xref: /dpdk/app/test-pmd/config.c (revision a3a2e2c8f7de433e10b1548df65b20bf10086d9c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdarg.h>
40 #include <stdint.h>
41 #include <inttypes.h>
42 
43 #include <sys/queue.h>
44 
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_debug.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_launch.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_lcore.h>
56 #include <rte_atomic.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_mempool.h>
59 #include <rte_mbuf.h>
60 #include <rte_interrupts.h>
61 #include <rte_pci.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_string_fns.h>
65 #include <rte_cycles.h>
66 #include <rte_flow.h>
67 #include <rte_errno.h>
68 #ifdef RTE_LIBRTE_IXGBE_PMD
69 #include <rte_pmd_ixgbe.h>
70 #endif
71 #ifdef RTE_LIBRTE_BNXT_PMD
72 #include <rte_pmd_bnxt.h>
73 #endif
74 
75 #include "testpmd.h"
76 
77 static char *flowtype_to_str(uint16_t flow_type);
78 
79 static const struct {
80 	enum tx_pkt_split split;
81 	const char *name;
82 } tx_split_name[] = {
83 	{
84 		.split = TX_PKT_SPLIT_OFF,
85 		.name = "off",
86 	},
87 	{
88 		.split = TX_PKT_SPLIT_ON,
89 		.name = "on",
90 	},
91 	{
92 		.split = TX_PKT_SPLIT_RND,
93 		.name = "rand",
94 	},
95 };
96 
97 struct rss_type_info {
98 	char str[32];
99 	uint64_t rss_type;
100 };
101 
102 static const struct rss_type_info rss_type_table[] = {
103 	{ "ipv4", ETH_RSS_IPV4 },
104 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
105 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
106 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
107 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
108 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
109 	{ "ipv6", ETH_RSS_IPV6 },
110 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
111 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
112 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
113 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
114 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
115 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
116 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
117 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
118 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
119 	{ "port", ETH_RSS_PORT },
120 	{ "vxlan", ETH_RSS_VXLAN },
121 	{ "geneve", ETH_RSS_GENEVE },
122 	{ "nvgre", ETH_RSS_NVGRE },
123 
124 };
125 
126 static void
127 print_ethaddr(const char *name, struct ether_addr *eth_addr)
128 {
129 	char buf[ETHER_ADDR_FMT_SIZE];
130 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
131 	printf("%s%s", name, buf);
132 }
133 
134 void
135 nic_stats_display(portid_t port_id)
136 {
137 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
138 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
139 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
140 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
141 	uint64_t mpps_rx, mpps_tx;
142 	struct rte_eth_stats stats;
143 	struct rte_port *port = &ports[port_id];
144 	uint8_t i;
145 	portid_t pid;
146 
147 	static const char *nic_stats_border = "########################";
148 
149 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
150 		printf("Valid port range is [0");
151 		RTE_ETH_FOREACH_DEV(pid)
152 			printf(", %d", pid);
153 		printf("]\n");
154 		return;
155 	}
156 	rte_eth_stats_get(port_id, &stats);
157 	printf("\n  %s NIC statistics for port %-2d %s\n",
158 	       nic_stats_border, port_id, nic_stats_border);
159 
160 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
161 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
162 		       "%-"PRIu64"\n",
163 		       stats.ipackets, stats.imissed, stats.ibytes);
164 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
165 		printf("  RX-nombuf:  %-10"PRIu64"\n",
166 		       stats.rx_nombuf);
167 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
168 		       "%-"PRIu64"\n",
169 		       stats.opackets, stats.oerrors, stats.obytes);
170 	}
171 	else {
172 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
173 		       "    RX-bytes: %10"PRIu64"\n",
174 		       stats.ipackets, stats.ierrors, stats.ibytes);
175 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
176 		printf("  RX-nombuf:               %10"PRIu64"\n",
177 		       stats.rx_nombuf);
178 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
179 		       "    TX-bytes: %10"PRIu64"\n",
180 		       stats.opackets, stats.oerrors, stats.obytes);
181 	}
182 
183 	if (port->rx_queue_stats_mapping_enabled) {
184 		printf("\n");
185 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
186 			printf("  Stats reg %2d RX-packets: %10"PRIu64
187 			       "    RX-errors: %10"PRIu64
188 			       "    RX-bytes: %10"PRIu64"\n",
189 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
190 		}
191 	}
192 	if (port->tx_queue_stats_mapping_enabled) {
193 		printf("\n");
194 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
195 			printf("  Stats reg %2d TX-packets: %10"PRIu64
196 			       "                             TX-bytes: %10"PRIu64"\n",
197 			       i, stats.q_opackets[i], stats.q_obytes[i]);
198 		}
199 	}
200 
201 	diff_cycles = prev_cycles[port_id];
202 	prev_cycles[port_id] = rte_rdtsc();
203 	if (diff_cycles > 0)
204 		diff_cycles = prev_cycles[port_id] - diff_cycles;
205 
206 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
207 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
208 	prev_pkts_rx[port_id] = stats.ipackets;
209 	prev_pkts_tx[port_id] = stats.opackets;
210 	mpps_rx = diff_cycles > 0 ?
211 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
212 	mpps_tx = diff_cycles > 0 ?
213 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
214 	printf("\n  Throughput (since last show)\n");
215 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
216 			mpps_rx, mpps_tx);
217 
218 	printf("  %s############################%s\n",
219 	       nic_stats_border, nic_stats_border);
220 }
221 
222 void
223 nic_stats_clear(portid_t port_id)
224 {
225 	portid_t pid;
226 
227 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
228 		printf("Valid port range is [0");
229 		RTE_ETH_FOREACH_DEV(pid)
230 			printf(", %d", pid);
231 		printf("]\n");
232 		return;
233 	}
234 	rte_eth_stats_reset(port_id);
235 	printf("\n  NIC statistics for port %d cleared\n", port_id);
236 }
237 
238 void
239 nic_xstats_display(portid_t port_id)
240 {
241 	struct rte_eth_xstat *xstats;
242 	int cnt_xstats, idx_xstat;
243 	struct rte_eth_xstat_name *xstats_names;
244 
245 	printf("###### NIC extended statistics for port %-2d\n", port_id);
246 	if (!rte_eth_dev_is_valid_port(port_id)) {
247 		printf("Error: Invalid port number %i\n", port_id);
248 		return;
249 	}
250 
251 	/* Get count */
252 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
253 	if (cnt_xstats  < 0) {
254 		printf("Error: Cannot get count of xstats\n");
255 		return;
256 	}
257 
258 	/* Get id-name lookup table */
259 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
260 	if (xstats_names == NULL) {
261 		printf("Cannot allocate memory for xstats lookup\n");
262 		return;
263 	}
264 	if (cnt_xstats != rte_eth_xstats_get_names(
265 			port_id, xstats_names, cnt_xstats)) {
266 		printf("Error: Cannot get xstats lookup\n");
267 		free(xstats_names);
268 		return;
269 	}
270 
271 	/* Get stats themselves */
272 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
273 	if (xstats == NULL) {
274 		printf("Cannot allocate memory for xstats\n");
275 		free(xstats_names);
276 		return;
277 	}
278 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
279 		printf("Error: Unable to get xstats\n");
280 		free(xstats_names);
281 		free(xstats);
282 		return;
283 	}
284 
285 	/* Display xstats */
286 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
287 		printf("%s: %"PRIu64"\n",
288 			xstats_names[idx_xstat].name,
289 			xstats[idx_xstat].value);
290 	free(xstats_names);
291 	free(xstats);
292 }
293 
294 void
295 nic_xstats_clear(portid_t port_id)
296 {
297 	rte_eth_xstats_reset(port_id);
298 }
299 
300 void
301 nic_stats_mapping_display(portid_t port_id)
302 {
303 	struct rte_port *port = &ports[port_id];
304 	uint16_t i;
305 	portid_t pid;
306 
307 	static const char *nic_stats_mapping_border = "########################";
308 
309 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
310 		printf("Valid port range is [0");
311 		RTE_ETH_FOREACH_DEV(pid)
312 			printf(", %d", pid);
313 		printf("]\n");
314 		return;
315 	}
316 
317 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
318 		printf("Port id %d - either does not support queue statistic mapping or"
319 		       " no queue statistic mapping set\n", port_id);
320 		return;
321 	}
322 
323 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
324 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
325 
326 	if (port->rx_queue_stats_mapping_enabled) {
327 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
328 			if (rx_queue_stats_mappings[i].port_id == port_id) {
329 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
330 				       rx_queue_stats_mappings[i].queue_id,
331 				       rx_queue_stats_mappings[i].stats_counter_id);
332 			}
333 		}
334 		printf("\n");
335 	}
336 
337 
338 	if (port->tx_queue_stats_mapping_enabled) {
339 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
340 			if (tx_queue_stats_mappings[i].port_id == port_id) {
341 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
342 				       tx_queue_stats_mappings[i].queue_id,
343 				       tx_queue_stats_mappings[i].stats_counter_id);
344 			}
345 		}
346 	}
347 
348 	printf("  %s####################################%s\n",
349 	       nic_stats_mapping_border, nic_stats_mapping_border);
350 }
351 
352 void
353 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
354 {
355 	struct rte_eth_rxq_info qinfo;
356 	int32_t rc;
357 	static const char *info_border = "*********************";
358 
359 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
360 	if (rc != 0) {
361 		printf("Failed to retrieve information for port: %hhu, "
362 			"RX queue: %hu\nerror desc: %s(%d)\n",
363 			port_id, queue_id, strerror(-rc), rc);
364 		return;
365 	}
366 
367 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
368 	       info_border, port_id, queue_id, info_border);
369 
370 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
371 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
372 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
373 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
374 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
375 	printf("\nRX drop packets: %s",
376 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
377 	printf("\nRX deferred start: %s",
378 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
379 	printf("\nRX scattered packets: %s",
380 		(qinfo.scattered_rx != 0) ? "on" : "off");
381 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
382 	printf("\n");
383 }
384 
385 void
386 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
387 {
388 	struct rte_eth_txq_info qinfo;
389 	int32_t rc;
390 	static const char *info_border = "*********************";
391 
392 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
393 	if (rc != 0) {
394 		printf("Failed to retrieve information for port: %hhu, "
395 			"TX queue: %hu\nerror desc: %s(%d)\n",
396 			port_id, queue_id, strerror(-rc), rc);
397 		return;
398 	}
399 
400 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
401 	       info_border, port_id, queue_id, info_border);
402 
403 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
404 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
405 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
406 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
407 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
408 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
409 	printf("\nTX deferred start: %s",
410 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
411 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
412 	printf("\n");
413 }
414 
415 void
416 port_infos_display(portid_t port_id)
417 {
418 	struct rte_port *port;
419 	struct ether_addr mac_addr;
420 	struct rte_eth_link link;
421 	struct rte_eth_dev_info dev_info;
422 	int vlan_offload;
423 	struct rte_mempool * mp;
424 	static const char *info_border = "*********************";
