 0;
2524 }
2525 
2526 static int
2527 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
2528 {
2529 	struct rte_port *port = &ports[port_id];
2530 	struct rte_eth_txq_info tx_qinfo;
2531 	int ret;
2532 
2533 	ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
2534 	if (ret == 0) {
2535 		*ring_size = tx_qinfo.nb_desc;
2536 		return ret;
2537 	}
2538 
2539 	if (ret != -ENOTSUP)
2540 		return ret;
2541 	/*
2542 	 * If the rte_eth_tx_queue_info_get is not support for this PMD,
2543 	 * ring_size stored in testpmd will be used for validity verification.
2544 	 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
2545 	 * being 0, it will use a default value provided by PMDs to setup this
2546 	 * txq. If the default value is 0, it will use the
2547 	 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
2548 	 */
2549 	if (port->nb_tx_desc[txq_id])
2550 		*ring_size = port->nb_tx_desc[txq_id];
2551 	else if (port->dev_info.default_txportconf.ring_size)
2552 		*ring_size = port->dev_info.default_txportconf.ring_size;
2553 	else
2554 		*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
2555 	return 0;
2556 }
2557 
2558 static int
2559 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
2560 {
2561 	uint16_t ring_size;
2562 	int ret;
2563 
2564 	ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
2565 	if (ret)
2566 		return 1;
2567 
2568 	if (rxdesc_id < ring_size)
2569 		return 0;
2570 
2571 	fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n",
2572 		rxdesc_id, ring_size);
2573 	return 1;
2574 }
2575 
2576 static int
2577 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
2578 {
2579 	uint16_t ring_size;
2580 	int ret;
2581 
2582 	ret = get_tx_ring_size(port_id, txq_id, &ring_size);
2583 	if (ret)
2584 		return 1;
2585 
2586 	if (txdesc_id < ring_size)
2587 		return 0;
2588 
2589 	fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n",
2590 		txdesc_id, ring_size);
2591 	return 1;
2592 }
2593 
2594 static const struct rte_memzone *
2595 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
2596 {
2597 	char mz_name[RTE_MEMZONE_NAMESIZE];
2598 	const struct rte_memzone *mz;
2599 
2600 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
2601 			port_id, q_id, ring_name);
2602 	mz = rte_memzone_lookup(mz_name);
2603 	if (mz == NULL)
2604 		fprintf(stderr,
2605 			"%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n",
2606 			ring_name, port_id, q_id, mz_name);
2607 	return mz;
2608 }
2609 
2610 union igb_ring_dword {
2611 	uint64_t dword;
2612 	struct {
2613 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
2614 		uint32_t lo;
2615 		uint32_t hi;
2616 #else
2617 		uint32_t hi;
2618 		uint32_t lo;
2619 #endif
2620 	} words;
2621 };
2622 
2623 struct igb_ring_desc_32_bytes {
2624 	union igb_ring_dword lo_dword;
2625 	union igb_ring_dword hi_dword;
2626 	union igb_ring_dword resv1;
2627 	union igb_ring_dword resv2;
2628 };
2629 
2630 struct igb_ring_desc_16_bytes {
2631 	union igb_ring_dword lo_dword;
2632 	union igb_ring_dword hi_dword;
2633 };
2634 
2635 static void
2636 ring_rxd_display_dword(union igb_ring_dword dword)
2637 {
2638 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
2639 					(unsigned)dword.words.hi);
2640 }
2641 
2642 static void
2643 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
2644 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2645 			   portid_t port_id,
2646 #else
2647 			   __rte_unused portid_t port_id,
2648 #endif
2649 			   uint16_t desc_id)
2650 {
2651 	struct igb_ring_desc_16_bytes *ring =
2652 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
2653 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2654 	int ret;
2655 	struct rte_eth_dev_info dev_info;
2656 
2657 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2658 	if (ret != 0)
2659 		return;
2660 
2661 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
2662 		/* 32 bytes RX descriptor, i40e only */
2663 		struct igb_ring_desc_32_bytes *ring =
2664 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
2665 		ring[desc_id].lo_dword.dword =
2666 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2667 		ring_rxd_display_dword(ring[desc_id].lo_dword);
2668 		ring[desc_id].hi_dword.dword =
2669 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2670 		ring_rxd_display_dword(ring[desc_id].hi_dword);
2671 		ring[desc_id].resv1.dword =
2672 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
2673 		ring_rxd_display_dword(ring[desc_id].resv1);
2674 		ring[desc_id].resv2.dword =
2675 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
2676 		ring_rxd_display_dword(ring[desc_id].resv2);
2677 
2678 		return;
2679 	}
2680 #endif
2681 	/* 16 bytes RX descriptor */
2682 	ring[desc_id].lo_dword.dword =
2683 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2684 	ring_rxd_display_dword(ring[desc_id].lo_dword);
2685 	ring[desc_id].hi_dword.dword =
2686 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2687 	ring_rxd_display_dword(ring[desc_id].hi_dword);
2688 }
2689 
2690 static void
2691 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
2692 {
2693 	struct igb_ring_desc_16_bytes *ring;
2694 	struct igb_ring_desc_16_bytes txd;
2695 
2696 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
2697 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2698 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2699 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
2700 			(unsigned)txd.lo_dword.words.lo,
2701 			(unsigned)txd.lo_dword.words.hi,
2702 			(unsigned)txd.hi_dword.words.lo,
2703 			(unsigned)txd.hi_dword.words.hi);
2704 }
2705 
2706 void
2707 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
2708 {
2709 	const struct rte_memzone *rx_mz;
2710 
2711 	if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
2712 		return;
2713 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
2714 	if (rx_mz == NULL)
2715 		return;
2716 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
2717 }
2718 
2719 void
2720 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
2721 {
2722 	const struct rte_memzone *tx_mz;
2723 
2724 	if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
2725 		return;
2726 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
2727 	if (tx_mz == NULL)
2728 		return;
2729 	ring_tx_descriptor_display(tx_mz, txd_id);
2730 }
2731 
2732 void
2733 fwd_lcores_config_display(void)
2734 {
2735 	lcoreid_t lc_id;
2736 
2737 	printf("List of forwarding lcores:");
2738 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
2739 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
2740 	printf("\n");
2741 }
2742 void
2743 rxtx_config_display(void)
2744 {
2745 	portid_t pid;
2746 	queueid_t qid;
2747 
2748 	printf("  %s packet forwarding%s packets/burst=%d\n",
2749 	       cur_fwd_eng->fwd_mode_name,
2750 	       retry_enabled == 0 ? "" : " with retry",
2751 	       nb_pkt_per_burst);
2752 
2753 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
2754 		printf("  packet len=%u - nb packet segments=%d\n",
2755 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
2756 
2757 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
2758 	       nb_fwd_lcores, nb_fwd_ports);
2759 
2760 	RTE_ETH_FOREACH_DEV(pid) {
2761 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
2762 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
2763 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
2764 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
2765 		struct rte_eth_rxq_info rx_qinfo;
2766 		struct rte_eth_txq_info tx_qinfo;
2767 		uint16_t rx_free_thresh_tmp;
2768 		uint16_t tx_free_thresh_tmp;
2769 		uint16_t tx_rs_thresh_tmp;
2770 		uint16_t nb_rx_desc_tmp;
2771 		uint16_t nb_tx_desc_tmp;
2772 		uint64_t offloads_tmp;
2773 		uint8_t pthresh_tmp;
2774 		uint8_t hthresh_tmp;
2775 		uint8_t wthresh_tmp;
2776 		int32_t rc;
2777 
2778 		/* per port config */
2779 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
2780 				(unsigned int)pid, nb_rxq, nb_txq);
2781 
2782 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
2783 				ports[pid].dev_conf.rxmode.offloads,
2784 				ports[pid].dev_conf.txmode.offloads);
2785 
2786 		/* per rx queue config only for first queue to be less verbose */
2787 		for (qid = 0; qid < 1; qid++) {
2788 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
2789 			if (rc) {
2790 				nb_rx_desc_tmp = nb_rx_desc[qid];
2791 				rx_free_thresh_tmp =
2792 					rx_conf[qid].rx_free_thresh;
2793 				pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
2794 				hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
2795 				wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
2796 				offloads_tmp = rx_conf[qid].offloads;
2797 			} else {
2798 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
2799 				rx_free_thresh_tmp =
2800 						rx_qinfo.conf.rx_free_thresh;
2801 				pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
2802 				hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
2803 				wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
2804 				offloads_tmp = rx_qinfo.conf.offloads;
2805 			}
2806 
2807 			printf("    RX queue: %d\n", qid);
2808 			printf("      RX desc=%d - RX free threshold=%d\n",
2809 				nb_rx_desc_tmp, rx_free_thresh_tmp);
2810 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
2811 				" wthresh=%d\n",
2812 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2813 			printf("      RX Offloads=0x%"PRIx64, offloads_tmp);
2814 			if (rx_conf->share_group > 0)
2815 				printf(" share_group=%u share_qid=%u",
2816 				       rx_conf->share_group,
2817 				       rx_conf->share_qid);
2818 			printf("\n");
2819 		}
2820 
2821 		/* per tx queue config only for first queue to be less verbose */
2822 		for (qid = 0; qid < 1; qid++) {
2823 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
2824 			if (rc) {
2825 				nb_tx_desc_tmp = nb_tx_desc[qid];
2826 				tx_free_thresh_tmp =
2827 					tx_conf[qid].tx_free_thresh;
2828 				pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
2829 				hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
2830 				wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
2831 				offloads_tmp = tx_conf[qid].offloads;
2832 				tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
2833 			} else {
2834 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
2835 				tx_free_thresh_tmp =
2836 						tx_qinfo.conf.tx_free_thresh;
2837 				pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
2838 				hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
2839 				wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
2840 				offloads_tmp = tx_qinfo.conf.offloads;
2841 				tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
2842 			}
2843 
2844 			printf("    TX queue: %d\n", qid);
2845 			printf("      TX desc=%d - TX free threshold=%d\n",
2846 				nb_tx_desc_tmp, tx_free_thresh_tmp);
2847 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
2848 				" wthresh=%d\n",
2849 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2850 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
2851 				offloads_tmp, tx_rs_thresh_tmp);
2852 		}
2853 	}
2854 }
2855 
2856 void
2857 port_rss_reta_info(portid_t port_id,
2858 		   struct rte_eth_rss_reta_entry64 *reta_conf,
2859 		   uint16_t nb_entries)
2860 {
2861 	uint16_t i, idx, shift;
2862 	int ret;
2863 
2864 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2865 		return;
2866 
2867 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
2868 	if (ret != 0) {
2869 		fprintf(stderr,
2870 			"Failed to get RSS RETA info, return code = %d\n",
2871 			ret);
2872 		return;
2873 	}
2874 
2875 	for (i = 0; i < nb_entries; i++) {
2876 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
2877 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
2878 		if (!(reta_conf[idx].mask & (1ULL << shift)))
2879 			continue;
2880 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
2881 					i, reta_conf[idx].reta[shift]);
2882 	}
2883 }
2884 
2885 /*
2886  * Displays the RSS hash functions of a port, and, optionally, the RSS hash
2887  * key of the port.
