1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * Copyright 2013-2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <errno.h> 37 #include <stdio.h> 38 #include <string.h> 39 #include <stdarg.h> 40 #include <stdint.h> 41 #include <inttypes.h> 42 43 #include <sys/queue.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_debug.h> 48 #include <rte_log.h> 49 #include <rte_memory.h> 50 #include <rte_memcpy.h> 51 #include <rte_memzone.h> 52 #include <rte_launch.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_lcore.h> 56 #include <rte_atomic.h> 57 #include <rte_branch_prediction.h> 58 #include <rte_mempool.h> 59 #include <rte_mbuf.h> 60 #include <rte_interrupts.h> 61 #include <rte_pci.h> 62 #include <rte_ether.h> 63 #include <rte_ethdev.h> 64 #include <rte_string_fns.h> 65 #include <rte_cycles.h> 66 #include <rte_flow.h> 67 #include <rte_errno.h> 68 #ifdef RTE_LIBRTE_IXGBE_PMD 69 #include <rte_pmd_ixgbe.h> 70 #endif 71 #ifdef RTE_LIBRTE_BNXT_PMD 72 #include <rte_pmd_bnxt.h> 73 #endif 74 75 #include "testpmd.h" 76 77 static char *flowtype_to_str(uint16_t flow_type); 78 79 static const struct { 80 enum tx_pkt_split split; 81 const char *name; 82 } tx_split_name[] = { 83 { 84 .split = TX_PKT_SPLIT_OFF, 85 .name = "off", 86 }, 87 { 88 .split = TX_PKT_SPLIT_ON, 89 .name = "on", 90 }, 91 { 92 .split = TX_PKT_SPLIT_RND, 93 .name = "rand", 94 }, 95 }; 96 97 struct rss_type_info { 98 char str[32]; 99 uint64_t rss_type; 100 }; 101 102 static const struct rss_type_info rss_type_table[] = { 103 { "ipv4", ETH_RSS_IPV4 }, 104 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 105 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 106 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 107 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 108 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 109 { "ipv6", ETH_RSS_IPV6 }, 110 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 111 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 112 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 113 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 114 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 115 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 116 { "ipv6-ex", ETH_RSS_IPV6_EX }, 117 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 118 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 119 { "port", ETH_RSS_PORT }, 120 { "vxlan", ETH_RSS_VXLAN }, 121 { "geneve", ETH_RSS_GENEVE }, 122 { "nvgre", ETH_RSS_NVGRE }, 123 124 }; 125 126 static void 127 print_ethaddr(const char *name, struct ether_addr *eth_addr) 128 { 129 char buf[ETHER_ADDR_FMT_SIZE]; 130 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 131 printf("%s%s", name, buf); 132 } 133 134 void 135 nic_stats_display(portid_t port_id) 136 { 137 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 138 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 139 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 140 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 141 uint64_t mpps_rx, mpps_tx; 142 struct rte_eth_stats stats; 143 struct rte_port *port = &ports[port_id]; 144 uint8_t i; 145 portid_t pid; 146 147 static const char *nic_stats_border = "########################"; 148 149 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 150 printf("Valid port range is [0"); 151 RTE_ETH_FOREACH_DEV(pid) 152 printf(", %d", pid); 153 printf("]\n"); 154 return; 155 } 156 rte_eth_stats_get(port_id, &stats); 157 printf("\n %s NIC statistics for port %-2d %s\n", 158 nic_stats_border, port_id, nic_stats_border); 159 160 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 161 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 162 "%-"PRIu64"\n", 163 stats.ipackets, stats.imissed, stats.ibytes); 164 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 165 printf(" RX-nombuf: %-10"PRIu64"\n", 166 stats.rx_nombuf); 167 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 168 "%-"PRIu64"\n", 169 stats.opackets, stats.oerrors, stats.obytes); 170 } 171 else { 172 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 173 " RX-bytes: %10"PRIu64"\n", 174 stats.ipackets, stats.ierrors, stats.ibytes); 175 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 176 printf(" RX-nombuf: %10"PRIu64"\n", 177 stats.rx_nombuf); 178 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 179 " TX-bytes: %10"PRIu64"\n", 180 stats.opackets, stats.oerrors, stats.obytes); 181 } 182 183 if (port->rx_queue_stats_mapping_enabled) { 184 printf("\n"); 185 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 186 printf(" Stats reg %2d RX-packets: %10"PRIu64 187 " RX-errors: %10"PRIu64 188 " RX-bytes: %10"PRIu64"\n", 189 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 190 } 191 } 192 if (port->tx_queue_stats_mapping_enabled) { 193 printf("\n"); 194 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 195 printf(" Stats reg %2d TX-packets: %10"PRIu64 196 " TX-bytes: %10"PRIu64"\n", 197 i, stats.q_opackets[i], stats.q_obytes[i]); 198 } 199 } 200 201 diff_cycles = prev_cycles[port_id]; 202 prev_cycles[port_id] = rte_rdtsc(); 203 if (diff_cycles > 0) 204 diff_cycles = prev_cycles[port_id] - diff_cycles; 205 206 diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id]; 207 diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id]; 208 prev_pkts_rx[port_id] = stats.ipackets; 209 prev_pkts_tx[port_id] = stats.opackets; 210 mpps_rx = diff_cycles > 0 ? 211 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 212 mpps_tx = diff_cycles > 0 ? 213 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 214 printf("\n Throughput (since last show)\n"); 215 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 216 mpps_rx, mpps_tx); 217 218 printf(" %s############################%s\n", 219 nic_stats_border, nic_stats_border); 220 } 221 222 void 223 nic_stats_clear(portid_t port_id) 224 { 225 portid_t pid; 226 227 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 228 printf("Valid port range is [0"); 229 RTE_ETH_FOREACH_DEV(pid) 230 printf(", %d", pid); 231 printf("]\n"); 232 return; 233 } 234 rte_eth_stats_reset(port_id); 235 printf("\n NIC statistics for port %d cleared\n", port_id); 236 } 237 238 void 239 nic_xstats_display(portid_t port_id) 240 { 241 struct rte_eth_xstat *xstats; 242 int cnt_xstats, idx_xstat; 243 struct rte_eth_xstat_name *xstats_names; 244 245 printf("###### NIC extended statistics for port %-2d\n", port_id); 246 if (!rte_eth_dev_is_valid_port(port_id)) { 247 printf("Error: Invalid port number %i\n", port_id); 248 return; 249 } 250 251 /* Get count */ 252 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 253 if (cnt_xstats < 0) { 254 printf("Error: Cannot get count of xstats\n"); 255 return; 256 } 257 258 /* Get id-name lookup table */ 259 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 260 if (xstats_names == NULL) { 261 printf("Cannot allocate memory for xstats lookup\n"); 262 return; 263 } 264 if (cnt_xstats != rte_eth_xstats_get_names( 265 port_id, xstats_names, cnt_xstats)) { 266 printf("Error: Cannot get xstats lookup\n"); 267 free(xstats_names); 268 return; 269 } 270 271 /* Get stats themselves */ 272 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 273 if (xstats == NULL) { 274 printf("Cannot allocate memory for xstats\n"); 275 free(xstats_names); 276 return; 277 } 278 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 279 printf("Error: Unable to get xstats\n"); 280 free(xstats_names); 281 free(xstats); 282 return; 283 } 284 285 /* Display xstats */ 286 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) 287 printf("%s: %"PRIu64"\n", 288 xstats_names[idx_xstat].name, 289 xstats[idx_xstat].value); 290 free(xstats_names); 291 free(xstats); 292 } 293 294 void 295 nic_xstats_clear(portid_t port_id) 296 { 297 rte_eth_xstats_reset(port_id); 298 } 299 300 void 301 nic_stats_mapping_display(portid_t port_id) 302 { 303 struct rte_port *port = &ports[port_id]; 304 uint16_t i; 305 portid_t pid; 306 307 static const char *nic_stats_mapping_border = "########################"; 308 309 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 310 printf("Valid port range is [0"); 311 RTE_ETH_FOREACH_DEV(pid) 312 printf(", %d", pid); 313 printf("]\n"); 314 return; 315 } 316 317 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 318 printf("Port id %d - either does not support queue statistic mapping or" 319 " no queue statistic mapping set\n", port_id); 320 return; 321 } 322 323 printf("\n %s NIC statistics mapping for port %-2d %s\n", 324 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 325 326 if (port->rx_queue_stats_mapping_enabled) { 327 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 328 if (rx_queue_stats_mappings[i].port_id == port_id) { 329 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 330 rx_queue_stats_mappings[i].queue_id, 331 rx_queue_stats_mappings[i].stats_counter_id); 332 } 333 } 334 printf("\n"); 335 } 336 337 338 if (port->tx_queue_stats_mapping_enabled) { 339 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 340 if (tx_queue_stats_mappings[i].port_id == port_id) { 341 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 342 tx_queue_stats_mappings[i].queue_id, 343 tx_queue_stats_mappings[i].stats_counter_id); 344 } 345 } 346 } 347 348 printf(" %s####################################%s\n", 349 nic_stats_mapping_border, nic_stats_mapping_border); 350 } 351 352 void 353 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 354 { 355 struct rte_eth_rxq_info qinfo; 356 int32_t rc; 357 static const char *info_border = "*********************"; 358 359 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 360 if (rc != 0) { 361 printf("Failed to retrieve information for port: %hhu, " 362 "RX queue: %hu\nerror desc: %s(%d)\n", 363 port_id, queue_id, strerror(-rc), rc); 364 return; 365 } 366 367 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 368 info_border, port_id, queue_id, info_border); 369 370 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 371 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 372 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 373 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 374 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 375 printf("\nRX drop packets: %s", 376 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 377 printf("\nRX deferred start: %s", 378 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 379 printf("\nRX scattered packets: %s", 380 (qinfo.scattered_rx != 0) ? "on" : "off"); 381 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 382 printf("\n"); 383 } 384 385 void 386 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 387 { 388 struct rte_eth_txq_info qinfo; 389 int32_t rc; 390 static const char *info_border = "*********************"; 391 392 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 393 if (rc != 0) { 394 printf("Failed to retrieve information for port: %hhu, " 395 "TX queue: %hu\nerror desc: %s(%d)\n", 396 port_id, queue_id, strerror(-rc), rc); 397 return; 398 } 399 400 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 401 info_border, port_id, queue_id, info_border); 402 403 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 404 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 405 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 406 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 407 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 408 printf("\nTX flags: %#x", qinfo.conf.txq_flags); 409 printf("\nTX deferred start: %s", 410 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 411 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 412 printf("\n"); 413 } 414 415 void 416 port_infos_display(portid_t port_id) 417 { 418 struct rte_port *port; 419 struct ether_addr mac_addr; 420 struct rte_eth_link link; 421 struct rte_eth_dev_info dev_info; 422 int vlan_offload; 423 struct rte_mempool * mp; 424 static const char *info_border = "*********************"; 425 portid_t pid; 426 uint16_t mtu; 427 428 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 429 printf("Valid