425 	portid_t pid;
426 	uint16_t mtu;
427 
428 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
429 		printf("Valid port range is [0");
430 		RTE_ETH_FOREACH_DEV(pid)
431 			printf(", %d", pid);
432 		printf("]\n");
433 		return;
434 	}
435 	port = &ports[port_id];
436 	rte_eth_link_get_nowait(port_id, &link);
437 	memset(&dev_info, 0, sizeof(dev_info));
438 	rte_eth_dev_info_get(port_id, &dev_info);
439 	printf("\n%s Infos for port %-2d %s\n",
440 	       info_border, port_id, info_border);
441 	rte_eth_macaddr_get(port_id, &mac_addr);
442 	print_ethaddr("MAC address: ", &mac_addr);
443 	printf("\nDriver name: %s", dev_info.driver_name);
444 	printf("\nConnect to socket: %u", port->socket_id);
445 
446 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
447 		mp = mbuf_pool_find(port_numa[port_id]);
448 		if (mp)
449 			printf("\nmemory allocation on the socket: %d",
450 							port_numa[port_id]);
451 	} else
452 		printf("\nmemory allocation on the socket: %u",port->socket_id);
453 
454 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
455 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
456 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
457 	       ("full-duplex") : ("half-duplex"));
458 
459 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
460 		printf("MTU: %u\n", mtu);
461 
462 	printf("Promiscuous mode: %s\n",
463 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
464 	printf("Allmulticast mode: %s\n",
465 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
466 	printf("Maximum number of MAC addresses: %u\n",
467 	       (unsigned int)(port->dev_info.max_mac_addrs));
468 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
469 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
470 
471 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
472 	if (vlan_offload >= 0){
473 		printf("VLAN offload: \n");
474 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
475 			printf("  strip on \n");
476 		else
477 			printf("  strip off \n");
478 
479 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
480 			printf("  filter on \n");
481 		else
482 			printf("  filter off \n");
483 
484 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
485 			printf("  qinq(extend) on \n");
486 		else
487 			printf("  qinq(extend) off \n");
488 	}
489 
490 	if (dev_info.hash_key_size > 0)
491 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
492 	if (dev_info.reta_size > 0)
493 		printf("Redirection table size: %u\n", dev_info.reta_size);
494 	if (!dev_info.flow_type_rss_offloads)
495 		printf("No flow type is supported.\n");
496 	else {
497 		uint16_t i;
498 		char *p;
499 
500 		printf("Supported flow types:\n");
501 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
502 								i++) {
503 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
504 				continue;
505 			p = flowtype_to_str(i);
506 			printf("  %s\n", (p ? p : "unknown"));
507 		}
508 	}
509 
510 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
511 	printf("Max possible number of RXDs per queue: %hu\n",
512 		dev_info.rx_desc_lim.nb_max);
513 	printf("Min possible number of RXDs per queue: %hu\n",
514 		dev_info.rx_desc_lim.nb_min);
515 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
516 
517 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
518 	printf("Max possible number of TXDs per queue: %hu\n",
519 		dev_info.tx_desc_lim.nb_max);
520 	printf("Min possible number of TXDs per queue: %hu\n",
521 		dev_info.tx_desc_lim.nb_min);
522 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
523 }
524 
525 void
526 port_offload_cap_display(portid_t port_id)
527 {
528 	struct rte_eth_dev *dev;
529 	struct rte_eth_dev_info dev_info;
530 	static const char *info_border = "************";
531 
532 	if (port_id_is_invalid(port_id, ENABLED_WARN))
533 		return;
534 
535 	dev = &rte_eth_devices[port_id];
536 	rte_eth_dev_info_get(port_id, &dev_info);
537 
538 	printf("\n%s Port %d supported offload features: %s\n",
539 		info_border, port_id, info_border);
540 
541 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
542 		printf("VLAN stripped:                 ");
543 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
544 			printf("on\n");
545 		else
546 			printf("off\n");
547 	}
548 
549 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
550 		printf("Double VLANs stripped:         ");
551 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
552 			printf("on\n");
553 		else
554 			printf("off\n");
555 	}
556 
557 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
558 		printf("RX IPv4 checksum:              ");
559 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
560 			printf("on\n");
561 		else
562 			printf("off\n");
563 	}
564 
565 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
566 		printf("RX UDP checksum:               ");
567 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
568 			printf("on\n");
569 		else
570 			printf("off\n");
571 	}
572 
573 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
574 		printf("RX TCP checksum:               ");
575 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
582 		printf("RX Outer IPv4 checksum:        on");
583 
584 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
585 		printf("Large receive offload:         ");
586 		if (dev->data->dev_conf.rxmode.enable_lro)
587 			printf("on\n");
588 		else
589 			printf("off\n");
590 	}
591 
592 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
593 		printf("VLAN insert:                   ");
594 		if (ports[port_id].tx_ol_flags &
595 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
596 			printf("on\n");
597 		else
598 			printf("off\n");
599 	}
600 
601 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
602 		printf("Double VLANs insert:           ");
603 		if (ports[port_id].tx_ol_flags &
604 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
605 			printf("on\n");
606 		else
607 			printf("off\n");
608 	}
609 
610 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
611 		printf("TX IPv4 checksum:              ");
612 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
613 			printf("on\n");
614 		else
615 			printf("off\n");
616 	}
617 
618 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
619 		printf("TX UDP checksum:               ");
620 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
627 		printf("TX TCP checksum:               ");
628 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
629 			printf("on\n");
630 		else
631 			printf("off\n");
632 	}
633 
634 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
635 		printf("TX SCTP checksum:              ");
636 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
637 			printf("on\n");
638 		else
639 			printf("off\n");
640 	}
641 
642 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
643 		printf("TX Outer IPv4 checksum:        ");
644 		if (ports[port_id].tx_ol_flags &
645 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
646 			printf("on\n");
647 		else
648 			printf("off\n");
649 	}
650 
651 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
652 		printf("TX TCP segmentation:           ");
653 		if (ports[port_id].tso_segsz != 0)
654 			printf("on\n");
655 		else
656 			printf("off\n");
657 	}
658 
659 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
660 		printf("TX UDP segmentation:           ");
661 		if (ports[port_id].tso_segsz != 0)
662 			printf("on\n");
663 		else
664 			printf("off\n");
665 	}
666 
667 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
668 		printf("TSO for VXLAN tunnel packet:   ");
669 		if (ports[port_id].tunnel_tso_segsz)
670 			printf("on\n");
671 		else
672 			printf("off\n");
673 	}
674 
675 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
676 		printf("TSO for GRE tunnel packet:     ");
677 		if (ports[port_id].tunnel_tso_segsz)
678 			printf("on\n");
679 		else
680 			printf("off\n");
681 	}
682 
683 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
684 		printf("TSO for IPIP tunnel packet:    ");
685 		if (ports[port_id].tunnel_tso_segsz)
686 			printf("on\n");
687 		else
688 			printf("off\n");
689 	}
690 
691 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
692 		printf("TSO for GENEVE tunnel packet:  ");
693 		if (ports[port_id].tunnel_tso_segsz)
694 			printf("on\n");
695 		else
696 			printf("off\n");
697 	}
698 
699 }
700 
701 int
702 port_id_is_invalid(portid_t port_id, enum print_warning warning)
703 {
704 	if (port_id == (portid_t)RTE_PORT_ALL)
705 		return 0;
706 
707 	if (rte_eth_dev_is_valid_port(port_id))
708 		return 0;
709 
710 	if (warning == ENABLED_WARN)
711 		printf("Invalid port %d\n", port_id);
712 
713 	return 1;
714 }
715 
716 static int
717 vlan_id_is_invalid(uint16_t vlan_id)
718 {
719 	if (vlan_id < 4096)
720 		return 0;
721 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
722 	return 1;
723 }
724 
725 static int
726 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
727 {
728 	uint64_t pci_len;
729 
730 	if (reg_off & 0x3) {
731 		printf("Port register offset 0x%X not aligned on a 4-byte "
732 		       "boundary\n",
733 		       (unsigned)reg_off);
734 		return 1;
735 	}
736 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
737 	if (reg_off >= pci_len) {
738 		printf("Port %d: register offset %u (0x%X) out of port PCI "
739 		       "resource (length=%"PRIu64")\n",
740 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
741 		return 1;
742 	}
743 	return 0;
744 }
745 
746 static int
747 reg_bit_pos_is_invalid(uint8_t bit_pos)
748 {
749 	if (bit_pos <= 31)
750 		return 0;
751 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
752 	return 1;
753 }
754 
755 #define display_port_and_reg_off(port_id, reg_off) \
756 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
757 
758 static inline void
759 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
760 {
761 	display_port_and_reg_off(port_id, (unsigned)reg_off);
762 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
763 }
764 
765 void
766 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
767 {
768 	uint32_t reg_v;
769 
770 
771 	if (port_id_is_invalid(port_id, ENABLED_WARN))
772 		return;
773 	if (port_reg_off_is_invalid(port_id, reg_off))
774 		return;
775 	if (reg_bit_pos_is_invalid(bit_x))
776 		return;
777 	reg_v = port_id_pci_reg_read(port_id, reg_off);
778 	display_port_and_reg_off(port_id, (unsigned)reg_off);
779 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
780 }
781 
782 void
783 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
784 			   uint8_t bit1_pos, uint8_t bit2_pos)
785 {
786 	uint32_t reg_v;
787 	uint8_t  l_bit;
788 	uint8_t  h_bit;
789 
790 	if (port_id_is_invalid(port_id, ENABLED_WARN))
791 		return;
792 	if (port_reg_off_is_invalid(port_id, reg_off))
793 		return;
794 	if (reg_bit_pos_is_invalid(bit1_pos))
795 		return;
796 	if (reg_bit_pos_is_invalid(bit2_pos))
797 		return;
798 	if (bit1_pos > bit2_pos)
799 		l_bit = bit2_pos, h_bit = bit1_pos;
800 	else
801 		l_bit = bit1_pos, h_bit = bit2_pos;
802 
803 	reg_v = port_id_pci_reg_read(port_id, reg_off);
804 	reg_v >>= l_bit;
805 	if (h_bit < 31)
806 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
807 	display_port_and_reg_off(port_id, (unsigned)reg_off);
808 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
809 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
810 }
811 
812 void
813 port_reg_display(portid_t port_id, uint32_t reg_off)
814 {
815 	uint32_t reg_v;
816 
817 	if (port_id_is_invalid(port_id, ENABLED_WARN))
818 		return;
819 	if (port_reg_off_is_invalid(port_id, reg_off))
820 		return;
821 	reg_v = port_id_pci_reg_read(port_id, reg_off);
822 	display_port_reg_value(port_id, reg_off, reg_v);
823 }
824 
825 void
826 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
827 		 uint8_t bit_v)
828 {
829 	uint32_t reg_v;
830 
831 	if (port_id_is_invalid(port_id, ENABLED_WARN))
832 		return;
833 	if (port_reg_off_is_invalid(port_id, reg_off))
834 		return;
835 	if (reg_bit_pos_is_invalid(bit_pos))
836 		return;
837 	if (bit_v > 1) {
838 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
839 		return;
840 	}
841 	reg_v = port_id_pci_reg_read(port_id, reg_off);
842 	if (bit_v == 0)
843 		reg_v &= ~(1 << bit_pos);
844 	else
845 		reg_v |= (1 << bit_pos);
846 	port_id_pci_reg_write(port_id, reg_off, reg_v);
847 	display_port_reg_value(port_id, reg_off, reg_v);
