1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <string.h> 10 #include <stdint.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/types.h> 15 #include <sys/stat.h> 16 #include <fcntl.h> 17 #include <unistd.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_debug.h> 22 #include <rte_log.h> 23 #include <rte_memory.h> 24 #include <rte_memcpy.h> 25 #include <rte_memzone.h> 26 #include <rte_launch.h> 27 #include <rte_eal.h> 28 #include <rte_per_lcore.h> 29 #include <rte_lcore.h> 30 #include <rte_atomic.h> 31 #include <rte_branch_prediction.h> 32 #include <rte_mempool.h> 33 #include <rte_mbuf.h> 34 #include <rte_interrupts.h> 35 #include <rte_pci.h> 36 #include <rte_ether.h> 37 #include <rte_ethdev.h> 38 #include <rte_string_fns.h> 39 #include <rte_cycles.h> 40 #include <rte_flow.h> 41 #include <rte_errno.h> 42 #ifdef RTE_LIBRTE_IXGBE_PMD 43 #include <rte_pmd_ixgbe.h> 44 #endif 45 #ifdef RTE_LIBRTE_I40E_PMD 46 #include <rte_pmd_i40e.h> 47 #endif 48 #ifdef RTE_LIBRTE_BNXT_PMD 49 #include <rte_pmd_bnxt.h> 50 #endif 51 #include <rte_gro.h> 52 #include <rte_config.h> 53 54 #include "testpmd.h" 55 56 static char *flowtype_to_str(uint16_t flow_type); 57 58 static const struct { 59 enum tx_pkt_split split; 60 const char *name; 61 } tx_split_name[] = { 62 { 63 .split = TX_PKT_SPLIT_OFF, 64 .name = "off", 65 }, 66 { 67 .split = TX_PKT_SPLIT_ON, 68 .name = "on", 69 }, 70 { 71 .split = TX_PKT_SPLIT_RND, 72 .name = "rand", 73 }, 74 }; 75 76 const struct rss_type_info rss_type_table[] = { 77 { "all", ETH_RSS_IP | ETH_RSS_TCP | 78 ETH_RSS_UDP | ETH_RSS_SCTP | 79 ETH_RSS_L2_PAYLOAD }, 80 { "none", 0 }, 81 { "ipv4", ETH_RSS_IPV4 }, 82 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 83 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 84 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 85 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 86 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 87 { "ipv6", ETH_RSS_IPV6 }, 88 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 89 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 90 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 91 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 92 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 93 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 94 { "ipv6-ex", ETH_RSS_IPV6_EX }, 95 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 96 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 97 { "port", ETH_RSS_PORT }, 98 { "vxlan", ETH_RSS_VXLAN }, 99 { "geneve", ETH_RSS_GENEVE }, 100 { "nvgre", ETH_RSS_NVGRE }, 101 { "ip", ETH_RSS_IP }, 102 { "udp", ETH_RSS_UDP }, 103 { "tcp", ETH_RSS_TCP }, 104 { "sctp", ETH_RSS_SCTP }, 105 { "tunnel", ETH_RSS_TUNNEL }, 106 { NULL, 0 }, 107 }; 108 109 static void 110 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 111 { 112 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 113 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 114 printf("%s%s", name, buf); 115 } 116 117 void 118 nic_stats_display(portid_t port_id) 119 { 120 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 121 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 122 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 123 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 124 uint64_t mpps_rx, mpps_tx; 125 struct rte_eth_stats stats; 126 struct rte_port *port = &ports[port_id]; 127 uint8_t i; 128 129 static const char *nic_stats_border = "########################"; 130 131 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 132 print_valid_ports(); 133 return; 134 } 135 rte_eth_stats_get(port_id, &stats); 136 printf("\n %s NIC statistics for port %-2d %s\n", 137 nic_stats_border, port_id, nic_stats_border); 138 139 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 140 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 141 "%-"PRIu64"\n", 142 stats.ipackets, stats.imissed, stats.ibytes); 143 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 144 printf(" RX-nombuf: %-10"PRIu64"\n", 145 stats.rx_nombuf); 146 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 147 "%-"PRIu64"\n", 148 stats.opackets, stats.oerrors, stats.obytes); 149 } 150 else { 151 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 152 " RX-bytes: %10"PRIu64"\n", 153 stats.ipackets, stats.ierrors, stats.ibytes); 154 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 155 printf(" RX-nombuf: %10"PRIu64"\n", 156 stats.rx_nombuf); 157 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 158 " TX-bytes: %10"PRIu64"\n", 159 stats.opackets, stats.oerrors, stats.obytes); 160 } 161 162 if (port->rx_queue_stats_mapping_enabled) { 163 printf("\n"); 164 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 165 printf(" Stats reg %2d RX-packets: %10"PRIu64 166 " RX-errors: %10"PRIu64 167 " RX-bytes: %10"PRIu64"\n", 168 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 169 } 170 } 171 if (port->tx_queue_stats_mapping_enabled) { 172 printf("\n"); 173 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 174 printf(" Stats reg %2d TX-packets: %10"PRIu64 175 " TX-bytes: %10"PRIu64"\n", 176 i, stats.q_opackets[i], stats.q_obytes[i]); 177 } 178 } 179 180 diff_cycles = prev_cycles[port_id]; 181 prev_cycles[port_id] = rte_rdtsc(); 182 if (diff_cycles > 0) 183 diff_cycles = prev_cycles[port_id] - diff_cycles; 184 185 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 186 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 187 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 188 (stats.opackets - prev_pkts_tx[port_id]) : 0; 189 prev_pkts_rx[port_id] = stats.ipackets; 190 prev_pkts_tx[port_id] = stats.opackets; 191 mpps_rx = diff_cycles > 0 ? 192 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 193 mpps_tx = diff_cycles > 0 ? 194 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 195 printf("\n Throughput (since last show)\n"); 196 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 197 mpps_rx, mpps_tx); 198 199 printf(" %s############################%s\n", 200 nic_stats_border, nic_stats_border); 201 } 202 203 void 204 nic_stats_clear(portid_t port_id) 205 { 206 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 207 print_valid_ports(); 208 return; 209 } 210 rte_eth_stats_reset(port_id); 211 printf("\n NIC statistics for port %d cleared\n", port_id); 212 } 213 214 void 215 nic_xstats_display(portid_t port_id) 216 { 217 struct rte_eth_xstat *xstats; 218 int cnt_xstats, idx_xstat; 219 struct rte_eth_xstat_name *xstats_names; 220 221 printf("###### NIC extended statistics for port %-2d\n", port_id); 222 if (!rte_eth_dev_is_valid_port(port_id)) { 223 printf("Error: Invalid port number %i\n", port_id); 224 return; 225 } 226 227 /* Get count */ 228 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 229 if (cnt_xstats < 0) { 230 printf("Error: Cannot get count of xstats\n"); 231 return; 232 } 233 234 /* Get id-name lookup table */ 235 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 236 if (xstats_names == NULL) { 237 printf("Cannot allocate memory for xstats lookup\n"); 238 return; 239 } 240 if (cnt_xstats != rte_eth_xstats_get_names( 241 port_id, xstats_names, cnt_xstats)) { 242 printf("Error: Cannot get xstats lookup\n"); 243 free(xstats_names); 244 return; 245 } 246 247 /* Get stats themselves */ 248 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 249 if (xstats == NULL) { 250 printf("Cannot allocate memory for xstats\n"); 251 free(xstats_names); 252 return; 253 } 254 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 255 printf("Error: Unable to get xstats\n"); 256 free(xstats_names); 257 free(xstats); 258 return; 259 } 260 261 /* Display xstats */ 262 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 263 if (xstats_hide_zero && !xstats[idx_xstat].value) 264 continue; 265 printf("%s: %"PRIu64"\n", 266 xstats_names[idx_xstat].name, 267 xstats[idx_xstat].value); 268 } 269 free(xstats_names); 270 free(xstats); 271 } 272 273 void 274 nic_xstats_clear(portid_t port_id) 275 { 276 rte_eth_xstats_reset(port_id); 277 } 278 279 void 280 nic_stats_mapping_display(portid_t port_id) 281 { 282 struct rte_port *port = &ports[port_id]; 283 uint16_t i; 284 285 static const char *nic_stats_mapping_border = "########################"; 286 287 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 288 print_valid_ports(); 289 return; 290 } 291 292 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 293 printf("Port id %d - either does not support queue statistic mapping or" 294 " no queue statistic mapping set\n", port_id); 295 return; 296 } 297 298 printf("\n %s NIC statistics mapping for port %-2d %s\n", 299 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 300 301 if (port->rx_queue_stats_mapping_enabled) { 302 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 303 if (rx_queue_stats_mappings[i].port_id == port_id) { 304 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 305 rx_queue_stats_mappings[i].queue_id, 306 rx_queue_stats_mappings[i].stats_counter_id); 307 } 308 } 309 printf("\n"); 310 } 311 312 313 if (port->tx_queue_stats_mapping_enabled) { 314 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 315 if (tx_queue_stats_mappings[i].port_id == port_id) { 316 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 317 tx_queue_stats_mappings[i].queue_id, 318 tx_queue_stats_mappings[i].stats_counter_id); 319 } 320 } 321 } 322 323 printf(" %s####################################%s\n", 324 nic_stats_mapping_border, nic_stats_mapping_border); 325 } 326 327 void 328 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 329 { 330 struct rte_eth_rxq_info qinfo; 331 int32_t rc; 332 static const char *info_border = "*********************"; 333 334 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 335 if (rc != 0) { 336 printf("Failed to retrieve information for port: %u, " 337 "RX queue: %hu\nerror desc: %s(%d)\n", 338 port_id, queue_id, strerror(-rc), rc); 339 return; 340 } 341 342 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 343 info_border, port_id, queue_id, info_border); 344 345 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 346 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 347 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 348 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 349 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 350 printf("\nRX drop packets: %s", 351 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 352 printf("\nRX deferred start: %s", 353 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 354 printf("\nRX scattered packets: %s", 355 (qinfo.scattered_rx != 0) ? "on" : "off"); 356 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 357 printf("\n"); 358 } 359 360 void 361 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 362 { 363 struct rte_eth_txq_info qinfo; 364 int32_t rc; 365 static const char *info_border = "*********************"; 366 367 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 368 if (rc != 0) { 369 printf("Failed to retrieve information for port: %u, " 370 "TX queue: %hu\nerror desc: %s(%d)\n", 371 port_id, queue_id, strerror(-rc), rc); 372 return; 373 } 374 375 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 376 info_border, port_id, queue_id, info_border); 377 378 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 379 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 380 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 381 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 382 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 383 printf("\nTX deferred start: %s", 384 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 385 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 386 printf("\n"); 387 } 388 389 void 390 port_infos_display(portid_t port_id) 391 { 392 struct rte_port *port; 393 struct rte_ether_addr mac_addr; 394 struct rte_eth_link link; 395 struct rte_eth_dev_info dev_info; 396 int vlan_offload; 397 struct rte_mempool * mp; 398 static const char *info_border = "*********************"; 399 uint16_t mtu; 400 char name[RTE_ETH_NAME_MAX_LEN]; 401 402 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 403 print_valid_ports(); 404 return; 405 } 406 port = &ports[port_id]; 407 rte_eth_link_get_nowait(port_id, &link); 408 memset(&dev_info, 0, sizeof(dev_info)); 409 rte_eth_dev_info_get(port_id, &dev_info); 410 printf("\n%s Infos for port %-2d %s\n", 411 info_border, port_id, info_border); 412 rte_eth_macaddr_get(port_id, &mac_addr); 413 print_ethaddr("MAC address: ", &mac_addr); 414 rte_eth_dev_get_name_by_port(port_id, name); 415 printf("\nDevice name: %s", name); 416 printf("\nDriver name: %s", dev_info.driver_name); 417 if (dev_info.device->devargs && dev_info.device->devargs->args) 418 printf("\nDevargs: %s", dev_info.device->devargs->args); 419 printf("\nConnect to socket: %u", port->socket_id); 420 421 if (port_numa[port_id] != NUMA_NO_CONFIG) { 422 mp = mbuf_pool_find(port_numa[port_id]); 423 if (mp) 424 printf("\nmemory allocation on the socket: %d", 425 port_numa[port_id]); 426 } else 427 printf("\nmemory allocation on the socket: %u",port->socket_id); 428 429 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 430 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 431 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 432 ("full-duplex") : ("half-duplex")); 433 434 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 435 printf("MTU: %u\n", mtu); 436 437 printf("Promiscuous mode: %s\n", 438 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 439 printf("Allmulticast mode: %s\n", 440 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 441 printf("Maximum number of MAC addresses: %u\n", 442 (unsigned int)(port->dev_info.max_mac_addrs)); 443 printf("Maximum number of MAC addresses of hash filtering: %u\n", 444 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 445 446 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 447 if (vlan_offload >= 0){ 448 printf("VLAN offload: \n"); 449 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 450 printf(" strip on \n"); 451 else 452 printf(" strip off \n"); 453 454 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 455 printf(" filter on \n"); 456 else 457 printf(" filter off \n"); 458 459 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 460 printf(" qinq(extend) on \n"); 461 else 462 printf(" qinq(extend) off \n"); 463 } 464 465 if (dev_info.hash_key_size > 0) 466 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 467 if (dev_info.reta_size > 0) 468 printf("Redirection table size: %u\n", dev_info.reta_size); 469 if (!dev_info.flow_type_rss_offloads) 470 printf("No RSS offload flow type is supported.