2888  */
2889 void
2890 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
2891 {
2892 	struct rte_eth_rss_conf rss_conf = {0};
2893 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
2894 	uint64_t rss_hf;
2895 	uint8_t i;
2896 	int diag;
2897 	struct rte_eth_dev_info dev_info;
2898 	uint8_t hash_key_size;
2899 	int ret;
2900 
2901 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2902 		return;
2903 
2904 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2905 	if (ret != 0)
2906 		return;
2907 
2908 	if (dev_info.hash_key_size > 0 &&
2909 			dev_info.hash_key_size <= sizeof(rss_key))
2910 		hash_key_size = dev_info.hash_key_size;
2911 	else {
2912 		fprintf(stderr,
2913 			"dev_info did not provide a valid hash key size\n");
2914 		return;
2915 	}
2916 
2917 	/* Get RSS hash key if asked to display it */
2918 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2919 	rss_conf.rss_key_len = hash_key_size;
2920 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2921 	if (diag != 0) {
2922 		switch (diag) {
2923 		case -ENODEV:
2924 			fprintf(stderr, "port index %d invalid\n", port_id);
2925 			break;
2926 		case -ENOTSUP:
2927 			fprintf(stderr, "operation not supported by device\n");
2928 			break;
2929 		default:
2930 			fprintf(stderr, "operation failed - diag=%d\n", diag);
2931 			break;
2932 		}
2933 		return;
2934 	}
2935 	rss_hf = rss_conf.rss_hf;
2936 	if (rss_hf == 0) {
2937 		printf("RSS disabled\n");
2938 		return;
2939 	}
2940 	printf("RSS functions:\n ");
2941 	for (i = 0; rss_type_table[i].str; i++) {
2942 		if (rss_type_table[i].rss_type == 0)
2943 			continue;
2944 		if ((rss_hf & rss_type_table[i].rss_type) == rss_type_table[i].rss_type)
2945 			printf("%s ", rss_type_table[i].str);
2946 	}
2947 	printf("\n");
2948 	if (!show_rss_key)
2949 		return;
2950 	printf("RSS key:\n");
2951 	for (i = 0; i < hash_key_size; i++)
2952 		printf("%02X", rss_key[i]);
2953 	printf("\n");
2954 }
2955 
2956 void
2957 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2958 			 uint8_t hash_key_len)
2959 {
2960 	struct rte_eth_rss_conf rss_conf;
2961 	int diag;
2962 	unsigned int i;
2963 
2964 	rss_conf.rss_key = NULL;
2965 	rss_conf.rss_key_len = 0;
2966 	rss_conf.rss_hf = 0;
2967 	for (i = 0; rss_type_table[i].str; i++) {
2968 		if (!strcmp(rss_type_table[i].str, rss_type))
2969 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2970 	}
2971 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2972 	if (diag == 0) {
2973 		rss_conf.rss_key = hash_key;
2974 		rss_conf.rss_key_len = hash_key_len;
2975 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2976 	}
2977 	if (diag == 0)
2978 		return;
2979 
2980 	switch (diag) {
2981 	case -ENODEV:
2982 		fprintf(stderr, "port index %d invalid\n", port_id);
2983 		break;
2984 	case -ENOTSUP:
2985 		fprintf(stderr, "operation not supported by device\n");
2986 		break;
2987 	default:
2988 		fprintf(stderr, "operation failed - diag=%d\n", diag);
2989 		break;
2990 	}
2991 }
2992 
2993 /*
2994  * Check whether a shared rxq scheduled on other lcores.
2995  */
2996 static bool
2997 fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc,
2998 			   portid_t src_port, queueid_t src_rxq,
2999 			   uint32_t share_group, queueid_t share_rxq)
3000 {
3001 	streamid_t sm_id;
3002 	streamid_t nb_fs_per_lcore;
3003 	lcoreid_t  nb_fc;
3004 	lcoreid_t  lc_id;
3005 	struct fwd_stream *fs;
3006 	struct rte_port *port;
3007 	struct rte_eth_dev_info *dev_info;
3008 	struct rte_eth_rxconf *rxq_conf;
3009 
3010 	nb_fc = cur_fwd_config.nb_fwd_lcores;
3011 	/* Check remaining cores. */
3012 	for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) {
3013 		sm_id = fwd_lcores[lc_id]->stream_idx;
3014 		nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
3015 		for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
3016 		     sm_id++) {
3017 			fs = fwd_streams[sm_id];
3018 			port = &ports[fs->rx_port];
3019 			dev_info = &port->dev_info;
3020 			rxq_conf = &port->rx_conf[fs->rx_queue];
3021 			if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
3022 			    == 0 || rxq_conf->share_group == 0)
3023 				/* Not shared rxq. */
3024 				continue;
3025 			if (domain_id != port->dev_info.switch_info.domain_id)
3026 				continue;
3027 			if (rxq_conf->share_group != share_group)
3028 				continue;
3029 			if (rxq_conf->share_qid != share_rxq)
3030 				continue;
3031 			printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n",
3032 			       share_group, share_rxq);
3033 			printf("  lcore %hhu Port %hu queue %hu\n",
3034 			       src_lc, src_port, src_rxq);
3035 			printf("  lcore %hhu Port %hu queue %hu\n",
3036 			       lc_id, fs->rx_port, fs->rx_queue);
3037 			printf("Please use --nb-cores=%hu to limit number of forwarding cores\n",
3038 			       nb_rxq);
3039 			return true;
3040 		}
3041 	}
3042 	return false;
3043 }
3044 
3045 /*
3046  * Check shared rxq configuration.
3047  *
3048  * Shared group must not being scheduled on different core.
3049  */
3050 bool
3051 pkt_fwd_shared_rxq_check(void)
3052 {
3053 	streamid_t sm_id;
3054 	streamid_t nb_fs_per_lcore;
3055 	lcoreid_t  nb_fc;
3056 	lcoreid_t  lc_id;
3057 	struct fwd_stream *fs;
3058 	uint16_t domain_id;
3059 	struct rte_port *port;
3060 	struct rte_eth_dev_info *dev_info;
3061 	struct rte_eth_rxconf *rxq_conf;
3062 
3063 	if (rxq_share == 0)
3064 		return true;
3065 	nb_fc = cur_fwd_config.nb_fwd_lcores;
3066 	/*
3067 	 * Check streams on each core, make sure the same switch domain +
3068 	 * group + queue doesn't get scheduled on other cores.
3069 	 */
3070 	for (lc_id = 0; lc_id < nb_fc; lc_id++) {
3071 		sm_id = fwd_lcores[lc_id]->stream_idx;
3072 		nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
3073 		for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
3074 		     sm_id++) {
3075 			fs = fwd_streams[sm_id];
3076 			/* Update lcore info stream being scheduled. */
3077 			fs->lcore = fwd_lcores[lc_id];
3078 			port = &ports[fs->rx_port];
3079 			dev_info = &port->dev_info;
3080 			rxq_conf = &port->rx_conf[fs->rx_queue];
3081 			if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
3082 			    == 0 || rxq_conf->share_group == 0)
3083 				/* Not shared rxq. */
3084 				continue;
3085 			/* Check shared rxq not scheduled on remaining cores. */
3086 			domain_id = port->dev_info.switch_info.domain_id;
3087 			if (fwd_stream_on_other_lcores(domain_id, lc_id,
3088 						       fs->rx_port,
3089 						       fs->rx_queue,
3090 						       rxq_conf->share_group,
3091 						       rxq_conf->share_qid))
3092 				return false;
3093 		}
3094 	}
3095 	return true;
3096 }
3097 
3098 /*
3099  * Setup forwarding configuration for each logical core.
3100  */
3101 static void
3102 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
3103 {
3104 	streamid_t nb_fs_per_lcore;
3105 	streamid_t nb_fs;
3106 	streamid_t sm_id;
3107 	lcoreid_t  nb_extra;
3108 	lcoreid_t  nb_fc;
3109 	lcoreid_t  nb_lc;
3110 	lcoreid_t  lc_id;
3111 
3112 	nb_fs = cfg->nb_fwd_streams;
3113 	nb_fc = cfg->nb_fwd_lcores;
3114 	if (nb_fs <= nb_fc) {
3115 		nb_fs_per_lcore = 1;
3116 		nb_extra = 0;
3117 	} else {
3118 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
3119 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
3120 	}
3121 
3122 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
3123 	sm_id = 0;
3124 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
3125 		fwd_lcores[lc_id]->stream_idx = sm_id;
3126 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
3127 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3128 	}
3129 
3130 	/*
3131 	 * Assign extra remaining streams, if any.
3132 	 */
3133 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
3134 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
3135 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
3136 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
3137 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3138 	}
3139 }
3140 
3141 static portid_t
3142 fwd_topology_tx_port_get(portid_t rxp)
3143 {
3144 	static int warning_once = 1;
3145 
3146 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
3147 
3148 	switch (port_topology) {
3149 	default:
3150 	case PORT_TOPOLOGY_PAIRED:
3151 		if ((rxp & 0x1) == 0) {
3152 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
3153 				return rxp + 1;
3154 			if (warning_once) {
3155 				fprintf(stderr,
3156 					"\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n");
3157 				warning_once = 0;
3158 			}
3159 			return rxp;
3160 		}
3161 		return rxp - 1;
3162 	case PORT_TOPOLOGY_CHAINED:
3163 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
3164 	case PORT_TOPOLOGY_LOOP:
3165 		return rxp;
3166 	}
3167 }
3168 
3169 static void
3170 simple_fwd_config_setup(void)
3171 {
3172 	portid_t i;
3173 
3174 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
3175 	cur_fwd_config.nb_fwd_streams =
3176 		(streamid_t) cur_fwd_config.nb_fwd_ports;
3177 
3178 	/* reinitialize forwarding streams */
3179 	init_fwd_streams();
3180 
3181 	/*
3182 	 * In the simple forwarding test, the number of forwarding cores
3183 	 * must be lower or equal to the number of forwarding ports.
3184 	 */
3185 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3186 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
3187 		cur_fwd_config.nb_fwd_lcores =
3188 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
3189 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3190 
3191 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
3192 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
3193 		fwd_streams[i]->rx_queue  = 0;
3194 		fwd_streams[i]->tx_port   =
3195 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
3196 		fwd_streams[i]->tx_queue  = 0;
3197 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
3198 		fwd_streams[i]->retry_enabled = retry_enabled;
3199 	}
3200 }
3201 
3202 /**
3203  * For the RSS forwarding test all streams distributed over lcores. Each stream
3204  * being composed of a RX queue to poll on a RX port for input messages,
3205  * associated with a TX queue of a TX port where to send forwarded packets.
3206  */
3207 static void
3208 rss_fwd_config_setup(void)
3209 {
3210 	portid_t   rxp;
3211 	portid_t   txp;
3212 	queueid_t  rxq;
3213 	queueid_t  nb_q;
3214 	streamid_t  sm_id;
3215 	int start;
3216 	int end;
3217 
3218 	nb_q = nb_rxq;
3219 	if (nb_q > nb_txq)
3220 		nb_q = nb_txq;
3221 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3222 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3223 	cur_fwd_config.nb_fwd_streams =
3224 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
3225 
3226 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3227 		cur_fwd_config.nb_fwd_lcores =
3228 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3229 
3230 	/* reinitialize forwarding streams */
3231 	init_fwd_streams();
3232 
3233 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3234 
3235 	if (proc_id > 0 && nb_q % num_procs != 0)
3236 		printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n");
3237 
3238 	/**
3239 	 * In multi-process, All queues are allocated to different
3240 	 * processes based on num_procs and proc_id. For example:
3241 	 * if supports 4 queues(nb_q), 2 processes(num_procs),
3242 	 * the 0~1 queue for primary process.