848 }
849 
850 void
851 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
852 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
853 {
854 	uint32_t max_v;
855 	uint32_t reg_v;
856 	uint8_t  l_bit;
857 	uint8_t  h_bit;
858 
859 	if (port_id_is_invalid(port_id, ENABLED_WARN))
860 		return;
861 	if (port_reg_off_is_invalid(port_id, reg_off))
862 		return;
863 	if (reg_bit_pos_is_invalid(bit1_pos))
864 		return;
865 	if (reg_bit_pos_is_invalid(bit2_pos))
866 		return;
867 	if (bit1_pos > bit2_pos)
868 		l_bit = bit2_pos, h_bit = bit1_pos;
869 	else
870 		l_bit = bit1_pos, h_bit = bit2_pos;
871 
872 	if ((h_bit - l_bit) < 31)
873 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
874 	else
875 		max_v = 0xFFFFFFFF;
876 
877 	if (value > max_v) {
878 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
879 				(unsigned)value, (unsigned)value,
880 				(unsigned)max_v, (unsigned)max_v);
881 		return;
882 	}
883 	reg_v = port_id_pci_reg_read(port_id, reg_off);
884 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
885 	reg_v |= (value << l_bit); /* Set changed bits */
886 	port_id_pci_reg_write(port_id, reg_off, reg_v);
887 	display_port_reg_value(port_id, reg_off, reg_v);
888 }
889 
890 void
891 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
892 {
893 	if (port_id_is_invalid(port_id, ENABLED_WARN))
894 		return;
895 	if (port_reg_off_is_invalid(port_id, reg_off))
896 		return;
897 	port_id_pci_reg_write(port_id, reg_off, reg_v);
898 	display_port_reg_value(port_id, reg_off, reg_v);
899 }
900 
901 void
902 port_mtu_set(portid_t port_id, uint16_t mtu)
903 {
904 	int diag;
905 
906 	if (port_id_is_invalid(port_id, ENABLED_WARN))
907 		return;
908 	diag = rte_eth_dev_set_mtu(port_id, mtu);
909 	if (diag == 0)
910 		return;
911 	printf("Set MTU failed. diag=%d\n", diag);
912 }
913 
914 /* Generic flow management functions. */
915 
916 /** Generate flow_item[] entry. */
917 #define MK_FLOW_ITEM(t, s) \
918 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
919 		.name = # t, \
920 		.size = s, \
921 	}
922 
923 /** Information about known flow pattern items. */
924 static const struct {
925 	const char *name;
926 	size_t size;
927 } flow_item[] = {
928 	MK_FLOW_ITEM(END, 0),
929 	MK_FLOW_ITEM(VOID, 0),
930 	MK_FLOW_ITEM(INVERT, 0),
931 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
932 	MK_FLOW_ITEM(PF, 0),
933 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
934 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
935 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
936 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
937 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
938 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
939 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
940 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
941 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
942 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
943 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
944 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
945 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
946 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
947 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
948 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
949 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
950 };
951 
952 /** Compute storage space needed by item specification. */
953 static void
954 flow_item_spec_size(const struct rte_flow_item *item,
955 		    size_t *size, size_t *pad)
956 {
957 	if (!item->spec)
958 		goto empty;
959 	switch (item->type) {
960 		union {
961 			const struct rte_flow_item_raw *raw;
962 		} spec;
963 
964 	case RTE_FLOW_ITEM_TYPE_RAW:
965 		spec.raw = item->spec;
966 		*size = offsetof(struct rte_flow_item_raw, pattern) +
967 			spec.raw->length * sizeof(*spec.raw->pattern);
968 		break;
969 	default:
970 empty:
971 		*size = 0;
972 		break;
973 	}
974 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
975 }
976 
977 /** Generate flow_action[] entry. */
978 #define MK_FLOW_ACTION(t, s) \
979 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
980 		.name = # t, \
981 		.size = s, \
982 	}
983 
984 /** Information about known flow actions. */
985 static const struct {
986 	const char *name;
987 	size_t size;
988 } flow_action[] = {
989 	MK_FLOW_ACTION(END, 0),
990 	MK_FLOW_ACTION(VOID, 0),
991 	MK_FLOW_ACTION(PASSTHRU, 0),
992 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
993 	MK_FLOW_ACTION(FLAG, 0),
994 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
995 	MK_FLOW_ACTION(DROP, 0),
996 	MK_FLOW_ACTION(COUNT, 0),
997 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
998 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
999 	MK_FLOW_ACTION(PF, 0),
1000 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1001 };
1002 
1003 /** Compute storage space needed by action configuration. */
1004 static void
1005 flow_action_conf_size(const struct rte_flow_action *action,
1006 		      size_t *size, size_t *pad)
1007 {
1008 	if (!action->conf)
1009 		goto empty;
1010 	switch (action->type) {
1011 		union {
1012 			const struct rte_flow_action_rss *rss;
1013 		} conf;
1014 
1015 	case RTE_FLOW_ACTION_TYPE_RSS:
1016 		conf.rss = action->conf;
1017 		*size = offsetof(struct rte_flow_action_rss, queue) +
1018 			conf.rss->num * sizeof(*conf.rss->queue);
1019 		break;
1020 	default:
1021 empty:
1022 		*size = 0;
1023 		break;
1024 	}
1025 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1026 }
1027 
1028 /** Generate a port_flow entry from attributes/pattern/actions. */
1029 static struct port_flow *
1030 port_flow_new(const struct rte_flow_attr *attr,
1031 	      const struct rte_flow_item *pattern,
1032 	      const struct rte_flow_action *actions)
1033 {
1034 	const struct rte_flow_item *item;
1035 	const struct rte_flow_action *action;
1036 	struct port_flow *pf = NULL;
1037 	size_t tmp;
1038 	size_t pad;
1039 	size_t off1 = 0;
1040 	size_t off2 = 0;
1041 	int err = ENOTSUP;
1042 
1043 store:
1044 	item = pattern;
1045 	if (pf)
1046 		pf->pattern = (void *)&pf->data[off1];
1047 	do {
1048 		struct rte_flow_item *dst = NULL;
1049 
1050 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1051 		    !flow_item[item->type].name)
1052 			goto notsup;
1053 		if (pf)
1054 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1055 		off1 += sizeof(*item);
1056 		flow_item_spec_size(item, &tmp, &pad);
1057 		if (item->spec) {
1058 			if (pf)
1059 				dst->spec = memcpy(pf->data + off2,
1060 						   item->spec, tmp);
1061 			off2 += tmp + pad;
1062 		}
1063 		if (item->last) {
1064 			if (pf)
1065 				dst->last = memcpy(pf->data + off2,
1066 						   item->last, tmp);
1067 			off2 += tmp + pad;
1068 		}
1069 		if (item->mask) {
1070 			if (pf)
1071 				dst->mask = memcpy(pf->data + off2,
1072 						   item->mask, tmp);
1073 			off2 += tmp + pad;
1074 		}
1075 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1076 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1077 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1078 	action = actions;
1079 	if (pf)
1080 		pf->actions = (void *)&pf->data[off1];
1081 	do {
1082 		struct rte_flow_action *dst = NULL;
1083 
1084 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1085 		    !flow_action[action->type].name)
1086 			goto notsup;
1087 		if (pf)
1088 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1089 		off1 += sizeof(*action);
1090 		flow_action_conf_size(action, &tmp, &pad);
1091 		if (action->conf) {
1092 			if (pf)
1093 				dst->conf = memcpy(pf->data + off2,
1094 						   action->conf, tmp);
1095 			off2 += tmp + pad;
1096 		}
1097 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1098 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1099 	if (pf != NULL)
1100 		return pf;
1101 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1102 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1103 	pf = calloc(1, tmp + off1 + off2);
1104 	if (pf == NULL)
1105 		err = errno;
1106 	else {
1107 		*pf = (const struct port_flow){
1108 			.size = tmp + off1 + off2,
1109 			.attr = *attr,
1110 		};
1111 		tmp -= offsetof(struct port_flow, data);
1112 		off2 = tmp + off1;
1113 		off1 = tmp;
1114 		goto store;
1115 	}
1116 notsup:
1117 	rte_errno = err;
1118 	return NULL;
1119 }
1120 
1121 /** Print a message out of a flow error. */
1122 static int
1123 port_flow_complain(struct rte_flow_error *error)
1124 {
1125 	static const char *const errstrlist[] = {
1126 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1127 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1128 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1129 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1130 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1131 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1132 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1133 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1134 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1135 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1136 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1137 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1138 	};
1139 	const char *errstr;
1140 	char buf[32];
1141 	int err = rte_errno;
1142 
1143 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1144 	    !errstrlist[error->type])
1145 		errstr = "unknown type";
1146 	else
1147 		errstr = errstrlist[error->type];
1148 	printf("Caught error type %d (%s): %s%s\n",
1149 	       error->type, errstr,
1150 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1151 					error->cause), buf) : "",
1152 	       error->message ? error->message : "(no stated reason)");
1153 	return -err;
1154 }
1155 
1156 /** Validate flow rule. */
1157 int
1158 port_flow_validate(portid_t port_id,
1159 		   const struct rte_flow_attr *attr,
1160 		   const struct rte_flow_item *pattern,
1161 		   const struct rte_flow_action *actions)
1162 {
1163 	struct rte_flow_error error;
1164 
1165 	/* Poisoning to make sure PMDs update it in case of error. */
1166 	memset(&error, 0x11, sizeof(error));
1167 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1168 		return port_flow_complain(&error);
1169 	printf("Flow rule validated\n");
1170 	return 0;
1171 }
1172 
1173 /** Create flow rule. */
1174 int
1175 port_flow_create(portid_t port_id,
1176 		 const struct rte_flow_attr *attr,
1177 		 const struct rte_flow_item *pattern,
1178 		 const struct rte_flow_action *actions)
1179 {
1180 	struct rte_flow *flow;
1181 	struct rte_port *port;
1182 	struct port_flow *pf;
1183 	uint32_t id;
1184 	struct rte_flow_error error;
1185 
1186 	/* Poisoning to make sure PMDs update it in case of error. */
1187 	memset(&error, 0x22, sizeof(error));
1188 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1189 	if (!flow)
1190 		return port_flow_complain(&error);
1191 	port = &ports[port_id];
1192 	if (port->flow_list) {
1193 		if (port->flow_list->id == UINT32_MAX) {
1194 			printf("Highest rule ID is already assigned, delete"
1195 			       " it first");
1196 			rte_flow_destroy(port_id, flow, NULL);
1197 			return -ENOMEM;
1198 		}
1199 		id = port->flow_list->id + 1;
1200 	} else
1201 		id = 0;
1202 	pf = port_flow_new(attr, pattern, actions);
1203 	if (!pf) {
1204 		int err = rte_errno;
1205 
1206 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1207 		rte_flow_destroy(port_id, flow, NULL);
1208 		return -err;
1209 	}
1210 	pf->next = port->flow_list;
1211 	pf->id = id;
1212 	pf->flow = flow;
1213 	port->flow_list = pf;
1214 	printf("Flow rule #%u created\n", pf->id);
1215 	return 0;
1216 }
1217 
1218 /** Destroy a number of flow rules. */
1219 int
1220 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1221 {
1222 	struct rte_port *port;
1223 	struct port_flow **tmp;
1224 	uint32_t c = 0;
1225 	int ret = 0;
1226 
1227 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1228 	    port_id == (portid_t)RTE_PORT_ALL)
1229 		return -EINVAL;
1230 	port = &ports[port_id];
1231 	tmp = &port->flow_list;
1232 	while (*tmp) {
1233 		uint32_t i;
1234 
1235 		for (i = 0; i != n; ++i) {
1236 			struct rte_flow_error error;
1237 			struct port_flow *pf = *tmp;
1238 
1239 			if (rule[i] != pf->id)
1240 				continue;
1241 			/*
1242 			 * Poisoning to make sure PMDs update it in case
1243 			 * of error.
