1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * Copyright 2013-2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <errno.h> 37 #include <stdio.h> 38 #include <string.h> 39 #include <stdint.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 44 #include <rte_common.h> 45 #include <rte_byteorder.h> 46 #include <rte_debug.h> 47 #include <rte_log.h> 48 #include <rte_memory.h> 49 #include <rte_memcpy.h> 50 #include <rte_memzone.h> 51 #include <rte_launch.h> 52 #include <rte_eal.h> 53 #include <rte_per_lcore.h> 54 #include <rte_lcore.h> 55 #include <rte_atomic.h> 56 #include <rte_branch_prediction.h> 57 #include <rte_mempool.h> 58 #include <rte_mbuf.h> 59 #include <rte_interrupts.h> 60 #include <rte_pci.h> 61 #include <rte_ether.h> 62 #include <rte_ethdev.h> 63 #include <rte_string_fns.h> 64 #include <rte_cycles.h> 65 #include <rte_flow.h> 66 #include <rte_errno.h> 67 #ifdef RTE_LIBRTE_IXGBE_PMD 68 #include <rte_pmd_ixgbe.h> 69 #endif 70 #ifdef RTE_LIBRTE_BNXT_PMD 71 #include <rte_pmd_bnxt.h> 72 #endif 73 #include <rte_gro.h> 74 75 #include "testpmd.h" 76 77 static char *flowtype_to_str(uint16_t flow_type); 78 79 static const struct { 80 enum tx_pkt_split split; 81 const char *name; 82 } tx_split_name[] = { 83 { 84 .split = TX_PKT_SPLIT_OFF, 85 .name = "off", 86 }, 87 { 88 .split = TX_PKT_SPLIT_ON, 89 .name = "on", 90 }, 91 { 92 .split = TX_PKT_SPLIT_RND, 93 .name = "rand", 94 }, 95 }; 96 97 struct rss_type_info { 98 char str[32]; 99 uint64_t rss_type; 100 }; 101 102 static const struct rss_type_info rss_type_table[] = { 103 { "ipv4", ETH_RSS_IPV4 }, 104 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 105 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 106 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 107 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 108 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 109 { "ipv6", ETH_RSS_IPV6 }, 110 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 111 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 112 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 113 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 114 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 115 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 116 { "ipv6-ex", ETH_RSS_IPV6_EX }, 117 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 118 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 119 { "port", ETH_RSS_PORT }, 120 { "vxlan", ETH_RSS_VXLAN }, 121 { "geneve", ETH_RSS_GENEVE }, 122 { "nvgre", ETH_RSS_NVGRE }, 123 124 }; 125 126 static void 127 print_ethaddr(const char *name, struct ether_addr *eth_addr) 128 { 129 char buf[ETHER_ADDR_FMT_SIZE]; 130 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 131 printf("%s%s", name, buf); 132 } 133 134 void 135 nic_stats_display(portid_t port_id) 136 { 137 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 138 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 139 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 140 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 141 uint64_t mpps_rx, mpps_tx; 142 struct rte_eth_stats stats; 143 struct rte_port *port = &ports[port_id]; 144 uint8_t i; 145 portid_t pid; 146 147 static const char *nic_stats_border = "########################"; 148 149 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 150 printf("Valid port range is [0"); 151 RTE_ETH_FOREACH_DEV(pid) 152 printf(", %d", pid); 153 printf("]\n"); 154 return; 155 } 156 rte_eth_stats_get(port_id, &stats); 157 printf("\n %s NIC statistics for port %-2d %s\n", 158 nic_stats_border, port_id, nic_stats_border); 159 160 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 161 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 162 "%-"PRIu64"\n", 163 stats.ipackets, stats.imissed, stats.ibytes); 164 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 165 printf(" RX-nombuf: %-10"PRIu64"\n", 166 stats.rx_nombuf); 167 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 168 "%-"PRIu64"\n", 169 stats.opackets, stats.oerrors, stats.obytes); 170 } 171 else { 172 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 173 " RX-bytes: %10"PRIu64"\n", 174 stats.ipackets, stats.ierrors, stats.ibytes); 175 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 176 printf(" RX-nombuf: %10"PRIu64"\n", 177 stats.rx_nombuf); 178 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 179 " TX-bytes: %10"PRIu64"\n", 180 stats.opackets, stats.oerrors, stats.obytes); 181 } 182 183 if (port->rx_queue_stats_mapping_enabled) { 184 printf("\n"); 185 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 186 printf(" Stats reg %2d RX-packets: %10"PRIu64 187 " RX-errors: %10"PRIu64 188 " RX-bytes: %10"PRIu64"\n", 189 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 190 } 191 } 192 if (port->tx_queue_stats_mapping_enabled) { 193 printf("\n"); 194 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 195 printf(" Stats reg %2d TX-packets: %10"PRIu64 196 " TX-bytes: %10"PRIu64"\n", 197 i, stats.q_opackets[i], stats.q_obytes[i]); 198 } 199 } 200 201 diff_cycles = prev_cycles[port_id]; 202 prev_cycles[port_id] = rte_rdtsc(); 203 if (diff_cycles > 0) 204 diff_cycles = prev_cycles[port_id] - diff_cycles; 205 206 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 207 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 208 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 209 (stats.opackets - prev_pkts_tx[port_id]) : 0; 210 prev_pkts_rx[port_id] = stats.ipackets; 211 prev_pkts_tx[port_id] = stats.opackets; 212 mpps_rx = diff_cycles > 0 ? 