xref: /dpdk/app/test-pmd/config.c (revision a92a5a2cbbff66d7e38e3f630ada8d9b040441b5)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright 2013-2014 6WIND S.A.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <stdarg.h>
65 #include <errno.h>
66 #include <stdio.h>
67 #include <string.h>
68 #include <stdarg.h>
69 #include <stdint.h>
70 #include <inttypes.h>
71 
72 #include <sys/queue.h>
73 
74 #include <rte_common.h>
75 #include <rte_byteorder.h>
76 #include <rte_debug.h>
77 #include <rte_log.h>
78 #include <rte_memory.h>
79 #include <rte_memcpy.h>
80 #include <rte_memzone.h>
81 #include <rte_launch.h>
82 #include <rte_eal.h>
83 #include <rte_per_lcore.h>
84 #include <rte_lcore.h>
85 #include <rte_atomic.h>
86 #include <rte_branch_prediction.h>
87 #include <rte_mempool.h>
88 #include <rte_mbuf.h>
89 #include <rte_interrupts.h>
90 #include <rte_pci.h>
91 #include <rte_ether.h>
92 #include <rte_ethdev.h>
93 #include <rte_string_fns.h>
94 #include <rte_cycles.h>
95 #include <rte_flow.h>
96 #include <rte_errno.h>
97 #ifdef RTE_LIBRTE_IXGBE_PMD
98 #include <rte_pmd_ixgbe.h>
99 #endif
100 
101 #include "testpmd.h"
102 
103 static char *flowtype_to_str(uint16_t flow_type);
104 
105 static const struct {
106 	enum tx_pkt_split split;
107 	const char *name;
108 } tx_split_name[] = {
109 	{
110 		.split = TX_PKT_SPLIT_OFF,
111 		.name = "off",
112 	},
113 	{
114 		.split = TX_PKT_SPLIT_ON,
115 		.name = "on",
116 	},
117 	{
118 		.split = TX_PKT_SPLIT_RND,
119 		.name = "rand",
120 	},
121 };
122 
123 struct rss_type_info {
124 	char str[32];
125 	uint64_t rss_type;
126 };
127 
128 static const struct rss_type_info rss_type_table[] = {
129 	{ "ipv4", ETH_RSS_IPV4 },
130 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
131 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
132 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
133 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
134 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
135 	{ "ipv6", ETH_RSS_IPV6 },
136 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
137 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
138 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
139 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
140 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
141 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
142 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
143 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
144 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
145 	{ "port", ETH_RSS_PORT },
146 	{ "vxlan", ETH_RSS_VXLAN },
147 	{ "geneve", ETH_RSS_GENEVE },
148 	{ "nvgre", ETH_RSS_NVGRE },
149 
150 };
151 
152 static void
153 print_ethaddr(const char *name, struct ether_addr *eth_addr)
154 {
155 	char buf[ETHER_ADDR_FMT_SIZE];
156 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
157 	printf("%s%s", name, buf);
158 }
159 
160 void
161 nic_stats_display(portid_t port_id)
162 {
163 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
164 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
165 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
166 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
167 	uint64_t mpps_rx, mpps_tx;
168 	struct rte_eth_stats stats;
169 	struct rte_port *port = &ports[port_id];
170 	uint8_t i;
171 	portid_t pid;
172 
173 	static const char *nic_stats_border = "########################";
174 
175 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
176 		printf("Valid port range is [0");
177 		FOREACH_PORT(pid, ports)
178 			printf(", %d", pid);
179 		printf("]\n");
180 		return;
181 	}
182 	rte_eth_stats_get(port_id, &stats);
183 	printf("\n  %s NIC statistics for port %-2d %s\n",
184 	       nic_stats_border, port_id, nic_stats_border);
185 
186 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
187 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
188 		       "%-"PRIu64"\n",
189 		       stats.ipackets, stats.imissed, stats.ibytes);
190 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
191 		printf("  RX-nombuf:  %-10"PRIu64"\n",
192 		       stats.rx_nombuf);
193 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
194 		       "%-"PRIu64"\n",
195 		       stats.opackets, stats.oerrors, stats.obytes);
196 	}
197 	else {
198 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
199 		       "    RX-bytes: %10"PRIu64"\n",
200 		       stats.ipackets, stats.ierrors, stats.ibytes);
201 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
202 		printf("  RX-nombuf:               %10"PRIu64"\n",
203 		       stats.rx_nombuf);
204 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
205 		       "    TX-bytes: %10"PRIu64"\n",
206 		       stats.opackets, stats.oerrors, stats.obytes);
207 	}
208 
209 	if (port->rx_queue_stats_mapping_enabled) {
210 		printf("\n");
211 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
212 			printf("  Stats reg %2d RX-packets: %10"PRIu64
213 			       "    RX-errors: %10"PRIu64
214 			       "    RX-bytes: %10"PRIu64"\n",
215 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
216 		}
217 	}
218 	if (port->tx_queue_stats_mapping_enabled) {
219 		printf("\n");
220 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
221 			printf("  Stats reg %2d TX-packets: %10"PRIu64
222 			       "                             TX-bytes: %10"PRIu64"\n",
223 			       i, stats.q_opackets[i], stats.q_obytes[i]);
224 		}
225 	}
226 
227 	diff_cycles = prev_cycles[port_id];
228 	prev_cycles[port_id] = rte_rdtsc();
229 	if (diff_cycles > 0)
230 		diff_cycles = prev_cycles[port_id] - diff_cycles;
231 
232 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
233 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
234 	prev_pkts_rx[port_id] = stats.ipackets;
235 	prev_pkts_tx[port_id] = stats.opackets;
236 	mpps_rx = diff_cycles > 0 ?
237 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
238 	mpps_tx = diff_cycles > 0 ?
239 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
240 	printf("\n  Throughput (since last show)\n");
241 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
242 			mpps_rx, mpps_tx);
243 
244 	printf("  %s############################%s\n",
245 	       nic_stats_border, nic_stats_border);
246 }
247 
248 void
249 nic_stats_clear(portid_t port_id)
250 {
251 	portid_t pid;
252 
253 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
254 		printf("Valid port range is [0");
255 		FOREACH_PORT(pid, ports)
256 			printf(", %d", pid);
257 		printf("]\n");
258 		return;
259 	}
260 	rte_eth_stats_reset(port_id);
261 	printf("\n  NIC statistics for port %d cleared\n", port_id);
262 }
263 
264 void
265 nic_xstats_display(portid_t port_id)
266 {
267 	struct rte_eth_xstat *xstats;
268 	int cnt_xstats, idx_xstat;
269 	struct rte_eth_xstat_name *xstats_names;
270 
271 	printf("###### NIC extended statistics for port %-2d\n", port_id);
272 	if (!rte_eth_dev_is_valid_port(port_id)) {
273 		printf("Error: Invalid port number %i\n", port_id);
274 		return;
275 	}
276 
277 	/* Get count */
278 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
279 	if (cnt_xstats  < 0) {
280 		printf("Error: Cannot get count of xstats\n");
281 		return;
282 	}
283 
284 	/* Get id-name lookup table */
285 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
286 	if (xstats_names == NULL) {
287 		printf("Cannot allocate memory for xstats lookup\n");
288 		return;
289 	}
290 	if (cnt_xstats != rte_eth_xstats_get_names(
291 			port_id, xstats_names, cnt_xstats)) {
292 		printf("Error: Cannot get xstats lookup\n");
293 		free(xstats_names);
294 		return;
295 	}
296 
297 	/* Get stats themselves */
298 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
299 	if (xstats == NULL) {
300 		printf("Cannot allocate memory for xstats\n");
301 		free(xstats_names);
302 		return;
303 	}
304 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
305 		printf("Error: Unable to get xstats\n");
306 		free(xstats_names);
307 		free(xstats);
308 		return;
309 	}
310 
311 	/* Display xstats */
312 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
313 		printf("%s: %"PRIu64"\n",
314 			xstats_names[idx_xstat].name,
315 			xstats[idx_xstat].value);
316 	free(xstats_names);
317 	free(xstats);
318 }
319 
320 void
321 nic_xstats_clear(portid_t port_id)
322 {
323 	rte_eth_xstats_reset(port_id);
324 }
325 
326 void
327 nic_stats_mapping_display(portid_t port_id)
328 {
329 	struct rte_port *port = &ports[port_id];
330 	uint16_t i;
331 	portid_t pid;
332 
333 	static const char *nic_stats_mapping_border = "########################";
334 
335 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
336 		printf("Valid port range is [0");
337 		FOREACH_PORT(pid, ports)
338 			printf(", %d", pid);
339 		printf("]\n");
340 		return;
341 	}
342 
343 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
344 		printf("Port id %d - either does not support queue statistic mapping or"
345 		       " no queue statistic mapping set\n", port_id);
346 		return;
347 	}
348 
349 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
350 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
351 
352 	if (port->rx_queue_stats_mapping_enabled) {
353 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
354 			if (rx_queue_stats_mappings[i].port_id == port_id) {
355 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
356 				       rx_queue_stats_mappings[i].queue_id,
357 				       rx_queue_stats_mappings[i].stats_counter_id);
358 			}
359 		}
360 		printf("\n");
361 	}
362 
363 
364 	if (port->tx_queue_stats_mapping_enabled) {
365 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
366 			if (tx_queue_stats_mappings[i].port_id == port_id) {
367 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
368 				       tx_queue_stats_mappings[i].queue_id,
369 				       tx_queue_stats_mappings[i].stats_counter_id);
370 			}
371 		}
372 	}
373 
374 	printf("  %s####################################%s\n",
375 	       nic_stats_mapping_border, nic_stats_mapping_border);
376 }
377 
378 void
379 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
380 {
381 	struct rte_eth_rxq_info qinfo;
382 	int32_t rc;
383 	static const char *info_border = "*********************";
384 
385 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
386 	if (rc != 0) {
387 		printf("Failed to retrieve information for port: %hhu, "
388 			"RX queue: %hu\nerror desc: %s(%d)\n",
389 			port_id, queue_id, strerror(-rc), rc);
390 		return;
391 	}
392 
393 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
394 	       info_border, port_id, queue_id, info_border);
395 
396 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
397 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
398 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
399 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
400 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
401 	printf("\nRX drop packets: %s",
402 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
403 	printf("\nRX deferred start: %s",
404 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
405 	printf("\nRX scattered packets: %s",
406 		(qinfo.scattered_rx != 0) ? "on" : "off");
407 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
408 	printf("\n");
409 }
410 
411 void
412 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
413 {
414 	struct rte_eth_txq_info qinfo;
415 	int32_t rc;
416 	static const char *info_border = "*********************";
417 
418 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
419 	if (rc != 0) {
420 		printf("Failed to retrieve information for port: %hhu, "
421 			"TX queue: %hu\nerror desc: %s(%d)\n",
422 			port_id, queue_id, strerror(-rc), rc);
423 		return;
424 	}
425 
426 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
427 	       info_border, port_id, queue_id, info_border);
428 
429 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
430 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
431 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
432 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
433 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
434 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
435 	printf("\nTX deferred start: %s",
436 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
437 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
438 	printf("\n");
439 }
440 
441 void
