1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 /* BSD LICENSE 34 * 35 * Copyright 2013-2014 6WIND S.A. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name of 6WIND S.A. nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <stdarg.h> 65 #include <errno.h> 66 #include <stdio.h> 67 #include <string.h> 68 #include <stdarg.h> 69 #include <stdint.h> 70 #include <inttypes.h> 71 72 #include <sys/queue.h> 73 74 #include <rte_common.h> 75 #include <rte_byteorder.h> 76 #include <rte_debug.h> 77 #include <rte_log.h> 78 #include <rte_memory.h> 79 #include <rte_memcpy.h> 80 #include <rte_memzone.h> 81 #include <rte_launch.h> 82 #include <rte_eal.h> 83 #include <rte_per_lcore.h> 84 #include <rte_lcore.h> 85 #include <rte_atomic.h> 86 #include <rte_branch_prediction.h> 87 #include <rte_mempool.h> 88 #include <rte_mbuf.h> 89 #include <rte_interrupts.h> 90 #include <rte_pci.h> 91 #include <rte_ether.h> 92 #include <rte_ethdev.h> 93 #include <rte_string_fns.h> 94 #include <rte_cycles.h> 95 #include <rte_flow.h> 96 #include <rte_errno.h> 97 #ifdef RTE_LIBRTE_IXGBE_PMD 98 #include <rte_pmd_ixgbe.h> 99 #endif 100 101 #include "testpmd.h" 102 103 static char *flowtype_to_str(uint16_t flow_type); 104 105 static const struct { 106 enum tx_pkt_split split; 107 const char *name; 108 } tx_split_name[] = { 109 { 110 .split = TX_PKT_SPLIT_OFF, 111 .name = "off", 112 }, 113 { 114 .split = TX_PKT_SPLIT_ON, 115 .name = "on", 116 }, 117 { 118 .split = TX_PKT_SPLIT_RND, 119 .name = "rand", 120 }, 121 }; 122 123 struct rss_type_info { 124 char str[32]; 125 uint64_t rss_type; 126 }; 127 128 static const struct rss_type_info rss_type_table[] = { 129 { "ipv4", ETH_RSS_IPV4 }, 130 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 131 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 132 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 133 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 134 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 135 { "ipv6", ETH_RSS_IPV6 }, 136 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 137 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 138 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 139 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 140 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 141 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 142 { "ipv6-ex", ETH_RSS_IPV6_EX }, 143 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 144 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 145 { "port", ETH_RSS_PORT }, 146 { "vxlan", ETH_RSS_VXLAN }, 147 { "geneve", ETH_RSS_GENEVE }, 148 { "nvgre", ETH_RSS_NVGRE }, 149 150 }; 151 152 static void 153 print_ethaddr(const char *name, struct ether_addr *eth_addr) 154 { 155 char buf[ETHER_ADDR_FMT_SIZE]; 156 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 157 printf("%s%s", name, buf); 158 } 159 160 void 161 nic_stats_display(portid_t port_id) 162 { 163 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 164 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 165 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 166 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 167 uint64_t mpps_rx, mpps_tx; 168 struct rte_eth_stats stats; 169 struct rte_port *port = &ports[port_id]; 170 uint8_t i; 171 portid_t pid; 172 173 static const char *nic_stats_border = "########################"; 174 175 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 176 printf("Valid port range is [0"); 177 FOREACH_PORT(pid, ports) 178 printf(", %d", pid); 179 printf("]\n"); 180 return; 181 } 182 rte_eth_stats_get(port_id, &stats); 183 printf("\n %s NIC statistics for port %-2d %s\n", 184 nic_stats_border, port_id, nic_stats_border); 185 186 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 187 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 188 "%-"PRIu64"\n", 189 stats.ipackets, stats.imissed, stats.ibytes); 190 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 191 printf(" RX-nombuf: %-10"PRIu64"\n", 192 stats.rx_nombuf); 193 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 194 "%-"PRIu64"\n", 195 stats.opackets, stats.oerrors, stats.obytes); 196 } 197 else { 198 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 199 " RX-bytes: %10"PRIu64"\n", 200 stats.ipackets, stats.ierrors, stats.ibytes); 201 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 202 printf(" RX-nombuf: %10"PRIu64"\n", 203 stats.rx_nombuf); 204 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 205 " TX-bytes: %10"PRIu64"\n", 206 stats.opackets, stats.oerrors, stats.obytes); 207 } 208 209 if (port->rx_queue_stats_mapping_enabled) { 210 printf("\n"); 211 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 212 printf(" Stats reg %2d RX-packets: %10"PRIu64 213 " RX-errors: %10"PRIu64 214 " RX-bytes: %10"PRIu64"\n", 215 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 216 } 217 } 218 if (port->tx_queue_stats_mapping_enabled) { 219 printf("\n"); 220 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 221 printf(" Stats reg %2d TX-packets: %10"PRIu64 222 " TX-bytes: %10"PRIu64"\n", 223 i, stats.q_opackets[i], stats.q_obytes[i]); 224 } 225 } 226 227 diff_cycles = prev_cycles[port_id]; 228 prev_cycles[port_id] = rte_rdtsc(); 229 if (diff_cycles > 0) 230 diff_cycles = prev_cycles[port_id] - diff_cycles; 231 232 diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id]; 233 diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id]; 234 prev_pkts_rx[port_id] = stats.ipackets; 235 prev_pkts_tx[port_id] = stats.opackets; 236 mpps_rx = diff_cycles > 0 ? 237 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 238 mpps_tx = diff_cycles > 0 ? 239 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 240 printf("\n Throughput (since last show)\n"); 241 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 242 mpps_rx, mpps_tx); 243 244 printf(" %s############################%s\n", 245 nic_stats_border, nic_stats_border); 246 } 247 248 void 249 nic_stats_clear(portid_t port_id) 250 { 251 portid_t pid; 252 253 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 254 printf("Valid port range is [0"); 255 FOREACH_PORT(pid, ports) 256 printf(", %d", pid); 257 printf("]\n"); 258 return; 259 } 260 rte_eth_stats_reset(port_id); 261 printf("\n NIC statistics for port %d cleared\n", port_id); 262 } 263 264 void 265 nic_xstats_display(portid_t port_id) 266 { 267 struct rte_eth_xstat *xstats; 268 int cnt_xstats, idx_xstat; 269 struct rte_eth_xstat_name *xstats_names; 270 271 printf("###### NIC extended statistics for port %-2d\n", port_id); 272 if (!rte_eth_dev_is_valid_port(port_id)) { 273 printf("Error: Invalid port number %i\n", port_id); 274 return; 275 } 276 277 /* Get count */ 278 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 279 if (cnt_xstats < 0) { 280 printf("Error: Cannot get count of xstats\n"); 281 return; 282 } 283 284 /* Get id-name lookup table */ 285 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 286 if (xstats_names == NULL) { 287 printf("Cannot allocate memory for xstats lookup\n"); 288 return; 289 } 290 if (cnt_xstats != rte_eth_xstats_get_names( 291 port_id, xstats_names, cnt_xstats)) { 292 printf("Error: Cannot get xstats lookup\n"); 293 free(xstats_names); 294 return; 295 } 296 297 /* Get stats themselves */ 298 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 299 if (xstats == NULL) { 300 printf("Cannot allocate memory for xstats\n"); 301 free(xstats_names); 302 return; 303 } 304 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 305 printf("Error: Unable to get xstats\n"); 306 free(xstats_names); 307 free(xstats); 308 return; 309 } 310 311 /* Display xstats */ 312 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) 313 printf("%s: %"PRIu64"\n", 314 xstats_names[idx_xstat].name, 315 xstats[idx_xstat].value); 316 free(xstats_names); 317 free(xstats); 318 } 319 320 void 321 nic_xstats_clear(portid_t port_id) 322 { 323 rte_eth_xstats_reset(port_id); 324 } 325 326 void 327 nic_stats_mapping_display(portid_t port_id) 328 { 329 struct rte_port *port = &ports[port_id]; 330 uint16_t i; 331 portid_t pid; 332 333 static const char *nic_stats_mapping_border = "########################"; 334 335 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 336 printf("Valid port range is [0"); 337 FOREACH_PORT(pid, ports) 338 printf(", %d", pid); 339 printf("]\n"); 340 return; 341 } 342 343 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 344 printf("Port id %d - either does not support queue statistic mapping or" 345 " no queue statistic mapping set\n", port_id); 346 return; 347 } 348 349 printf("\n %s NIC statistics mapping for port %-2d %s\n", 350 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 351 352 if (port->rx_queue_stats_mapping_enabled) { 353 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 354 if (rx_queue_stats_mappings[i].port_id == port_id) { 355 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 356 rx_queue_stats_mappings[i].queue_id, 357 rx_queue_stats_mappings[i].stats_counter_id); 358 } 359 } 360 printf("\n"); 361 } 362 363 364 if (port->tx_queue_stats_mapping_enabled) { 365 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 366 if (tx_queue_stats_mappings[i].port_id == port_id) { 367 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 368 tx_queue_stats_mappings[i].queue_id, 369 tx_queue_stats_mappings[i].stats_counter_id); 370 } 371 } 372 } 373 374 printf(" %s####################################%s\n", 375 nic_stats_mapping_border, nic_stats_mapping_border); 376 } 377 378 void 379 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 380 { 381 struct rte_eth_rxq_info qinfo; 382 int32_t rc; 383 static const char *info_border = "*********************"; 384 385 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 386 if (rc != 0) { 387 printf("Failed to retrieve information for port: %hhu, " 388 "RX queue: %hu\nerror desc: %s(%d)\n", 389 port_id, queue_id, strerror(-rc), rc); 390 return; 391 } 392 393 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 394 info_border, port_id, queue_id, info_border); 395 396 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 397 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 398 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 399 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 400 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 401 printf("\nRX drop packets: %s", 402 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 403 printf("\nRX deferred start: %s", 404 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 405 printf("\nRX scattered packets: %s", 406 (qinfo.scattered_rx != 0) ? "on" : "off"); 407 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 408 printf("\n"); 409 } 410 411 void 412 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 413 { 414 struct rte_eth_txq_info qinfo; 415 int32_t rc; 416 static const char *info_border = "*********************"; 417 418 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 419 if (rc != 0) { 420 printf("Failed to retrieve information for port: %hhu, " 421 "TX queue: %hu\nerror desc: %s(%d)\n", 422 port_id, queue_id, strerror(-rc), rc); 423 return; 424 } 425 426 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 427 info_border, port_id, queue_id, info_border); 428 429 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 430 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 431 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 432 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 433 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 434 printf("\nTX flags: %#x", qinfo.conf.txq_flags); 435 printf("\nTX deferred start: %s", 436 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 437 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 438 printf("\n"); 439 } 440 441 void 442 port_infos_display(portid_t port_id) 443 { 444 struct rte_port *port; 445 struct ether_addr mac_addr; 446 struct rte_eth_link link; 447 struct