port range is [0"); 430 RTE_ETH_FOREACH_DEV(pid) 431 printf(", %d", pid); 432 printf("]\n"); 433 return; 434 } 435 port = &ports[port_id]; 436 rte_eth_link_get_nowait(port_id, &link); 437 memset(&dev_info, 0, sizeof(dev_info)); 438 rte_eth_dev_info_get(port_id, &dev_info); 439 printf("\n%s Infos for port %-2d %s\n", 440 info_border, port_id, info_border); 441 rte_eth_macaddr_get(port_id, &mac_addr); 442 print_ethaddr("MAC address: ", &mac_addr); 443 printf("\nDriver name: %s", dev_info.driver_name); 444 printf("\nConnect to socket: %u", port->socket_id); 445 446 if (port_numa[port_id] != NUMA_NO_CONFIG) { 447 mp = mbuf_pool_find(port_numa[port_id]); 448 if (mp) 449 printf("\nmemory allocation on the socket: %d", 450 port_numa[port_id]); 451 } else 452 printf("\nmemory allocation on the socket: %u",port->socket_id); 453 454 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 455 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 456 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 457 ("full-duplex") : ("half-duplex")); 458 459 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 460 printf("MTU: %u\n", mtu); 461 462 printf("Promiscuous mode: %s\n", 463 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 464 printf("Allmulticast mode: %s\n", 465 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 466 printf("Maximum number of MAC addresses: %u\n", 467 (unsigned int)(port->dev_info.max_mac_addrs)); 468 printf("Maximum number of MAC addresses of hash filtering: %u\n", 469 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 470 471 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 472 if (vlan_offload >= 0){ 473 printf("VLAN offload: \n"); 474 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 475 printf(" strip on \n"); 476 else 477 printf(" strip off \n"); 478 479 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 480 printf(" filter on \n"); 481 else 482 printf(" filter off \n"); 483 484 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 485 printf(" qinq(extend) on \n"); 486 else 487 printf(" qinq(extend) off \n"); 488 } 489 490 if (dev_info.hash_key_size > 0) 491 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 492 if (dev_info.reta_size > 0) 493 printf("Redirection table size: %u\n", dev_info.reta_size); 494 if (!dev_info.flow_type_rss_offloads) 495 printf("No flow type is supported.\n"); 496 else { 497 uint16_t i; 498 char *p; 499 500 printf("Supported flow types:\n"); 501 for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX; 502 i++) { 503 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 504 continue; 505 p = flowtype_to_str(i); 506 printf(" %s\n", (p ? p : "unknown")); 507 } 508 } 509 510 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 511 printf("Max possible number of RXDs per queue: %hu\n", 512 dev_info.rx_desc_lim.nb_max); 513 printf("Min possible number of RXDs per queue: %hu\n", 514 dev_info.rx_desc_lim.nb_min); 515 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 516 517 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 518 printf("Max possible number of TXDs per queue: %hu\n", 519 dev_info.tx_desc_lim.nb_max); 520 printf("Min possible number of TXDs per queue: %hu\n", 521 dev_info.tx_desc_lim.nb_min); 522 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 523 } 524 525 void 526 port_offload_cap_display(portid_t port_id) 527 { 528 struct rte_eth_dev *dev; 529 struct rte_eth_dev_info dev_info; 530 static const char *info_border = "************"; 531 532 if (port_id_is_invalid(port_id, ENABLED_WARN)) 533 return; 534 535 dev = &rte_eth_devices[port_id]; 536 rte_eth_dev_info_get(port_id, &dev_info); 537 538 printf("\n%s Port %d supported offload features: %s\n", 539 info_border, port_id, info_border); 540 541 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 542 printf("VLAN stripped: "); 543 if (dev->data->dev_conf.rxmode.hw_vlan_strip) 544 printf("on\n"); 545 else 546 printf("off\n"); 547 } 548 549 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 550 printf("Double VLANs stripped: "); 551 if (dev->data->dev_conf.rxmode.hw_vlan_extend) 552 printf("on\n"); 553 else 554 printf("off\n"); 555 } 556 557 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 558 printf("RX IPv4 checksum: "); 559 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 560 printf("on\n"); 561 else 562 printf("off\n"); 563 } 564 565 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 566 printf("RX UDP checksum: "); 567 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 568 printf("on\n"); 569 else 570 printf("off\n"); 571 } 572 573 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 574 printf("RX TCP checksum: "); 575 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 576 printf("on\n"); 577 else 578 printf("off\n"); 579 } 580 581 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 582 printf("RX Outer IPv4 checksum: on"); 583 584 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 585 printf("Large receive offload: "); 586 if (dev->data->dev_conf.rxmode.enable_lro) 587 printf("on\n"); 588 else 589 printf("off\n"); 590 } 591 592 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 593 printf("VLAN insert: "); 594 if (ports[port_id].tx_ol_flags & 595 TESTPMD_TX_OFFLOAD_INSERT_VLAN) 596 printf("on\n"); 597 else 598 printf("off\n"); 599 } 600 601 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 602 printf("Double VLANs insert: "); 603 if (ports[port_id].tx_ol_flags & 604 TESTPMD_TX_OFFLOAD_INSERT_QINQ) 605 printf("on\n"); 606 else 607 printf("off\n"); 608 } 609 610 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 611 printf("TX IPv4 checksum: "); 612 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 613 printf("on\n"); 614 else 615 printf("off\n"); 616 } 617 618 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 619 printf("TX UDP checksum: "); 620 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) 621 printf("on\n"); 622 else 623 printf("off\n"); 624 } 625 626 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 627 printf("TX TCP checksum: "); 628 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) 629 printf("on\n"); 630 else 631 printf("off\n"); 632 } 633 634 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 635 printf("TX SCTP checksum: "); 636 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) 637 printf("on\n"); 638 else 639 printf("off\n"); 640 } 641 642 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 643 printf("TX Outer IPv4 checksum: "); 644 if (ports[port_id].tx_ol_flags & 645 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 646 printf("on\n"); 647 else 648 printf("off\n"); 649 } 650 651 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 652 printf("TX TCP segmentation: "); 653 if (ports[port_id].tso_segsz != 0) 654 printf("on\n"); 655 else 656 printf("off\n"); 657 } 658 659 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 660 printf("TX UDP segmentation: "); 661 if (ports[port_id].tso_segsz != 0) 662 printf("on\n"); 663 else 664 printf("off\n"); 665 } 666 667 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 668 printf("TSO for VXLAN tunnel packet: "); 669 if (ports[port_id].tunnel_tso_segsz) 670 printf("on\n"); 671 else 672 printf("off\n"); 673 } 674 675 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 676 printf("TSO for GRE tunnel packet: "); 677 if (ports[port_id].tunnel_tso_segsz) 678 printf("on\n"); 679 else 680 printf("off\n"); 681 } 682 683 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 684 printf("TSO for IPIP tunnel packet: "); 685 if (ports[port_id].tunnel_tso_segsz) 686 printf("on\n"); 687 else 688 printf("off\n"); 689 } 690 691 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 692 printf("TSO for GENEVE tunnel packet: "); 693 if (ports[port_id].tunnel_tso_segsz) 694 printf("on\n"); 695 else 696 printf("off\n"); 697 } 698 699 } 700 701 int 702 port_id_is_invalid(portid_t port_id, enum print_warning warning) 703 { 704 if (port_id == (portid_t)RTE_PORT_ALL) 705 return 0; 706 707 if (rte_eth_dev_is_valid_port(port_id)) 708 return 0; 709 710 if (warning == ENABLED_WARN) 711 printf("Invalid port %d\n", port_id); 712 713 return 1; 714 } 715 716 static int 717 vlan_id_is_invalid(uint16_t vlan_id) 718 { 719 if (vlan_id < 4096) 720 return 0; 721 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 722 return 1; 723 } 724 725 static int 726 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 727 { 728 uint64_t pci_len; 729 730 if (reg_off & 0x3) { 731 printf("Port register offset 0x%X not aligned on a 4-byte " 732 "boundary\n", 733 (unsigned)reg_off); 734 return 1; 735 } 736 pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; 737 if (reg_off >= pci_len) { 738 printf("Port %d: register offset %u (0x%X) out of port PCI " 739 "resource (length=%"PRIu64")\n", 740 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 741 return 1; 742 } 743 return 0; 744 } 745 746 static int 747 reg_bit_pos_is_invalid(uint8_t bit_pos) 748 { 749 if (bit_pos <= 31) 750 return 0; 751 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 752 return 1; 753 } 754 755 #define display_port_and_reg_off(port_id, reg_off) \ 756 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 757 758 static inline void 759 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 760 { 761 display_port_and_reg_off(port_id, (unsigned)reg_off); 762 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 763 } 764 765 void 766 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 767 { 768 uint32_t reg_v; 769 770 771 if (port_id_is_invalid(port_id, ENABLED_WARN)) 772 return; 773 if (port_reg_off_is_invalid(port_id, reg_off)) 774 return; 775 if (reg_bit_pos_is_invalid(bit_x)) 776 return; 777 reg_v = port_id_pci_reg_read(port_id, reg_off); 778 display_port_and_reg_off(port_id, (unsigned)reg_off); 779 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 780 } 781 782 void 783 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 784 uint8_t bit1_pos, uint8_t bit2_pos) 785 { 786 uint32_t reg_v; 787 uint8_t l_bit; 788 uint8_t h_bit; 789 790 if (port_id_is_invalid(port_id, ENABLED_WARN)) 791 return; 792 if (port_reg_off_is_invalid(port_id, reg_off)) 793 return; 794 if (reg_bit_pos_is_invalid(bit1_pos)) 795 return; 796 if (reg_bit_pos_is_invalid(bit2_pos)) 797 return; 798 if (bit1_pos > bit2_pos) 799 l_bit = bit2_pos, h_bit = bit1_pos; 800 else 801 l_bit = bit1_pos, h_bit = bit2_pos; 802 803 reg_v = port_id_pci_reg_read(port_id, reg_off); 804 reg_v >>= l_bit; 805 if (h_bit < 31) 806 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 807 display_port_and_reg_off(port_id, (unsigned)reg_off); 808 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 809 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 810 } 811 812 void 813 port_reg_display(portid_t port_id, uint32_t reg_off) 814 { 815 uint32_t reg_v; 816 817 if (port_id_is_invalid(port_id, ENABLED_WARN)) 818 return; 819 if (port_reg_off_is_invalid(port_id, reg_off)) 820 return; 821 reg_v = port_id_pci_reg_read(port_id, reg_off); 822 display_port_reg_value(port_id, reg_off, reg_v); 823 } 824 825 void 826 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 827 uint8_t bit_v) 828 { 829 uint32_t reg_v; 830 831 if (port_id_is_invalid(port_id, ENABLED_WARN)) 832 return; 833 if (port_reg_off_is_invalid(port_id, reg_off)) 834 return; 835 if (reg_bit_pos_is_invalid(bit_pos)) 836 return; 837 if (bit_v > 1) { 838 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 839 return; 840 } 841 reg_v = port_id_pci_reg_read(port_id, reg_off); 842 if (bit_v == 0) 843 reg_v &= ~(1 << bit_pos); 844 else 845 reg_v |= (1 << bit_pos); 846 port_id_pci_reg_write(port_id, reg_off, reg_v); 847 display_port_reg_value(port_id, reg_off, reg_v); 848 } 849 850 void 851 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 852 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 853 { 854 uint32_t max_v; 855 uint32_t reg_v; 856 uint8_t l_bit; 857 uint8_t h_bit; 858 859 if (port_id_is_invalid(port_id, ENABLED_WARN)) 860 return; 861 if (port_reg_off_is_invalid(port_id, reg_off)) 862 return; 863 