3243 	 * the 2~3 queue for secondary process.
3244 	 */
3245 	start = proc_id * nb_q / num_procs;
3246 	end = start + nb_q / num_procs;
3247 	rxp = 0;
3248 	rxq = start;
3249 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
3250 		struct fwd_stream *fs;
3251 
3252 		fs = fwd_streams[sm_id];
3253 		txp = fwd_topology_tx_port_get(rxp);
3254 		fs->rx_port = fwd_ports_ids[rxp];
3255 		fs->rx_queue = rxq;
3256 		fs->tx_port = fwd_ports_ids[txp];
3257 		fs->tx_queue = rxq;
3258 		fs->peer_addr = fs->tx_port;
3259 		fs->retry_enabled = retry_enabled;
3260 		rxp++;
3261 		if (rxp < nb_fwd_ports)
3262 			continue;
3263 		rxp = 0;
3264 		rxq++;
3265 		if (rxq >= end)
3266 			rxq = start;
3267 	}
3268 }
3269 
3270 static uint16_t
3271 get_fwd_port_total_tc_num(void)
3272 {
3273 	struct rte_eth_dcb_info dcb_info;
3274 	uint16_t total_tc_num = 0;
3275 	unsigned int i;
3276 
3277 	for (i = 0; i < nb_fwd_ports; i++) {
3278 		(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info);
3279 		total_tc_num += dcb_info.nb_tcs;
3280 	}
3281 
3282 	return total_tc_num;
3283 }
3284 
3285 /**
3286  * For the DCB forwarding test, each core is assigned on each traffic class.
3287  *
3288  * Each core is assigned a multi-stream, each stream being composed of
3289  * a RX queue to poll on a RX port for input messages, associated with
3290  * a TX queue of a TX port where to send forwarded packets. All RX and
3291  * TX queues are mapping to the same traffic class.
3292  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
3293  * the same core
3294  */
3295 static void
3296 dcb_fwd_config_setup(void)
3297 {
3298 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
3299 	portid_t txp, rxp = 0;
3300 	queueid_t txq, rxq = 0;
3301 	lcoreid_t  lc_id;
3302 	uint16_t nb_rx_queue, nb_tx_queue;
3303 	uint16_t i, j, k, sm_id = 0;
3304 	uint16_t total_tc_num;
3305 	struct rte_port *port;
3306 	uint8_t tc = 0;
3307 	portid_t pid;
3308 	int ret;
3309 
3310 	/*
3311 	 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED
3312 	 * or RTE_PORT_STOPPED.
3313 	 *
3314 	 * Re-configure ports to get updated mapping between tc and queue in
3315 	 * case the queue number of the port is changed. Skip for started ports
3316 	 * since modifying queue number and calling dev_configure need to stop
3317 	 * ports first.
3318 	 */
3319 	for (pid = 0; pid < nb_fwd_ports; pid++) {
3320 		if (port_is_started(pid) == 1)
3321 			continue;
3322 
3323 		port = &ports[pid];
3324 		ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq,
3325 					    &port->dev_conf);
3326 		if (ret < 0) {
3327 			fprintf(stderr,
3328 				"Failed to re-configure port %d, ret = %d.\n",
3329 				pid, ret);
3330 			return;
3331 		}
3332 	}
3333 
3334 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3335 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3336 	cur_fwd_config.nb_fwd_streams =
3337 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3338 	total_tc_num = get_fwd_port_total_tc_num();
3339 	if (cur_fwd_config.nb_fwd_lcores > total_tc_num)
3340 		cur_fwd_config.nb_fwd_lcores = total_tc_num;
3341 
3342 	/* reinitialize forwarding streams */
3343 	init_fwd_streams();
3344 	sm_id = 0;
3345 	txp = 1;
3346 	/* get the dcb info on the first RX and TX ports */
3347 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3348 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3349 
3350 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3351 		fwd_lcores[lc_id]->stream_nb = 0;
3352 		fwd_lcores[lc_id]->stream_idx = sm_id;
3353 		for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) {
3354 			/* if the nb_queue is zero, means this tc is
3355 			 * not enabled on the POOL
3356 			 */
3357 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
3358 				break;
3359 			k = fwd_lcores[lc_id]->stream_nb +
3360 				fwd_lcores[lc_id]->stream_idx;
3361 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
3362 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
3363 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3364 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
3365 			for (j = 0; j < nb_rx_queue; j++) {
3366 				struct fwd_stream *fs;
3367 
3368 				fs = fwd_streams[k + j];
3369 				fs->rx_port = fwd_ports_ids[rxp];
3370 				fs->rx_queue = rxq + j;
3371 				fs->tx_port = fwd_ports_ids[txp];
3372 				fs->tx_queue = txq + j % nb_tx_queue;
3373 				fs->peer_addr = fs->tx_port;
3374 				fs->retry_enabled = retry_enabled;
3375 			}
3376 			fwd_lcores[lc_id]->stream_nb +=
3377 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3378 		}
3379 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
3380 
3381 		tc++;
3382 		if (tc < rxp_dcb_info.nb_tcs)
3383 			continue;
3384 		/* Restart from TC 0 on next RX port */
3385 		tc = 0;
3386 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
3387 			rxp = (portid_t)
3388 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
3389 		else
3390 			rxp++;
3391 		if (rxp >= nb_fwd_ports)
3392 			return;
3393 		/* get the dcb information on next RX and TX ports */
3394 		if ((rxp & 0x1) == 0)
3395 			txp = (portid_t) (rxp + 1);
3396 		else
3397 			txp = (portid_t) (rxp - 1);
3398 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3399 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3400 	}
3401 }
3402 
3403 static void
3404 icmp_echo_config_setup(void)
3405 {
3406 	portid_t  rxp;
3407 	queueid_t rxq;
3408 	lcoreid_t lc_id;
3409 	uint16_t  sm_id;
3410 
3411 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
3412 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
3413 			(nb_txq * nb_fwd_ports);
3414 	else
3415 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3416 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3417 	cur_fwd_config.nb_fwd_streams =
3418 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3419 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3420 		cur_fwd_config.nb_fwd_lcores =
3421 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3422 	if (verbose_level > 0) {
3423 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
3424 		       __FUNCTION__,
3425 		       cur_fwd_config.nb_fwd_lcores,
3426 		       cur_fwd_config.nb_fwd_ports,
3427 		       cur_fwd_config.nb_fwd_streams);
3428 	}
3429 
3430 	/* reinitialize forwarding streams */
3431 	init_fwd_streams();
3432 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3433 	rxp = 0; rxq = 0;
3434 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3435 		if (verbose_level > 0)
3436 			printf("  core=%d: \n", lc_id);
3437 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3438 			struct fwd_stream *fs;
3439 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3440 			fs->rx_port = fwd_ports_ids[rxp];
3441 			fs->rx_queue = rxq;
3442 			fs->tx_port = fs->rx_port;
3443 			fs->tx_queue = rxq;
3444 			fs->peer_addr = fs->tx_port;
3445 			fs->retry_enabled = retry_enabled;
3446 			if (verbose_level > 0)
3447 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
3448 				       sm_id, fs->rx_port, fs->rx_queue,
3449 				       fs->tx_queue);
3450 			rxq = (queueid_t) (rxq + 1);
3451 			if (rxq == nb_rxq) {
3452 				rxq = 0;
3453 				rxp = (portid_t) (rxp + 1);
3454 			}
3455 		}
3456 	}
3457 }
3458 
3459 void
3460 fwd_config_setup(void)
3461 {
3462 	struct rte_port *port;
3463 	portid_t pt_id;
3464 	unsigned int i;
3465 
3466 	cur_fwd_config.fwd_eng = cur_fwd_eng;
3467 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
3468 		icmp_echo_config_setup();
3469 		return;
3470 	}
3471 
3472 	if ((nb_rxq > 1) && (nb_txq > 1)){
3473 		if (dcb_config) {
3474 			for (i = 0; i < nb_fwd_ports; i++) {
3475 				pt_id = fwd_ports_ids[i];
3476 				port = &ports[pt_id];
3477 				if (!port->dcb_flag) {
3478 					fprintf(stderr,
3479 						"In DCB mode, all forwarding ports must be configured in this mode.\n");
3480 					return;
3481 				}
3482 			}
3483 			if (nb_fwd_lcores == 1) {
3484 				fprintf(stderr,
3485 					"In DCB mode,the nb forwarding cores should be larger than 1.\n");
3486 				return;
3487 			}
3488 
3489 			dcb_fwd_config_setup();
3490 		} else
3491 			rss_fwd_config_setup();
3492 	}
3493 	else
3494 		simple_fwd_config_setup();
3495 }
3496 
3497 static const char *
3498 mp_alloc_to_str(uint8_t mode)
3499 {
3500 	switch (mode) {
3501 	case MP_ALLOC_NATIVE:
3502 		return "native";
3503 	case MP_ALLOC_ANON:
3504 		return "anon";
3505 	case MP_ALLOC_XMEM:
3506 		return "xmem";
3507 	case MP_ALLOC_XMEM_HUGE:
3508 		return "xmemhuge";
3509 	case MP_ALLOC_XBUF:
3510 		return "xbuf";
3511 	default:
3512 		return "invalid";
3513 	}
3514 }
3515 
3516 void
3517 pkt_fwd_config_display(struct fwd_config *cfg)
3518 {
3519 	struct fwd_stream *fs;
3520 	lcoreid_t  lc_id;
3521 	streamid_t sm_id;
3522 
3523 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
3524 		"NUMA support %s, MP allocation mode: %s\n",
3525 		cfg->fwd_eng->fwd_mode_name,
3526 		retry_enabled == 0 ? "" : " with retry",
3527 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
3528 		numa_support == 1 ? "enabled" : "disabled",
3529 		mp_alloc_to_str(mp_alloc_type));
3530 
3531 	if (retry_enabled)
3532 		printf("TX retry num: %u, delay between TX retries: %uus\n",
3533 			burst_tx_retry_num, burst_tx_delay_time);
3534 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
3535 		printf("Logical Core %u (socket %u) forwards packets on "
3536 		       "%d streams:",
3537 		       fwd_lcores_cpuids[lc_id],
3538 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
3539 		       fwd_lcores[lc_id]->stream_nb);
3540 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3541 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3542 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
3543 			       "P=%d/Q=%d (socket %u) ",
3544 			       fs->rx_port, fs->rx_queue,
3545 			       ports[fs->rx_port].socket_id,
3546 			       fs->tx_port, fs->tx_queue,
3547 			       ports[fs->tx_port].socket_id);
3548 			print_ethaddr("peer=",
3549 				      &peer_eth_addrs[fs->peer_addr]);
3550 		}
3551 		printf("\n");
3552 	}
3553 	printf("\n");
3554 }
3555 
3556 void
3557 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
3558 {
3559 	struct rte_ether_addr new_peer_addr;
3560 	if (!rte_eth_dev_is_valid_port(port_id)) {
3561 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