1244 			 */
1245 			memset(&error, 0x33, sizeof(error));
1246 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1247 				ret = port_flow_complain(&error);
1248 				continue;
1249 			}
1250 			printf("Flow rule #%u destroyed\n", pf->id);
1251 			*tmp = pf->next;
1252 			free(pf);
1253 			break;
1254 		}
1255 		if (i == n)
1256 			tmp = &(*tmp)->next;
1257 		++c;
1258 	}
1259 	return ret;
1260 }
1261 
1262 /** Remove all flow rules. */
1263 int
1264 port_flow_flush(portid_t port_id)
1265 {
1266 	struct rte_flow_error error;
1267 	struct rte_port *port;
1268 	int ret = 0;
1269 
1270 	/* Poisoning to make sure PMDs update it in case of error. */
1271 	memset(&error, 0x44, sizeof(error));
1272 	if (rte_flow_flush(port_id, &error)) {
1273 		ret = port_flow_complain(&error);
1274 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1275 		    port_id == (portid_t)RTE_PORT_ALL)
1276 			return ret;
1277 	}
1278 	port = &ports[port_id];
1279 	while (port->flow_list) {
1280 		struct port_flow *pf = port->flow_list->next;
1281 
1282 		free(port->flow_list);
1283 		port->flow_list = pf;
1284 	}
1285 	return ret;
1286 }
1287 
1288 /** Query a flow rule. */
1289 int
1290 port_flow_query(portid_t port_id, uint32_t rule,
1291 		enum rte_flow_action_type action)
1292 {
1293 	struct rte_flow_error error;
1294 	struct rte_port *port;
1295 	struct port_flow *pf;
1296 	const char *name;
1297 	union {
1298 		struct rte_flow_query_count count;
1299 	} query;
1300 
1301 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1302 	    port_id == (portid_t)RTE_PORT_ALL)
1303 		return -EINVAL;
1304 	port = &ports[port_id];
1305 	for (pf = port->flow_list; pf; pf = pf->next)
1306 		if (pf->id == rule)
1307 			break;
1308 	if (!pf) {
1309 		printf("Flow rule #%u not found\n", rule);
1310 		return -ENOENT;
1311 	}
1312 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1313 	    !flow_action[action].name)
1314 		name = "unknown";
1315 	else
1316 		name = flow_action[action].name;
1317 	switch (action) {
1318 	case RTE_FLOW_ACTION_TYPE_COUNT:
1319 		break;
1320 	default:
1321 		printf("Cannot query action type %d (%s)\n", action, name);
1322 		return -ENOTSUP;
1323 	}
1324 	/* Poisoning to make sure PMDs update it in case of error. */
1325 	memset(&error, 0x55, sizeof(error));
1326 	memset(&query, 0, sizeof(query));
1327 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1328 		return port_flow_complain(&error);
1329 	switch (action) {
1330 	case RTE_FLOW_ACTION_TYPE_COUNT:
1331 		printf("%s:\n"
1332 		       " hits_set: %u\n"
1333 		       " bytes_set: %u\n"
1334 		       " hits: %" PRIu64 "\n"
1335 		       " bytes: %" PRIu64 "\n",
1336 		       name,
1337 		       query.count.hits_set,
1338 		       query.count.bytes_set,
1339 		       query.count.hits,
1340 		       query.count.bytes);
1341 		break;
1342 	default:
1343 		printf("Cannot display result for action type %d (%s)\n",
1344 		       action, name);
1345 		break;
1346 	}
1347 	return 0;
1348 }
1349 
1350 /** List flow rules. */
1351 void
1352 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1353 {
1354 	struct rte_port *port;
1355 	struct port_flow *pf;
1356 	struct port_flow *list = NULL;
1357 	uint32_t i;
1358 
1359 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1360 	    port_id == (portid_t)RTE_PORT_ALL)
1361 		return;
1362 	port = &ports[port_id];
1363 	if (!port->flow_list)
1364 		return;
1365 	/* Sort flows by group, priority and ID. */
1366 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1367 		struct port_flow **tmp;
1368 
1369 		if (n) {
1370 			/* Filter out unwanted groups. */
1371 			for (i = 0; i != n; ++i)
1372 				if (pf->attr.group == group[i])
1373 					break;
1374 			if (i == n)
1375 				continue;
1376 		}
1377 		tmp = &list;
1378 		while (*tmp &&
1379 		       (pf->attr.group > (*tmp)->attr.group ||
1380 			(pf->attr.group == (*tmp)->attr.group &&
1381 			 pf->attr.priority > (*tmp)->attr.priority) ||
1382 			(pf->attr.group == (*tmp)->attr.group &&
1383 			 pf->attr.priority == (*tmp)->attr.priority &&
1384 			 pf->id > (*tmp)->id)))
1385 			tmp = &(*tmp)->tmp;
1386 		pf->tmp = *tmp;
1387 		*tmp = pf;
1388 	}
1389 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1390 	for (pf = list; pf != NULL; pf = pf->tmp) {
1391 		const struct rte_flow_item *item = pf->pattern;
1392 		const struct rte_flow_action *action = pf->actions;
1393 
1394 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1395 		       pf->id,
1396 		       pf->attr.group,
1397 		       pf->attr.priority,
1398 		       pf->attr.ingress ? 'i' : '-',
1399 		       pf->attr.egress ? 'e' : '-');
1400 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1401 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1402 				printf("%s ", flow_item[item->type].name);
1403 			++item;
1404 		}
1405 		printf("=>");
1406 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1407 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1408 				printf(" %s", flow_action[action->type].name);
1409 			++action;
1410 		}
1411 		printf("\n");
1412 	}
1413 }
1414 
1415 /** Restrict ingress traffic to the defined flow rules. */
1416 int
1417 port_flow_isolate(portid_t port_id, int set)
1418 {
1419 	struct rte_flow_error error;
1420 
1421 	/* Poisoning to make sure PMDs update it in case of error. */
1422 	memset(&error, 0x66, sizeof(error));
1423 	if (rte_flow_isolate(port_id, set, &error))
1424 		return port_flow_complain(&error);
1425 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1426 	       port_id,
1427 	       set ? "now restricted" : "not restricted anymore");
1428 	return 0;
1429 }
1430 
1431 /*
1432  * RX/TX ring descriptors display functions.
1433  */
1434 int
1435 rx_queue_id_is_invalid(queueid_t rxq_id)
1436 {
1437 	if (rxq_id < nb_rxq)
1438 		return 0;
1439 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1440 	return 1;
1441 }
1442 
1443 int
1444 tx_queue_id_is_invalid(queueid_t txq_id)
1445 {
1446 	if (txq_id < nb_txq)
1447 		return 0;
1448 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1449 	return 1;
1450 }
1451 
1452 static int
1453 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1454 {
1455 	if (rxdesc_id < nb_rxd)
1456 		return 0;
1457 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1458 	       rxdesc_id, nb_rxd);
1459 	return 1;
1460 }
1461 
1462 static int
1463 tx_desc_id_is_invalid(uint16_t txdesc_id)
1464 {
1465 	if (txdesc_id < nb_txd)
1466 		return 0;
1467 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1468 	       txdesc_id, nb_txd);
1469 	return 1;
1470 }
1471 
1472 static const struct rte_memzone *
1473 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1474 {
1475 	char mz_name[RTE_MEMZONE_NAMESIZE];
1476 	const struct rte_memzone *mz;
1477 
1478 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1479 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1480 	mz = rte_memzone_lookup(mz_name);
1481 	if (mz == NULL)
1482 		printf("%s ring memory zoneof (port %d, queue %d) not"
1483 		       "found (zone name = %s\n",
1484 		       ring_name, port_id, q_id, mz_name);
1485 	return mz;
1486 }
1487 
1488 union igb_ring_dword {
1489 	uint64_t dword;
1490 	struct {
1491 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1492 		uint32_t lo;
1493 		uint32_t hi;
1494 #else
1495 		uint32_t hi;
1496 		uint32_t lo;
1497 #endif
1498 	} words;
1499 };
1500 
1501 struct igb_ring_desc_32_bytes {
1502 	union igb_ring_dword lo_dword;
1503 	union igb_ring_dword hi_dword;
1504 	union igb_ring_dword resv1;
1505 	union igb_ring_dword resv2;
1506 };
1507 
1508 struct igb_ring_desc_16_bytes {
1509 	union igb_ring_dword lo_dword;
1510 	union igb_ring_dword hi_dword;
1511 };
1512 
1513 static void
1514 ring_rxd_display_dword(union igb_ring_dword dword)
1515 {
1516 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1517 					(unsigned)dword.words.hi);
1518 }
1519 
1520 static void
1521 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1522 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1523 			   uint8_t port_id,
1524 #else
1525 			   __rte_unused uint8_t port_id,
1526 #endif
1527 			   uint16_t desc_id)
1528 {
1529 	struct igb_ring_desc_16_bytes *ring =
1530 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1531 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1532 	struct rte_eth_dev_info dev_info;
1533 
1534 	memset(&dev_info, 0, sizeof(dev_info));
1535 	rte_eth_dev_info_get(port_id, &dev_info);
1536 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1537 		/* 32 bytes RX descriptor, i40e only */
1538 		struct igb_ring_desc_32_bytes *ring =
1539 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1540 		ring[desc_id].lo_dword.dword =
1541 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1542 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1543 		ring[desc_id].hi_dword.dword =
1544 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1545 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1546 		ring[desc_id].resv1.dword =
1547 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1548 		ring_rxd_display_dword(ring[desc_id].resv1);
1549 		ring[desc_id].resv2.dword =
1550 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1551 		ring_rxd_display_dword(ring[desc_id].resv2);
1552 
1553 		return;
1554 	}
1555 #endif
1556 	/* 16 bytes RX descriptor */
1557 	ring[desc_id].lo_dword.dword =
1558 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1559 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1560 	ring[desc_id].hi_dword.dword =
1561 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1562 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1563 }
1564 
1565 static void
1566 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1567 {
1568 	struct igb_ring_desc_16_bytes *ring;
1569 	struct igb_ring_desc_16_bytes txd;
1570 
1571 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1572 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1573 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1574 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1575 			(unsigned)txd.lo_dword.words.lo,
1576 			(unsigned)txd.lo_dword.words.hi,
1577 			(unsigned)txd.hi_dword.words.lo,
1578 			(unsigned)txd.hi_dword.words.hi);
1579 }
1580 
1581 void
1582 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1583 {
1584 	const struct rte_memzone *rx_mz;
1585 
1586 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1587 		return;
1588 	if (rx_queue_id_is_invalid(rxq_id))
1589 		return;
1590 	if (rx_desc_id_is_invalid(rxd_id))
1591 		return;
1592 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1593 	if (rx_mz == NULL)
1594 		return;
1595 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1596 }
1597 
1598 void
1599 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1600 {
1601 	const struct rte_memzone *tx_mz;
1602 
1603 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1604 		return;
1605 	if (tx_queue_id_is_invalid(txq_id))
1606 		return;
1607 	if (tx_desc_id_is_invalid(txd_id))
1608 		return;
1609 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1610 	if (tx_mz == NULL)
1611 		return;
1612 	ring_tx_descriptor_display(tx_mz, txd_id);
1613 }
1614 
1615 void
1616 fwd_lcores_config_display(void)
1617 {
1618 	lcoreid_t lc_id;
1619 
1620 	printf("List of forwarding lcores:");
1621 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1622 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1623 	printf("\n");
1624 }
1625 void
1626 rxtx_config_display(void)
1627 {
1628 	printf("  %s packet forwarding%s - CRC stripping %s - "
1629 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1630 	       retry_enabled == 0 ? "" : " with retry",
1631 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1632 	       nb_pkt_per_burst);
1633 
1634 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1635 		printf("  packet len=%u - nb packet segments=%d\n",
1636 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1637 
1638 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1639 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1640 
1641 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1642 	       nb_fwd_lcores, nb_fwd_ports);
1643 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1644 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1645 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1646 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1647 	       rx_conf->rx_thresh.wthresh);
1648 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1649 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1650 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1651 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1652 	       tx_conf->tx_thresh.wthresh);
1653 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1654 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1655 }
1656 
1657 void
1658 port_rss_reta_info(portid_t port_id,
1659 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1660 		   uint16_t nb_entries)
1661 {
1662 	uint16_t i, idx, shift;
1663 	int ret;
1664 
1665 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1666 		return;
1667 
1668 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1669 	if (ret != 0) {
1670 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1671 		return;
1672 	}
1673 
1674 	for (i = 0; i < nb_entries; i++) {
1675 		idx = i / RTE_RETA_GROUP_SIZE;
1676 		shift = i % RTE_RETA_GROUP_SIZE;
1677 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1678 			continue;
1679 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1680 					i, reta_conf[idx].reta[shift]);
1681 	}
1682 }
1683 
1684 /*
1685  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1686  * key of the port.