if (reg_bit_pos_is_invalid(bit1_pos)) 864 return; 865 if (reg_bit_pos_is_invalid(bit2_pos)) 866 return; 867 if (bit1_pos > bit2_pos) 868 l_bit = bit2_pos, h_bit = bit1_pos; 869 else 870 l_bit = bit1_pos, h_bit = bit2_pos; 871 872 if ((h_bit - l_bit) < 31) 873 max_v = (1 << (h_bit - l_bit + 1)) - 1; 874 else 875 max_v = 0xFFFFFFFF; 876 877 if (value > max_v) { 878 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 879 (unsigned)value, (unsigned)value, 880 (unsigned)max_v, (unsigned)max_v); 881 return; 882 } 883 reg_v = port_id_pci_reg_read(port_id, reg_off); 884 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 885 reg_v |= (value << l_bit); /* Set changed bits */ 886 port_id_pci_reg_write(port_id, reg_off, reg_v); 887 display_port_reg_value(port_id, reg_off, reg_v); 888 } 889 890 void 891 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 892 { 893 if (port_id_is_invalid(port_id, ENABLED_WARN)) 894 return; 895 if (port_reg_off_is_invalid(port_id, reg_off)) 896 return; 897 port_id_pci_reg_write(port_id, reg_off, reg_v); 898 display_port_reg_value(port_id, reg_off, reg_v); 899 } 900 901 void 902 port_mtu_set(portid_t port_id, uint16_t mtu) 903 { 904 int diag; 905 906 if (port_id_is_invalid(port_id, ENABLED_WARN)) 907 return; 908 diag = rte_eth_dev_set_mtu(port_id, mtu); 909 if (diag == 0) 910 return; 911 printf("Set MTU failed. diag=%d\n", diag); 912 } 913 914 /* Generic flow management functions. */ 915 916 /** Generate flow_item[] entry. */ 917 #define MK_FLOW_ITEM(t, s) \ 918 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 919 .name = # t, \ 920 .size = s, \ 921 } 922 923 /** Information about known flow pattern items. */ 924 static const struct { 925 const char *name; 926 size_t size; 927 } flow_item[] = { 928 MK_FLOW_ITEM(END, 0), 929 MK_FLOW_ITEM(VOID, 0), 930 MK_FLOW_ITEM(INVERT, 0), 931 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 932 MK_FLOW_ITEM(PF, 0), 933 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 934 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 935 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 936 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 937 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 938 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 939 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 940 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 941 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 942 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 943 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 944 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 945 MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), 946 MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), 947 MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 948 MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 949 MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), 950 }; 951 952 /** Compute storage space needed by item specification. */ 953 static void 954 flow_item_spec_size(const struct rte_flow_item *item, 955 size_t *size, size_t *pad) 956 { 957 if (!item->spec) 958 goto empty; 959 switch (item->type) { 960 union { 961 const struct rte_flow_item_raw *raw; 962 } spec; 963 964 case RTE_FLOW_ITEM_TYPE_RAW: 965 spec.raw = item->spec; 966 *size = offsetof(struct rte_flow_item_raw, pattern) + 967 spec.raw->length * sizeof(*spec.raw->pattern); 968 break; 969 default: 970 empty: 971 *size = 0; 972 break; 973 } 974 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 975 } 976 977 /** Generate flow_action[] entry. */ 978 #define MK_FLOW_ACTION(t, s) \ 979 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 980 .name = # t, \ 981 .size = s, \ 982 } 983 984 /** Information about known flow actions. */ 985 static const struct { 986 const char *name; 987 size_t size; 988 } flow_action[] = { 989 MK_FLOW_ACTION(END, 0), 990 MK_FLOW_ACTION(VOID, 0), 991 MK_FLOW_ACTION(PASSTHRU, 0), 992 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 993 MK_FLOW_ACTION(FLAG, 0), 994 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 995 MK_FLOW_ACTION(DROP, 0), 996 MK_FLOW_ACTION(COUNT, 0), 997 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 998 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 999 MK_FLOW_ACTION(PF, 0), 1000 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1001 }; 1002 1003 /** Compute storage space needed by action configuration. */ 1004 static void 1005 flow_action_conf_size(const struct rte_flow_action *action, 1006 size_t *size, size_t *pad) 1007 { 1008 if (!action->conf) 1009 goto empty; 1010 switch (action->type) { 1011 union { 1012 const struct rte_flow_action_rss *rss; 1013 } conf; 1014 1015 case RTE_FLOW_ACTION_TYPE_RSS: 1016 conf.rss = action->conf; 1017 *size = offsetof(struct rte_flow_action_rss, queue) + 1018 conf.rss->num * sizeof(*conf.rss->queue); 1019 break; 1020 default: 1021 empty: 1022 *size = 0; 1023 break; 1024 } 1025 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1026 } 1027 1028 /** Generate a port_flow entry from attributes/pattern/actions. */ 1029 static struct port_flow * 1030 port_flow_new(const struct rte_flow_attr *attr, 1031 const struct rte_flow_item *pattern, 1032 const struct rte_flow_action *actions) 1033 { 1034 const struct rte_flow_item *item; 1035 const struct rte_flow_action *action; 1036 struct port_flow *pf = NULL; 1037 size_t tmp; 1038 size_t pad; 1039 size_t off1 = 0; 1040 size_t off2 = 0; 1041 int err = ENOTSUP; 1042 1043 store: 1044 item = pattern; 1045 if (pf) 1046 pf->pattern = (void *)&pf->data[off1]; 1047 do { 1048 struct rte_flow_item *dst = NULL; 1049 1050 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1051 !flow_item[item->type].name) 1052 goto notsup; 1053 if (pf) 1054 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1055 off1 += sizeof(*item); 1056 flow_item_spec_size(item, &tmp, &pad); 1057 if (item->spec) { 1058 if (pf) 1059 dst->spec = memcpy(pf->data + off2, 1060 item->spec, tmp); 1061 off2 += tmp + pad; 1062 } 1063 if (item->last) { 1064 if (pf) 1065 dst->last = memcpy(pf->data + off2, 1066 item->last, tmp); 1067 off2 += tmp + pad; 1068 } 1069 if (item->mask) { 1070 if (pf) 1071 dst->mask = memcpy(pf->data + off2, 1072 item->mask, tmp); 1073 off2 += tmp + pad; 1074 } 1075 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1076 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1077 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1078 action = actions; 1079 if (pf) 1080 pf->actions = (void *)&pf->data[off1]; 1081 do { 1082 struct rte_flow_action *dst = NULL; 1083 1084 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1085 !flow_action[action->type].name) 1086 goto notsup; 1087 if (pf) 1088 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1089 off1 += sizeof(*action); 1090 flow_action_conf_size(action, &tmp, &pad); 1091 if (action->conf) { 1092 if (pf) 1093 dst->conf = memcpy(pf->data + off2, 1094 action->conf, tmp); 1095 off2 += tmp + pad; 1096 } 1097 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1098 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1099 if (pf != NULL) 1100 return pf; 1101 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1102 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1103 pf = calloc(1, tmp + off1 + off2); 1104 if (pf == NULL) 1105 err = errno; 1106 else { 1107 *pf = (const struct port_flow){ 1108 .size = tmp + off1 + off2, 1109 .attr = *attr, 1110 }; 1111 tmp -= offsetof(struct port_flow, data); 1112 off2 = tmp + off1; 1113 off1 = tmp; 1114 goto store; 1115 } 1116 notsup: 1117 rte_errno = err; 1118 return NULL; 1119 } 1120 1121 /** Print a message out of a flow error. */ 1122 static int 1123 port_flow_complain(struct rte_flow_error *error) 1124 { 1125 static const char *const errstrlist[] = { 1126 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1127 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1128 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1129 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1130 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1131 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1132 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1133 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1134 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1135 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1136 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1137 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1138 }; 1139 const char *errstr; 1140 char buf[32]; 1141 int err = rte_errno; 1142 1143 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1144 !errstrlist[error->type]) 1145 errstr = "unknown type"; 1146 else 1147 errstr = errstrlist[error->type]; 1148 printf("Caught error type %d (%s): %s%s\n", 1149 error->type, errstr, 1150 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1151 error->cause), buf) : "", 1152 error->message ? error->message : "(no stated reason)"); 1153 return -err; 1154 } 1155 1156 /** Validate flow rule. */ 1157 int 1158 port_flow_validate(portid_t port_id, 1159 const struct rte_flow_attr *attr, 1160 const struct rte_flow_item *pattern, 1161 const struct rte_flow_action *actions) 1162 { 1163 struct rte_flow_error error; 1164 1165 /* Poisoning to make sure PMDs update it in case of error. */ 1166 memset(&error, 0x11, sizeof(error)); 1167 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1168 return port_flow_complain(&error); 1169 printf("Flow rule validated\n"); 1170 return 0; 1171 } 1172 1173 /** Create flow rule. */ 1174 int 1175 port_flow_create(portid_t port_id, 1176 const struct rte_flow_attr *attr, 1177 const struct rte_flow_item *pattern, 1178 const struct rte_flow_action *actions) 1179 { 1180 struct rte_flow *flow; 1181 struct rte_port *port; 1182 struct port_flow *pf; 1183 uint32_t id; 1184 struct rte_flow_error error; 1185 1186 /* Poisoning to make sure PMDs update it in case of error. */ 1187 memset(&error, 0x22, sizeof(error)); 1188 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1189 if (!flow) 1190 return port_flow_complain(&error); 1191 port = &ports[port_id]; 1192 if (port->flow_list) { 1193 if (port->flow_list->id == UINT32_MAX) { 1194 printf("Highest rule ID is already assigned, delete" 1195 " it first"); 1196 rte_flow_destroy(port_id, flow, NULL); 1197 return -ENOMEM; 1198 } 1199 id = port->flow_list->id + 1; 1200 } else 1201 id = 0; 1202 pf = port_flow_new(attr, pattern, actions); 1203 if (!pf) { 1204 int err = rte_errno; 1205 1206 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1207 rte_flow_destroy(port_id, flow, NULL); 1208 return -err; 1209 } 1210 pf->next = port->flow_list; 1211 pf->id = id; 1212 pf->flow = flow; 1213 port->flow_list = pf; 1214 printf("Flow rule #%u created\n", pf->id); 1215 return 0; 1216 } 1217 1218 /** Destroy a number of flow rules. */ 1219 int 1220 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1221 { 1222 struct rte_port *port; 1223 struct port_flow **tmp; 1224 uint32_t c = 0; 1225 int ret = 0; 1226 1227 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1228 port_id == (portid_t)RTE_PORT_ALL) 1229 return -EINVAL; 1230 port = &ports[port_id]; 1231 tmp = &port->flow_list; 1232 while (*tmp) { 1233 uint32_t i; 1234 1235 for (i = 0; i != n; ++i) { 1236 struct rte_flow_error error; 1237 struct port_flow *pf = *tmp; 1238 1239 if (rule[i] != pf->id) 1240 continue; 1241 /* 1242 * Poisoning to make sure PMDs update it in case 1243 * of error. 