rte_eth_dev_info dev_info; 448 int vlan_offload; 449 struct rte_mempool * mp; 450 static const char *info_border = "*********************"; 451 portid_t pid; 452 453 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 454 printf("Valid port range is [0"); 455 FOREACH_PORT(pid, ports) 456 printf(", %d", pid); 457 printf("]\n"); 458 return; 459 } 460 port = &ports[port_id]; 461 rte_eth_link_get_nowait(port_id, &link); 462 memset(&dev_info, 0, sizeof(dev_info)); 463 rte_eth_dev_info_get(port_id, &dev_info); 464 printf("\n%s Infos for port %-2d %s\n", 465 info_border, port_id, info_border); 466 rte_eth_macaddr_get(port_id, &mac_addr); 467 print_ethaddr("MAC address: ", &mac_addr); 468 printf("\nDriver name: %s", dev_info.driver_name); 469 printf("\nConnect to socket: %u", port->socket_id); 470 471 if (port_numa[port_id] != NUMA_NO_CONFIG) { 472 mp = mbuf_pool_find(port_numa[port_id]); 473 if (mp) 474 printf("\nmemory allocation on the socket: %d", 475 port_numa[port_id]); 476 } else 477 printf("\nmemory allocation on the socket: %u",port->socket_id); 478 479 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 480 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 481 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 482 ("full-duplex") : ("half-duplex")); 483 printf("Promiscuous mode: %s\n", 484 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 485 printf("Allmulticast mode: %s\n", 486 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 487 printf("Maximum number of MAC addresses: %u\n", 488 (unsigned int)(port->dev_info.max_mac_addrs)); 489 printf("Maximum number of MAC addresses of hash filtering: %u\n", 490 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 491 492 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 493 if (vlan_offload >= 0){ 494 printf("VLAN offload: \n"); 495 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 496 printf(" strip on \n"); 497 else 498 printf(" strip off \n"); 499 500 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 501 printf(" filter on \n"); 502 else 503 printf(" filter off \n"); 504 505 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 506 printf(" qinq(extend) on \n"); 507 else 508 printf(" qinq(extend) off \n"); 509 } 510 511 if (dev_info.hash_key_size > 0) 512 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 513 if (dev_info.reta_size > 0) 514 printf("Redirection table size: %u\n", dev_info.reta_size); 515 if (!dev_info.flow_type_rss_offloads) 516 printf("No flow type is supported.\n"); 517 else { 518 uint16_t i; 519 char *p; 520 521 printf("Supported flow types:\n"); 522 for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX; 523 i++) { 524 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 525 continue; 526 p = flowtype_to_str(i); 527 printf(" %s\n", (p ? p : "unknown")); 528 } 529 } 530 531 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 532 printf("Max possible number of RXDs per queue: %hu\n", 533 dev_info.rx_desc_lim.nb_max); 534 printf("Min possible number of RXDs per queue: %hu\n", 535 dev_info.rx_desc_lim.nb_min); 536 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 537 538 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 539 printf("Max possible number of TXDs per queue: %hu\n", 540 dev_info.tx_desc_lim.nb_max); 541 printf("Min possible number of TXDs per queue: %hu\n", 542 dev_info.tx_desc_lim.nb_min); 543 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 544 } 545 546 void 547 port_offload_cap_display(portid_t port_id) 548 { 549 struct rte_eth_dev *dev; 550 struct rte_eth_dev_info dev_info; 551 static const char *info_border = "************"; 552 553 if (port_id_is_invalid(port_id, ENABLED_WARN)) 554 return; 555 556 dev = &rte_eth_devices[port_id]; 557 rte_eth_dev_info_get(port_id, &dev_info); 558 559 printf("\n%s Port %d supported offload features: %s\n", 560 info_border, port_id, info_border); 561 562 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 563 printf("VLAN stripped: "); 564 if (dev->data->dev_conf.rxmode.hw_vlan_strip) 565 printf("on\n"); 566 else 567 printf("off\n"); 568 } 569 570 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 571 printf("Double VLANs stripped: "); 572 if (dev->data->dev_conf.rxmode.hw_vlan_extend) 573 printf("on\n"); 574 else 575 printf("off\n"); 576 } 577 578 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 579 printf("RX IPv4 checksum: "); 580 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 581 printf("on\n"); 582 else 583 printf("off\n"); 584 } 585 586 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 587 printf("RX UDP checksum: "); 588 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 589 printf("on\n"); 590 else 591 printf("off\n"); 592 } 593 594 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 595 printf("RX TCP checksum: "); 596 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 597 printf("on\n"); 598 else 599 printf("off\n"); 600 } 601 602 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 603 printf("RX Outer IPv4 checksum: on"); 604 605 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 606 printf("Large receive offload: "); 607 if (dev->data->dev_conf.rxmode.enable_lro) 608 printf("on\n"); 609 else 610 printf("off\n"); 611 } 612 613 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 614 printf("VLAN insert: "); 615 if (ports[port_id].tx_ol_flags & 616 TESTPMD_TX_OFFLOAD_INSERT_VLAN) 617 printf("on\n"); 618 else 619 printf("off\n"); 620 } 621 622 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 623 printf("Double VLANs insert: "); 624 if (ports[port_id].tx_ol_flags & 625 TESTPMD_TX_OFFLOAD_INSERT_QINQ) 626 printf("on\n"); 627 else 628 printf("off\n"); 629 } 630 631 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 632 printf("TX IPv4 checksum: "); 633 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 634 printf("on\n"); 635 else 636 printf("off\n"); 637 } 638 639 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 640 printf("TX UDP checksum: "); 641 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) 642 printf("on\n"); 643 else 644 printf("off\n"); 645 } 646 647 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 648 printf("TX TCP checksum: "); 649 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) 650 printf("on\n"); 651 else 652 printf("off\n"); 653 } 654 655 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 656 printf("TX SCTP checksum: "); 657 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) 658 printf("on\n"); 659 else 660 printf("off\n"); 661 } 662 663 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 664 printf("TX Outer IPv4 checksum: "); 665 if (ports[port_id].tx_ol_flags & 666 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 667 printf("on\n"); 668 else 669 printf("off\n"); 670 } 671 672 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 673 printf("TX TCP segmentation: "); 674 if (ports[port_id].tso_segsz != 0) 675 printf("on\n"); 676 else 677 printf("off\n"); 678 } 679 680 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 681 printf("TX UDP segmentation: "); 682 if (ports[port_id].tso_segsz != 0) 683 printf("on\n"); 684 else 685 printf("off\n"); 686 } 687 688 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 689 printf("TSO for VXLAN tunnel packet: "); 690 if (ports[port_id].tunnel_tso_segsz) 691 printf("on\n"); 692 else 693 printf("off\n"); 694 } 695 696 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 697 printf("TSO for GRE tunnel packet: "); 698 if (ports[port_id].tunnel_tso_segsz) 699 printf("on\n"); 700 else 701 printf("off\n"); 702 } 703 704 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 705 printf("TSO for IPIP tunnel packet: "); 706 if (ports[port_id].tunnel_tso_segsz) 707 printf("on\n"); 708 else 709 printf("off\n"); 710 } 711 712 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 713 printf("TSO for GENEVE tunnel packet: "); 714 if (ports[port_id].tunnel_tso_segsz) 715 printf("on\n"); 716 else 717 printf("off\n"); 718 } 719 720 } 721 722 int 723 port_id_is_invalid(portid_t port_id, enum print_warning warning) 724 { 725 if (port_id == (portid_t)RTE_PORT_ALL) 726 return 0; 727 728 if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled) 729 return 0; 730 731 if (warning == ENABLED_WARN) 732 printf("Invalid port %d\n", port_id); 733 734 return 1; 735 } 736 737 static int 738 vlan_id_is_invalid(uint16_t vlan_id) 739 { 740 if (vlan_id < 4096) 741 return 0; 742 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 743 return 1; 744 } 745 746 static int 747 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 748 { 749 uint64_t pci_len; 750 751 if (reg_off & 0x3) { 752 printf("Port register offset 0x%X not aligned on a 4-byte " 753 "boundary\n", 754 (unsigned)reg_off); 755 return 1; 756 } 757 pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; 758 if (reg_off >= pci_len) { 759 printf("Port %d: register offset %u (0x%X) out of port PCI " 760 "resource (length=%"PRIu64")\n", 761 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 762 return 1; 763 } 764 return 0; 765 } 766 767 static int 768 reg_bit_pos_is_invalid(uint8_t bit_pos) 769 { 770 if (bit_pos <= 31) 771 return 0; 772 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 773 return 1; 774 } 775 776 #define display_port_and_reg_off(port_id, reg_off) \ 777 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 778 779 static inline void 780 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 781 { 782 display_port_and_reg_off(port_id, (unsigned)reg_off); 783 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 784 } 785 786 void 787 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 788 { 789 uint32_t reg_v; 790 791 792 if (port_id_is_invalid(port_id, ENABLED_WARN)) 793 return; 794 if (port_reg_off_is_invalid(port_id, reg_off)) 795 return; 796 if (reg_bit_pos_is_invalid(bit_x)) 797 return; 798 reg_v = port_id_pci_reg_read(port_id, reg_off); 799 display_port_and_reg_off(port_id, (unsigned)reg_off); 800 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 801 } 802 803 void 804 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 805 uint8_t bit1_pos, uint8_t bit2_pos) 806 { 807 uint32_t reg_v; 808 uint8_t l_bit; 809 uint8_t h_bit; 810 811 if (port_id_is_invalid(port_id, ENABLED_WARN)) 812 return; 813 if (port_reg_off_is_invalid(port_id, reg_off)) 814 return; 815 if (reg_bit_pos_is_invalid(bit1_pos)) 816 return; 817 if (reg_bit_pos_is_invalid(bit2_pos)) 818 return; 819 if (bit1_pos > bit2_pos) 820 l_bit = bit2_pos, h_bit = bit1_pos; 821 else 822 l_bit = bit1_pos, h_bit = bit2_pos; 823 824 reg_v = port_id_pci_reg_read(port_id, reg_off); 825 reg_v >>= l_bit; 826 if (h_bit < 31) 827 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 828 display_port_and_reg_off(port_id, (unsigned)reg_off); 829 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 830 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 831 } 832 833 void 834 port_reg_display(portid_t port_id, uint32_t reg_off) 835 { 836 uint32_t reg_v; 837 838 if (port_id_is_invalid(port_id, ENABLED_WARN)) 839 return; 840 if (port_reg_off_is_invalid(port_id, reg_off)) 841 return; 842 reg_v = port_id_pci_reg_read(port_id, reg_off); 843 display_port_reg_value(port_id, reg_off, reg_v); 844 } 845 846 void 847 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 848 uint8_t bit_v) 849 { 850 uint32_t reg_v; 851 852 if (port_id_is_invalid(port_id, ENABLED_WARN)) 853 return; 854 if (port_reg_off_is_invalid(port_id, reg_off)) 855 return; 856 if (reg_bit_pos_is_invalid(bit_pos)) 857 return; 858 if (bit_v > 1) { 859 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 860 return; 861 } 862 reg_v = port_id_pci_reg_read(port_id, reg_off); 863 if (bit_v == 0) 864 reg_v &= ~(1 << bit_pos); 865 else 866 reg_v |= (1 << bit_pos); 867 port_id_pci_reg_write(port_id, reg_off, reg_v); 868 display_port_reg_value(port_id, reg_off, reg_v); 869 } 870 871 void 872 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 873 