442 port_infos_display(portid_t port_id)
443 {
444 	struct rte_port *port;
445 	struct ether_addr mac_addr;
446 	struct rte_eth_link link;
447 	struct rte_eth_dev_info dev_info;
448 	int vlan_offload;
449 	struct rte_mempool * mp;
450 	static const char *info_border = "*********************";
451 	portid_t pid;
452 
453 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
454 		printf("Valid port range is [0");
455 		FOREACH_PORT(pid, ports)
456 			printf(", %d", pid);
457 		printf("]\n");
458 		return;
459 	}
460 	port = &ports[port_id];
461 	rte_eth_link_get_nowait(port_id, &link);
462 	memset(&dev_info, 0, sizeof(dev_info));
463 	rte_eth_dev_info_get(port_id, &dev_info);
464 	printf("\n%s Infos for port %-2d %s\n",
465 	       info_border, port_id, info_border);
466 	rte_eth_macaddr_get(port_id, &mac_addr);
467 	print_ethaddr("MAC address: ", &mac_addr);
468 	printf("\nDriver name: %s", dev_info.driver_name);
469 	printf("\nConnect to socket: %u", port->socket_id);
470 
471 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
472 		mp = mbuf_pool_find(port_numa[port_id]);
473 		if (mp)
474 			printf("\nmemory allocation on the socket: %d",
475 							port_numa[port_id]);
476 	} else
477 		printf("\nmemory allocation on the socket: %u",port->socket_id);
478 
479 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
480 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
481 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
482 	       ("full-duplex") : ("half-duplex"));
483 	printf("Promiscuous mode: %s\n",
484 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
485 	printf("Allmulticast mode: %s\n",
486 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
487 	printf("Maximum number of MAC addresses: %u\n",
488 	       (unsigned int)(port->dev_info.max_mac_addrs));
489 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
490 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
491 
492 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
493 	if (vlan_offload >= 0){
494 		printf("VLAN offload: \n");
495 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
496 			printf("  strip on \n");
497 		else
498 			printf("  strip off \n");
499 
500 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
501 			printf("  filter on \n");
502 		else
503 			printf("  filter off \n");
504 
505 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
506 			printf("  qinq(extend) on \n");
507 		else
508 			printf("  qinq(extend) off \n");
509 	}
510 
511 	if (dev_info.hash_key_size > 0)
512 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
513 	if (dev_info.reta_size > 0)
514 		printf("Redirection table size: %u\n", dev_info.reta_size);
515 	if (!dev_info.flow_type_rss_offloads)
516 		printf("No flow type is supported.\n");
517 	else {
518 		uint16_t i;
519 		char *p;
520 
521 		printf("Supported flow types:\n");
522 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
523 								i++) {
524 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
525 				continue;
526 			p = flowtype_to_str(i);
527 			printf("  %s\n", (p ? p : "unknown"));
528 		}
529 	}
530 
531 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
532 	printf("Max possible number of RXDs per queue: %hu\n",
533 		dev_info.rx_desc_lim.nb_max);
534 	printf("Min possible number of RXDs per queue: %hu\n",
535 		dev_info.rx_desc_lim.nb_min);
536 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
537 
538 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
539 	printf("Max possible number of TXDs per queue: %hu\n",
540 		dev_info.tx_desc_lim.nb_max);
541 	printf("Min possible number of TXDs per queue: %hu\n",
542 		dev_info.tx_desc_lim.nb_min);
543 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
544 }
545 
546 void
547 port_offload_cap_display(portid_t port_id)
548 {
549 	struct rte_eth_dev *dev;
550 	struct rte_eth_dev_info dev_info;
551 	static const char *info_border = "************";
552 
553 	if (port_id_is_invalid(port_id, ENABLED_WARN))
554 		return;
555 
556 	dev = &rte_eth_devices[port_id];
557 	rte_eth_dev_info_get(port_id, &dev_info);
558 
559 	printf("\n%s Port %d supported offload features: %s\n",
560 		info_border, port_id, info_border);
561 
562 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
563 		printf("VLAN stripped:                 ");
564 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
565 			printf("on\n");
566 		else
567 			printf("off\n");
568 	}
569 
570 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
571 		printf("Double VLANs stripped:         ");
572 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
573 			printf("on\n");
574 		else
575 			printf("off\n");
576 	}
577 
578 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
579 		printf("RX IPv4 checksum:              ");
580 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
581 			printf("on\n");
582 		else
583 			printf("off\n");
584 	}
585 
586 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
587 		printf("RX UDP checksum:               ");
588 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
589 			printf("on\n");
590 		else
591 			printf("off\n");
592 	}
593 
594 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
595 		printf("RX TCP checksum:               ");
596 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
597 			printf("on\n");
598 		else
599 			printf("off\n");
600 	}
601 
602 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
603 		printf("RX Outer IPv4 checksum:        on");
604 
605 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
606 		printf("Large receive offload:         ");
607 		if (dev->data->dev_conf.rxmode.enable_lro)
608 			printf("on\n");
609 		else
610 			printf("off\n");
611 	}
612 
613 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
614 		printf("VLAN insert:                   ");
615 		if (ports[port_id].tx_ol_flags &
616 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
617 			printf("on\n");
618 		else
619 			printf("off\n");
620 	}
621 
622 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
623 		printf("Double VLANs insert:           ");
624 		if (ports[port_id].tx_ol_flags &
625 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
626 			printf("on\n");
627 		else
628 			printf("off\n");
629 	}
630 
631 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
632 		printf("TX IPv4 checksum:              ");
633 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
634 			printf("on\n");
635 		else
636 			printf("off\n");
637 	}
638 
639 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
640 		printf("TX UDP checksum:               ");
641 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
642 			printf("on\n");
643 		else
644 			printf("off\n");
645 	}
646 
647 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
648 		printf("TX TCP checksum:               ");
649 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
650 			printf("on\n");
651 		else
652 			printf("off\n");
653 	}
654 
655 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
656 		printf("TX SCTP checksum:              ");
657 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
658 			printf("on\n");
659 		else
660 			printf("off\n");
661 	}
662 
663 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
664 		printf("TX Outer IPv4 checksum:        ");
665 		if (ports[port_id].tx_ol_flags &
666 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
667 			printf("on\n");
668 		else
669 			printf("off\n");
670 	}
671 
672 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
673 		printf("TX TCP segmentation:           ");
674 		if (ports[port_id].tso_segsz != 0)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].tso_segsz != 0)
683 			printf("on\n");
684 		else
685 			printf("off\n");
686 	}
687 
688 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
689 		printf("TSO for VXLAN tunnel packet:   ");
690 		if (ports[port_id].tunnel_tso_segsz)
691 			printf("on\n");
692 		else
693 			printf("off\n");
694 	}
695 
696 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
697 		printf("TSO for GRE tunnel packet:     ");
698 		if (ports[port_id].tunnel_tso_segsz)
699 			printf("on\n");
700 		else
701 			printf("off\n");
702 	}
703 
704 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
705 		printf("TSO for IPIP tunnel packet:    ");
706 		if (ports[port_id].tunnel_tso_segsz)
707 			printf("on\n");
708 		else
709 			printf("off\n");
710 	}
711 
712 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
713 		printf("TSO for GENEVE tunnel packet:  ");
714 		if (ports[port_id].tunnel_tso_segsz)
715 			printf("on\n");
716 		else
717 			printf("off\n");
718 	}
719 
720 }
721 
722 int
723 port_id_is_invalid(portid_t port_id, enum print_warning warning)
724 {
725 	if (port_id == (portid_t)RTE_PORT_ALL)
726 		return 0;
727 
728 	if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled)
729 		return 0;
730 
731 	if (warning == ENABLED_WARN)
732 		printf("Invalid port %d\n", port_id);
733 
734 	return 1;
735 }
736 
737 static int
738 vlan_id_is_invalid(uint16_t vlan_id)
739 {
740 	if (vlan_id < 4096)
741 		return 0;
742 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
743 	return 1;
744 }
745 
746 static int
747 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
748 {
749 	uint64_t pci_len;
750 
751 	if (reg_off & 0x3) {
752 		printf("Port register offset 0x%X not aligned on a 4-byte "
753 		       "boundary\n",
754 		       (unsigned)reg_off);
755 		return 1;
756 	}
757 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
758 	if (reg_off >= pci_len) {
759 		printf("Port %d: register offset %u (0x%X) out of port PCI "
760 		       "resource (length=%"PRIu64")\n",
761 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
762 		return 1;
763 	}
764 	return 0;
765 }
766 
767 static int
768 reg_bit_pos_is_invalid(uint8_t bit_pos)
769 {
770 	if (bit_pos <= 31)
771 		return 0;
772 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
773 	return 1;
774 }
775 
776 #define display_port_and_reg_off(port_id, reg_off) \
777 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
778 
779 static inline void
780 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
781 {
782 	display_port_and_reg_off(port_id, (unsigned)reg_off);
783 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
784 }
785 
786 void
787 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
788 {
789 	uint32_t reg_v;
790 
791 
792 	if (port_id_is_invalid(port_id, ENABLED_WARN))
793 		return;
794 	if (port_reg_off_is_invalid(port_id, reg_off))
795 		return;
796 	if (reg_bit_pos_is_invalid(bit_x))
797 		return;
798 	reg_v = port_id_pci_reg_read(port_id, reg_off);
799 	display_port_and_reg_off(port_id, (unsigned)reg_off);
800 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
801 }
802 
803 void
804 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
805 			   uint8_t bit1_pos, uint8_t bit2_pos)
806 {
807 	uint32_t reg_v;
808 	uint8_t  l_bit;
809 	uint8_t  h_bit;
810 
811 	if (port_id_is_invalid(port_id, ENABLED_WARN))
812 		return;
813 	if (port_reg_off_is_invalid(port_id, reg_off))
814 		return;
815 	if (reg_bit_pos_is_invalid(bit1_pos))
816 		return;
817 	if (reg_bit_pos_is_invalid(bit2_pos))
818 		return;
819 	if (bit1_pos > bit2_pos)
820 		l_bit = bit2_pos, h_bit = bit1_pos;
821 	else
822 		l_bit = bit1_pos, h_bit = bit2_pos;
823 
824 	reg_v = port_id_pci_reg_read(port_id, reg_off);
825 	reg_v >>= l_bit;
826 	if (h_bit < 31)
827 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
828 	display_port_and_reg_off(port_id, (unsigned)reg_off);
829 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
830 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
831 }
832 
833 void
834 port_reg_display(portid_t port_id, uint32_t reg_off)
835 {
836 	uint32_t reg_v;
837 
838 	if (port_id_is_invalid(port_id, ENABLED_WARN))
839 		return;
840 	if (port_reg_off_is_invalid(port_id, reg_off))
841 		return;
842 	reg_v = port_id_pci_reg_read(port_id, reg_off);
843 	display_port_reg_value(port_id, reg_off, reg_v);
844 }
845 
846 void
847 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
848 		 uint8_t bit_v)
849 {
850 	uint32_t reg_v;
851 
852 	if (port_id_is_invalid(port_id, ENABLED_WARN))
853 		return;
854 	if (port_reg_off_is_invalid(port_id, reg_off))
855 		return;
856 	if (reg_bit_pos_is_invalid(bit_pos))
857 		return;
858 	if (bit_v > 1) {
859 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