1244 */ 1245 memset(&error, 0x33, sizeof(error)); 1246 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1247 ret = port_flow_complain(&error); 1248 continue; 1249 } 1250 printf("Flow rule #%u destroyed\n", pf->id); 1251 *tmp = pf->next; 1252 free(pf); 1253 break; 1254 } 1255 if (i == n) 1256 tmp = &(*tmp)->next; 1257 ++c; 1258 } 1259 return ret; 1260 } 1261 1262 /** Remove all flow rules. */ 1263 int 1264 port_flow_flush(portid_t port_id) 1265 { 1266 struct rte_flow_error error; 1267 struct rte_port *port; 1268 int ret = 0; 1269 1270 /* Poisoning to make sure PMDs update it in case of error. */ 1271 memset(&error, 0x44, sizeof(error)); 1272 if (rte_flow_flush(port_id, &error)) { 1273 ret = port_flow_complain(&error); 1274 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1275 port_id == (portid_t)RTE_PORT_ALL) 1276 return ret; 1277 } 1278 port = &ports[port_id]; 1279 while (port->flow_list) { 1280 struct port_flow *pf = port->flow_list->next; 1281 1282 free(port->flow_list); 1283 port->flow_list = pf; 1284 } 1285 return ret; 1286 } 1287 1288 /** Query a flow rule. */ 1289 int 1290 port_flow_query(portid_t port_id, uint32_t rule, 1291 enum rte_flow_action_type action) 1292 { 1293 struct rte_flow_error error; 1294 struct rte_port *port; 1295 struct port_flow *pf; 1296 const char *name; 1297 union { 1298 struct rte_flow_query_count count; 1299 } query; 1300 1301 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1302 port_id == (portid_t)RTE_PORT_ALL) 1303 return -EINVAL; 1304 port = &ports[port_id]; 1305 for (pf = port->flow_list; pf; pf = pf->next) 1306 if (pf->id == rule) 1307 break; 1308 if (!pf) { 1309 printf("Flow rule #%u not found\n", rule); 1310 return -ENOENT; 1311 } 1312 if ((unsigned int)action >= RTE_DIM(flow_action) || 1313 !flow_action[action].name) 1314 name = "unknown"; 1315 else 1316 name = flow_action[action].name; 1317 switch (action) { 1318 case RTE_FLOW_ACTION_TYPE_COUNT: 1319 break; 1320 default: 1321 printf("Cannot query action type %d (%s)\n", action, name); 1322 return -ENOTSUP; 1323 } 1324 /* Poisoning to make sure PMDs update it in case of error. */ 1325 memset(&error, 0x55, sizeof(error)); 1326 memset(&query, 0, sizeof(query)); 1327 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1328 return port_flow_complain(&error); 1329 switch (action) { 1330 case RTE_FLOW_ACTION_TYPE_COUNT: 1331 printf("%s:\n" 1332 " hits_set: %u\n" 1333 " bytes_set: %u\n" 1334 " hits: %" PRIu64 "\n" 1335 " bytes: %" PRIu64 "\n", 1336 name, 1337 query.count.hits_set, 1338 query.count.bytes_set, 1339 query.count.hits, 1340 query.count.bytes); 1341 break; 1342 default: 1343 printf("Cannot display result for action type %d (%s)\n", 1344 action, name); 1345 break; 1346 } 1347 return 0; 1348 } 1349 1350 /** List flow rules. */ 1351 void 1352 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1353 { 1354 struct rte_port *port; 1355 struct port_flow *pf; 1356 struct port_flow *list = NULL; 1357 uint32_t i; 1358 1359 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1360 port_id == (portid_t)RTE_PORT_ALL) 1361 return; 1362 port = &ports[port_id]; 1363 if (!port->flow_list) 1364 return; 1365 /* Sort flows by group, priority and ID. */ 1366 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1367 struct port_flow **tmp; 1368 1369 if (n) { 1370 /* Filter out unwanted groups. */ 1371 for (i = 0; i != n; ++i) 1372 if (pf->attr.group == group[i]) 1373 break; 1374 if (i == n) 1375 continue; 1376 } 1377 tmp = &list; 1378 while (*tmp && 1379 (pf->attr.group > (*tmp)->attr.group || 1380 (pf->attr.group == (*tmp)->attr.group && 1381 pf->attr.priority > (*tmp)->attr.priority) || 1382 (pf->attr.group == (*tmp)->attr.group && 1383 pf->attr.priority == (*tmp)->attr.priority && 1384 pf->id > (*tmp)->id))) 1385 tmp = &(*tmp)->tmp; 1386 pf->tmp = *tmp; 1387 *tmp = pf; 1388 } 1389 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1390 for (pf = list; pf != NULL; pf = pf->tmp) { 1391 const struct rte_flow_item *item = pf->pattern; 1392 const struct rte_flow_action *action = pf->actions; 1393 1394 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1395 pf->id, 1396 pf->attr.group, 1397 pf->attr.priority, 1398 pf->attr.ingress ? 'i' : '-', 1399 pf->attr.egress ? 'e' : '-'); 1400 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1401 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1402 printf("%s ", flow_item[item->type].name); 1403 ++item; 1404 } 1405 printf("=>"); 1406 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1407 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1408 printf(" %s", flow_action[action->type].name); 1409 ++action; 1410 } 1411 printf("\n"); 1412 } 1413 } 1414 1415 /** Restrict ingress traffic to the defined flow rules. */ 1416 int 1417 port_flow_isolate(portid_t port_id, int set) 1418 { 1419 struct rte_flow_error error; 1420 1421 /* Poisoning to make sure PMDs update it in case of error. */ 1422 memset(&error, 0x66, sizeof(error)); 1423 if (rte_flow_isolate(port_id, set, &error)) 1424 return port_flow_complain(&error); 1425 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1426 port_id, 1427 set ? "now restricted" : "not restricted anymore"); 1428 return 0; 1429 } 1430 1431 /* 1432 * RX/TX ring descriptors display functions. 1433 */ 1434 int 1435 rx_queue_id_is_invalid(queueid_t rxq_id) 1436 { 1437 if (rxq_id < nb_rxq) 1438 return 0; 1439 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1440 return 1; 1441 } 1442 1443 int 1444 tx_queue_id_is_invalid(queueid_t txq_id) 1445 { 1446 if (txq_id < nb_txq) 1447 return 0; 1448 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1449 return 1; 1450 } 1451 1452 static int 1453 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1454 { 1455 if (rxdesc_id < nb_rxd) 1456 return 0; 1457 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1458 rxdesc_id, nb_rxd); 1459 return 1; 1460 } 1461 1462 static int 1463 tx_desc_id_is_invalid(uint16_t txdesc_id) 1464 { 1465 if (txdesc_id < nb_txd) 1466 return 0; 1467 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1468 txdesc_id, nb_txd); 1469 return 1; 1470 } 1471 1472 static const struct rte_memzone * 1473 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id) 1474 { 1475 char mz_name[RTE_MEMZONE_NAMESIZE]; 1476 const struct rte_memzone *mz; 1477 1478 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1479 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1480 mz = rte_memzone_lookup(mz_name); 1481 if (mz == NULL) 1482 printf("%s ring memory zoneof (port %d, queue %d) not" 1483 "found (zone name = %s\n", 1484 ring_name, port_id, q_id, mz_name); 1485 return mz; 1486 } 1487 1488 union igb_ring_dword { 1489 uint64_t dword; 1490 struct { 1491 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1492 uint32_t lo; 1493 uint32_t hi; 1494 #else 1495 uint32_t hi; 1496 uint32_t lo; 1497 #endif 1498 } words; 1499 }; 1500 1501 struct igb_ring_desc_32_bytes { 1502 union igb_ring_dword lo_dword; 1503 union igb_ring_dword hi_dword; 1504 union igb_ring_dword resv1; 1505 union igb_ring_dword resv2; 1506 }; 1507 1508 struct igb_ring_desc_16_bytes { 1509 union igb_ring_dword lo_dword; 1510 union igb_ring_dword hi_dword; 1511 }; 1512 1513 static void 1514 ring_rxd_display_dword(union igb_ring_dword dword) 1515 { 1516 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1517 (unsigned)dword.words.hi); 1518 } 1519 1520 static void 1521 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1522 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1523 uint8_t port_id, 1524 #else 1525 __rte_unused uint8_t port_id, 1526 #endif 1527 uint16_t desc_id) 1528 { 1529 struct igb_ring_desc_16_bytes *ring = 1530 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1531 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1532 struct rte_eth_dev_info dev_info; 1533 1534 memset(&dev_info, 0, sizeof(dev_info)); 1535 rte_eth_dev_info_get(port_id, &dev_info); 1536 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1537 /* 32 bytes RX descriptor, i40e only */ 1538 struct igb_ring_desc_32_bytes *ring = 1539 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1540 ring[desc_id].lo_dword.dword = 1541 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1542 ring_rxd_display_dword(ring[desc_id].lo_dword); 1543 ring[desc_id].hi_dword.dword = 1544 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1545 ring_rxd_display_dword(ring[desc_id].hi_dword); 1546 ring[desc_id].resv1.dword = 1547 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1548 ring_rxd_display_dword(ring[desc_id].resv1); 1549 ring[desc_id].resv2.dword = 1550 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1551 ring_rxd_display_dword(ring[desc_id].resv2); 1552 1553 return; 1554 } 1555 #endif 1556 /* 16 bytes RX descriptor */ 1557 ring[desc_id].lo_dword.dword = 1558 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1559 ring_rxd_display_dword(ring[desc_id].lo_dword); 1560 ring[desc_id].hi_dword.dword = 1561 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1562 ring_rxd_display_dword(ring[desc_id].hi_dword); 1563 } 1564 1565 static void 1566 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1567 { 1568 struct igb_ring_desc_16_bytes *ring; 1569 struct igb_ring_desc_16_bytes txd; 1570 1571 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1572 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1573 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1574 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1575 (unsigned)txd.lo_dword.words.lo, 1576 (unsigned)txd.lo_dword.words.hi, 1577 (unsigned)txd.hi_dword.words.lo, 1578 (unsigned)txd.hi_dword.words.hi); 1579 } 1580 1581 void 1582 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1583 { 1584 const struct rte_memzone *rx_mz; 1585 1586 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1587 return; 1588 if (rx_queue_id_is_invalid(rxq_id)) 1589 return; 1590 if (rx_desc_id_is_invalid(rxd_id)) 1591 return; 1592 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1593 if (rx_mz == NULL) 1594 return; 1595 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1596 } 1597 1598 void 1599 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1600 { 1601 const struct rte_memzone *tx_mz; 1602 1603 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1604 return; 1605 if (tx_queue_id_is_invalid(txq_id)) 1606 return; 1607 if (tx_desc_id_is_invalid(txd_id)) 1608 return; 1609 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1610 if (tx_mz == NULL) 1611 return; 1612 ring_tx_descriptor_display(tx_mz, txd_id); 1613 } 1614 1615 void 1616 fwd_lcores_config_display(void) 1617 { 1618 lcoreid_t lc_id; 1619 1620 printf("List of forwarding lcores:"); 1621 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1622 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1623 printf("\n"); 1624 } 1625 void 1626 rxtx_config_display(void) 1627 { 1628 printf(" %s packet forwarding%s - CRC stripping %s - " 1629 "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, 1630 retry_enabled == 0 ? "" : " with retry", 1631 rx_mode.hw_strip_crc ? "enabled" : "disabled", 1632 nb_pkt_per_burst); 1633 1634 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1635 printf(" packet len=%u - nb packet segments=%d\n", 1636 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1637 1638 struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf; 1639 struct rte_eth_txconf *tx_conf = &ports[0].tx_conf; 1640 1641 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1642 nb_fwd_lcores, nb_fwd_ports); 1643 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1644 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1645 printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1646 rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh, 1647 rx_conf->rx_thresh.wthresh); 1648 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1649 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1650 printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1651 tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh, 1652 tx_conf->tx_thresh.wthresh); 1653 printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n", 1654 tx_conf->tx_rs_thresh, tx_conf->txq_flags); 1655 } 1656 1657 void 1658 port_rss_reta_info(portid_t port_id, 1659 struct rte_eth_rss_reta_entry64 *reta_conf, 1660 uint16_t nb_entries) 1661 { 1662 uint16_t i, idx, shift; 1663 int ret; 1664 1665 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1666 return; 1667 1668 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1669 if (ret != 0) { 1670 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1671 return; 1672 } 1673 1674 for (i = 0; i < nb_entries; i++) { 1675 idx = i / RTE_RETA_GROUP_SIZE; 1676 shift = i % RTE_RETA_GROUP_SIZE; 1677 if (!