213 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 214 mpps_tx = diff_cycles > 0 ? 215 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 216 printf("\n Throughput (since last show)\n"); 217 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 218 mpps_rx, mpps_tx); 219 220 printf(" %s############################%s\n", 221 nic_stats_border, nic_stats_border); 222 } 223 224 void 225 nic_stats_clear(portid_t port_id) 226 { 227 portid_t pid; 228 229 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 230 printf("Valid port range is [0"); 231 RTE_ETH_FOREACH_DEV(pid) 232 printf(", %d", pid); 233 printf("]\n"); 234 return; 235 } 236 rte_eth_stats_reset(port_id); 237 printf("\n NIC statistics for port %d cleared\n", port_id); 238 } 239 240 void 241 nic_xstats_display(portid_t port_id) 242 { 243 struct rte_eth_xstat *xstats; 244 int cnt_xstats, idx_xstat; 245 struct rte_eth_xstat_name *xstats_names; 246 247 printf("###### NIC extended statistics for port %-2d\n", port_id); 248 if (!rte_eth_dev_is_valid_port(port_id)) { 249 printf("Error: Invalid port number %i\n", port_id); 250 return; 251 } 252 253 /* Get count */ 254 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 255 if (cnt_xstats < 0) { 256 printf("Error: Cannot get count of xstats\n"); 257 return; 258 } 259 260 /* Get id-name lookup table */ 261 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 262 if (xstats_names == NULL) { 263 printf("Cannot allocate memory for xstats lookup\n"); 264 return; 265 } 266 if (cnt_xstats != rte_eth_xstats_get_names( 267 port_id, xstats_names, cnt_xstats)) { 268 printf("Error: Cannot get xstats lookup\n"); 269 free(xstats_names); 270 return; 271 } 272 273 /* Get stats themselves */ 274 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 275 if (xstats == NULL) { 276 printf("Cannot allocate memory for xstats\n"); 277 free(xstats_names); 278 return; 279 } 280 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 281 printf("Error: Unable to get xstats\n"); 282 free(xstats_names); 283 free(xstats); 284 return; 285 } 286 287 /* Display xstats */ 288 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) 289 printf("%s: %"PRIu64"\n", 290 xstats_names[idx_xstat].name, 291 xstats[idx_xstat].value); 292 free(xstats_names); 293 free(xstats); 294 } 295 296 void 297 nic_xstats_clear(portid_t port_id) 298 { 299 rte_eth_xstats_reset(port_id); 300 } 301 302 void 303 nic_stats_mapping_display(portid_t port_id) 304 { 305 struct rte_port *port = &ports[port_id]; 306 uint16_t i; 307 portid_t pid; 308 309 static const char *nic_stats_mapping_border = "########################"; 310 311 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 312 printf("Valid port range is [0"); 313 RTE_ETH_FOREACH_DEV(pid) 314 printf(", %d", pid); 315 printf("]\n"); 316 return; 317 } 318 319 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 320 printf("Port id %d - either does not support queue statistic mapping or" 321 " no queue statistic mapping set\n", port_id); 322 return; 323 } 324 325 printf("\n %s NIC statistics mapping for port %-2d %s\n", 326 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 327 328 if (port->rx_queue_stats_mapping_enabled) { 329 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 330 if (rx_queue_stats_mappings[i].port_id == port_id) { 331 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 332 rx_queue_stats_mappings[i].queue_id, 333 rx_queue_stats_mappings[i].stats_counter_id); 334 } 335 } 336 printf("\n"); 337 } 338 339 340 if (port->tx_queue_stats_mapping_enabled) { 341 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 342 if (tx_queue_stats_mappings[i].port_id == port_id) { 343 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 344 tx_queue_stats_mappings[i].queue_id, 345 tx_queue_stats_mappings[i].stats_counter_id); 346 } 347 } 348 } 349 350 printf(" %s####################################%s\n", 351 nic_stats_mapping_border, nic_stats_mapping_border); 352 } 353 354 void 355 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 356 { 357 struct rte_eth_rxq_info qinfo; 358 int32_t rc; 359 static const char *info_border = "*********************"; 360 361 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 362 if (rc != 0) { 363 printf("Failed to retrieve information for port: %u, " 364 "RX queue: %hu\nerror desc: %s(%d)\n", 365 port_id, queue_id, strerror(-rc), rc); 366 return; 367 } 368 369 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 370 info_border, port_id, queue_id, info_border); 371 372 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 373 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 374 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 375 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 376 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 377 printf("\nRX drop packets: %s", 378 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 379 printf("\nRX deferred start: %s", 380 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 381 printf("\nRX scattered packets: %s", 382 (qinfo.scattered_rx != 0) ? "on" : "off"); 383 