\n"); 471 else { 472 uint16_t i; 473 char *p; 474 475 printf("Supported RSS offload flow types:\n"); 476 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 477 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 478 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 479 continue; 480 p = flowtype_to_str(i); 481 if (p) 482 printf(" %s\n", p); 483 else 484 printf(" user defined %d\n", i); 485 } 486 } 487 488 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 489 printf("Maximum configurable length of RX packet: %u\n", 490 dev_info.max_rx_pktlen); 491 if (dev_info.max_vfs) 492 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 493 if (dev_info.max_vmdq_pools) 494 printf("Maximum number of VMDq pools: %u\n", 495 dev_info.max_vmdq_pools); 496 497 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 498 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 499 printf("Max possible number of RXDs per queue: %hu\n", 500 dev_info.rx_desc_lim.nb_max); 501 printf("Min possible number of RXDs per queue: %hu\n", 502 dev_info.rx_desc_lim.nb_min); 503 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 504 505 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 506 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 507 printf("Max possible number of TXDs per queue: %hu\n", 508 dev_info.tx_desc_lim.nb_max); 509 printf("Min possible number of TXDs per queue: %hu\n", 510 dev_info.tx_desc_lim.nb_min); 511 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 512 printf("Max segment number per packet: %hu\n", 513 dev_info.tx_desc_lim.nb_seg_max); 514 printf("Max segment number per MTU/TSO: %hu\n", 515 dev_info.tx_desc_lim.nb_mtu_seg_max); 516 517 /* Show switch info only if valid switch domain and port id is set */ 518 if (dev_info.switch_info.domain_id != 519 RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { 520 if (dev_info.switch_info.name) 521 printf("Switch name: %s\n", dev_info.switch_info.name); 522 523 printf("Switch domain Id: %u\n", 524 dev_info.switch_info.domain_id); 525 printf("Switch Port Id: %u\n", 526 dev_info.switch_info.port_id); 527 } 528 } 529 530 void 531 port_summary_header_display(void) 532 { 533 uint16_t port_number; 534 535 port_number = rte_eth_dev_count_avail(); 536 printf("Number of available ports: %i\n", port_number); 537 printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", 538 "Driver", "Status", "Link"); 539 } 540 541 void 542 port_summary_display(portid_t port_id) 543 { 544 struct rte_ether_addr mac_addr; 545 struct rte_eth_link link; 546 struct rte_eth_dev_info dev_info; 547 char name[RTE_ETH_NAME_MAX_LEN]; 548 549 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 550 print_valid_ports(); 551 return; 552 } 553 554 rte_eth_link_get_nowait(port_id, &link); 555 rte_eth_dev_info_get(port_id, &dev_info); 556 rte_eth_dev_get_name_by_port(port_id, name); 557 rte_eth_macaddr_get(port_id, &mac_addr); 558 559 printf("%-4d %02X:%02X:%02X:%02X:%02X:%02X %-12s %-14s %-8s %uMbps\n", 560 port_id, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], 561 mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], 562 mac_addr.addr_bytes[4], mac_addr.addr_bytes[5], name, 563 dev_info.driver_name, (link.link_status) ? ("up") : ("down"), 564 (unsigned int) link.link_speed); 565 } 566 567 void 568 port_offload_cap_display(portid_t port_id) 569 { 570 struct rte_eth_dev_info dev_info; 571 static const char *info_border = "************"; 572 573 if (port_id_is_invalid(port_id, ENABLED_WARN)) 574 return; 575 576 rte_eth_dev_info_get(port_id, &dev_info); 577 578 printf("\n%s Port %d supported offload features: %s\n", 579 info_border, port_id, info_border); 580 581 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 582 printf("VLAN stripped: "); 583 if (ports[port_id].dev_conf.rxmode.offloads & 584 DEV_RX_OFFLOAD_VLAN_STRIP) 585 printf("on\n"); 586 else 587 printf("off\n"); 588 } 589 590 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 591 printf("Double VLANs stripped: "); 592 if (ports[port_id].dev_conf.rxmode.offloads & 593 DEV_RX_OFFLOAD_QINQ_STRIP) 594 printf("on\n"); 595 else 596 printf("off\n"); 597 } 598 599 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 600 printf("RX IPv4 checksum: "); 601 if (ports[port_id].dev_conf.rxmode.offloads & 602 DEV_RX_OFFLOAD_IPV4_CKSUM) 603 printf("on\n"); 604 else 605 printf("off\n"); 606 } 607 608 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 609 printf("RX UDP checksum: "); 610 if (ports[port_id].dev_conf.rxmode.offloads & 611 DEV_RX_OFFLOAD_UDP_CKSUM) 612 printf("on\n"); 613 else 614 printf("off\n"); 615 } 616 617 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 618 printf("RX TCP checksum: "); 619 if (ports[port_id].dev_conf.rxmode.offloads & 620 DEV_RX_OFFLOAD_TCP_CKSUM) 621 printf("on\n"); 622 else 623 printf("off\n"); 624 } 625 626 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SCTP_CKSUM) { 627 printf("RX SCTP checksum: "); 628 if (ports[port_id].dev_conf.rxmode.offloads & 629 DEV_RX_OFFLOAD_SCTP_CKSUM) 630 printf("on\n"); 631 else 632 printf("off\n"); 633 } 634 635 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) { 636 printf("RX Outer IPv4 checksum: "); 637 if (ports[port_id].dev_conf.rxmode.offloads & 638 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 639 printf("on\n"); 640 else 641 printf("off\n"); 642 } 643 644 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) { 645 printf("RX Outer UDP checksum: "); 646 if (ports[port_id].dev_conf.rxmode.offloads & 647 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) 648 printf("on\n"); 649 else 650 printf("off\n"); 651 } 652 653 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 654 printf("Large receive offload: "); 655 if (ports[port_id].dev_conf.rxmode.offloads & 656 DEV_RX_OFFLOAD_TCP_LRO) 657 printf("on\n"); 658 else 659 printf("off\n"); 660 } 661 662 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) { 663 printf("HW timestamp: "); 664 if (ports[port_id].dev_conf.rxmode.offloads & 665 DEV_RX_OFFLOAD_TIMESTAMP) 666 printf("on\n"); 667 else 668 printf("off\n"); 669 } 670 671 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) { 672 printf("Rx Keep CRC: "); 673 if (ports[port_id].dev_conf.rxmode.offloads & 674 DEV_RX_OFFLOAD_KEEP_CRC) 675 printf("on\n"); 676 else 677 printf("off\n"); 678 } 679 680 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) { 681 printf("RX offload security: "); 682 if (ports[port_id].dev_conf.rxmode.offloads & 683 DEV_RX_OFFLOAD_SECURITY) 684 printf("on\n"); 685 else 686 printf("off\n"); 687 } 688 689 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 690 printf("VLAN insert: "); 691 if (ports[port_id].dev_conf.txmode.offloads & 692 DEV_TX_OFFLOAD_VLAN_INSERT) 693 printf("on\n"); 694 else 695 printf("off\n"); 696 } 697 698 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 699 printf("Double VLANs insert: "); 700 if (ports[port_id].dev_conf.txmode.offloads & 701 DEV_TX_OFFLOAD_QINQ_INSERT) 702 printf("on\n"); 703 else 704 printf("off\n"); 705 } 706 707 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 708 printf("TX IPv4 checksum: "); 709 if (ports[port_id].dev_conf.txmode.offloads & 710 DEV_TX_OFFLOAD_IPV4_CKSUM) 711 printf("on\n"); 712 else 713 printf("off\n"); 714 } 715 716 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 717 printf("TX UDP checksum: "); 718 if (ports[port_id].dev_conf.txmode.offloads & 719 DEV_TX_OFFLOAD_UDP_CKSUM) 720 printf("on\n"); 721 else 722 printf("off\n"); 723 } 724 725 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 726 printf("TX TCP checksum: "); 727 if (ports[port_id].dev_conf.txmode.offloads & 728 DEV_TX_OFFLOAD_TCP_CKSUM) 729 printf("on\n"); 730 else 731 printf("off\n"); 732 } 733 734 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 735 printf("TX SCTP checksum: "); 736 if (ports[port_id].dev_conf.txmode.offloads & 737 DEV_TX_OFFLOAD_SCTP_CKSUM) 738 printf("on\n"); 739 else 740 printf("off\n"); 741 } 742 743 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 744 printf("TX Outer IPv4 checksum: "); 745 if (ports[port_id].dev_conf.txmode.offloads & 746 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 747 printf("on\n"); 748 else 749 printf("off\n"); 750 } 751 752 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 753 printf("TX TCP segmentation: "); 754 if (ports[port_id].dev_conf.txmode.offloads & 755 DEV_TX_OFFLOAD_TCP_TSO) 756 printf("on\n"); 757 else 758 printf("off\n"); 759 } 760 761 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 762 printf("TX UDP segmentation: "); 763 if (ports[port_id].dev_conf.txmode.offloads & 764 DEV_TX_OFFLOAD_UDP_TSO) 765 printf("on\n"); 766 else 767 printf("off\n"); 768 } 769 770 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 771 printf("TSO for VXLAN tunnel packet: "); 772 if (ports[port_id].dev_conf.txmode.offloads & 773 DEV_TX_OFFLOAD_VXLAN_TNL_TSO) 774 printf("on\n"); 775 else 776 printf("off\n"); 777 } 778 779 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 780 printf("TSO for GRE tunnel packet: "); 781 if (ports[port_id].dev_conf.txmode.offloads & 782 DEV_TX_OFFLOAD_GRE_TNL_TSO) 783 printf("on\n"); 784 else 785 printf("off\n"); 786 } 787 788 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 789 printf("TSO for IPIP tunnel packet: "); 790 if (ports[port_id].dev_conf.txmode.offloads & 791 DEV_TX_OFFLOAD_IPIP_TNL_TSO) 792 printf("on\n"); 793 else 794 printf("off\n"); 795 } 796 797 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 798 printf("TSO for GENEVE tunnel packet: "); 799 if (ports[port_id].dev_conf.txmode.offloads & 800 DEV_TX_OFFLOAD_GENEVE_TNL_TSO) 801 printf("on\n"); 802 else 803 printf("off\n"); 804 } 805 806 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) { 807 printf("IP tunnel TSO: "); 808 if (ports[port_id].dev_conf.txmode.offloads & 809 DEV_TX_OFFLOAD_IP_TNL_TSO) 810 printf("on\n"); 811 else 812 printf("off\n"); 813 } 814 815 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) { 816 printf("UDP tunnel TSO: "); 817 if (ports[port_id].dev_conf.txmode.offloads & 818 DEV_TX_OFFLOAD_UDP_TNL_TSO) 819 printf("on\n"); 820 else 821 printf("off\n"); 822 } 823 824 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { 825 printf("TX Outer UDP checksum: "); 826 if (ports[port_id].dev_conf.txmode.offloads & 827 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) 828 printf("on\n"); 829 else 830 printf("off\n"); 831 } 832 833 } 834 835 int 836 port_id_is_invalid(portid_t port_id, enum print_warning warning) 837 { 838 uint16_t pid; 839 840 if (port_id == (portid_t)RTE_PORT_ALL) 841 return 0; 842 843 RTE_ETH_FOREACH_DEV(pid) 844 if (port_id == pid) 845 return 0; 846 847 if (warning == ENABLED_WARN) 848 printf("Invalid port %d\n", port_id); 849 850 return 1; 851 } 852 853 void print_valid_ports(void) 854 { 855 portid_t pid; 856 857 printf("The valid ports array is ["); 858 RTE_ETH_FOREACH_DEV(pid) { 859 printf(" %d", pid); 860 } 861 printf(" ]\n"); 862 } 863 864 static int 865 vlan_id_is_invalid(uint16_t vlan_id) 866 { 867 if (vlan_id < 4096) 868 return 0; 869 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 870 return 1; 871 } 872 873 static int 874 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 875 { 876 const struct rte_pci_device *pci_dev; 877 const struct rte_bus *bus; 878 uint64_t pci_len; 879 880 if (reg_off & 0x3) { 881 printf("Port register offset 0x%X not aligned on a 4-byte " 882 "boundary\n", 883 (unsigned)reg_off); 884 return 1; 885 } 886 887 if (!ports[port_id].dev_info.device) { 888 printf("Invalid device\n"); 889 return 0; 890 } 891 892 bus = rte_bus_find_by_device(ports[port_id].dev_info.device); 893 if (bus && !strcmp(bus->name, "pci")) { 894 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); 895 } else { 896 printf("Not a PCI device\n"); 897 return 1; 898 } 899 900 pci_len = pci_dev->mem_resource[0].len; 901 if (reg_off >= pci_len) { 902 printf("Port %d: register offset %u (0x%X) out of port PCI " 903 "resource (length=%"PRIu64")\n", 904 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 905 return 1; 906 } 907 return 0; 908 } 909 910 static int 911 reg_bit_pos_is_invalid(uint8_t bit_pos) 912 { 913 if (bit_pos <= 31) 914 return 0; 915 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 916 return 1; 917 } 918 919 #define display_port_and_reg_off(port_id, reg_off) \ 920 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 921 922 static inline void 923 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 924 { 925 display_port_and_reg_off(port_id, (unsigned)reg_off); 926 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 927 } 928 929 void 930 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 931 { 932 uint32_t reg_v; 933 934 935 if (port_id_is_invalid(port_id, ENABLED_WARN)) 936 return; 937 if (port_reg_off_is_invalid(port_id, reg_off)) 938 return; 939 if (reg_bit_pos_is_invalid(bit_x)) 940 return; 941 reg_v = port_id_pci_reg_read(port_id, reg_off); 942 display_port_and_reg_off(port_id, (unsigned)reg_off); 943 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 944 } 945 946 void 947 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 948 uint8_t bit1_pos, uint8_t bit2_pos) 949 { 950 uint32_t reg_v; 951 uint8_t l_bit; 952 uint8_t h_bit; 953 954 if (port_id_is_invalid(port_id, ENABLED_WARN)) 955 return; 956 if (port_reg_off_is_invalid(port_id, reg_off)) 957 return; 958 if (reg_bit_pos_is_invalid(bit1_pos)) 959 return; 960 if (reg_bit_pos_is_invalid(bit2_pos)) 961 return; 962 if (bit1_pos > bit2_pos) 963 l_bit = bit2_pos, h_bit = bit1_pos; 964 else 965 l_bit = bit1_pos, h_bit = bit2_pos; 966 967 reg_v = port_id_pci_reg_read(port_id, reg_off); 968 reg_v >>= l_bit; 969 if (h_bit < 31) 970 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 971 display_port_and_reg_off(port_id, (unsigned)reg_off); 972 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 973 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 974 } 975 976 void 977 port_reg_display(portid_t port_id, uint32_t reg_off) 978 { 979 uint32_t reg_v; 980 981 if (port_id_is_invalid(port_id, ENABLED_WARN)) 982 return; 983 if (port_reg_off_is_invalid(port_id, reg_off)) 984 return; 985 reg_v = port_id_pci_reg_read(port_id, reg_off); 986 display_port_reg_value(port_id, reg_off, reg_v); 987 } 988 989 void 990 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 991 uint8_t bit_v) 992 { 993 uint32_t reg_v; 994 995 if (port_id_is_invalid(port_id, ENABLED_WARN)) 996 return; 997 if (port_reg_off_is_invalid(port_id, reg_off)) 998 return; 999 if (reg_bit_pos_is_invalid(bit_pos)) 1000 return; 1001 if (bit_v > 1) { 1002 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 1003 return; 1004 } 1005 reg_v = port_id_pci_reg_read(port_id, reg_off); 1006 if (bit_v == 0) 1007 reg_v &= ~(1 << bit_pos); 1008 else 1009 reg_v |= (1 << bit_pos); 1010 port_id_pci_reg_write(port_id, reg_off, reg_v); 1011 display_port_reg_value(port_id, reg_off, reg_v); 1012 } 1013 1014 void 1015 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 1016 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 1017 { 1018 uint32_t max_v; 1019 uint32_t reg_v; 1020 uint8_t l_bit; 1021 uint8_t h_bit; 1022 1023 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1024 return; 1025 if (port_reg_off_is_invalid(port_id, reg_off)) 1026 return; 1027 if (reg_bit_pos_is_invalid(bit1_pos)) 1028 return; 1029 if (reg_bit_pos_is_invalid(bit2_pos)) 1030 return; 1031 if (bit1_pos > bit2_pos) 1032 l_bit = bit2_pos, h_bit = bit1_pos; 1033 else 1034 l_bit = bit1_pos, h_bit = bit2_pos; 1035 1036 if ((h_bit - l_bit) < 31) 1037 max_v = (1 << (h_bit - l_bit + 1)) - 1; 1038 else 1039 max_v = 0xFFFFFFFF; 1040 1041 if (value > max_v) { 1042 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 1043 (unsigned)value, (unsigned)value, 1044 (unsigned)max_v, (unsigned)max_v); 1045 return; 1046 } 1047 reg_v = port_id_pci_reg_read(port_id, reg_off); 1048 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 1049 reg_v |= (value << l_bit); /* Set changed bits */ 1050 port_id_pci_reg_write(port_id, reg_off, reg_v); 1051 display_port_reg_value(port_id, reg_off, reg_v); 1052 } 1053 1054 void 1055 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1056 { 1057 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1058 return; 1059 if (port_reg_off_is_invalid(port_id, reg_off)) 1060 return; 1061 port_id_pci_reg_write(port_id, reg_off, reg_v); 1062 display_port_reg_value(port_id, reg_off, reg_v); 1063 } 1064 1065 void 1066 port_mtu_set(portid_t port_id, uint16_t mtu) 1067 { 1068 int diag; 1069 struct rte_eth_dev_info dev_info; 1070 1071 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1072 return; 1073 rte_eth_dev_info_get(port_id, &dev_info); 1074 if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) { 1075 printf("Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n", 1076 mtu, dev_info.min_mtu, dev_info.max_mtu); 1077 return; 1078 } 1079 diag = rte_eth_dev_set_mtu(port_id, mtu); 1080 if (diag == 0) 1081 return; 1082 printf("Set MTU failed. diag=%d\n", diag); 1083 } 1084 1085 /* Generic flow management functions. */ 1086 1087 /** Generate a port_flow entry from attributes/pattern/actions. */ 1088 static struct port_flow * 1089 port_flow_new(const struct rte_flow_attr *attr, 1090 const struct rte_flow_item *pattern, 1091 const struct rte_flow_action *actions, 1092 struct rte_flow_error *error) 1093 { 1094 const struct rte_flow_conv_rule rule = { 1095 .attr_ro = attr, 1096 .pattern_ro = pattern, 1097 .actions_ro = actions, 1098 }; 1099 struct port_flow *pf; 1100 int ret; 1101 1102 ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); 1103 if (ret < 0) 1104 return NULL; 1105 pf = calloc(1, offsetof(struct port_flow, rule) + ret); 1106 if (!pf) { 1107 rte_flow_error_set 1108 (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1109 "calloc() failed"); 1110 return NULL; 1111 } 1112 if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, 1113 error) >= 0) 1114 return pf; 1115 free(pf); 1116 return NULL; 1117 } 1118 1119 /** Print a message out of a flow error. */ 1120 static int 1121 port_flow_complain(struct rte_flow_error *error) 1122 { 1123 static const char *const errstrlist[] = { 1124 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1125 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1126 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1127 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1128 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1129 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1130 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1131 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", 1132 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1133 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1134 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", 1135 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", 1136 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", 1137 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1138 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1139 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", 1140 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1141 }; 1142 const char *errstr; 1143 char buf[32]; 1144 int err = rte_errno; 1145 1146 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1147 !errstrlist[error->type]) 1148 errstr = "unknown type"; 1149 else 1150 errstr = errstrlist[error->type]; 1151 printf("Caught error type %d (%s): %s%s: %s\n", 1152 error->type, errstr, 1153 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1154 error->cause), buf) : "", 1155 error->message ? error->message : "(no stated reason)", 1156 rte_strerror(err)); 1157 return -err; 1158 } 1159 1160 /** Validate flow rule. */ 1161 int 1162 port_flow_validate(portid_t port_id, 1163 const struct rte_flow_attr *attr, 1164 const struct rte_flow_item *pattern, 1165 const struct rte_flow_action *actions) 1166 { 1167 struct rte_flow_error error; 1168 1169 /* Poisoning to make sure PMDs update it in case of error. */ 1170 memset(&error, 0x11, sizeof(error)); 1171 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1172 return port_flow_complain(&error); 1173 printf("Flow rule validated\n"); 1174 return 0; 1175 } 1176 1177 /** Create flow rule. */ 1178 int 1179 port_flow_create(portid_t port_id, 1180 const struct rte_flow_attr *attr, 1181 const struct rte_flow_item *pattern, 1182 const struct rte_flow_action *actions) 1183 { 1184 struct rte_flow *flow; 1185 struct rte_port *port; 1186 struct port_flow *pf; 1187 uint32_t id; 1188 struct rte_flow_error error; 1189 1190 /* Poisoning to make sure PMDs update it in case of error. */ 1191 memset(&error, 0x22, sizeof(error)); 1192 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1193 if (!flow) 1194 return port_flow_complain(&error); 1195 port = &ports[port_id]; 1196 if (port->flow_list) { 1197 if (port->flow_list->id == UINT32_MAX) { 1198 printf("Highest rule ID is already assigned, delete" 1199 " it first"); 1200 rte_flow_destroy(port_id, flow, NULL); 1201 return -ENOMEM; 1202 } 1203 id = port->flow_list->id + 1; 1204 } else 1205 id = 0; 1206 pf = port_flow_new(attr, pattern, actions, &error); 1207 if (!pf) { 1208 rte_flow_destroy(port_id, flow, NULL); 1209 return port_flow_complain(&error); 1210 } 1211 pf->next = port->flow_list; 1212 pf->id = id; 1213 pf->flow = flow; 1214 port->flow_list = pf; 1215 printf("Flow rule #%u created\n", pf->id); 1216 return 0; 1217 } 1218 1219 /** Destroy a number of flow rules. */ 1220 int 1221 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1222 { 1223 struct rte_port *port; 1224 struct port_flow **tmp; 1225 uint32_t c = 0; 1226 int ret = 0; 1227 1228 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1229 port_id == (portid_t)RTE_PORT_ALL) 1230 return -EINVAL; 1231 port = &ports[port_id]; 1232 tmp = &port->flow_list; 1233 while (*tmp) { 1234 uint32_t i; 1235 1236 for (i = 0; i != n; ++i) { 1237 struct rte_flow_error error; 1238 struct port_flow *pf = *tmp; 1239 1240 if (rule[i] != pf->id) 1241 continue; 1242 /* 1243 * Poisoning to make sure PMDs update it in case 1244 * of error. 1245 */ 1246 memset(&error, 0x33, sizeof(error)); 1247 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1248 ret = port_flow_complain(&error); 1249 continue; 1250 } 1251 printf("Flow rule #%u destroyed\n", pf->id); 1252 *tmp = pf->next; 1253 free(pf); 1254 break; 1255 } 1256 if (i == n) 1257 tmp = &(*tmp)->next; 1258 ++c; 1259 } 1260 return ret; 1261 } 1262 1263 /** Remove all flow rules. */ 1264 int 1265 port_flow_flush(portid_t port_id) 1266 { 1267 struct rte_flow_error error; 1268 struct rte_port *port; 1269 int ret = 0; 1270 1271 /* Poisoning to make sure PMDs update it in case of error. */ 1272 memset(&error, 0x44, sizeof(error)); 1273 if (rte_flow_flush(port_id, &error)) { 1274 ret = port_flow_complain(&error); 1275 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1276 port_id == (portid_t)RTE_PORT_ALL) 1277 return ret; 1278 } 1279 port = &ports[port_id]; 1280 while (port->flow_list) { 1281 struct port_flow *pf = port->flow_list->next; 1282 1283 free(port->flow_list); 1284 port->flow_list = pf; 1285 } 1286 return ret; 1287 } 1288 1289 /** Query a flow rule. */ 1290 int 1291 port_flow_query(portid_t port_id, uint32_t rule, 1292 const struct rte_flow_action *action) 1293 { 1294 struct rte_flow_error error; 1295 struct rte_port *port; 1296 struct port_flow *pf; 1297 const char *name; 1298 union { 1299 struct rte_flow_query_count count; 1300 } query; 1301 int ret; 1302 1303 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1304 port_id == (portid_t)RTE_PORT_ALL) 1305 return -EINVAL; 1306 port = &ports[port_id]; 1307 for (pf = port->flow_list; pf; pf = pf->next) 1308 if (pf->id == rule) 1309 break; 1310 if (!pf) { 1311 printf("Flow rule #%u not found\n", rule); 1312 return -ENOENT; 1313 } 1314 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 1315 &name, sizeof(name), 1316 (void *)(uintptr_t)action->type, &error); 1317 if (ret < 0) 1318 return port_flow_complain(&error); 1319 switch (action->type) { 1320 case RTE_FLOW_ACTION_TYPE_COUNT: 1321 break; 1322 default: 1323 printf("Cannot query action type %d (%s)\n", 1324 action->type, name); 1325 return -ENOTSUP; 1326 } 1327 /* Poisoning to make sure PMDs update it in case of error. */ 1328 memset(&error, 0x55, sizeof(error)); 1329 memset(&query, 0, sizeof(query)); 1330 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1331 return port_flow_complain(&error); 1332 switch (action->type) { 1333 case RTE_FLOW_ACTION_TYPE_COUNT: 1334 printf("%s:\n" 1335 " hits_set: %u\n" 1336 " bytes_set: %u\n" 1337 " hits: %" PRIu64 "\n" 1338 " bytes: %" PRIu64 "\n", 1339 name, 1340 query.count.hits_set, 1341 query.count.bytes_set, 1342 query.count.hits, 1343 query.count.bytes); 1344 break; 1345 default: 1346 printf("Cannot display result for action type %d (%s)\n", 1347 action->type, name); 1348 break; 1349 } 1350 return 0; 1351 } 1352 1353 /** List flow rules. */ 1354 void 1355 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1356 { 1357 struct rte_port *port; 1358 struct port_flow *pf; 1359 struct port_flow *list = NULL; 1360 uint32_t i; 1361 1362 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1363 port_id == (portid_t)RTE_PORT_ALL) 1364 return; 1365 port = &ports[port_id]; 1366 if (!port->flow_list) 1367 return; 1368 /* Sort flows by group, priority and ID. */ 1369 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1370 struct port_flow **tmp; 1371 const struct rte_flow_attr *curr = pf->rule.attr; 1372 1373 if (n) { 1374 /* Filter out unwanted groups. */ 1375 for (i = 0; i != n; ++i) 1376 if (curr->group == group[i]) 1377 break; 1378 if (i == n) 1379 continue; 1380 } 1381 for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { 1382 const struct rte_flow_attr *comp = (*tmp)->rule.attr; 1383 1384 if (curr->group > comp->group || 1385 (curr->group == comp->group && 1386 curr->priority > comp->priority) || 1387 (curr->group == comp->group && 1388 curr->priority == comp->priority && 1389 pf->id > (*tmp)->id)) 1390 continue; 1391 break; 1392 } 1393 pf->tmp = *tmp; 1394 *tmp = pf; 1395 } 1396 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1397 for (pf = list; pf != NULL; pf = pf->tmp) { 1398 const struct rte_flow_item *item = pf->rule.pattern; 1399 const struct rte_flow_action *action = pf->rule.actions; 1400 const char *name; 1401 1402 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", 1403 pf->id, 1404 pf->rule.attr->group, 1405 pf->rule.attr->priority, 1406 pf->rule.attr->ingress ? 