(reta_conf[idx].mask & (1ULL << shift))) 1678 continue; 1679 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1680 i, reta_conf[idx].reta[shift]); 1681 } 1682 } 1683 1684 /* 1685 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1686 * key of the port. 1687 */ 1688 void 1689 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1690 { 1691 struct rte_eth_rss_conf rss_conf; 1692 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1693 uint64_t rss_hf; 1694 uint8_t i; 1695 int diag; 1696 struct rte_eth_dev_info dev_info; 1697 uint8_t hash_key_size; 1698 1699 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1700 return; 1701 1702 memset(&dev_info, 0, sizeof(dev_info)); 1703 rte_eth_dev_info_get(port_id, &dev_info); 1704 if (dev_info.hash_key_size > 0 && 1705 dev_info.hash_key_size <= sizeof(rss_key)) 1706 hash_key_size = dev_info.hash_key_size; 1707 else { 1708 printf("dev_info did not provide a valid hash key size\n"); 1709 return; 1710 } 1711 1712 rss_conf.rss_hf = 0; 1713 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1714 if (!strcmp(rss_info, rss_type_table[i].str)) 1715 rss_conf.rss_hf = rss_type_table[i].rss_type; 1716 } 1717 1718 /* Get RSS hash key if asked to display it */ 1719 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1720 rss_conf.rss_key_len = hash_key_size; 1721 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1722 if (diag != 0) { 1723 switch (diag) { 1724 case -ENODEV: 1725 printf("port index %d invalid\n", port_id); 1726 break; 1727 case -ENOTSUP: 1728 printf("operation not supported by device\n"); 1729 break; 1730 default: 1731 printf("operation failed - diag=%d\n", diag); 1732 break; 1733 } 1734 return; 1735 } 1736 rss_hf = rss_conf.rss_hf; 1737 if (rss_hf == 0) { 1738 printf("RSS disabled\n"); 1739 return; 1740 } 1741 printf("RSS functions:\n "); 1742 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1743 if (rss_hf & rss_type_table[i].rss_type) 1744 printf("%s ", rss_type_table[i].str); 1745 } 1746 printf("\n"); 1747 if (!show_rss_key) 1748 return; 1749 printf("RSS key:\n"); 1750 for (i = 0; i < hash_key_size; i++) 1751 printf("%02X", rss_key[i]); 1752 printf("\n"); 1753 } 1754 1755 void 1756 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1757 uint hash_key_len) 1758 { 1759 struct rte_eth_rss_conf rss_conf; 1760 int diag; 1761 unsigned int i; 1762 1763 rss_conf.rss_key = NULL; 1764 rss_conf.rss_key_len = hash_key_len; 1765 rss_conf.rss_hf = 0; 1766 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1767 if (!strcmp(rss_type_table[i].str, rss_type)) 1768 rss_conf.rss_hf = rss_type_table[i].rss_type; 1769 } 1770 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1771 if (diag == 0) { 1772 rss_conf.rss_key = hash_key; 1773 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1774 } 1775 if (diag == 0) 1776 return; 1777 1778 switch (diag) { 1779 case -ENODEV: 1780 printf("port index %d invalid\n", port_id); 1781 break; 1782 case -ENOTSUP: 1783 printf("operation not supported by device\n"); 1784 break; 1785 default: 1786 printf("operation failed - diag=%d\n", diag); 1787 break; 1788 } 1789 } 1790 1791 /* 1792 * Setup forwarding configuration for each logical core. 1793 */ 1794 static void 1795 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1796 { 1797 streamid_t nb_fs_per_lcore; 1798 streamid_t nb_fs; 1799 streamid_t sm_id; 1800 lcoreid_t nb_extra; 1801 lcoreid_t nb_fc; 1802 lcoreid_t nb_lc; 1803 lcoreid_t lc_id; 1804 1805 nb_fs = cfg->nb_fwd_streams; 1806 nb_fc = cfg->nb_fwd_lcores; 1807 if (nb_fs <= nb_fc) { 1808 nb_fs_per_lcore = 1; 1809 nb_extra = 0; 1810 } else { 1811 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1812 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1813 } 1814 1815 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1816 sm_id = 0; 1817 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1818 fwd_lcores[lc_id]->stream_idx = sm_id; 1819 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1820 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1821 } 1822 1823 /* 1824 * Assign extra remaining streams, if any. 1825 */ 1826 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1827 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1828 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1829 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1830 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1831 } 1832 } 1833 1834 static void 1835 simple_fwd_config_setup(void) 1836 { 1837 portid_t i; 1838 portid_t j; 1839 portid_t inc = 2; 1840 1841 if (port_topology == PORT_TOPOLOGY_CHAINED || 1842 port_topology == PORT_TOPOLOGY_LOOP) { 1843 inc = 1; 1844 } else if (nb_fwd_ports % 2) { 1845 printf("\nWarning! Cannot handle an odd number of ports " 1846 "with the current port topology. Configuration " 1847 "must be changed to have an even number of ports, " 1848 "or relaunch application with " 1849 "--port-topology=chained\n\n"); 1850 } 1851 1852 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1853 cur_fwd_config.nb_fwd_streams = 1854 (streamid_t) cur_fwd_config.nb_fwd_ports; 1855 1856 /* reinitialize forwarding streams */ 1857 init_fwd_streams(); 1858 1859 /* 1860 * In the simple forwarding test, the number of forwarding cores 1861 * must be lower or equal to the number of forwarding ports. 1862 */ 1863 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1864 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1865 cur_fwd_config.nb_fwd_lcores = 1866 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1867 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1868 1869 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { 1870 if (port_topology != PORT_TOPOLOGY_LOOP) 1871 j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); 1872 else 1873 j = i; 1874 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1875 fwd_streams[i]->rx_queue = 0; 1876 fwd_streams[i]->tx_port = fwd_ports_ids[j]; 1877 fwd_streams[i]->tx_queue = 0; 1878 fwd_streams[i]->peer_addr = j; 1879 fwd_streams[i]->retry_enabled = retry_enabled; 1880 1881 if (port_topology == PORT_TOPOLOGY_PAIRED) { 1882 fwd_streams[j]->rx_port = fwd_ports_ids[j]; 1883 fwd_streams[j]->rx_queue = 0; 1884 fwd_streams[j]->tx_port = fwd_ports_ids[i]; 1885 fwd_streams[j]->tx_queue = 0; 1886 fwd_streams[j]->peer_addr = i; 1887 fwd_streams[j]->retry_enabled = retry_enabled; 1888 } 1889 } 1890 } 1891 1892 /** 1893 * For the RSS forwarding test all streams distributed over lcores. Each stream 1894 * being composed of a RX queue to poll on a RX port for input messages, 1895 * associated with a TX queue of a TX port where to send forwarded packets. 1896 * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" 1897 * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two 1898 * following rules: 1899 * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd 1900 * - TxQl = RxQj 1901 */ 1902 static void 1903 rss_fwd_config_setup(void) 1904 { 1905 portid_t rxp; 1906 portid_t txp; 1907 queueid_t rxq; 1908 queueid_t nb_q; 1909 streamid_t sm_id; 1910 1911 nb_q = nb_rxq; 1912 if (nb_q > nb_txq) 1913 nb_q = nb_txq; 1914 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1915 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1916 cur_fwd_config.nb_fwd_streams = 1917 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1918 1919 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1920 cur_fwd_config.nb_fwd_lcores = 1921 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1922 1923 /* reinitialize forwarding streams */ 1924 init_fwd_streams(); 1925 1926 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1927 rxp = 0; rxq = 0; 1928 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1929 struct fwd_stream *fs; 1930 1931 fs = fwd_streams[sm_id]; 1932 1933 if ((rxp & 0x1) == 0) 1934 txp = (portid_t) (rxp + 1); 1935 else 1936 txp = (portid_t) (rxp - 1); 1937 /* 1938 * if we are in loopback, simply send stuff out through the 1939 * ingress port 1940 */ 1941 if (port_topology == PORT_TOPOLOGY_LOOP) 1942 txp = rxp; 1943 1944 fs->rx_port = fwd_ports_ids[rxp]; 1945 fs->rx_queue = rxq; 1946 fs->tx_port = fwd_ports_ids[txp]; 1947 fs->tx_queue = rxq; 1948 fs->peer_addr = fs->tx_port; 1949 fs->retry_enabled = retry_enabled; 1950 rxq = (queueid_t) (rxq + 1); 1951 if (rxq < nb_q) 1952 continue; 1953 /* 1954 * rxq == nb_q 1955 * Restart from RX queue 0 on next RX port 1956 */ 1957 rxq = 0; 1958 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 1959 rxp = (portid_t) 1960 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 1961 else 1962 rxp = (portid_t) (rxp + 1); 1963 } 1964 } 1965 1966 /** 1967 * For the DCB forwarding test, each core is assigned on each traffic class. 1968 * 1969 * Each core is assigned a multi-stream, each stream being composed of 1970 * a RX queue to poll on a RX port for input messages, associated with 1971 * a TX queue of a TX port where to send forwarded packets. All RX and 1972 * TX queues are mapping to the same traffic class. 1973 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 1974 * the same core 1975 */ 1976 static void 1977 dcb_fwd_config_setup(void) 1978 { 1979 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 1980 portid_t txp, rxp = 0; 1981 queueid_t txq, rxq = 0; 1982 lcoreid_t lc_id; 1983 uint16_t nb_rx_queue, nb_tx_queue; 1984 uint16_t i, j, k, sm_id = 0; 1985 uint8_t tc = 0; 1986 1987 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1988 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1989 cur_fwd_config.nb_fwd_streams = 1990 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 1991 1992 /* reinitialize forwarding streams */ 1993 init_fwd_streams(); 1994 sm_id = 0; 1995 txp = 1; 1996 /* get the dcb info on the first RX and TX ports */ 1997 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 1998 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 1999 2000 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2001 fwd_lcores[lc_id]->stream_nb = 0; 2002 fwd_lcores[lc_id]->stream_idx = sm_id; 2003 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2004 /* if the nb_queue is zero, means this tc is 2005 * not enabled on the POOL 2006 */ 2007 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2008 break; 2009 k = fwd_lcores[lc_id]->stream_nb + 2010 fwd_lcores[lc_id]->stream_idx; 2011 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2012 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2013 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2014 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2015 for (j = 0; j < nb_rx_queue; j++) { 2016 struct fwd_stream *fs; 2017 2018 fs = fwd_streams[k + j]; 2019 fs->rx_port = fwd_ports_ids[rxp]; 2020 fs->rx_queue = rxq + j; 2021 fs->tx_port = fwd_ports_ids[txp]; 2022 fs->tx_queue = txq + j % nb_tx_queue; 2023 fs->peer_addr = fs->tx_port; 2024 fs->retry_enabled = retry_enabled; 2025 } 2026 fwd_lcores[lc_id]->stream_nb += 2027 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2028 } 2029 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2030 2031 tc++; 2032 if (tc < rxp_dcb_info.nb_tcs) 2033 continue; 2034 /* Restart from TC 0 on next RX port */ 2035 tc = 0; 2036 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2037 rxp = (portid_t) 2038 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2039 else 2040 rxp++; 2041 if (rxp >= nb_fwd_ports) 2042 return; 2043 /* get the dcb information on next RX and TX ports */ 2044 if ((rxp & 0x1) == 0) 2045 txp = (portid_t) (rxp + 1); 2046 else 2047 txp = (portid_t) (rxp - 1); 2048 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2049 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2050 } 2051 } 2052 2053 static void 2054 icmp_echo_config_setup(void) 2055 { 2056 portid_t rxp; 2057 queueid_t rxq; 2058 lcoreid_t lc_id; 2059 uint16_t sm_id; 2060 2061 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2062 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2063 (nb_txq * nb_fwd_ports); 2064 else 2065 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2066 