860 		return;
861 	}
862 	reg_v = port_id_pci_reg_read(port_id, reg_off);
863 	if (bit_v == 0)
864 		reg_v &= ~(1 << bit_pos);
865 	else
866 		reg_v |= (1 << bit_pos);
867 	port_id_pci_reg_write(port_id, reg_off, reg_v);
868 	display_port_reg_value(port_id, reg_off, reg_v);
869 }
870 
871 void
872 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
873 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
874 {
875 	uint32_t max_v;
876 	uint32_t reg_v;
877 	uint8_t  l_bit;
878 	uint8_t  h_bit;
879 
880 	if (port_id_is_invalid(port_id, ENABLED_WARN))
881 		return;
882 	if (port_reg_off_is_invalid(port_id, reg_off))
883 		return;
884 	if (reg_bit_pos_is_invalid(bit1_pos))
885 		return;
886 	if (reg_bit_pos_is_invalid(bit2_pos))
887 		return;
888 	if (bit1_pos > bit2_pos)
889 		l_bit = bit2_pos, h_bit = bit1_pos;
890 	else
891 		l_bit = bit1_pos, h_bit = bit2_pos;
892 
893 	if ((h_bit - l_bit) < 31)
894 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
895 	else
896 		max_v = 0xFFFFFFFF;
897 
898 	if (value > max_v) {
899 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
900 				(unsigned)value, (unsigned)value,
901 				(unsigned)max_v, (unsigned)max_v);
902 		return;
903 	}
904 	reg_v = port_id_pci_reg_read(port_id, reg_off);
905 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
906 	reg_v |= (value << l_bit); /* Set changed bits */
907 	port_id_pci_reg_write(port_id, reg_off, reg_v);
908 	display_port_reg_value(port_id, reg_off, reg_v);
909 }
910 
911 void
912 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
913 {
914 	if (port_id_is_invalid(port_id, ENABLED_WARN))
915 		return;
916 	if (port_reg_off_is_invalid(port_id, reg_off))
917 		return;
918 	port_id_pci_reg_write(port_id, reg_off, reg_v);
919 	display_port_reg_value(port_id, reg_off, reg_v);
920 }
921 
922 void
923 port_mtu_set(portid_t port_id, uint16_t mtu)
924 {
925 	int diag;
926 
927 	if (port_id_is_invalid(port_id, ENABLED_WARN))
928 		return;
929 	diag = rte_eth_dev_set_mtu(port_id, mtu);
930 	if (diag == 0)
931 		return;
932 	printf("Set MTU failed. diag=%d\n", diag);
933 }
934 
935 /* Generic flow management functions. */
936 
937 /** Generate flow_item[] entry. */
938 #define MK_FLOW_ITEM(t, s) \
939 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
940 		.name = # t, \
941 		.size = s, \
942 	}
943 
944 /** Information about known flow pattern items. */
945 static const struct {
946 	const char *name;
947 	size_t size;
948 } flow_item[] = {
949 	MK_FLOW_ITEM(END, 0),
950 	MK_FLOW_ITEM(VOID, 0),
951 	MK_FLOW_ITEM(INVERT, 0),
952 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
953 	MK_FLOW_ITEM(PF, 0),
954 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
955 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
956 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
957 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
958 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
959 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
960 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
961 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
962 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
963 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
964 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
965 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
966 };
967 
968 /** Compute storage space needed by item specification. */
969 static void
970 flow_item_spec_size(const struct rte_flow_item *item,
971 		    size_t *size, size_t *pad)
972 {
973 	if (!item->spec)
974 		goto empty;
975 	switch (item->type) {
976 		union {
977 			const struct rte_flow_item_raw *raw;
978 		} spec;
979 
980 	case RTE_FLOW_ITEM_TYPE_RAW:
981 		spec.raw = item->spec;
982 		*size = offsetof(struct rte_flow_item_raw, pattern) +
983 			spec.raw->length * sizeof(*spec.raw->pattern);
984 		break;
985 	default:
986 empty:
987 		*size = 0;
988 		break;
989 	}
990 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
991 }
992 
993 /** Generate flow_action[] entry. */
994 #define MK_FLOW_ACTION(t, s) \
995 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
996 		.name = # t, \
997 		.size = s, \
998 	}
999 
1000 /** Information about known flow actions. */
1001 static const struct {
1002 	const char *name;
1003 	size_t size;
1004 } flow_action[] = {
1005 	MK_FLOW_ACTION(END, 0),
1006 	MK_FLOW_ACTION(VOID, 0),
1007 	MK_FLOW_ACTION(PASSTHRU, 0),
1008 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1009 	MK_FLOW_ACTION(FLAG, 0),
1010 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1011 	MK_FLOW_ACTION(DROP, 0),
1012 	MK_FLOW_ACTION(COUNT, 0),
1013 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1014 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1015 	MK_FLOW_ACTION(PF, 0),
1016 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1017 };
1018 
1019 /** Compute storage space needed by action configuration. */
1020 static void
1021 flow_action_conf_size(const struct rte_flow_action *action,
1022 		      size_t *size, size_t *pad)
1023 {
1024 	if (!action->conf)
1025 		goto empty;
1026 	switch (action->type) {
1027 		union {
1028 			const struct rte_flow_action_rss *rss;
1029 		} conf;
1030 
1031 	case RTE_FLOW_ACTION_TYPE_RSS:
1032 		conf.rss = action->conf;
1033 		*size = offsetof(struct rte_flow_action_rss, queue) +
1034 			conf.rss->num * sizeof(*conf.rss->queue);
1035 		break;
1036 	default:
1037 empty:
1038 		*size = 0;
1039 		break;
1040 	}
1041 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1042 }
1043 
1044 /** Generate a port_flow entry from attributes/pattern/actions. */
1045 static struct port_flow *
1046 port_flow_new(const struct rte_flow_attr *attr,
1047 	      const struct rte_flow_item *pattern,
1048 	      const struct rte_flow_action *actions)
1049 {
1050 	const struct rte_flow_item *item;
1051 	const struct rte_flow_action *action;
1052 	struct port_flow *pf = NULL;
1053 	size_t tmp;
1054 	size_t pad;
1055 	size_t off1 = 0;
1056 	size_t off2 = 0;
1057 	int err = ENOTSUP;
1058 
1059 store:
1060 	item = pattern;
1061 	if (pf)
1062 		pf->pattern = (void *)&pf->data[off1];
1063 	do {
1064 		struct rte_flow_item *dst = NULL;
1065 
1066 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1067 		    !flow_item[item->type].name)
1068 			goto notsup;
1069 		if (pf)
1070 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1071 		off1 += sizeof(*item);
1072 		flow_item_spec_size(item, &tmp, &pad);
1073 		if (item->spec) {
1074 			if (pf)
1075 				dst->spec = memcpy(pf->data + off2,
1076 						   item->spec, tmp);
1077 			off2 += tmp + pad;
1078 		}
1079 		if (item->last) {
1080 			if (pf)
1081 				dst->last = memcpy(pf->data + off2,
1082 						   item->last, tmp);
1083 			off2 += tmp + pad;
1084 		}
1085 		if (item->mask) {
1086 			if (pf)
1087 				dst->mask = memcpy(pf->data + off2,
1088 						   item->mask, tmp);
1089 			off2 += tmp + pad;
1090 		}
1091 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1092 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1093 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1094 	action = actions;
1095 	if (pf)
1096 		pf->actions = (void *)&pf->data[off1];
1097 	do {
1098 		struct rte_flow_action *dst = NULL;
1099 
1100 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1101 		    !flow_action[action->type].name)
1102 			goto notsup;
1103 		if (pf)
1104 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1105 		off1 += sizeof(*action);
1106 		flow_action_conf_size(action, &tmp, &pad);
1107 		if (action->conf) {
1108 			if (pf)
1109 				dst->conf = memcpy(pf->data + off2,
1110 						   action->conf, tmp);
1111 			off2 += tmp + pad;
1112 		}
1113 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1114 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1115 	if (pf != NULL)
1116 		return pf;
1117 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1118 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1119 	pf = calloc(1, tmp + off1 + off2);
1120 	if (pf == NULL)
1121 		err = errno;
1122 	else {
1123 		*pf = (const struct port_flow){
1124 			.size = tmp + off1 + off2,
1125 			.attr = *attr,
1126 		};
1127 		tmp -= offsetof(struct port_flow, data);
1128 		off2 = tmp + off1;
1129 		off1 = tmp;
1130 		goto store;
1131 	}
1132 notsup:
1133 	rte_errno = err;
1134 	return NULL;
1135 }
1136 
1137 /** Print a message out of a flow error. */
1138 static int
1139 port_flow_complain(struct rte_flow_error *error)
1140 {
1141 	static const char *const errstrlist[] = {
1142 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1143 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1144 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1145 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1146 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1147 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1148 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1149 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1150 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1151 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1152 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1153 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1154 	};
1155 	const char *errstr;
1156 	char buf[32];
1157 	int err = rte_errno;
1158 
1159 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1160 	    !errstrlist[error->type])
1161 		errstr = "unknown type";
1162 	else
1163 		errstr = errstrlist[error->type];
1164 	printf("Caught error type %d (%s): %s%s\n",
1165 	       error->type, errstr,
1166 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1167 					error->cause), buf) : "",
1168 	       error->message ? error->message : "(no stated reason)");
1169 	return -err;
1170 }
1171 
1172 /** Validate flow rule. */
1173 int
1174 port_flow_validate(portid_t port_id,
1175 		   const struct rte_flow_attr *attr,
1176 		   const struct rte_flow_item *pattern,
1177 		   const struct rte_flow_action *actions)
1178 {
1179 	struct rte_flow_error error;
1180 
1181 	/* Poisoning to make sure PMDs update it in case of error. */
1182 	memset(&error, 0x11, sizeof(error));
1183 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1184 		return port_flow_complain(&error);
1185 	printf("Flow rule validated\n");
1186 	return 0;
1187 }
1188 
1189 /** Create flow rule. */
1190 int
1191 port_flow_create(portid_t port_id,
1192 		 const struct rte_flow_attr *attr,
1193 		 const struct rte_flow_item *pattern,
1194 		 const struct rte_flow_action *actions)
1195 {
1196 	struct rte_flow *flow;
1197 	struct rte_port *port;
1198 	struct port_flow *pf;
1199 	uint32_t id;
1200 	struct rte_flow_error error;
1201 
1202 	/* Poisoning to make sure PMDs update it in case of error. */
1203 	memset(&error, 0x22, sizeof(error));
1204 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1205 	if (!flow)
1206 		return port_flow_complain(&error);
1207 	port = &ports[port_id];
1208 	if (port->flow_list) {
1209 		if (port->flow_list->id == UINT32_MAX) {
1210 			printf("Highest rule ID is already assigned, delete"
1211 			       " it first");
1212 			rte_flow_destroy(port_id, flow, NULL);
1213 			return -ENOMEM;
1214 		}
1215 		id = port->flow_list->id + 1;
1216 	} else
1217 		id = 0;
1218 	pf = port_flow_new(attr, pattern, actions);
1219 	if (!pf) {
1220 		int err = rte_errno;
1221 
1222 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1223 		rte_flow_destroy(port_id, flow, NULL);
1224 		return -err;
1225 	}
1226 	pf->next = port->flow_list;
1227 	pf->id = id;
1228 	pf->flow = flow;
1229 	port->flow_list = pf;
1230 	printf("Flow rule #%u created\n", pf->id);
1231 	return 0;
1232 }
1233 
1234 /** Destroy a number of flow rules. */
1235 int
1236 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1237 {
1238 	struct rte_port *port;
1239 	struct port_flow **tmp;
1240 	uint32_t c = 0;
1241 	int ret = 0;
1242 
1243 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1244 	    port_id == (portid_t)RTE_PORT_ALL)
1245 		return -EINVAL;
1246 	port = &ports[port_id];
1247 	tmp = &port->flow_list;
1248 	while (*tmp) {
1249 		uint32_t i;
1250 
1251 		for (i = 0; i != n; ++i) {
1252 			struct rte_flow_error error;
1253 			struct port_flow *pf = *tmp;
1254 
1255 			if (rule[i] != pf->id)
1256 				continue;
1257 			/*
1258 			 * Poisoning to make sure PMDs update it in case
1259 			 * of error.