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 384 printf("\n"); 385 } 386 387 void 388 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 389 { 390 struct rte_eth_txq_info qinfo; 391 int32_t rc; 392 static const char *info_border = "*********************"; 393 394 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 395 if (rc != 0) { 396 printf("Failed to retrieve information for port: %u, " 397 "TX queue: %hu\nerror desc: %s(%d)\n", 398 port_id, queue_id, strerror(-rc), rc); 399 return; 400 } 401 402 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 403 info_border, port_id, queue_id, info_border); 404 405 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 406 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 407 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 408 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 409 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 410 printf("\nTX flags: %#x", qinfo.conf.txq_flags); 411 printf("\nTX deferred start: %s", 412 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 413 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 414 printf("\n"); 415 } 416 417 void 418 port_infos_display(portid_t port_id) 419 { 420 struct rte_port *port; 421 struct ether_addr mac_addr; 422 struct rte_eth_link link; 423 struct rte_eth_dev_info dev_info; 424 int vlan_offload; 425 struct rte_mempool * mp; 426 static const char *info_border = "*********************"; 427 portid_t pid; 428 uint16_t mtu; 429 430 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 431 printf("Valid port range is [0"); 432 RTE_ETH_FOREACH_DEV(pid) 433 printf(", %d", pid); 434 printf("]\n"); 435 return; 436 } 437 port = &ports[port_id]; 438 rte_eth_link_get_nowait(port_id, &link); 439 memset(&dev_info, 0, sizeof(dev_info)); 440 rte_eth_dev_info_get(port_id, &dev_info); 441 printf("\n%s Infos for port %-2d %s\n", 442 info_border, port_id, info_border); 443 rte_eth_macaddr_get(port_id, &mac_addr); 444 print_ethaddr("MAC address: ", &mac_addr); 445 printf("\nDriver name: %s", dev_info.driver_name); 446 printf("\nConnect to socket: %u", port->socket_id); 447 448 if (port_numa[port_id] != NUMA_NO_CONFIG) { 449 mp = mbuf_pool_find(port_numa[port_id]); 450 if (mp) 451 printf("\nmemory allocation on the socket: %d", 452 port_numa[port_id]); 453 } else 454 printf("\nmemory allocation on the socket: %u",port->socket_id); 455 456 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 457 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 458 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 459 ("full-duplex") : ("half-duplex")); 460 461 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 462 printf("MTU: %u\n", mtu); 463 464 printf("Promiscuous mode: %s\n", 465 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 466 printf("Allmulticast mode: %s\n", 467 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 468 printf("Maximum number of MAC addresses: %u\n", 469 (unsigned int)(port->dev_info.max_mac_addrs)); 470 printf("Maximum number of MAC addresses of hash filtering: %u\n", 471 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 472 473 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 474 if (vlan_offload >= 0){ 475 printf("VLAN offload: \n"); 476 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 477 printf(" strip on \n"); 478 else 479 printf(" strip off \n"); 480 481 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 482 printf(" filter on \n"); 483 else 484 printf(" filter off \n"); 485 486 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 487 printf(" qinq(extend) on \n"); 488 else 489 printf(" qinq(extend) off \n"); 490 } 491 492 if (dev_info.hash_key_size > 0) 493 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 494 if (dev_info.reta_size > 0) 495 printf("Redirection table size: %u\n", dev_info.reta_size); 496 if (!dev_info.flow_type_rss_offloads) 497 printf("No flow type is supported.\n"); 498 else { 499 uint16_t i; 500 char *p; 501 502 printf("Supported flow types:\n"); 503 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 504 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 505 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 506 continue; 507 p = flowtype_to_str(i); 508 if (p) 509 printf(" %s\n", p); 510 else 511 printf(" user defined %d\n", i); 512 } 513 } 514 515 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 516 printf("Max possible number of RXDs per queue: %hu\n", 517 dev_info.rx_desc_lim.nb_max); 518 printf("Min possible number of RXDs per queue: %hu\n", 519 dev_info.rx_desc_lim.nb_min); 520 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 521 522 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 523 printf("Max possible number of TXDs per queue: %hu\n", 524 dev_info.tx_desc_lim.nb_max); 525 printf("Min possible number of TXDs per queue: %hu\n", 526 dev_info.tx_desc_lim.nb_min); 527 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 528 } 529 530 void 531 port_offload_cap_display(portid_t port_id) 532 { 533 struct rte_eth_dev *dev; 534 struct rte_eth_dev_info dev_info; 535 static const char *info_border = "************"; 536 537 if (port_id_is_invalid(port_id, ENABLED_WARN)) 538 return; 539 540 dev = &rte_eth_devices[port_id]; 541 rte_eth_dev_info_get(port_id, &dev_info); 542 543 printf("\n%s Port %d supported