1687  */
1688 void
1689 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1690 {
1691 	struct rte_eth_rss_conf rss_conf;
1692 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1693 	uint64_t rss_hf;
1694 	uint8_t i;
1695 	int diag;
1696 	struct rte_eth_dev_info dev_info;
1697 	uint8_t hash_key_size;
1698 
1699 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1700 		return;
1701 
1702 	memset(&dev_info, 0, sizeof(dev_info));
1703 	rte_eth_dev_info_get(port_id, &dev_info);
1704 	if (dev_info.hash_key_size > 0 &&
1705 			dev_info.hash_key_size <= sizeof(rss_key))
1706 		hash_key_size = dev_info.hash_key_size;
1707 	else {
1708 		printf("dev_info did not provide a valid hash key size\n");
1709 		return;
1710 	}
1711 
1712 	rss_conf.rss_hf = 0;
1713 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1714 		if (!strcmp(rss_info, rss_type_table[i].str))
1715 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1716 	}
1717 
1718 	/* Get RSS hash key if asked to display it */
1719 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1720 	rss_conf.rss_key_len = hash_key_size;
1721 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1722 	if (diag != 0) {
1723 		switch (diag) {
1724 		case -ENODEV:
1725 			printf("port index %d invalid\n", port_id);
1726 			break;
1727 		case -ENOTSUP:
1728 			printf("operation not supported by device\n");
1729 			break;
1730 		default:
1731 			printf("operation failed - diag=%d\n", diag);
1732 			break;
1733 		}
1734 		return;
1735 	}
1736 	rss_hf = rss_conf.rss_hf;
1737 	if (rss_hf == 0) {
1738 		printf("RSS disabled\n");
1739 		return;
1740 	}
1741 	printf("RSS functions:\n ");
1742 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1743 		if (rss_hf & rss_type_table[i].rss_type)
1744 			printf("%s ", rss_type_table[i].str);
1745 	}
1746 	printf("\n");
1747 	if (!show_rss_key)
1748 		return;
1749 	printf("RSS key:\n");
1750 	for (i = 0; i < hash_key_size; i++)
1751 		printf("%02X", rss_key[i]);
1752 	printf("\n");
1753 }
1754 
1755 void
1756 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1757 			 uint hash_key_len)
1758 {
1759 	struct rte_eth_rss_conf rss_conf;
1760 	int diag;
1761 	unsigned int i;
1762 
1763 	rss_conf.rss_key = NULL;
1764 	rss_conf.rss_key_len = hash_key_len;
1765 	rss_conf.rss_hf = 0;
1766 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1767 		if (!strcmp(rss_type_table[i].str, rss_type))
1768 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1769 	}
1770 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1771 	if (diag == 0) {
1772 		rss_conf.rss_key = hash_key;
1773 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1774 	}
1775 	if (diag == 0)
1776 		return;
1777 
1778 	switch (diag) {
1779 	case -ENODEV:
1780 		printf("port index %d invalid\n", port_id);
1781 		break;
1782 	case -ENOTSUP:
1783 		printf("operation not supported by device\n");
1784 		break;
1785 	default:
1786 		printf("operation failed - diag=%d\n", diag);
1787 		break;
1788 	}
1789 }
1790 
1791 /*
1792  * Setup forwarding configuration for each logical core.
1793  */
1794 static void
1795 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1796 {
1797 	streamid_t nb_fs_per_lcore;
1798 	streamid_t nb_fs;
1799 	streamid_t sm_id;
1800 	lcoreid_t  nb_extra;
1801 	lcoreid_t  nb_fc;
1802 	lcoreid_t  nb_lc;
1803 	lcoreid_t  lc_id;
1804 
1805 	nb_fs = cfg->nb_fwd_streams;
1806 	nb_fc = cfg->nb_fwd_lcores;
1807 	if (nb_fs <= nb_fc) {
1808 		nb_fs_per_lcore = 1;
1809 		nb_extra = 0;
1810 	} else {
1811 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1812 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1813 	}
1814 
1815 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1816 	sm_id = 0;
1817 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1818 		fwd_lcores[lc_id]->stream_idx = sm_id;
1819 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1820 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1821 	}
1822 
1823 	/*
1824 	 * Assign extra remaining streams, if any.
1825 	 */
1826 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1827 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1828 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1829 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1830 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1831 	}
1832 }
1833 
1834 static void
1835 simple_fwd_config_setup(void)
1836 {
1837 	portid_t i;
1838 	portid_t j;
1839 	portid_t inc = 2;
1840 
1841 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1842 	    port_topology == PORT_TOPOLOGY_LOOP) {
1843 		inc = 1;
1844 	} else if (nb_fwd_ports % 2) {
1845 		printf("\nWarning! Cannot handle an odd number of ports "
1846 		       "with the current port topology. Configuration "
1847 		       "must be changed to have an even number of ports, "
1848 		       "or relaunch application with "
1849 		       "--port-topology=chained\n\n");
1850 	}
1851 
1852 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1853 	cur_fwd_config.nb_fwd_streams =
1854 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1855 
1856 	/* reinitialize forwarding streams */
1857 	init_fwd_streams();
1858 
1859 	/*
1860 	 * In the simple forwarding test, the number of forwarding cores
1861 	 * must be lower or equal to the number of forwarding ports.
1862 	 */
1863 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1864 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1865 		cur_fwd_config.nb_fwd_lcores =
1866 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1867 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1868 
1869 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1870 		if (port_topology != PORT_TOPOLOGY_LOOP)
1871 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1872 		else
1873 			j = i;
1874 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1875 		fwd_streams[i]->rx_queue  = 0;
1876 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1877 		fwd_streams[i]->tx_queue  = 0;
1878 		fwd_streams[i]->peer_addr = j;
1879 		fwd_streams[i]->retry_enabled = retry_enabled;
1880 
1881 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1882 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1883 			fwd_streams[j]->rx_queue  = 0;
1884 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1885 			fwd_streams[j]->tx_queue  = 0;
1886 			fwd_streams[j]->peer_addr = i;
1887 			fwd_streams[j]->retry_enabled = retry_enabled;
1888 		}
1889 	}
1890 }
1891 
1892 /**
1893  * For the RSS forwarding test all streams distributed over lcores. Each stream
1894  * being composed of a RX queue to poll on a RX port for input messages,
1895  * associated with a TX queue of a TX port where to send forwarded packets.
1896  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1897  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1898  * following rules:
1899  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1900  *    - TxQl = RxQj
1901  */
1902 static void
1903 rss_fwd_config_setup(void)
1904 {
1905 	portid_t   rxp;
1906 	portid_t   txp;
1907 	queueid_t  rxq;
1908 	queueid_t  nb_q;
1909 	streamid_t  sm_id;
1910 
1911 	nb_q = nb_rxq;
1912 	if (nb_q > nb_txq)
1913 		nb_q = nb_txq;
1914 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1915 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1916 	cur_fwd_config.nb_fwd_streams =
1917 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1918 
1919 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1920 		cur_fwd_config.nb_fwd_lcores =
1921 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1922 
1923 	/* reinitialize forwarding streams */
1924 	init_fwd_streams();
1925 
1926 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1927 	rxp = 0; rxq = 0;
1928 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1929 		struct fwd_stream *fs;
1930 
1931 		fs = fwd_streams[sm_id];
1932 
1933 		if ((rxp & 0x1) == 0)
1934 			txp = (portid_t) (rxp + 1);
1935 		else
1936 			txp = (portid_t) (rxp - 1);
1937 		/*
1938 		 * if we are in loopback, simply send stuff out through the
1939 		 * ingress port
1940 		 */
1941 		if (port_topology == PORT_TOPOLOGY_LOOP)
1942 			txp = rxp;
1943 
1944 		fs->rx_port = fwd_ports_ids[rxp];
1945 		fs->rx_queue = rxq;
1946 		fs->tx_port = fwd_ports_ids[txp];
1947 		fs->tx_queue = rxq;
1948 		fs->peer_addr = fs->tx_port;
1949 		fs->retry_enabled = retry_enabled;
1950 		rxq = (queueid_t) (rxq + 1);
1951 		if (rxq < nb_q)
1952 			continue;
1953 		/*
1954 		 * rxq == nb_q
1955 		 * Restart from RX queue 0 on next RX port
1956 		 */
1957 		rxq = 0;
1958 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1959 			rxp = (portid_t)
1960 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1961 		else
1962 			rxp = (portid_t) (rxp + 1);
1963 	}
1964 }
1965 
1966 /**
1967  * For the DCB forwarding test, each core is assigned on each traffic class.
1968  *
1969  * Each core is assigned a multi-stream, each stream being composed of
1970  * a RX queue to poll on a RX port for input messages, associated with
1971  * a TX queue of a TX port where to send forwarded packets. All RX and
1972  * TX queues are mapping to the same traffic class.