1260 			 */
1261 			memset(&error, 0x33, sizeof(error));
1262 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1263 				ret = port_flow_complain(&error);
1264 				continue;
1265 			}
1266 			printf("Flow rule #%u destroyed\n", pf->id);
1267 			*tmp = pf->next;
1268 			free(pf);
1269 			break;
1270 		}
1271 		if (i == n)
1272 			tmp = &(*tmp)->next;
1273 		++c;
1274 	}
1275 	return ret;
1276 }
1277 
1278 /** Remove all flow rules. */
1279 int
1280 port_flow_flush(portid_t port_id)
1281 {
1282 	struct rte_flow_error error;
1283 	struct rte_port *port;
1284 	int ret = 0;
1285 
1286 	/* Poisoning to make sure PMDs update it in case of error. */
1287 	memset(&error, 0x44, sizeof(error));
1288 	if (rte_flow_flush(port_id, &error)) {
1289 		ret = port_flow_complain(&error);
1290 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1291 		    port_id == (portid_t)RTE_PORT_ALL)
1292 			return ret;
1293 	}
1294 	port = &ports[port_id];
1295 	while (port->flow_list) {
1296 		struct port_flow *pf = port->flow_list->next;
1297 
1298 		free(port->flow_list);
1299 		port->flow_list = pf;
1300 	}
1301 	return ret;
1302 }
1303 
1304 /** Query a flow rule. */
1305 int
1306 port_flow_query(portid_t port_id, uint32_t rule,
1307 		enum rte_flow_action_type action)
1308 {
1309 	struct rte_flow_error error;
1310 	struct rte_port *port;
1311 	struct port_flow *pf;
1312 	const char *name;
1313 	union {
1314 		struct rte_flow_query_count count;
1315 	} query;
1316 
1317 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1318 	    port_id == (portid_t)RTE_PORT_ALL)
1319 		return -EINVAL;
1320 	port = &ports[port_id];
1321 	for (pf = port->flow_list; pf; pf = pf->next)
1322 		if (pf->id == rule)
1323 			break;
1324 	if (!pf) {
1325 		printf("Flow rule #%u not found\n", rule);
1326 		return -ENOENT;
1327 	}
1328 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1329 	    !flow_action[action].name)
1330 		name = "unknown";
1331 	else
1332 		name = flow_action[action].name;
1333 	switch (action) {
1334 	case RTE_FLOW_ACTION_TYPE_COUNT:
1335 		break;
1336 	default:
1337 		printf("Cannot query action type %d (%s)\n", action, name);
1338 		return -ENOTSUP;
1339 	}
1340 	/* Poisoning to make sure PMDs update it in case of error. */
1341 	memset(&error, 0x55, sizeof(error));
1342 	memset(&query, 0, sizeof(query));
1343 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1344 		return port_flow_complain(&error);
1345 	switch (action) {
1346 	case RTE_FLOW_ACTION_TYPE_COUNT:
1347 		printf("%s:\n"
1348 		       " hits_set: %u\n"
1349 		       " bytes_set: %u\n"
1350 		       " hits: %" PRIu64 "\n"
1351 		       " bytes: %" PRIu64 "\n",
1352 		       name,
1353 		       query.count.hits_set,
1354 		       query.count.bytes_set,
1355 		       query.count.hits,
1356 		       query.count.bytes);
1357 		break;
1358 	default:
1359 		printf("Cannot display result for action type %d (%s)\n",
1360 		       action, name);
1361 		break;
1362 	}
1363 	return 0;
1364 }
1365 
1366 /** List flow rules. */
1367 void
1368 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1369 {
1370 	struct rte_port *port;
1371 	struct port_flow *pf;
1372 	struct port_flow *list = NULL;
1373 	uint32_t i;
1374 
1375 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1376 	    port_id == (portid_t)RTE_PORT_ALL)
1377 		return;
1378 	port = &ports[port_id];
1379 	if (!port->flow_list)
1380 		return;
1381 	/* Sort flows by group, priority and ID. */
1382 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1383 		struct port_flow **tmp;
1384 
1385 		if (n) {
1386 			/* Filter out unwanted groups. */
1387 			for (i = 0; i != n; ++i)
1388 				if (pf->attr.group == group[i])
1389 					break;
1390 			if (i == n)
1391 				continue;
1392 		}
1393 		tmp = &list;
1394 		while (*tmp &&
1395 		       (pf->attr.group > (*tmp)->attr.group ||
1396 			(pf->attr.group == (*tmp)->attr.group &&
1397 			 pf->attr.priority > (*tmp)->attr.priority) ||
1398 			(pf->attr.group == (*tmp)->attr.group &&
1399 			 pf->attr.priority == (*tmp)->attr.priority &&
1400 			 pf->id > (*tmp)->id)))
1401 			tmp = &(*tmp)->tmp;
1402 		pf->tmp = *tmp;
1403 		*tmp = pf;
1404 	}
1405 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1406 	for (pf = list; pf != NULL; pf = pf->tmp) {
1407 		const struct rte_flow_item *item = pf->pattern;
1408 		const struct rte_flow_action *action = pf->actions;
1409 
1410 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1411 		       pf->id,
1412 		       pf->attr.group,
1413 		       pf->attr.priority,
1414 		       pf->attr.ingress ? 'i' : '-',
1415 		       pf->attr.egress ? 'e' : '-');
1416 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1417 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1418 				printf("%s ", flow_item[item->type].name);
1419 			++item;
1420 		}
1421 		printf("=>");
1422 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1423 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1424 				printf(" %s", flow_action[action->type].name);
1425 			++action;
1426 		}
1427 		printf("\n");
1428 	}
1429 }
1430 
1431 /*
1432  * RX/TX ring descriptors display functions.
1433  */
1434 int
1435 rx_queue_id_is_invalid(queueid_t rxq_id)
1436 {
1437 	if (rxq_id < nb_rxq)
1438 		return 0;
1439 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1440 	return 1;
1441 }
1442 
1443 int
1444 tx_queue_id_is_invalid(queueid_t txq_id)
1445 {
1446 	if (txq_id < nb_txq)
1447 		return 0;
1448 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1449 	return 1;
1450 }
1451 
1452 static int
1453 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1454 {
1455 	if (rxdesc_id < nb_rxd)
1456 		return 0;
1457 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1458 	       rxdesc_id, nb_rxd);
1459 	return 1;
1460 }
1461 
1462 static int
1463 tx_desc_id_is_invalid(uint16_t txdesc_id)
1464 {
1465 	if (txdesc_id < nb_txd)
1466 		return 0;
1467 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1468 	       txdesc_id, nb_txd);
1469 	return 1;
1470 }
1471 
1472 static const struct rte_memzone *
1473 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1474 {
1475 	char mz_name[RTE_MEMZONE_NAMESIZE];
1476 	const struct rte_memzone *mz;
1477 
1478 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1479 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1480 	mz = rte_memzone_lookup(mz_name);
1481 	if (mz == NULL)
1482 		printf("%s ring memory zoneof (port %d, queue %d) not"
1483 		       "found (zone name = %s\n",
1484 		       ring_name, port_id, q_id, mz_name);
1485 	return mz;
1486 }
1487 
1488 union igb_ring_dword {
1489 	uint64_t dword;
1490 	struct {
1491 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1492 		uint32_t lo;
1493 		uint32_t hi;
1494 #else
1495 		uint32_t hi;
1496 		uint32_t lo;
1497 #endif
1498 	} words;
1499 };
1500 
1501 struct igb_ring_desc_32_bytes {
1502 	union igb_ring_dword lo_dword;
1503 	union igb_ring_dword hi_dword;
1504 	union igb_ring_dword resv1;
1505 	union igb_ring_dword resv2;
1506 };
1507 
1508 struct igb_ring_desc_16_bytes {
1509 	union igb_ring_dword lo_dword;
1510 	union igb_ring_dword hi_dword;
1511 };
1512 
1513 static void
1514 ring_rxd_display_dword(union igb_ring_dword dword)
1515 {
1516 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1517 					(unsigned)dword.words.hi);
1518 }
1519 
1520 static void
1521 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1522 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1523 			   uint8_t port_id,
1524 #else
1525 			   __rte_unused uint8_t port_id,
1526 #endif
1527 			   uint16_t desc_id)
1528 {
1529 	struct igb_ring_desc_16_bytes *ring =
1530 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1531 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1532 	struct rte_eth_dev_info dev_info;
1533 
1534 	memset(&dev_info, 0, sizeof(dev_info));
1535 	rte_eth_dev_info_get(port_id, &dev_info);
1536 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1537 		/* 32 bytes RX descriptor, i40e only */
1538 		struct igb_ring_desc_32_bytes *ring =
1539 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1540 		ring[desc_id].lo_dword.dword =
1541 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1542 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1543 		ring[desc_id].hi_dword.dword =
1544 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1545 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1546 		ring[desc_id].resv1.dword =
1547 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1548 		ring_rxd_display_dword(ring[desc_id].resv1);
1549 		ring[desc_id].resv2.dword =
1550 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1551 		ring_rxd_display_dword(ring[desc_id].resv2);
1552 
1553 		return;
1554 	}
1555 #endif
1556 	/* 16 bytes RX descriptor */
1557 	ring[desc_id].lo_dword.dword =
1558 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1559 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1560 	ring[desc_id].hi_dword.dword =
1561 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1562 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1563 }
1564 
1565 static void
1566 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1567 {
1568 	struct igb_ring_desc_16_bytes *ring;
1569 	struct igb_ring_desc_16_bytes txd;
1570 
1571 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1572 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1573 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1574 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1575 			(unsigned)txd.lo_dword.words.lo,
1576 			(unsigned)txd.lo_dword.words.hi,
1577 			(unsigned)txd.hi_dword.words.lo,
1578 			(unsigned)txd.hi_dword.words.hi);
1579 }
1580 
1581 void
1582 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1583 {
1584 	const struct rte_memzone *rx_mz;
1585 
1586 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1587 		return;
1588 	if (rx_queue_id_is_invalid(rxq_id))
1589 		return;
1590 	if (rx_desc_id_is_invalid(rxd_id))
1591 		return;
1592 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1593 	if (rx_mz == NULL)
1594 		return;
1595 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1596 }
1597 
1598 void
1599 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1600 {
1601 	const struct rte_memzone *tx_mz;
1602 
1603 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1604 		return;
1605 	if (tx_queue_id_is_invalid(txq_id))
1606 		return;
1607 	if (tx_desc_id_is_invalid(txd_id))
1608 		return;
1609 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1610 	if (tx_mz == NULL)
1611 		return;
1612 	ring_tx_descriptor_display(tx_mz, txd_id);
1613 }
1614 
1615 void
1616 fwd_lcores_config_display(void)
1617 {
1618 	lcoreid_t lc_id;
1619 
1620 	printf("List of forwarding lcores:");
1621 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1622 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1623 	printf("\n");
1624 }
1625 void
1626 rxtx_config_display(void)
1627 {
1628 	printf("  %s packet forwarding%s - CRC stripping %s - "
1629 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1630 	       retry_enabled == 0 ? "" : " with retry",
1631 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1632 	       nb_pkt_per_burst);
1633 
1634 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1635 		printf("  packet len=%u - nb packet segments=%d\n",
1636 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1637 
1638 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1639 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1640 
1641 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1642 	       nb_fwd_lcores, nb_fwd_ports);
1643 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1644 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1645 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1646 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1647 	       rx_conf->rx_thresh.wthresh);
1648 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1649 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1650 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1651 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1652 	       tx_conf->tx_thresh.wthresh);
1653 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1654 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1655 }
1656 
1657 void
1658 port_rss_reta_info(portid_t port_id,
1659 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1660 		   uint16_t nb_entries)
1661 {
1662 	uint16_t i, idx, shift;
1663 	int ret;
1664 
1665 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1666 		return;
1667 
1668 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1669 	if (ret != 0) {
1670 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1671 		return;
1672 	}
1673 
1674 	for (i = 0; i < nb_entries; i++) {
1675 		idx = i / RTE_RETA_GROUP_SIZE;
1676 		shift = i % RTE_RETA_GROUP_SIZE;
1677 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1678 			continue;
1679 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1680 					i, reta_conf[idx].reta[shift]);
1681 	}
1682 }
1683 
1684 /*
1685  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1686  * key of the port.