'i' : '-', 1407 pf->rule.attr->egress ? 'e' : '-', 1408 pf->rule.attr->transfer ? 't' : '-'); 1409 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1410 if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 1411 &name, sizeof(name), 1412 (void *)(uintptr_t)item->type, 1413 NULL) <= 0) 1414 name = "[UNKNOWN]"; 1415 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1416 printf("%s ", name); 1417 ++item; 1418 } 1419 printf("=>"); 1420 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1421 if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 1422 &name, sizeof(name), 1423 (void *)(uintptr_t)action->type, 1424 NULL) <= 0) 1425 name = "[UNKNOWN]"; 1426 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1427 printf(" %s", name); 1428 ++action; 1429 } 1430 printf("\n"); 1431 } 1432 } 1433 1434 /** Restrict ingress traffic to the defined flow rules. */ 1435 int 1436 port_flow_isolate(portid_t port_id, int set) 1437 { 1438 struct rte_flow_error error; 1439 1440 /* Poisoning to make sure PMDs update it in case of error. */ 1441 memset(&error, 0x66, sizeof(error)); 1442 if (rte_flow_isolate(port_id, set, &error)) 1443 return port_flow_complain(&error); 1444 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1445 port_id, 1446 set ? "now restricted" : "not restricted anymore"); 1447 return 0; 1448 } 1449 1450 /* 1451 * RX/TX ring descriptors display functions. 1452 */ 1453 int 1454 rx_queue_id_is_invalid(queueid_t rxq_id) 1455 { 1456 if (rxq_id < nb_rxq) 1457 return 0; 1458 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1459 return 1; 1460 } 1461 1462 int 1463 tx_queue_id_is_invalid(queueid_t txq_id) 1464 { 1465 if (txq_id < nb_txq) 1466 return 0; 1467 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1468 return 1; 1469 } 1470 1471 static int 1472 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1473 { 1474 if (rxdesc_id < nb_rxd) 1475 return 0; 1476 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1477 rxdesc_id, nb_rxd); 1478 return 1; 1479 } 1480 1481 static int 1482 tx_desc_id_is_invalid(uint16_t txdesc_id) 1483 { 1484 if (txdesc_id < nb_txd) 1485 return 0; 1486 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1487 txdesc_id, nb_txd); 1488 return 1; 1489 } 1490 1491 static const struct rte_memzone * 1492 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 1493 { 1494 char mz_name[RTE_MEMZONE_NAMESIZE]; 1495 const struct rte_memzone *mz; 1496 1497 snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", 1498 port_id, q_id, ring_name); 1499 mz = rte_memzone_lookup(mz_name); 1500 if (mz == NULL) 1501 printf("%s ring memory zoneof (port %d, queue %d) not" 1502 "found (zone name = %s\n", 1503 ring_name, port_id, q_id, mz_name); 1504 return mz; 1505 } 1506 1507 union igb_ring_dword { 1508 uint64_t dword; 1509 struct { 1510 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1511 uint32_t lo; 1512 uint32_t hi; 1513 #else 1514 uint32_t hi; 1515 uint32_t lo; 1516 #endif 1517 } words; 1518 }; 1519 1520 struct igb_ring_desc_32_bytes { 1521 union igb_ring_dword lo_dword; 1522 union igb_ring_dword hi_dword; 1523 union igb_ring_dword resv1; 1524 union igb_ring_dword resv2; 1525 }; 1526 1527 struct igb_ring_desc_16_bytes { 1528 union igb_ring_dword lo_dword; 1529 union igb_ring_dword hi_dword; 1530 }; 1531 1532 static void 1533 ring_rxd_display_dword(union igb_ring_dword dword) 1534 { 1535 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1536 (unsigned)dword.words.hi); 1537 } 1538 1539 static void 1540 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1541 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1542 portid_t port_id, 1543 #else 1544 __rte_unused portid_t port_id, 1545 #endif 1546 uint16_t desc_id) 1547 { 1548 struct igb_ring_desc_16_bytes *ring = 1549 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1550 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1551 struct rte_eth_dev_info dev_info; 1552 1553 memset(&dev_info, 0, sizeof(dev_info)); 1554 rte_eth_dev_info_get(port_id, &dev_info); 1555 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1556 /* 32 bytes RX descriptor, i40e only */ 1557 struct igb_ring_desc_32_bytes *ring = 1558 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1559 ring[desc_id].lo_dword.dword = 1560 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1561 ring_rxd_display_dword(ring[desc_id].lo_dword); 1562 ring[desc_id].hi_dword.dword = 1563 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1564 ring_rxd_display_dword(ring[desc_id].hi_dword); 1565 ring[desc_id].resv1.dword = 1566 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1567 ring_rxd_display_dword(ring[desc_id].resv1); 1568 ring[desc_id].resv2.dword = 1569 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1570 ring_rxd_display_dword(ring[desc_id].resv2); 1571 1572 return; 1573 } 1574 #endif 1575 /* 16 bytes RX descriptor */ 1576 ring[desc_id].lo_dword.dword = 1577 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1578 ring_rxd_display_dword(ring[desc_id].lo_dword); 1579 ring[desc_id].hi_dword.dword = 1580 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1581 ring_rxd_display_dword(ring[desc_id].hi_dword); 1582 } 1583 1584 static void 1585 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1586 { 1587 struct igb_ring_desc_16_bytes *ring; 1588 struct igb_ring_desc_16_bytes txd; 1589 1590 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1591 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1592 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1593 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1594 (unsigned)txd.lo_dword.words.lo, 1595 (unsigned)txd.lo_dword.words.hi, 1596 (unsigned)txd.hi_dword.words.lo, 1597 (unsigned)txd.hi_dword.words.hi); 1598 } 1599 1600 void 1601 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1602 { 1603 const struct rte_memzone *rx_mz; 1604 1605 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1606 return; 1607 if (rx_queue_id_is_invalid(rxq_id)) 1608 return; 1609 if (rx_desc_id_is_invalid(rxd_id)) 1610 return; 1611 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1612 if (rx_mz == NULL) 1613 return; 1614 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1615 } 1616 1617 void 1618 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1619 { 1620 const struct rte_memzone *tx_mz; 1621 1622 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1623 return; 1624 if (tx_queue_id_is_invalid(txq_id)) 1625 return; 1626 if (tx_desc_id_is_invalid(txd_id)) 1627 return; 1628 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1629 if (tx_mz == NULL) 1630 return; 1631 ring_tx_descriptor_display(tx_mz, txd_id); 1632 } 1633 1634 void 1635 fwd_lcores_config_display(void) 1636 { 1637 lcoreid_t lc_id; 1638 1639 printf("List of forwarding lcores:"); 1640 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1641 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1642 printf("\n"); 1643 } 1644 void 1645 rxtx_config_display(void) 1646 { 1647 portid_t pid; 1648 queueid_t qid; 1649 1650 printf(" %s packet forwarding%s packets/burst=%d\n", 1651 cur_fwd_eng->fwd_mode_name, 1652 retry_enabled == 0 ? "" : " with retry", 1653 nb_pkt_per_burst); 1654 1655 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1656 printf(" packet len=%u - nb packet segments=%d\n", 1657 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1658 1659 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1660 nb_fwd_lcores, nb_fwd_ports); 1661 1662 RTE_ETH_FOREACH_DEV(pid) { 1663 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0]; 1664 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0]; 1665 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; 1666 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; 1667 uint16_t nb_rx_desc_tmp; 1668 uint16_t nb_tx_desc_tmp; 1669 struct rte_eth_rxq_info rx_qinfo; 1670 struct rte_eth_txq_info tx_qinfo; 1671 int32_t rc; 1672 1673 /* per port config */ 1674 printf(" port %d: RX queue number: %d Tx queue number: %d\n", 1675 (unsigned int)pid, nb_rxq, nb_txq); 1676 1677 printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", 1678 ports[pid].dev_conf.rxmode.offloads, 1679 ports[pid].dev_conf.txmode.offloads); 1680 1681 /* per rx queue config only for first queue to be less verbose */ 1682 for (qid = 0; qid < 1; qid++) { 1683 rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); 1684 if (rc) 1685 nb_rx_desc_tmp = nb_rx_desc[qid]; 1686 else 1687 nb_rx_desc_tmp = rx_qinfo.nb_desc; 1688 1689 printf(" RX queue: %d\n", qid); 1690 printf(" RX desc=%d - RX free threshold=%d\n", 1691 nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh); 1692 printf(" RX threshold registers: pthresh=%d hthresh=%d " 1693 " wthresh=%d\n", 1694 rx_conf[qid].rx_thresh.pthresh, 1695 rx_conf[qid].rx_thresh.hthresh, 1696 rx_conf[qid].rx_thresh.wthresh); 1697 printf(" RX Offloads=0x%"PRIx64"\n", 1698 rx_conf[qid].offloads); 1699 } 1700 1701 /* per tx queue config only for first queue to be less verbose */ 1702 for (qid = 0; qid < 1; qid++) { 1703 rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); 1704 if (rc) 1705 nb_tx_desc_tmp = nb_tx_desc[qid]; 1706 else 1707 nb_tx_desc_tmp = tx_qinfo.nb_desc; 1708 1709 printf(" TX queue: %d\n", qid); 1710 printf(" TX desc=%d - TX free threshold=%d\n", 1711 nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh); 1712 printf(" TX threshold registers: pthresh=%d hthresh=%d " 1713 " wthresh=%d\n", 1714 tx_conf[qid].tx_thresh.pthresh, 1715 tx_conf[qid].tx_thresh.hthresh, 1716 tx_conf[qid].tx_thresh.wthresh); 1717 printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", 1718 tx_conf[qid].offloads, tx_conf->tx_rs_thresh); 1719 } 1720 } 1721 } 1722 1723 void 1724 port_rss_reta_info(portid_t port_id, 1725 struct rte_eth_rss_reta_entry64 *reta_conf, 1726 uint16_t nb_entries) 1727 { 1728 uint16_t i, idx, shift; 1729 int ret; 1730 1731 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1732 return; 1733 1734 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1735 if (ret != 0) { 1736 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1737 return; 1738 } 1739 1740 for (i = 0; i < nb_entries; i++) { 1741 idx = i / RTE_RETA_GROUP_SIZE; 1742 shift = i % RTE_RETA_GROUP_SIZE; 1743 if (!(reta_conf[idx].mask & (1ULL << shift))) 1744 continue; 1745 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1746 i, reta_conf[idx].reta[shift]); 1747 } 1748 } 1749 1750 /* 1751 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1752 * key of the port. 1753 */ 1754 void 1755 port_rss_hash_conf_show(portid_t port_id, int show_rss_key) 1756 { 1757 struct rte_eth_rss_conf rss_conf = {0}; 1758 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1759 uint64_t rss_hf; 1760 uint8_t i; 1761 int diag; 1762 struct rte_eth_dev_info dev_info; 1763 uint8_t hash_key_size; 1764 1765 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1766 return; 1767 1768 rte_eth_dev_info_get(port_id, &dev_info); 1769 if (dev_info.hash_key_size > 0 && 1770 dev_info.hash_key_size <= sizeof(rss_key)) 1771 hash_key_size = dev_info.hash_key_size; 1772 else { 1773 printf("dev_info did not provide a valid hash key size\n"); 1774 return; 1775 } 1776 1777 /* Get RSS hash key if asked to display it */ 1778 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1779 rss_conf.rss_key_len = hash_key_size; 1780 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1781 if (diag != 0) { 1782 switch (diag) { 1783 case -ENODEV: 1784 printf("port index %d invalid\n", port_id); 1785 break; 1786 case -ENOTSUP: 1787 printf("operation not supported by device\n"); 1788 break; 1789 default: 1790 printf("operation failed - diag=%d\n", diag); 1791 break; 1792 } 1793 return; 1794 } 1795 rss_hf = rss_conf.rss_hf; 1796 if (rss_hf == 0) { 1797 printf("RSS disabled\n"); 1798 return; 1799 } 1800 printf("RSS functions:\n "); 1801 for (i = 0; rss_type_table[i].str; i++) { 1802 if (rss_hf & rss_type_table[i].rss_type) 1803 printf("%s ", rss_type_table[i].str); 1804 } 1805 printf("\n"); 1806 if (!show_rss_key) 1807 return; 1808 printf("RSS key:\n"); 1809 for (i = 0; i < hash_key_size; i++) 1810 printf("%02X", rss_key[i]); 1811 printf("\n"); 1812 } 1813 1814 void 1815 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1816 uint hash_key_len) 1817 { 1818 struct rte_eth_rss_conf rss_conf; 1819 int diag; 1820 unsigned int i; 1821 1822 rss_conf.rss_key = NULL; 1823 rss_conf.rss_key_len = hash_key_len; 1824 rss_conf.rss_hf = 0; 1825 for (i = 0; rss_type_table[i].str; i++) { 1826 if (!strcmp(rss_type_table[i].str, rss_type)) 1827 rss_conf.rss_hf = rss_type_table[i].rss_type; 1828 } 1829 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1830 if (diag == 0) { 1831 rss_conf.rss_key = hash_key; 1832 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1833 } 1834 if (diag == 0) 1835 return; 1836 1837 switch (diag) { 1838 case -ENODEV: 1839 printf("port index %d invalid\n", port_id); 1840 break; 1841 case -ENOTSUP: 1842 printf("operation not supported by device\n"); 1843 break; 1844 default: 1845 printf("operation failed - diag=%d\n", diag); 1846 break; 1847 } 1848 } 1849 1850 /* 1851 * Setup forwarding configuration for each logical core. 1852 */ 1853 static void 1854 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1855 { 1856 streamid_t nb_fs_per_lcore; 1857 streamid_t nb_fs; 1858 streamid_t sm_id; 1859 lcoreid_t nb_extra; 1860 lcoreid_t nb_fc; 1861 lcoreid_t nb_lc; 1862 lcoreid_t lc_id; 1863 1864 nb_fs = cfg->nb_fwd_streams; 1865 nb_fc = cfg->nb_fwd_lcores; 1866 if (nb_fs <= nb_fc) { 1867 nb_fs_per_lcore = 1; 1868 nb_extra = 0; 1869 } else { 1870 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1871 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1872 } 1873 1874 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1875 sm_id = 0; 1876 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1877 fwd_lcores[lc_id]->stream_idx = sm_id; 1878 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1879 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1880 } 1881 1882 /* 1883 * Assign extra remaining streams, if any. 1884 */ 1885 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1886 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1887 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1888 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1889 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1890 } 1891 } 1892 1893 static portid_t 1894 fwd_topology_tx_port_get(portid_t rxp) 1895 { 1896 static int warning_once = 1; 1897 1898 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 1899 1900 switch (port_topology) { 1901 default: 1902 case PORT_TOPOLOGY_PAIRED: 1903 if ((rxp & 0x1) == 0) { 1904 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 1905 return rxp + 1; 1906 if (warning_once) { 1907 printf("\nWarning! port-topology=paired" 1908 " and odd forward ports number," 1909 " the last port will pair with" 1910 " itself.