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 874 { 875 uint32_t max_v; 876 uint32_t reg_v; 877 uint8_t l_bit; 878 uint8_t h_bit; 879 880 if (port_id_is_invalid(port_id, ENABLED_WARN)) 881 return; 882 if (port_reg_off_is_invalid(port_id, reg_off)) 883 return; 884 if (reg_bit_pos_is_invalid(bit1_pos)) 885 return; 886 if (reg_bit_pos_is_invalid(bit2_pos)) 887 return; 888 if (bit1_pos > bit2_pos) 889 l_bit = bit2_pos, h_bit = bit1_pos; 890 else 891 l_bit = bit1_pos, h_bit = bit2_pos; 892 893 if ((h_bit - l_bit) < 31) 894 max_v = (1 << (h_bit - l_bit + 1)) - 1; 895 else 896 max_v = 0xFFFFFFFF; 897 898 if (value > max_v) { 899 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 900 (unsigned)value, (unsigned)value, 901 (unsigned)max_v, (unsigned)max_v); 902 return; 903 } 904 reg_v = port_id_pci_reg_read(port_id, reg_off); 905 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 906 reg_v |= (value << l_bit); /* Set changed bits */ 907 port_id_pci_reg_write(port_id, reg_off, reg_v); 908 display_port_reg_value(port_id, reg_off, reg_v); 909 } 910 911 void 912 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 913 { 914 if (port_id_is_invalid(port_id, ENABLED_WARN)) 915 return; 916 if (port_reg_off_is_invalid(port_id, reg_off)) 917 return; 918 port_id_pci_reg_write(port_id, reg_off, reg_v); 919 display_port_reg_value(port_id, reg_off, reg_v); 920 } 921 922 void 923 port_mtu_set(portid_t port_id, uint16_t mtu) 924 { 925 int diag; 926 927 if (port_id_is_invalid(port_id, ENABLED_WARN)) 928 return; 929 diag = rte_eth_dev_set_mtu(port_id, mtu); 930 if (diag == 0) 931 return; 932 printf("Set MTU failed. diag=%d\n", diag); 933 } 934 935 /* Generic flow management functions. */ 936 937 /** Generate flow_item[] entry. */ 938 #define MK_FLOW_ITEM(t, s) \ 939 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 940 .name = # t, \ 941 .size = s, \ 942 } 943 944 /** Information about known flow pattern items. */ 945 static const struct { 946 const char *name; 947 size_t size; 948 } flow_item[] = { 949 MK_FLOW_ITEM(END, 0), 950 MK_FLOW_ITEM(VOID, 0), 951 MK_FLOW_ITEM(INVERT, 0), 952 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 953 MK_FLOW_ITEM(PF, 0), 954 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 955 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 956 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 957 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 958 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 959 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 960 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 961 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 962 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 963 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 964 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 965 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 966 }; 967 968 /** Compute storage space needed by item specification. */ 969 static void 970 flow_item_spec_size(const struct rte_flow_item *item, 971 size_t *size, size_t *pad) 972 { 973 if (!item->spec) 974 goto empty; 975 switch (item->type) { 976 union { 977 const struct rte_flow_item_raw *raw; 978 } spec; 979 980 case RTE_FLOW_ITEM_TYPE_RAW: 981 spec.raw = item->spec; 982 *size = offsetof(struct rte_flow_item_raw, pattern) + 983 spec.raw->length * sizeof(*spec.raw->pattern); 984 break; 985 default: 986 empty: 987 *size = 0; 988 break; 989 } 990 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 991 } 992 993 /** Generate flow_action[] entry. */ 994 #define MK_FLOW_ACTION(t, s) \ 995 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 996 .name = # t, \ 997 .size = s, \ 998 } 999 1000 /** Information about known flow actions. */ 1001 static const struct { 1002 const char *name; 1003 size_t size; 1004 } flow_action[] = { 1005 MK_FLOW_ACTION(END, 0), 1006 MK_FLOW_ACTION(VOID, 0), 1007 MK_FLOW_ACTION(PASSTHRU, 0), 1008 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1009 MK_FLOW_ACTION(FLAG, 0), 1010 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 1011 MK_FLOW_ACTION(DROP, 0), 1012 MK_FLOW_ACTION(COUNT, 0), 1013 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 1014 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 1015 MK_FLOW_ACTION(PF, 0), 1016 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1017 }; 1018 1019 /** Compute storage space needed by action configuration. */ 1020 static void 1021 flow_action_conf_size(const struct rte_flow_action *action, 1022 size_t *size, size_t *pad) 1023 { 1024 if (!action->conf) 1025 goto empty; 1026 switch (action->type) { 1027 union { 1028 const struct rte_flow_action_rss *rss; 1029 } conf; 1030 1031 case RTE_FLOW_ACTION_TYPE_RSS: 1032 conf.rss = action->conf; 1033 *size = offsetof(struct rte_flow_action_rss, queue) + 1034 conf.rss->num * sizeof(*conf.rss->queue); 1035 break; 1036 default: 1037 empty: 1038 *size = 0; 1039 break; 1040 } 1041 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1042 } 1043 1044 /** Generate a port_flow entry from attributes/pattern/actions. */ 1045 static struct port_flow * 1046 port_flow_new(const struct rte_flow_attr *attr, 1047 const struct rte_flow_item *pattern, 1048 const struct rte_flow_action *actions) 1049 { 1050 const struct rte_flow_item *item; 1051 const struct rte_flow_action *action; 1052 struct port_flow *pf = NULL; 1053 size_t tmp; 1054 size_t pad; 1055 size_t off1 = 0; 1056 size_t off2 = 0; 1057 int err = ENOTSUP; 1058 1059 store: 1060 item = pattern; 1061 if (pf) 1062 pf->pattern = (void *)&pf->data[off1]; 1063 do { 1064 struct rte_flow_item *dst = NULL; 1065 1066 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1067 !flow_item[item->type].name) 1068 goto notsup; 1069 if (pf) 1070 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1071 off1 += sizeof(*item); 1072 flow_item_spec_size(item, &tmp, &pad); 1073 if (item->spec) { 1074 if (pf) 1075 dst->spec = memcpy(pf->data + off2, 1076 item->spec, tmp); 1077 off2 += tmp + pad; 1078 } 1079 if (item->last) { 1080 if (pf) 1081 dst->last = memcpy(pf->data + off2, 1082 item->last, tmp); 1083 off2 += tmp + pad; 1084 } 1085 if (item->mask) { 1086 if (pf) 1087 dst->mask = memcpy(pf->data + off2, 1088 item->mask, tmp); 1089 off2 += tmp + pad; 1090 } 1091 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1092 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1093 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1094 action = actions; 1095 if (pf) 1096 pf->actions = (void *)&pf->data[off1]; 1097 do { 1098 struct rte_flow_action *dst = NULL; 1099 1100 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1101 !flow_action[action->type].name) 1102 goto notsup; 1103 if (pf) 1104 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1105 off1 += sizeof(*action); 1106 flow_action_conf_size(action, &tmp, &pad); 1107 if (action->conf) { 1108 if (pf) 1109 dst->conf = memcpy(pf->data + off2, 1110 action->conf, tmp); 1111 off2 += tmp + pad; 1112 } 1113 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1114 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1115 if (pf != NULL) 1116 return pf; 1117 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1118 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1119 pf = calloc(1, tmp + off1 + off2); 1120 if (pf == NULL) 1121 err = errno; 1122 else { 1123 *pf = (const struct port_flow){ 1124 .size = tmp + off1 + off2, 1125 .attr = *attr, 1126 }; 1127 tmp -= offsetof(struct port_flow, data); 1128 off2 = tmp + off1; 1129 off1 = tmp; 1130 goto store; 1131 } 1132 notsup: 1133 rte_errno = err; 1134 return NULL; 1135 } 1136 1137 /** Print a message out of a flow error. */ 1138 static int 1139 port_flow_complain(struct rte_flow_error *error) 1140 { 1141 static const char *const errstrlist[] = { 1142 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1143 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1144 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1145 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1146 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1147 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1148 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1149 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1150 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1151 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1152 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1153 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1154 }; 1155 const char *errstr; 1156 char buf[32]; 1157 int err = rte_errno; 1158 1159 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1160 !errstrlist[error->type]) 1161 errstr = "unknown type"; 1162 else 1163 errstr = errstrlist[error->type]; 1164 printf("Caught error type %d (%s): %s%s\n", 1165 error->type, errstr, 1166 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1167 error->cause), buf) : "", 1168 error->message ? error->message : "(no stated reason)"); 1169 return -err; 1170 } 1171 1172 /** Validate flow rule. */ 1173 int 1174 port_flow_validate(portid_t port_id, 1175 const struct rte_flow_attr *attr, 1176 const struct rte_flow_item *pattern, 1177 const struct rte_flow_action *actions) 1178 { 1179 struct rte_flow_error error; 1180 1181 /* Poisoning to make sure PMDs update it in case of error. */ 1182 memset(&error, 0x11, sizeof(error)); 1183 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1184 return port_flow_complain(&error); 1185 printf("Flow rule validated\n"); 1186 return 0; 1187 } 1188 1189 /** Create flow rule. */ 1190 int 1191 port_flow_create(portid_t port_id, 1192 const struct rte_flow_attr *attr, 1193 const struct rte_flow_item *pattern, 1194 const struct rte_flow_action *actions) 1195 { 1196 struct rte_flow *flow; 1197 struct rte_port *port; 1198 struct port_flow *pf; 1199 uint32_t id; 1200 struct rte_flow_error error; 1201 1202 /* Poisoning to make sure PMDs update it in case of error. */ 1203 memset(&error, 0x22, sizeof(error)); 1204 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1205 if (!flow) 1206 return port_flow_complain(&error); 1207 port = &ports[port_id]; 1208 if (port->flow_list) { 1209 if (port->flow_list->id == UINT32_MAX) { 1210 printf("Highest rule ID is already assigned, delete" 1211 " it first"); 1212 rte_flow_destroy(port_id, flow, NULL); 1213 return -ENOMEM; 1214 } 1215 id = port->flow_list->id + 1; 1216 } else 1217 id = 0; 1218 pf = port_flow_new(attr, pattern, actions); 1219 if (!pf) { 1220 int err = rte_errno; 1221 1222 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1223 rte_flow_destroy(port_id, flow, NULL); 1224 return -err; 1225 } 1226 pf->next = port->flow_list; 1227 pf->id = id; 1228 pf->flow = flow; 1229 port->flow_list = pf; 1230 printf("Flow rule #%u created\n", pf->id); 1231 return 0; 1232 } 1233 1234 /** Destroy a number of flow rules. */ 1235 int 1236 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1237 { 1238 struct rte_port *port; 1239 struct port_flow **tmp; 1240 uint32_t c = 0; 1241 int ret = 0; 1242 1243 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1244 port_id == (portid_t)RTE_PORT_ALL) 1245 return -EINVAL; 1246 port = &ports[port_id]; 1247 tmp = &port->flow_list; 1248 while (*tmp) { 1249 uint32_t i; 1250 1251 for (i = 0; i != n; ++i) { 1252 struct rte_flow_error error; 1253 struct port_flow *pf = *tmp; 1254 1255 if (rule[i] != pf->id) 1256 continue; 1257 /* 1258 * Poisoning to make sure PMDs update it in case 1259 * of error. 