1687  */
1688 void
1689 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1690 {
1691 	struct rte_eth_rss_conf rss_conf;
1692 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1693 	uint64_t rss_hf;
1694 	uint8_t i;
1695 	int diag;
1696 	struct rte_eth_dev_info dev_info;
1697 	uint8_t hash_key_size;
1698 
1699 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1700 		return;
1701 
1702 	memset(&dev_info, 0, sizeof(dev_info));
1703 	rte_eth_dev_info_get(port_id, &dev_info);
1704 	if (dev_info.hash_key_size > 0 &&
1705 			dev_info.hash_key_size <= sizeof(rss_key))
1706 		hash_key_size = dev_info.hash_key_size;
1707 	else {
1708 		printf("dev_info did not provide a valid hash key size\n");
1709 		return;
1710 	}
1711 
1712 	rss_conf.rss_hf = 0;
1713 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1714 		if (!strcmp(rss_info, rss_type_table[i].str))
1715 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1716 	}
1717 
1718 	/* Get RSS hash key if asked to display it */
1719 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1720 	rss_conf.rss_key_len = hash_key_size;
1721 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1722 	if (diag != 0) {
1723 		switch (diag) {
1724 		case -ENODEV:
1725 			printf("port index %d invalid\n", port_id);
1726 			break;
1727 		case -ENOTSUP:
1728 			printf("operation not supported by device\n");
1729 			break;
1730 		default:
1731 			printf("operation failed - diag=%d\n", diag);
1732 			break;
1733 		}
1734 		return;
1735 	}
1736 	rss_hf = rss_conf.rss_hf;
1737 	if (rss_hf == 0) {
1738 		printf("RSS disabled\n");
1739 		return;
1740 	}
1741 	printf("RSS functions:\n ");
1742 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1743 		if (rss_hf & rss_type_table[i].rss_type)
1744 			printf("%s ", rss_type_table[i].str);
1745 	}
1746 	printf("\n");
1747 	if (!show_rss_key)
1748 		return;
1749 	printf("RSS key:\n");
1750 	for (i = 0; i < hash_key_size; i++)
1751 		printf("%02X", rss_key[i]);
1752 	printf("\n");
1753 }
1754 
1755 void
1756 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1757 			 uint hash_key_len)
1758 {
1759 	struct rte_eth_rss_conf rss_conf;
1760 	int diag;
1761 	unsigned int i;
1762 
1763 	rss_conf.rss_key = NULL;
1764 	rss_conf.rss_key_len = hash_key_len;
1765 	rss_conf.rss_hf = 0;
1766 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1767 		if (!strcmp(rss_type_table[i].str, rss_type))
1768 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1769 	}
1770 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1771 	if (diag == 0) {
1772 		rss_conf.rss_key = hash_key;
1773 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1774 	}
1775 	if (diag == 0)
1776 		return;
1777 
1778 	switch (diag) {
1779 	case -ENODEV:
1780 		printf("port index %d invalid\n", port_id);
1781 		break;
1782 	case -ENOTSUP:
1783 		printf("operation not supported by device\n");
1784 		break;
1785 	default:
1786 		printf("operation failed - diag=%d\n", diag);
1787 		break;
1788 	}
1789 }
1790 
1791 /*
1792  * Setup forwarding configuration for each logical core.
1793  */
1794 static void
1795 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1796 {
1797 	streamid_t nb_fs_per_lcore;
1798 	streamid_t nb_fs;
1799 	streamid_t sm_id;
1800 	lcoreid_t  nb_extra;
1801 	lcoreid_t  nb_fc;
1802 	lcoreid_t  nb_lc;
1803 	lcoreid_t  lc_id;
1804 
1805 	nb_fs = cfg->nb_fwd_streams;
1806 	nb_fc = cfg->nb_fwd_lcores;
1807 	if (nb_fs <= nb_fc) {
1808 		nb_fs_per_lcore = 1;
1809 		nb_extra = 0;
1810 	} else {
1811 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1812 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1813 	}
1814 
1815 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1816 	sm_id = 0;
1817 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1818 		fwd_lcores[lc_id]->stream_idx = sm_id;
1819 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1820 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1821 	}
1822 
1823 	/*
1824 	 * Assign extra remaining streams, if any.
1825 	 */
1826 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1827 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1828 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1829 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1830 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1831 	}
1832 }
1833 
1834 static void
1835 simple_fwd_config_setup(void)
1836 {
1837 	portid_t i;
1838 	portid_t j;
1839 	portid_t inc = 2;
1840 
1841 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1842 	    port_topology == PORT_TOPOLOGY_LOOP) {
1843 		inc = 1;
1844 	} else if (nb_fwd_ports % 2) {
1845 		printf("\nWarning! Cannot handle an odd number of ports "
1846 		       "with the current port topology. Configuration "
1847 		       "must be changed to have an even number of ports, "
1848 		       "or relaunch application with "
1849 		       "--port-topology=chained\n\n");
1850 	}
1851 
1852 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1853 	cur_fwd_config.nb_fwd_streams =
1854 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1855 
1856 	/* reinitialize forwarding streams */
1857 	init_fwd_streams();
1858 
1859 	/*
1860 	 * In the simple forwarding test, the number of forwarding cores
1861 	 * must be lower or equal to the number of forwarding ports.
1862 	 */
1863 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1864 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1865 		cur_fwd_config.nb_fwd_lcores =
1866 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1867 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1868 
1869 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1870 		if (port_topology != PORT_TOPOLOGY_LOOP)
1871 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1872 		else
1873 			j = i;
1874 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1875 		fwd_streams[i]->rx_queue  = 0;
1876 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1877 		fwd_streams[i]->tx_queue  = 0;
1878 		fwd_streams[i]->peer_addr = j;
1879 		fwd_streams[i]->retry_enabled = retry_enabled;
1880 
1881 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1882 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1883 			fwd_streams[j]->rx_queue  = 0;
1884 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1885 			fwd_streams[j]->tx_queue  = 0;
1886 			fwd_streams[j]->peer_addr = i;
1887 			fwd_streams[j]->retry_enabled = retry_enabled;
1888 		}
1889 	}
1890 }
1891 
1892 /**
1893  * For the RSS forwarding test all streams distributed over lcores. Each stream
1894  * being composed of a RX queue to poll on a RX port for input messages,
1895  * associated with a TX queue of a TX port where to send forwarded packets.
1896  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1897  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1898  * following rules:
1899  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1900  *    - TxQl = RxQj
1901  */
1902 static void
1903 rss_fwd_config_setup(void)
1904 {
1905 	portid_t   rxp;
1906 	portid_t   txp;
1907 	queueid_t  rxq;
1908 	queueid_t  nb_q;
1909 	streamid_t  sm_id;
1910 
1911 	nb_q = nb_rxq;
1912 	if (nb_q > nb_txq)
1913 		nb_q = nb_txq;
1914 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1915 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1916 	cur_fwd_config.nb_fwd_streams =
1917 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1918 
1919 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1920 		cur_fwd_config.nb_fwd_lcores =
1921 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1922 
1923 	/* reinitialize forwarding streams */
1924 	init_fwd_streams();
1925 
1926 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1927 	rxp = 0; rxq = 0;
1928 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1929 		struct fwd_stream *fs;
1930 
1931 		fs = fwd_streams[sm_id];
1932 
1933 		if ((rxp & 0x1) == 0)
1934 			txp = (portid_t) (rxp + 1);
1935 		else
1936 			txp = (portid_t) (rxp - 1);
1937 		/*
1938 		 * if we are in loopback, simply send stuff out through the
1939 		 * ingress port
1940 		 */
1941 		if (port_topology == PORT_TOPOLOGY_LOOP)
1942 			txp = rxp;
1943 
1944 		fs->rx_port = fwd_ports_ids[rxp];
1945 		fs->rx_queue = rxq;
1946 		fs->tx_port = fwd_ports_ids[txp];
1947 		fs->tx_queue = rxq;
1948 		fs->peer_addr = fs->tx_port;
1949 		fs->retry_enabled = retry_enabled;
1950 		rxq = (queueid_t) (rxq + 1);
1951 		if (rxq < nb_q)
1952 			continue;
1953 		/*
1954 		 * rxq == nb_q
1955 		 * Restart from RX queue 0 on next RX port
1956 		 */
1957 		rxq = 0;
1958 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1959 			rxp = (portid_t)
1960 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1961 		else
1962 			rxp = (portid_t) (rxp + 1);
1963 	}
1964 }
1965 
1966 /**
1967  * For the DCB forwarding test, each core is assigned on each traffic class.
1968  *
1969  * Each core is assigned a multi-stream, each stream being composed of
1970  * a RX queue to poll on a RX port for input messages, associated with
1971  * a TX queue of a TX port where to send forwarded packets. All RX and
1972  * TX queues are mapping to the same traffic class.