1973  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1974  * the same core
1975  */
1976 static void
1977 dcb_fwd_config_setup(void)
1978 {
1979 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1980 	portid_t txp, rxp = 0;
1981 	queueid_t txq, rxq = 0;
1982 	lcoreid_t  lc_id;
1983 	uint16_t nb_rx_queue, nb_tx_queue;
1984 	uint16_t i, j, k, sm_id = 0;
1985 	uint8_t tc = 0;
1986 
1987 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1988 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1989 	cur_fwd_config.nb_fwd_streams =
1990 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1991 
1992 	/* reinitialize forwarding streams */
1993 	init_fwd_streams();
1994 	sm_id = 0;
1995 	txp = 1;
1996 	/* get the dcb info on the first RX and TX ports */
1997 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
1998 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
1999 
2000 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2001 		fwd_lcores[lc_id]->stream_nb = 0;
2002 		fwd_lcores[lc_id]->stream_idx = sm_id;
2003 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2004 			/* if the nb_queue is zero, means this tc is
2005 			 * not enabled on the POOL
2006 			 */
2007 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2008 				break;
2009 			k = fwd_lcores[lc_id]->stream_nb +
2010 				fwd_lcores[lc_id]->stream_idx;
2011 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2012 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2013 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2014 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2015 			for (j = 0; j < nb_rx_queue; j++) {
2016 				struct fwd_stream *fs;
2017 
2018 				fs = fwd_streams[k + j];
2019 				fs->rx_port = fwd_ports_ids[rxp];
2020 				fs->rx_queue = rxq + j;
2021 				fs->tx_port = fwd_ports_ids[txp];
2022 				fs->tx_queue = txq + j % nb_tx_queue;
2023 				fs->peer_addr = fs->tx_port;
2024 				fs->retry_enabled = retry_enabled;
2025 			}
2026 			fwd_lcores[lc_id]->stream_nb +=
2027 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2028 		}
2029 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2030 
2031 		tc++;
2032 		if (tc < rxp_dcb_info.nb_tcs)
2033 			continue;
2034 		/* Restart from TC 0 on next RX port */
2035 		tc = 0;
2036 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2037 			rxp = (portid_t)
2038 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2039 		else
2040 			rxp++;
2041 		if (rxp >= nb_fwd_ports)
2042 			return;
2043 		/* get the dcb information on next RX and TX ports */
2044 		if ((rxp & 0x1) == 0)
2045 			txp = (portid_t) (rxp + 1);
2046 		else
2047 			txp = (portid_t) (rxp - 1);
2048 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2049 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2050 	}
2051 }
2052 
2053 static void
2054 icmp_echo_config_setup(void)
2055 {
2056 	portid_t  rxp;
2057 	queueid_t rxq;
2058 	lcoreid_t lc_id;
2059 	uint16_t  sm_id;
2060 
2061 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2062 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2063 			(nb_txq * nb_fwd_ports);
2064 	else
2065 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2066 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2067 	cur_fwd_config.nb_fwd_streams =
2068 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2069 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2070 		cur_fwd_config.nb_fwd_lcores =
2071 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2072 	if (verbose_level > 0) {
2073 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2074 		       __FUNCTION__,
2075 		       cur_fwd_config.nb_fwd_lcores,
2076 		       cur_fwd_config.nb_fwd_ports,
2077 		       cur_fwd_config.nb_fwd_streams);
2078 	}
2079 
2080 	/* reinitialize forwarding streams */
2081 	init_fwd_streams();
2082 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2083 	rxp = 0; rxq = 0;
2084 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2085 		if (verbose_level > 0)
2086 			printf("  core=%d: \n", lc_id);
2087 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2088 			struct fwd_stream *fs;
2089 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2090 			fs->rx_port = fwd_ports_ids[rxp];
2091 			fs->rx_queue = rxq;
2092 			fs->tx_port = fs->rx_port;
2093 			fs->tx_queue = rxq;
2094 			fs->peer_addr = fs->tx_port;
2095 			fs->retry_enabled = retry_enabled;
2096 			if (verbose_level > 0)
2097 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2098 				       sm_id, fs->rx_port, fs->rx_queue,
2099 				       fs->tx_queue);
2100 			rxq = (queueid_t) (rxq + 1);
2101 			if (rxq == nb_rxq) {
2102 				rxq = 0;
2103 				rxp = (portid_t) (rxp + 1);
2104 			}
2105 		}
2106 	}
2107 }
2108 
2109 void
2110 fwd_config_setup(void)
2111 {
2112 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2113 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2114 		icmp_echo_config_setup();
2115 		return;
2116 	}
2117 	if ((nb_rxq > 1) && (nb_txq > 1)){
2118 		if (dcb_config)
2119 			dcb_fwd_config_setup();
2120 		else
2121 			rss_fwd_config_setup();
2122 	}
2123 	else
2124 		simple_fwd_config_setup();
2125 }
2126 
2127 void
2128 pkt_fwd_config_display(struct fwd_config *cfg)
2129 {
2130 	struct fwd_stream *fs;
2131 	lcoreid_t  lc_id;
2132 	streamid_t sm_id;
2133 
2134 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2135 		"NUMA support %s, MP over anonymous pages %s\n",
2136 		cfg->fwd_eng->fwd_mode_name,
2137 		retry_enabled == 0 ? "" : " with retry",
2138 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2139 		numa_support == 1 ? "enabled" : "disabled",
2140 		mp_anon != 0 ? "enabled" : "disabled");
2141 
2142 	if (retry_enabled)
2143 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2144 			burst_tx_retry_num, burst_tx_delay_time);
2145 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2146 		printf("Logical Core %u (socket %u) forwards packets on "
2147 		       "%d streams:",
2148 		       fwd_lcores_cpuids[lc_id],
2149 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2150 		       fwd_lcores[lc_id]->stream_nb);
2151 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2152 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2153 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2154 			       "P=%d/Q=%d (socket %u) ",
2155 			       fs->rx_port, fs->rx_queue,
2156 			       ports[fs->rx_port].socket_id,
2157 			       fs->tx_port, fs->tx_queue,
2158 			       ports[fs->tx_port].socket_id);
2159 			print_ethaddr("peer=",
2160 				      &peer_eth_addrs[fs->peer_addr]);
2161 		}
2162 		printf("\n");
2163 	}
2164 	printf("\n");
2165 }
2166 
2167 int
2168 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2169 {
2170 	unsigned int i;
2171 	unsigned int lcore_cpuid;
2172 	int record_now;
2173 
2174 	record_now = 0;
2175  again:
2176 	for (i = 0; i < nb_lc; i++) {
2177 		lcore_cpuid = lcorelist[i];
2178 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2179 			printf("lcore %u not enabled\n", lcore_cpuid);
2180 			return -1;
2181 		}
2182 		if (lcore_cpuid == rte_get_master_lcore()) {
2183 			printf("lcore %u cannot be masked on for running "
2184 			       "packet forwarding, which is the master lcore "
2185 			       "and reserved for command line parsing only\n",
2186 			       lcore_cpuid);
2187 			return -1;
2188 		}
2189 		if (record_now)
2190 			fwd_lcores_cpuids[i] = lcore_cpuid;
2191 	}
2192 	if (record_now == 0) {
2193 		record_now = 1;
2194 		goto again;
2195 	}
2196 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2197 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2198 		printf("previous number of forwarding cores %u - changed to "
2199 		       "number of configured cores %u\n",
2200 		       (unsigned int) nb_fwd_lcores, nb_lc);
2201 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 int
2208 set_fwd_lcores_mask(uint64_t lcoremask)
2209 {
2210 	unsigned int lcorelist[64];
2211 	unsigned int nb_lc;
2212 	unsigned int i;
2213 
2214 	if (lcoremask == 0) {
2215 		printf("Invalid NULL mask of cores\n");
2216 		return -1;
2217 	}
2218 	nb_lc = 0;
2219 	for (i = 0; i < 64; i++) {
2220 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2221 			continue;
2222 		lcorelist[nb_lc++] = i;
2223 	}
2224 	return set_fwd_lcores_list(lcorelist, nb_lc);
2225 }
2226 
2227 void
2228 set_fwd_lcores_number(uint16_t nb_lc)
2229 {
2230 	if (nb_lc > nb_cfg_lcores) {
2231 		printf("nb fwd cores %u > %u (max. number of configured "
2232 		       "lcores) - ignored\n",
2233 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2234 		return;
2235 	}
2236 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2237 	printf("Number of forwarding cores set to %u\n",
2238 	       (unsigned int) nb_fwd_lcores);
2239 }
2240 
2241 void
2242 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2243 {
2244 	unsigned int i;
2245 	portid_t port_id;
2246 	int record_now;
2247 
2248 	record_now = 0;
2249  again:
2250 	for (i = 0; i < nb_pt; i++) {
2251 		port_id = (portid_t) portlist[i];
2252 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2253 			return;
2254 		if (record_now)
2255 			fwd_ports_ids[i] = port_id;
2256 	}
2257 	if (record_now == 0) {
2258 		record_now = 1;
2259 		goto again;
2260 	}
2261 	nb_cfg_ports = (portid_t) nb_pt;
2262 	if (nb_fwd_ports != (portid_t) nb_pt) {
2263 		printf("previous number of forwarding ports %u - changed to "
2264 		       "number of configured ports %u\n",
2265 		       (unsigned int) nb_fwd_ports, nb_pt);
2266 		nb_fwd_ports = (portid_t) nb_pt;
2267 	}
2268 }
2269 
2270 void
2271 set_fwd_ports_mask(uint64_t portmask)
2272 {
2273 	unsigned int portlist[64];
2274 	unsigned int nb_pt;
2275 	unsigned int i;
2276 
2277 	if (portmask == 0) {
2278 		printf("Invalid NULL mask of ports\n");
2279 		return;
2280 	}
2281 	nb_pt = 0;
2282 	RTE_ETH_FOREACH_DEV(i) {
2283 		if (! ((uint64_t)(1ULL << i) & portmask))
2284 			continue;
2285 		portlist[nb_pt++] = i;
2286 	}
2287 	set_fwd_ports_list(portlist, nb_pt);
2288 }
2289 
2290 void
2291 set_fwd_ports_number(uint16_t nb_pt)
2292 {
2293 	if (nb_pt > nb_cfg_ports) {
2294 		printf("nb fwd ports %u > %u (number of configured "
2295 		       "ports) - ignored\n",
2296 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2297 		return;
2298 	}
2299 	nb_fwd_ports = (portid_t) nb_pt;
2300 	printf("Number of forwarding ports set to %u\n",
2301 	       (unsigned int) nb_fwd_ports);
2302 }
2303 
2304 int
2305 port_is_forwarding(portid_t port_id)
2306 {
2307 	unsigned int i;
2308 
2309 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2310 		return -1;
2311 
2312 	for (i = 0; i < nb_fwd_ports; i++) {
2313 		if (fwd_ports_ids[i] == port_id)
2314 			return 1;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 void
2321 set_nb_pkt_per_burst(uint16_t nb)
2322 {
2323 	if (nb > MAX_PKT_BURST) {
2324 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2325 		       " ignored\n",
2326 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2327 		return;
2328 	}
2329 	nb_pkt_per_burst = nb;
2330 	printf("Number of packets per burst set to %u\n",
2331 	       (unsigned int) nb_pkt_per_burst);
2332 }
2333 
2334 static const char *
2335 tx_split_get_name(enum tx_pkt_split split)
2336 {
2337 	uint32_t i;
2338 
2339 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2340 		if (tx_split_name[i].split == split)
2341 			return tx_split_name[i].name;
2342 	}
2343 	return NULL;
2344 }
2345 
2346 void
2347 set_tx_pkt_split(const char *name)
2348 {
2349 	uint32_t i;
2350 
2351 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2352 		if (strcmp(tx_split_name[i].name, name) == 0) {
2353 			tx_pkt_split = tx_split_name[i].split;
2354 			return;
2355 		}
2356 	}
2357 	printf("unknown value: \"%s\"\n", name);
2358 }
2359 
2360 void
2361 show_tx_pkt_segments(void)
2362 {
2363 	uint32_t i, n;
2364 	const char *split;
2365 
2366 	n = tx_pkt_nb_segs;
2367 	split = tx_split_get_name(tx_pkt_split);
2368 
2369 	printf("Number of segments: %u\n", n);
2370 	printf("Segment sizes: ");
2371 	for (i = 0; i != n - 1; i++)
2372 		printf("%hu,", tx_pkt_seg_lengths[i]);
2373 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2374 	printf("Split packet: %s\n", split);
2375 }
2376 
2377 void
2378 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2379 {
2380 	uint16_t tx_pkt_len;
2381 	unsigned i;
2382 
2383 	if (nb_segs >= (unsigned) nb_txd) {
2384 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2385 		       nb_segs, (unsigned int) nb_txd);
2386 		return;
2387 	}
2388 
2389 	/*
2390 	 * Check that each segment length is greater or equal than
2391 	 * the mbuf data sise.
