xref: /dpdk/app/test-pmd/config.c (revision a997a33b2a0145ad3e6320ea1fc7df8d51a2fcdf)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright 2013-2014 6WIND S.A.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <stdarg.h>
65 #include <errno.h>
66 #include <stdio.h>
67 #include <string.h>
68 #include <stdarg.h>
69 #include <stdint.h>
70 #include <inttypes.h>
71 
72 #include <sys/queue.h>
73 
74 #include <rte_common.h>
75 #include <rte_byteorder.h>
76 #include <rte_debug.h>
77 #include <rte_log.h>
78 #include <rte_memory.h>
79 #include <rte_memcpy.h>
80 #include <rte_memzone.h>
81 #include <rte_launch.h>
82 #include <rte_eal.h>
83 #include <rte_per_lcore.h>
84 #include <rte_lcore.h>
85 #include <rte_atomic.h>
86 #include <rte_branch_prediction.h>
87 #include <rte_mempool.h>
88 #include <rte_mbuf.h>
89 #include <rte_interrupts.h>
90 #include <rte_pci.h>
91 #include <rte_ether.h>
92 #include <rte_ethdev.h>
93 #include <rte_string_fns.h>
94 #include <rte_cycles.h>
95 #include <rte_flow.h>
96 #include <rte_errno.h>
97 
98 #include "testpmd.h"
99 
100 static char *flowtype_to_str(uint16_t flow_type);
101 
102 static const struct {
103 	enum tx_pkt_split split;
104 	const char *name;
105 } tx_split_name[] = {
106 	{
107 		.split = TX_PKT_SPLIT_OFF,
108 		.name = "off",
109 	},
110 	{
111 		.split = TX_PKT_SPLIT_ON,
112 		.name = "on",
113 	},
114 	{
115 		.split = TX_PKT_SPLIT_RND,
116 		.name = "rand",
117 	},
118 };
119 
120 struct rss_type_info {
121 	char str[32];
122 	uint64_t rss_type;
123 };
124 
125 static const struct rss_type_info rss_type_table[] = {
126 	{ "ipv4", ETH_RSS_IPV4 },
127 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
128 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
129 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
130 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
131 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
132 	{ "ipv6", ETH_RSS_IPV6 },
133 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
134 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
135 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
136 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
137 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
138 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
139 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
140 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
141 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
142 	{ "port", ETH_RSS_PORT },
143 	{ "vxlan", ETH_RSS_VXLAN },
144 	{ "geneve", ETH_RSS_GENEVE },
145 	{ "nvgre", ETH_RSS_NVGRE },
146 
147 };
148 
149 static void
150 print_ethaddr(const char *name, struct ether_addr *eth_addr)
151 {
152 	char buf[ETHER_ADDR_FMT_SIZE];
153 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
154 	printf("%s%s", name, buf);
155 }
156 
157 void
158 nic_stats_display(portid_t port_id)
159 {
160 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
161 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
162 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
163 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
164 	uint64_t mpps_rx, mpps_tx;
165 	struct rte_eth_stats stats;
166 	struct rte_port *port = &ports[port_id];
167 	uint8_t i;
168 	portid_t pid;
169 
170 	static const char *nic_stats_border = "########################";
171 
172 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
173 		printf("Valid port range is [0");
174 		FOREACH_PORT(pid, ports)
175 			printf(", %d", pid);
176 		printf("]\n");
177 		return;
178 	}
179 	rte_eth_stats_get(port_id, &stats);
180 	printf("\n  %s NIC statistics for port %-2d %s\n",
181 	       nic_stats_border, port_id, nic_stats_border);
182 
183 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
184 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
185 		       "%-"PRIu64"\n",
186 		       stats.ipackets, stats.imissed, stats.ibytes);
187 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
188 		printf("  RX-nombuf:  %-10"PRIu64"\n",
189 		       stats.rx_nombuf);
190 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
191 		       "%-"PRIu64"\n",
192 		       stats.opackets, stats.oerrors, stats.obytes);
193 	}
194 	else {
195 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
196 		       "    RX-bytes: %10"PRIu64"\n",
197 		       stats.ipackets, stats.ierrors, stats.ibytes);
198 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
199 		printf("  RX-nombuf:               %10"PRIu64"\n",
200 		       stats.rx_nombuf);
201 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
202 		       "    TX-bytes: %10"PRIu64"\n",
203 		       stats.opackets, stats.oerrors, stats.obytes);
204 	}
205 
206 	if (port->rx_queue_stats_mapping_enabled) {
207 		printf("\n");
208 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
209 			printf("  Stats reg %2d RX-packets: %10"PRIu64
210 			       "    RX-errors: %10"PRIu64
211 			       "    RX-bytes: %10"PRIu64"\n",
212 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
213 		}
214 	}
215 	if (port->tx_queue_stats_mapping_enabled) {
216 		printf("\n");
217 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
218 			printf("  Stats reg %2d TX-packets: %10"PRIu64
219 			       "                             TX-bytes: %10"PRIu64"\n",
220 			       i, stats.q_opackets[i], stats.q_obytes[i]);
221 		}
222 	}
223 
224 	diff_cycles = prev_cycles[port_id];
225 	prev_cycles[port_id] = rte_rdtsc();
226 	if (diff_cycles > 0)
227 		diff_cycles = prev_cycles[port_id] - diff_cycles;
228 
229 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
230 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
231 	prev_pkts_rx[port_id] = stats.ipackets;
232 	prev_pkts_tx[port_id] = stats.opackets;
233 	mpps_rx = diff_cycles > 0 ?
234 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
235 	mpps_tx = diff_cycles > 0 ?
236 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
237 	printf("\n  Throughput (since last show)\n");
238 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
239 			mpps_rx, mpps_tx);
240 
241 	printf("  %s############################%s\n",
242 	       nic_stats_border, nic_stats_border);
243 }
244 
245 void
246 nic_stats_clear(portid_t port_id)
247 {
248 	portid_t pid;
249 
250 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
251 		printf("Valid port range is [0");
252 		FOREACH_PORT(pid, ports)
253 			printf(", %d", pid);
254 		printf("]\n");
255 		return;
256 	}
257 	rte_eth_stats_reset(port_id);
258 	printf("\n  NIC statistics for port %d cleared\n", port_id);
259 }
260 
261 void
262 nic_xstats_display(portid_t port_id)
263 {
264 	struct rte_eth_xstat *xstats;
265 	int cnt_xstats, idx_xstat;
266 	struct rte_eth_xstat_name *xstats_names;
267 
268 	printf("###### NIC extended statistics for port %-2d\n", port_id);
269 	if (!rte_eth_dev_is_valid_port(port_id)) {
270 		printf("Error: Invalid port number %i\n", port_id);
271 		return;
272 	}
273 
274 	/* Get count */
275 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
276 	if (cnt_xstats  < 0) {
277 		printf("Error: Cannot get count of xstats\n");
278 		return;
279 	}
280 
281 	/* Get id-name lookup table */
282 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
283 	if (xstats_names == NULL) {
284 		printf("Cannot allocate memory for xstats lookup\n");
285 		return;
286 	}
287 	if (cnt_xstats != rte_eth_xstats_get_names(
288 			port_id, xstats_names, cnt_xstats)) {
289 		printf("Error: Cannot get xstats lookup\n");
290 		free(xstats_names);
291 		return;
292 	}
293 
294 	/* Get stats themselves */
295 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
296 	if (xstats == NULL) {
297 		printf("Cannot allocate memory for xstats\n");
298 		free(xstats_names);
299 		return;
300 	}
301 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
302 		printf("Error: Unable to get xstats\n");
303 		free(xstats_names);
304 		free(xstats);
305 		return;
306 	}
307 
308 	/* Display xstats */
309 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
310 		printf("%s: %"PRIu64"\n",
311 			xstats_names[idx_xstat].name,
312 			xstats[idx_xstat].value);
313 	free(xstats_names);
314 	free(xstats);
315 }
316 
317 void
318 nic_xstats_clear(portid_t port_id)
319 {
320 	rte_eth_xstats_reset(port_id);
321 }
322 
323 void
324 nic_stats_mapping_display(portid_t port_id)
325 {
326 	struct rte_port *port = &ports[port_id];
327 	uint16_t i;
328 	portid_t pid;
329 
330 	static const char *nic_stats_mapping_border = "########################";
331 
332 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
333 		printf("Valid port range is [0");
334 		FOREACH_PORT(pid, ports)
335 			printf(", %d", pid);
336 		printf("]\n");
337 		return;
338 	}
339 
340 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
341 		printf("Port id %d - either does not support queue statistic mapping or"
342 		       " no queue statistic mapping set\n", port_id);
343 		return;
344 	}
345 
346 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
347 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
348 
349 	if (port->rx_queue_stats_mapping_enabled) {
350 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
351 			if (rx_queue_stats_mappings[i].port_id == port_id) {
352 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
353 				       rx_queue_stats_mappings[i].queue_id,
354 				       rx_queue_stats_mappings[i].stats_counter_id);
355 			}
356 		}
357 		printf("\n");
358 	}
359 
360 
361 	if (port->tx_queue_stats_mapping_enabled) {
362 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
363 			if (tx_queue_stats_mappings[i].port_id == port_id) {
364 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
365 				       tx_queue_stats_mappings[i].queue_id,
366 				       tx_queue_stats_mappings[i].stats_counter_id);
367 			}
368 		}
369 	}
370 
371 	printf("  %s####################################%s\n",
372 	       nic_stats_mapping_border, nic_stats_mapping_border);
373 }
374 
375 void
376 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
377 {
378 	struct rte_eth_rxq_info qinfo;
379 	int32_t rc;
380 	static const char *info_border = "*********************";
381 
382 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
383 	if (rc != 0) {
384 		printf("Failed to retrieve information for port: %hhu, "
385 			"RX queue: %hu\nerror desc: %s(%d)\n",
386 			port_id, queue_id, strerror(-rc), rc);
387 		return;
388 	}
389 
390 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
391 	       info_border, port_id, queue_id, info_border);
392 
393 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
394 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
395 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