1973  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1974  * the same core
1975  */
1976 static void
1977 dcb_fwd_config_setup(void)
1978 {
1979 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1980 	portid_t txp, rxp = 0;
1981 	queueid_t txq, rxq = 0;
1982 	lcoreid_t  lc_id;
1983 	uint16_t nb_rx_queue, nb_tx_queue;
1984 	uint16_t i, j, k, sm_id = 0;
1985 	uint8_t tc = 0;
1986 
1987 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1988 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1989 	cur_fwd_config.nb_fwd_streams =
1990 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1991 
1992 	/* reinitialize forwarding streams */
1993 	init_fwd_streams();
1994 	sm_id = 0;
1995 	txp = 1;
1996 	/* get the dcb info on the first RX and TX ports */
1997 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
1998 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
1999 
2000 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2001 		fwd_lcores[lc_id]->stream_nb = 0;
2002 		fwd_lcores[lc_id]->stream_idx = sm_id;
2003 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2004 			/* if the nb_queue is zero, means this tc is
2005 			 * not enabled on the POOL
2006 			 */
2007 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2008 				break;
2009 			k = fwd_lcores[lc_id]->stream_nb +
2010 				fwd_lcores[lc_id]->stream_idx;
2011 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2012 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2013 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2014 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2015 			for (j = 0; j < nb_rx_queue; j++) {
2016 				struct fwd_stream *fs;
2017 
2018 				fs = fwd_streams[k + j];
2019 				fs->rx_port = fwd_ports_ids[rxp];
2020 				fs->rx_queue = rxq + j;
2021 				fs->tx_port = fwd_ports_ids[txp];
2022 				fs->tx_queue = txq + j % nb_tx_queue;
2023 				fs->peer_addr = fs->tx_port;
2024 				fs->retry_enabled = retry_enabled;
2025 			}
2026 			fwd_lcores[lc_id]->stream_nb +=
2027 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2028 		}
2029 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2030 
2031 		tc++;
2032 		if (tc < rxp_dcb_info.nb_tcs)
2033 			continue;
2034 		/* Restart from TC 0 on next RX port */
2035 		tc = 0;
2036 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2037 			rxp = (portid_t)
2038 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2039 		else
2040 			rxp++;
2041 		if (rxp >= nb_fwd_ports)
2042 			return;
2043 		/* get the dcb information on next RX and TX ports */
2044 		if ((rxp & 0x1) == 0)
2045 			txp = (portid_t) (rxp + 1);
2046 		else
2047 			txp = (portid_t) (rxp - 1);
2048 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2049 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2050 	}
2051 }
2052 
2053 static void
2054 icmp_echo_config_setup(void)
2055 {
2056 	portid_t  rxp;
2057 	queueid_t rxq;
2058 	lcoreid_t lc_id;
2059 	uint16_t  sm_id;
2060 
2061 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2062 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2063 			(nb_txq * nb_fwd_ports);
2064 	else
2065 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2066 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2067 	cur_fwd_config.nb_fwd_streams =
2068 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2069 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2070 		cur_fwd_config.nb_fwd_lcores =
2071 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2072 	if (verbose_level > 0) {
2073 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2074 		       __FUNCTION__,
2075 		       cur_fwd_config.nb_fwd_lcores,
2076 		       cur_fwd_config.nb_fwd_ports,
2077 		       cur_fwd_config.nb_fwd_streams);
2078 	}
2079 
2080 	/* reinitialize forwarding streams */
2081 	init_fwd_streams();
2082 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2083 	rxp = 0; rxq = 0;
2084 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2085 		if (verbose_level > 0)
2086 			printf("  core=%d: \n", lc_id);
2087 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2088 			struct fwd_stream *fs;
2089 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2090 			fs->rx_port = fwd_ports_ids[rxp];
2091 			fs->rx_queue = rxq;
2092 			fs->tx_port = fs->rx_port;
2093 			fs->tx_queue = rxq;
2094 			fs->peer_addr = fs->tx_port;
2095 			fs->retry_enabled = retry_enabled;
2096 			if (verbose_level > 0)
2097 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2098 				       sm_id, fs->rx_port, fs->rx_queue,
2099 				       fs->tx_queue);
2100 			rxq = (queueid_t) (rxq + 1);
2101 			if (rxq == nb_rxq) {
2102 				rxq = 0;
2103 				rxp = (portid_t) (rxp + 1);
2104 			}
2105 		}
2106 	}
2107 }
2108 
2109 void
2110 fwd_config_setup(void)
2111 {
2112 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2113 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2114 		icmp_echo_config_setup();
2115 		return;
2116 	}
2117 	if ((nb_rxq > 1) && (nb_txq > 1)){
2118 		if (dcb_config)
2119 			dcb_fwd_config_setup();
2120 		else
2121 			rss_fwd_config_setup();
2122 	}
2123 	else
2124 		simple_fwd_config_setup();
2125 }
2126 
2127 void
2128 pkt_fwd_config_display(struct fwd_config *cfg)
2129 {
2130 	struct fwd_stream *fs;
2131 	lcoreid_t  lc_id;
2132 	streamid_t sm_id;
2133 
2134 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2135 		"NUMA support %s, MP over anonymous pages %s\n",
2136 		cfg->fwd_eng->fwd_mode_name,
2137 		retry_enabled == 0 ? "" : " with retry",
2138 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2139 		numa_support == 1 ? "enabled" : "disabled",
2140 		mp_anon != 0 ? "enabled" : "disabled");
2141 
2142 	if (retry_enabled)
2143 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2144 			burst_tx_retry_num, burst_tx_delay_time);
2145 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2146 		printf("Logical Core %u (socket %u) forwards packets on "
2147 		       "%d streams:",
2148 		       fwd_lcores_cpuids[lc_id],
2149 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2150 		       fwd_lcores[lc_id]->stream_nb);
2151 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2152 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2153 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2154 			       "P=%d/Q=%d (socket %u) ",
2155 			       fs->rx_port, fs->rx_queue,
2156 			       ports[fs->rx_port].socket_id,
2157 			       fs->tx_port, fs->tx_queue,
2158 			       ports[fs->tx_port].socket_id);
2159 			print_ethaddr("peer=",
2160 				      &peer_eth_addrs[fs->peer_addr]);
2161 		}
2162 		printf("\n");
2163 	}
2164 	printf("\n");
2165 }
2166 
2167 int
2168 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2169 {
2170 	unsigned int i;
2171 	unsigned int lcore_cpuid;
2172 	int record_now;
2173 
2174 	record_now = 0;
2175  again:
2176 	for (i = 0; i < nb_lc; i++) {
2177 		lcore_cpuid = lcorelist[i];
2178 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2179 			printf("lcore %u not enabled\n", lcore_cpuid);
2180 			return -1;
2181 		}
2182 		if (lcore_cpuid == rte_get_master_lcore()) {
2183 			printf("lcore %u cannot be masked on for running "
2184 			       "packet forwarding, which is the master lcore "
2185 			       "and reserved for command line parsing only\n",
2186 			       lcore_cpuid);
2187 			return -1;
2188 		}
2189 		if (record_now)
2190 			fwd_lcores_cpuids[i] = lcore_cpuid;
2191 	}
2192 	if (record_now == 0) {
2193 		record_now = 1;
2194 		goto again;
2195 	}
2196 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2197 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2198 		printf("previous number of forwarding cores %u - changed to "
2199 		       "number of configured cores %u\n",
2200 		       (unsigned int) nb_fwd_lcores, nb_lc);
2201 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 int
2208 set_fwd_lcores_mask(uint64_t lcoremask)
2209 {
2210 	unsigned int lcorelist[64];
2211 	unsigned int nb_lc;
2212 	unsigned int i;
2213 
2214 	if (lcoremask == 0) {
2215 		printf("Invalid NULL mask of cores\n");
2216 		return -1;
2217 	}
2218 	nb_lc = 0;
2219 	for (i = 0; i < 64; i++) {
2220 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2221 			continue;
2222 		lcorelist[nb_lc++] = i;
2223 	}
2224 	return set_fwd_lcores_list(lcorelist, nb_lc);
2225 }
2226 
2227 void
2228 set_fwd_lcores_number(uint16_t nb_lc)
2229 {
2230 	if (nb_lc > nb_cfg_lcores) {
2231 		printf("nb fwd cores %u > %u (max. number of configured "
2232 		       "lcores) - ignored\n",
2233 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2234 		return;
2235 	}
2236 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2237 	printf("Number of forwarding cores set to %u\n",
2238 	       (unsigned int) nb_fwd_lcores);
2239 }
2240 
2241 void
2242 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2243 {
2244 	unsigned int i;
2245 	portid_t port_id;
2246 	int record_now;
2247 
2248 	record_now = 0;
2249  again:
2250 	for (i = 0; i < nb_pt; i++) {
2251 		port_id = (portid_t) portlist[i];
2252 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2253 			return;
2254 		if (record_now)
2255 			fwd_ports_ids[i] = port_id;
2256 	}
2257 	if (record_now == 0) {
2258 		record_now = 1;
2259 		goto again;
2260 	}
2261 	nb_cfg_ports = (portid_t) nb_pt;
2262 	if (nb_fwd_ports != (portid_t) nb_pt) {
2263 		printf("previous number of forwarding ports %u - changed to "
2264 		       "number of configured ports %u\n",
2265 		       (unsigned int) nb_fwd_ports, nb_pt);
2266 		nb_fwd_ports = (portid_t) nb_pt;
2267 	}
2268 }
2269 
2270 void
2271 set_fwd_ports_mask(uint64_t portmask)
2272 {
2273 	unsigned int portlist[64];
2274 	unsigned int nb_pt;
2275 	unsigned int i;
2276 
2277 	if (portmask == 0) {
2278 		printf("Invalid NULL mask of ports\n");
2279 		return;
2280 	}
2281 	nb_pt = 0;
2282 	for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) {
2283 		if (! ((uint64_t)(1ULL << i) & portmask))
2284 			continue;
2285 		portlist[nb_pt++] = i;
2286 	}
2287 	set_fwd_ports_list(portlist, nb_pt);
2288 }
2289 
2290 void
2291 set_fwd_ports_number(uint16_t nb_pt)
2292 {
2293 	if (nb_pt > nb_cfg_ports) {
2294 		printf("nb fwd ports %u > %u (number of configured "
2295 		       "ports) - ignored\n",
2296 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2297 		return;
2298 	}
2299 	nb_fwd_ports = (portid_t) nb_pt;
2300 	printf("Number of forwarding ports set to %u\n",
2301 	       (unsigned int) nb_fwd_ports);
2302 }
2303 
2304 int
2305 port_is_forwarding(portid_t port_id)
2306 {
2307 	unsigned int i;
2308 
2309 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2310 		return -1;
2311 
2312 	for (i = 0; i < nb_fwd_ports; i++) {
2313 		if (fwd_ports_ids[i] == port_id)
2314 			return 1;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 void
2321 set_nb_pkt_per_burst(uint16_t nb)
2322 {
2323 	if (nb > MAX_PKT_BURST) {
2324 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2325 		       " ignored\n",
2326 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2327 		return;
2328 	}
2329 	nb_pkt_per_burst = nb;
2330 	printf("Number of packets per burst set to %u\n",
2331 	       (unsigned int) nb_pkt_per_burst);
2332 }
2333 
2334 static const char *
2335 tx_split_get_name(enum tx_pkt_split split)
2336 {
2337 	uint32_t i;
2338 
2339 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2340 		if (tx_split_name[i].split == split)
2341 			return tx_split_name[i].name;
2342 	}
2343 	return NULL;
2344 }
2345 
2346 void
2347 set_tx_pkt_split(const char *name)
2348 {
2349 	uint32_t i;
2350 
2351 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2352 		if (strcmp(tx_split_name[i].name, name) == 0) {
2353 			tx_pkt_split = tx_split_name[i].split;
2354 			return;
2355 		}
2356 	}
2357 	printf("unknown value: \"%s\"\n", name);
2358 }
2359 
2360 void
2361 show_tx_pkt_segments(void)
2362 {
2363 	uint32_t i, n;
2364 	const char *split;
2365 
2366 	n = tx_pkt_nb_segs;
2367 	split = tx_split_get_name(tx_pkt_split);
2368 
2369 	printf("Number of segments: %u\n", n);
2370 	printf("Segment sizes: ");
2371 	for (i = 0; i != n - 1; i++)
2372 		printf("%hu,", tx_pkt_seg_lengths[i]);
2373 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2374 	printf("Split packet: %s\n", split);
2375 }
2376 
2377 void
2378 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2379 {
2380 	uint16_t tx_pkt_len;
2381 	unsigned i;
2382 
2383 	if (nb_segs >= (unsigned) nb_txd) {
2384 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2385 		       nb_segs, (unsigned int) nb_txd);
2386 		return;
2387 	}
2388 
2389 	/*
2390 	 * Check that each segment length is greater or equal than
2391 	 * the mbuf data sise.