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2067 cur_fwd_config.nb_fwd_streams = 2068 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2069 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2070 cur_fwd_config.nb_fwd_lcores = 2071 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2072 if (verbose_level > 0) { 2073 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2074 __FUNCTION__, 2075 cur_fwd_config.nb_fwd_lcores, 2076 cur_fwd_config.nb_fwd_ports, 2077 cur_fwd_config.nb_fwd_streams); 2078 } 2079 2080 /* reinitialize forwarding streams */ 2081 init_fwd_streams(); 2082 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2083 rxp = 0; rxq = 0; 2084 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2085 if (verbose_level > 0) 2086 printf(" core=%d: \n", lc_id); 2087 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2088 struct fwd_stream *fs; 2089 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2090 fs->rx_port = fwd_ports_ids[rxp]; 2091 fs->rx_queue = rxq; 2092 fs->tx_port = fs->rx_port; 2093 fs->tx_queue = rxq; 2094 fs->peer_addr = fs->tx_port; 2095 fs->retry_enabled = retry_enabled; 2096 if (verbose_level > 0) 2097 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2098 sm_id, fs->rx_port, fs->rx_queue, 2099 fs->tx_queue); 2100 rxq = (queueid_t) (rxq + 1); 2101 if (rxq == nb_rxq) { 2102 rxq = 0; 2103 rxp = (portid_t) (rxp + 1); 2104 } 2105 } 2106 } 2107 } 2108 2109 void 2110 fwd_config_setup(void) 2111 { 2112 cur_fwd_config.fwd_eng = cur_fwd_eng; 2113 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2114 icmp_echo_config_setup(); 2115 return; 2116 } 2117 if ((nb_rxq > 1) && (nb_txq > 1)){ 2118 if (dcb_config) 2119 dcb_fwd_config_setup(); 2120 else 2121 rss_fwd_config_setup(); 2122 } 2123 else 2124 simple_fwd_config_setup(); 2125 } 2126 2127 void 2128 pkt_fwd_config_display(struct fwd_config *cfg) 2129 { 2130 struct fwd_stream *fs; 2131 lcoreid_t lc_id; 2132 streamid_t sm_id; 2133 2134 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2135 "NUMA support %s, MP over anonymous pages %s\n", 2136 cfg->fwd_eng->fwd_mode_name, 2137 retry_enabled == 0 ? "" : " with retry", 2138 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2139 numa_support == 1 ? "enabled" : "disabled", 2140 mp_anon != 0 ? "enabled" : "disabled"); 2141 2142 if (retry_enabled) 2143 printf("TX retry num: %u, delay between TX retries: %uus\n", 2144 burst_tx_retry_num, burst_tx_delay_time); 2145 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2146 printf("Logical Core %u (socket %u) forwards packets on " 2147 "%d streams:", 2148 fwd_lcores_cpuids[lc_id], 2149 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2150 fwd_lcores[lc_id]->stream_nb); 2151 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2152 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2153 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2154 "P=%d/Q=%d (socket %u) ", 2155 fs->rx_port, fs->rx_queue, 2156 ports[fs->rx_port].socket_id, 2157 fs->tx_port, fs->tx_queue, 2158 ports[fs->tx_port].socket_id); 2159 print_ethaddr("peer=", 2160 &peer_eth_addrs[fs->peer_addr]); 2161 } 2162 printf("\n"); 2163 } 2164 printf("\n"); 2165 } 2166 2167 int 2168 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2169 { 2170 unsigned int i; 2171 unsigned int lcore_cpuid; 2172 int record_now; 2173 2174 record_now = 0; 2175 again: 2176 for (i = 0; i < nb_lc; i++) { 2177 lcore_cpuid = lcorelist[i]; 2178 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2179 printf("lcore %u not enabled\n", lcore_cpuid); 2180 return -1; 2181 } 2182 if (lcore_cpuid == rte_get_master_lcore()) { 2183 printf("lcore %u cannot be masked on for running " 2184 "packet forwarding, which is the master lcore " 2185 "and reserved for command line parsing only\n", 2186 lcore_cpuid); 2187 return -1; 2188 } 2189 if (record_now) 2190 fwd_lcores_cpuids[i] = lcore_cpuid; 2191 } 2192 if (record_now == 0) { 2193 record_now = 1; 2194 goto again; 2195 } 2196 nb_cfg_lcores = (lcoreid_t) nb_lc; 2197 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2198 printf("previous number of forwarding cores %u - changed to " 2199 "number of configured cores %u\n", 2200 (unsigned int) nb_fwd_lcores, nb_lc); 2201 nb_fwd_lcores = (lcoreid_t) nb_lc; 2202 } 2203 2204 return 0; 2205 } 2206 2207 int 2208 set_fwd_lcores_mask(uint64_t lcoremask) 2209 { 2210 unsigned int lcorelist[64]; 2211 unsigned int nb_lc; 2212 unsigned int i; 2213 2214 if (lcoremask == 0) { 2215 printf("Invalid NULL mask of cores\n"); 2216 return -1; 2217 } 2218 nb_lc = 0; 2219 for (i = 0; i < 64; i++) { 2220 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2221 continue; 2222 lcorelist[nb_lc++] = i; 2223 } 2224 return set_fwd_lcores_list(lcorelist, nb_lc); 2225 } 2226 2227 void 2228 set_fwd_lcores_number(uint16_t nb_lc) 2229 { 2230 if (nb_lc > nb_cfg_lcores) { 2231 printf("nb fwd cores %u > %u (max. number of configured " 2232 "lcores) - ignored\n", 2233 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2234 return; 2235 } 2236 nb_fwd_lcores = (lcoreid_t) nb_lc; 2237 printf("Number of forwarding cores set to %u\n", 2238 (unsigned int) nb_fwd_lcores); 2239 } 2240 2241 void 2242 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2243 { 2244 unsigned int i; 2245 portid_t port_id; 2246 int record_now; 2247 2248 record_now = 0; 2249 again: 2250 for (i = 0; i < nb_pt; i++) { 2251 port_id = (portid_t) portlist[i]; 2252 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2253 return; 2254 if (record_now) 2255 fwd_ports_ids[i] = port_id; 2256 } 2257 if (record_now == 0) { 2258 record_now = 1; 2259 goto again; 2260 } 2261 nb_cfg_ports = (portid_t) nb_pt; 2262 if (nb_fwd_ports != (portid_t) nb_pt) { 2263 printf("previous number of forwarding ports %u - changed to " 2264 "number of configured ports %u\n", 2265 (unsigned int) nb_fwd_ports, nb_pt); 2266 nb_fwd_ports = (portid_t) nb_pt; 2267 } 2268 } 2269 2270 void 2271 set_fwd_ports_mask(uint64_t portmask) 2272 { 2273 unsigned int portlist[64]; 2274 unsigned int nb_pt; 2275 unsigned int i; 2276 2277 if (portmask == 0) { 2278 printf("Invalid NULL mask of ports\n"); 2279 return; 2280 } 2281 nb_pt = 0; 2282 RTE_ETH_FOREACH_DEV(i) { 2283 if (! ((uint64_t)(1ULL << i) & portmask)) 2284 continue; 2285 portlist[nb_pt++] = i; 2286 } 2287 set_fwd_ports_list(portlist, nb_pt); 2288 } 2289 2290 void 2291 set_fwd_ports_number(uint16_t nb_pt) 2292 { 2293 if (nb_pt > nb_cfg_ports) { 2294 printf("nb fwd ports %u > %u (number of configured " 2295 "ports) - ignored\n", 2296 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2297 return; 2298 } 2299 nb_fwd_ports = (portid_t) nb_pt; 2300 printf("Number of forwarding ports set to %u\n", 2301 (unsigned int) nb_fwd_ports); 2302 } 2303 2304 int 2305 port_is_forwarding(portid_t port_id) 2306 { 2307 unsigned int i; 2308 2309 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2310 return -1; 2311 2312 for (i = 0; i < nb_fwd_ports; i++) { 2313 if (fwd_ports_ids[i] == port_id) 2314 return 1; 2315 } 2316 2317 return 0; 2318 } 2319 2320 void 2321 set_nb_pkt_per_burst(uint16_t nb) 2322 { 2323 if (nb > MAX_PKT_BURST) { 2324 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2325 " ignored\n", 2326 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2327 return; 2328 } 2329 nb_pkt_per_burst = nb; 2330 printf("Number of packets per burst set to %u\n", 2331 (unsigned int) nb_pkt_per_burst); 2332 } 2333 2334 static const char * 2335 tx_split_get_name(enum tx_pkt_split split) 2336 { 2337 uint32_t i; 2338 2339 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2340 if (tx_split_name[i].split == split) 2341 return tx_split_name[i].name; 2342 } 2343 return NULL; 2344 } 2345 2346 void 2347 set_tx_pkt_split(const char *name) 2348 { 2349 uint32_t i; 2350 2351 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2352 if (strcmp(tx_split_name[i].name, name) == 0) { 2353 tx_pkt_split = tx_split_name[i].split; 2354 return; 2355 } 2356 } 2357 printf("unknown value: \"%s\"\n", name); 2358 } 2359 2360 void 2361 show_tx_pkt_segments(void) 2362 { 2363 uint32_t i, n; 2364 const char *split; 2365 2366 n = tx_pkt_nb_segs; 2367 split = tx_split_get_name(tx_pkt_split); 2368 2369 printf("Number of segments: %u\n", n); 2370 printf("Segment sizes: "); 2371 for (i = 0; i != n - 1; i++) 2372 printf("%hu,", tx_pkt_seg_lengths[i]); 2373 printf("%hu\n", tx_pkt_seg_lengths[i]); 2374 printf("Split packet: %s\n", split); 2375 } 2376 2377 void 2378 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2379 { 2380 uint16_t tx_pkt_len; 2381 unsigned i; 2382 2383 if (nb_segs >= (unsigned) nb_txd) { 2384 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2385 nb_segs, (unsigned int) nb_txd); 2386 return; 2387 } 2388 2389 /* 2390 * Check that each segment length is greater or equal than 2391 * the mbuf data sise. 2392 * Check also that the total packet length is greater or equal than the 2393 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2394 */ 2395 tx_pkt_len = 0; 2396 for (i = 0; i < nb_segs; i++) { 2397 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2398 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2399 i, seg_lengths[i], (unsigned) mbuf_data_size); 2400 return; 2401 } 2402 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2403 } 2404 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2405 printf("total packet length=%u < %d - give up\n", 2406 (unsigned) tx_pkt_len, 2407 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2408 return; 2409 } 2410 2411 for (i = 0; i < nb_segs; i++) 2412 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2413 2414 tx_pkt_length = tx_pkt_len; 2415 tx_pkt_nb_segs = (uint8_t) nb_segs; 2416 } 2417 2418 char* 2419 list_pkt_forwarding_modes(void) 2420 { 2421 static char fwd_modes[128] = ""; 2422 const char *separator = "|"; 2423 struct fwd_engine *fwd_eng; 2424 unsigned i = 0; 2425 2426 if (strlen (fwd_modes) == 0) { 2427 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2428 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2429 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2430 strncat(fwd_modes, separator, 2431 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2432 } 2433 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2434 } 2435 2436 return fwd_modes; 2437 } 2438 2439 char* 2440 list_pkt_forwarding_retry_modes(void) 2441 { 2442 static char fwd_modes[128] = ""; 2443 const char *separator = "|"; 2444 struct fwd_engine *fwd_eng; 2445 unsigned i = 0; 2446 2447 if (strlen(fwd_modes) == 0) { 2448 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2449 if (fwd_eng == &rx_only_engine) 2450 continue; 2451 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2452 sizeof(fwd_modes) - 2453 strlen(fwd_modes) - 1); 2454 strncat(fwd_modes, separator, 2455 sizeof(fwd_modes) - 2456 strlen(fwd_modes) - 1); 2457 } 2458 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2459 } 2460 2461 return fwd_modes; 2462 } 2463 2464 void 2465 set_pkt_forwarding_mode(const char *fwd_mode_name) 2466 { 2467 struct fwd_engine *fwd_eng; 2468 unsigned i; 2469 2470 i = 0; 2471 while ((fwd_eng = fwd_engines[i]) != NULL) { 2472 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2473 printf("Set %s packet forwarding mode%s\n", 2474 fwd_mode_name, 2475 retry_enabled == 0 ? "" : " with retry"); 2476 cur_fwd_eng = fwd_eng; 2477 return; 2478 } 2479 i++; 2480 } 2481 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2482 } 2483 2484 void 2485 set_verbose_level(uint16_t vb_level) 2486 { 2487 printf("Change verbose level from %u to %u\n", 2488 (unsigned int) verbose_level, (unsigned int) vb_level); 2489 verbose_level = vb_level; 2490 } 2491 2492 void 2493 vlan_extend_set(portid_t port_id, int on) 2494 { 2495 int diag; 2496 int vlan_offload; 2497 2498 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2499 return; 2500 2501 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2502 2503 if (on) 2504 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2505 else 2506 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2507 2508 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2509 