\n\n"); 1911 warning_once = 0; 1912 } 1913 return rxp; 1914 } 1915 return rxp - 1; 1916 case PORT_TOPOLOGY_CHAINED: 1917 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 1918 case PORT_TOPOLOGY_LOOP: 1919 return rxp; 1920 } 1921 } 1922 1923 static void 1924 simple_fwd_config_setup(void) 1925 { 1926 portid_t i; 1927 1928 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1929 cur_fwd_config.nb_fwd_streams = 1930 (streamid_t) cur_fwd_config.nb_fwd_ports; 1931 1932 /* reinitialize forwarding streams */ 1933 init_fwd_streams(); 1934 1935 /* 1936 * In the simple forwarding test, the number of forwarding cores 1937 * must be lower or equal to the number of forwarding ports. 1938 */ 1939 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1940 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1941 cur_fwd_config.nb_fwd_lcores = 1942 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1943 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1944 1945 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1946 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1947 fwd_streams[i]->rx_queue = 0; 1948 fwd_streams[i]->tx_port = 1949 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 1950 fwd_streams[i]->tx_queue = 0; 1951 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 1952 fwd_streams[i]->retry_enabled = retry_enabled; 1953 } 1954 } 1955 1956 /** 1957 * For the RSS forwarding test all streams distributed over lcores. Each stream 1958 * being composed of a RX queue to poll on a RX port for input messages, 1959 * associated with a TX queue of a TX port where to send forwarded packets. 1960 */ 1961 static void 1962 rss_fwd_config_setup(void) 1963 { 1964 portid_t rxp; 1965 portid_t txp; 1966 queueid_t rxq; 1967 queueid_t nb_q; 1968 streamid_t sm_id; 1969 1970 nb_q = nb_rxq; 1971 if (nb_q > nb_txq) 1972 nb_q = nb_txq; 1973 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1974 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1975 cur_fwd_config.nb_fwd_streams = 1976 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1977 1978 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1979 cur_fwd_config.nb_fwd_lcores = 1980 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1981 1982 /* reinitialize forwarding streams */ 1983 init_fwd_streams(); 1984 1985 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1986 rxp = 0; rxq = 0; 1987 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1988 struct fwd_stream *fs; 1989 1990 fs = fwd_streams[sm_id]; 1991 txp = fwd_topology_tx_port_get(rxp); 1992 fs->rx_port = fwd_ports_ids[rxp]; 1993 fs->rx_queue = rxq; 1994 fs->tx_port = fwd_ports_ids[txp]; 1995 fs->tx_queue = rxq; 1996 fs->peer_addr = fs->tx_port; 1997 fs->retry_enabled = retry_enabled; 1998 rxp++; 1999 if (rxp < nb_fwd_ports) 2000 continue; 2001 rxp = 0; 2002 rxq++; 2003 } 2004 } 2005 2006 /** 2007 * For the DCB forwarding test, each core is assigned on each traffic class. 2008 * 2009 * Each core is assigned a multi-stream, each stream being composed of 2010 * a RX queue to poll on a RX port for input messages, associated with 2011 * a TX queue of a TX port where to send forwarded packets. All RX and 2012 * TX queues are mapping to the same traffic class. 2013 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 2014 * the same core 2015 */ 2016 static void 2017 dcb_fwd_config_setup(void) 2018 { 2019 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 2020 portid_t txp, rxp = 0; 2021 queueid_t txq, rxq = 0; 2022 lcoreid_t lc_id; 2023 uint16_t nb_rx_queue, nb_tx_queue; 2024 uint16_t i, j, k, sm_id = 0; 2025 uint8_t tc = 0; 2026 2027 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2028 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2029 cur_fwd_config.nb_fwd_streams = 2030 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2031 2032 /* reinitialize forwarding streams */ 2033 init_fwd_streams(); 2034 sm_id = 0; 2035 txp = 1; 2036 /* get the dcb info on the first RX and TX ports */ 2037 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2038 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2039 2040 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2041 fwd_lcores[lc_id]->stream_nb = 0; 2042 fwd_lcores[lc_id]->stream_idx = sm_id; 2043 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2044 /* if the nb_queue is zero, means this tc is 2045 * not enabled on the POOL 2046 */ 2047 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2048 break; 2049 k = fwd_lcores[lc_id]->stream_nb + 2050 fwd_lcores[lc_id]->stream_idx; 2051 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2052 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2053 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2054 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2055 for (j = 0; j < nb_rx_queue; j++) { 2056 struct fwd_stream *fs; 2057 2058 fs = fwd_streams[k + j]; 2059 fs->rx_port = fwd_ports_ids[rxp]; 2060 fs->rx_queue = rxq + j; 2061 fs->tx_port = fwd_ports_ids[txp]; 2062 fs->tx_queue = txq + j % nb_tx_queue; 2063 fs->peer_addr = fs->tx_port; 2064 fs->retry_enabled = retry_enabled; 2065 } 2066 fwd_lcores[lc_id]->stream_nb += 2067 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2068 } 2069 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2070 2071 tc++; 2072 if (tc < rxp_dcb_info.nb_tcs) 2073 continue; 2074 /* Restart from TC 0 on next RX port */ 2075 tc = 0; 2076 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2077 rxp = (portid_t) 2078 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2079 else 2080 rxp++; 2081 if (rxp >= nb_fwd_ports) 2082 return; 2083 /* get the dcb information on next RX and TX ports */ 2084 if ((rxp & 0x1) == 0) 2085 txp = (portid_t) (rxp + 1); 2086 else 2087 txp = (portid_t) (rxp - 1); 2088 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2089 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2090 } 2091 } 2092 2093 static void 2094 icmp_echo_config_setup(void) 2095 { 2096 portid_t rxp; 2097 queueid_t rxq; 2098 lcoreid_t lc_id; 2099 uint16_t sm_id; 2100 2101 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2102 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2103 (nb_txq * nb_fwd_ports); 2104 else 2105 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2106 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2107 cur_fwd_config.nb_fwd_streams = 2108 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2109 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2110 cur_fwd_config.nb_fwd_lcores = 2111 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2112 if (verbose_level > 0) { 2113 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2114 __FUNCTION__, 2115 cur_fwd_config.nb_fwd_lcores, 2116 cur_fwd_config.nb_fwd_ports, 2117 cur_fwd_config.nb_fwd_streams); 2118 } 2119 2120 /* reinitialize forwarding streams */ 2121 init_fwd_streams(); 2122 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2123 rxp = 0; rxq = 0; 2124 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2125 if (verbose_level > 0) 2126 printf(" core=%d: \n", lc_id); 2127 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2128 struct fwd_stream *fs; 2129 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2130 fs->rx_port = fwd_ports_ids[rxp]; 2131 fs->rx_queue = rxq; 2132 fs->tx_port = fs->rx_port; 2133 fs->tx_queue = rxq; 2134 fs->peer_addr = fs->tx_port; 2135 fs->retry_enabled = retry_enabled; 2136 if (verbose_level > 0) 2137 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2138 sm_id, fs->rx_port, fs->rx_queue, 2139 fs->tx_queue); 2140 rxq = (queueid_t) (rxq + 1); 2141 if (rxq == nb_rxq) { 2142 rxq = 0; 2143 rxp = (portid_t) (rxp + 1); 2144 } 2145 } 2146 } 2147 } 2148 2149 #if defined RTE_LIBRTE_PMD_SOFTNIC 2150 static void 2151 softnic_fwd_config_setup(void) 2152 { 2153 struct rte_port *port; 2154 portid_t pid, softnic_portid; 2155 queueid_t i; 2156 uint8_t softnic_enable = 0; 2157 2158 RTE_ETH_FOREACH_DEV(pid) { 2159 port = &ports[pid]; 2160 const char *driver = port->dev_info.driver_name; 2161 2162 if (strcmp(driver, "net_softnic") == 0) { 2163 softnic_portid = pid; 2164 softnic_enable = 1; 2165 break; 2166 } 2167 } 2168 2169 if (softnic_enable == 0) { 2170 printf("Softnic mode not configured(%s)!\n", __func__); 2171 return; 2172 } 2173 2174 cur_fwd_config.nb_fwd_ports = 1; 2175 cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq; 2176 2177 /* Re-initialize forwarding streams */ 2178 init_fwd_streams(); 2179 2180 /* 2181 * In the softnic forwarding test, the number of forwarding cores 2182 * is set to one and remaining are used for softnic packet processing. 2183 */ 2184 cur_fwd_config.nb_fwd_lcores = 1; 2185 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2186 2187 for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) { 2188 fwd_streams[i]->rx_port = softnic_portid; 2189 fwd_streams[i]->rx_queue = i; 2190 fwd_streams[i]->tx_port = softnic_portid; 2191 fwd_streams[i]->tx_queue = i; 2192 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 2193 fwd_streams[i]->retry_enabled = retry_enabled; 2194 } 2195 } 2196 #endif 2197 2198 void 2199 fwd_config_setup(void) 2200 { 2201 cur_fwd_config.fwd_eng = cur_fwd_eng; 2202 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2203 icmp_echo_config_setup(); 2204 return; 2205 } 2206 2207 #if defined RTE_LIBRTE_PMD_SOFTNIC 2208 if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) { 2209 softnic_fwd_config_setup(); 2210 return; 2211 } 2212 #endif 2213 2214 if ((nb_rxq > 1) && (nb_txq > 1)){ 2215 if (dcb_config) 2216 dcb_fwd_config_setup(); 2217 else 2218 rss_fwd_config_setup(); 2219 } 2220 else 2221 simple_fwd_config_setup(); 2222 } 2223 2224 static const char * 2225 mp_alloc_to_str(uint8_t mode) 2226 { 2227 switch (mode) { 2228 case MP_ALLOC_NATIVE: 2229 return "native"; 2230 case MP_ALLOC_ANON: 2231 return "anon"; 2232 case MP_ALLOC_XMEM: 2233 return "xmem"; 2234 case MP_ALLOC_XMEM_HUGE: 2235 return "xmemhuge"; 2236 default: 2237 return "invalid"; 2238 } 2239 } 2240 2241 void 2242 pkt_fwd_config_display(struct fwd_config *cfg) 2243 { 2244 struct fwd_stream *fs; 2245 lcoreid_t lc_id; 2246 streamid_t sm_id; 2247 2248 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2249 "NUMA support %s, MP allocation mode: %s\n", 2250 cfg->fwd_eng->fwd_mode_name, 2251 retry_enabled == 0 ? "" : " with retry", 2252 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2253 numa_support == 1 ? "enabled" : "disabled", 2254 mp_alloc_to_str(mp_alloc_type)); 2255 2256 if (retry_enabled) 2257 printf("TX retry num: %u, delay between TX retries: %uus\n", 2258 burst_tx_retry_num, burst_tx_delay_time); 2259 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2260 printf("Logical Core %u (socket %u) forwards packets on " 2261 "%d streams:", 2262 fwd_lcores_cpuids[lc_id], 2263 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2264 fwd_lcores[lc_id]->stream_nb); 2265 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2266 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2267 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2268 "P=%d/Q=%d (socket %u) ", 2269 fs->rx_port, fs->rx_queue, 2270 ports[fs->rx_port].socket_id, 2271 fs->tx_port, fs->tx_queue, 2272 ports[fs->tx_port].socket_id); 2273 print_ethaddr("peer=", 2274 &peer_eth_addrs[fs->peer_addr]); 2275 } 2276 printf("\n"); 2277 } 2278 printf("\n"); 2279 } 2280 2281 void 2282 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 2283 { 2284 struct rte_ether_addr new_peer_addr; 2285 if (!rte_eth_dev_is_valid_port(port_id)) { 2286 printf("Error: Invalid port number %i\n", port_id); 2287 return; 2288 } 2289 if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) { 2290 printf("Error: Invalid ethernet address: %s\n", peer_addr); 2291 return; 2292 } 2293 peer_eth_addrs[port_id] = new_peer_addr; 2294 } 2295 2296 int 2297 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2298 { 2299 unsigned int i; 2300 unsigned int lcore_cpuid; 2301 int record_now; 2302 2303 record_now = 0; 2304 again: 2305 for (i = 0; i < nb_lc; i++) { 2306 lcore_cpuid = lcorelist[i]; 2307 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2308 printf("lcore %u not enabled\n", lcore_cpuid); 2309 return -1; 2310 } 2311 if (lcore_cpuid == rte_get_master_lcore()) { 2312 printf("lcore %u cannot be masked on for running " 2313 "packet forwarding, which