3562 		return;
3563 	}
3564 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
3565 		fprintf(stderr, "Error: Invalid ethernet address: %s\n",
3566 			peer_addr);
3567 		return;
3568 	}
3569 	peer_eth_addrs[port_id] = new_peer_addr;
3570 }
3571 
3572 int
3573 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
3574 {
3575 	unsigned int i;
3576 	unsigned int lcore_cpuid;
3577 	int record_now;
3578 
3579 	record_now = 0;
3580  again:
3581 	for (i = 0; i < nb_lc; i++) {
3582 		lcore_cpuid = lcorelist[i];
3583 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
3584 			fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid);
3585 			return -1;
3586 		}
3587 		if (lcore_cpuid == rte_get_main_lcore()) {
3588 			fprintf(stderr,
3589 				"lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n",
3590 				lcore_cpuid);
3591 			return -1;
3592 		}
3593 		if (record_now)
3594 			fwd_lcores_cpuids[i] = lcore_cpuid;
3595 	}
3596 	if (record_now == 0) {
3597 		record_now = 1;
3598 		goto again;
3599 	}
3600 	nb_cfg_lcores = (lcoreid_t) nb_lc;
3601 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
3602 		printf("previous number of forwarding cores %u - changed to "
3603 		       "number of configured cores %u\n",
3604 		       (unsigned int) nb_fwd_lcores, nb_lc);
3605 		nb_fwd_lcores = (lcoreid_t) nb_lc;
3606 	}
3607 
3608 	return 0;
3609 }
3610 
3611 int
3612 set_fwd_lcores_mask(uint64_t lcoremask)
3613 {
3614 	unsigned int lcorelist[64];
3615 	unsigned int nb_lc;
3616 	unsigned int i;
3617 
3618 	if (lcoremask == 0) {
3619 		fprintf(stderr, "Invalid NULL mask of cores\n");
3620 		return -1;
3621 	}
3622 	nb_lc = 0;
3623 	for (i = 0; i < 64; i++) {
3624 		if (! ((uint64_t)(1ULL << i) & lcoremask))
3625 			continue;
3626 		lcorelist[nb_lc++] = i;
3627 	}
3628 	return set_fwd_lcores_list(lcorelist, nb_lc);
3629 }
3630 
3631 void
3632 set_fwd_lcores_number(uint16_t nb_lc)
3633 {
3634 	if (test_done == 0) {
3635 		fprintf(stderr, "Please stop forwarding first\n");
3636 		return;
3637 	}
3638 	if (nb_lc > nb_cfg_lcores) {
3639 		fprintf(stderr,
3640 			"nb fwd cores %u > %u (max. number of configured lcores) - ignored\n",
3641 			(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
3642 		return;
3643 	}
3644 	nb_fwd_lcores = (lcoreid_t) nb_lc;
3645 	printf("Number of forwarding cores set to %u\n",
3646 	       (unsigned int) nb_fwd_lcores);
3647 }
3648 
3649 void
3650 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
3651 {
3652 	unsigned int i;
3653 	portid_t port_id;
3654 	int record_now;
3655 
3656 	record_now = 0;
3657  again:
3658 	for (i = 0; i < nb_pt; i++) {
3659 		port_id = (portid_t) portlist[i];
3660 		if (port_id_is_invalid(port_id, ENABLED_WARN))
3661 			return;
3662 		if (record_now)
3663 			fwd_ports_ids[i] = port_id;
3664 	}
3665 	if (record_now == 0) {
3666 		record_now = 1;
3667 		goto again;
3668 	}
3669 	nb_cfg_ports = (portid_t) nb_pt;
3670 	if (nb_fwd_ports != (portid_t) nb_pt) {
3671 		printf("previous number of forwarding ports %u - changed to "
3672 		       "number of configured ports %u\n",
3673 		       (unsigned int) nb_fwd_ports, nb_pt);
3674 		nb_fwd_ports = (portid_t) nb_pt;
3675 	}
3676 }
3677 
3678 /**
3679  * Parse the user input and obtain the list of forwarding ports
3680  *
3681  * @param[in] list
3682  *   String containing the user input. User can specify
3683  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
3684  *   For example, if the user wants to use all the available
3685  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
3686  *   If the user wants to use only the ports 1,2 then the input
3687  *   is 1,2.
3688  *   valid characters are '-' and ','
3689  * @param[out] values
3690  *   This array will be filled with a list of port IDs
3691  *   based on the user input
3692  *   Note that duplicate entries are discarded and only the first
3693  *   count entries in this array are port IDs and all the rest
3694  *   will contain default values
3695  * @param[in] maxsize
3696  *   This parameter denotes 2 things
3697  *   1) Number of elements in the values array
3698  *   2) Maximum value of each element in the values array
3699  * @return
3700  *   On success, returns total count of parsed port IDs
3701  *   On failure, returns 0
3702  */
3703 static unsigned int
3704 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
3705 {
3706 	unsigned int count = 0;
3707 	char *end = NULL;
3708 	int min, max;
3709 	int value, i;
3710 	unsigned int marked[maxsize];
3711 
3712 	if (list == NULL || values == NULL)
3713 		return 0;
3714 
3715 	for (i = 0; i < (int)maxsize; i++)
3716 		marked[i] = 0;
3717 
3718 	min = INT_MAX;
3719 
3720 	do {
3721 		/*Remove the blank spaces if any*/
3722 		while (isblank(*list))
3723 			list++;
3724 		if (*list == '\0')
3725 			break;
3726 		errno = 0;
3727 		value = strtol(list, &end, 10);
3728 		if (errno || end == NULL)
3729 			return 0;
3730 		if (value < 0 || value >= (int)maxsize)
3731 			return 0;
3732 		while (isblank(*end))
3733 			end++;
3734 		if (*end == '-' && min == INT_MAX) {
3735 			min = value;
3736 		} else if ((*end == ',') || (*end == '\0')) {
3737 			max = value;
3738 			if (min == INT_MAX)
3739 				min = value;
3740 			for (i = min; i <= max; i++) {
3741 				if (count < maxsize) {
3742 					if (marked[i])
3743 						continue;
3744 					values[count] = i;
3745 					marked[i] = 1;
3746 					count++;
3747 				}
3748 			}
3749 			min = INT_MAX;
3750 		} else
3751 			return 0;
3752 		list = end + 1;
3753 	} while (*end != '\0');
3754 
3755 	return count;
3756 }
3757 
3758 void
3759 parse_fwd_portlist(const char *portlist)
3760 {
3761 	unsigned int portcount;
3762 	unsigned int portindex[RTE_MAX_ETHPORTS];
3763 	unsigned int i, valid_port_count = 0;
3764 
3765 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
3766 	if (!portcount)
3767 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
3768 
3769 	/*
3770 	 * Here we verify the validity of the ports
3771 	 * and thereby calculate the total number of
3772 	 * valid ports
3773 	 */
3774 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
3775 		if (rte_eth_dev_is_valid_port(portindex[i])) {
3776 			portindex[valid_port_count] = portindex[i];
3777 			valid_port_count++;
3778 		}
3779 	}
3780 
3781 	set_fwd_ports_list(portindex, valid_port_count);
3782 }
3783 
3784 void
3785 set_fwd_ports_mask(uint64_t portmask)
3786 {
3787 	unsigned int portlist[64];
3788 	unsigned int nb_pt;
3789 	unsigned int i;
3790 
3791 	if (portmask == 0) {
3792 		fprintf(stderr, "Invalid NULL mask of ports\n");
3793 		return;
3794 	}
3795 	nb_pt = 0;
3796 	RTE_ETH_FOREACH_DEV(i) {
3797 		if (! ((uint64_t)(1ULL << i) & portmask))
3798 			continue;
3799 		portlist[nb_pt++] = i;
3800 	}
3801 	set_fwd_ports_list(portlist, nb_pt);
3802 }
3803 
3804 void
3805 set_fwd_ports_number(uint16_t nb_pt)
3806 {
3807 	if (nb_pt > nb_cfg_ports) {
3808 		fprintf(stderr,
3809 			"nb fwd ports %u > %u (number of configured ports) - ignored\n",
3810 			(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
3811 		return;
3812 	}
3813 	nb_fwd_ports = (portid_t) nb_pt;
3814 	printf("Number of forwarding ports set to %u\n",
3815 	       (unsigned int) nb_fwd_ports);
3816 }
3817 
3818 int
3819 port_is_forwarding(portid_t port_id)
3820 {
3821 	unsigned int i;
3822 
3823 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3824 		return -1;
3825 
3826 	for (i = 0; i < nb_fwd_ports; i++) {
3827 		if (fwd_ports_ids[i] == port_id)
3828 			return 1;
3829 	}
3830 
3831 	return 0;
3832 }
3833 
3834 void
3835 set_nb_pkt_per_burst(uint16_t nb)
3836 {
3837 	if (nb > MAX_PKT_BURST) {
3838 		fprintf(stderr,
3839 			"nb pkt per burst: %u > %u (maximum packet per burst)  ignored\n",
3840 			(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
3841 		return;
3842 	}
3843 	nb_pkt_per_burst = nb;
3844 	printf("Number of packets per burst set to %u\n",
3845 	       (unsigned int) nb_pkt_per_burst);
3846 }
3847 
3848 static const char *
3849 tx_split_get_name(enum tx_pkt_split split)
3850 {
3851 	uint32_t i;
3852 
3853 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3854 		if (tx_split_name[i].split == split)
3855 			return tx_split_name[i].name;
3856 	}
3857 	return NULL;
3858 }
3859 
3860 void
3861 set_tx_pkt_split(const char *name)
3862 {
3863 	uint32_t i;
3864 
3865 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3866 		if (strcmp(tx_split_name[i].name, name) == 0) {
3867 			tx_pkt_split = tx_split_name[i].split;
3868 			return;
3869 		}
3870 	}
3871 	fprintf(stderr, "unknown value: \"%s\"\n", name);
3872 }
3873 
3874 int
3875 parse_fec_mode(const char *name, uint32_t *fec_capa)
3876 {
3877 	uint8_t i;
3878 
3879 	for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
3880 		if (strcmp(fec_mode_name[i].name, name) == 0) {
3881 			*fec_capa =
3882 				RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
3883 			return 0;
3884 		}
3885 	}
3886 	return -1;
3887 }
3888 
3889 void
3890 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
3891 {
3892 	unsigned int i, j;
3893 
3894 	printf("FEC capabilities:\n");
3895 
3896 	for (i = 0; i < num; i++) {
3897 		printf("%s : ",
3898 			rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
3899 
3900 		for (j = 0; j < RTE_DIM(fec_mode_name); j++) {
3901 			if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
3902 						speed_fec_capa[i].capa)
3903 				printf("%s ", fec_mode_name[j].name);
3904 		}
3905 		printf("\n");
3906 	}
3907 }
3908 
3909 void
3910 show_rx_pkt_offsets(void)
3911 {
3912 	uint32_t i, n;
3913 
3914 	n = rx_pkt_nb_offs;
3915 	printf("Number of offsets: %u\n", n);
3916 	if (n) {
3917 		printf("Segment offsets: ");
3918 		for (i = 0; i != n - 1; i++)
3919 			printf("%hu,", rx_pkt_seg_offsets[i]);
3920 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3921 	}
3922 }
3923 
3924 void
3925 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
3926 {
3927 	unsigned int i;
3928 
3929 	if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
3930 		printf("nb segments per RX packets=%u >= "
3931 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
3932 		return;
3933 	}
3934 
3935 	/*
3936 	 * No extra check here, the segment length will be checked by PMD
3937 	 * in the extended queue setup.