if (diag < 0) 2510 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2511 "diag=%d\n", port_id, on, diag); 2512 } 2513 2514 void 2515 rx_vlan_strip_set(portid_t port_id, int on) 2516 { 2517 int diag; 2518 int vlan_offload; 2519 2520 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2521 return; 2522 2523 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2524 2525 if (on) 2526 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2527 else 2528 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2529 2530 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2531 if (diag < 0) 2532 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2533 "diag=%d\n", port_id, on, diag); 2534 } 2535 2536 void 2537 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2538 { 2539 int diag; 2540 2541 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2542 return; 2543 2544 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2545 if (diag < 0) 2546 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2547 "diag=%d\n", port_id, queue_id, on, diag); 2548 } 2549 2550 void 2551 rx_vlan_filter_set(portid_t port_id, int on) 2552 { 2553 int diag; 2554 int vlan_offload; 2555 2556 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2557 return; 2558 2559 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2560 2561 if (on) 2562 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2563 else 2564 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2565 2566 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2567 if (diag < 0) 2568 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2569 "diag=%d\n", port_id, on, diag); 2570 } 2571 2572 int 2573 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2574 { 2575 int diag; 2576 2577 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2578 return 1; 2579 if (vlan_id_is_invalid(vlan_id)) 2580 return 1; 2581 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2582 if (diag == 0) 2583 return 0; 2584 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2585 "diag=%d\n", 2586 port_id, vlan_id, on, diag); 2587 return -1; 2588 } 2589 2590 void 2591 rx_vlan_all_filter_set(portid_t port_id, int on) 2592 { 2593 uint16_t vlan_id; 2594 2595 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2596 return; 2597 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2598 if (rx_vft_set(port_id, vlan_id, on)) 2599 break; 2600 } 2601 } 2602 2603 void 2604 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2605 { 2606 int diag; 2607 2608 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2609 return; 2610 2611 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2612 if (diag == 0) 2613 return; 2614 2615 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2616 "diag=%d\n", 2617 port_id, vlan_type, tp_id, diag); 2618 } 2619 2620 void 2621 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2622 { 2623 int vlan_offload; 2624 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2625 return; 2626 if (vlan_id_is_invalid(vlan_id)) 2627 return; 2628 2629 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2630 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2631 printf("Error, as QinQ has been enabled.\n"); 2632 return; 2633 } 2634 2635 tx_vlan_reset(port_id); 2636 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN; 2637 ports[port_id].tx_vlan_id = vlan_id; 2638 } 2639 2640 void 2641 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2642 { 2643 int vlan_offload; 2644 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2645 return; 2646 if (vlan_id_is_invalid(vlan_id)) 2647 return; 2648 if (vlan_id_is_invalid(vlan_id_outer)) 2649 return; 2650 2651 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2652 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2653 printf("Error, as QinQ hasn't been enabled.\n"); 2654 return; 2655 } 2656 2657 tx_vlan_reset(port_id); 2658 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ; 2659 ports[port_id].tx_vlan_id = vlan_id; 2660 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2661 } 2662 2663 void 2664 tx_vlan_reset(portid_t port_id) 2665 { 2666 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2667 return; 2668 ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN | 2669 TESTPMD_TX_OFFLOAD_INSERT_QINQ); 2670 ports[port_id].tx_vlan_id = 0; 2671 ports[port_id].tx_vlan_id_outer = 0; 2672 } 2673 2674 void 2675 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2676 { 2677 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2678 return; 2679 2680 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2681 } 2682 2683 void 2684 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2685 { 2686 uint16_t i; 2687 uint8_t existing_mapping_found = 0; 2688 2689 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2690 return; 2691 2692 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2693 return; 2694 2695 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2696 printf("map_value not in required range 0..%d\n", 2697 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2698 return; 2699 } 2700 2701 if (!is_rx) { /*then tx*/ 2702 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2703 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2704 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2705 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2706 existing_mapping_found = 1; 2707 break; 2708 } 2709 } 2710 if (!existing_mapping_found) { /* A new additional mapping... */ 2711 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2712 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2713 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2714 nb_tx_queue_stats_mappings++; 2715 } 2716 } 2717 else { /*rx*/ 2718 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2719 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2720 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2721 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2722 existing_mapping_found = 1; 2723 break; 2724 } 2725 } 2726 if (!existing_mapping_found) { /* A new additional mapping... */ 2727 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2728 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2729 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2730 nb_rx_queue_stats_mappings++; 2731 } 2732 } 2733 } 2734 2735 static inline void 2736 print_fdir_mask(struct rte_eth_fdir_masks *mask) 2737 { 2738 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 2739 2740 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2741 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 2742 " tunnel_id: 0x%08x", 2743 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 2744 rte_be_to_cpu_32(mask->tunnel_id_mask)); 2745 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2746 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 2747 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 2748 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 2749 2750 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 2751 rte_be_to_cpu_16(mask->src_port_mask), 2752 rte_be_to_cpu_16(mask->dst_port_mask)); 2753 2754 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2755 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 2756 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 2757 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 2758 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 2759 2760 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2761 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 2762 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 2763 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 2764 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 2765 } 2766 2767 printf("\n"); 2768 } 2769 2770 static inline void 2771 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2772 { 2773 struct rte_eth_flex_payload_cfg *cfg; 2774 uint32_t i, j; 2775 2776 for (i = 0; i < flex_conf->nb_payloads; i++) { 2777 cfg = &flex_conf->flex_set[i]; 2778 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 2779 printf("\n RAW: "); 2780 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 2781 printf("\n L2_PAYLOAD: "); 2782 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 2783 printf("\n L3_PAYLOAD: "); 2784 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 2785 printf("\n L4_PAYLOAD: "); 2786 else 2787 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 2788 for (j = 0; j < num; j++) 2789 printf(" %-5u", cfg->src_offset[j]); 2790 } 2791 printf("\n"); 2792 } 2793 2794 static char * 2795 flowtype_to_str(uint16_t flow_type) 2796 { 2797 struct flow_type_info { 2798 char str[32]; 2799 uint16_t ftype; 2800 }; 2801 2802 uint8_t i; 2803 static struct flow_type_info flowtype_str_table[] = { 2804 {"raw", RTE_ETH_FLOW_RAW}, 2805 {"ipv4", RTE_ETH_FLOW_IPV4}, 2806 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 2807 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 2808 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 2809 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 2810 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 2811 {"ipv6", RTE_ETH_FLOW_IPV6}, 2812 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 2813 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 2814 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 2815 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 2816 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 2817 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 2818 {"port", RTE_ETH_FLOW_PORT}, 2819 {"vxlan", RTE_ETH_FLOW_VXLAN}, 2820 {"geneve", RTE_ETH_FLOW_GENEVE}, 2821 {"nvgre", RTE_ETH_FLOW_NVGRE}, 2822 }; 2823 2824 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 2825 if (flowtype_str_table[i].ftype == flow_type) 2826 return flowtype_str_table[i].str; 2827 } 2828 2829 return NULL; 2830 } 2831 2832 static inline void 2833 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2834 { 2835 struct rte_eth_fdir_flex_mask *mask; 2836 uint32_t i, j; 2837 char *p; 2838 2839 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 2840 mask = &flex_conf->flex_mask[i]; 2841 p = flowtype_to_str(mask->flow_type); 2842 printf("\n %s:\t", p ? p : "unknown"); 2843 for (j = 0; j < num; j++) 2844 printf(" %02x", mask->mask[j]); 2845 } 2846 printf("\n"); 2847 } 2848 2849 static inline void 2850 print_fdir_flow_type(uint32_t flow_types_mask) 2851 { 2852 int i; 2853 char *p; 2854 2855 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 2856 if (!