offload features: %s\n", 544 info_border, port_id, info_border); 545 546 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 547 printf("VLAN stripped: "); 548 if (dev->data->dev_conf.rxmode.hw_vlan_strip) 549 printf("on\n"); 550 else 551 printf("off\n"); 552 } 553 554 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 555 printf("Double VLANs stripped: "); 556 if (dev->data->dev_conf.rxmode.hw_vlan_extend) 557 printf("on\n"); 558 else 559 printf("off\n"); 560 } 561 562 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 563 printf("RX IPv4 checksum: "); 564 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 565 printf("on\n"); 566 else 567 printf("off\n"); 568 } 569 570 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 571 printf("RX UDP checksum: "); 572 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 573 printf("on\n"); 574 else 575 printf("off\n"); 576 } 577 578 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 579 printf("RX TCP checksum: "); 580 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 581 printf("on\n"); 582 else 583 printf("off\n"); 584 } 585 586 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 587 printf("RX Outer IPv4 checksum: on"); 588 589 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 590 printf("Large receive offload: "); 591 if (dev->data->dev_conf.rxmode.enable_lro) 592 printf("on\n"); 593 else 594 printf("off\n"); 595 } 596 597 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 598 printf("VLAN insert: "); 599 if (ports[port_id].tx_ol_flags & 600 TESTPMD_TX_OFFLOAD_INSERT_VLAN) 601 printf("on\n"); 602 else 603 printf("off\n"); 604 } 605 606 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 607 printf("Double VLANs insert: "); 608 if (ports[port_id].tx_ol_flags & 609 TESTPMD_TX_OFFLOAD_INSERT_QINQ) 610 printf("on\n"); 611 else 612 printf("off\n"); 613 } 614 615 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 616 printf("TX IPv4 checksum: "); 617 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 618 printf("on\n"); 619 else 620 printf("off\n"); 621 } 622 623 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 624 printf("TX UDP checksum: "); 625 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) 626 printf("on\n"); 627 else 628 printf("off\n"); 629 } 630 631 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 632 printf("TX TCP checksum: "); 633 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) 634 printf("on\n"); 635 else 636 printf("off\n"); 637 } 638 639 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 640 printf("TX SCTP checksum: "); 641 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) 642 printf("on\n"); 643 else 644 printf("off\n"); 645 } 646 647 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 648 printf("TX Outer IPv4 checksum: "); 649 if (ports[port_id].tx_ol_flags & 650 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 651 printf("on\n"); 652 else 653 printf("off\n"); 654 } 655 656 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 657 printf("TX TCP segmentation: "); 658 if (ports[port_id].tso_segsz != 0) 659 printf("on\n"); 660 else 661 printf("off\n"); 662 } 663 664 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 665 printf("TX UDP segmentation: "); 666 if (ports[port_id].tso_segsz != 0) 667 printf("on\n"); 668 else 669 printf("off\n"); 670 } 671 672 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 673 printf("TSO for VXLAN tunnel packet: "); 674 if (ports[port_id].tunnel_tso_segsz) 675 printf("on\n"); 676 else 677 printf("off\n"); 678 } 679 680 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 681 printf("TSO for GRE tunnel packet: "); 682 if (ports[port_id].tunnel_tso_segsz) 683 printf("on\n"); 684 else 685 printf("off\n"); 686 } 687 688 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 689 printf("TSO for IPIP tunnel packet: "); 690 if (ports[port_id].tunnel_tso_segsz) 691 printf("on\n"); 692 else 693 printf("off\n"); 694 } 695 696 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 697 printf("TSO for GENEVE tunnel packet: "); 698 if (ports[port_id].tunnel_tso_segsz) 699 printf("on\n"); 700 else 701 printf("off\n"); 702 } 703 704 } 705 706 int 707 port_id_is_invalid(portid_t port_id, enum print_warning warning) 708 { 709 if (port_id == (portid_t)RTE_PORT_ALL) 710 return 0; 711 712 if (rte_eth_dev_is_valid_port(port_id)) 713 return 0; 714 715 if (warning == ENABLED_WARN) 716 printf("Invalid port %d\n", port_id); 717 718 return 1; 719 } 720 721 static int 722 vlan_id_is_invalid(uint16_t vlan_id) 723 { 724 if (vlan_id < 4096) 725 return 0; 726 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 727 return 1; 728 } 729 730 static int 731 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 732 { 733 uint64_t pci_len; 734 735 if (reg_off & 0x3) { 736 printf("Port register offset 0x%X not aligned on a 4-byte " 737 "boundary\n", 738 (unsigned)reg_off); 739 return 1; 740 } 741 pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; 742 if (reg_off >= pci_len) { 743 printf("Port %d: register offset %u (0x%X) out of port PCI " 744 "resource (length=%"PRIu64")\n", 745 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 746 return 1; 747 } 748 return 0; 749 } 750 751 static int 752 reg_bit_pos_is_invalid(uint8_t bit_pos) 753 { 754 if (bit_pos <= 31) 755 return 0; 756 