1260 */ 1261 memset(&error, 0x33, sizeof(error)); 1262 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1263 ret = port_flow_complain(&error); 1264 continue; 1265 } 1266 printf("Flow rule #%u destroyed\n", pf->id); 1267 *tmp = pf->next; 1268 free(pf); 1269 break; 1270 } 1271 if (i == n) 1272 tmp = &(*tmp)->next; 1273 ++c; 1274 } 1275 return ret; 1276 } 1277 1278 /** Remove all flow rules. */ 1279 int 1280 port_flow_flush(portid_t port_id) 1281 { 1282 struct rte_flow_error error; 1283 struct rte_port *port; 1284 int ret = 0; 1285 1286 /* Poisoning to make sure PMDs update it in case of error. */ 1287 memset(&error, 0x44, sizeof(error)); 1288 if (rte_flow_flush(port_id, &error)) { 1289 ret = port_flow_complain(&error); 1290 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1291 port_id == (portid_t)RTE_PORT_ALL) 1292 return ret; 1293 } 1294 port = &ports[port_id]; 1295 while (port->flow_list) { 1296 struct port_flow *pf = port->flow_list->next; 1297 1298 free(port->flow_list); 1299 port->flow_list = pf; 1300 } 1301 return ret; 1302 } 1303 1304 /** Query a flow rule. */ 1305 int 1306 port_flow_query(portid_t port_id, uint32_t rule, 1307 enum rte_flow_action_type action) 1308 { 1309 struct rte_flow_error error; 1310 struct rte_port *port; 1311 struct port_flow *pf; 1312 const char *name; 1313 union { 1314 struct rte_flow_query_count count; 1315 } query; 1316 1317 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1318 port_id == (portid_t)RTE_PORT_ALL) 1319 return -EINVAL; 1320 port = &ports[port_id]; 1321 for (pf = port->flow_list; pf; pf = pf->next) 1322 if (pf->id == rule) 1323 break; 1324 if (!pf) { 1325 printf("Flow rule #%u not found\n", rule); 1326 return -ENOENT; 1327 } 1328 if ((unsigned int)action >= RTE_DIM(flow_action) || 1329 !flow_action[action].name) 1330 name = "unknown"; 1331 else 1332 name = flow_action[action].name; 1333 switch (action) { 1334 case RTE_FLOW_ACTION_TYPE_COUNT: 1335 break; 1336 default: 1337 printf("Cannot query action type %d (%s)\n", action, name); 1338 return -ENOTSUP; 1339 } 1340 /* Poisoning to make sure PMDs update it in case of error. */ 1341 memset(&error, 0x55, sizeof(error)); 1342 memset(&query, 0, sizeof(query)); 1343 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1344 return port_flow_complain(&error); 1345 switch (action) { 1346 case RTE_FLOW_ACTION_TYPE_COUNT: 1347 printf("%s:\n" 1348 " hits_set: %u\n" 1349 " bytes_set: %u\n" 1350 " hits: %" PRIu64 "\n" 1351 " bytes: %" PRIu64 "\n", 1352 name, 1353 query.count.hits_set, 1354 query.count.bytes_set, 1355 query.count.hits, 1356 query.count.bytes); 1357 break; 1358 default: 1359 printf("Cannot display result for action type %d (%s)\n", 1360 action, name); 1361 break; 1362 } 1363 return 0; 1364 } 1365 1366 /** List flow rules. */ 1367 void 1368 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1369 { 1370 struct rte_port *port; 1371 struct port_flow *pf; 1372 struct port_flow *list = NULL; 1373 uint32_t i; 1374 1375 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1376 port_id == (portid_t)RTE_PORT_ALL) 1377 return; 1378 port = &ports[port_id]; 1379 if (!port->flow_list) 1380 return; 1381 /* Sort flows by group, priority and ID. */ 1382 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1383 struct port_flow **tmp; 1384 1385 if (n) { 1386 /* Filter out unwanted groups. */ 1387 for (i = 0; i != n; ++i) 1388 if (pf->attr.group == group[i]) 1389 break; 1390 if (i == n) 1391 continue; 1392 } 1393 tmp = &list; 1394 while (*tmp && 1395 (pf->attr.group > (*tmp)->attr.group || 1396 (pf->attr.group == (*tmp)->attr.group && 1397 pf->attr.priority > (*tmp)->attr.priority) || 1398 (pf->attr.group == (*tmp)->attr.group && 1399 pf->attr.priority == (*tmp)->attr.priority && 1400 pf->id > (*tmp)->id))) 1401 tmp = &(*tmp)->tmp; 1402 pf->tmp = *tmp; 1403 *tmp = pf; 1404 } 1405 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1406 for (pf = list; pf != NULL; pf = pf->tmp) { 1407 const struct rte_flow_item *item = pf->pattern; 1408 const struct rte_flow_action *action = pf->actions; 1409 1410 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1411 pf->id, 1412 pf->attr.group, 1413 pf->attr.priority, 1414 pf->attr.ingress ? 'i' : '-', 1415 pf->attr.egress ? 'e' : '-'); 1416 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1417 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1418 printf("%s ", flow_item[item->type].name); 1419 ++item; 1420 } 1421 printf("=>"); 1422 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1423 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1424 printf(" %s", flow_action[action->type].name); 1425 ++action; 1426 } 1427 printf("\n"); 1428 } 1429 } 1430 1431 /* 1432 * RX/TX ring descriptors display functions. 1433 */ 1434 int 1435 rx_queue_id_is_invalid(queueid_t rxq_id) 1436 { 1437 if (rxq_id < nb_rxq) 1438 return 0; 1439 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1440 return 1; 1441 } 1442 1443 int 1444 tx_queue_id_is_invalid(queueid_t txq_id) 1445 { 1446 if (txq_id < nb_txq) 1447 return 0; 1448 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1449 return 1; 1450 } 1451 1452 static int 1453 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1454 { 1455 if (rxdesc_id < nb_rxd) 1456 return 0; 1457 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1458 rxdesc_id, nb_rxd); 1459 return 1; 1460 } 1461 1462 static int 1463 tx_desc_id_is_invalid(uint16_t txdesc_id) 1464 { 1465 if (txdesc_id < nb_txd) 1466 return 0; 1467 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1468 txdesc_id, nb_txd); 1469 return 1; 1470 } 1471 1472 static const struct rte_memzone * 1473 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id) 1474 { 1475 char mz_name[RTE_MEMZONE_NAMESIZE]; 1476 const struct rte_memzone *mz; 1477 1478 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1479 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1480 mz = rte_memzone_lookup(mz_name); 1481 if (mz == NULL) 1482 printf("%s ring memory zoneof (port %d, queue %d) not" 1483 "found (zone name = %s\n", 1484 ring_name, port_id, q_id, mz_name); 1485 return mz; 1486 } 1487 1488 union igb_ring_dword { 1489 uint64_t dword; 1490 struct { 1491 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1492 uint32_t lo; 1493 uint32_t hi; 1494 #else 1495 uint32_t hi; 1496 uint32_t lo; 1497 #endif 1498 } words; 1499 }; 1500 1501 struct igb_ring_desc_32_bytes { 1502 union igb_ring_dword lo_dword; 1503 union igb_ring_dword hi_dword; 1504 union igb_ring_dword resv1; 1505 union igb_ring_dword resv2; 1506 }; 1507 1508 struct igb_ring_desc_16_bytes { 1509 union igb_ring_dword lo_dword; 1510 union igb_ring_dword hi_dword; 1511 }; 1512 1513 static void 1514 ring_rxd_display_dword(union igb_ring_dword dword) 1515 { 1516 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1517 (unsigned)dword.words.hi); 1518 } 1519 1520 static void 1521 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1522 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1523 uint8_t port_id, 1524 #else 1525 __rte_unused uint8_t port_id, 1526 #endif 1527 uint16_t desc_id) 1528 { 1529 struct igb_ring_desc_16_bytes *ring = 1530 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1531 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1532 struct rte_eth_dev_info dev_info; 1533 1534 memset(&dev_info, 0, sizeof(dev_info)); 1535 rte_eth_dev_info_get(port_id, &dev_info); 1536 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1537 /* 32 bytes RX descriptor, i40e only */ 1538 struct igb_ring_desc_32_bytes *ring = 1539 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1540 ring[desc_id].lo_dword.dword = 1541 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1542 ring_rxd_display_dword(ring[desc_id].lo_dword); 1543 ring[desc_id].hi_dword.dword = 1544 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1545 ring_rxd_display_dword(ring[desc_id].hi_dword); 1546 ring[desc_id].resv1.dword = 1547 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1548 ring_rxd_display_dword(ring[desc_id].resv1); 1549 ring[desc_id].resv2.dword = 1550 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1551 ring_rxd_display_dword(ring[desc_id].resv2); 1552 1553 return; 1554 } 1555 #endif 1556 /* 16 bytes RX descriptor */ 1557 ring[desc_id].lo_dword.dword = 1558 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1559 ring_rxd_display_dword(ring[desc_id].lo_dword); 1560 ring[desc_id].hi_dword.dword = 1561 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1562 ring_rxd_display_dword(ring[desc_id].hi_dword); 1563 } 1564 1565 static void 1566 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1567 { 1568 struct igb_ring_desc_16_bytes *ring; 1569 struct igb_ring_desc_16_bytes txd; 1570 1571 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1572 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1573 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1574 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1575 (unsigned)txd.lo_dword.words.lo, 1576 (unsigned)txd.lo_dword.words.hi, 1577 (unsigned)txd.hi_dword.words.lo, 1578 (unsigned)txd.hi_dword.words.hi); 1579 } 1580 1581 void 1582 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1583 { 1584 const struct rte_memzone *rx_mz; 1585 1586 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1587 return; 1588 if (rx_queue_id_is_invalid(rxq_id)) 1589 return; 1590 if (rx_desc_id_is_invalid(rxd_id)) 1591 return; 1592 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1593 if (rx_mz == NULL) 1594 return; 1595 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1596 } 1597 1598 void 1599 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1600 { 1601 const struct rte_memzone *tx_mz; 1602 1603 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1604 return; 1605 if (tx_queue_id_is_invalid(txq_id)) 1606 return; 1607 if (tx_desc_id_is_invalid(txd_id)) 1608 return; 1609 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1610 if (tx_mz == NULL) 1611 return; 1612 ring_tx_descriptor_display(tx_mz, txd_id); 1613 } 1614 1615 void 1616 fwd_lcores_config_display(void) 1617 { 1618 lcoreid_t lc_id; 1619 1620 printf("List of forwarding lcores:"); 1621 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1622 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1623 printf("\n"); 1624 } 1625 void 1626 rxtx_config_display(void) 1627 { 1628 printf(" %s packet forwarding%s - CRC stripping %s - " 1629 "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, 1630 retry_enabled == 0 ? "" : " with retry", 1631 rx_mode.hw_strip_crc ? "enabled" : "disabled", 1632 nb_pkt_per_burst); 1633 1634 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1635 printf(" packet len=%u - nb packet segments=%d\n", 1636 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1637 1638 struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf; 1639 struct rte_eth_txconf *tx_conf = &ports[0].tx_conf; 1640 1641 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1642 nb_fwd_lcores, nb_fwd_ports); 1643 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1644 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1645 printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1646 rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh, 1647 rx_conf->rx_thresh.wthresh); 1648 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1649 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1650 printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1651 tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh, 1652 tx_conf->tx_thresh.wthresh); 1653 printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n", 1654 tx_conf->tx_rs_thresh, tx_conf->txq_flags); 1655 } 1656 1657 void 1658 port_rss_reta_info(portid_t port_id, 1659 struct rte_eth_rss_reta_entry64 *reta_conf, 1660 uint16_t nb_entries) 1661 { 1662 uint16_t i, idx, shift; 1663 int ret; 1664 1665 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1666 return; 1667 1668 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1669 if (ret != 0) { 1670 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1671 return; 1672 } 1673 1674 for (i = 0; i < nb_entries; i++) { 1675 idx = i / RTE_RETA_GROUP_SIZE; 1676 shift = i % RTE_RETA_GROUP_SIZE; 1677 if (!