(flow_types_mask & (1 << i))) 2857 continue; 2858 p = flowtype_to_str(i); 2859 if (p) 2860 printf(" %s", p); 2861 else 2862 printf(" unknown"); 2863 } 2864 printf("\n"); 2865 } 2866 2867 void 2868 fdir_get_infos(portid_t port_id) 2869 { 2870 struct rte_eth_fdir_stats fdir_stat; 2871 struct rte_eth_fdir_info fdir_info; 2872 int ret; 2873 2874 static const char *fdir_stats_border = "########################"; 2875 2876 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2877 return; 2878 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 2879 if (ret < 0) { 2880 printf("\n FDIR is not supported on port %-2d\n", 2881 port_id); 2882 return; 2883 } 2884 2885 memset(&fdir_info, 0, sizeof(fdir_info)); 2886 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2887 RTE_ETH_FILTER_INFO, &fdir_info); 2888 memset(&fdir_stat, 0, sizeof(fdir_stat)); 2889 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2890 RTE_ETH_FILTER_STATS, &fdir_stat); 2891 printf("\n %s FDIR infos for port %-2d %s\n", 2892 fdir_stats_border, port_id, fdir_stats_border); 2893 printf(" MODE: "); 2894 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 2895 printf(" PERFECT\n"); 2896 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 2897 printf(" PERFECT-MAC-VLAN\n"); 2898 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2899 printf(" PERFECT-TUNNEL\n"); 2900 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 2901 printf(" SIGNATURE\n"); 2902 else 2903 printf(" DISABLE\n"); 2904 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 2905 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 2906 printf(" SUPPORTED FLOW TYPE: "); 2907 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 2908 } 2909 printf(" FLEX PAYLOAD INFO:\n"); 2910 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 2911 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 2912 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 2913 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 2914 fdir_info.flex_payload_unit, 2915 fdir_info.max_flex_payload_segment_num, 2916 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 2917 printf(" MASK: "); 2918 print_fdir_mask(&fdir_info.mask); 2919 if (fdir_info.flex_conf.nb_payloads > 0) { 2920 printf(" FLEX PAYLOAD SRC OFFSET:"); 2921 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2922 } 2923 if (fdir_info.flex_conf.nb_flexmasks > 0) { 2924 printf(" FLEX MASK CFG:"); 2925 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2926 } 2927 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 2928 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 2929 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 2930 fdir_info.guarant_spc, fdir_info.best_spc); 2931 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 2932 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 2933 " add: %-10"PRIu64" remove: %"PRIu64"\n" 2934 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 2935 fdir_stat.collision, fdir_stat.free, 2936 fdir_stat.maxhash, fdir_stat.maxlen, 2937 fdir_stat.add, fdir_stat.remove, 2938 fdir_stat.f_add, fdir_stat.f_remove); 2939 printf(" %s############################%s\n", 2940 fdir_stats_border, fdir_stats_border); 2941 } 2942 2943 void 2944 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 2945 { 2946 struct rte_port *port; 2947 struct rte_eth_fdir_flex_conf *flex_conf; 2948 int i, idx = 0; 2949 2950 port = &ports[port_id]; 2951 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2952 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 2953 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 2954 idx = i; 2955 break; 2956 } 2957 } 2958 if (i >= RTE_ETH_FLOW_MAX) { 2959 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 2960 idx = flex_conf->nb_flexmasks; 2961 flex_conf->nb_flexmasks++; 2962 } else { 2963 printf("The flex mask table is full. Can not set flex" 2964 " mask for flow_type(%u).", cfg->flow_type); 2965 return; 2966 } 2967 } 2968 (void)rte_memcpy(&flex_conf->flex_mask[idx], 2969 cfg, 2970 sizeof(struct rte_eth_fdir_flex_mask)); 2971 } 2972 2973 void 2974 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 2975 { 2976 struct rte_port *port; 2977 struct rte_eth_fdir_flex_conf *flex_conf; 2978 int i, idx = 0; 2979 2980 port = &ports[port_id]; 2981 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2982 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 2983 if (cfg->type == flex_conf->flex_set[i].type) { 2984 idx = i; 2985 break; 2986 } 2987 } 2988 if (i >= RTE_ETH_PAYLOAD_MAX) { 2989 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 2990 idx = flex_conf->nb_payloads; 2991 flex_conf->nb_payloads++; 2992 } else { 2993 printf("The flex payload table is full. Can not set" 2994 " flex payload for type(%u).", cfg->type); 2995 return; 2996 } 2997 } 2998 (void)rte_memcpy(&flex_conf->flex_set[idx], 2999 cfg, 3000 sizeof(struct rte_eth_flex_payload_cfg)); 3001 3002 } 3003 3004 void 3005 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3006 { 3007 #ifdef RTE_LIBRTE_IXGBE_PMD 3008 int diag; 3009 3010 if (is_rx) 3011 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3012 else 3013 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3014 3015 if (diag == 0) 3016 return; 3017 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3018 is_rx ? "rx" : "tx", port_id, diag); 3019 return; 3020 #endif 3021 printf("VF %s setting not supported for port %d\n", 3022 is_rx ? "Rx" : "Tx", port_id); 3023 RTE_SET_USED(vf); 3024 RTE_SET_USED(on); 3025 } 3026 3027 int 3028 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3029 { 3030 int diag; 3031 struct rte_eth_link link; 3032 3033 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3034 return 1; 3035 rte_eth_link_get_nowait(port_id, &link); 3036 if (rate > link.link_speed) { 3037 printf("Invalid rate value:%u bigger than link speed: %u\n", 3038 rate, link.link_speed); 3039 return 1; 3040 } 3041 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3042 if (diag == 0) 3043 return diag; 3044 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3045 port_id, diag); 3046 return diag; 3047 } 3048 3049 int 3050 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3051 { 3052 int diag = -ENOTSUP; 3053 3054 #ifdef RTE_LIBRTE_IXGBE_PMD 3055 if (diag == -ENOTSUP) 3056 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3057 q_msk); 3058 #endif 3059 #ifdef RTE_LIBRTE_BNXT_PMD 3060 if (diag == -ENOTSUP) 3061 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3062 #endif 3063 if (diag == 0) 3064 return diag; 3065 3066 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3067 port_id, diag); 3068 return diag; 3069 } 3070 3071 /* 3072 * Functions to manage the set of filtered Multicast MAC addresses. 3073 * 3074 * A pool of filtered multicast MAC addresses is associated with each port. 3075 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3076 * The address of the pool and the number of valid multicast MAC addresses 3077 * recorded in the pool are stored in the fields "mc_addr_pool" and 3078 * "mc_addr_nb" of the "rte_port" data structure. 3079 * 3080 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3081 * to be supplied a contiguous array of multicast MAC addresses. 3082 * To comply with this constraint, the set of multicast addresses recorded 3083 * into the pool are systematically compacted at the beginning of the pool. 3084 * Hence, when a multicast address is removed from the pool, all following 3085 * addresses, if any, are copied back to keep the set contiguous. 3086 */ 3087 #define MCAST_POOL_INC 32 3088 3089 static int 3090 mcast_addr_pool_extend(struct rte_port *port) 3091 { 3092 struct ether_addr *mc_pool; 3093 size_t mc_pool_size; 3094 3095 /* 3096 * If a free entry is available at the end of the pool, just 3097 * increment the number of recorded multicast addresses. 3098 */ 3099 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3100 port->mc_addr_nb++; 3101 return 0; 3102 } 3103 3104 /* 3105 * [re]allocate a pool with MCAST_POOL_INC more entries. 3106 * The previous test guarantees that port->mc_addr_nb is a multiple 3107 * of MCAST_POOL_INC. 3108 */ 3109 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3110 MCAST_POOL_INC); 3111 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3112 mc_pool_size); 3113 if (mc_pool == NULL) { 3114 printf("allocation of pool of %u multicast addresses failed\n", 3115 port->mc_addr_nb + MCAST_POOL_INC); 3116 return -ENOMEM; 3117 } 3118 3119 port->mc_addr_pool = mc_pool; 3120 port->mc_addr_nb++; 3121 return 0; 3122 3123 } 3124 3125 static void 3126 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3127 { 3128 port->mc_addr_nb--; 3129 if (addr_idx == port->mc_addr_nb) { 3130 /* No need to recompact the set of multicast addressses. */ 3131 if (port->mc_addr_nb == 0) { 3132 /* free the pool of multicast addresses. */ 3133 free(port->mc_addr_pool); 3134 port->mc_addr_pool = NULL; 3135 } 3136 return; 3137 } 3138 memmove(&port->mc_addr_pool[addr_idx], 3139 &port->mc_addr_pool[addr_idx + 1], 3140 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3141 } 3142 3143 static void 3144 eth_port_multicast_addr_list_set(uint8_t port_id) 3145 { 3146 struct rte_port *port; 3147 int diag; 3148 3149 port = &ports[port_id]; 3150 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3151 port->mc_addr_nb); 3152 if (diag == 0) 3153 return; 3154 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3155 port->mc_addr_nb, port_id, -diag); 3156 } 3157 3158 void 3159 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr) 3160 { 3161 struct rte_port *port; 3162 uint32_t i; 3163 3164 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3165 return; 3166 3167 port = &ports[port_id]; 3168 3169 /* 3170 * Check that the added multicast MAC address is not already recorded 3171 * in the pool of multicast addresses. 3172 */ 3173 for (i = 0; i < port->mc_addr_nb; i++) { 3174 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3175 printf("multicast address already filtered by port\n"); 3176 return; 3177 } 3178 } 3179 3180 if (mcast_addr_pool_extend(port) != 0) 3181 return; 3182 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3183 eth_port_multicast_addr_list_set(port_id); 3184 } 3185 3186 void 3187 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr) 3188 { 3189 struct rte_port *port; 3190 uint32_t i; 3191 3192 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3193 return; 3194 3195 port = &ports[port_id]; 3196 3197 /* 3198 * Search the pool of multicast MAC addresses for the removed address. 3199 */ 3200 for (i = 0; i < port->mc_addr_nb; i++) { 3201 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3202 break; 3203 } 3204 if (i == port->mc_addr_nb) { 3205 printf("multicast address not filtered by port %d\n", port_id); 3206 return; 3207 } 3208 3209 mcast_addr_pool_remove(port, i); 3210 eth_port_multicast_addr_list_set(port_id); 3211 } 3212 3213 void 3214 port_dcb_info_display(uint8_t port_id) 3215 { 3216 struct rte_eth_dcb_info dcb_info; 3217 uint16_t i; 3218 int ret; 3219 static const char *border = "================"; 3220 3221 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3222 return; 3223 3224 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3225 if (ret) { 3226 printf("\n Failed to get dcb infos on port %-2d\n", 3227 port_id); 3228 return; 3229 } 3230 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3231 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3232 printf("\n TC : "); 3233 for (i = 0; i < dcb_info.nb_tcs; i++) 3234 printf("\t%4d", i); 3235 printf("\n Priority : "); 3236 for (i = 0; i < dcb_info.nb_tcs; i++) 3237 printf("\t%4d", dcb_info.prio_tc[i]); 3238 printf("\n BW percent :"); 3239 for (i = 0; i < dcb_info.nb_tcs; i++) 3240 printf("\t%4d%%", dcb_info.tc_bws[i]); 3241 printf("\n RXQ base : "); 3242 for (i = 0; i < dcb_info.nb_tcs; i++) 3243 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3244 printf("\n RXQ number :"); 3245 for (i = 0; i < dcb_info.nb_tcs; i++) 3246 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3247 printf("\n TXQ base : "); 3248 for (i = 0; i < dcb_info.nb_tcs; i++) 3249 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3250 printf("\n TXQ number :"); 3251 for (i = 0; i < dcb_info.nb_tcs; i++) 3252 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3253 printf("\n"); 3254 } 3255 3256 uint8_t * 3257 open_ddp_package_file(const char *file_path, uint32_t *size) 3258 { 3259 FILE *fh = fopen(file_path, "rb"); 3260 uint32_t pkg_size; 3261 uint8_t *buf = NULL; 3262 int ret = 0; 3263 3264 if (size) 3265 *size = 0; 3266 3267 if (fh == NULL) { 3268 printf("%s: Failed to open %s\n", __func__, file_path); 3269 return buf; 3270 } 3271 3272 ret = fseek(fh, 0, SEEK_END); 3273 if (ret < 0) { 3274 fclose(fh); 3275 printf("%s: File operations failed\n", __func__); 3276 return buf; 3277 } 3278 3279 pkg_size = ftell(fh); 3280 3281 buf = (uint8_t *)malloc(pkg_size); 3282 if (!buf) { 3283 fclose(fh); 3284 printf("%s: Failed to malloc memory\n", __func__); 3285 return buf; 3286 } 3287 3288 ret = fseek(fh, 0, SEEK_SET); 3289 if (ret < 0) { 3290 fclose(fh); 3291 printf("%s: File seek operation failed\n", __func__); 3292 close_ddp_package_file(buf); 3293 return NULL; 3294 } 3295 3296 ret = fread(buf, 1, pkg_size, fh); 3297 if (ret < 0) { 3298 fclose(fh); 3299 printf("%s: File read operation failed\n", __func__); 3300 close_ddp_package_file(buf); 3301 return NULL; 3302 } 3303 3304 if (size) 3305 *size = pkg_size; 3306 3307 fclose(fh); 3308 3309 return buf; 3310 } 3311 3312 int 3313 close_ddp_package_file(uint8_t *buf) 3314 { 3315 if (buf) { 3316 free((void *)buf); 3317 return 0; 3318 } 3319 3320 return -1; 3321 } 3322