is the master lcore " 2314 "and reserved for command line parsing only\n", 2315 lcore_cpuid); 2316 return -1; 2317 } 2318 if (record_now) 2319 fwd_lcores_cpuids[i] = lcore_cpuid; 2320 } 2321 if (record_now == 0) { 2322 record_now = 1; 2323 goto again; 2324 } 2325 nb_cfg_lcores = (lcoreid_t) nb_lc; 2326 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2327 printf("previous number of forwarding cores %u - changed to " 2328 "number of configured cores %u\n", 2329 (unsigned int) nb_fwd_lcores, nb_lc); 2330 nb_fwd_lcores = (lcoreid_t) nb_lc; 2331 } 2332 2333 return 0; 2334 } 2335 2336 int 2337 set_fwd_lcores_mask(uint64_t lcoremask) 2338 { 2339 unsigned int lcorelist[64]; 2340 unsigned int nb_lc; 2341 unsigned int i; 2342 2343 if (lcoremask == 0) { 2344 printf("Invalid NULL mask of cores\n"); 2345 return -1; 2346 } 2347 nb_lc = 0; 2348 for (i = 0; i < 64; i++) { 2349 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2350 continue; 2351 lcorelist[nb_lc++] = i; 2352 } 2353 return set_fwd_lcores_list(lcorelist, nb_lc); 2354 } 2355 2356 void 2357 set_fwd_lcores_number(uint16_t nb_lc) 2358 { 2359 if (nb_lc > nb_cfg_lcores) { 2360 printf("nb fwd cores %u > %u (max. number of configured " 2361 "lcores) - ignored\n", 2362 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2363 return; 2364 } 2365 nb_fwd_lcores = (lcoreid_t) nb_lc; 2366 printf("Number of forwarding cores set to %u\n", 2367 (unsigned int) nb_fwd_lcores); 2368 } 2369 2370 void 2371 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2372 { 2373 unsigned int i; 2374 portid_t port_id; 2375 int record_now; 2376 2377 record_now = 0; 2378 again: 2379 for (i = 0; i < nb_pt; i++) { 2380 port_id = (portid_t) portlist[i]; 2381 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2382 return; 2383 if (record_now) 2384 fwd_ports_ids[i] = port_id; 2385 } 2386 if (record_now == 0) { 2387 record_now = 1; 2388 goto again; 2389 } 2390 nb_cfg_ports = (portid_t) nb_pt; 2391 if (nb_fwd_ports != (portid_t) nb_pt) { 2392 printf("previous number of forwarding ports %u - changed to " 2393 "number of configured ports %u\n", 2394 (unsigned int) nb_fwd_ports, nb_pt); 2395 nb_fwd_ports = (portid_t) nb_pt; 2396 } 2397 } 2398 2399 void 2400 set_fwd_ports_mask(uint64_t portmask) 2401 { 2402 unsigned int portlist[64]; 2403 unsigned int nb_pt; 2404 unsigned int i; 2405 2406 if (portmask == 0) { 2407 printf("Invalid NULL mask of ports\n"); 2408 return; 2409 } 2410 nb_pt = 0; 2411 RTE_ETH_FOREACH_DEV(i) { 2412 if (! ((uint64_t)(1ULL << i) & portmask)) 2413 continue; 2414 portlist[nb_pt++] = i; 2415 } 2416 set_fwd_ports_list(portlist, nb_pt); 2417 } 2418 2419 void 2420 set_fwd_ports_number(uint16_t nb_pt) 2421 { 2422 if (nb_pt > nb_cfg_ports) { 2423 printf("nb fwd ports %u > %u (number of configured " 2424 "ports) - ignored\n", 2425 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2426 return; 2427 } 2428 nb_fwd_ports = (portid_t) nb_pt; 2429 printf("Number of forwarding ports set to %u\n", 2430 (unsigned int) nb_fwd_ports); 2431 } 2432 2433 int 2434 port_is_forwarding(portid_t port_id) 2435 { 2436 unsigned int i; 2437 2438 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2439 return -1; 2440 2441 for (i = 0; i < nb_fwd_ports; i++) { 2442 if (fwd_ports_ids[i] == port_id) 2443 return 1; 2444 } 2445 2446 return 0; 2447 } 2448 2449 void 2450 set_nb_pkt_per_burst(uint16_t nb) 2451 { 2452 if (nb > MAX_PKT_BURST) { 2453 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2454 " ignored\n", 2455 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2456 return; 2457 } 2458 nb_pkt_per_burst = nb; 2459 printf("Number of packets per burst set to %u\n", 2460 (unsigned int) nb_pkt_per_burst); 2461 } 2462 2463 static const char * 2464 tx_split_get_name(enum tx_pkt_split split) 2465 { 2466 uint32_t i; 2467 2468 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2469 if (tx_split_name[i].split == split) 2470 return tx_split_name[i].name; 2471 } 2472 return NULL; 2473 } 2474 2475 void 2476 set_tx_pkt_split(const char *name) 2477 { 2478 uint32_t i; 2479 2480 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2481 if (strcmp(tx_split_name[i].name, name) == 0) { 2482 tx_pkt_split = tx_split_name[i].split; 2483 return; 2484 } 2485 } 2486 printf("unknown value: \"%s\"\n", name); 2487 } 2488 2489 void 2490 show_tx_pkt_segments(void) 2491 { 2492 uint32_t i, n; 2493 const char *split; 2494 2495 n = tx_pkt_nb_segs; 2496 split = tx_split_get_name(tx_pkt_split); 2497 2498 printf("Number of segments: %u\n", n); 2499 printf("Segment sizes: "); 2500 for (i = 0; i != n - 1; i++) 2501 printf("%hu,", tx_pkt_seg_lengths[i]); 2502 printf("%hu\n", tx_pkt_seg_lengths[i]); 2503 printf("Split packet: %s\n", split); 2504 } 2505 2506 void 2507 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2508 { 2509 uint16_t tx_pkt_len; 2510 unsigned i; 2511 2512 if (nb_segs >= (unsigned) nb_txd) { 2513 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2514 nb_segs, (unsigned int) nb_txd); 2515 return; 2516 } 2517 2518 /* 2519 * Check that each segment length is greater or equal than 2520 * the mbuf data sise. 2521 * Check also that the total packet length is greater or equal than the 2522 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + 2523 * 20 + 8). 2524 */ 2525 tx_pkt_len = 0; 2526 for (i = 0; i < nb_segs; i++) { 2527 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2528 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2529 i, seg_lengths[i], (unsigned) mbuf_data_size); 2530 return; 2531 } 2532 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2533 } 2534 if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { 2535 printf("total packet length=%u < %d - give up\n", 2536 (unsigned) tx_pkt_len, 2537 (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); 2538 return; 2539 } 2540 2541 for (i = 0; i < nb_segs; i++) 2542 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2543 2544 tx_pkt_length = tx_pkt_len; 2545 tx_pkt_nb_segs = (uint8_t) nb_segs; 2546 } 2547 2548 void 2549 setup_gro(const char *onoff, portid_t port_id) 2550 { 2551 if (!rte_eth_dev_is_valid_port(port_id)) { 2552 printf("invalid port id %u\n", port_id); 2553 return; 2554 } 2555 if (test_done == 0) { 2556 printf("Before enable/disable GRO," 2557 " please stop forwarding first\n"); 2558 return; 2559 } 2560 if (strcmp(onoff, "on") == 0) { 2561 if (gro_ports[port_id].enable != 0) { 2562 printf("Port %u has enabled GRO. Please" 2563 " disable GRO first\n", port_id); 2564 return; 2565 } 2566 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2567 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2568 gro_ports[port_id].param.max_flow_num = 2569 GRO_DEFAULT_FLOW_NUM; 2570 gro_ports[port_id].param.max_item_per_flow = 2571 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2572 } 2573 gro_ports[port_id].enable = 1; 2574 } else { 2575 if (gro_ports[port_id].enable == 0) { 2576 printf("Port %u has disabled GRO\n", port_id); 2577 return; 2578 } 2579 gro_ports[port_id].enable = 0; 2580 } 2581 } 2582 2583 void 2584 setup_gro_flush_cycles(uint8_t cycles) 2585 { 2586 if (test_done == 0) { 2587 printf("Before change flush interval for GRO," 2588 " please stop forwarding first.\n"); 2589 return; 2590 } 2591 2592 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 2593 GRO_DEFAULT_FLUSH_CYCLES) { 2594 printf("The flushing cycle be in the range" 2595 " of 1 to %u. Revert to the default" 2596 " value %u.\n", 2597 GRO_MAX_FLUSH_CYCLES, 2598 GRO_DEFAULT_FLUSH_CYCLES); 2599 cycles = GRO_DEFAULT_FLUSH_CYCLES; 2600 } 2601 2602 gro_flush_cycles = cycles; 2603 } 2604 2605 void 2606 show_gro(portid_t port_id) 2607 { 2608 struct rte_gro_param *param; 2609 uint32_t max_pkts_num; 2610 2611 param = &gro_ports[port_id].param; 2612 2613 if (!rte_eth_dev_is_valid_port(port_id)) { 2614 printf("Invalid port id %u.\n", port_id); 2615 return; 2616 } 2617 if (gro_ports[port_id].enable) { 2618 printf("GRO type: TCP/IPv4\n"); 2619 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2620 max_pkts_num = param->max_flow_num * 2621 param->max_item_per_flow; 2622 } else 2623 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 2624 printf("Max number of packets to perform GRO: %u\n", 2625 max_pkts_num); 2626 printf("Flushing cycles: %u\n", gro_flush_cycles); 2627 } else 2628 printf("Port %u doesn't enable GRO.\n", port_id); 2629 } 2630 2631 void 2632 setup_gso(const char *mode, portid_t port_id) 2633 { 2634 if (!rte_eth_dev_is_valid_port(port_id)) { 2635 printf("invalid port id %u\n", port_id); 2636 return; 2637 } 2638 if (strcmp(mode, "on") == 0) { 2639 if (test_done == 0) { 2640 printf("before enabling GSO," 2641 " please stop forwarding first\n"); 2642 return; 2643 } 2644 gso_ports[port_id].enable = 1; 2645 } else if (strcmp(mode, "off") == 0) { 2646 if (test_done == 0) { 2647 printf("before disabling GSO," 2648 " please stop forwarding first\n"); 2649 return; 2650 } 2651 gso_ports[port_id].enable = 0; 2652 } 2653 } 2654 2655 char* 2656 list_pkt_forwarding_modes(void) 2657 { 2658 static char fwd_modes[128] = ""; 2659 const char *separator = "|"; 2660 struct fwd_engine *fwd_eng; 2661 unsigned i = 0; 2662 2663 if (strlen (fwd_modes) == 0) { 2664 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2665 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2666 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2667 strncat(fwd_modes, separator, 2668 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2669 } 2670 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2671 } 2672 2673 return fwd_modes; 2674 } 2675 2676 char* 2677 list_pkt_forwarding_retry_modes(void) 2678 { 2679 static char fwd_modes[128] = ""; 2680 const char *separator = "|"; 2681 struct fwd_engine *fwd_eng; 2682 unsigned i = 0; 2683 2684 if (strlen(fwd_modes) == 0) { 2685 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2686 if (fwd_eng == &rx_only_engine) 2687 continue; 2688 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2689 sizeof(fwd_modes) - 2690 strlen(fwd_modes) - 1); 2691 strncat(fwd_modes, separator, 2692 sizeof(fwd_modes) - 2693 strlen(fwd_modes) - 1); 2694 } 2695 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2696 } 2697 2698 return fwd_modes; 2699 } 2700 2701 void 2702 set_pkt_forwarding_mode(const char *fwd_mode_name) 2703 { 2704 struct fwd_engine *fwd_eng; 2705 unsigned i; 2706 2707 i = 0; 2708 while ((fwd_eng = fwd_engines[i]) != NULL) { 2709 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2710 printf("Set %s packet forwarding mode%s\n", 2711 fwd_mode_name, 2712 retry_enabled == 0 ? "" : " with retry"); 2713 cur_fwd_eng = fwd_eng; 2714 return; 2715 } 2716 i++; 2717 } 2718 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2719 } 2720 2721 void 2722 add_rx_dump_callbacks(portid_t portid) 2723 { 2724 struct rte_eth_dev_info dev_info; 2725 uint16_t queue; 2726 2727 if (port_id_is_invalid(portid, ENABLED_WARN)) 2728 return; 2729 2730 rte_eth_dev_info_get(portid, &dev_info); 2731 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 2732 if (!ports[portid].rx_dump_cb[queue]) 2733 ports[portid].rx_dump_cb[queue] = 2734 rte_eth_add_rx_callback(portid, queue, 2735 dump_rx_pkts, NULL); 2736 } 2737 2738 void 2739 add_tx_dump_callbacks(portid_t portid) 2740 { 2741 struct rte_eth_dev_info dev_info; 2742 uint16_t queue; 2743 2744 if (port_id_is_invalid(portid, ENABLED_WARN)) 2745 return; 2746 rte_eth_dev_info_get(portid, &dev_info); 2747 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 2748 if (!ports[portid].tx_dump_cb[queue]) 2749 ports[portid].tx_dump_cb[queue] = 2750 rte_eth_add_tx_callback(portid, queue, 2751 dump_tx_pkts, NULL); 2752 } 2753 2754 void 2755 remove_rx_dump_callbacks(portid_t portid) 2756 { 2757 struct rte_eth_dev_info dev_info; 2758 uint16_t queue; 2759 2760 if (port_id_is_invalid(portid, ENABLED_WARN)) 2761 return; 2762 rte_eth_dev_info_get(portid, &dev_info); 2763 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 2764 if (ports[portid].rx_dump_cb[queue]) { 2765 rte_eth_remove_rx_callback(portid, queue, 2766 ports[portid].rx_dump_cb[queue]); 2767 ports[portid].rx_dump_cb[queue] = NULL; 2768 } 2769 } 2770 2771 void 2772 remove_tx_dump_callbacks(portid_t portid) 2773 { 2774 struct rte_eth_dev_info dev_info; 2775 uint16_t queue; 2776 2777 if (port_id_is_invalid(portid, ENABLED_WARN)) 2778 return; 2779 rte_eth_dev_info_get(portid, &dev_info); 2780 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 2781 if (ports[portid].tx_dump_cb[queue]) { 2782 rte_eth_remove_tx_callback(portid, queue, 2783 ports[portid].tx_dump_cb[queue]); 2784 ports[portid].tx_dump_cb[queue] = NULL; 2785 } 2786 } 2787 2788 void 2789 configure_rxtx_dump_callbacks(uint16_t verbose) 2790 { 2791 portid_t portid; 2792 2793 #ifndef RTE_ETHDEV_RXTX_CALLBACKS 2794 TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); 2795 return; 2796 #endif 2797 2798 RTE_ETH_FOREACH_DEV(portid) 2799 { 2800 if (verbose == 1 || verbose > 2) 2801 add_rx_dump_callbacks(portid); 2802 else 2803 remove_rx_dump_callbacks(portid); 2804 if (verbose >= 2) 2805 add_tx_dump_callbacks(portid); 2806 else 2807 remove_tx_dump_callbacks(portid); 2808 } 2809 } 2810 2811 void 2812 set_verbose_level(uint16_t vb_level) 2813 { 2814 printf("Change verbose level from %u to %u\n", 2815 (unsigned int) verbose_level, (unsigned int) vb_level); 2816 verbose_level = vb_level; 2817 configure_rxtx_dump_callbacks(verbose_level); 2818 } 2819 2820 void 2821 vlan_extend_set(portid_t port_id, int on) 2822 { 2823 int diag; 2824 int vlan_offload; 2825 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2826 2827 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2828 return; 2829 2830 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2831 