(reta_conf[idx].mask & (1ULL << shift))) 1678 continue; 1679 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1680 i, reta_conf[idx].reta[shift]); 1681 } 1682 } 1683 1684 /* 1685 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1686 * key of the port. 1687 */ 1688 void 1689 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1690 { 1691 struct rte_eth_rss_conf rss_conf; 1692 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1693 uint64_t rss_hf; 1694 uint8_t i; 1695 int diag; 1696 struct rte_eth_dev_info dev_info; 1697 uint8_t hash_key_size; 1698 1699 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1700 return; 1701 1702 memset(&dev_info, 0, sizeof(dev_info)); 1703 rte_eth_dev_info_get(port_id, &dev_info); 1704 if (dev_info.hash_key_size > 0 && 1705 dev_info.hash_key_size <= sizeof(rss_key)) 1706 hash_key_size = dev_info.hash_key_size; 1707 else { 1708 printf("dev_info did not provide a valid hash key size\n"); 1709 return; 1710 } 1711 1712 rss_conf.rss_hf = 0; 1713 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1714 if (!strcmp(rss_info, rss_type_table[i].str)) 1715 rss_conf.rss_hf = rss_type_table[i].rss_type; 1716 } 1717 1718 /* Get RSS hash key if asked to display it */ 1719 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1720 rss_conf.rss_key_len = hash_key_size; 1721 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1722 if (diag != 0) { 1723 switch (diag) { 1724 case -ENODEV: 1725 printf("port index %d invalid\n", port_id); 1726 break; 1727 case -ENOTSUP: 1728 printf("operation not supported by device\n"); 1729 break; 1730 default: 1731 printf("operation failed - diag=%d\n", diag); 1732 break; 1733 } 1734 return; 1735 } 1736 rss_hf = rss_conf.rss_hf; 1737 if (rss_hf == 0) { 1738 printf("RSS disabled\n"); 1739 return; 1740 } 1741 printf("RSS functions:\n "); 1742 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1743 if (rss_hf & rss_type_table[i].rss_type) 1744 printf("%s ", rss_type_table[i].str); 1745 } 1746 printf("\n"); 1747 if (!show_rss_key) 1748 return; 1749 printf("RSS key:\n"); 1750 for (i = 0; i < hash_key_size; i++) 1751 printf("%02X", rss_key[i]); 1752 printf("\n"); 1753 } 1754 1755 void 1756 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1757 uint hash_key_len) 1758 { 1759 struct rte_eth_rss_conf rss_conf; 1760 int diag; 1761 unsigned int i; 1762 1763 rss_conf.rss_key = NULL; 1764 rss_conf.rss_key_len = hash_key_len; 1765 rss_conf.rss_hf = 0; 1766 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1767 if (!strcmp(rss_type_table[i].str, rss_type)) 1768 rss_conf.rss_hf = rss_type_table[i].rss_type; 1769 } 1770 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1771 if (diag == 0) { 1772 rss_conf.rss_key = hash_key; 1773 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1774 } 1775 if (diag == 0) 1776 return; 1777 1778 switch (diag) { 1779 case -ENODEV: 1780 printf("port index %d invalid\n", port_id); 1781 break; 1782 case -ENOTSUP: 1783 printf("operation not supported by device\n"); 1784 break; 1785 default: 1786 printf("operation failed - diag=%d\n", diag); 1787 break; 1788 } 1789 } 1790 1791 /* 1792 * Setup forwarding configuration for each logical core. 1793 */ 1794 static void 1795 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1796 { 1797 streamid_t nb_fs_per_lcore; 1798 streamid_t nb_fs; 1799 streamid_t sm_id; 1800 lcoreid_t nb_extra; 1801 lcoreid_t nb_fc; 1802 lcoreid_t nb_lc; 1803 lcoreid_t lc_id; 1804 1805 nb_fs = cfg->nb_fwd_streams; 1806 nb_fc = cfg->nb_fwd_lcores; 1807 if (nb_fs <= nb_fc) { 1808 nb_fs_per_lcore = 1; 1809 nb_extra = 0; 1810 } else { 1811 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1812 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1813 } 1814 1815 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1816 sm_id = 0; 1817 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1818 fwd_lcores[lc_id]->stream_idx = sm_id; 1819 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1820 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1821 } 1822 1823 /* 1824 * Assign extra remaining streams, if any. 1825 */ 1826 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1827 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1828 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1829 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1830 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1831 } 1832 } 1833 1834 static void 1835 simple_fwd_config_setup(void) 1836 { 1837 portid_t i; 1838 portid_t j; 1839 portid_t inc = 2; 1840 1841 if (port_topology == PORT_TOPOLOGY_CHAINED || 1842 port_topology == PORT_TOPOLOGY_LOOP) { 1843 inc = 1; 1844 } else if (nb_fwd_ports % 2) { 1845 printf("\nWarning! Cannot handle an odd number of ports " 1846 "with the current port topology. Configuration " 1847 "must be changed to have an even number of ports, " 1848 "or relaunch application with " 1849 "--port-topology=chained\n\n"); 1850 } 1851 1852 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1853 cur_fwd_config.nb_fwd_streams = 1854 (streamid_t) cur_fwd_config.nb_fwd_ports; 1855 1856 /* reinitialize forwarding streams */ 1857 init_fwd_streams(); 1858 1859 /* 1860 * In the simple forwarding test, the number of forwarding cores 1861 * must be lower or equal to the number of forwarding ports. 1862 */ 1863 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1864 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1865 cur_fwd_config.nb_fwd_lcores = 1866 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1867 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1868 1869 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { 1870 if (port_topology != PORT_TOPOLOGY_LOOP) 1871 j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); 1872 else 1873 j = i; 1874 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1875 fwd_streams[i]->rx_queue = 0; 1876 fwd_streams[i]->tx_port = fwd_ports_ids[j]; 1877 fwd_streams[i]->tx_queue = 0; 1878 fwd_streams[i]->peer_addr = j; 1879 fwd_streams[i]->retry_enabled = retry_enabled; 1880 1881 if (port_topology == PORT_TOPOLOGY_PAIRED) { 1882 fwd_streams[j]->rx_port = fwd_ports_ids[j]; 1883 fwd_streams[j]->rx_queue = 0; 1884 fwd_streams[j]->tx_port = fwd_ports_ids[i]; 1885 fwd_streams[j]->tx_queue = 0; 1886 fwd_streams[j]->peer_addr = i; 1887 fwd_streams[j]->retry_enabled = retry_enabled; 1888 } 1889 } 1890 } 1891 1892 /** 1893 * For the RSS forwarding test all streams distributed over lcores. Each stream 1894 * being composed of a RX queue to poll on a RX port for input messages, 1895 * associated with a TX queue of a TX port where to send forwarded packets. 1896 * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" 1897 * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two 1898 * following rules: 1899 * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd 1900 * - TxQl = RxQj 1901 */ 1902 static void 1903 rss_fwd_config_setup(void) 1904 { 1905 portid_t rxp; 1906 portid_t txp; 1907 queueid_t rxq; 1908 queueid_t nb_q; 1909 streamid_t sm_id; 1910 1911 nb_q = nb_rxq; 1912 if (nb_q > nb_txq) 1913 nb_q = nb_txq; 1914 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1915 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1916 cur_fwd_config.nb_fwd_streams = 1917 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1918 1919 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1920 cur_fwd_config.nb_fwd_lcores = 1921 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1922 1923 /* reinitialize forwarding streams */ 1924 init_fwd_streams(); 1925 1926 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1927 rxp = 0; rxq = 0; 1928 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1929 struct fwd_stream *fs; 1930 1931 fs = fwd_streams[sm_id]; 1932 1933 if ((rxp & 0x1) == 0) 1934 txp = (portid_t) (rxp + 1); 1935 else 1936 txp = (portid_t) (rxp - 1); 1937 /* 1938 * if we are in loopback, simply send stuff out through the 1939 * ingress port 1940 */ 1941 if (port_topology == PORT_TOPOLOGY_LOOP) 1942 txp = rxp; 1943 1944 fs->rx_port = fwd_ports_ids[rxp]; 1945 fs->rx_queue = rxq; 1946 fs->tx_port = fwd_ports_ids[txp]; 1947 fs->tx_queue = rxq; 1948 fs->peer_addr = fs->tx_port; 1949 fs->retry_enabled = retry_enabled; 1950 rxq = (queueid_t) (rxq + 1); 1951 if (rxq < nb_q) 1952 continue; 1953 /* 1954 * rxq == nb_q 1955 * Restart from RX queue 0 on next RX port 1956 */ 1957 rxq = 0; 1958 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 1959 rxp = (portid_t) 1960 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 1961 else 1962 rxp = (portid_t) (rxp + 1); 1963 } 1964 } 1965 1966 /** 1967 * For the DCB forwarding test, each core is assigned on each traffic class. 1968 * 1969 * Each core is assigned a multi-stream, each stream being composed of 1970 * a RX queue to poll on a RX port for input messages, associated with 1971 * a TX queue of a TX port where to send forwarded packets. All RX and 1972 * TX queues are mapping to the same traffic class. 1973 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 1974 * the same core 1975 */ 1976 static void 1977 dcb_fwd_config_setup(void) 1978 { 1979 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 1980 portid_t txp, rxp = 0; 1981 queueid_t txq, rxq = 0; 1982 lcoreid_t lc_id; 1983 uint16_t nb_rx_queue, nb_tx_queue; 1984 uint16_t i, j, k, sm_id = 0; 1985 uint8_t tc = 0; 1986 1987 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1988 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1989 cur_fwd_config.nb_fwd_streams = 1990 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 1991 1992 /* reinitialize forwarding streams */ 1993 init_fwd_streams(); 1994 sm_id = 0; 1995 txp = 1; 1996 /* get the dcb info on the first RX and TX ports */ 1997 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 1998 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 1999 2000 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2001 fwd_lcores[lc_id]->stream_nb = 0; 2002 fwd_lcores[lc_id]->stream_idx = sm_id; 2003 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2004 /* if the nb_queue is zero, means this tc is 2005 * not enabled on the POOL 2006 */ 2007 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2008 break; 2009 k = fwd_lcores[lc_id]->stream_nb + 2010 fwd_lcores[lc_id]->stream_idx; 2011 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2012 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2013 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2014 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2015 for (j = 0; j < nb_rx_queue; j++) { 2016 struct fwd_stream *fs; 2017 2018 fs = fwd_streams[k + j]; 2019 fs->rx_port = fwd_ports_ids[rxp]; 2020 fs->rx_queue = rxq + j; 2021 fs->tx_port = fwd_ports_ids[txp]; 2022 fs->tx_queue = txq + j % nb_tx_queue; 2023 fs->peer_addr = fs->tx_port; 2024 fs->retry_enabled = retry_enabled; 2025 } 2026 fwd_lcores[lc_id]->stream_nb += 2027 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2028 } 2029 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2030 2031 tc++; 2032 if (tc < rxp_dcb_info.nb_tcs) 2033 continue; 2034 /* Restart from TC 0 on next RX port */ 2035 tc = 0; 2036 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2037 rxp = (portid_t) 2038 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2039 else 2040 rxp++; 2041 if (rxp >= nb_fwd_ports) 2042 return; 2043 /* get the dcb information on next RX and TX ports */ 2044 if ((rxp & 0x1) == 0) 2045 txp = (portid_t) (rxp + 1); 2046 else 2047 txp = (portid_t) (rxp - 1); 2048 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2049 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2050 } 2051 } 2052 2053 static void 2054 icmp_echo_config_setup(void) 2055 { 2056 portid_t rxp; 2057 queueid_t rxq; 2058 lcoreid_t lc_id; 2059 uint16_t sm_id; 2060 2061 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2062 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2063 (nb_txq * nb_fwd_ports); 2064 else 2065 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2066 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2067 cur_fwd_config.nb_fwd_streams = 2068 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2069 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2070 