3938 	 */
3939 	for (i = 0; i < nb_offs; i++) {
3940 		if (seg_offsets[i] >= UINT16_MAX) {
3941 			printf("offset[%u]=%u > UINT16_MAX - give up\n",
3942 			       i, seg_offsets[i]);
3943 			return;
3944 		}
3945 	}
3946 
3947 	for (i = 0; i < nb_offs; i++)
3948 		rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
3949 
3950 	rx_pkt_nb_offs = (uint8_t) nb_offs;
3951 }
3952 
3953 void
3954 show_rx_pkt_segments(void)
3955 {
3956 	uint32_t i, n;
3957 
3958 	n = rx_pkt_nb_segs;
3959 	printf("Number of segments: %u\n", n);
3960 	if (n) {
3961 		printf("Segment sizes: ");
3962 		for (i = 0; i != n - 1; i++)
3963 			printf("%hu,", rx_pkt_seg_lengths[i]);
3964 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3965 	}
3966 }
3967 
3968 void
3969 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3970 {
3971 	unsigned int i;
3972 
3973 	if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
3974 		printf("nb segments per RX packets=%u >= "
3975 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
3976 		return;
3977 	}
3978 
3979 	/*
3980 	 * No extra check here, the segment length will be checked by PMD
3981 	 * in the extended queue setup.
3982 	 */
3983 	for (i = 0; i < nb_segs; i++) {
3984 		if (seg_lengths[i] >= UINT16_MAX) {
3985 			printf("length[%u]=%u > UINT16_MAX - give up\n",
3986 			       i, seg_lengths[i]);
3987 			return;
3988 		}
3989 	}
3990 
3991 	for (i = 0; i < nb_segs; i++)
3992 		rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3993 
3994 	rx_pkt_nb_segs = (uint8_t) nb_segs;
3995 }
3996 
3997 void
3998 show_tx_pkt_segments(void)
3999 {
4000 	uint32_t i, n;
4001 	const char *split;
4002 
4003 	n = tx_pkt_nb_segs;
4004 	split = tx_split_get_name(tx_pkt_split);
4005 
4006 	printf("Number of segments: %u\n", n);
4007 	printf("Segment sizes: ");
4008 	for (i = 0; i != n - 1; i++)
4009 		printf("%hu,", tx_pkt_seg_lengths[i]);
4010 	printf("%hu\n", tx_pkt_seg_lengths[i]);
4011 	printf("Split packet: %s\n", split);
4012 }
4013 
4014 static bool
4015 nb_segs_is_invalid(unsigned int nb_segs)
4016 {
4017 	uint16_t ring_size;
4018 	uint16_t queue_id;
4019 	uint16_t port_id;
4020 	int ret;
4021 
4022 	RTE_ETH_FOREACH_DEV(port_id) {
4023 		for (queue_id = 0; queue_id < nb_txq; queue_id++) {
4024 			ret = get_tx_ring_size(port_id, queue_id, &ring_size);
4025 			if (ret) {
4026 				/* Port may not be initialized yet, can't say
4027 				 * the port is invalid in this stage.
4028 				 */
4029 				continue;
4030 			}
4031 			if (ring_size < nb_segs) {
4032 				printf("nb segments per TX packets=%u >= TX "
4033 				       "queue(%u) ring_size=%u - txpkts ignored\n",
4034 				       nb_segs, queue_id, ring_size);
4035 				return true;
4036 			}
4037 		}
4038 	}
4039 
4040 	return false;
4041 }
4042 
4043 void
4044 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
4045 {
4046 	uint16_t tx_pkt_len;
4047 	unsigned int i;
4048 
4049 	/*
4050 	 * For single segment settings failed check is ignored.
4051 	 * It is a very basic capability to send the single segment
4052 	 * packets, suppose it is always supported.
4053 	 */
4054 	if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) {
4055 		fprintf(stderr,
4056 			"Tx segment size(%u) is not supported - txpkts ignored\n",
4057 			nb_segs);
4058 		return;
4059 	}
4060 
4061 	if (nb_segs > RTE_MAX_SEGS_PER_PKT) {
4062 		fprintf(stderr,
4063 			"Tx segment size(%u) is bigger than max number of segment(%u)\n",
4064 			nb_segs, RTE_MAX_SEGS_PER_PKT);
4065 		return;
4066 	}
4067 
4068 	/*
4069 	 * Check that each segment length is greater or equal than
4070 	 * the mbuf data size.
4071 	 * Check also that the total packet length is greater or equal than the
4072 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
4073 	 * 20 + 8).
4074 	 */
4075 	tx_pkt_len = 0;
4076 	for (i = 0; i < nb_segs; i++) {
4077 		if (seg_lengths[i] > mbuf_data_size[0]) {
4078 			fprintf(stderr,
4079 				"length[%u]=%u > mbuf_data_size=%u - give up\n",
4080 				i, seg_lengths[i], mbuf_data_size[0]);
4081 			return;
4082 		}
4083 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
4084 	}
4085 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
4086 		fprintf(stderr, "total packet length=%u < %d - give up\n",
4087 				(unsigned) tx_pkt_len,
4088 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
4089 		return;
4090 	}
4091 
4092 	for (i = 0; i < nb_segs; i++)
4093 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
4094 
4095 	tx_pkt_length  = tx_pkt_len;
4096 	tx_pkt_nb_segs = (uint8_t) nb_segs;
4097 }
4098 
4099 void
4100 show_tx_pkt_times(void)
4101 {
4102 	printf("Interburst gap: %u\n", tx_pkt_times_inter);
4103 	printf("Intraburst gap: %u\n", tx_pkt_times_intra);
4104 }
4105 
4106 void
4107 set_tx_pkt_times(unsigned int *tx_times)
4108 {
4109 	tx_pkt_times_inter = tx_times[0];
4110 	tx_pkt_times_intra = tx_times[1];
4111 }
4112 
4113 #ifdef RTE_LIB_GRO
4114 void
4115 setup_gro(const char *onoff, portid_t port_id)
4116 {
4117 	if (!rte_eth_dev_is_valid_port(port_id)) {
4118 		fprintf(stderr, "invalid port id %u\n", port_id);
4119 		return;
4120 	}
4121 	if (test_done == 0) {
4122 		fprintf(stderr,
4123 			"Before enable/disable GRO, please stop forwarding first\n");
4124 		return;
4125 	}
4126 	if (strcmp(onoff, "on") == 0) {
4127 		if (gro_ports[port_id].enable != 0) {
4128 			fprintf(stderr,
4129 				"Port %u has enabled GRO. Please disable GRO first\n",
4130 				port_id);
4131 			return;
4132 		}
4133 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
4134 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
4135 			gro_ports[port_id].param.max_flow_num =
4136 				GRO_DEFAULT_FLOW_NUM;
4137 			gro_ports[port_id].param.max_item_per_flow =
4138 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
4139 		}
4140 		gro_ports[port_id].enable = 1;
4141 	} else {
4142 		if (gro_ports[port_id].enable == 0) {
4143 			fprintf(stderr, "Port %u has disabled GRO\n", port_id);
4144 			return;
4145 		}
4146 		gro_ports[port_id].enable = 0;
4147 	}
4148 }
4149 
4150 void
4151 setup_gro_flush_cycles(uint8_t cycles)
4152 {
4153 	if (test_done == 0) {
4154 		fprintf(stderr,
4155 			"Before change flush interval for GRO, please stop forwarding first.\n");
4156 		return;
4157 	}
4158 
4159 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
4160 			GRO_DEFAULT_FLUSH_CYCLES) {
4161 		fprintf(stderr,
4162 			"The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n",
4163 			GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES);
4164 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
4165 	}
4166 
4167 	gro_flush_cycles = cycles;
4168 }
4169 
4170 void
4171 show_gro(portid_t port_id)
4172 {
4173 	struct rte_gro_param *param;
4174 	uint32_t max_pkts_num;
4175 
4176 	param = &gro_ports[port_id].param;
4177 
4178 	if (!rte_eth_dev_is_valid_port(port_id)) {
4179 		fprintf(stderr, "Invalid port id %u.\n", port_id);
4180 		return;
4181 	}
4182 	if (gro_ports[port_id].enable) {
4183 		printf("GRO type: TCP/IPv4\n");
4184 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
4185 			max_pkts_num = param->max_flow_num *
4186 				param->max_item_per_flow;
4187 		} else
4188 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
4189 		printf("Max number of packets to perform GRO: %u\n",
4190 				max_pkts_num);
4191 		printf("Flushing cycles: %u\n", gro_flush_cycles);
4192 	} else
4193 		printf("Port %u doesn't enable GRO.\n", port_id);
4194 }
4195 #endif /* RTE_LIB_GRO */
4196 
4197 #ifdef RTE_LIB_GSO
4198 void
4199 setup_gso(const char *mode, portid_t port_id)
4200 {
4201 	if (!rte_eth_dev_is_valid_port(port_id)) {
4202 		fprintf(stderr, "invalid port id %u\n", port_id);
4203 		return;
4204 	}
4205 	if (strcmp(mode, "on") == 0) {
4206 		if (test_done == 0) {
4207 			fprintf(stderr,
4208 				"before enabling GSO, please stop forwarding first\n");
4209 			return;
4210 		}
4211 		gso_ports[port_id].enable = 1;
4212 	} else if (strcmp(mode, "off") == 0) {
4213 		if (test_done == 0) {
4214 			fprintf(stderr,
4215 				"before disabling GSO, please stop forwarding first\n");
4216 			return;
4217 		}
4218 		gso_ports[port_id].enable = 0;
4219 	}
4220 }
4221 #endif /* RTE_LIB_GSO */
4222 
4223 char*
4224 list_pkt_forwarding_modes(void)
4225 {
4226 	static char fwd_modes[128] = "";
4227 	const char *separator = "|";
4228 	struct fwd_engine *fwd_eng;
4229 	unsigned i = 0;
4230 
4231 	if (strlen (fwd_modes) == 0) {
4232 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4233 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4234 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4235 			strncat(fwd_modes, separator,
4236 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4237 		}
4238 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4239 	}
4240 
4241 	return fwd_modes;
4242 }
4243 
4244 char*
4245 list_pkt_forwarding_retry_modes(void)
4246 {
4247 	static char fwd_modes[128] = "";
4248 	const char *separator = "|";
4249 	struct fwd_engine *fwd_eng;
4250 	unsigned i = 0;
4251 
4252 	if (strlen(fwd_modes) == 0) {
4253 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4254 			if (fwd_eng == &rx_only_engine)
4255 				continue;
4256 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4257 					sizeof(fwd_modes) -
4258 					strlen(fwd_modes) - 1);
4259 			strncat(fwd_modes, separator,
4260 					sizeof(fwd_modes) -
4261 					strlen(fwd_modes) - 1);
4262 		}
4263 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4264 	}
4265 
4266 	return fwd_modes;
4267 }
4268 
4269 void
4270 set_pkt_forwarding_mode(const char *fwd_mode_name)
4271 {
4272 	struct fwd_engine *fwd_eng;
4273 	unsigned i;
4274 
4275 	i = 0;
4276 	while ((fwd_eng = fwd_engines[i]) != NULL) {
4277 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
4278 			printf("Set %s packet forwarding mode%s\n",
4279 			       fwd_mode_name,
4280 			       retry_enabled == 0 ? "" : " with retry");
4281 			cur_fwd_eng = fwd_eng;
4282 			return;
4283 		}
4284 		i++;
4285 	}
4286 	fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name);
4287 }
4288 
4289 void
4290 add_rx_dump_callbacks(portid_t portid)
4291 {
4292 	struct rte_eth_dev_info dev_info;
4293 	uint16_t queue;
4294 	int ret;
4295 
4296 	if (port_id_is_invalid(portid, ENABLED_WARN))
4297 		return;
4298 
4299 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4300 	if (ret != 0)
4301 		return;
4302 
4303 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4304 		if (!ports[portid].rx_dump_cb[queue])
4305 			ports[portid].rx_dump_cb[queue] =
4306 				rte_eth_add_rx_callback(portid, queue,
4307 					dump_rx_pkts, NULL);
4308 }
4309 
4310 void
4311 add_tx_dump_callbacks(portid_t portid)
4312 {
4313 	struct rte_eth_dev_info dev_info;
4314 	uint16_t queue;
4315 	int ret;
4316 
4317 	if (port_id_is_invalid(portid, ENABLED_WARN))
4318 		return;
4319 
4320 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4321 	if (ret != 0)
4322 		return;
4323 
4324 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4325 		if (!ports[portid].tx_dump_cb[queue])
4326 			ports[portid].tx_dump_cb[queue] =
4327 				rte_eth_add_tx_callback(portid, queue,
4328 							dump_tx_pkts, NULL);
4329 }
4330 
4331 void
4332 remove_rx_dump_callbacks(portid_t portid)
4333 {
4334 	struct rte_eth_dev_info dev_info;
4335 	uint16_t queue;
4336 	int ret;
4337 
4338 	if (port_id_is_invalid(portid, ENABLED_WARN))
4339 		return;
4340 
4341 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4342 	if (ret != 0)
4343 		return;
4344 
4345 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4346 		if (ports[portid].rx_dump_cb[queue]) {
4347 			rte_eth_remove_rx_callback(portid, queue,
4348 				ports[portid].rx_dump_cb[queue]);