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 757 return 1; 758 } 759 760 #define display_port_and_reg_off(port_id, reg_off) \ 761 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 762 763 static inline void 764 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 765 { 766 display_port_and_reg_off(port_id, (unsigned)reg_off); 767 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 768 } 769 770 void 771 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 772 { 773 uint32_t reg_v; 774 775 776 if (port_id_is_invalid(port_id, ENABLED_WARN)) 777 return; 778 if (port_reg_off_is_invalid(port_id, reg_off)) 779 return; 780 if (reg_bit_pos_is_invalid(bit_x)) 781 return; 782 reg_v = port_id_pci_reg_read(port_id, reg_off); 783 display_port_and_reg_off(port_id, (unsigned)reg_off); 784 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 785 } 786 787 void 788 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 789 uint8_t bit1_pos, uint8_t bit2_pos) 790 { 791 uint32_t reg_v; 792 uint8_t l_bit; 793 uint8_t h_bit; 794 795 if (port_id_is_invalid(port_id, ENABLED_WARN)) 796 return; 797 if (port_reg_off_is_invalid(port_id, reg_off)) 798 return; 799 if (reg_bit_pos_is_invalid(bit1_pos)) 800 return; 801 if (reg_bit_pos_is_invalid(bit2_pos)) 802 return; 803 if (bit1_pos > bit2_pos) 804 l_bit = bit2_pos, h_bit = bit1_pos; 805 else 806 l_bit = bit1_pos, h_bit = bit2_pos; 807 808 reg_v = port_id_pci_reg_read(port_id, reg_off); 809 reg_v >>= l_bit; 810 if (h_bit < 31) 811 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 812 display_port_and_reg_off(port_id, (unsigned)reg_off); 813 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 814 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 815 } 816 817 void 818 port_reg_display(portid_t port_id, uint32_t reg_off) 819 { 820 uint32_t reg_v; 821 822 if (port_id_is_invalid(port_id, ENABLED_WARN)) 823 return; 824 if (port_reg_off_is_invalid(port_id, reg_off)) 825 return; 826 reg_v = port_id_pci_reg_read(port_id, reg_off); 827 display_port_reg_value(port_id, reg_off, reg_v); 828 } 829 830 void 831 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 832 uint8_t bit_v) 833 { 834 uint32_t reg_v; 835 836 if (port_id_is_invalid(port_id, ENABLED_WARN)) 837 return; 838 if (port_reg_off_is_invalid(port_id, reg_off)) 839 return; 840 if (reg_bit_pos_is_invalid(bit_pos)) 841 return; 842 if (bit_v > 1) { 843 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 844 return; 845 } 846 reg_v = port_id_pci_reg_read(port_id, reg_off); 847 if (bit_v == 0) 848 reg_v &= ~(1 << bit_pos); 849 else 850 reg_v |= (1 << bit_pos); 851 port_id_pci_reg_write(port_id, reg_off, reg_v); 852 display_port_reg_value(port_id, reg_off, reg_v); 853 } 854 855 void 856 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 857 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 858 { 859 uint32_t max_v; 860 uint32_t reg_v; 861 uint8_t l_bit; 862 uint8_t h_bit; 863 864 if (port_id_is_invalid(port_id, ENABLED_WARN)) 865 return; 866 if (port_reg_off_is_invalid(port_id, reg_off)) 867 return; 868 if (reg_bit_pos_is_invalid(bit1_pos)) 869 return; 870 if (reg_bit_pos_is_invalid(bit2_pos)) 871 return; 872 if (bit1_pos > bit2_pos) 873 l_bit = bit2_pos, h_bit = bit1_pos; 874 else 875 l_bit = bit1_pos, h_bit = bit2_pos; 876 877 if ((h_bit - l_bit) < 31) 878 max_v = (1 << (h_bit - l_bit + 1)) - 1; 879 else 880 max_v = 0xFFFFFFFF; 881 882 if (value > max_v) { 883 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 884 (unsigned)value, (unsigned)value, 885 (unsigned)max_v, (unsigned)max_v); 886 return; 887 } 888 reg_v = port_id_pci_reg_read(port_id, reg_off); 889 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 890 reg_v |= (value << l_bit); /* Set changed bits */ 891 port_id_pci_reg_write(port_id, reg_off, reg_v); 892 display_port_reg_value(port_id, reg_off, reg_v); 893 } 894 895 void 896 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 897 { 898 if (port_id_is_invalid(port_id, ENABLED_WARN)) 899 return; 900 if (port_reg_off_is_invalid(port_id, reg_off)) 901 return; 902 port_id_pci_reg_write(port_id, reg_off, reg_v); 903 display_port_reg_value(port_id, reg_off, reg_v); 904 } 905 906 void 907 port_mtu_set(portid_t port_id, uint16_t mtu) 908 { 909 int diag; 910 911 if (port_id_is_invalid(port_id, ENABLED_WARN)) 912 return; 913 diag = rte_eth_dev_set_mtu(port_id, mtu); 914 if (diag == 0) 915 return; 916 printf("Set MTU failed. diag=%d\n", diag); 917 } 918 919 /* Generic flow management functions. */ 920 921 /** Generate flow_item[] entry. */ 922 #define MK_FLOW_ITEM(t, s) \ 923 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 924 .name = # t, \ 925 .size = s, \ 926 } 927 928 /** Information about known flow pattern items. */ 929 static const struct { 930 const char *name; 931 size_t size; 932 } flow_item[] = { 933 MK_FLOW_ITEM(END, 0), 934 MK_FLOW_ITEM(VOID, 0), 935 MK_FLOW_ITEM(INVERT, 0), 936 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 937 MK_FLOW_ITEM(PF, 0), 938 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 939 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 940 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 941 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 942 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 943 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 