cur_fwd_config.nb_fwd_lcores = 2071 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2072 if (verbose_level > 0) { 2073 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2074 __FUNCTION__, 2075 cur_fwd_config.nb_fwd_lcores, 2076 cur_fwd_config.nb_fwd_ports, 2077 cur_fwd_config.nb_fwd_streams); 2078 } 2079 2080 /* reinitialize forwarding streams */ 2081 init_fwd_streams(); 2082 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2083 rxp = 0; rxq = 0; 2084 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2085 if (verbose_level > 0) 2086 printf(" core=%d: \n", lc_id); 2087 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2088 struct fwd_stream *fs; 2089 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2090 fs->rx_port = fwd_ports_ids[rxp]; 2091 fs->rx_queue = rxq; 2092 fs->tx_port = fs->rx_port; 2093 fs->tx_queue = rxq; 2094 fs->peer_addr = fs->tx_port; 2095 fs->retry_enabled = retry_enabled; 2096 if (verbose_level > 0) 2097 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2098 sm_id, fs->rx_port, fs->rx_queue, 2099 fs->tx_queue); 2100 rxq = (queueid_t) (rxq + 1); 2101 if (rxq == nb_rxq) { 2102 rxq = 0; 2103 rxp = (portid_t) (rxp + 1); 2104 } 2105 } 2106 } 2107 } 2108 2109 void 2110 fwd_config_setup(void) 2111 { 2112 cur_fwd_config.fwd_eng = cur_fwd_eng; 2113 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2114 icmp_echo_config_setup(); 2115 return; 2116 } 2117 if ((nb_rxq > 1) && (nb_txq > 1)){ 2118 if (dcb_config) 2119 dcb_fwd_config_setup(); 2120 else 2121 rss_fwd_config_setup(); 2122 } 2123 else 2124 simple_fwd_config_setup(); 2125 } 2126 2127 void 2128 pkt_fwd_config_display(struct fwd_config *cfg) 2129 { 2130 struct fwd_stream *fs; 2131 lcoreid_t lc_id; 2132 streamid_t sm_id; 2133 2134 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2135 "NUMA support %s, MP over anonymous pages %s\n", 2136 cfg->fwd_eng->fwd_mode_name, 2137 retry_enabled == 0 ? "" : " with retry", 2138 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2139 numa_support == 1 ? "enabled" : "disabled", 2140 mp_anon != 0 ? "enabled" : "disabled"); 2141 2142 if (retry_enabled) 2143 printf("TX retry num: %u, delay between TX retries: %uus\n", 2144 burst_tx_retry_num, burst_tx_delay_time); 2145 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2146 printf("Logical Core %u (socket %u) forwards packets on " 2147 "%d streams:", 2148 fwd_lcores_cpuids[lc_id], 2149 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2150 fwd_lcores[lc_id]->stream_nb); 2151 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2152 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2153 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2154 "P=%d/Q=%d (socket %u) ", 2155 fs->rx_port, fs->rx_queue, 2156 ports[fs->rx_port].socket_id, 2157 fs->tx_port, fs->tx_queue, 2158 ports[fs->tx_port].socket_id); 2159 print_ethaddr("peer=", 2160 &peer_eth_addrs[fs->peer_addr]); 2161 } 2162 printf("\n"); 2163 } 2164 printf("\n"); 2165 } 2166 2167 int 2168 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2169 { 2170 unsigned int i; 2171 unsigned int lcore_cpuid; 2172 int record_now; 2173 2174 record_now = 0; 2175 again: 2176 for (i = 0; i < nb_lc; i++) { 2177 lcore_cpuid = lcorelist[i]; 2178 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2179 printf("lcore %u not enabled\n", lcore_cpuid); 2180 return -1; 2181 } 2182 if (lcore_cpuid == rte_get_master_lcore()) { 2183 printf("lcore %u cannot be masked on for running " 2184 "packet forwarding, which is the master lcore " 2185 "and reserved for command line parsing only\n", 2186 lcore_cpuid); 2187 return -1; 2188 } 2189 if (record_now) 2190 fwd_lcores_cpuids[i] = lcore_cpuid; 2191 } 2192 if (record_now == 0) { 2193 record_now = 1; 2194 goto again; 2195 } 2196 nb_cfg_lcores = (lcoreid_t) nb_lc; 2197 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2198 printf("previous number of forwarding cores %u - changed to " 2199 "number of configured cores %u\n", 2200 (unsigned int) nb_fwd_lcores, nb_lc); 2201 nb_fwd_lcores = (lcoreid_t) nb_lc; 2202 } 2203 2204 return 0; 2205 } 2206 2207 int 2208 set_fwd_lcores_mask(uint64_t lcoremask) 2209 { 2210 unsigned int lcorelist[64]; 2211 unsigned int nb_lc; 2212 unsigned int i; 2213 2214 if (lcoremask == 0) { 2215 printf("Invalid NULL mask of cores\n"); 2216 return -1; 2217 } 2218 nb_lc = 0; 2219 for (i = 0; i < 64; i++) { 2220 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2221 continue; 2222 lcorelist[nb_lc++] = i; 2223 } 2224 return set_fwd_lcores_list(lcorelist, nb_lc); 2225 } 2226 2227 void 2228 set_fwd_lcores_number(uint16_t nb_lc) 2229 { 2230 if (nb_lc > nb_cfg_lcores) { 2231 printf("nb fwd cores %u > %u (max. number of configured " 2232 "lcores) - ignored\n", 2233 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2234 return; 2235 } 2236 nb_fwd_lcores = (lcoreid_t) nb_lc; 2237 printf("Number of forwarding cores set to %u\n", 2238 (unsigned int) nb_fwd_lcores); 2239 } 2240 2241 void 2242 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2243 { 2244 unsigned int i; 2245 portid_t port_id; 2246 int record_now; 2247 2248 record_now = 0; 2249 again: 2250 for (i = 0; i < nb_pt; i++) { 2251 port_id = (portid_t) portlist[i]; 2252 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2253 return; 2254 if (record_now) 2255 fwd_ports_ids[i] = port_id; 2256 } 2257 if (record_now == 0) { 2258 record_now = 1; 2259 goto again; 2260 } 2261 nb_cfg_ports = (portid_t) nb_pt; 2262 if (nb_fwd_ports != (portid_t) nb_pt) { 2263 printf("previous number of forwarding ports %u - changed to " 2264 "number of configured ports %u\n", 2265 (unsigned int) nb_fwd_ports, nb_pt); 2266 nb_fwd_ports = (portid_t) nb_pt; 2267 } 2268 } 2269 2270 void 2271 set_fwd_ports_mask(uint64_t portmask) 2272 { 2273 unsigned int portlist[64]; 2274 unsigned int nb_pt; 2275 unsigned int i; 2276 2277 if (portmask == 0) { 2278 printf("Invalid NULL mask of ports\n"); 2279 return; 2280 } 2281 nb_pt = 0; 2282 for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) { 2283 if (! ((uint64_t)(1ULL << i) & portmask)) 2284 continue; 2285 portlist[nb_pt++] = i; 2286 } 2287 set_fwd_ports_list(portlist, nb_pt); 2288 } 2289 2290 void 2291 set_fwd_ports_number(uint16_t nb_pt) 2292 { 2293 if (nb_pt > nb_cfg_ports) { 2294 printf("nb fwd ports %u > %u (number of configured " 2295 "ports) - ignored\n", 2296 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2297 return; 2298 } 2299 nb_fwd_ports = (portid_t) nb_pt; 2300 printf("Number of forwarding ports set to %u\n", 2301 (unsigned int) nb_fwd_ports); 2302 } 2303 2304 int 2305 port_is_forwarding(portid_t port_id) 2306 { 2307 unsigned int i; 2308 2309 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2310 return -1; 2311 2312 for (i = 0; i < nb_fwd_ports; i++) { 2313 if (fwd_ports_ids[i] == port_id) 2314 return 1; 2315 } 2316 2317 return 0; 2318 } 2319 2320 void 2321 set_nb_pkt_per_burst(uint16_t nb) 2322 { 2323 if (nb > MAX_PKT_BURST) { 2324 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2325 " ignored\n", 2326 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2327 return; 2328 } 2329 nb_pkt_per_burst = nb; 2330 printf("Number of packets per burst set to %u\n", 2331 (unsigned int) nb_pkt_per_burst); 2332 } 2333 2334 static const char * 2335 tx_split_get_name(enum tx_pkt_split split) 2336 { 2337 uint32_t i; 2338 2339 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2340 if (tx_split_name[i].split == split) 2341 return tx_split_name[i].name; 2342 } 2343 return NULL; 2344 } 2345 2346 void 2347 set_tx_pkt_split(const char *name) 2348 { 2349 uint32_t i; 2350 2351 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2352 if (strcmp(tx_split_name[i].name, name) == 0) { 2353 tx_pkt_split = tx_split_name[i].split; 2354 return; 2355 } 2356 } 2357 printf("unknown value: \"%s\"\n", name); 2358 } 2359 2360 void 2361 show_tx_pkt_segments(void) 2362 { 2363 uint32_t i, n; 2364 const char *split; 2365 2366 n = tx_pkt_nb_segs; 2367 split = tx_split_get_name(tx_pkt_split); 2368 2369 printf("Number of segments: %u\n", n); 2370 printf("Segment sizes: "); 2371 for (i = 0; i != n - 1; i++) 2372 printf("%hu,", tx_pkt_seg_lengths[i]); 2373 printf("%hu\n", tx_pkt_seg_lengths[i]); 2374 printf("Split packet: %s\n", split); 2375 } 2376 2377 void 2378 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2379 { 2380 uint16_t tx_pkt_len; 2381 unsigned i; 2382 2383 if (nb_segs >= (unsigned) nb_txd) { 2384 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2385 nb_segs, (unsigned int) nb_txd); 2386 return; 2387 } 2388 2389 /* 2390 * Check that each segment length is greater or equal than 2391 * the mbuf data sise. 2392 * Check also that the total packet length is greater or equal than the 2393 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2394 */ 2395 tx_pkt_len = 0; 2396 for (i = 0; i < nb_segs; i++) { 2397 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2398 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2399 i, seg_lengths[i], (unsigned) mbuf_data_size); 2400 return; 2401 } 2402 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2403 } 2404 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2405 printf("total packet length=%u < %d - give up\n", 2406 (unsigned) tx_pkt_len, 2407 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2408 return; 2409 } 2410 2411 for (i = 0; i < nb_segs; i++) 2412 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2413 2414 tx_pkt_length = tx_pkt_len; 2415 tx_pkt_nb_segs = (uint8_t) nb_segs; 2416 } 2417 2418 char* 2419 list_pkt_forwarding_modes(void) 2420 { 2421 static char fwd_modes[128] = ""; 2422 const char *separator = "|"; 2423 struct fwd_engine *fwd_eng; 2424 unsigned i = 0; 2425 2426 if (strlen (fwd_modes) == 0) { 2427 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2428 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2429 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2430 strncat(fwd_modes, separator, 2431 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2432 } 2433 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2434 } 2435 2436 return fwd_modes; 2437 } 2438 2439 char* 2440 list_pkt_forwarding_retry_modes(void) 2441 { 2442 static char fwd_modes[128] = ""; 2443 const char *separator = "|"; 2444 struct fwd_engine *fwd_eng; 2445 unsigned i = 0; 2446 2447 if (strlen(fwd_modes) == 0) { 2448 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2449 if (fwd_eng == &rx_only_engine) 2450 continue; 2451 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2452 sizeof(fwd_modes) - 2453 strlen(fwd_modes) - 1); 2454 strncat(fwd_modes, separator, 2455 sizeof(fwd_modes) - 2456 strlen(fwd_modes) - 1); 2457 } 2458 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2459 } 2460 2461 return fwd_modes; 2462 } 2463 2464 void 2465 set_pkt_forwarding_mode(const char *fwd_mode_name) 2466 { 2467 struct fwd_engine *fwd_eng; 2468 unsigned i; 2469 2470 i = 0; 2471 while ((fwd_eng = fwd_engines[i]) != NULL) { 2472 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2473 printf("Set %s packet forwarding mode%s\n", 2474 fwd_mode_name, 2475 retry_enabled == 0 ? "" : " with retry"); 2476 cur_fwd_eng = fwd_eng; 2477 return; 2478 } 2479 i++; 2480 } 2481 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2482 } 2483 2484 void 2485 set_verbose_level(uint16_t vb_level) 2486 { 2487 printf("Change verbose level from %u to %u\n", 2488 (unsigned int) verbose_level, (unsigned int) vb_level); 2489 verbose_level = vb_level; 2490 } 2491 2492 void 2493 vlan_extend_set(portid_t port_id, int on) 2494 { 2495 int diag; 2496 int vlan_offload; 2497 2498 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2499 return; 2500 2501 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2502 2503 if (on) 2504 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2505 else 2506 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2507 2508 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2509 if (diag < 0) 2510 