396 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
397 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
398 	printf("\nRX drop packets: %s",
399 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
400 	printf("\nRX deferred start: %s",
401 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
402 	printf("\nRX scattered packets: %s",
403 		(qinfo.scattered_rx != 0) ? "on" : "off");
404 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
405 	printf("\n");
406 }
407 
408 void
409 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
410 {
411 	struct rte_eth_txq_info qinfo;
412 	int32_t rc;
413 	static const char *info_border = "*********************";
414 
415 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
416 	if (rc != 0) {
417 		printf("Failed to retrieve information for port: %hhu, "
418 			"TX queue: %hu\nerror desc: %s(%d)\n",
419 			port_id, queue_id, strerror(-rc), rc);
420 		return;
421 	}
422 
423 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
424 	       info_border, port_id, queue_id, info_border);
425 
426 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
427 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
428 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
429 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
430 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
431 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
432 	printf("\nTX deferred start: %s",
433 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
434 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
435 	printf("\n");
436 }
437 
438 void
439 port_infos_display(portid_t port_id)
440 {
441 	struct rte_port *port;
442 	struct ether_addr mac_addr;
443 	struct rte_eth_link link;
444 	struct rte_eth_dev_info dev_info;
445 	int vlan_offload;
446 	struct rte_mempool * mp;
447 	static const char *info_border = "*********************";
448 	portid_t pid;
449 
450 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
451 		printf("Valid port range is [0");
452 		FOREACH_PORT(pid, ports)
453 			printf(", %d", pid);
454 		printf("]\n");
455 		return;
456 	}
457 	port = &ports[port_id];
458 	rte_eth_link_get_nowait(port_id, &link);
459 	memset(&dev_info, 0, sizeof(dev_info));
460 	rte_eth_dev_info_get(port_id, &dev_info);
461 	printf("\n%s Infos for port %-2d %s\n",
462 	       info_border, port_id, info_border);
463 	rte_eth_macaddr_get(port_id, &mac_addr);
464 	print_ethaddr("MAC address: ", &mac_addr);
465 	printf("\nDriver name: %s", dev_info.driver_name);
466 	printf("\nConnect to socket: %u", port->socket_id);
467 
468 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
469 		mp = mbuf_pool_find(port_numa[port_id]);
470 		if (mp)
471 			printf("\nmemory allocation on the socket: %d",
472 							port_numa[port_id]);
473 	} else
474 		printf("\nmemory allocation on the socket: %u",port->socket_id);
475 
476 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
477 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
478 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
479 	       ("full-duplex") : ("half-duplex"));
480 	printf("Promiscuous mode: %s\n",
481 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
482 	printf("Allmulticast mode: %s\n",
483 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
484 	printf("Maximum number of MAC addresses: %u\n",
485 	       (unsigned int)(port->dev_info.max_mac_addrs));
486 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
487 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
488 
489 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
490 	if (vlan_offload >= 0){
491 		printf("VLAN offload: \n");
492 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
493 			printf("  strip on \n");
494 		else
495 			printf("  strip off \n");
496 
497 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
498 			printf("  filter on \n");
499 		else
500 			printf("  filter off \n");
501 
502 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
503 			printf("  qinq(extend) on \n");
504 		else
505 			printf("  qinq(extend) off \n");
506 	}
507 
508 	if (dev_info.hash_key_size > 0)
509 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
510 	if (dev_info.reta_size > 0)
511 		printf("Redirection table size: %u\n", dev_info.reta_size);
512 	if (!dev_info.flow_type_rss_offloads)
513 		printf("No flow type is supported.\n");
514 	else {
515 		uint16_t i;
516 		char *p;
517 
518 		printf("Supported flow types:\n");
519 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
520 								i++) {
521 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
522 				continue;
523 			p = flowtype_to_str(i);
524 			printf("  %s\n", (p ? p : "unknown"));
525 		}
526 	}
527 
528 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
529 	printf("Max possible number of RXDs per queue: %hu\n",
530 		dev_info.rx_desc_lim.nb_max);
531 	printf("Min possible number of RXDs per queue: %hu\n",
532 		dev_info.rx_desc_lim.nb_min);
533 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
534 
535 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
536 	printf("Max possible number of TXDs per queue: %hu\n",
537 		dev_info.tx_desc_lim.nb_max);
538 	printf("Min possible number of TXDs per queue: %hu\n",
539 		dev_info.tx_desc_lim.nb_min);
540 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
541 }
542 
543 int
544 port_id_is_invalid(portid_t port_id, enum print_warning warning)
545 {
546 	if (port_id == (portid_t)RTE_PORT_ALL)
547 		return 0;
548 
549 	if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled)
550 		return 0;
551 
552 	if (warning == ENABLED_WARN)
553 		printf("Invalid port %d\n", port_id);
554 
555 	return 1;
556 }
557 
558 static int
559 vlan_id_is_invalid(uint16_t vlan_id)
560 {
561 	if (vlan_id < 4096)
562 		return 0;
563 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
564 	return 1;
565 }
566 
567 static int
568 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
569 {
570 	uint64_t pci_len;
571 
572 	if (reg_off & 0x3) {
573 		printf("Port register offset 0x%X not aligned on a 4-byte "
574 		       "boundary\n",
575 		       (unsigned)reg_off);
576 		return 1;
577 	}
578 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
579 	if (reg_off >= pci_len) {
580 		printf("Port %d: register offset %u (0x%X) out of port PCI "
581 		       "resource (length=%"PRIu64")\n",
582 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
583 		return 1;
584 	}
585 	return 0;
586 }
587 
588 static int
589 reg_bit_pos_is_invalid(uint8_t bit_pos)
590 {
591 	if (bit_pos <= 31)
592 		return 0;
593 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
594 	return 1;
595 }
596 
597 #define display_port_and_reg_off(port_id, reg_off) \
598 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
599 
600 static inline void
601 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
602 {
603 	display_port_and_reg_off(port_id, (unsigned)reg_off);
604 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
605 }
606 
607 void
608 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
609 {
610 	uint32_t reg_v;
611 
612 
613 	if (port_id_is_invalid(port_id, ENABLED_WARN))
614 		return;
615 	if (port_reg_off_is_invalid(port_id, reg_off))
616 		return;
617 	if (reg_bit_pos_is_invalid(bit_x))
618 		return;
619 	reg_v = port_id_pci_reg_read(port_id, reg_off);
620 	display_port_and_reg_off(port_id, (unsigned)reg_off);
621 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
622 }
623 
624 void
625 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
626 			   uint8_t bit1_pos, uint8_t bit2_pos)
627 {
628 	uint32_t reg_v;
629 	uint8_t  l_bit;
630 	uint8_t  h_bit;
631 
632 	if (port_id_is_invalid(port_id, ENABLED_WARN))
633 		return;
634 	if (port_reg_off_is_invalid(port_id, reg_off))
635 		return;
636 	if (reg_bit_pos_is_invalid(bit1_pos))
637 		return;
638 	if (reg_bit_pos_is_invalid(bit2_pos))
639 		return;
640 	if (bit1_pos > bit2_pos)
641 		l_bit = bit2_pos, h_bit = bit1_pos;
642 	else
643 		l_bit = bit1_pos, h_bit = bit2_pos;
644 
645 	reg_v = port_id_pci_reg_read(port_id, reg_off);
646 	reg_v >>= l_bit;
647 	if (h_bit < 31)
648 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
649 	display_port_and_reg_off(port_id, (unsigned)reg_off);
650 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
651 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
652 }
653 
654 void
655 port_reg_display(portid_t port_id, uint32_t reg_off)
656 {
657 	uint32_t reg_v;
658 
659 	if (port_id_is_invalid(port_id, ENABLED_WARN))
660 		return;
661 	if (port_reg_off_is_invalid(port_id, reg_off))
662 		return;
663 	reg_v = port_id_pci_reg_read(port_id, reg_off);
664 	display_port_reg_value(port_id, reg_off, reg_v);
665 }
666 
667 void
668 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
669 		 uint8_t bit_v)
670 {
671 	uint32_t reg_v;
672 
673 	if (port_id_is_invalid(port_id, ENABLED_WARN))
674 		return;
675 	if (port_reg_off_is_invalid(port_id, reg_off))
676 		return;
677 	if (reg_bit_pos_is_invalid(bit_pos))
678 		return;
679 	if (bit_v > 1) {
680 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
681 		return;
682 	}
683 	reg_v = port_id_pci_reg_read(port_id, reg_off);
684 	if (bit_v == 0)
685 		reg_v &= ~(1 << bit_pos);
686 	else
687 		reg_v |= (1 << bit_pos);
688 	port_id_pci_reg_write(port_id, reg_off, reg_v);
689 	display_port_reg_value(port_id, reg_off, reg_v);
690 }
691 
692 void
693 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
694 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
695 {
696 	uint32_t max_v;
697 	uint32_t reg_v;
698 	uint8_t  l_bit;
699 	uint8_t  h_bit;
700 
701 	if (port_id_is_invalid(port_id, ENABLED_WARN))
702 		return;
703 	if (port_reg_off_is_invalid(port_id, reg_off))
704 		return;
705 	if (reg_bit_pos_is_invalid(bit1_pos))
706 		return;
707 	if (reg_bit_pos_is_invalid(bit2_pos))
708 		return;
709 	if (bit1_pos > bit2_pos)
710 		l_bit = bit2_pos, h_bit = bit1_pos;
711 	else
712 		l_bit = bit1_pos, h_bit = bit2_pos;
713 
714 	if ((h_bit - l_bit) < 31)
715 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
716 	else
717 		max_v = 0xFFFFFFFF;
718 
719 	if (value > max_v) {
720 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
721 				(unsigned)value, (unsigned)value,
722 				(unsigned)max_v, (unsigned)max_v);
723 		return;
724 	}
725 	reg_v = port_id_pci_reg_read(port_id, reg_off);
726 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
727 	reg_v |= (value << l_bit); /* Set changed bits */
728 	port_id_pci_reg_write(port_id, reg_off, reg_v);
729 	display_port_reg_value(port_id, reg_off, reg_v);
730 }
731 
732 void
733 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