2392 	 * Check also that the total packet length is greater or equal than the
2393 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2394 	 */
2395 	tx_pkt_len = 0;
2396 	for (i = 0; i < nb_segs; i++) {
2397 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2398 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2399 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2400 			return;
2401 		}
2402 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2403 	}
2404 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2405 		printf("total packet length=%u < %d - give up\n",
2406 				(unsigned) tx_pkt_len,
2407 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2408 		return;
2409 	}
2410 
2411 	for (i = 0; i < nb_segs; i++)
2412 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2413 
2414 	tx_pkt_length  = tx_pkt_len;
2415 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2416 }
2417 
2418 char*
2419 list_pkt_forwarding_modes(void)
2420 {
2421 	static char fwd_modes[128] = "";
2422 	const char *separator = "|";
2423 	struct fwd_engine *fwd_eng;
2424 	unsigned i = 0;
2425 
2426 	if (strlen (fwd_modes) == 0) {
2427 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2428 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2429 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2430 			strncat(fwd_modes, separator,
2431 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2432 		}
2433 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2434 	}
2435 
2436 	return fwd_modes;
2437 }
2438 
2439 char*
2440 list_pkt_forwarding_retry_modes(void)
2441 {
2442 	static char fwd_modes[128] = "";
2443 	const char *separator = "|";
2444 	struct fwd_engine *fwd_eng;
2445 	unsigned i = 0;
2446 
2447 	if (strlen(fwd_modes) == 0) {
2448 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2449 			if (fwd_eng == &rx_only_engine)
2450 				continue;
2451 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2452 					sizeof(fwd_modes) -
2453 					strlen(fwd_modes) - 1);
2454 			strncat(fwd_modes, separator,
2455 					sizeof(fwd_modes) -
2456 					strlen(fwd_modes) - 1);
2457 		}
2458 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2459 	}
2460 
2461 	return fwd_modes;
2462 }
2463 
2464 void
2465 set_pkt_forwarding_mode(const char *fwd_mode_name)
2466 {
2467 	struct fwd_engine *fwd_eng;
2468 	unsigned i;
2469 
2470 	i = 0;
2471 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2472 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2473 			printf("Set %s packet forwarding mode%s\n",
2474 			       fwd_mode_name,
2475 			       retry_enabled == 0 ? "" : " with retry");
2476 			cur_fwd_eng = fwd_eng;
2477 			return;
2478 		}
2479 		i++;
2480 	}
2481 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2482 }
2483 
2484 void
2485 set_verbose_level(uint16_t vb_level)
2486 {
2487 	printf("Change verbose level from %u to %u\n",
2488 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2489 	verbose_level = vb_level;
2490 }
2491 
2492 void
2493 vlan_extend_set(portid_t port_id, int on)
2494 {
2495 	int diag;
2496 	int vlan_offload;
2497 
2498 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2499 		return;
2500 
2501 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2502 
2503 	if (on)
2504 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2505 	else
2506 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2507 
2508 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2509 	if (diag < 0)
2510 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2511 	       "diag=%d\n", port_id, on, diag);
2512 }
2513 
2514 void
2515 rx_vlan_strip_set(portid_t port_id, int on)
2516 {
2517 	int diag;
2518 	int vlan_offload;
2519 
2520 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2521 		return;
2522 
2523 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2524 
2525 	if (on)
2526 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2527 	else
2528 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2529 
2530 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2531 	if (diag < 0)
2532 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2533 	       "diag=%d\n", port_id, on, diag);
2534 }
2535 
2536 void
2537 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2538 {
2539 	int diag;
2540 
2541 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2542 		return;
2543 
2544 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2545 	if (diag < 0)
2546 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2547 	       "diag=%d\n", port_id, queue_id, on, diag);
2548 }
2549 
2550 void
2551 rx_vlan_filter_set(portid_t port_id, int on)
2552 {
2553 	int diag;
2554 	int vlan_offload;
2555 
2556 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2557 		return;
2558 
2559 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2560 
2561 	if (on)
2562 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2563 	else
2564 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2565 
2566 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2567 	if (diag < 0)
2568 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2569 	       "diag=%d\n", port_id, on, diag);
2570 }
2571 
2572 int
2573 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2574 {
2575 	int diag;
2576 
2577 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2578 		return 1;
2579 	if (vlan_id_is_invalid(vlan_id))
2580 		return 1;
2581 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2582 	if (diag == 0)
2583 		return 0;
2584 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2585 	       "diag=%d\n",
2586 	       port_id, vlan_id, on, diag);
2587 	return -1;
2588 }
2589 
2590 void
2591 rx_vlan_all_filter_set(portid_t port_id, int on)
2592 {
2593 	uint16_t vlan_id;
2594 
2595 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2596 		return;
2597 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2598 		if (rx_vft_set(port_id, vlan_id, on))
2599 			break;
2600 	}
2601 }
2602 
2603 void
2604 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2605 {
2606 	int diag;
2607 
2608 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2609 		return;
2610 
2611 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2612 	if (diag == 0)
2613 		return;
2614 
2615 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2616 	       "diag=%d\n",
2617 	       port_id, vlan_type, tp_id, diag);
2618 }
2619 
2620 void
2621 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2622 {
2623 	int vlan_offload;
2624 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2625 		return;
2626 	if (vlan_id_is_invalid(vlan_id))
2627 		return;
2628 
2629 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2630 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2631 		printf("Error, as QinQ has been enabled.\n");
2632 		return;
2633 	}
2634 
2635 	tx_vlan_reset(port_id);
2636 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2637 	ports[port_id].tx_vlan_id = vlan_id;
2638 }
2639 
2640 void
2641 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2642 {
2643 	int vlan_offload;
2644 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2645 		return;
2646 	if (vlan_id_is_invalid(vlan_id))
2647 		return;
2648 	if (vlan_id_is_invalid(vlan_id_outer))
2649 		return;
2650 
2651 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2652 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2653 		printf("Error, as QinQ hasn't been enabled.\n");
2654 		return;
2655 	}
2656 
2657 	tx_vlan_reset(port_id);
2658 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2659 	ports[port_id].tx_vlan_id = vlan_id;
2660 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2661 }
2662 
2663 void
2664 tx_vlan_reset(portid_t port_id)
2665 {
2666 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2667 		return;
2668 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2669 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2670 	ports[port_id].tx_vlan_id = 0;
2671 	ports[port_id].tx_vlan_id_outer = 0;
2672 }
2673 
2674 void
2675 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2676 {
2677 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2678 		return;
2679 
2680 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2681 }
2682 
2683 void
2684 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2685 {
2686 	uint16_t i;
2687 	uint8_t existing_mapping_found = 0;
2688 
2689 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2690 		return;
2691 
2692 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2693 		return;
2694 
2695 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2696 		printf("map_value not in required range 0..%d\n",
2697 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2698 		return;
2699 	}
2700 
2701 	if (!is_rx) { /*then tx*/
2702 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2703 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2704 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2705 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2706 				existing_mapping_found = 1;
2707 				break;
2708 			}
2709 		}
2710 		if (!existing_mapping_found) { /* A new additional mapping... */
2711 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2712 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2713 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2714 			nb_tx_queue_stats_mappings++;
2715 		}
2716 	}
2717 	else { /*rx*/
2718 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2719 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2720 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2721 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2722 				existing_mapping_found = 1;
2723 				break;
2724 			}
2725 		}
2726 		if (!existing_mapping_found) { /* A new additional mapping... */
2727 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2728 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2729 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2730 			nb_rx_queue_stats_mappings++;
2731 		}
2732 	}
2733 }
2734 
2735 static inline void
2736 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2737 {
2738 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2739 
2740 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2741 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2742 			" tunnel_id: 0x%08x",
2743 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2744 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2745 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2746 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2747 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2748 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2749 
2750 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2751 			rte_be_to_cpu_16(mask->src_port_mask),
2752 			rte_be_to_cpu_16(mask->dst_port_mask));
2753 
2754 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2755 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2756 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2757 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2758 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2759 
2760 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2761 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2762 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2763 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2764 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2765 	}
2766 
2767 	printf("\n");
2768 }
2769 
2770 static inline void
2771 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2772 {
2773 	struct rte_eth_flex_payload_cfg *cfg;
2774 	uint32_t i, j;
2775 
2776 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2777 		cfg = &flex_conf->flex_set[i];
2778 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2779 			printf("\n    RAW:  ");
2780 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2781 			printf("\n    L2_PAYLOAD:  ");
2782 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2783 			printf("\n    L3_PAYLOAD:  ");
2784 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2785 			printf("\n    L4_PAYLOAD:  ");
2786 		else
2787 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2788 		for (j = 0; j < num; j++)
2789 			printf("  %-5u", cfg->src_offset[j]);
2790 	}
2791 	printf("\n");
2792 }
2793 
2794 static char *
2795 flowtype_to_str(uint16_t flow_type)
2796 {
2797 	struct flow_type_info {
2798 		char str[32];
2799 		uint16_t ftype;
2800 	};
2801 
2802 	uint8_t i;
2803 	static struct flow_type_info flowtype_str_table[] = {
2804 		{"raw", RTE_ETH_FLOW_RAW},
2805 		{"ipv4", RTE_ETH_FLOW_IPV4},
2806 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2807 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2808 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2809 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2810 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2811 		{"ipv6", RTE_ETH_FLOW_IPV6},
2812 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2813 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2814 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2815 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2816 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2817 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2818 		{"port", RTE_ETH_FLOW_PORT},
2819 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2820 		{"geneve", RTE_ETH_FLOW_GENEVE},
2821 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2822 	};
2823 
2824 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2825 		if (flowtype_str_table[i].ftype == flow_type)
2826 			return flowtype_str_table[i].str;
2827 	}
2828 
2829 	return NULL;
2830 }
2831 
2832 static inline void
2833 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2834 {
2835 	struct rte_eth_fdir_flex_mask *mask;
2836 	uint32_t i, j;
2837 	char *p;
2838 
2839 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2840 		mask = &flex_conf->flex_mask[i];
2841 		p = flowtype_to_str(mask->flow_type);
2842 		printf("\n    %s:\t", p ? p : "unknown");
2843 		for (j = 0; j < num; j++)
2844 			printf(" %02x", mask->mask[j]);
2845 	}
2846 	printf("\n");
2847 }
2848 
2849 static inline void
2850 print_fdir_flow_type(uint32_t flow_types_mask)
2851 {
2852 	int i;
2853 	char *p;
2854 
2855 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2856 		if (!(flow_types_mask & (1 << i)))