2832 if (on) { 2833 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2834 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND; 2835 } else { 2836 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2837 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND; 2838 } 2839 2840 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2841 if (diag < 0) 2842 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2843 "diag=%d\n", port_id, on, diag); 2844 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2845 } 2846 2847 void 2848 rx_vlan_strip_set(portid_t port_id, int on) 2849 { 2850 int diag; 2851 int vlan_offload; 2852 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2853 2854 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2855 return; 2856 2857 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2858 2859 if (on) { 2860 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2861 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP; 2862 } else { 2863 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2864 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; 2865 } 2866 2867 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2868 if (diag < 0) 2869 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2870 "diag=%d\n", port_id, on, diag); 2871 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2872 } 2873 2874 void 2875 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2876 { 2877 int diag; 2878 2879 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2880 return; 2881 2882 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2883 if (diag < 0) 2884 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2885 "diag=%d\n", port_id, queue_id, on, diag); 2886 } 2887 2888 void 2889 rx_vlan_filter_set(portid_t port_id, int on) 2890 { 2891 int diag; 2892 int vlan_offload; 2893 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2894 2895 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2896 return; 2897 2898 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2899 2900 if (on) { 2901 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2902 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 2903 } else { 2904 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2905 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER; 2906 } 2907 2908 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2909 if (diag < 0) 2910 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2911 "diag=%d\n", port_id, on, diag); 2912 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2913 } 2914 2915 int 2916 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2917 { 2918 int diag; 2919 2920 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2921 return 1; 2922 if (vlan_id_is_invalid(vlan_id)) 2923 return 1; 2924 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2925 if (diag == 0) 2926 return 0; 2927 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2928 "diag=%d\n", 2929 port_id, vlan_id, on, diag); 2930 return -1; 2931 } 2932 2933 void 2934 rx_vlan_all_filter_set(portid_t port_id, int on) 2935 { 2936 uint16_t vlan_id; 2937 2938 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2939 return; 2940 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2941 if (rx_vft_set(port_id, vlan_id, on)) 2942 break; 2943 } 2944 } 2945 2946 void 2947 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2948 { 2949 int diag; 2950 2951 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2952 return; 2953 2954 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2955 if (diag == 0) 2956 return; 2957 2958 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2959 "diag=%d\n", 2960 port_id, vlan_type, tp_id, diag); 2961 } 2962 2963 void 2964 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2965 { 2966 struct rte_eth_dev_info dev_info; 2967 2968 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2969 return; 2970 if (vlan_id_is_invalid(vlan_id)) 2971 return; 2972 2973 if (ports[port_id].dev_conf.txmode.offloads & 2974 DEV_TX_OFFLOAD_QINQ_INSERT) { 2975 printf("Error, as QinQ has been enabled.\n"); 2976 return; 2977 } 2978 rte_eth_dev_info_get(port_id, &dev_info); 2979 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) { 2980 printf("Error: vlan insert is not supported by port %d\n", 2981 port_id); 2982 return; 2983 } 2984 2985 tx_vlan_reset(port_id); 2986 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT; 2987 ports[port_id].tx_vlan_id = vlan_id; 2988 } 2989 2990 void 2991 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2992 { 2993 struct rte_eth_dev_info dev_info; 2994 2995 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2996 return; 2997 if (vlan_id_is_invalid(vlan_id)) 2998 return; 2999 if (vlan_id_is_invalid(vlan_id_outer)) 3000 return; 3001 3002 rte_eth_dev_info_get(port_id, &dev_info); 3003 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) { 3004 printf("Error: qinq insert not supported by port %d\n", 3005 port_id); 3006 return; 3007 } 3008 3009 tx_vlan_reset(port_id); 3010 ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT | 3011 DEV_TX_OFFLOAD_QINQ_INSERT); 3012 ports[port_id].tx_vlan_id = vlan_id; 3013 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 3014 } 3015 3016 void 3017 tx_vlan_reset(portid_t port_id) 3018 { 3019 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3020 return; 3021 ports[port_id].dev_conf.txmode.offloads &= 3022 ~(DEV_TX_OFFLOAD_VLAN_INSERT | 3023 DEV_TX_OFFLOAD_QINQ_INSERT); 3024 ports[port_id].tx_vlan_id = 0; 3025 ports[port_id].tx_vlan_id_outer = 0; 3026 } 3027 3028 void 3029 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 3030 { 3031 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3032 return; 3033 3034 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 3035 } 3036 3037 void 3038 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 3039 { 3040 uint16_t i; 3041 uint8_t existing_mapping_found = 0; 3042 3043 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3044 return; 3045 3046 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 3047 return; 3048 3049 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 3050 printf("map_value not in required range 0..%d\n", 3051 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 3052 return; 3053 } 3054 3055 if (!is_rx) { /*then tx*/ 3056 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 3057 if ((tx_queue_stats_mappings[i].port_id == port_id) && 3058 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 3059 tx_queue_stats_mappings[i].stats_counter_id = map_value; 3060 existing_mapping_found = 1; 3061 break; 3062 } 3063 } 3064 if (!existing_mapping_found) { /* A new additional mapping... */ 3065 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 3066 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 3067 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 3068 nb_tx_queue_stats_mappings++; 3069 } 3070 } 3071 else { /*rx*/ 3072 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 3073 if ((rx_queue_stats_mappings[i].port_id == port_id) && 3074 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 3075 rx_queue_stats_mappings[i].stats_counter_id = map_value; 3076 existing_mapping_found = 1; 3077 break; 3078 } 3079 } 3080 if (!existing_mapping_found) { /* A new additional mapping... */ 3081 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 3082 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 3083 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 3084 nb_rx_queue_stats_mappings++; 3085 } 3086 } 3087 } 3088 3089 void 3090 set_xstats_hide_zero(uint8_t on_off) 3091 { 3092 xstats_hide_zero = on_off; 3093 } 3094 3095 static inline void 3096 print_fdir_mask(struct rte_eth_fdir_masks *mask) 3097 { 3098 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 3099 3100 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3101 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 3102 " tunnel_id: 0x%08x", 3103 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 3104 rte_be_to_cpu_32(mask->tunnel_id_mask)); 3105 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3106 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 3107 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 3108 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 3109 3110 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 3111 rte_be_to_cpu_16(mask->src_port_mask), 3112 rte_be_to_cpu_16(mask->dst_port_mask)); 3113 3114 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3115 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 3116 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 3117 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 3118 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 3119 3120 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3121 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 3122 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 3123 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 3124 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 3125 } 3126 3127 printf("\n"); 3128 } 3129 3130 static inline void 3131 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3132 { 3133 struct rte_eth_flex_payload_cfg *cfg; 3134 uint32_t i, j; 3135 3136 for (i = 0; i < flex_conf->nb_payloads; i++) { 3137 cfg = &flex_conf->flex_set[i]; 3138 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 3139 printf("\n RAW: "); 3140 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 3141 printf("\n L2_PAYLOAD: "); 3142 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 3143 printf("\n L3_PAYLOAD: "); 3144 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 3145 printf("\n L4_PAYLOAD: "); 3146 else 3147 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 3148 for (j = 0; j < num; j++) 3149 printf(" %-5u", cfg->src_offset[j]); 3150 } 3151 printf("\n"); 3152 } 3153 3154 static char * 3155 flowtype_to_str(uint16_t flow_type) 3156 { 3157 struct flow_type_info { 3158 char str[32]; 3159 uint16_t ftype; 3160 }; 3161 3162 uint8_t i; 3163 static struct flow_type_info flowtype_str_table[] = { 3164 {"raw", RTE_ETH_FLOW_RAW}, 3165 {"ipv4", RTE_ETH_FLOW_IPV4}, 3166 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 3167 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 3168 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 3169 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 3170 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 3171 {"ipv6", RTE_ETH_FLOW_IPV6}, 3172 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 3173 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 3174 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 3175 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 3176 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 3177 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 3178 {"port", RTE_ETH_FLOW_PORT}, 3179 {"vxlan", RTE_ETH_FLOW_VXLAN}, 3180 {"geneve", RTE_ETH_FLOW_GENEVE}, 3181 {"nvgre", RTE_ETH_FLOW_NVGRE}, 3182 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, 3183 }; 3184 3185 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 3186 if (flowtype_str_table[i].ftype == flow_type) 3187 return flowtype_str_table[i].str; 3188 } 3189 3190 return NULL; 3191 } 3192 3193 static inline void 3194 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3195 { 3196 struct rte_eth_fdir_flex_mask *mask; 3197 uint32_t i, j; 3198 char *p; 3199 3200 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 3201 mask = &flex_conf->flex_mask[i]; 3202 p = flowtype_to_str(mask->flow_type); 3203 printf("\n %s:\t", p ? p : "unknown"); 3204 for (j = 0; j < num; j++) 3205 printf(" %02x", mask->mask[j]); 3206 } 3207 printf("\n"); 3208 } 3209 3210 static inline void 3211 print_fdir_flow_type(uint32_t flow_types_mask) 3212 { 3213 int i; 3214 char *p; 3215 3216 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 3217 if (!