734 {
735 	if (port_id_is_invalid(port_id, ENABLED_WARN))
736 		return;
737 	if (port_reg_off_is_invalid(port_id, reg_off))
738 		return;
739 	port_id_pci_reg_write(port_id, reg_off, reg_v);
740 	display_port_reg_value(port_id, reg_off, reg_v);
741 }
742 
743 void
744 port_mtu_set(portid_t port_id, uint16_t mtu)
745 {
746 	int diag;
747 
748 	if (port_id_is_invalid(port_id, ENABLED_WARN))
749 		return;
750 	diag = rte_eth_dev_set_mtu(port_id, mtu);
751 	if (diag == 0)
752 		return;
753 	printf("Set MTU failed. diag=%d\n", diag);
754 }
755 
756 /* Generic flow management functions. */
757 
758 /** Generate flow_item[] entry. */
759 #define MK_FLOW_ITEM(t, s) \
760 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
761 		.name = # t, \
762 		.size = s, \
763 	}
764 
765 /** Information about known flow pattern items. */
766 static const struct {
767 	const char *name;
768 	size_t size;
769 } flow_item[] = {
770 	MK_FLOW_ITEM(END, 0),
771 	MK_FLOW_ITEM(VOID, 0),
772 	MK_FLOW_ITEM(INVERT, 0),
773 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
774 	MK_FLOW_ITEM(PF, 0),
775 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
776 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
777 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
778 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
779 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
780 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
781 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
782 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
783 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
784 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
785 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
786 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
787 };
788 
789 /** Compute storage space needed by item specification. */
790 static void
791 flow_item_spec_size(const struct rte_flow_item *item,
792 		    size_t *size, size_t *pad)
793 {
794 	if (!item->spec)
795 		goto empty;
796 	switch (item->type) {
797 		union {
798 			const struct rte_flow_item_raw *raw;
799 		} spec;
800 
801 	case RTE_FLOW_ITEM_TYPE_RAW:
802 		spec.raw = item->spec;
803 		*size = offsetof(struct rte_flow_item_raw, pattern) +
804 			spec.raw->length * sizeof(*spec.raw->pattern);
805 		break;
806 	default:
807 empty:
808 		*size = 0;
809 		break;
810 	}
811 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
812 }
813 
814 /** Generate flow_action[] entry. */
815 #define MK_FLOW_ACTION(t, s) \
816 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
817 		.name = # t, \
818 		.size = s, \
819 	}
820 
821 /** Information about known flow actions. */
822 static const struct {
823 	const char *name;
824 	size_t size;
825 } flow_action[] = {
826 	MK_FLOW_ACTION(END, 0),
827 	MK_FLOW_ACTION(VOID, 0),
828 	MK_FLOW_ACTION(PASSTHRU, 0),
829 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
830 	MK_FLOW_ACTION(FLAG, 0),
831 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
832 	MK_FLOW_ACTION(DROP, 0),
833 	MK_FLOW_ACTION(COUNT, 0),
834 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
835 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
836 	MK_FLOW_ACTION(PF, 0),
837 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
838 };
839 
840 /** Compute storage space needed by action configuration. */
841 static void
842 flow_action_conf_size(const struct rte_flow_action *action,
843 		      size_t *size, size_t *pad)
844 {
845 	if (!action->conf)
846 		goto empty;
847 	switch (action->type) {
848 		union {
849 			const struct rte_flow_action_rss *rss;
850 		} conf;
851 
852 	case RTE_FLOW_ACTION_TYPE_RSS:
853 		conf.rss = action->conf;
854 		*size = offsetof(struct rte_flow_action_rss, queue) +
855 			conf.rss->num * sizeof(*conf.rss->queue);
856 		break;
857 	default:
858 empty:
859 		*size = 0;
860 		break;
861 	}
862 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
863 }
864 
865 /** Generate a port_flow entry from attributes/pattern/actions. */
866 static struct port_flow *
867 port_flow_new(const struct rte_flow_attr *attr,
868 	      const struct rte_flow_item *pattern,
869 	      const struct rte_flow_action *actions)
870 {
871 	const struct rte_flow_item *item;
872 	const struct rte_flow_action *action;
873 	struct port_flow *pf = NULL;
874 	size_t tmp;
875 	size_t pad;
876 	size_t off1 = 0;
877 	size_t off2 = 0;
878 	int err = ENOTSUP;
879 
880 store:
881 	item = pattern;
882 	if (pf)
883 		pf->pattern = (void *)&pf->data[off1];
884 	do {
885 		struct rte_flow_item *dst = NULL;
886 
887 		if ((unsigned int)item->type > RTE_DIM(flow_item) ||
888 		    !flow_item[item->type].name)
889 			goto notsup;
890 		if (pf)
891 			dst = memcpy(pf->data + off1, item, sizeof(*item));
892 		off1 += sizeof(*item);
893 		flow_item_spec_size(item, &tmp, &pad);
894 		if (item->spec) {
895 			if (pf)
896 				dst->spec = memcpy(pf->data + off2,
897 						   item->spec, tmp);
898 			off2 += tmp + pad;
899 		}
900 		if (item->last) {
901 			if (pf)
902 				dst->last = memcpy(pf->data + off2,
903 						   item->last, tmp);
904 			off2 += tmp + pad;
905 		}
906 		if (item->mask) {
907 			if (pf)
908 				dst->mask = memcpy(pf->data + off2,
909 						   item->mask, tmp);
910 			off2 += tmp + pad;
911 		}
912 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
913 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
914 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
915 	action = actions;
916 	if (pf)
917 		pf->actions = (void *)&pf->data[off1];
918 	do {
919 		struct rte_flow_action *dst = NULL;
920 
921 		if ((unsigned int)action->type > RTE_DIM(flow_action) ||
922 		    !flow_action[action->type].name)
923 			goto notsup;
924 		if (pf)
925 			dst = memcpy(pf->data + off1, action, sizeof(*action));
926 		off1 += sizeof(*action);
927 		flow_action_conf_size(action, &tmp, &pad);
928 		if (action->conf) {
929 			if (pf)
930 				dst->conf = memcpy(pf->data + off2,
931 						   action->conf, tmp);
932 			off2 += tmp + pad;
933 		}
934 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
935 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
936 	if (pf != NULL)
937 		return pf;
938 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
939 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
940 	pf = calloc(1, tmp + off1 + off2);
941 	if (pf == NULL)
942 		err = errno;
943 	else {
944 		*pf = (const struct port_flow){
945 			.size = tmp + off1 + off2,
946 			.attr = *attr,
947 		};
948 		tmp -= offsetof(struct port_flow, data);
949 		off2 = tmp + off1;
950 		off1 = tmp;
951 		goto store;
952 	}
953 notsup:
954 	rte_errno = err;
955 	return NULL;
956 }
957 
958 /** Print a message out of a flow error. */
959 static int
960 port_flow_complain(struct rte_flow_error *error)
961 {
962 	static const char *const errstrlist[] = {
963 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
964 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
965 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
966 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
967 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
968 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
969 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
970 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
971 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
972 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
973 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
974 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
975 	};
976 	const char *errstr;
977 	char buf[32];
978 	int err = rte_errno;
979 
980 	if ((unsigned int)error->type > RTE_DIM(errstrlist) ||
981 	    !errstrlist[error->type])
982 		errstr = "unknown type";
983 	else
984 		errstr = errstrlist[error->type];
985 	printf("Caught error type %d (%s): %s%s\n",
986 	       error->type, errstr,
987 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
988 					error->cause), buf) : "",
989 	       error->message ? error->message : "(no stated reason)");
990 	return -err;
991 }
992 
993 /** Validate flow rule. */
994 int
995 port_flow_validate(portid_t port_id,
996 		   const struct rte_flow_attr *attr,
997 		   const struct rte_flow_item *pattern,
998 		   const struct rte_flow_action *actions)
999 {
1000 	struct rte_flow_error error;
1001 
1002 	/* Poisoning to make sure PMDs update it in case of error. */
1003 	memset(&error, 0x11, sizeof(error));
1004 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1005 		return port_flow_complain(&error);
1006 	printf("Flow rule validated\n");
1007 	return 0;
1008 }
1009 
1010 /** Create flow rule. */
1011 int
1012 port_flow_create(portid_t port_id,
1013 		 const struct rte_flow_attr *attr,
1014 		 const struct rte_flow_item *pattern,
1015 		 const struct rte_flow_action *actions)
1016 {
1017 	struct rte_flow *flow;
1018 	struct rte_port *port;
1019 	struct port_flow *pf;
1020 	uint32_t id;
1021 	struct rte_flow_error error;
1022 
1023 	/* Poisoning to make sure PMDs update it in case of error. */
1024 	memset(&error, 0x22, sizeof(error));
1025 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1026 	if (!flow)
1027 		return port_flow_complain(&error);
1028 	port = &ports[port_id];
1029 	if (port->flow_list) {
1030 		if (port->flow_list->id == UINT32_MAX) {
1031 			printf("Highest rule ID is already assigned, delete"
1032 			       " it first");
1033 			rte_flow_destroy(port_id, flow, NULL);
1034 			return -ENOMEM;
1035 		}
1036 		id = port->flow_list->id + 1;
1037 	} else
1038 		id = 0;
1039 	pf = port_flow_new(attr, pattern, actions);
1040 	if (!pf) {
1041 		int err = rte_errno;
1042 
1043 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1044 		rte_flow_destroy(port_id, flow, NULL);
1045 		return -err;
1046 	}
1047 	pf->next = port->flow_list;
1048 	pf->id = id;
1049 	pf->flow = flow;
1050 	port->flow_list = pf;
1051 	printf("Flow rule #%u created\n", pf->id);
1052 	return 0;
1053 }
1054 
1055 /** Destroy a number of flow rules. */
1056 int
1057 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1058 {
1059 	struct rte_port *port;
1060 	struct port_flow **tmp;
1061 	uint32_t c = 0;
1062 	int ret = 0;
1063 
1064 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1065 	    port_id == (portid_t)RTE_PORT_ALL)
1066 		return -EINVAL;
1067 	port = &ports[port_id];
1068 	tmp = &port->flow_list;
1069 	while (*tmp) {
1070 		uint32_t i;
1071 
1072 		for (i = 0; i != n; ++i) {
1073 			struct rte_flow_error error;
1074 			struct port_flow *pf = *tmp;
1075 
1076 			if (rule[i] != pf->id)
1077 				continue;
1078 			/*
1079 			 * Poisoning to make sure PMDs update it in case
1080 			 * of error.