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2511 "diag=%d\n", port_id, on, diag); 2512 } 2513 2514 void 2515 rx_vlan_strip_set(portid_t port_id, int on) 2516 { 2517 int diag; 2518 int vlan_offload; 2519 2520 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2521 return; 2522 2523 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2524 2525 if (on) 2526 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2527 else 2528 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2529 2530 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2531 if (diag < 0) 2532 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2533 "diag=%d\n", port_id, on, diag); 2534 } 2535 2536 void 2537 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2538 { 2539 int diag; 2540 2541 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2542 return; 2543 2544 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2545 if (diag < 0) 2546 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2547 "diag=%d\n", port_id, queue_id, on, diag); 2548 } 2549 2550 void 2551 rx_vlan_filter_set(portid_t port_id, int on) 2552 { 2553 int diag; 2554 int vlan_offload; 2555 2556 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2557 return; 2558 2559 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2560 2561 if (on) 2562 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2563 else 2564 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2565 2566 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2567 if (diag < 0) 2568 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2569 "diag=%d\n", port_id, on, diag); 2570 } 2571 2572 int 2573 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2574 { 2575 int diag; 2576 2577 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2578 return 1; 2579 if (vlan_id_is_invalid(vlan_id)) 2580 return 1; 2581 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2582 if (diag == 0) 2583 return 0; 2584 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2585 "diag=%d\n", 2586 port_id, vlan_id, on, diag); 2587 return -1; 2588 } 2589 2590 void 2591 rx_vlan_all_filter_set(portid_t port_id, int on) 2592 { 2593 uint16_t vlan_id; 2594 2595 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2596 return; 2597 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2598 if (rx_vft_set(port_id, vlan_id, on)) 2599 break; 2600 } 2601 } 2602 2603 void 2604 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2605 { 2606 int diag; 2607 2608 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2609 return; 2610 2611 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2612 if (diag == 0) 2613 return; 2614 2615 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2616 "diag=%d\n", 2617 port_id, vlan_type, tp_id, diag); 2618 } 2619 2620 void 2621 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2622 { 2623 int vlan_offload; 2624 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2625 return; 2626 if (vlan_id_is_invalid(vlan_id)) 2627 return; 2628 2629 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2630 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2631 printf("Error, as QinQ has been enabled.\n"); 2632 return; 2633 } 2634 2635 tx_vlan_reset(port_id); 2636 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN; 2637 ports[port_id].tx_vlan_id = vlan_id; 2638 } 2639 2640 void 2641 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2642 { 2643 int vlan_offload; 2644 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2645 return; 2646 if (vlan_id_is_invalid(vlan_id)) 2647 return; 2648 if (vlan_id_is_invalid(vlan_id_outer)) 2649 return; 2650 2651 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2652 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2653 printf("Error, as QinQ hasn't been enabled.\n"); 2654 return; 2655 } 2656 2657 tx_vlan_reset(port_id); 2658 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ; 2659 ports[port_id].tx_vlan_id = vlan_id; 2660 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2661 } 2662 2663 void 2664 tx_vlan_reset(portid_t port_id) 2665 { 2666 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2667 return; 2668 ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN | 2669 TESTPMD_TX_OFFLOAD_INSERT_QINQ); 2670 ports[port_id].tx_vlan_id = 0; 2671 ports[port_id].tx_vlan_id_outer = 0; 2672 } 2673 2674 void 2675 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2676 { 2677 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2678 return; 2679 2680 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2681 } 2682 2683 void 2684 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2685 { 2686 uint16_t i; 2687 uint8_t existing_mapping_found = 0; 2688 2689 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2690 return; 2691 2692 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2693 return; 2694 2695 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2696 printf("map_value not in required range 0..%d\n", 2697 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2698 return; 2699 } 2700 2701 if (!is_rx) { /*then tx*/ 2702 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2703 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2704 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2705 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2706 existing_mapping_found = 1; 2707 break; 2708 } 2709 } 2710 if (!existing_mapping_found) { /* A new additional mapping... */ 2711 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2712 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2713 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2714 nb_tx_queue_stats_mappings++; 2715 } 2716 } 2717 else { /*rx*/ 2718 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2719 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2720 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2721 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2722 existing_mapping_found = 1; 2723 break; 2724 } 2725 } 2726 if (!existing_mapping_found) { /* A new additional mapping... */ 2727 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2728 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2729 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2730 nb_rx_queue_stats_mappings++; 2731 } 2732 } 2733 } 2734 2735 static inline void 2736 print_fdir_mask(struct rte_eth_fdir_masks *mask) 2737 { 2738 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 2739 2740 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2741 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 2742 " tunnel_id: 0x%08x", 2743 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 2744 rte_be_to_cpu_32(mask->tunnel_id_mask)); 2745 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2746 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 2747 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 2748 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 2749 2750 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 2751 rte_be_to_cpu_16(mask->src_port_mask), 2752 rte_be_to_cpu_16(mask->dst_port_mask)); 2753 2754 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2755 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 2756 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 2757 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 2758 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 2759 2760 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2761 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 2762 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 2763 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 2764 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 2765 } 2766 2767 printf("\n"); 2768 } 2769 2770 static inline void 2771 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2772 { 2773 struct rte_eth_flex_payload_cfg *cfg; 2774 uint32_t i, j; 2775 2776 for (i = 0; i < flex_conf->nb_payloads; i++) { 2777 cfg = &flex_conf->flex_set[i]; 2778 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 2779 printf("\n RAW: "); 2780 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 2781 printf("\n L2_PAYLOAD: "); 2782 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 2783 printf("\n L3_PAYLOAD: "); 2784 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 2785 printf("\n L4_PAYLOAD: "); 2786 else 2787 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 2788 for (j = 0; j < num; j++) 2789 printf(" %-5u", cfg->src_offset[j]); 2790 } 2791 printf("\n"); 2792 } 2793 2794 static char * 2795 flowtype_to_str(uint16_t flow_type) 2796 { 2797 struct flow_type_info { 2798 char str[32]; 2799 uint16_t ftype; 2800 }; 2801 2802 uint8_t i; 2803 static struct flow_type_info flowtype_str_table[] = { 2804 {"raw", RTE_ETH_FLOW_RAW}, 2805 {"ipv4", RTE_ETH_FLOW_IPV4}, 2806 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 2807 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 2808 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 2809 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 2810 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 2811 {"ipv6", RTE_ETH_FLOW_IPV6}, 2812 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 2813 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 2814 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 2815 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 2816 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 2817 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 2818 {"port", RTE_ETH_FLOW_PORT}, 2819 {"vxlan", RTE_ETH_FLOW_VXLAN}, 2820 {"geneve", RTE_ETH_FLOW_GENEVE}, 2821 {"nvgre", RTE_ETH_FLOW_NVGRE}, 2822 }; 2823 2824 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 2825 if (flowtype_str_table[i].ftype == flow_type) 2826 return flowtype_str_table[i].str; 2827 } 2828 2829 return NULL; 2830 } 2831 2832 static inline void 2833 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2834 { 2835 struct rte_eth_fdir_flex_mask *mask; 2836 uint32_t i, j; 2837 char *p; 2838 2839 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 2840 mask = &flex_conf->flex_mask[i]; 2841 p = flowtype_to_str(mask->flow_type); 2842 printf("\n %s:\t", p ? p : "unknown"); 2843 for (j = 0; j < num; j++) 2844 printf(" %02x", mask->mask[j]); 2845 } 2846 printf("\n"); 2847 } 2848 2849 static inline void 2850 print_fdir_flow_type(uint32_t flow_types_mask) 2851 { 2852 int i; 2853 char *p; 2854 2855 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 2856 if (!