2392 	 * Check also that the total packet length is greater or equal than the
2393 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2394 	 */
2395 	tx_pkt_len = 0;
2396 	for (i = 0; i < nb_segs; i++) {
2397 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2398 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2399 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2400 			return;
2401 		}
2402 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2403 	}
2404 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2405 		printf("total packet length=%u < %d - give up\n",
2406 				(unsigned) tx_pkt_len,
2407 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2408 		return;
2409 	}
2410 
2411 	for (i = 0; i < nb_segs; i++)
2412 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2413 
2414 	tx_pkt_length  = tx_pkt_len;
2415 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2416 }
2417 
2418 char*
2419 list_pkt_forwarding_modes(void)
2420 {
2421 	static char fwd_modes[128] = "";
2422 	const char *separator = "|";
2423 	struct fwd_engine *fwd_eng;
2424 	unsigned i = 0;
2425 
2426 	if (strlen (fwd_modes) == 0) {
2427 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2428 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2429 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2430 			strncat(fwd_modes, separator,
2431 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2432 		}
2433 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2434 	}
2435 
2436 	return fwd_modes;
2437 }
2438 
2439 char*
2440 list_pkt_forwarding_retry_modes(void)
2441 {
2442 	static char fwd_modes[128] = "";
2443 	const char *separator = "|";
2444 	struct fwd_engine *fwd_eng;
2445 	unsigned i = 0;
2446 
2447 	if (strlen(fwd_modes) == 0) {
2448 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2449 			if (fwd_eng == &rx_only_engine)
2450 				continue;
2451 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2452 					sizeof(fwd_modes) -
2453 					strlen(fwd_modes) - 1);
2454 			strncat(fwd_modes, separator,
2455 					sizeof(fwd_modes) -
2456 					strlen(fwd_modes) - 1);
2457 		}
2458 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2459 	}
2460 
2461 	return fwd_modes;
2462 }
2463 
2464 void
2465 set_pkt_forwarding_mode(const char *fwd_mode_name)
2466 {
2467 	struct fwd_engine *fwd_eng;
2468 	unsigned i;
2469 
2470 	i = 0;
2471 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2472 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2473 			printf("Set %s packet forwarding mode%s\n",
2474 			       fwd_mode_name,
2475 			       retry_enabled == 0 ? "" : " with retry");
2476 			cur_fwd_eng = fwd_eng;
2477 			return;
2478 		}
2479 		i++;
2480 	}
2481 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2482 }
2483 
2484 void
2485 set_verbose_level(uint16_t vb_level)
2486 {
2487 	printf("Change verbose level from %u to %u\n",
2488 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2489 	verbose_level = vb_level;
2490 }
2491 
2492 void
2493 vlan_extend_set(portid_t port_id, int on)
2494 {
2495 	int diag;
2496 	int vlan_offload;
2497 
2498 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2499 		return;
2500 
2501 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2502 
2503 	if (on)
2504 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2505 	else
2506 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2507 
2508 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2509 	if (diag < 0)
2510 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2511 	       "diag=%d\n", port_id, on, diag);
2512 }
2513 
2514 void
2515 rx_vlan_strip_set(portid_t port_id, int on)
2516 {
2517 	int diag;
2518 	int vlan_offload;
2519 
2520 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2521 		return;
2522 
2523 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2524 
2525 	if (on)
2526 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2527 	else
2528 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2529 
2530 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2531 	if (diag < 0)
2532 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2533 	       "diag=%d\n", port_id, on, diag);
2534 }
2535 
2536 void
2537 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2538 {
2539 	int diag;
2540 
2541 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2542 		return;
2543 
2544 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2545 	if (diag < 0)
2546 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2547 	       "diag=%d\n", port_id, queue_id, on, diag);
2548 }
2549 
2550 void
2551 rx_vlan_filter_set(portid_t port_id, int on)
2552 {
2553 	int diag;
2554 	int vlan_offload;
2555 
2556 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2557 		return;
2558 
2559 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2560 
2561 	if (on)
2562 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2563 	else
2564 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2565 
2566 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2567 	if (diag < 0)
2568 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2569 	       "diag=%d\n", port_id, on, diag);
2570 }
2571 
2572 int
2573 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2574 {
2575 	int diag;
2576 
2577 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2578 		return 1;
2579 	if (vlan_id_is_invalid(vlan_id))
2580 		return 1;
2581 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2582 	if (diag == 0)
2583 		return 0;
2584 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2585 	       "diag=%d\n",
2586 	       port_id, vlan_id, on, diag);
2587 	return -1;
2588 }
2589 
2590 void
2591 rx_vlan_all_filter_set(portid_t port_id, int on)
2592 {
2593 	uint16_t vlan_id;
2594 
2595 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2596 		return;
2597 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2598 		if (rx_vft_set(port_id, vlan_id, on))
2599 			break;
2600 	}
2601 }
2602 
2603 void
2604 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2605 {
2606 	int diag;
2607 
2608 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2609 		return;
2610 
2611 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2612 	if (diag == 0)
2613 		return;
2614 
2615 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2616 	       "diag=%d\n",
2617 	       port_id, vlan_type, tp_id, diag);
2618 }
2619 
2620 void
2621 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2622 {
2623 	int vlan_offload;
2624 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2625 		return;
2626 	if (vlan_id_is_invalid(vlan_id))
2627 		return;
2628 
2629 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2630 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2631 		printf("Error, as QinQ has been enabled.\n");
2632 		return;
2633 	}
2634 
2635 	tx_vlan_reset(port_id);
2636 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2637 	ports[port_id].tx_vlan_id = vlan_id;
2638 }
2639 
2640 void
2641 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2642 {
2643 	int vlan_offload;
2644 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2645 		return;
2646 	if (vlan_id_is_invalid(vlan_id))
2647 		return;
2648 	if (vlan_id_is_invalid(vlan_id_outer))
2649 		return;
2650 
2651 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2652 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2653 		printf("Error, as QinQ hasn't been enabled.\n");
2654 		return;
2655 	}
2656 
2657 	tx_vlan_reset(port_id);
2658 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2659 	ports[port_id].tx_vlan_id = vlan_id;
2660 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2661 }
2662 
2663 void
2664 tx_vlan_reset(portid_t port_id)
2665 {
2666 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2667 		return;
2668 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2669 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2670 	ports[port_id].tx_vlan_id = 0;
2671 	ports[port_id].tx_vlan_id_outer = 0;
2672 }
2673 
2674 void
2675 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2676 {
2677 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2678 		return;
2679 
2680 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2681 }
2682 
2683 void
2684 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2685 {
2686 	uint16_t i;
2687 	uint8_t existing_mapping_found = 0;
2688 
2689 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2690 		return;
2691 
2692 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2693 		return;
2694 
2695 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2696 		printf("map_value not in required range 0..%d\n",
2697 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2698 		return;
2699 	}
2700 
2701 	if (!is_rx) { /*then tx*/
2702 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2703 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2704 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2705 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2706 				existing_mapping_found = 1;
2707 				break;
2708 			}
2709 		}
2710 		if (!existing_mapping_found) { /* A new additional mapping... */
2711 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2712 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2713 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2714 			nb_tx_queue_stats_mappings++;
2715 		}
2716 	}
2717 	else { /*rx*/
2718 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2719 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2720 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2721 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2722 				existing_mapping_found = 1;
2723 				break;
2724 			}
2725 		}
2726 		if (!existing_mapping_found) { /* A new additional mapping... */
2727 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2728 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2729 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2730 			nb_rx_queue_stats_mappings++;
2731 		}
2732 	}
2733 }
2734 
2735 static inline void
2736 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2737 {
2738 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2739 
2740 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2741 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2742 			" tunnel_id: 0x%08x",
2743 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2744 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2745 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2746 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2747 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2748 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2749 
2750 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2751 			rte_be_to_cpu_16(mask->src_port_mask),
2752 			rte_be_to_cpu_16(mask->dst_port_mask));
2753 
2754 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2755 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2756 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2757 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2758 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2759 
2760 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2761 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2762 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2763 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2764 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2765 	}
2766 
2767 	printf("\n");
2768 }
2769 
2770 static inline void
2771 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2772 {
2773 	struct rte_eth_flex_payload_cfg *cfg;
2774 	uint32_t i, j;
2775 
2776 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2777 		cfg = &flex_conf->flex_set[i];
2778 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2779 			printf("\n    RAW:  ");
2780 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2781 			printf("\n    L2_PAYLOAD:  ");
2782 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2783 			printf("\n    L3_PAYLOAD:  ");
2784 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2785 			printf("\n    L4_PAYLOAD:  ");
2786 		else
2787 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2788 		for (j = 0; j < num; j++)
2789 			printf("  %-5u", cfg->src_offset[j]);
2790 	}
2791 	printf("\n");
2792 }
2793 
2794 static char *
2795 flowtype_to_str(uint16_t flow_type)
2796 {
2797 	struct flow_type_info {
2798 		char str[32];
2799 		uint16_t ftype;
2800 	};
2801 
2802 	uint8_t i;
2803 	static struct flow_type_info flowtype_str_table[] = {
2804 		{"raw", RTE_ETH_FLOW_RAW},
2805 		{"ipv4", RTE_ETH_FLOW_IPV4},
2806 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2807 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2808 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2809 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2810 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2811 		{"ipv6", RTE_ETH_FLOW_IPV6},
2812 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2813 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2814 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2815 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2816 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2817 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2818 		{"port", RTE_ETH_FLOW_PORT},
2819 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2820 		{"geneve", RTE_ETH_FLOW_GENEVE},
2821 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2822 	};
2823 
2824 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2825 		if (flowtype_str_table[i].ftype == flow_type)
2826 			return flowtype_str_table[i].str;
2827 	}
2828 
2829 	return NULL;
2830 }
2831 
2832 static inline void
2833 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2834 {
2835 	struct rte_eth_fdir_flex_mask *mask;
2836 	uint32_t i, j;
2837 	char *p;
2838 
2839 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2840 		mask = &flex_conf->flex_mask[i];
2841 		p = flowtype_to_str(mask->flow_type);
2842 		printf("\n    %s:\t", p ? p : "unknown");
2843 		for (j = 0; j < num; j++)
2844 			printf(" %02x", mask->mask[j]);
2845 	}
2846 	printf("\n");
2847 }
2848 
2849 static inline void
2850 print_fdir_flow_type(uint32_t flow_types_mask)
2851 {
2852 	int i;