1081 			 */
1082 			memset(&error, 0x33, sizeof(error));
1083 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1084 				ret = port_flow_complain(&error);
1085 				continue;
1086 			}
1087 			printf("Flow rule #%u destroyed\n", pf->id);
1088 			*tmp = pf->next;
1089 			free(pf);
1090 			break;
1091 		}
1092 		if (i == n)
1093 			tmp = &(*tmp)->next;
1094 		++c;
1095 	}
1096 	return ret;
1097 }
1098 
1099 /** Remove all flow rules. */
1100 int
1101 port_flow_flush(portid_t port_id)
1102 {
1103 	struct rte_flow_error error;
1104 	struct rte_port *port;
1105 	int ret = 0;
1106 
1107 	/* Poisoning to make sure PMDs update it in case of error. */
1108 	memset(&error, 0x44, sizeof(error));
1109 	if (rte_flow_flush(port_id, &error)) {
1110 		ret = port_flow_complain(&error);
1111 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1112 		    port_id == (portid_t)RTE_PORT_ALL)
1113 			return ret;
1114 	}
1115 	port = &ports[port_id];
1116 	while (port->flow_list) {
1117 		struct port_flow *pf = port->flow_list->next;
1118 
1119 		free(port->flow_list);
1120 		port->flow_list = pf;
1121 	}
1122 	return ret;
1123 }
1124 
1125 /** Query a flow rule. */
1126 int
1127 port_flow_query(portid_t port_id, uint32_t rule,
1128 		enum rte_flow_action_type action)
1129 {
1130 	struct rte_flow_error error;
1131 	struct rte_port *port;
1132 	struct port_flow *pf;
1133 	const char *name;
1134 	union {
1135 		struct rte_flow_query_count count;
1136 	} query;
1137 
1138 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1139 	    port_id == (portid_t)RTE_PORT_ALL)
1140 		return -EINVAL;
1141 	port = &ports[port_id];
1142 	for (pf = port->flow_list; pf; pf = pf->next)
1143 		if (pf->id == rule)
1144 			break;
1145 	if (!pf) {
1146 		printf("Flow rule #%u not found\n", rule);
1147 		return -ENOENT;
1148 	}
1149 	if ((unsigned int)action > RTE_DIM(flow_action) ||
1150 	    !flow_action[action].name)
1151 		name = "unknown";
1152 	else
1153 		name = flow_action[action].name;
1154 	switch (action) {
1155 	case RTE_FLOW_ACTION_TYPE_COUNT:
1156 		break;
1157 	default:
1158 		printf("Cannot query action type %d (%s)\n", action, name);
1159 		return -ENOTSUP;
1160 	}
1161 	/* Poisoning to make sure PMDs update it in case of error. */
1162 	memset(&error, 0x55, sizeof(error));
1163 	memset(&query, 0, sizeof(query));
1164 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1165 		return port_flow_complain(&error);
1166 	switch (action) {
1167 	case RTE_FLOW_ACTION_TYPE_COUNT:
1168 		printf("%s:\n"
1169 		       " hits_set: %u\n"
1170 		       " bytes_set: %u\n"
1171 		       " hits: %" PRIu64 "\n"
1172 		       " bytes: %" PRIu64 "\n",
1173 		       name,
1174 		       query.count.hits_set,
1175 		       query.count.bytes_set,
1176 		       query.count.hits,
1177 		       query.count.bytes);
1178 		break;
1179 	default:
1180 		printf("Cannot display result for action type %d (%s)\n",
1181 		       action, name);
1182 		break;
1183 	}
1184 	return 0;
1185 }
1186 
1187 /** List flow rules. */
1188 void
1189 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1190 {
1191 	struct rte_port *port;
1192 	struct port_flow *pf;
1193 	struct port_flow *list = NULL;
1194 	uint32_t i;
1195 
1196 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1197 	    port_id == (portid_t)RTE_PORT_ALL)
1198 		return;
1199 	port = &ports[port_id];
1200 	if (!port->flow_list)
1201 		return;
1202 	/* Sort flows by group, priority and ID. */
1203 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1204 		struct port_flow **tmp;
1205 
1206 		if (n) {
1207 			/* Filter out unwanted groups. */
1208 			for (i = 0; i != n; ++i)
1209 				if (pf->attr.group == group[i])
1210 					break;
1211 			if (i == n)
1212 				continue;
1213 		}
1214 		tmp = &list;
1215 		while (*tmp &&
1216 		       (pf->attr.group > (*tmp)->attr.group ||
1217 			(pf->attr.group == (*tmp)->attr.group &&
1218 			 pf->attr.priority > (*tmp)->attr.priority) ||
1219 			(pf->attr.group == (*tmp)->attr.group &&
1220 			 pf->attr.priority == (*tmp)->attr.priority &&
1221 			 pf->id > (*tmp)->id)))
1222 			tmp = &(*tmp)->tmp;
1223 		pf->tmp = *tmp;
1224 		*tmp = pf;
1225 	}
1226 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1227 	for (pf = list; pf != NULL; pf = pf->tmp) {
1228 		const struct rte_flow_item *item = pf->pattern;
1229 		const struct rte_flow_action *action = pf->actions;
1230 
1231 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1232 		       pf->id,
1233 		       pf->attr.group,
1234 		       pf->attr.priority,
1235 		       pf->attr.ingress ? 'i' : '-',
1236 		       pf->attr.egress ? 'e' : '-');
1237 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1238 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1239 				printf("%s ", flow_item[item->type].name);
1240 			++item;
1241 		}
1242 		printf("=>");
1243 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1244 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1245 				printf(" %s", flow_action[action->type].name);
1246 			++action;
1247 		}
1248 		printf("\n");
1249 	}
1250 }
1251 
1252 /*
1253  * RX/TX ring descriptors display functions.
1254  */
1255 int
1256 rx_queue_id_is_invalid(queueid_t rxq_id)
1257 {
1258 	if (rxq_id < nb_rxq)
1259 		return 0;
1260 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1261 	return 1;
1262 }
1263 
1264 int
1265 tx_queue_id_is_invalid(queueid_t txq_id)
1266 {
1267 	if (txq_id < nb_txq)
1268 		return 0;
1269 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1270 	return 1;
1271 }
1272 
1273 static int
1274 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1275 {
1276 	if (rxdesc_id < nb_rxd)
1277 		return 0;
1278 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1279 	       rxdesc_id, nb_rxd);
1280 	return 1;
1281 }
1282 
1283 static int
1284 tx_desc_id_is_invalid(uint16_t txdesc_id)
1285 {
1286 	if (txdesc_id < nb_txd)
1287 		return 0;
1288 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1289 	       txdesc_id, nb_txd);
1290 	return 1;
1291 }
1292 
1293 static const struct rte_memzone *
1294 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1295 {
1296 	char mz_name[RTE_MEMZONE_NAMESIZE];
1297 	const struct rte_memzone *mz;
1298 
1299 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1300 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1301 	mz = rte_memzone_lookup(mz_name);
1302 	if (mz == NULL)
1303 		printf("%s ring memory zoneof (port %d, queue %d) not"
1304 		       "found (zone name = %s\n",
1305 		       ring_name, port_id, q_id, mz_name);
1306 	return mz;
1307 }
1308 
1309 union igb_ring_dword {
1310 	uint64_t dword;
1311 	struct {
1312 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1313 		uint32_t lo;
1314 		uint32_t hi;
1315 #else
1316 		uint32_t hi;
1317 		uint32_t lo;
1318 #endif
1319 	} words;
1320 };
1321 
1322 struct igb_ring_desc_32_bytes {
1323 	union igb_ring_dword lo_dword;
1324 	union igb_ring_dword hi_dword;
1325 	union igb_ring_dword resv1;
1326 	union igb_ring_dword resv2;
1327 };
1328 
1329 struct igb_ring_desc_16_bytes {
1330 	union igb_ring_dword lo_dword;
1331 	union igb_ring_dword hi_dword;
1332 };
1333 
1334 static void
1335 ring_rxd_display_dword(union igb_ring_dword dword)
1336 {
1337 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1338 					(unsigned)dword.words.hi);
1339 }
1340 
1341 static void
1342 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1343 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1344 			   uint8_t port_id,
1345 #else
1346 			   __rte_unused uint8_t port_id,
1347 #endif
1348 			   uint16_t desc_id)
1349 {
1350 	struct igb_ring_desc_16_bytes *ring =
1351 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1352 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1353 	struct rte_eth_dev_info dev_info;
1354 
1355 	memset(&dev_info, 0, sizeof(dev_info));
1356 	rte_eth_dev_info_get(port_id, &dev_info);
1357 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1358 		/* 32 bytes RX descriptor, i40e only */
1359 		struct igb_ring_desc_32_bytes *ring =
1360 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1361 		ring[desc_id].lo_dword.dword =
1362 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1363 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1364 		ring[desc_id].hi_dword.dword =
1365 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1366 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1367 		ring[desc_id].resv1.dword =
1368 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1369 		ring_rxd_display_dword(ring[desc_id].resv1);
1370 		ring[desc_id].resv2.dword =
1371 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1372 		ring_rxd_display_dword(ring[desc_id].resv2);
1373 
1374 		return;
1375 	}
1376 #endif
1377 	/* 16 bytes RX descriptor */
1378 	ring[desc_id].lo_dword.dword =
1379 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1380 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1381 	ring[desc_id].hi_dword.dword =
1382 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1383 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1384 }
1385 
1386 static void
1387 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1388 {
1389 	struct igb_ring_desc_16_bytes *ring;
1390 	struct igb_ring_desc_16_bytes txd;
1391 
1392 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1393 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1394 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1395 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1396 			(unsigned)txd.lo_dword.words.lo,
1397 			(unsigned)txd.lo_dword.words.hi,
1398 			(unsigned)txd.hi_dword.words.lo,
1399 			(unsigned)txd.hi_dword.words.hi);
1400 }
1401 
1402 void
1403 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1404 {
1405 	const struct rte_memzone *rx_mz;
1406 
1407 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1408 		return;
1409 	if (rx_queue_id_is_invalid(rxq_id))
1410 		return;
1411 	if (rx_desc_id_is_invalid(rxd_id))
1412 		return;
1413 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1414 	if (rx_mz == NULL)
1415 		return;
1416 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1417 }
1418 
1419 void
1420 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1421 {
1422 	const struct rte_memzone *tx_mz;
1423 
1424 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1425 		return;
1426 	if (tx_queue_id_is_invalid(txq_id))
1427 		return;
1428 	if (tx_desc_id_is_invalid(txd_id))
1429 		return;
1430 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1431 	if (tx_mz == NULL)
1432 		return;
1433 	ring_tx_descriptor_display(tx_mz, txd_id);
1434 }
1435 
1436 void
1437 fwd_lcores_config_display(void)
1438 {
1439 	lcoreid_t lc_id;
1440 
1441 	printf("List of forwarding lcores:");
1442 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1443 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1444 	printf("\n");
1445 }
1446 void
1447 rxtx_config_display(void)
1448 {
1449 	printf("  %s packet forwarding%s - CRC stripping %s - "
1450 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1451 	       retry_enabled == 0 ? "" : " with retry",
1452 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1453 	       nb_pkt_per_burst);
1454 
1455 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1456 		printf("  packet len=%u - nb packet segments=%d\n",
1457 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1458 
1459 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1460 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1461 
1462 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1463 	       nb_fwd_lcores, nb_fwd_ports);
1464 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1465 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1466 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1467 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1468 	       rx_conf->rx_thresh.wthresh);
1469 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1470 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1471 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1472 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1473 	       tx_conf->tx_thresh.wthresh);
1474 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1475 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1476 }
1477 
1478 void
1479 port_rss_reta_info(portid_t port_id,
1480 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1481 		   uint16_t nb_entries)
1482 {
1483 	uint16_t i, idx, shift;
1484 	int ret;
1485 
1486 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1487 		return;
1488 
1489 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1490 	if (ret != 0) {
1491 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1492 		return;
1493 	}
1494 
1495 	for (i = 0; i < nb_entries; i++) {
1496 		idx = i / RTE_RETA_GROUP_SIZE;
1497 		shift = i % RTE_RETA_GROUP_SIZE;
1498 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1499 			continue;
1500 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1501 					i, reta_conf[idx].reta[shift]);
1502 	}
1503 }
1504 
1505 /*
1506  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1507  * key of the port.