(flow_types_mask & (1 << i))) 2857 continue; 2858 p = flowtype_to_str(i); 2859 if (p) 2860 printf(" %s", p); 2861 else 2862 printf(" unknown"); 2863 } 2864 printf("\n"); 2865 } 2866 2867 void 2868 fdir_get_infos(portid_t port_id) 2869 { 2870 struct rte_eth_fdir_stats fdir_stat; 2871 struct rte_eth_fdir_info fdir_info; 2872 int ret; 2873 2874 static const char *fdir_stats_border = "########################"; 2875 2876 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2877 return; 2878 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 2879 if (ret < 0) { 2880 printf("\n FDIR is not supported on port %-2d\n", 2881 port_id); 2882 return; 2883 } 2884 2885 memset(&fdir_info, 0, sizeof(fdir_info)); 2886 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2887 RTE_ETH_FILTER_INFO, &fdir_info); 2888 memset(&fdir_stat, 0, sizeof(fdir_stat)); 2889 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2890 RTE_ETH_FILTER_STATS, &fdir_stat); 2891 printf("\n %s FDIR infos for port %-2d %s\n", 2892 fdir_stats_border, port_id, fdir_stats_border); 2893 printf(" MODE: "); 2894 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 2895 printf(" PERFECT\n"); 2896 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 2897 printf(" PERFECT-MAC-VLAN\n"); 2898 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2899 printf(" PERFECT-TUNNEL\n"); 2900 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 2901 printf(" SIGNATURE\n"); 2902 else 2903 printf(" DISABLE\n"); 2904 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 2905 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 2906 printf(" SUPPORTED FLOW TYPE: "); 2907 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 2908 } 2909 printf(" FLEX PAYLOAD INFO:\n"); 2910 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 2911 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 2912 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 2913 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 2914 fdir_info.flex_payload_unit, 2915 fdir_info.max_flex_payload_segment_num, 2916 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 2917 printf(" MASK: "); 2918 print_fdir_mask(&fdir_info.mask); 2919 if (fdir_info.flex_conf.nb_payloads > 0) { 2920 printf(" FLEX PAYLOAD SRC OFFSET:"); 2921 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2922 } 2923 if (fdir_info.flex_conf.nb_flexmasks > 0) { 2924 printf(" FLEX MASK CFG:"); 2925 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2926 } 2927 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 2928 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 2929 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 2930 fdir_info.guarant_spc, fdir_info.best_spc); 2931 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 2932 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 2933 " add: %-10"PRIu64" remove: %"PRIu64"\n" 2934 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 2935 fdir_stat.collision, fdir_stat.free, 2936 fdir_stat.maxhash, fdir_stat.maxlen, 2937 fdir_stat.add, fdir_stat.remove, 2938 fdir_stat.f_add, fdir_stat.f_remove); 2939 printf(" %s############################%s\n", 2940 fdir_stats_border, fdir_stats_border); 2941 } 2942 2943 void 2944 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 2945 { 2946 struct rte_port *port; 2947 struct rte_eth_fdir_flex_conf *flex_conf; 2948 int i, idx = 0; 2949 2950 port = &ports[port_id]; 2951 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2952 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 2953 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 2954 idx = i; 2955 break; 2956 } 2957 } 2958 if (i >= RTE_ETH_FLOW_MAX) { 2959 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 2960 idx = flex_conf->nb_flexmasks; 2961 flex_conf->nb_flexmasks++; 2962 } else { 2963 printf("The flex mask table is full. Can not set flex" 2964 " mask for flow_type(%u).", cfg->flow_type); 2965 return; 2966 } 2967 } 2968 (void)rte_memcpy(&flex_conf->flex_mask[idx], 2969 cfg, 2970 sizeof(struct rte_eth_fdir_flex_mask)); 2971 } 2972 2973 void 2974 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 2975 { 2976 struct rte_port *port; 2977 struct rte_eth_fdir_flex_conf *flex_conf; 2978 int i, idx = 0; 2979 2980 port = &ports[port_id]; 2981 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2982 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 2983 if (cfg->type == flex_conf->flex_set[i].type) { 2984 idx = i; 2985 break; 2986 } 2987 } 2988 if (i >= RTE_ETH_PAYLOAD_MAX) { 2989 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 2990 idx = flex_conf->nb_payloads; 2991 flex_conf->nb_payloads++; 2992 } else { 2993 printf("The flex payload table is full. Can not set" 2994 " flex payload for type(%u).", cfg->type); 2995 return; 2996 } 2997 } 2998 (void)rte_memcpy(&flex_conf->flex_set[idx], 2999 cfg, 3000 sizeof(struct rte_eth_flex_payload_cfg)); 3001 3002 } 3003 3004 #ifdef RTE_LIBRTE_IXGBE_PMD 3005 void 3006 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3007 { 3008 int diag; 3009 3010 if (is_rx) 3011 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3012 else 3013 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3014 3015 if (diag == 0) 3016 return; 3017 if(is_rx) 3018 printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed " 3019 "diag=%d\n", port_id, diag); 3020 else 3021 printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed " 3022 "diag=%d\n", port_id, diag); 3023 3024 } 3025 #endif 3026 3027 int 3028 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3029 { 3030 int diag; 3031 struct rte_eth_link link; 3032 3033 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3034 return 1; 3035 rte_eth_link_get_nowait(port_id, &link); 3036 if (rate > link.link_speed) { 3037 printf("Invalid rate value:%u bigger than link speed: %u\n", 3038 rate, link.link_speed); 3039 return 1; 3040 } 3041 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3042 if (diag == 0) 3043 return diag; 3044 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3045 port_id, diag); 3046 return diag; 3047 } 3048 3049 #ifdef RTE_LIBRTE_IXGBE_PMD 3050 int 3051 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3052 { 3053 int diag; 3054 3055 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk); 3056 if (diag == 0) 3057 return diag; 3058 printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n", 3059 port_id, diag); 3060 return diag; 3061 } 3062 #endif 3063 3064 /* 3065 * Functions to manage the set of filtered Multicast MAC addresses. 3066 * 3067 * A pool of filtered multicast MAC addresses is associated with each port. 3068 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3069 * The address of the pool and the number of valid multicast MAC addresses 3070 * recorded in the pool are stored in the fields "mc_addr_pool" and 3071 * "mc_addr_nb" of the "rte_port" data structure. 3072 * 3073 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3074 * to be supplied a contiguous array of multicast MAC addresses. 3075 * To comply with this constraint, the set of multicast addresses recorded 3076 * into the pool are systematically compacted at the beginning of the pool. 3077 * Hence, when a multicast address is removed from the pool, all following 3078 * addresses, if any, are copied back to keep the set contiguous. 3079 */ 3080 #define MCAST_POOL_INC 32 3081 3082 static int 3083 mcast_addr_pool_extend(struct rte_port *port) 3084 { 3085 struct ether_addr *mc_pool; 3086 size_t mc_pool_size; 3087 3088 /* 3089 * If a free entry is available at the end of the pool, just 3090 * increment the number of recorded multicast addresses. 3091 */ 3092 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3093 port->mc_addr_nb++; 3094 return 0; 3095 } 3096 3097 /* 3098 * [re]allocate a pool with MCAST_POOL_INC more entries. 3099 * The previous test guarantees that port->mc_addr_nb is a multiple 3100 * of MCAST_POOL_INC. 3101 */ 3102 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3103 MCAST_POOL_INC); 3104 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3105 mc_pool_size); 3106 if (mc_pool == NULL) { 3107 printf("allocation of pool of %u multicast addresses failed\n", 3108 port->mc_addr_nb + MCAST_POOL_INC); 3109 return -ENOMEM; 3110 } 3111 3112 port->mc_addr_pool = mc_pool; 3113 port->mc_addr_nb++; 3114 return 0; 3115 3116 } 3117 3118 static void 3119 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3120 { 3121 port->mc_addr_nb--; 3122 if (addr_idx == port->mc_addr_nb) { 3123 /* No need to recompact the set of multicast addressses. */ 3124 if (port->mc_addr_nb == 0) { 3125 /* free the pool of multicast addresses. */ 3126 free(port->mc_addr_pool); 3127 port->mc_addr_pool = NULL; 3128 } 3129 return; 3130 } 3131 memmove(&port->mc_addr_pool[addr_idx], 3132 &port->mc_addr_pool[addr_idx + 1], 3133 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3134 } 3135 3136 static void 3137 eth_port_multicast_addr_list_set(uint8_t port_id) 3138 { 3139 struct rte_port *port; 3140 int diag; 3141 3142 port = &ports[port_id]; 3143 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3144 port->mc_addr_nb); 3145 if (diag == 0) 3146 return; 3147 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3148 port->mc_addr_nb, port_id, -diag); 3149 } 3150 3151 void 3152 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr) 3153 { 3154 struct rte_port *port; 3155 uint32_t i; 3156 3157 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3158 return; 3159 3160 port = &ports[port_id]; 3161 3162 /* 3163 * Check that the added multicast MAC address is not already recorded 3164 * in the pool of multicast addresses. 3165 */ 3166 for (i = 0; i < port->mc_addr_nb; i++) { 3167 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3168 printf("multicast address already filtered by port\n"); 3169 return; 3170 } 3171 } 3172 3173 if (mcast_addr_pool_extend(port) != 0) 3174 return; 3175 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3176 eth_port_multicast_addr_list_set(port_id); 3177 } 3178 3179 void 3180 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr) 3181 { 3182 struct rte_port *port; 3183 uint32_t i; 3184 3185 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3186 return; 3187 3188 port = &ports[port_id]; 3189 3190 /* 3191 * Search the pool of multicast MAC addresses for the removed address. 3192 */ 3193 for (i = 0; i < port->mc_addr_nb; i++) { 3194 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3195 break; 3196 } 3197 if (i == port->mc_addr_nb) { 3198 printf("multicast address not filtered by port %d\n", port_id); 3199 return; 3200 } 3201 3202 mcast_addr_pool_remove(port, i); 3203 eth_port_multicast_addr_list_set(port_id); 3204 } 3205 3206 void 3207 port_dcb_info_display(uint8_t port_id) 3208 { 3209 struct rte_eth_dcb_info dcb_info; 3210 uint16_t i; 3211 int ret; 3212 static const char *border = "================"; 3213 3214 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3215 return; 3216 3217 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3218 if (ret) { 3219 printf("\n Failed to get dcb infos on port %-2d\n", 3220 port_id); 3221 return; 3222 } 3223 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3224 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3225 printf("\n TC : "); 3226 for (i = 0; i < dcb_info.nb_tcs; i++) 3227 printf("\t%4d", i); 3228 printf("\n Priority : "); 3229 for (i = 0; i < dcb_info.nb_tcs; i++) 3230 printf("\t%4d", dcb_info.prio_tc[i]); 3231 printf("\n BW percent :"); 3232 for (i = 0; i < dcb_info.nb_tcs; i++) 3233 printf("\t%4d%%", dcb_info.tc_bws[i]); 3234 printf("\n RXQ base : "); 3235 for (i = 0; i < dcb_info.nb_tcs; i++) 3236 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3237 printf("\n RXQ number :"); 3238 for (i = 0; i < dcb_info.nb_tcs; i++) 3239 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3240 printf("\n TXQ base : "); 3241 for (i = 0; i < dcb_info.nb_tcs; i++) 3242 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3243 printf("\n TXQ number :"); 3244 for (i = 0; i < dcb_info.nb_tcs; i++) 3245 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3246 printf("\n"); 3247 } 3248 3249 uint8_t * 3250 open_ddp_package_file(const char *file_path, uint32_t *size) 3251 { 3252 FILE *fh = fopen(file_path, "rb"); 3253 uint32_t pkg_size; 3254 uint8_t *buf = NULL; 3255 int ret = 0; 3256 3257 if (size) 3258 *size = 0; 3259 3260 if (fh == NULL) { 3261 printf("%s: Failed to open %s\n", __func__, file_path); 3262 return buf; 3263 } 3264 3265 ret = fseek(fh, 0, SEEK_END); 3266 if (ret < 0) { 3267 fclose(fh); 3268 printf("%s: File operations failed\n", __func__); 3269 return buf; 3270 } 3271 3272 pkg_size = ftell(fh); 3273 3274 buf = (uint8_t *)malloc(pkg_size); 3275 if (!buf) { 3276 fclose(fh); 3277 printf("%s: Failed to malloc memory\n", __func__); 3278 return buf; 3279 } 3280 3281 ret = fseek(fh, 0, SEEK_SET); 3282 if (ret < 0) { 3283 fclose(fh); 3284 printf("%s: File seek operation failed\n", __func__); 3285 close_ddp_package_file(buf); 3286 return NULL; 3287 } 3288 3289 ret = fread(buf, 1, pkg_size, fh); 3290 if (ret < 0) { 3291 fclose(fh); 3292 printf("%s: File read operation failed\n", __func__); 3293 close_ddp_package_file(buf); 3294 return NULL; 3295 } 3296 3297 if (size) 3298 *size = pkg_size; 3299 3300 fclose(fh); 3301 3302 return buf; 3303 } 3304 3305 int 3306 close_ddp_package_file(uint8_t *buf) 3307 { 3308 if (buf) { 3309 free((void *)buf); 3310 return 0; 3311 } 3312 3313 return -1; 3314 } 3315