(flow_types_mask & (1 << i))) 3218 continue; 3219 p = flowtype_to_str(i); 3220 if (p) 3221 printf(" %s", p); 3222 else 3223 printf(" unknown"); 3224 } 3225 printf("\n"); 3226 } 3227 3228 void 3229 fdir_get_infos(portid_t port_id) 3230 { 3231 struct rte_eth_fdir_stats fdir_stat; 3232 struct rte_eth_fdir_info fdir_info; 3233 int ret; 3234 3235 static const char *fdir_stats_border = "########################"; 3236 3237 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3238 return; 3239 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 3240 if (ret < 0) { 3241 printf("\n FDIR is not supported on port %-2d\n", 3242 port_id); 3243 return; 3244 } 3245 3246 memset(&fdir_info, 0, sizeof(fdir_info)); 3247 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3248 RTE_ETH_FILTER_INFO, &fdir_info); 3249 memset(&fdir_stat, 0, sizeof(fdir_stat)); 3250 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3251 RTE_ETH_FILTER_STATS, &fdir_stat); 3252 printf("\n %s FDIR infos for port %-2d %s\n", 3253 fdir_stats_border, port_id, fdir_stats_border); 3254 printf(" MODE: "); 3255 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 3256 printf(" PERFECT\n"); 3257 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 3258 printf(" PERFECT-MAC-VLAN\n"); 3259 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3260 printf(" PERFECT-TUNNEL\n"); 3261 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 3262 printf(" SIGNATURE\n"); 3263 else 3264 printf(" DISABLE\n"); 3265 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 3266 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 3267 printf(" SUPPORTED FLOW TYPE: "); 3268 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 3269 } 3270 printf(" FLEX PAYLOAD INFO:\n"); 3271 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 3272 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 3273 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 3274 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 3275 fdir_info.flex_payload_unit, 3276 fdir_info.max_flex_payload_segment_num, 3277 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 3278 printf(" MASK: "); 3279 print_fdir_mask(&fdir_info.mask); 3280 if (fdir_info.flex_conf.nb_payloads > 0) { 3281 printf(" FLEX PAYLOAD SRC OFFSET:"); 3282 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3283 } 3284 if (fdir_info.flex_conf.nb_flexmasks > 0) { 3285 printf(" FLEX MASK CFG:"); 3286 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3287 } 3288 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 3289 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 3290 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 3291 fdir_info.guarant_spc, fdir_info.best_spc); 3292 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 3293 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 3294 " add: %-10"PRIu64" remove: %"PRIu64"\n" 3295 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 3296 fdir_stat.collision, fdir_stat.free, 3297 fdir_stat.maxhash, fdir_stat.maxlen, 3298 fdir_stat.add, fdir_stat.remove, 3299 fdir_stat.f_add, fdir_stat.f_remove); 3300 printf(" %s############################%s\n", 3301 fdir_stats_border, fdir_stats_border); 3302 } 3303 3304 void 3305 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 3306 { 3307 struct rte_port *port; 3308 struct rte_eth_fdir_flex_conf *flex_conf; 3309 int i, idx = 0; 3310 3311 port = &ports[port_id]; 3312 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3313 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3314 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3315 idx = i; 3316 break; 3317 } 3318 } 3319 if (i >= RTE_ETH_FLOW_MAX) { 3320 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3321 idx = flex_conf->nb_flexmasks; 3322 flex_conf->nb_flexmasks++; 3323 } else { 3324 printf("The flex mask table is full. Can not set flex" 3325 " mask for flow_type(%u).", cfg->flow_type); 3326 return; 3327 } 3328 } 3329 rte_memcpy(&flex_conf->flex_mask[idx], 3330 cfg, 3331 sizeof(struct rte_eth_fdir_flex_mask)); 3332 } 3333 3334 void 3335 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3336 { 3337 struct rte_port *port; 3338 struct rte_eth_fdir_flex_conf *flex_conf; 3339 int i, idx = 0; 3340 3341 port = &ports[port_id]; 3342 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3343 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3344 if (cfg->type == flex_conf->flex_set[i].type) { 3345 idx = i; 3346 break; 3347 } 3348 } 3349 if (i >= RTE_ETH_PAYLOAD_MAX) { 3350 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3351 idx = flex_conf->nb_payloads; 3352 flex_conf->nb_payloads++; 3353 } else { 3354 printf("The flex payload table is full. Can not set" 3355 " flex payload for type(%u).", cfg->type); 3356 return; 3357 } 3358 } 3359 rte_memcpy(&flex_conf->flex_set[idx], 3360 cfg, 3361 sizeof(struct rte_eth_flex_payload_cfg)); 3362 3363 } 3364 3365 void 3366 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3367 { 3368 #ifdef RTE_LIBRTE_IXGBE_PMD 3369 int diag; 3370 3371 if (is_rx) 3372 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3373 else 3374 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3375 3376 if (diag == 0) 3377 return; 3378 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3379 is_rx ? "rx" : "tx", port_id, diag); 3380 return; 3381 #endif 3382 printf("VF %s setting not supported for port %d\n", 3383 is_rx ? "Rx" : "Tx", port_id); 3384 RTE_SET_USED(vf); 3385 RTE_SET_USED(on); 3386 } 3387 3388 int 3389 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3390 { 3391 int diag; 3392 struct rte_eth_link link; 3393 3394 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3395 return 1; 3396 rte_eth_link_get_nowait(port_id, &link); 3397 if (rate > link.link_speed) { 3398 printf("Invalid rate value:%u bigger than link speed: %u\n", 3399 rate, link.link_speed); 3400 return 1; 3401 } 3402 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3403 if (diag == 0) 3404 return diag; 3405 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3406 port_id, diag); 3407 return diag; 3408 } 3409 3410 int 3411 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3412 { 3413 int diag = -ENOTSUP; 3414 3415 RTE_SET_USED(vf); 3416 RTE_SET_USED(rate); 3417 RTE_SET_USED(q_msk); 3418 3419 #ifdef RTE_LIBRTE_IXGBE_PMD 3420 if (diag == -ENOTSUP) 3421 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3422 q_msk); 3423 #endif 3424 #ifdef RTE_LIBRTE_BNXT_PMD 3425 if (diag == -ENOTSUP) 3426 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3427 #endif 3428 if (diag == 0) 3429 return diag; 3430 3431 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3432 port_id, diag); 3433 return diag; 3434 } 3435 3436 /* 3437 * Functions to manage the set of filtered Multicast MAC addresses. 3438 * 3439 * A pool of filtered multicast MAC addresses is associated with each port. 3440 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3441 * The address of the pool and the number of valid multicast MAC addresses 3442 * recorded in the pool are stored in the fields "mc_addr_pool" and 3443 * "mc_addr_nb" of the "rte_port" data structure. 3444 * 3445 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3446 * to be supplied a contiguous array of multicast MAC addresses. 3447 * To comply with this constraint, the set of multicast addresses recorded 3448 * into the pool are systematically compacted at the beginning of the pool. 3449 * Hence, when a multicast address is removed from the pool, all following 3450 * addresses, if any, are copied back to keep the set contiguous. 3451 */ 3452 #define MCAST_POOL_INC 32 3453 3454 static int 3455 mcast_addr_pool_extend(struct rte_port *port) 3456 { 3457 struct rte_ether_addr *mc_pool; 3458 size_t mc_pool_size; 3459 3460 /* 3461 * If a free entry is available at the end of the pool, just 3462 * increment the number of recorded multicast addresses. 3463 */ 3464 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3465 port->mc_addr_nb++; 3466 return 0; 3467 } 3468 3469 /* 3470 * [re]allocate a pool with MCAST_POOL_INC more entries. 3471 * The previous test guarantees that port->mc_addr_nb is a multiple 3472 * of MCAST_POOL_INC. 3473 */ 3474 mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + 3475 MCAST_POOL_INC); 3476 mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, 3477 mc_pool_size); 3478 if (mc_pool == NULL) { 3479 printf("allocation of pool of %u multicast addresses failed\n", 3480 port->mc_addr_nb + MCAST_POOL_INC); 3481 return -ENOMEM; 3482 } 3483 3484 port->mc_addr_pool = mc_pool; 3485 port->mc_addr_nb++; 3486 return 0; 3487 3488 } 3489 3490 static void 3491 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3492 { 3493 port->mc_addr_nb--; 3494 if (addr_idx == port->mc_addr_nb) { 3495 /* No need to recompact the set of multicast addressses. */ 3496 if (port->mc_addr_nb == 0) { 3497 /* free the pool of multicast addresses. */ 3498 free(port->mc_addr_pool); 3499 port->mc_addr_pool = NULL; 3500 } 3501 return; 3502 } 3503 memmove(&port->mc_addr_pool[addr_idx], 3504 &port->mc_addr_pool[addr_idx + 1], 3505 sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); 3506 } 3507 3508 static void 3509 eth_port_multicast_addr_list_set(portid_t port_id) 3510 { 3511 struct rte_port *port; 3512 int diag; 3513 3514 port = &ports[port_id]; 3515 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3516 port->mc_addr_nb); 3517 if (diag == 0) 3518 return; 3519 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3520 port->mc_addr_nb, port_id, -diag); 3521 } 3522 3523 void 3524 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) 3525 { 3526 struct rte_port *port; 3527 uint32_t i; 3528 3529 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3530 return; 3531 3532 port = &ports[port_id]; 3533 3534 /* 3535 * Check that the added multicast MAC address is not already recorded 3536 * in the pool of multicast addresses. 3537 */ 3538 for (i = 0; i < port->mc_addr_nb; i++) { 3539 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3540 printf("multicast address already filtered by port\n"); 3541 return; 3542 } 3543 } 3544 3545 if (mcast_addr_pool_extend(port) != 0) 3546 return; 3547 rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3548 eth_port_multicast_addr_list_set(port_id); 3549 } 3550 3551 void 3552 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) 3553 { 3554 struct rte_port *port; 3555 uint32_t i; 3556 3557 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3558 return; 3559 3560 port = &ports[port_id]; 3561 3562 /* 3563 * Search the pool of multicast MAC addresses for the removed address. 3564 */ 3565 for (i = 0; i < port->mc_addr_nb; i++) { 3566 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3567 break; 3568 } 3569 if (i == port->mc_addr_nb) { 3570 printf("multicast address not filtered by port %d\n", port_id); 3571 return; 3572 } 3573 3574 mcast_addr_pool_remove(port, i); 3575 eth_port_multicast_addr_list_set(port_id); 3576 } 3577 3578 void 3579 port_dcb_info_display(portid_t port_id) 3580 { 3581 struct rte_eth_dcb_info dcb_info; 3582 uint16_t i; 3583 int ret; 3584 static const char *border = "================"; 3585 3586 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3587 return; 3588 3589 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3590 if (ret) { 3591 printf("\n Failed to get dcb infos on port %-2d\n", 3592 port_id); 3593 return; 3594 } 3595 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3596 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3597 printf("\n TC : "); 3598 for (i = 0; i < dcb_info.nb_tcs; i++) 3599 printf("\t%4d", i); 3600 printf("\n Priority : "); 3601 for (i = 0; i < dcb_info.nb_tcs; i++) 3602 printf("\t%4d", dcb_info.prio_tc[i]); 3603 printf("\n BW percent :"); 3604 for (i = 0; i < dcb_info.nb_tcs; i++) 3605 printf("\t%4d%%", dcb_info.tc_bws[i]); 3606 printf("\n RXQ base : "); 3607 for (i = 0; i < dcb_info.nb_tcs; i++) 3608 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3609 printf("\n RXQ number :"); 3610 for (i = 0; i < dcb_info.nb_tcs; i++) 3611 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3612 printf("\n TXQ base : "); 3613 for (i = 0; i < dcb_info.nb_tcs; i++) 3614 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3615 printf("\n TXQ number :"); 3616 for (i = 0; i < dcb_info.nb_tcs; i++) 3617 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3618 printf("\n"); 3619 } 3620 3621 uint8_t * 3622 open_file(const char *file_path, uint32_t *size) 3623 { 3624 int fd = open(file_path, O_RDONLY); 3625 off_t pkg_size; 3626 uint8_t *buf = NULL; 3627 int ret = 0; 3628 struct stat st_buf; 3629 3630 if (size) 3631 *size = 0; 3632 3633 if (fd == -1) { 3634 printf("%s: Failed to open %s\n", __func__, file_path); 3635 return buf; 3636 } 3637 3638 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 3639 close(fd); 3640 printf("%s: File operations failed\n", __func__); 3641 return buf; 3642 } 3643 3644 pkg_size = st_buf.st_size; 3645 if (pkg_size < 0) { 3646 close(fd); 3647 printf("%s: File operations failed\n", __func__); 3648 return buf; 3649 } 3650 3651 buf = (uint8_t *)malloc(pkg_size); 3652 if (!buf) { 3653 close(fd); 3654 printf("%s: Failed to malloc memory\n", __func__); 3655 return buf; 3656 } 3657 3658 ret = read(fd, buf, pkg_size); 3659 if (ret < 0) { 3660 close(fd); 3661 printf("%s: File read operation failed\n", __func__); 3662 close_file(buf); 3663 return NULL; 3664 } 3665 3666 if (size) 3667 *size = pkg_size; 3668 3669 close(fd); 3670 3671 return buf; 3672 } 3673 3674 int 3675 save_file(const char *file_path, uint8_t *buf, uint32_t size) 3676 { 3677 FILE *fh = fopen(file_path, "wb"); 3678 3679 if (fh == NULL) { 3680 printf("%s: Failed to open %s\n", __func__, file_path); 3681 return -1; 3682 } 3683 3684 if (fwrite(buf, 1, size, fh) != size) { 3685 fclose(fh); 3686 printf("%s: File write operation failed\n", __func__); 3687 return -1; 3688 } 3689 3690 fclose(fh); 3691 3692 return 0; 3693 } 3694 3695 int 3696 close_file(uint8_t *buf) 3697 { 3698 if (buf) { 3699 free((void *)buf); 3700 return 0; 3701 } 3702 3703 return -1; 3704 } 3705 3706 void 3707 port_queue_region_info_display(portid_t port_id, void *buf) 3708 { 3709 #ifdef RTE_LIBRTE_I40E_PMD 3710 uint16_t i, j; 3711 struct rte_pmd_i40e_queue_regions *info = 3712 (struct rte_pmd_i40e_queue_regions *)buf; 3713 static const char *queue_region_info_stats_border = "-------"; 3714 3715 if (!info->queue_region_number) 3716 printf("there is no region has been set before"); 3717 3718 printf("\n %s All queue region info for port=%2d %s", 3719 queue_region_info_stats_border, port_id, 3720 queue_region_info_stats_border); 3721 printf("\n queue_region_number: %-14u \n", 3722 info->queue_region_number); 3723 3724 for (i = 0; i < info->queue_region_number; i++) { 3725 printf("\n region_id: %-14u queue_number: %-14u " 3726 "queue_start_index: %-14u \n", 3727 info->region[i].region_id, 3728 info->region[i].queue_num, 3729 info->region[i].queue_start_index); 3730 3731 printf(" user_priority_num is %-14u :", 3732 info->region[i].user_priority_num); 3733 for (j = 0; j < info->region[i].user_priority_num; j++) 3734 printf(" %-14u ", info->region[i].user_priority[j]); 3735 3736 printf("\n flowtype_num is %-14u :", 3737 info->region[i].flowtype_num); 3738 for (j = 0; j < info->region[i].flowtype_num; j++) 3739 printf(" %-14u ", info->region[i].hw_flowtype[j]); 3740 } 3741 #else 3742 RTE_SET_USED(port_id); 3743 RTE_SET_USED(buf); 3744 #endif 3745 3746 printf("\n\n"); 3747 } 3748