1508  */
1509 void
1510 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1511 {
1512 	struct rte_eth_rss_conf rss_conf;
1513 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1514 	uint64_t rss_hf;
1515 	uint8_t i;
1516 	int diag;
1517 	struct rte_eth_dev_info dev_info;
1518 	uint8_t hash_key_size;
1519 
1520 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1521 		return;
1522 
1523 	memset(&dev_info, 0, sizeof(dev_info));
1524 	rte_eth_dev_info_get(port_id, &dev_info);
1525 	if (dev_info.hash_key_size > 0 &&
1526 			dev_info.hash_key_size <= sizeof(rss_key))
1527 		hash_key_size = dev_info.hash_key_size;
1528 	else {
1529 		printf("dev_info did not provide a valid hash key size\n");
1530 		return;
1531 	}
1532 
1533 	rss_conf.rss_hf = 0;
1534 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1535 		if (!strcmp(rss_info, rss_type_table[i].str))
1536 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1537 	}
1538 
1539 	/* Get RSS hash key if asked to display it */
1540 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1541 	rss_conf.rss_key_len = hash_key_size;
1542 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1543 	if (diag != 0) {
1544 		switch (diag) {
1545 		case -ENODEV:
1546 			printf("port index %d invalid\n", port_id);
1547 			break;
1548 		case -ENOTSUP:
1549 			printf("operation not supported by device\n");
1550 			break;
1551 		default:
1552 			printf("operation failed - diag=%d\n", diag);
1553 			break;
1554 		}
1555 		return;
1556 	}
1557 	rss_hf = rss_conf.rss_hf;
1558 	if (rss_hf == 0) {
1559 		printf("RSS disabled\n");
1560 		return;
1561 	}
1562 	printf("RSS functions:\n ");
1563 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1564 		if (rss_hf & rss_type_table[i].rss_type)
1565 			printf("%s ", rss_type_table[i].str);
1566 	}
1567 	printf("\n");
1568 	if (!show_rss_key)
1569 		return;
1570 	printf("RSS key:\n");
1571 	for (i = 0; i < hash_key_size; i++)
1572 		printf("%02X", rss_key[i]);
1573 	printf("\n");
1574 }
1575 
1576 void
1577 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1578 			 uint hash_key_len)
1579 {
1580 	struct rte_eth_rss_conf rss_conf;
1581 	int diag;
1582 	unsigned int i;
1583 
1584 	rss_conf.rss_key = NULL;
1585 	rss_conf.rss_key_len = hash_key_len;
1586 	rss_conf.rss_hf = 0;
1587 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1588 		if (!strcmp(rss_type_table[i].str, rss_type))
1589 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1590 	}
1591 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1592 	if (diag == 0) {
1593 		rss_conf.rss_key = hash_key;
1594 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1595 	}
1596 	if (diag == 0)
1597 		return;
1598 
1599 	switch (diag) {
1600 	case -ENODEV:
1601 		printf("port index %d invalid\n", port_id);
1602 		break;
1603 	case -ENOTSUP:
1604 		printf("operation not supported by device\n");
1605 		break;
1606 	default:
1607 		printf("operation failed - diag=%d\n", diag);
1608 		break;
1609 	}
1610 }
1611 
1612 /*
1613  * Setup forwarding configuration for each logical core.
1614  */
1615 static void
1616 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1617 {
1618 	streamid_t nb_fs_per_lcore;
1619 	streamid_t nb_fs;
1620 	streamid_t sm_id;
1621 	lcoreid_t  nb_extra;
1622 	lcoreid_t  nb_fc;
1623 	lcoreid_t  nb_lc;
1624 	lcoreid_t  lc_id;
1625 
1626 	nb_fs = cfg->nb_fwd_streams;
1627 	nb_fc = cfg->nb_fwd_lcores;
1628 	if (nb_fs <= nb_fc) {
1629 		nb_fs_per_lcore = 1;
1630 		nb_extra = 0;
1631 	} else {
1632 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1633 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1634 	}
1635 
1636 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1637 	sm_id = 0;
1638 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1639 		fwd_lcores[lc_id]->stream_idx = sm_id;
1640 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1641 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1642 	}
1643 
1644 	/*
1645 	 * Assign extra remaining streams, if any.
1646 	 */
1647 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1648 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1649 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1650 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1651 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1652 	}
1653 }
1654 
1655 static void
1656 simple_fwd_config_setup(void)
1657 {
1658 	portid_t i;
1659 	portid_t j;
1660 	portid_t inc = 2;
1661 
1662 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1663 	    port_topology == PORT_TOPOLOGY_LOOP) {
1664 		inc = 1;
1665 	} else if (nb_fwd_ports % 2) {
1666 		printf("\nWarning! Cannot handle an odd number of ports "
1667 		       "with the current port topology. Configuration "
1668 		       "must be changed to have an even number of ports, "
1669 		       "or relaunch application with "
1670 		       "--port-topology=chained\n\n");
1671 	}
1672 
1673 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1674 	cur_fwd_config.nb_fwd_streams =
1675 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1676 
1677 	/* reinitialize forwarding streams */
1678 	init_fwd_streams();
1679 
1680 	/*
1681 	 * In the simple forwarding test, the number of forwarding cores
1682 	 * must be lower or equal to the number of forwarding ports.
1683 	 */
1684 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1685 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1686 		cur_fwd_config.nb_fwd_lcores =
1687 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1688 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1689 
1690 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1691 		if (port_topology != PORT_TOPOLOGY_LOOP)
1692 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1693 		else
1694 			j = i;
1695 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1696 		fwd_streams[i]->rx_queue  = 0;
1697 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1698 		fwd_streams[i]->tx_queue  = 0;
1699 		fwd_streams[i]->peer_addr = j;
1700 		fwd_streams[i]->retry_enabled = retry_enabled;
1701 
1702 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1703 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1704 			fwd_streams[j]->rx_queue  = 0;
1705 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1706 			fwd_streams[j]->tx_queue  = 0;
1707 			fwd_streams[j]->peer_addr = i;
1708 			fwd_streams[j]->retry_enabled = retry_enabled;
1709 		}
1710 	}
1711 }
1712 
1713 /**
1714  * For the RSS forwarding test all streams distributed over lcores. Each stream
1715  * being composed of a RX queue to poll on a RX port for input messages,
1716  * associated with a TX queue of a TX port where to send forwarded packets.
1717  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1718  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1719  * following rules:
1720  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1721  *    - TxQl = RxQj
1722  */
1723 static void
1724 rss_fwd_config_setup(void)
1725 {
1726 	portid_t   rxp;
1727 	portid_t   txp;
1728 	queueid_t  rxq;
1729 	queueid_t  nb_q;
1730 	streamid_t  sm_id;
1731 
1732 	nb_q = nb_rxq;
1733 	if (nb_q > nb_txq)
1734 		nb_q = nb_txq;
1735 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1736 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1737 	cur_fwd_config.nb_fwd_streams =
1738 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1739 
1740 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1741 		cur_fwd_config.nb_fwd_lcores =
1742 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1743 
1744 	/* reinitialize forwarding streams */
1745 	init_fwd_streams();
1746 
1747 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1748 	rxp = 0; rxq = 0;
1749 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1750 		struct fwd_stream *fs;
1751 
1752 		fs = fwd_streams[sm_id];
1753 
1754 		if ((rxp & 0x1) == 0)
1755 			txp = (portid_t) (rxp + 1);
1756 		else
1757 			txp = (portid_t) (rxp - 1);
1758 		/*
1759 		 * if we are in loopback, simply send stuff out through the
1760 		 * ingress port
1761 		 */
1762 		if (port_topology == PORT_TOPOLOGY_LOOP)
1763 			txp = rxp;
1764 
1765 		fs->rx_port = fwd_ports_ids[rxp];
1766 		fs->rx_queue = rxq;
1767 		fs->tx_port = fwd_ports_ids[txp];
1768 		fs->tx_queue = rxq;
1769 		fs->peer_addr = fs->tx_port;
1770 		fs->retry_enabled = retry_enabled;
1771 		rxq = (queueid_t) (rxq + 1);
1772 		if (rxq < nb_q)
1773 			continue;
1774 		/*
1775 		 * rxq == nb_q
1776 		 * Restart from RX queue 0 on next RX port
1777 		 */
1778 		rxq = 0;
1779 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1780 			rxp = (portid_t)
1781 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1782 		else
1783 			rxp = (portid_t) (rxp + 1);
1784 	}
1785 }
1786 
1787 /**
1788  * For the DCB forwarding test, each core is assigned on each traffic class.
1789  *
1790  * Each core is assigned a multi-stream, each stream being composed of
1791  * a RX queue to poll on a RX port for input messages, associated with
1792  * a TX queue of a TX port where to send forwarded packets. All RX and
1793  * TX queues are mapping to the same traffic class.
1794  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1795  * the same core
1796  */
1797 static void
1798 dcb_fwd_config_setup(void)
1799 {
1800 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1801 	portid_t txp, rxp = 0;
1802 	queueid_t txq, rxq = 0;
1803 	lcoreid_t  lc_id;
1804 	uint16_t nb_rx_queue, nb_tx_queue;
1805 	uint16_t i, j, k, sm_id = 0;
1806 	uint8_t tc = 0;
1807 
1808 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1809 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1810 	cur_fwd_config.nb_fwd_streams =
1811 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1812 
1813 	/* reinitialize forwarding streams */
1814 	init_fwd_streams();
1815 	sm_id = 0;
1816 	txp = 1;
1817 	/* get the dcb info on the first RX and TX ports */
1818 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
1819 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
1820 
1821 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
1822 		fwd_lcores[lc_id]->stream_nb = 0;
1823 		fwd_lcores[lc_id]->stream_idx = sm_id;
1824 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
1825 			/* if the nb_queue is zero, means this tc is
1826 			 * not enabled on the POOL
1827 			 */
1828 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
1829 				break;
1830 			k = fwd_lcores[lc_id]->stream_nb +
1831 				fwd_lcores[lc_id]->stream_idx;
1832 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
1833 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
1834 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
1835 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
1836 			for (j = 0; j < nb_rx_queue; j++) {
1837 				struct fwd_stream *fs;
1838 
1839 				fs = fwd_streams[k + j];
1840 				fs->rx_port = fwd_ports_ids[rxp];