944 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 945 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 946 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 947 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 948 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 949 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 950 MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), 951 MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), 952 MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 953 MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 954 MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), 955 MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), 956 MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), 957 MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), 958 }; 959 960 /** Compute storage space needed by item specification. */ 961 static void 962 flow_item_spec_size(const struct rte_flow_item *item, 963 size_t *size, size_t *pad) 964 { 965 if (!item->spec) { 966 *size = 0; 967 goto empty; 968 } 969 switch (item->type) { 970 union { 971 const struct rte_flow_item_raw *raw; 972 } spec; 973 974 case RTE_FLOW_ITEM_TYPE_RAW: 975 spec.raw = item->spec; 976 *size = offsetof(struct rte_flow_item_raw, pattern) + 977 spec.raw->length * sizeof(*spec.raw->pattern); 978 break; 979 default: 980 *size = flow_item[item->type].size; 981 break; 982 } 983 empty: 984 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 985 } 986 987 /** Generate flow_action[] entry. */ 988 #define MK_FLOW_ACTION(t, s) \ 989 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 990 .name = # t, \ 991 .size = s, \ 992 } 993 994 /** Information about known flow actions. */ 995 static const struct { 996 const char *name; 997 size_t size; 998 } flow_action[] = { 999 MK_FLOW_ACTION(END, 0), 1000 MK_FLOW_ACTION(VOID, 0), 1001 MK_FLOW_ACTION(PASSTHRU, 0), 1002 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1003 MK_FLOW_ACTION(FLAG, 0), 1004 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 1005 MK_FLOW_ACTION(DROP, 0), 1006 MK_FLOW_ACTION(COUNT, 0), 1007 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 1008 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 1009 MK_FLOW_ACTION(PF, 0), 1010 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1011 }; 1012 1013 /** Compute storage space needed by action configuration. */ 1014 static void 1015 flow_action_conf_size(const struct rte_flow_action *action, 1016 size_t *size, size_t *pad) 1017 { 1018 if (!action->conf) { 1019 *size = 0; 1020 goto empty; 1021 } 1022 switch (action->type) { 1023 union { 1024 const struct rte_flow_action_rss *rss; 1025 } conf; 1026 1027 case RTE_FLOW_ACTION_TYPE_RSS: 1028 conf.rss = action->conf; 1029 *size = offsetof(struct rte_flow_action_rss, queue) + 1030 conf.rss->num * sizeof(*conf.rss->queue); 1031 break; 1032 default: 1033 *size = flow_action[action->type].size; 1034 break; 1035 } 1036 empty: 1037 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1038 } 1039 1040 /** Generate a port_flow entry from attributes/pattern/actions. */ 1041 static struct port_flow * 1042 port_flow_new(const struct rte_flow_attr *attr, 1043 const struct rte_flow_item *pattern, 1044 const struct rte_flow_action *actions) 1045 { 1046 const struct rte_flow_item *item; 1047 const struct rte_flow_action *action; 1048 struct port_flow *pf = NULL; 1049 size_t tmp; 1050 size_t pad; 1051 size_t off1 = 0; 1052 size_t off2 = 0; 1053 int err = ENOTSUP; 1054 1055 store: 1056 item = pattern; 1057 if (pf) 1058 pf->pattern = (void *)&pf->data[off1]; 1059 do { 1060 struct rte_flow_item *dst = NULL; 1061 1062 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1063 !flow_item[item->type].name) 1064 goto notsup; 1065 if (pf) 1066 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1067 off1 += sizeof(*item); 1068 flow_item_spec_size(item, &tmp, &pad); 1069 if (item->spec) { 1070 if (pf) 1071 dst->spec = memcpy(pf->data + off2, 1072 item->spec, tmp); 1073 off2 += tmp + pad; 1074 } 1075 if (item->last) { 1076 if (pf) 1077 dst->last = memcpy(pf->data + off2, 1078 item->last, tmp); 1079 off2 += tmp + pad; 1080 } 1081 if (item->mask) { 1082 if (pf) 1083 dst->mask = memcpy(pf->data + off2, 1084 item->mask, tmp); 1085 off2 += tmp + pad; 1086 } 1087 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1088 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1089 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1090 action = actions; 1091 if (pf) 1092 pf->actions = (void *)&pf->data[off1]; 1093 do { 1094 struct rte_flow_action *dst = NULL; 1095 1096 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1097 !flow_action[action->type].name) 1098 goto notsup; 1099 if (pf) 1100 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1101 off1 += sizeof(*action); 1102 flow_action_conf_size(action, &tmp, &pad); 1103 if (action->conf) { 1104 if (pf) 1105 dst->conf = memcpy(pf->data + off2, 1106 action->conf, tmp); 1107 off2 += tmp + pad; 1108 } 1109 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1110 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1111 if (pf != NULL) 1112 return pf; 1113 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1114 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1115 pf = calloc(1, tmp + off1 + off2); 