4349 			ports[portid].rx_dump_cb[queue] = NULL;
4350 		}
4351 }
4352 
4353 void
4354 remove_tx_dump_callbacks(portid_t portid)
4355 {
4356 	struct rte_eth_dev_info dev_info;
4357 	uint16_t queue;
4358 	int ret;
4359 
4360 	if (port_id_is_invalid(portid, ENABLED_WARN))
4361 		return;
4362 
4363 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4364 	if (ret != 0)
4365 		return;
4366 
4367 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4368 		if (ports[portid].tx_dump_cb[queue]) {
4369 			rte_eth_remove_tx_callback(portid, queue,
4370 				ports[portid].tx_dump_cb[queue]);
4371 			ports[portid].tx_dump_cb[queue] = NULL;
4372 		}
4373 }
4374 
4375 void
4376 configure_rxtx_dump_callbacks(uint16_t verbose)
4377 {
4378 	portid_t portid;
4379 
4380 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
4381 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
4382 		return;
4383 #endif
4384 
4385 	RTE_ETH_FOREACH_DEV(portid)
4386 	{
4387 		if (verbose == 1 || verbose > 2)
4388 			add_rx_dump_callbacks(portid);
4389 		else
4390 			remove_rx_dump_callbacks(portid);
4391 		if (verbose >= 2)
4392 			add_tx_dump_callbacks(portid);
4393 		else
4394 			remove_tx_dump_callbacks(portid);
4395 	}
4396 }
4397 
4398 void
4399 set_verbose_level(uint16_t vb_level)
4400 {
4401 	printf("Change verbose level from %u to %u\n",
4402 	       (unsigned int) verbose_level, (unsigned int) vb_level);
4403 	verbose_level = vb_level;
4404 	configure_rxtx_dump_callbacks(verbose_level);
4405 }
4406 
4407 void
4408 vlan_extend_set(portid_t port_id, int on)
4409 {
4410 	int diag;
4411 	int vlan_offload;
4412 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4413 
4414 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4415 		return;
4416 
4417 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4418 
4419 	if (on) {
4420 		vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD;
4421 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
4422 	} else {
4423 		vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD;
4424 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
4425 	}
4426 
4427 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4428 	if (diag < 0) {
4429 		fprintf(stderr,
4430 			"rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n",
4431 			port_id, on, diag);
4432 		return;
4433 	}
4434 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4435 }
4436 
4437 void
4438 rx_vlan_strip_set(portid_t port_id, int on)
4439 {
4440 	int diag;
4441 	int vlan_offload;
4442 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4443 
4444 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4445 		return;
4446 
4447 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4448 
4449 	if (on) {
4450 		vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD;
4451 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
4452 	} else {
4453 		vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD;
4454 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
4455 	}
4456 
4457 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4458 	if (diag < 0) {
4459 		fprintf(stderr,
4460 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4461 			__func__, port_id, on, diag);
4462 		return;
4463 	}
4464 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4465 }
4466 
4467 void
4468 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
4469 {
4470 	int diag;
4471 
4472 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4473 		return;
4474 
4475 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
4476 	if (diag < 0)
4477 		fprintf(stderr,
4478 			"%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n",
4479 			__func__, port_id, queue_id, on, diag);
4480 }
4481 
4482 void
4483 rx_vlan_filter_set(portid_t port_id, int on)
4484 {
4485 	int diag;
4486 	int vlan_offload;
4487 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4488 
4489 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4490 		return;
4491 
4492 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4493 
4494 	if (on) {
4495 		vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD;
4496 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
4497 	} else {
4498 		vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD;
4499 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
4500 	}
4501 
4502 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4503 	if (diag < 0) {
4504 		fprintf(stderr,
4505 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4506 			__func__, port_id, on, diag);
4507 		return;
4508 	}
4509 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4510 }
4511 
4512 void
4513 rx_vlan_qinq_strip_set(portid_t port_id, int on)
4514 {
4515 	int diag;
4516 	int vlan_offload;
4517 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4518 
4519 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4520 		return;
4521 
4522 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4523 
4524 	if (on) {
4525 		vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD;
4526 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
4527 	} else {
4528 		vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD;
4529 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
4530 	}
4531 
4532 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4533 	if (diag < 0) {
4534 		fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n",
4535 			__func__, port_id, on, diag);
4536 		return;
4537 	}
4538 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4539 }
4540 
4541 int
4542 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
4543 {
4544 	int diag;
4545 
4546 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4547 		return 1;
4548 	if (vlan_id_is_invalid(vlan_id))
4549 		return 1;
4550 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
4551 	if (diag == 0)
4552 		return 0;
4553 	fprintf(stderr,
4554 		"rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n",
4555 		port_id, vlan_id, on, diag);
4556 	return -1;
4557 }
4558 
4559 void
4560 rx_vlan_all_filter_set(portid_t port_id, int on)
4561 {
4562 	uint16_t vlan_id;
4563 
4564 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4565 		return;
4566 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
4567 		if (rx_vft_set(port_id, vlan_id, on))
4568 			break;
4569 	}
4570 }
4571 
4572 void
4573 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
4574 {
4575 	int diag;
4576 
4577 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4578 		return;
4579 
4580 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
4581 	if (diag == 0)
4582 		return;
4583 
4584 	fprintf(stderr,
4585 		"tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n",
4586 		port_id, vlan_type, tp_id, diag);
4587 }
4588 
4589 void
4590 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
4591 {
4592 	struct rte_eth_dev_info dev_info;
4593 	int ret;
4594 
4595 	if (vlan_id_is_invalid(vlan_id))
4596 		return;
4597 
4598 	if (ports[port_id].dev_conf.txmode.offloads &
4599 	    RTE_ETH_TX_OFFLOAD_QINQ_INSERT) {
4600 		fprintf(stderr, "Error, as QinQ has been enabled.\n");
4601 		return;
4602 	}
4603 
4604 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4605 	if (ret != 0)
4606 		return;
4607 
4608 	if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) {
4609 		fprintf(stderr,
4610 			"Error: vlan insert is not supported by port %d\n",
4611 			port_id);
4612 		return;
4613 	}
4614 
4615 	tx_vlan_reset(port_id);
4616 	ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT;
4617 	ports[port_id].tx_vlan_id = vlan_id;
4618 }
4619 
4620 void
4621 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
4622 {
4623 	struct rte_eth_dev_info dev_info;
4624 	int ret;
4625 
4626 	if (vlan_id_is_invalid(vlan_id))
4627 		return;
4628 	if (vlan_id_is_invalid(vlan_id_outer))
4629 		return;
4630 
4631 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4632 	if (ret != 0)
4633 		return;
4634 
4635 	if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) {
4636 		fprintf(stderr,
4637 			"Error: qinq insert not supported by port %d\n",
4638 			port_id);
4639 		return;
4640 	}
4641 
4642 	tx_vlan_reset(port_id);
4643 	ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
4644 						    RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
4645 	ports[port_id].tx_vlan_id = vlan_id;
4646 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
4647 }
4648 
4649 void
4650 tx_vlan_reset(portid_t port_id)
4651 {
4652 	ports[port_id].dev_conf.txmode.offloads &=
4653 				~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
4654 				  RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
4655 	ports[port_id].tx_vlan_id = 0;
4656 	ports[port_id].tx_vlan_id_outer = 0;
4657 }
4658 
4659 void
4660 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
4661 {
4662 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4663 		return;
4664 
4665 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
4666 }
4667 
4668 void
4669 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
4670 {
4671 	int ret;
4672 
4673 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4674 		return;
4675 
4676 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
4677 		return;
4678 
4679 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
4680 		fprintf(stderr, "map_value not in required range 0..%d\n",
4681 			RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
4682 		return;
4683 	}
4684 
4685 	if (!is_rx) { /* tx */
4686 		ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
4687 							     map_value);
4688 		if (ret) {
4689 			fprintf(stderr,
4690 				"failed to set tx queue stats mapping.\n");
4691 			return;
4692 		}
4693 	} else { /* rx */
4694 		ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
4695 							     map_value);
4696 		if (ret) {
4697 			fprintf(stderr,
4698 				"failed to set rx queue stats mapping.\n");
4699 			return;
4700 		}
4701 	}
4702 }
4703 
4704 void
4705 set_xstats_hide_zero(uint8_t on_off)
4706 {
4707 	xstats_hide_zero = on_off;
4708 }
4709 
4710 void
4711 set_record_core_cycles(uint8_t on_off)
4712 {
4713 	record_core_cycles = on_off;
4714 }
4715 
4716 void
4717 set_record_burst_stats(uint8_t on_off)
4718 {
4719 	record_burst_stats = on_off;
4720 }
4721 
4722 static char*
4723 flowtype_to_str(uint16_t flow_type)
4724 {
4725 	struct flow_type_info {
4726 		char str[32];
4727 		uint16_t ftype;
4728 	};
4729 
4730 	uint8_t i;
4731 	static struct flow_type_info flowtype_str_table[] = {
4732 		{"raw", RTE_ETH_FLOW_RAW},
4733 		{"ipv4", RTE_ETH_FLOW_IPV4},
4734 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
4735 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
4736 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
4737 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
4738 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
4739 		{"ipv6", RTE_ETH_FLOW_IPV6},
4740 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
4741 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
4742 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
4743 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
4744 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
4745 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
4746 		{"ipv6-ex", RTE_ETH_FLOW_IPV6_EX},
4747 		{"ipv6-tcp-ex", RTE_ETH_FLOW_IPV6_TCP_EX},
4748 		{"ipv6-udp-ex", RTE_ETH_FLOW_IPV6_UDP_EX},
4749 		{"port", RTE_ETH_FLOW_PORT},
4750 		{"vxlan", RTE_ETH_FLOW_VXLAN},
4751 		{"geneve", RTE_ETH_FLOW_GENEVE},
4752 		{"nvgre", RTE_ETH_FLOW_NVGRE},
4753 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
4754 		{"gtpu", RTE_ETH_FLOW_GTPU},
4755 	};
4756 
4757 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