1841 				fs->rx_queue = rxq + j;
1842 				fs->tx_port = fwd_ports_ids[txp];
1843 				fs->tx_queue = txq + j % nb_tx_queue;
1844 				fs->peer_addr = fs->tx_port;
1845 				fs->retry_enabled = retry_enabled;
1846 			}
1847 			fwd_lcores[lc_id]->stream_nb +=
1848 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
1849 		}
1850 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
1851 
1852 		tc++;
1853 		if (tc < rxp_dcb_info.nb_tcs)
1854 			continue;
1855 		/* Restart from TC 0 on next RX port */
1856 		tc = 0;
1857 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1858 			rxp = (portid_t)
1859 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1860 		else
1861 			rxp++;
1862 		if (rxp >= nb_fwd_ports)
1863 			return;
1864 		/* get the dcb information on next RX and TX ports */
1865 		if ((rxp & 0x1) == 0)
1866 			txp = (portid_t) (rxp + 1);
1867 		else
1868 			txp = (portid_t) (rxp - 1);
1869 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
1870 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
1871 	}
1872 }
1873 
1874 static void
1875 icmp_echo_config_setup(void)
1876 {
1877 	portid_t  rxp;
1878 	queueid_t rxq;
1879 	lcoreid_t lc_id;
1880 	uint16_t  sm_id;
1881 
1882 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
1883 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
1884 			(nb_txq * nb_fwd_ports);
1885 	else
1886 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1887 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1888 	cur_fwd_config.nb_fwd_streams =
1889 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1890 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1891 		cur_fwd_config.nb_fwd_lcores =
1892 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1893 	if (verbose_level > 0) {
1894 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
1895 		       __FUNCTION__,
1896 		       cur_fwd_config.nb_fwd_lcores,
1897 		       cur_fwd_config.nb_fwd_ports,
1898 		       cur_fwd_config.nb_fwd_streams);
1899 	}
1900 
1901 	/* reinitialize forwarding streams */
1902 	init_fwd_streams();
1903 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1904 	rxp = 0; rxq = 0;
1905 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
1906 		if (verbose_level > 0)
1907 			printf("  core=%d: \n", lc_id);
1908 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
1909 			struct fwd_stream *fs;
1910 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
1911 			fs->rx_port = fwd_ports_ids[rxp];
1912 			fs->rx_queue = rxq;
1913 			fs->tx_port = fs->rx_port;
1914 			fs->tx_queue = rxq;
1915 			fs->peer_addr = fs->tx_port;
1916 			fs->retry_enabled = retry_enabled;
1917 			if (verbose_level > 0)
1918 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
1919 				       sm_id, fs->rx_port, fs->rx_queue,
1920 				       fs->tx_queue);
1921 			rxq = (queueid_t) (rxq + 1);
1922 			if (rxq == nb_rxq) {
1923 				rxq = 0;
1924 				rxp = (portid_t) (rxp + 1);
1925 			}
1926 		}
1927 	}
1928 }
1929 
1930 void
1931 fwd_config_setup(void)
1932 {
1933 	cur_fwd_config.fwd_eng = cur_fwd_eng;
1934 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
1935 		icmp_echo_config_setup();
1936 		return;
1937 	}
1938 	if ((nb_rxq > 1) && (nb_txq > 1)){
1939 		if (dcb_config)
1940 			dcb_fwd_config_setup();
1941 		else
1942 			rss_fwd_config_setup();
1943 	}
1944 	else
1945 		simple_fwd_config_setup();
1946 }
1947 
1948 void
1949 pkt_fwd_config_display(struct fwd_config *cfg)
1950 {
1951 	struct fwd_stream *fs;
1952 	lcoreid_t  lc_id;
1953 	streamid_t sm_id;
1954 
1955 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
1956 		"NUMA support %s, MP over anonymous pages %s\n",
1957 		cfg->fwd_eng->fwd_mode_name,
1958 		retry_enabled == 0 ? "" : " with retry",
1959 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
1960 		numa_support == 1 ? "enabled" : "disabled",
1961 		mp_anon != 0 ? "enabled" : "disabled");
1962 
1963 	if (retry_enabled)
1964 		printf("TX retry num: %u, delay between TX retries: %uus\n",
1965 			burst_tx_retry_num, burst_tx_delay_time);
1966 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
1967 		printf("Logical Core %u (socket %u) forwards packets on "
1968 		       "%d streams:",
1969 		       fwd_lcores_cpuids[lc_id],
1970 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
1971 		       fwd_lcores[lc_id]->stream_nb);
1972 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
1973 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
1974 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
1975 			       "P=%d/Q=%d (socket %u) ",
1976 			       fs->rx_port, fs->rx_queue,
1977 			       ports[fs->rx_port].socket_id,
1978 			       fs->tx_port, fs->tx_queue,
1979 			       ports[fs->tx_port].socket_id);
1980 			print_ethaddr("peer=",
1981 				      &peer_eth_addrs[fs->peer_addr]);
1982 		}
1983 		printf("\n");
1984 	}
1985 	printf("\n");
1986 }
1987 
1988 int
1989 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
1990 {
1991 	unsigned int i;
1992 	unsigned int lcore_cpuid;
1993 	int record_now;
1994 
1995 	record_now = 0;
1996  again:
1997 	for (i = 0; i < nb_lc; i++) {
1998 		lcore_cpuid = lcorelist[i];
1999 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2000 			printf("lcore %u not enabled\n", lcore_cpuid);
2001 			return -1;
2002 		}
2003 		if (lcore_cpuid == rte_get_master_lcore()) {
2004 			printf("lcore %u cannot be masked on for running "
2005 			       "packet forwarding, which is the master lcore "
2006 			       "and reserved for command line parsing only\n",
2007 			       lcore_cpuid);
2008 			return -1;
2009 		}
2010 		if (record_now)
2011 			fwd_lcores_cpuids[i] = lcore_cpuid;
2012 	}
2013 	if (record_now == 0) {
2014 		record_now = 1;
2015 		goto again;
2016 	}
2017 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2018 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2019 		printf("previous number of forwarding cores %u - changed to "
2020 		       "number of configured cores %u\n",
2021 		       (unsigned int) nb_fwd_lcores, nb_lc);
2022 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 int
2029 set_fwd_lcores_mask(uint64_t lcoremask)
2030 {
2031 	unsigned int lcorelist[64];
2032 	unsigned int nb_lc;
2033 	unsigned int i;
2034 
2035 	if (lcoremask == 0) {
2036 		printf("Invalid NULL mask of cores\n");
2037 		return -1;
2038 	}
2039 	nb_lc = 0;
2040 	for (i = 0; i < 64; i++) {
2041 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2042 			continue;
2043 		lcorelist[nb_lc++] = i;
2044 	}
2045 	return set_fwd_lcores_list(lcorelist, nb_lc);
2046 }
2047 
2048 void
2049 set_fwd_lcores_number(uint16_t nb_lc)
2050 {
2051 	if (nb_lc > nb_cfg_lcores) {
2052 		printf("nb fwd cores %u > %u (max. number of configured "
2053 		       "lcores) - ignored\n",
2054 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2055 		return;
2056 	}
2057 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2058 	printf("Number of forwarding cores set to %u\n",
2059 	       (unsigned int) nb_fwd_lcores);
2060 }
2061 
2062 void
2063 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2064 {
2065 	unsigned int i;
2066 	portid_t port_id;
2067 	int record_now;
2068 
2069 	record_now = 0;
2070  again:
2071 	for (i = 0; i < nb_pt; i++) {
2072 		port_id = (portid_t) portlist[i];
2073 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2074 			return;
2075 		if (record_now)
2076 			fwd_ports_ids[i] = port_id;
2077 	}
2078 	if (record_now == 0) {
2079 		record_now = 1;
2080 		goto again;
2081 	}
2082 	nb_cfg_ports = (portid_t) nb_pt;
2083 	if (nb_fwd_ports != (portid_t) nb_pt) {
2084 		printf("previous number of forwarding ports %u - changed to "
2085 		       "number of configured ports %u\n",
2086 		       (unsigned int) nb_fwd_ports, nb_pt);
2087 		nb_fwd_ports = (portid_t) nb_pt;
2088 	}
2089 }
2090 
2091 void
2092 set_fwd_ports_mask(uint64_t portmask)
2093 {
2094 	unsigned int portlist[64];
2095 	unsigned int nb_pt;
2096 	unsigned int i;
2097 
2098 	if (portmask == 0) {
2099 		printf("Invalid NULL mask of ports\n");
2100 		return;
2101 	}
2102 	nb_pt = 0;
2103 	for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) {
2104 		if (! ((uint64_t)(1ULL << i) & portmask))
2105 			continue;
2106 		portlist[nb_pt++] = i;
2107 	}
2108 	set_fwd_ports_list(portlist, nb_pt);
2109 }
2110 
2111 void
2112 set_fwd_ports_number(uint16_t nb_pt)
2113 {
2114 	if (nb_pt > nb_cfg_ports) {
2115 		printf("nb fwd ports %u > %u (number of configured "
2116 		       "ports) - ignored\n",
2117 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2118 		return;
2119 	}
2120 	nb_fwd_ports = (portid_t) nb_pt;
2121 	printf("Number of forwarding ports set to %u\n",
2122 	       (unsigned int) nb_fwd_ports);
2123 }
2124 
2125 int
2126 port_is_forwarding(portid_t port_id)
2127 {
2128 	unsigned int i;
2129 
2130 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2131 		return -1;
2132 
2133 	for (i = 0; i < nb_fwd_ports; i++) {
2134 		if (fwd_ports_ids[i] == port_id)
2135 			return 1;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 void
2142 set_nb_pkt_per_burst(uint16_t nb)
2143 {
2144 	if (nb > MAX_PKT_BURST) {
2145 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2146 		       " ignored\n",
2147 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2148 		return;
2149 	}
2150 	nb_pkt_per_burst = nb;
2151 	printf("Number of packets per burst set to %u\n",
2152 	       (unsigned int) nb_pkt_per_burst);
2153 }
2154 
2155 static const char *
2156 tx_split_get_name(enum tx_pkt_split split)
2157 {
2158 	uint32_t i;
2159 
2160 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2161 		if (tx_split_name[i].split == split)
2162 			return tx_split_name[i].name;
2163 	}
2164 	return NULL;
2165 }
2166 
2167 void
2168 set_tx_pkt_split(const char *name)
2169 {
2170 	uint32_t i;
2171 
2172 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2173 		if (strcmp(tx_split_name[i].name, name) == 0) {
2174 			tx_pkt_split = tx_split_name[i].split;
2175 			return;
2176 		}
2177 	}
2178 	printf("unknown value: \"%s\"\n", name);
2179 }
2180 
2181 void
2182 show_tx_pkt_segments(void)
2183 {
2184 	uint32_t i, n;
2185 	const char *split;
2186 
2187 	n = tx_pkt_nb_segs;
2188 	split = tx_split_get_name(tx_pkt_split);
2189 
2190 	printf("Number of segments: %u\n", n);
2191 	printf("Segment sizes: ");
2192 	for (i = 0; i != n - 1; i++)
2193 		printf("%hu,", tx_pkt_seg_lengths[i]);
2194 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2195 	printf("Split packet: %s\n", split);
2196 }
2197 
2198 void
2199 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2200 {
2201 	uint16_t tx_pkt_len;
2202 	unsigned i;
2203 
2204 	if (nb_segs >= (unsigned) nb_txd) {
2205 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2206 		       nb_segs, (unsigned int) nb_txd);
2207 		return;
2208 	}
2209 
2210 	/*
2211 	 * Check that each segment length is greater or equal than
2212 	 * the mbuf data sise.