2857 			continue;
2858 		p = flowtype_to_str(i);
2859 		if (p)
2860 			printf(" %s", p);
2861 		else
2862 			printf(" unknown");
2863 	}
2864 	printf("\n");
2865 }
2866 
2867 void
2868 fdir_get_infos(portid_t port_id)
2869 {
2870 	struct rte_eth_fdir_stats fdir_stat;
2871 	struct rte_eth_fdir_info fdir_info;
2872 	int ret;
2873 
2874 	static const char *fdir_stats_border = "########################";
2875 
2876 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2877 		return;
2878 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2879 	if (ret < 0) {
2880 		printf("\n FDIR is not supported on port %-2d\n",
2881 			port_id);
2882 		return;
2883 	}
2884 
2885 	memset(&fdir_info, 0, sizeof(fdir_info));
2886 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2887 			       RTE_ETH_FILTER_INFO, &fdir_info);
2888 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2889 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2890 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2891 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2892 	       fdir_stats_border, port_id, fdir_stats_border);
2893 	printf("  MODE: ");
2894 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2895 		printf("  PERFECT\n");
2896 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2897 		printf("  PERFECT-MAC-VLAN\n");
2898 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2899 		printf("  PERFECT-TUNNEL\n");
2900 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2901 		printf("  SIGNATURE\n");
2902 	else
2903 		printf("  DISABLE\n");
2904 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2905 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2906 		printf("  SUPPORTED FLOW TYPE: ");
2907 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2908 	}
2909 	printf("  FLEX PAYLOAD INFO:\n");
2910 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2911 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2912 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2913 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2914 		fdir_info.flex_payload_unit,
2915 		fdir_info.max_flex_payload_segment_num,
2916 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2917 	printf("  MASK: ");
2918 	print_fdir_mask(&fdir_info.mask);
2919 	if (fdir_info.flex_conf.nb_payloads > 0) {
2920 		printf("  FLEX PAYLOAD SRC OFFSET:");
2921 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2922 	}
2923 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2924 		printf("  FLEX MASK CFG:");
2925 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2926 	}
2927 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2928 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2929 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2930 	       fdir_info.guarant_spc, fdir_info.best_spc);
2931 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2932 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2933 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2934 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2935 	       fdir_stat.collision, fdir_stat.free,
2936 	       fdir_stat.maxhash, fdir_stat.maxlen,
2937 	       fdir_stat.add, fdir_stat.remove,
2938 	       fdir_stat.f_add, fdir_stat.f_remove);
2939 	printf("  %s############################%s\n",
2940 	       fdir_stats_border, fdir_stats_border);
2941 }
2942 
2943 void
2944 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2945 {
2946 	struct rte_port *port;
2947 	struct rte_eth_fdir_flex_conf *flex_conf;
2948 	int i, idx = 0;
2949 
2950 	port = &ports[port_id];
2951 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2952 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2953 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2954 			idx = i;
2955 			break;
2956 		}
2957 	}
2958 	if (i >= RTE_ETH_FLOW_MAX) {
2959 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2960 			idx = flex_conf->nb_flexmasks;
2961 			flex_conf->nb_flexmasks++;
2962 		} else {
2963 			printf("The flex mask table is full. Can not set flex"
2964 				" mask for flow_type(%u).", cfg->flow_type);
2965 			return;
2966 		}
2967 	}
2968 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2969 			 cfg,
2970 			 sizeof(struct rte_eth_fdir_flex_mask));
2971 }
2972 
2973 void
2974 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2975 {
2976 	struct rte_port *port;
2977 	struct rte_eth_fdir_flex_conf *flex_conf;
2978 	int i, idx = 0;
2979 
2980 	port = &ports[port_id];
2981 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2982 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2983 		if (cfg->type == flex_conf->flex_set[i].type) {
2984 			idx = i;
2985 			break;
2986 		}
2987 	}
2988 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2989 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2990 			idx = flex_conf->nb_payloads;
2991 			flex_conf->nb_payloads++;
2992 		} else {
2993 			printf("The flex payload table is full. Can not set"
2994 				" flex payload for type(%u).", cfg->type);
2995 			return;
2996 		}
2997 	}
2998 	(void)rte_memcpy(&flex_conf->flex_set[idx],
2999 			 cfg,
3000 			 sizeof(struct rte_eth_flex_payload_cfg));
3001 
3002 }
3003 
3004 void
3005 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3006 {
3007 #ifdef RTE_LIBRTE_IXGBE_PMD
3008 	int diag;
3009 
3010 	if (is_rx)
3011 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3012 	else
3013 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3014 
3015 	if (diag == 0)
3016 		return;
3017 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3018 			is_rx ? "rx" : "tx", port_id, diag);
3019 	return;
3020 #endif
3021 	printf("VF %s setting not supported for port %d\n",
3022 			is_rx ? "Rx" : "Tx", port_id);
3023 	RTE_SET_USED(vf);
3024 	RTE_SET_USED(on);
3025 }
3026 
3027 int
3028 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3029 {
3030 	int diag;
3031 	struct rte_eth_link link;
3032 
3033 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3034 		return 1;
3035 	rte_eth_link_get_nowait(port_id, &link);
3036 	if (rate > link.link_speed) {
3037 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3038 			rate, link.link_speed);
3039 		return 1;
3040 	}
3041 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3042 	if (diag == 0)
3043 		return diag;
3044 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3045 		port_id, diag);
3046 	return diag;
3047 }
3048 
3049 int
3050 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3051 {
3052 	int diag = -ENOTSUP;
3053 
3054 #ifdef RTE_LIBRTE_IXGBE_PMD
3055 	if (diag == -ENOTSUP)
3056 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3057 						       q_msk);
3058 #endif
3059 #ifdef RTE_LIBRTE_BNXT_PMD
3060 	if (diag == -ENOTSUP)
3061 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3062 #endif
3063 	if (diag == 0)
3064 		return diag;
3065 
3066 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3067 		port_id, diag);
3068 	return diag;
3069 }
3070 
3071 /*
3072  * Functions to manage the set of filtered Multicast MAC addresses.
3073  *
3074  * A pool of filtered multicast MAC addresses is associated with each port.
3075  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3076  * The address of the pool and the number of valid multicast MAC addresses
3077  * recorded in the pool are stored in the fields "mc_addr_pool" and
3078  * "mc_addr_nb" of the "rte_port" data structure.
3079  *
3080  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3081  * to be supplied a contiguous array of multicast MAC addresses.
3082  * To comply with this constraint, the set of multicast addresses recorded
3083  * into the pool are systematically compacted at the beginning of the pool.
3084  * Hence, when a multicast address is removed from the pool, all following
3085  * addresses, if any, are copied back to keep the set contiguous.
3086  */
3087 #define MCAST_POOL_INC 32
3088 
3089 static int
3090 mcast_addr_pool_extend(struct rte_port *port)
3091 {
3092 	struct ether_addr *mc_pool;
3093 	size_t mc_pool_size;
3094 
3095 	/*
3096 	 * If a free entry is available at the end of the pool, just
3097 	 * increment the number of recorded multicast addresses.
3098 	 */
3099 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3100 		port->mc_addr_nb++;
3101 		return 0;
3102 	}
3103 
3104 	/*
3105 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3106 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3107 	 * of MCAST_POOL_INC.
3108 	 */
3109 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3110 						    MCAST_POOL_INC);
3111 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3112 						mc_pool_size);
3113 	if (mc_pool == NULL) {
3114 		printf("allocation of pool of %u multicast addresses failed\n",
3115 		       port->mc_addr_nb + MCAST_POOL_INC);
3116 		return -ENOMEM;
3117 	}
3118 
3119 	port->mc_addr_pool = mc_pool;
3120 	port->mc_addr_nb++;
3121 	return 0;
3122 
3123 }
3124 
3125 static void
3126 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3127 {
3128 	port->mc_addr_nb--;
3129 	if (addr_idx == port->mc_addr_nb) {
3130 		/* No need to recompact the set of multicast addressses. */
3131 		if (port->mc_addr_nb == 0) {
3132 			/* free the pool of multicast addresses. */
3133 			free(port->mc_addr_pool);
3134 			port->mc_addr_pool = NULL;
3135 		}
3136 		return;
3137 	}
3138 	memmove(&port->mc_addr_pool[addr_idx],
3139 		&port->mc_addr_pool[addr_idx + 1],
3140 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3141 }
3142 
3143 static void
3144 eth_port_multicast_addr_list_set(uint8_t port_id)
3145 {
3146 	struct rte_port *port;
3147 	int diag;
3148 
3149 	port = &ports[port_id];
3150 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3151 					    port->mc_addr_nb);
3152 	if (diag == 0)
3153 		return;
3154 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3155 	       port->mc_addr_nb, port_id, -diag);
3156 }
3157 
3158 void
3159 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3160 {
3161 	struct rte_port *port;
3162 	uint32_t i;
3163 
3164 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3165 		return;
3166 
3167 	port = &ports[port_id];
3168 
3169 	/*
3170 	 * Check that the added multicast MAC address is not already recorded
3171 	 * in the pool of multicast addresses.
3172 	 */
3173 	for (i = 0; i < port->mc_addr_nb; i++) {
3174 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3175 			printf("multicast address already filtered by port\n");
3176 			return;
3177 		}
3178 	}
3179 
3180 	if (mcast_addr_pool_extend(port) != 0)
3181 		return;
3182 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3183 	eth_port_multicast_addr_list_set(port_id);
3184 }
3185 
3186 void
3187 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3188 {
3189 	struct rte_port *port;
3190 	uint32_t i;
3191 
3192 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3193 		return;
3194 
3195 	port = &ports[port_id];
3196 
3197 	/*
3198 	 * Search the pool of multicast MAC addresses for the removed address.
3199 	 */
3200 	for (i = 0; i < port->mc_addr_nb; i++) {
3201 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3202 			break;
3203 	}
3204 	if (i == port->mc_addr_nb) {
3205 		printf("multicast address not filtered by port %d\n", port_id);
3206 		return;
3207 	}
3208 
3209 	mcast_addr_pool_remove(port, i);
3210 	eth_port_multicast_addr_list_set(port_id);
3211 }
3212 
3213 void
3214 port_dcb_info_display(uint8_t port_id)
3215 {
3216 	struct rte_eth_dcb_info dcb_info;
3217 	uint16_t i;
3218 	int ret;
3219 	static const char *border = "================";
3220 
3221 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3222 		return;
3223 
3224 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3225 	if (ret) {
3226 		printf("\n Failed to get dcb infos on port %-2d\n",
3227 			port_id);
3228 		return;
3229 	}
3230 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3231 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3232 	printf("\n  TC :        ");
3233 	for (i = 0; i < dcb_info.nb_tcs; i++)
3234 		printf("\t%4d", i);
3235 	printf("\n  Priority :  ");
3236 	for (i = 0; i < dcb_info.nb_tcs; i++)
3237 		printf("\t%4d", dcb_info.prio_tc[i]);
3238 	printf("\n  BW percent :");
3239 	for (i = 0; i < dcb_info.nb_tcs; i++)
3240 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3241 	printf("\n  RXQ base :  ");
3242 	for (i = 0; i < dcb_info.nb_tcs; i++)
3243 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3244 	printf("\n  RXQ number :");
3245 	for (i = 0; i < dcb_info.nb_tcs; i++)
3246 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3247 	printf("\n  TXQ base :  ");
3248 	for (i = 0; i < dcb_info.nb_tcs; i++)
3249 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3250 	printf("\n  TXQ number :");
3251 	for (i = 0; i < dcb_info.nb_tcs; i++)
3252 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3253 	printf("\n");
3254 }
3255 
3256 uint8_t *
3257 open_ddp_package_file(const char *file_path, uint32_t *size)
3258 {
3259 	FILE *fh = fopen(file_path, "rb");
3260 	uint32_t pkg_size;
3261 	uint8_t *buf = NULL;
3262 	int ret = 0;
3263 
3264 	if (size)
3265 		*size = 0;
3266 
3267 	if (fh == NULL) {
3268 		printf("%s: Failed to open %s\n", __func__, file_path);
3269 		return buf;
3270 	}
3271 
3272 	ret = fseek(fh, 0, SEEK_END);
3273 	if (ret < 0) {
3274 		fclose(fh);
3275 		printf("%s: File operations failed\n", __func__);
3276 		return buf;
3277 	}
3278 
3279 	pkg_size = ftell(fh);
3280 
3281 	buf = (uint8_t *)malloc(pkg_size);
3282 	if (!buf) {
3283 		fclose(fh);
3284 		printf("%s: Failed to malloc memory\n",	__func__);
3285 		return buf;
3286 	}
3287 
3288 	ret = fseek(fh, 0, SEEK_SET);
3289 	if (ret < 0) {
3290 		fclose(fh);
3291 		printf("%s: File seek operation failed\n", __func__);
3292 		close_ddp_package_file(buf);
3293 		return NULL;
3294 	}
3295 
3296 	ret = fread(buf, 1, pkg_size, fh);
3297 	if (ret < 0) {
3298 		fclose(fh);
3299 		printf("%s: File read operation failed\n", __func__);
3300 		close_ddp_package_file(buf);
3301 		return NULL;
3302 	}
3303 
3304 	if (size)
3305 		*size = pkg_size;
3306 
3307 	fclose(fh);
3308 
3309 	return buf;
3310 }
3311 
3312 int
3313 close_ddp_package_file(uint8_t *buf)
3314 {
3315 	if (buf) {
3316 		free((void *)buf);
3317 		return 0;
3318 	}
3319 
3320 	return -1;
3321 }
3322