1116 if (pf == NULL) 1117 err = errno; 1118 else { 1119 *pf = (const struct port_flow){ 1120 .size = tmp + off1 + off2, 1121 .attr = *attr, 1122 }; 1123 tmp -= offsetof(struct port_flow, data); 1124 off2 = tmp + off1; 1125 off1 = tmp; 1126 goto store; 1127 } 1128 notsup: 1129 rte_errno = err; 1130 return NULL; 1131 } 1132 1133 /** Print a message out of a flow error. */ 1134 static int 1135 port_flow_complain(struct rte_flow_error *error) 1136 { 1137 static const char *const errstrlist[] = { 1138 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1139 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1140 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1141 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1142 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1143 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1144 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1145 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1146 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1147 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1148 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1149 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1150 }; 1151 const char *errstr; 1152 char buf[32]; 1153 int err = rte_errno; 1154 1155 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1156 !errstrlist[error->type]) 1157 errstr = "unknown type"; 1158 else 1159 errstr = errstrlist[error->type]; 1160 printf("Caught error type %d (%s): %s%s\n", 1161 error->type, errstr, 1162 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1163 error->cause), buf) : "", 1164 error->message ? error->message : "(no stated reason)"); 1165 return -err; 1166 } 1167 1168 /** Validate flow rule. */ 1169 int 1170 port_flow_validate(portid_t port_id, 1171 const struct rte_flow_attr *attr, 1172 const struct rte_flow_item *pattern, 1173 const struct rte_flow_action *actions) 1174 { 1175 struct rte_flow_error error; 1176 1177 /* Poisoning to make sure PMDs update it in case of error. */ 1178 memset(&error, 0x11, sizeof(error)); 1179 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1180 return port_flow_complain(&error); 1181 printf("Flow rule validated\n"); 1182 return 0; 1183 } 1184 1185 /** Create flow rule. */ 1186 int 1187 port_flow_create(portid_t port_id, 1188 const struct rte_flow_attr *attr, 1189 const struct rte_flow_item *pattern, 1190 const struct rte_flow_action *actions) 1191 { 1192 struct rte_flow *flow; 1193 struct rte_port *port; 1194 struct port_flow *pf; 1195 uint32_t id; 1196 struct rte_flow_error error; 1197 1198 /* Poisoning to make sure PMDs update it in case of error. */ 1199 memset(&error, 0x22, sizeof(error)); 1200 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1201 if (!flow) 1202 return port_flow_complain(&error); 1203 port = &ports[port_id]; 1204 if (port->flow_list) { 1205 if (port->flow_list->id == UINT32_MAX) { 1206 printf("Highest rule ID is already assigned, delete" 1207 " it first"); 1208 rte_flow_destroy(port_id, flow, NULL); 1209 return -ENOMEM; 1210 } 1211 id = port->flow_list->id + 1; 1212 } else 1213 id = 0; 1214 pf = port_flow_new(attr, pattern, actions); 1215 if (!pf) { 1216 int err = rte_errno; 1217 1218 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1219 rte_flow_destroy(port_id, flow, NULL); 1220 return -err; 1221 } 1222 pf->next = port->flow_list; 1223 pf->id = id; 1224 pf->flow = flow; 1225 port->flow_list = pf; 1226 printf("Flow rule #%u created\n", pf->id); 1227 return 0; 1228 } 1229 1230 /** Destroy a number of flow rules. */ 1231 int 1232 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1233 { 1234 struct rte_port *port; 1235 struct port_flow **tmp; 1236 uint32_t c = 0; 1237 int ret = 0; 1238 1239 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1240 port_id == (portid_t)RTE_PORT_ALL) 1241 return -EINVAL; 1242 port = &ports[port_id]; 1243 tmp = &port->flow_list; 1244 while (*tmp) { 1245 uint32_t i; 1246 1247 for (i = 0; i != n; ++i) { 1248 struct rte_flow_error error; 1249 struct port_flow *pf = *tmp; 1250 1251 if (rule[i] != pf->id) 1252 continue; 1253 /* 1254 * Poisoning to make sure PMDs update it in case 1255 * of error. 1256 */ 1257 memset(&error, 0x33, sizeof(error)); 1258 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1259 ret = port_flow_complain(&error); 1260 continue; 1261 } 1262 printf("Flow rule #%u destroyed\n", pf->id); 1263 *tmp = pf->next; 1264 free(pf); 1265 break; 1266 } 1267 if (i == n) 1268 tmp = &(*tmp)->next; 1269 ++c; 1270 } 1271 return ret; 1272 } 1273 1274 /** Remove all flow rules. */ 1275 int 1276 port_flow_flush(portid_t port_id) 1277 { 1278 struct rte_flow_error error; 1279 struct rte_port *port; 1280 int ret = 0; 1281 1282 /* Poisoning to make sure PMDs update it in case of error. */ 1283 memset(&error, 0x44, sizeof(error)); 1284 if (rte_flow_flush(port_id, &error)) { 1285 ret = port_flow_complain(&error); 1286 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1287 port_id == (portid_t)RTE_PORT_ALL) 1288 return ret; 1289 } 1290 port = &ports[port_id]; 1291 while (port->flow_list) { 1292 struct port_flow *pf = port->flow_list->next; 1293 1294 free(port->flow_list); 1295 port->flow_list = pf; 1296 } 1297 return ret; 1298 } 1299 1300 /** Query a flow rule. */ 1301 int 1302 port_flow_query(portid_t