2213 	 * Check also that the total packet length is greater or equal than the
2214 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2215 	 */
2216 	tx_pkt_len = 0;
2217 	for (i = 0; i < nb_segs; i++) {
2218 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2219 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2220 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2221 			return;
2222 		}
2223 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2224 	}
2225 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2226 		printf("total packet length=%u < %d - give up\n",
2227 				(unsigned) tx_pkt_len,
2228 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2229 		return;
2230 	}
2231 
2232 	for (i = 0; i < nb_segs; i++)
2233 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2234 
2235 	tx_pkt_length  = tx_pkt_len;
2236 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2237 }
2238 
2239 char*
2240 list_pkt_forwarding_modes(void)
2241 {
2242 	static char fwd_modes[128] = "";
2243 	const char *separator = "|";
2244 	struct fwd_engine *fwd_eng;
2245 	unsigned i = 0;
2246 
2247 	if (strlen (fwd_modes) == 0) {
2248 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2249 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2250 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2251 			strncat(fwd_modes, separator,
2252 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2253 		}
2254 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2255 	}
2256 
2257 	return fwd_modes;
2258 }
2259 
2260 char*
2261 list_pkt_forwarding_retry_modes(void)
2262 {
2263 	static char fwd_modes[128] = "";
2264 	const char *separator = "|";
2265 	struct fwd_engine *fwd_eng;
2266 	unsigned i = 0;
2267 
2268 	if (strlen(fwd_modes) == 0) {
2269 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2270 			if (fwd_eng == &rx_only_engine)
2271 				continue;
2272 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2273 					sizeof(fwd_modes) -
2274 					strlen(fwd_modes) - 1);
2275 			strncat(fwd_modes, separator,
2276 					sizeof(fwd_modes) -
2277 					strlen(fwd_modes) - 1);
2278 		}
2279 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2280 	}
2281 
2282 	return fwd_modes;
2283 }
2284 
2285 void
2286 set_pkt_forwarding_mode(const char *fwd_mode_name)
2287 {
2288 	struct fwd_engine *fwd_eng;
2289 	unsigned i;
2290 
2291 	i = 0;
2292 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2293 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2294 			printf("Set %s packet forwarding mode%s\n",
2295 			       fwd_mode_name,
2296 			       retry_enabled == 0 ? "" : " with retry");
2297 			cur_fwd_eng = fwd_eng;
2298 			return;
2299 		}
2300 		i++;
2301 	}
2302 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2303 }
2304 
2305 void
2306 set_verbose_level(uint16_t vb_level)
2307 {
2308 	printf("Change verbose level from %u to %u\n",
2309 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2310 	verbose_level = vb_level;
2311 }
2312 
2313 void
2314 vlan_extend_set(portid_t port_id, int on)
2315 {
2316 	int diag;
2317 	int vlan_offload;
2318 
2319 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2320 		return;
2321 
2322 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2323 
2324 	if (on)
2325 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2326 	else
2327 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2328 
2329 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2330 	if (diag < 0)
2331 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2332 	       "diag=%d\n", port_id, on, diag);
2333 }
2334 
2335 void
2336 rx_vlan_strip_set(portid_t port_id, int on)
2337 {
2338 	int diag;
2339 	int vlan_offload;
2340 
2341 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2342 		return;
2343 
2344 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2345 
2346 	if (on)
2347 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2348 	else
2349 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2350 
2351 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2352 	if (diag < 0)
2353 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2354 	       "diag=%d\n", port_id, on, diag);
2355 }
2356 
2357 void
2358 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2359 {
2360 	int diag;
2361 
2362 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2363 		return;
2364 
2365 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2366 	if (diag < 0)
2367 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2368 	       "diag=%d\n", port_id, queue_id, on, diag);
2369 }
2370 
2371 void
2372 rx_vlan_filter_set(portid_t port_id, int on)
2373 {
2374 	int diag;
2375 	int vlan_offload;
2376 
2377 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2378 		return;
2379 
2380 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2381 
2382 	if (on)
2383 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2384 	else
2385 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2386 
2387 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2388 	if (diag < 0)
2389 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2390 	       "diag=%d\n", port_id, on, diag);
2391 }
2392 
2393 int
2394 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2395 {
2396 	int diag;
2397 
2398 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2399 		return 1;
2400 	if (vlan_id_is_invalid(vlan_id))
2401 		return 1;
2402 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2403 	if (diag == 0)
2404 		return 0;
2405 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2406 	       "diag=%d\n",
2407 	       port_id, vlan_id, on, diag);
2408 	return -1;
2409 }
2410 
2411 void
2412 rx_vlan_all_filter_set(portid_t port_id, int on)
2413 {
2414 	uint16_t vlan_id;
2415 
2416 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2417 		return;
2418 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2419 		if (rx_vft_set(port_id, vlan_id, on))
2420 			break;
2421 	}
2422 }
2423 
2424 void
2425 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2426 {
2427 	int diag;
2428 
2429 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2430 		return;
2431 
2432 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2433 	if (diag == 0)
2434 		return;
2435 
2436 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2437 	       "diag=%d\n",
2438 	       port_id, vlan_type, tp_id, diag);
2439 }
2440 
2441 void
2442 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2443 {
2444 	int vlan_offload;
2445 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2446 		return;
2447 	if (vlan_id_is_invalid(vlan_id))
2448 		return;
2449 
2450 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2451 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2452 		printf("Error, as QinQ has been enabled.\n");
2453 		return;
2454 	}
2455 
2456 	tx_vlan_reset(port_id);
2457 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2458 	ports[port_id].tx_vlan_id = vlan_id;
2459 }
2460 
2461 void
2462 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2463 {
2464 	int vlan_offload;
2465 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2466 		return;
2467 	if (vlan_id_is_invalid(vlan_id))
2468 		return;
2469 	if (vlan_id_is_invalid(vlan_id_outer))
2470 		return;
2471 
2472 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2473 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2474 		printf("Error, as QinQ hasn't been enabled.\n");
2475 		return;
2476 	}
2477 
2478 	tx_vlan_reset(port_id);
2479 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2480 	ports[port_id].tx_vlan_id = vlan_id;
2481 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2482 }
2483 
2484 void
2485 tx_vlan_reset(portid_t port_id)
2486 {
2487 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2488 		return;
2489 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2490 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2491 	ports[port_id].tx_vlan_id = 0;
2492 	ports[port_id].tx_vlan_id_outer = 0;
2493 }
2494 
2495 void
2496 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2497 {
2498 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2499 		return;
2500 
2501 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2502 }
2503 
2504 void
2505 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2506 {
2507 	uint16_t i;
2508 	uint8_t existing_mapping_found = 0;
2509 
2510 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2511 		return;
2512 
2513 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2514 		return;
2515 
2516 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2517 		printf("map_value not in required range 0..%d\n",
2518 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2519 		return;
2520 	}
2521 
2522 	if (!is_rx) { /*then tx*/
2523 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2524 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2525 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2526 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2527 				existing_mapping_found = 1;
2528 				break;
2529 			}
2530 		}
2531 		if (!existing_mapping_found) { /* A new additional mapping... */
2532 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2533 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2534 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2535 			nb_tx_queue_stats_mappings++;
2536 		}
2537 	}
2538 	else { /*rx*/
2539 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2540 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2541 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2542 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2543 				existing_mapping_found = 1;
2544 				break;
2545 			}
2546 		}
2547 		if (!existing_mapping_found) { /* A new additional mapping... */
2548 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2549 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2550 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2551 			nb_rx_queue_stats_mappings++;
2552 		}
2553 	}
2554 }
2555 
2556 static inline void
2557 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2558 {
2559 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2560 
2561 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2562 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2563 			" tunnel_id: 0x%08x",
2564 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2565 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2566 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2567 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2568 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2569 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2570 
2571 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2572 			rte_be_to_cpu_16(mask->src_port_mask),
2573 			rte_be_to_cpu_16(mask->dst_port_mask));
2574 
2575 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2576 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2577 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2578 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2579 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2580 
2581 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2582 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2583 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2584 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2585 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2586 	}
2587 
2588 	printf("\n");
2589 }
2590 
2591 static inline void
2592 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2593 {
2594 	struct rte_eth_flex_payload_cfg *cfg;
2595 	uint32_t i, j;
2596 
2597 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2598 		cfg = &flex_conf->flex_set[i];
2599 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2600 			printf("\n    RAW:  ");
2601 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2602 			printf("\n    L2_PAYLOAD:  ");
2603 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2604 			printf("\n    L3_PAYLOAD:  ");
2605 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2606 			printf("\n    L4_PAYLOAD:  ");
2607 		else
2608 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2609 		for (j = 0; j < num; j++)
2610 			printf("  %-5u", cfg->src_offset[j]);
2611 	}
2612 	printf("\n");
2613 }
2614 
2615 static char *
2616 flowtype_to_str(uint16_t flow_type)
2617 {
2618 	struct flow_type_info {
2619 		char str[32];
2620 		uint16_t ftype;
2621 	};
2622 
2623 	uint8_t i;
2624 	static struct flow_type_info flowtype_str_table[] = {
2625 		{"raw", RTE_ETH_FLOW_RAW},
2626 		{"ipv4", RTE_ETH_FLOW_IPV4},
2627 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2628 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2629 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2630 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2631 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2632 		{"ipv6", RTE_ETH_FLOW_IPV6},
2633 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2634 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2635 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2636 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2637 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2638 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2639 		{"port", RTE_ETH_FLOW_PORT},
2640 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2641 		{"geneve", RTE_ETH_FLOW_GENEVE},
2642 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2643 	};
2644 
2645 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2646 		if (flowtype_str_table[i].ftype == flow_type)
2647 			return flowtype_str_table[i].str;
2648 	}
2649 
2650 	return NULL;
2651 }
2652 
2653 static inline void
2654 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2655 {
2656 	struct rte_eth_fdir_flex_mask *mask;
2657 	uint32_t i, j;
2658 	char *p;
2659 
2660 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2661 		mask = &flex_conf->flex_mask[i];