4758 		if (flowtype_str_table[i].ftype == flow_type)
4759 			return flowtype_str_table[i].str;
4760 	}
4761 
4762 	return NULL;
4763 }
4764 
4765 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
4766 
4767 static inline void
4768 print_fdir_mask(struct rte_eth_fdir_masks *mask)
4769 {
4770 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
4771 
4772 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4773 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
4774 			" tunnel_id: 0x%08x",
4775 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
4776 			rte_be_to_cpu_32(mask->tunnel_id_mask));
4777 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
4778 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
4779 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
4780 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
4781 
4782 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
4783 			rte_be_to_cpu_16(mask->src_port_mask),
4784 			rte_be_to_cpu_16(mask->dst_port_mask));
4785 
4786 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4787 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
4788 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
4789 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
4790 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
4791 
4792 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4793 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
4794 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
4795 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
4796 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
4797 	}
4798 
4799 	printf("\n");
4800 }
4801 
4802 static inline void
4803 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4804 {
4805 	struct rte_eth_flex_payload_cfg *cfg;
4806 	uint32_t i, j;
4807 
4808 	for (i = 0; i < flex_conf->nb_payloads; i++) {
4809 		cfg = &flex_conf->flex_set[i];
4810 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
4811 			printf("\n    RAW:  ");
4812 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
4813 			printf("\n    L2_PAYLOAD:  ");
4814 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
4815 			printf("\n    L3_PAYLOAD:  ");
4816 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
4817 			printf("\n    L4_PAYLOAD:  ");
4818 		else
4819 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
4820 		for (j = 0; j < num; j++)
4821 			printf("  %-5u", cfg->src_offset[j]);
4822 	}
4823 	printf("\n");
4824 }
4825 
4826 static inline void
4827 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4828 {
4829 	struct rte_eth_fdir_flex_mask *mask;
4830 	uint32_t i, j;
4831 	char *p;
4832 
4833 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
4834 		mask = &flex_conf->flex_mask[i];
4835 		p = flowtype_to_str(mask->flow_type);
4836 		printf("\n    %s:\t", p ? p : "unknown");
4837 		for (j = 0; j < num; j++)
4838 			printf(" %02x", mask->mask[j]);
4839 	}
4840 	printf("\n");
4841 }
4842 
4843 static inline void
4844 print_fdir_flow_type(uint32_t flow_types_mask)
4845 {
4846 	int i;
4847 	char *p;
4848 
4849 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
4850 		if (!(flow_types_mask & (1 << i)))
4851 			continue;
4852 		p = flowtype_to_str(i);
4853 		if (p)
4854 			printf(" %s", p);
4855 		else
4856 			printf(" unknown");
4857 	}
4858 	printf("\n");
4859 }
4860 
4861 static int
4862 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
4863 		    struct rte_eth_fdir_stats *fdir_stat)
4864 {
4865 	int ret = -ENOTSUP;
4866 
4867 #ifdef RTE_NET_I40E
4868 	if (ret == -ENOTSUP) {
4869 		ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
4870 		if (!ret)
4871 			ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
4872 	}
4873 #endif
4874 #ifdef RTE_NET_IXGBE
4875 	if (ret == -ENOTSUP) {
4876 		ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
4877 		if (!ret)
4878 			ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
4879 	}
4880 #endif
4881 	switch (ret) {
4882 	case 0:
4883 		break;
4884 	case -ENOTSUP:
4885 		fprintf(stderr, "\n FDIR is not supported on port %-2d\n",
4886 			port_id);
4887 		break;
4888 	default:
4889 		fprintf(stderr, "programming error: (%s)\n", strerror(-ret));
4890 		break;
4891 	}
4892 	return ret;
4893 }
4894 
4895 void
4896 fdir_get_infos(portid_t port_id)
4897 {
4898 	struct rte_eth_fdir_stats fdir_stat;
4899 	struct rte_eth_fdir_info fdir_info;
4900 
4901 	static const char *fdir_stats_border = "########################";
4902 
4903 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4904 		return;
4905 
4906 	memset(&fdir_info, 0, sizeof(fdir_info));
4907 	memset(&fdir_stat, 0, sizeof(fdir_stat));
4908 	if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
4909 		return;
4910 
4911 	printf("\n  %s FDIR infos for port %-2d     %s\n",
4912 	       fdir_stats_border, port_id, fdir_stats_border);
4913 	printf("  MODE: ");
4914 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
4915 		printf("  PERFECT\n");
4916 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
4917 		printf("  PERFECT-MAC-VLAN\n");
4918 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4919 		printf("  PERFECT-TUNNEL\n");
4920 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
4921 		printf("  SIGNATURE\n");
4922 	else
4923 		printf("  DISABLE\n");
4924 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
4925 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
4926 		printf("  SUPPORTED FLOW TYPE: ");
4927 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
4928 	}
4929 	printf("  FLEX PAYLOAD INFO:\n");
4930 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
4931 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
4932 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
4933 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
4934 		fdir_info.flex_payload_unit,
4935 		fdir_info.max_flex_payload_segment_num,
4936 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
4937 	printf("  MASK: ");
4938 	print_fdir_mask(&fdir_info.mask);
4939 	if (fdir_info.flex_conf.nb_payloads > 0) {
4940 		printf("  FLEX PAYLOAD SRC OFFSET:");
4941 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4942 	}
4943 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
4944 		printf("  FLEX MASK CFG:");
4945 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4946 	}
4947 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
4948 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
4949 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
4950 	       fdir_info.guarant_spc, fdir_info.best_spc);
4951 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
4952 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
4953 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
4954 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
4955 	       fdir_stat.collision, fdir_stat.free,
4956 	       fdir_stat.maxhash, fdir_stat.maxlen,
4957 	       fdir_stat.add, fdir_stat.remove,
4958 	       fdir_stat.f_add, fdir_stat.f_remove);
4959 	printf("  %s############################%s\n",
4960 	       fdir_stats_border, fdir_stats_border);
4961 }
4962 
4963 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */
4964 
4965 void
4966 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
4967 {
4968 	struct rte_port *port;
4969 	struct rte_eth_fdir_flex_conf *flex_conf;
4970 	int i, idx = 0;
4971 
4972 	port = &ports[port_id];
4973 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4974 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
4975 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
4976 			idx = i;
4977 			break;
4978 		}
4979 	}
4980 	if (i >= RTE_ETH_FLOW_MAX) {
4981 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
4982 			idx = flex_conf->nb_flexmasks;
4983 			flex_conf->nb_flexmasks++;
4984 		} else {
4985 			fprintf(stderr,
4986 				"The flex mask table is full. Can not set flex mask for flow_type(%u).",
4987 				cfg->flow_type);
4988 			return;
4989 		}
4990 	}
4991 	rte_memcpy(&flex_conf->flex_mask[idx],
4992 			 cfg,
4993 			 sizeof(struct rte_eth_fdir_flex_mask));
4994 }
4995 
4996 void
4997 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
4998 {
4999 	struct rte_port *port;
5000 	struct rte_eth_fdir_flex_conf *flex_conf;
5001 	int i, idx = 0;
5002 
5003 	port = &ports[port_id];
5004 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
5005 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
5006 		if (cfg->type == flex_conf->flex_set[i].type) {
5007 			idx = i;
5008 			break;
5009 		}
5010 	}
5011 	if (i >= RTE_ETH_PAYLOAD_MAX) {
5012 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
5013 			idx = flex_conf->nb_payloads;
5014 			flex_conf->nb_payloads++;
5015 		} else {
5016 			fprintf(stderr,
5017 				"The flex payload table is full. Can not set flex payload for type(%u).",
5018 				cfg->type);
5019 			return;
5020 		}
5021 	}
5022 	rte_memcpy(&flex_conf->flex_set[idx],
5023 			 cfg,
5024 			 sizeof(struct rte_eth_flex_payload_cfg));
5025 
5026 }
5027 
5028 void
5029 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
5030 {
5031 #ifdef RTE_NET_IXGBE
5032 	int diag;
5033 
5034 	if (is_rx)
5035 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
5036 	else
5037 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
5038 
5039 	if (diag == 0)
5040 		return;
5041 	fprintf(stderr,
5042 		"rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
5043 		is_rx ? "rx" : "tx", port_id, diag);
5044 	return;
5045 #endif
5046 	fprintf(stderr, "VF %s setting not supported for port %d\n",
5047 		is_rx ? "Rx" : "Tx", port_id);
5048 	RTE_SET_USED(vf);
5049 	RTE_SET_USED(on);
5050 }
5051 
5052 int
5053 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
5054 {
5055 	int diag;
5056 	struct rte_eth_link link;
5057 	int ret;
5058 
5059 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5060 		return 1;
5061 	ret = eth_link_get_nowait_print_err(port_id, &link);
5062 	if (ret < 0)
5063 		return 1;
5064 	if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN &&
5065 	    rate > link.link_speed) {
5066 		fprintf(stderr,
5067 			"Invalid rate value:%u bigger than link speed: %u\n",
5068 			rate, link.link_speed);
5069 		return 1;
5070 	}
5071 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
5072 	if (diag == 0)
5073 		return diag;
5074 	fprintf(stderr,
5075 		"rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
5076 		port_id, diag);
5077 	return diag;
5078 }
5079 
5080 int
5081 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
5082 {
5083 	int diag = -ENOTSUP;
5084 
5085 	RTE_SET_USED(vf);
5086 	RTE_SET_USED(rate);
5087 	RTE_SET_USED(q_msk);
5088 
5089 #ifdef RTE_NET_IXGBE
5090 	if (diag == -ENOTSUP)
5091 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
5092 						       q_msk);
5093 #endif
5094 #ifdef RTE_NET_BNXT
5095 	if (diag == -ENOTSUP)
5096 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
5097 #endif
5098 	if (diag == 0)
5099 		return diag;
5100 
5101 	fprintf(stderr,
5102 		"%s for port_id=%d failed diag=%d\n",
5103 		__func__, port_id, diag);
5104 	return diag;
5105 }
5106 
5107 /*
5108  * Functions to manage the set of filtered Multicast MAC addresses.
5109  *
5110  * A pool of filtered multicast MAC addresses is associated with each port.
5111  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
5112  * The address of the pool and the number of valid multicast MAC addresses
5113  * recorded in the pool are stored in the fields "mc_addr_pool" and
5114  * "mc_addr_nb" of the "rte_port" data structure.
5115  *
5116  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
5117  * to be supplied a contiguous array of multicast MAC addresses.