2853 	char *p;
2854 
2855 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2856 		if (!(flow_types_mask & (1 << i)))
2857 			continue;
2858 		p = flowtype_to_str(i);
2859 		if (p)
2860 			printf(" %s", p);
2861 		else
2862 			printf(" unknown");
2863 	}
2864 	printf("\n");
2865 }
2866 
2867 void
2868 fdir_get_infos(portid_t port_id)
2869 {
2870 	struct rte_eth_fdir_stats fdir_stat;
2871 	struct rte_eth_fdir_info fdir_info;
2872 	int ret;
2873 
2874 	static const char *fdir_stats_border = "########################";
2875 
2876 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2877 		return;
2878 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2879 	if (ret < 0) {
2880 		printf("\n FDIR is not supported on port %-2d\n",
2881 			port_id);
2882 		return;
2883 	}
2884 
2885 	memset(&fdir_info, 0, sizeof(fdir_info));
2886 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2887 			       RTE_ETH_FILTER_INFO, &fdir_info);
2888 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2889 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2890 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2891 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2892 	       fdir_stats_border, port_id, fdir_stats_border);
2893 	printf("  MODE: ");
2894 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2895 		printf("  PERFECT\n");
2896 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2897 		printf("  PERFECT-MAC-VLAN\n");
2898 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2899 		printf("  PERFECT-TUNNEL\n");
2900 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2901 		printf("  SIGNATURE\n");
2902 	else
2903 		printf("  DISABLE\n");
2904 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2905 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2906 		printf("  SUPPORTED FLOW TYPE: ");
2907 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2908 	}
2909 	printf("  FLEX PAYLOAD INFO:\n");
2910 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2911 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2912 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2913 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2914 		fdir_info.flex_payload_unit,
2915 		fdir_info.max_flex_payload_segment_num,
2916 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2917 	printf("  MASK: ");
2918 	print_fdir_mask(&fdir_info.mask);
2919 	if (fdir_info.flex_conf.nb_payloads > 0) {
2920 		printf("  FLEX PAYLOAD SRC OFFSET:");
2921 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2922 	}
2923 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2924 		printf("  FLEX MASK CFG:");
2925 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2926 	}
2927 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2928 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2929 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2930 	       fdir_info.guarant_spc, fdir_info.best_spc);
2931 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2932 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2933 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2934 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2935 	       fdir_stat.collision, fdir_stat.free,
2936 	       fdir_stat.maxhash, fdir_stat.maxlen,
2937 	       fdir_stat.add, fdir_stat.remove,
2938 	       fdir_stat.f_add, fdir_stat.f_remove);
2939 	printf("  %s############################%s\n",
2940 	       fdir_stats_border, fdir_stats_border);
2941 }
2942 
2943 void
2944 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2945 {
2946 	struct rte_port *port;
2947 	struct rte_eth_fdir_flex_conf *flex_conf;
2948 	int i, idx = 0;
2949 
2950 	port = &ports[port_id];
2951 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2952 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2953 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2954 			idx = i;
2955 			break;
2956 		}
2957 	}
2958 	if (i >= RTE_ETH_FLOW_MAX) {
2959 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2960 			idx = flex_conf->nb_flexmasks;
2961 			flex_conf->nb_flexmasks++;
2962 		} else {
2963 			printf("The flex mask table is full. Can not set flex"
2964 				" mask for flow_type(%u).", cfg->flow_type);
2965 			return;
2966 		}
2967 	}
2968 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2969 			 cfg,
2970 			 sizeof(struct rte_eth_fdir_flex_mask));
2971 }
2972 
2973 void
2974 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2975 {
2976 	struct rte_port *port;
2977 	struct rte_eth_fdir_flex_conf *flex_conf;
2978 	int i, idx = 0;
2979 
2980 	port = &ports[port_id];
2981 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2982 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2983 		if (cfg->type == flex_conf->flex_set[i].type) {
2984 			idx = i;
2985 			break;
2986 		}
2987 	}
2988 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2989 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2990 			idx = flex_conf->nb_payloads;
2991 			flex_conf->nb_payloads++;
2992 		} else {
2993 			printf("The flex payload table is full. Can not set"
2994 				" flex payload for type(%u).", cfg->type);
2995 			return;
2996 		}
2997 	}
2998 	(void)rte_memcpy(&flex_conf->flex_set[idx],
2999 			 cfg,
3000 			 sizeof(struct rte_eth_flex_payload_cfg));
3001 
3002 }
3003 
3004 #ifdef RTE_LIBRTE_IXGBE_PMD
3005 void
3006 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3007 {
3008 	int diag;
3009 
3010 	if (is_rx)
3011 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3012 	else
3013 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3014 
3015 	if (diag == 0)
3016 		return;
3017 	if(is_rx)
3018 		printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed "
3019 	       		"diag=%d\n", port_id, diag);
3020 	else
3021 		printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed "
3022 	       		"diag=%d\n", port_id, diag);
3023 
3024 }
3025 #endif
3026 
3027 int
3028 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3029 {
3030 	int diag;
3031 	struct rte_eth_link link;
3032 
3033 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3034 		return 1;
3035 	rte_eth_link_get_nowait(port_id, &link);
3036 	if (rate > link.link_speed) {
3037 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3038 			rate, link.link_speed);
3039 		return 1;
3040 	}
3041 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3042 	if (diag == 0)
3043 		return diag;
3044 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3045 		port_id, diag);
3046 	return diag;
3047 }
3048 
3049 #ifdef RTE_LIBRTE_IXGBE_PMD
3050 int
3051 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3052 {
3053 	int diag;
3054 
3055 	diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk);
3056 	if (diag == 0)
3057 		return diag;
3058 	printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n",
3059 		port_id, diag);
3060 	return diag;
3061 }
3062 #endif
3063 
3064 /*
3065  * Functions to manage the set of filtered Multicast MAC addresses.
3066  *
3067  * A pool of filtered multicast MAC addresses is associated with each port.
3068  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3069  * The address of the pool and the number of valid multicast MAC addresses
3070  * recorded in the pool are stored in the fields "mc_addr_pool" and
3071  * "mc_addr_nb" of the "rte_port" data structure.
3072  *
3073  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3074  * to be supplied a contiguous array of multicast MAC addresses.
3075  * To comply with this constraint, the set of multicast addresses recorded
3076  * into the pool are systematically compacted at the beginning of the pool.
3077  * Hence, when a multicast address is removed from the pool, all following
3078  * addresses, if any, are copied back to keep the set contiguous.
3079  */
3080 #define MCAST_POOL_INC 32
3081 
3082 static int
3083 mcast_addr_pool_extend(struct rte_port *port)
3084 {
3085 	struct ether_addr *mc_pool;
3086 	size_t mc_pool_size;
3087 
3088 	/*
3089 	 * If a free entry is available at the end of the pool, just
3090 	 * increment the number of recorded multicast addresses.
3091 	 */
3092 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3093 		port->mc_addr_nb++;
3094 		return 0;
3095 	}
3096 
3097 	/*
3098 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3099 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3100 	 * of MCAST_POOL_INC.
3101 	 */
3102 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3103 						    MCAST_POOL_INC);
3104 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3105 						mc_pool_size);
3106 	if (mc_pool == NULL) {
3107 		printf("allocation of pool of %u multicast addresses failed\n",
3108 		       port->mc_addr_nb + MCAST_POOL_INC);
3109 		return -ENOMEM;
3110 	}
3111 
3112 	port->mc_addr_pool = mc_pool;
3113 	port->mc_addr_nb++;
3114 	return 0;
3115 
3116 }
3117 
3118 static void
3119 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3120 {
3121 	port->mc_addr_nb--;
3122 	if (addr_idx == port->mc_addr_nb) {
3123 		/* No need to recompact the set of multicast addressses. */
3124 		if (port->mc_addr_nb == 0) {
3125 			/* free the pool of multicast addresses. */
3126 			free(port->mc_addr_pool);
3127 			port->mc_addr_pool = NULL;
3128 		}
3129 		return;
3130 	}
3131 	memmove(&port->mc_addr_pool[addr_idx],
3132 		&port->mc_addr_pool[addr_idx + 1],
3133 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3134 }
3135 
3136 static void
3137 eth_port_multicast_addr_list_set(uint8_t port_id)
3138 {
3139 	struct rte_port *port;
3140 	int diag;
3141 
3142 	port = &ports[port_id];
3143 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3144 					    port->mc_addr_nb);
3145 	if (diag == 0)
3146 		return;
3147 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3148 	       port->mc_addr_nb, port_id, -diag);
3149 }
3150 
3151 void
3152 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3153 {
3154 	struct rte_port *port;
3155 	uint32_t i;
3156 
3157 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3158 		return;
3159 
3160 	port = &ports[port_id];
3161 
3162 	/*
3163 	 * Check that the added multicast MAC address is not already recorded
3164 	 * in the pool of multicast addresses.
3165 	 */
3166 	for (i = 0; i < port->mc_addr_nb; i++) {
3167 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3168 			printf("multicast address already filtered by port\n");
3169 			return;
3170 		}
3171 	}
3172 
3173 	if (mcast_addr_pool_extend(port) != 0)
3174 		return;
3175 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3176 	eth_port_multicast_addr_list_set(port_id);
3177 }
3178 
3179 void
3180 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3181 {
3182 	struct rte_port *port;
3183 	uint32_t i;
3184 
3185 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3186 		return;
3187 
3188 	port = &ports[port_id];
3189 
3190 	/*
3191 	 * Search the pool of multicast MAC addresses for the removed address.
3192 	 */
3193 	for (i = 0; i < port->mc_addr_nb; i++) {
3194 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3195 			break;
3196 	}
3197 	if (i == port->mc_addr_nb) {
3198 		printf("multicast address not filtered by port %d\n", port_id);
3199 		return;
3200 	}
3201 
3202 	mcast_addr_pool_remove(port, i);
3203 	eth_port_multicast_addr_list_set(port_id);
3204 }
3205 
3206 void
3207 port_dcb_info_display(uint8_t port_id)
3208 {
3209 	struct rte_eth_dcb_info dcb_info;
3210 	uint16_t i;
3211 	int ret;
3212 	static const char *border = "================";
3213 
3214 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3215 		return;
3216 
3217 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3218 	if (ret) {
3219 		printf("\n Failed to get dcb infos on port %-2d\n",
3220 			port_id);
3221 		return;
3222 	}
3223 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3224 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3225 	printf("\n  TC :        ");
3226 	for (i = 0; i < dcb_info.nb_tcs; i++)
3227 		printf("\t%4d", i);
3228 	printf("\n  Priority :  ");
3229 	for (i = 0; i < dcb_info.nb_tcs; i++)
3230 		printf("\t%4d", dcb_info.prio_tc[i]);
3231 	printf("\n  BW percent :");
3232 	for (i = 0; i < dcb_info.nb_tcs; i++)
3233 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3234 	printf("\n  RXQ base :  ");
3235 	for (i = 0; i < dcb_info.nb_tcs; i++)
3236 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3237 	printf("\n  RXQ number :");
3238 	for (i = 0; i < dcb_info.nb_tcs; i++)
3239 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3240 	printf("\n  TXQ base :  ");
3241 	for (i = 0; i < dcb_info.nb_tcs; i++)
3242 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3243 	printf("\n  TXQ number :");
3244 	for (i = 0; i < dcb_info.nb_tcs; i++)
3245 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3246 	printf("\n");
3247 }
3248 
3249 uint8_t *
3250 open_ddp_package_file(const char *file_path, uint32_t *size)
3251 {
3252 	FILE *fh = fopen(file_path, "rb");
3253 	uint32_t pkg_size;
3254 	uint8_t *buf = NULL;
3255 	int ret = 0;
3256 
3257 	if (size)
3258 		*size = 0;
3259 
3260 	if (fh == NULL) {
3261 		printf("%s: Failed to open %s\n", __func__, file_path);
3262 		return buf;
3263 	}
3264 
3265 	ret = fseek(fh, 0, SEEK_END);
3266 	if (ret < 0) {
3267 		fclose(fh);
3268 		printf("%s: File operations failed\n", __func__);
3269 		return buf;
3270 	}
3271 
3272 	pkg_size = ftell(fh);
3273 
3274 	buf = (uint8_t *)malloc(pkg_size);
3275 	if (!buf) {
3276 		fclose(fh);
3277 		printf("%s: Failed to malloc memory\n",	__func__);
3278 		return buf;
3279 	}
3280 
3281 	ret = fseek(fh, 0, SEEK_SET);
3282 	if (ret < 0) {
3283 		fclose(fh);
3284 		printf("%s: File seek operation failed\n", __func__);
3285 		close_ddp_package_file(buf);
3286 		return NULL;
3287 	}
3288 
3289 	ret = fread(buf, 1, pkg_size, fh);
3290 	if (ret < 0) {
3291 		fclose(fh);
3292 		printf("%s: File read operation failed\n", __func__);
3293 		close_ddp_package_file(buf);
3294 		return NULL;
3295 	}
3296 
3297 	if (size)
3298 		*size = pkg_size;
3299 
3300 	fclose(fh);
3301 
3302 	return buf;
3303 }
3304 
3305 int
3306 close_ddp_package_file(uint8_t *buf)
3307 {
3308 	if (buf) {
3309 		free((void *)buf);
3310 		return 0;
3311 	}
3312 
3313 	return -1;
3314 }
3315