2662 		p = flowtype_to_str(mask->flow_type);
2663 		printf("\n    %s:\t", p ? p : "unknown");
2664 		for (j = 0; j < num; j++)
2665 			printf(" %02x", mask->mask[j]);
2666 	}
2667 	printf("\n");
2668 }
2669 
2670 static inline void
2671 print_fdir_flow_type(uint32_t flow_types_mask)
2672 {
2673 	int i;
2674 	char *p;
2675 
2676 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2677 		if (!(flow_types_mask & (1 << i)))
2678 			continue;
2679 		p = flowtype_to_str(i);
2680 		if (p)
2681 			printf(" %s", p);
2682 		else
2683 			printf(" unknown");
2684 	}
2685 	printf("\n");
2686 }
2687 
2688 void
2689 fdir_get_infos(portid_t port_id)
2690 {
2691 	struct rte_eth_fdir_stats fdir_stat;
2692 	struct rte_eth_fdir_info fdir_info;
2693 	int ret;
2694 
2695 	static const char *fdir_stats_border = "########################";
2696 
2697 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2698 		return;
2699 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2700 	if (ret < 0) {
2701 		printf("\n FDIR is not supported on port %-2d\n",
2702 			port_id);
2703 		return;
2704 	}
2705 
2706 	memset(&fdir_info, 0, sizeof(fdir_info));
2707 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2708 			       RTE_ETH_FILTER_INFO, &fdir_info);
2709 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2710 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2711 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2712 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2713 	       fdir_stats_border, port_id, fdir_stats_border);
2714 	printf("  MODE: ");
2715 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2716 		printf("  PERFECT\n");
2717 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2718 		printf("  PERFECT-MAC-VLAN\n");
2719 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2720 		printf("  PERFECT-TUNNEL\n");
2721 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2722 		printf("  SIGNATURE\n");
2723 	else
2724 		printf("  DISABLE\n");
2725 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2726 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2727 		printf("  SUPPORTED FLOW TYPE: ");
2728 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2729 	}
2730 	printf("  FLEX PAYLOAD INFO:\n");
2731 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2732 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2733 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2734 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2735 		fdir_info.flex_payload_unit,
2736 		fdir_info.max_flex_payload_segment_num,
2737 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2738 	printf("  MASK: ");
2739 	print_fdir_mask(&fdir_info.mask);
2740 	if (fdir_info.flex_conf.nb_payloads > 0) {
2741 		printf("  FLEX PAYLOAD SRC OFFSET:");
2742 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2743 	}
2744 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2745 		printf("  FLEX MASK CFG:");
2746 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2747 	}
2748 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2749 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2750 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2751 	       fdir_info.guarant_spc, fdir_info.best_spc);
2752 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2753 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2754 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2755 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2756 	       fdir_stat.collision, fdir_stat.free,
2757 	       fdir_stat.maxhash, fdir_stat.maxlen,
2758 	       fdir_stat.add, fdir_stat.remove,
2759 	       fdir_stat.f_add, fdir_stat.f_remove);
2760 	printf("  %s############################%s\n",
2761 	       fdir_stats_border, fdir_stats_border);
2762 }
2763 
2764 void
2765 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2766 {
2767 	struct rte_port *port;
2768 	struct rte_eth_fdir_flex_conf *flex_conf;
2769 	int i, idx = 0;
2770 
2771 	port = &ports[port_id];
2772 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2773 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2774 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2775 			idx = i;
2776 			break;
2777 		}
2778 	}
2779 	if (i >= RTE_ETH_FLOW_MAX) {
2780 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2781 			idx = flex_conf->nb_flexmasks;
2782 			flex_conf->nb_flexmasks++;
2783 		} else {
2784 			printf("The flex mask table is full. Can not set flex"
2785 				" mask for flow_type(%u).", cfg->flow_type);
2786 			return;
2787 		}
2788 	}
2789 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2790 			 cfg,
2791 			 sizeof(struct rte_eth_fdir_flex_mask));
2792 }
2793 
2794 void
2795 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2796 {
2797 	struct rte_port *port;
2798 	struct rte_eth_fdir_flex_conf *flex_conf;
2799 	int i, idx = 0;
2800 
2801 	port = &ports[port_id];
2802 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2803 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2804 		if (cfg->type == flex_conf->flex_set[i].type) {
2805 			idx = i;
2806 			break;
2807 		}
2808 	}
2809 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2810 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2811 			idx = flex_conf->nb_payloads;
2812 			flex_conf->nb_payloads++;
2813 		} else {
2814 			printf("The flex payload table is full. Can not set"
2815 				" flex payload for type(%u).", cfg->type);
2816 			return;
2817 		}
2818 	}
2819 	(void)rte_memcpy(&flex_conf->flex_set[idx],
2820 			 cfg,
2821 			 sizeof(struct rte_eth_flex_payload_cfg));
2822 
2823 }
2824 
2825 void
2826 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
2827 {
2828 	int diag;
2829 
2830 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2831 		return;
2832 	if (is_rx)
2833 		diag = rte_eth_dev_set_vf_rx(port_id,vf,on);
2834 	else
2835 		diag = rte_eth_dev_set_vf_tx(port_id,vf,on);
2836 	if (diag == 0)
2837 		return;
2838 	if(is_rx)
2839 		printf("rte_eth_dev_set_vf_rx for port_id=%d failed "
2840 	       		"diag=%d\n", port_id, diag);
2841 	else
2842 		printf("rte_eth_dev_set_vf_tx for port_id=%d failed "
2843 	       		"diag=%d\n", port_id, diag);
2844 
2845 }
2846 
2847 void
2848 set_vf_rx_vlan(portid_t port_id, uint16_t vlan_id, uint64_t vf_mask, uint8_t on)
2849 {
2850 	int diag;
2851 
2852 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2853 		return;
2854 	if (vlan_id_is_invalid(vlan_id))
2855 		return;
2856 	diag = rte_eth_dev_set_vf_vlan_filter(port_id, vlan_id, vf_mask, on);
2857 	if (diag == 0)
2858 		return;
2859 	printf("rte_eth_dev_set_vf_vlan_filter for port_id=%d failed "
2860 	       "diag=%d\n", port_id, diag);
2861 }
2862 
2863 int
2864 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
2865 {
2866 	int diag;
2867 	struct rte_eth_link link;
2868 
2869 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2870 		return 1;
2871 	rte_eth_link_get_nowait(port_id, &link);
2872 	if (rate > link.link_speed) {
2873 		printf("Invalid rate value:%u bigger than link speed: %u\n",
2874 			rate, link.link_speed);
2875 		return 1;
2876 	}
2877 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
2878 	if (diag == 0)
2879 		return diag;
2880 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
2881 		port_id, diag);
2882 	return diag;
2883 }
2884 
2885 int
2886 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
2887 {
2888 	int diag;
2889 	struct rte_eth_link link;
2890 
2891 	if (q_msk == 0)
2892 		return 0;
2893 
2894 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2895 		return 1;
2896 	rte_eth_link_get_nowait(port_id, &link);
2897 	if (rate > link.link_speed) {
2898 		printf("Invalid rate value:%u bigger than link speed: %u\n",
2899 			rate, link.link_speed);
2900 		return 1;
2901 	}
2902 	diag = rte_eth_set_vf_rate_limit(port_id, vf, rate, q_msk);
2903 	if (diag == 0)
2904 		return diag;
2905 	printf("rte_eth_set_vf_rate_limit for port_id=%d failed diag=%d\n",
2906 		port_id, diag);
2907 	return diag;
2908 }
2909 
2910 /*
2911  * Functions to manage the set of filtered Multicast MAC addresses.
2912  *
2913  * A pool of filtered multicast MAC addresses is associated with each port.
2914  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
2915  * The address of the pool and the number of valid multicast MAC addresses
2916  * recorded in the pool are stored in the fields "mc_addr_pool" and
2917  * "mc_addr_nb" of the "rte_port" data structure.
2918  *
2919  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
2920  * to be supplied a contiguous array of multicast MAC addresses.
2921  * To comply with this constraint, the set of multicast addresses recorded
2922  * into the pool are systematically compacted at the beginning of the pool.
2923  * Hence, when a multicast address is removed from the pool, all following
2924  * addresses, if any, are copied back to keep the set contiguous.
2925  */
2926 #define MCAST_POOL_INC 32
2927 
2928 static int
2929 mcast_addr_pool_extend(struct rte_port *port)
2930 {
2931 	struct ether_addr *mc_pool;
2932 	size_t mc_pool_size;
2933 
2934 	/*
2935 	 * If a free entry is available at the end of the pool, just
2936 	 * increment the number of recorded multicast addresses.
2937 	 */
2938 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
2939 		port->mc_addr_nb++;
2940 		return 0;
2941 	}
2942 
2943 	/*
2944 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
2945 	 * The previous test guarantees that port->mc_addr_nb is a multiple
2946 	 * of MCAST_POOL_INC.
2947 	 */
2948 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
2949 						    MCAST_POOL_INC);
2950 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
2951 						mc_pool_size);
2952 	if (mc_pool == NULL) {
2953 		printf("allocation of pool of %u multicast addresses failed\n",
2954 		       port->mc_addr_nb + MCAST_POOL_INC);
2955 		return -ENOMEM;
2956 	}
2957 
2958 	port->mc_addr_pool = mc_pool;
2959 	port->mc_addr_nb++;
2960 	return 0;
2961 
2962 }
2963 
2964 static void
2965 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
2966 {
2967 	port->mc_addr_nb--;
2968 	if (addr_idx == port->mc_addr_nb) {
2969 		/* No need to recompact the set of multicast addressses. */
2970 		if (port->mc_addr_nb == 0) {
2971 			/* free the pool of multicast addresses. */
2972 			free(port->mc_addr_pool);
2973 			port->mc_addr_pool = NULL;
2974 		}
2975 		return;
2976 	}
2977 	memmove(&port->mc_addr_pool[addr_idx],
2978 		&port->mc_addr_pool[addr_idx + 1],
2979 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
2980 }
2981 
2982 static void
2983 eth_port_multicast_addr_list_set(uint8_t port_id)
2984 {
2985 	struct rte_port *port;
2986 	int diag;
2987 
2988 	port = &ports[port_id];
2989 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
2990 					    port->mc_addr_nb);
2991 	if (diag == 0)
2992 		return;
2993 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
2994 	       port->mc_addr_nb, port_id, -diag);
2995 }
2996 
2997 void
2998 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
2999 {
3000 	struct rte_port *port;
3001 	uint32_t i;
3002 
3003 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3004 		return;
3005 
3006 	port = &ports[port_id];
3007 
3008 	/*
3009 	 * Check that the added multicast MAC address is not already recorded
3010 	 * in the pool of multicast addresses.
3011 	 */
3012 	for (i = 0; i < port->mc_addr_nb; i++) {
3013 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3014 			printf("multicast address already filtered by port\n");
3015 			return;
3016 		}
3017 	}
3018 
3019 	if (mcast_addr_pool_extend(port) != 0)
3020 		return;
3021 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3022 	eth_port_multicast_addr_list_set(port_id);
3023 }
3024 
3025 void
3026 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3027 {
3028 	struct rte_port *port;
3029 	uint32_t i;
3030 
3031 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3032 		return;
3033 
3034 	port = &ports[port_id];
3035 
3036 	/*
3037 	 * Search the pool of multicast MAC addresses for the removed address.
3038 	 */
3039 	for (i = 0; i < port->mc_addr_nb; i++) {
3040 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3041 			break;
3042 	}
3043 	if (i == port->mc_addr_nb) {
3044 		printf("multicast address not filtered by port %d\n", port_id);
3045 		return;
3046 	}
3047 
3048 	mcast_addr_pool_remove(port, i);
3049 	eth_port_multicast_addr_list_set(port_id);
3050 }
3051 
3052 void
3053 port_dcb_info_display(uint8_t port_id)
3054 {
3055 	struct rte_eth_dcb_info dcb_info;
3056 	uint16_t i;
3057 	int ret;
3058 	static const char *border = "================";
3059 
3060 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3061 		return;
3062 
3063 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3064 	if (ret) {
3065 		printf("\n Failed to get dcb infos on port %-2d\n",
3066 			port_id);
3067 		return;
3068 	}
3069 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3070 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3071 	printf("\n  TC :        ");
3072 	for (i = 0; i < dcb_info.nb_tcs; i++)
3073 		printf("\t%4d", i);
3074 	printf("\n  Priority :  ");
3075 	for (i = 0; i < dcb_info.nb_tcs; i++)
3076 		printf("\t%4d", dcb_info.prio_tc[i]);
3077 	printf("\n  BW percent :");
3078 	for (i = 0; i < dcb_info.nb_tcs; i++)
3079 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3080 	printf("\n  RXQ base :  ");
3081 	for (i = 0; i < dcb_info.nb_tcs; i++)
3082 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3083 	printf("\n  RXQ number :");
3084 	for (i = 0; i < dcb_info.nb_tcs; i++)
3085 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3086 	printf("\n  TXQ base :  ");
3087 	for (i = 0; i < dcb_info.nb_tcs; i++)
3088 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3089 	printf("\n  TXQ number :");
3090 	for (i = 0; i < dcb_info.nb_tcs; i++)
3091 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3092 	printf("\n");
3093 }
3094