5118  * To comply with this constraint, the set of multicast addresses recorded
5119  * into the pool are systematically compacted at the beginning of the pool.
5120  * Hence, when a multicast address is removed from the pool, all following
5121  * addresses, if any, are copied back to keep the set contiguous.
5122  */
5123 #define MCAST_POOL_INC 32
5124 
5125 static int
5126 mcast_addr_pool_extend(struct rte_port *port)
5127 {
5128 	struct rte_ether_addr *mc_pool;
5129 	size_t mc_pool_size;
5130 
5131 	/*
5132 	 * If a free entry is available at the end of the pool, just
5133 	 * increment the number of recorded multicast addresses.
5134 	 */
5135 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
5136 		port->mc_addr_nb++;
5137 		return 0;
5138 	}
5139 
5140 	/*
5141 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
5142 	 * The previous test guarantees that port->mc_addr_nb is a multiple
5143 	 * of MCAST_POOL_INC.
5144 	 */
5145 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
5146 						    MCAST_POOL_INC);
5147 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
5148 						mc_pool_size);
5149 	if (mc_pool == NULL) {
5150 		fprintf(stderr,
5151 			"allocation of pool of %u multicast addresses failed\n",
5152 			port->mc_addr_nb + MCAST_POOL_INC);
5153 		return -ENOMEM;
5154 	}
5155 
5156 	port->mc_addr_pool = mc_pool;
5157 	port->mc_addr_nb++;
5158 	return 0;
5159 
5160 }
5161 
5162 static void
5163 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
5164 {
5165 	if (mcast_addr_pool_extend(port) != 0)
5166 		return;
5167 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
5168 }
5169 
5170 static void
5171 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
5172 {
5173 	port->mc_addr_nb--;
5174 	if (addr_idx == port->mc_addr_nb) {
5175 		/* No need to recompact the set of multicast addresses. */
5176 		if (port->mc_addr_nb == 0) {
5177 			/* free the pool of multicast addresses. */
5178 			free(port->mc_addr_pool);
5179 			port->mc_addr_pool = NULL;
5180 		}
5181 		return;
5182 	}
5183 	memmove(&port->mc_addr_pool[addr_idx],
5184 		&port->mc_addr_pool[addr_idx + 1],
5185 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
5186 }
5187 
5188 static int
5189 eth_port_multicast_addr_list_set(portid_t port_id)
5190 {
5191 	struct rte_port *port;
5192 	int diag;
5193 
5194 	port = &ports[port_id];
5195 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
5196 					    port->mc_addr_nb);
5197 	if (diag < 0)
5198 		fprintf(stderr,
5199 			"rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
5200 			port_id, port->mc_addr_nb, diag);
5201 
5202 	return diag;
5203 }
5204 
5205 void
5206 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
5207 {
5208 	struct rte_port *port;
5209 	uint32_t i;
5210 
5211 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5212 		return;
5213 
5214 	port = &ports[port_id];
5215 
5216 	/*
5217 	 * Check that the added multicast MAC address is not already recorded
5218 	 * in the pool of multicast addresses.
5219 	 */
5220 	for (i = 0; i < port->mc_addr_nb; i++) {
5221 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
5222 			fprintf(stderr,
5223 				"multicast address already filtered by port\n");
5224 			return;
5225 		}
5226 	}
5227 
5228 	mcast_addr_pool_append(port, mc_addr);
5229 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5230 		/* Rollback on failure, remove the address from the pool */
5231 		mcast_addr_pool_remove(port, i);
5232 }
5233 
5234 void
5235 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
5236 {
5237 	struct rte_port *port;
5238 	uint32_t i;
5239 
5240 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5241 		return;
5242 
5243 	port = &ports[port_id];
5244 
5245 	/*
5246 	 * Search the pool of multicast MAC addresses for the removed address.
5247 	 */
5248 	for (i = 0; i < port->mc_addr_nb; i++) {
5249 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
5250 			break;
5251 	}
5252 	if (i == port->mc_addr_nb) {
5253 		fprintf(stderr, "multicast address not filtered by port %d\n",
5254 			port_id);
5255 		return;
5256 	}
5257 
5258 	mcast_addr_pool_remove(port, i);
5259 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5260 		/* Rollback on failure, add the address back into the pool */
5261 		mcast_addr_pool_append(port, mc_addr);
5262 }
5263 
5264 void
5265 port_dcb_info_display(portid_t port_id)
5266 {
5267 	struct rte_eth_dcb_info dcb_info;
5268 	uint16_t i;
5269 	int ret;
5270 	static const char *border = "================";
5271 
5272 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5273 		return;
5274 
5275 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
5276 	if (ret) {
5277 		fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n",
5278 			port_id);
5279 		return;
5280 	}
5281 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
5282 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
5283 	printf("\n  TC :        ");
5284 	for (i = 0; i < dcb_info.nb_tcs; i++)
5285 		printf("\t%4d", i);
5286 	printf("\n  Priority :  ");
5287 	for (i = 0; i < dcb_info.nb_tcs; i++)
5288 		printf("\t%4d", dcb_info.prio_tc[i]);
5289 	printf("\n  BW percent :");
5290 	for (i = 0; i < dcb_info.nb_tcs; i++)
5291 		printf("\t%4d%%", dcb_info.tc_bws[i]);
5292 	printf("\n  RXQ base :  ");
5293 	for (i = 0; i < dcb_info.nb_tcs; i++)
5294 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
5295 	printf("\n  RXQ number :");
5296 	for (i = 0; i < dcb_info.nb_tcs; i++)
5297 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
5298 	printf("\n  TXQ base :  ");
5299 	for (i = 0; i < dcb_info.nb_tcs; i++)
5300 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
5301 	printf("\n  TXQ number :");
5302 	for (i = 0; i < dcb_info.nb_tcs; i++)
5303 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
5304 	printf("\n");
5305 }
5306 
5307 uint8_t *
5308 open_file(const char *file_path, uint32_t *size)
5309 {
5310 	int fd = open(file_path, O_RDONLY);
5311 	off_t pkg_size;
5312 	uint8_t *buf = NULL;
5313 	int ret = 0;
5314 	struct stat st_buf;
5315 
5316 	if (size)
5317 		*size = 0;
5318 
5319 	if (fd == -1) {
5320 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5321 		return buf;
5322 	}
5323 
5324 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
5325 		close(fd);
5326 		fprintf(stderr, "%s: File operations failed\n", __func__);
5327 		return buf;
5328 	}
5329 
5330 	pkg_size = st_buf.st_size;
5331 	if (pkg_size < 0) {
5332 		close(fd);
5333 		fprintf(stderr, "%s: File operations failed\n", __func__);
5334 		return buf;
5335 	}
5336 
5337 	buf = (uint8_t *)malloc(pkg_size);
5338 	if (!buf) {
5339 		close(fd);
5340 		fprintf(stderr, "%s: Failed to malloc memory\n", __func__);
5341 		return buf;
5342 	}
5343 
5344 	ret = read(fd, buf, pkg_size);
5345 	if (ret < 0) {
5346 		close(fd);
5347 		fprintf(stderr, "%s: File read operation failed\n", __func__);
5348 		close_file(buf);
5349 		return NULL;
5350 	}
5351 
5352 	if (size)
5353 		*size = pkg_size;
5354 
5355 	close(fd);
5356 
5357 	return buf;
5358 }
5359 
5360 int
5361 save_file(const char *file_path, uint8_t *buf, uint32_t size)
5362 {
5363 	FILE *fh = fopen(file_path, "wb");
5364 
5365 	if (fh == NULL) {
5366 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5367 		return -1;
5368 	}
5369 
5370 	if (fwrite(buf, 1, size, fh) != size) {
5371 		fclose(fh);
5372 		fprintf(stderr, "%s: File write operation failed\n", __func__);
5373 		return -1;
5374 	}
5375 
5376 	fclose(fh);
5377 
5378 	return 0;
5379 }
5380 
5381 int
5382 close_file(uint8_t *buf)
5383 {
5384 	if (buf) {
5385 		free((void *)buf);
5386 		return 0;
5387 	}
5388 
5389 	return -1;
5390 }
5391 
5392 void
5393 port_queue_region_info_display(portid_t port_id, void *buf)
5394 {
5395 #ifdef RTE_NET_I40E
5396 	uint16_t i, j;
5397 	struct rte_pmd_i40e_queue_regions *info =
5398 		(struct rte_pmd_i40e_queue_regions *)buf;
5399 	static const char *queue_region_info_stats_border = "-------";
5400 
5401 	if (!info->queue_region_number)
5402 		printf("there is no region has been set before");
5403 
5404 	printf("\n	%s All queue region info for port=%2d %s",
5405 			queue_region_info_stats_border, port_id,
5406 			queue_region_info_stats_border);
5407 	printf("\n	queue_region_number: %-14u \n",
5408 			info->queue_region_number);
5409 
5410 	for (i = 0; i < info->queue_region_number; i++) {
5411 		printf("\n	region_id: %-14u queue_number: %-14u "
5412 			"queue_start_index: %-14u \n",
5413 			info->region[i].region_id,
5414 			info->region[i].queue_num,
5415 			info->region[i].queue_start_index);
5416 
5417 		printf("  user_priority_num is	%-14u :",
5418 					info->region[i].user_priority_num);
5419 		for (j = 0; j < info->region[i].user_priority_num; j++)
5420 			printf(" %-14u ", info->region[i].user_priority[j]);
5421 
5422 		printf("\n	flowtype_num is  %-14u :",
5423 				info->region[i].flowtype_num);
5424 		for (j = 0; j < info->region[i].flowtype_num; j++)
5425 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
5426 	}
5427 #else
5428 	RTE_SET_USED(port_id);
5429 	RTE_SET_USED(buf);
5430 #endif
5431 
5432 	printf("\n\n");
5433 }
5434 
5435 void
5436 show_macs(portid_t port_id)
5437 {
5438 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5439 	struct rte_eth_dev_info dev_info;
5440 	int32_t i, rc, num_macs = 0;
5441 
5442 	if (eth_dev_info_get_print_err(port_id, &dev_info))
5443 		return;
5444 
5445 	struct rte_ether_addr addr[dev_info.max_mac_addrs];
5446 	rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs);
5447 	if (rc < 0)
5448 		return;
5449 
5450 	for (i = 0; i < rc; i++) {
5451 
5452 		/* skip zero address */
5453 		if (rte_is_zero_ether_addr(&addr[i]))
5454 			continue;
5455 
5456 		num_macs++;
5457 	}
5458 
5459 	printf("Number of MAC address added: %d\n", num_macs);
5460 
5461 	for (i = 0; i < rc; i++) {
5462 
5463 		/* skip zero address */
5464 		if (rte_is_zero_ether_addr(&addr[i]))
5465 			continue;
5466 
5467 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]);
5468 		printf("  %s\n", buf);
5469 	}
5470 }
5471 
5472 void
5473 show_mcast_macs(portid_t port_id)
5474 {
5475 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5476 	struct rte_ether_addr *addr;
5477 	struct rte_port *port;
5478 	uint32_t i;
5479 
5480 	port = &ports[port_id];
5481 
5482 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
5483 
5484 	for (i = 0; i < port->mc_addr_nb; i++) {
5485 		addr = &port->mc_addr_pool[i];
5486 
5487 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5488 		printf("  %s\n", buf);
5489 	}
5490 }
5491