port_id, uint32_t rule, 1303 enum rte_flow_action_type action) 1304 { 1305 struct rte_flow_error error; 1306 struct rte_port *port; 1307 struct port_flow *pf; 1308 const char *name; 1309 union { 1310 struct rte_flow_query_count count; 1311 } query; 1312 1313 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1314 port_id == (portid_t)RTE_PORT_ALL) 1315 return -EINVAL; 1316 port = &ports[port_id]; 1317 for (pf = port->flow_list; pf; pf = pf->next) 1318 if (pf->id == rule) 1319 break; 1320 if (!pf) { 1321 printf("Flow rule #%u not found\n", rule); 1322 return -ENOENT; 1323 } 1324 if ((unsigned int)action >= RTE_DIM(flow_action) || 1325 !flow_action[action].name) 1326 name = "unknown"; 1327 else 1328 name = flow_action[action].name; 1329 switch (action) { 1330 case RTE_FLOW_ACTION_TYPE_COUNT: 1331 break; 1332 default: 1333 printf("Cannot query action type %d (%s)\n", action, name); 1334 return -ENOTSUP; 1335 } 1336 /* Poisoning to make sure PMDs update it in case of error. */ 1337 memset(&error, 0x55, sizeof(error)); 1338 memset(&query, 0, sizeof(query)); 1339 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1340 return port_flow_complain(&error); 1341 switch (action) { 1342 case RTE_FLOW_ACTION_TYPE_COUNT: 1343 printf("%s:\n" 1344 " hits_set: %u\n" 1345 " bytes_set: %u\n" 1346 " hits: %" PRIu64 "\n" 1347 " bytes: %" PRIu64 "\n", 1348 name, 1349 query.count.hits_set, 1350 query.count.bytes_set, 1351 query.count.hits, 1352 query.count.bytes); 1353 break; 1354 default: 1355 printf("Cannot display result for action type %d (%s)\n", 1356 action, name); 1357 break; 1358 } 1359 return 0; 1360 } 1361 1362 /** List flow rules. */ 1363 void 1364 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1365 { 1366 struct rte_port *port; 1367 struct port_flow *pf; 1368 struct port_flow *list = NULL; 1369 uint32_t i; 1370 1371 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1372 port_id == (portid_t)RTE_PORT_ALL) 1373 return; 1374 port = &ports[port_id]; 1375 if (!port->flow_list) 1376 return; 1377 /* Sort flows by group, priority and ID. */ 1378 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1379 struct port_flow **tmp; 1380 1381 if (n) { 1382 /* Filter out unwanted groups. */ 1383 for (i = 0; i != n; ++i) 1384 if (pf->attr.group == group[i]) 1385 break; 1386 if (i == n) 1387 continue; 1388 } 1389 tmp = &list; 1390 while (*tmp && 1391 (pf->attr.group > (*tmp)->attr.group || 1392 (pf->attr.group == (*tmp)->attr.group && 1393 pf->attr.priority > (*tmp)->attr.priority) || 1394 (pf->attr.group == (*tmp)->attr.group && 1395 pf->attr.priority == (*tmp)->attr.priority && 1396 pf->id > (*tmp)->id))) 1397 tmp = &(*tmp)->tmp; 1398 pf->tmp = *tmp; 1399 *tmp = pf; 1400 } 1401 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1402 for (pf = list; pf != NULL; pf = pf->tmp) { 1403 const struct rte_flow_item *item = pf->pattern; 1404 const struct rte_flow_action *action = pf->actions; 1405 1406 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1407 pf->id, 1408 pf->attr.group, 1409 pf->attr.priority, 1410 pf->attr.ingress ? 'i' : '-', 1411 pf->attr.egress ? 'e' : '-'); 1412 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1413 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1414 printf("%s ", flow_item[item->type].name); 1415 ++item; 1416 } 1417 printf("=>"); 1418 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1419 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1420 printf(" %s", flow_action[action->type].name); 1421 ++action; 1422 } 1423 printf("\n"); 1424 } 1425 } 1426 1427 /** Restrict ingress traffic to the defined flow rules. */ 1428 int 1429 port_flow_isolate(portid_t port_id, int set) 1430 { 1431 struct rte_flow_error error; 1432 1433 /* Poisoning to make sure PMDs update it in case of error. */ 1434 memset(&error, 0x66, sizeof(error)); 1435 if (rte_flow_isolate(port_id, set, &error)) 1436 return port_flow_complain(&error); 1437 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1438 port_id, 1439 set ? "now restricted" : "not restricted anymore"); 1440 return 0; 1441 } 1442 1443 /* 1444 * RX/TX ring descriptors display functions. 1445 */ 1446 int 1447 rx_queue_id_is_invalid(queueid_t rxq_id) 1448 { 1449 if (rxq_id < nb_rxq) 1450 return 0; 1451 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1452 return 1; 1453 } 1454 1455 int 1456 tx_queue_id_is_invalid(queueid_t txq_id) 1457 { 1458 if (txq_id < nb_txq) 1459 return 0; 1460 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1461 return 1; 1462 } 1463 1464 static int 1465 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1466 { 1467 if (rxdesc_id < nb_rxd) 1468 return 0; 1469 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1470 rxdesc_id, nb_rxd); 1471 return 1; 1472 } 1473 1474 static int 1475 tx_desc_id_is_invalid(uint16_t txdesc_id) 1476 { 1477 if (txdesc_id < nb_txd) 1478 return 0; 1479 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1480 txdesc_id, nb_txd); 1481 return 1; 1482 } 1483 1484 static const struct rte_memzone * 1485 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id) 1486 { 1487 char mz_name[RTE_MEMZONE_NAMESIZE]; 1488 const struct rte_memzone *mz; 1489 1490 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1491 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1492 mz = rte_memzone_lookup(mz_name); 1493 if (mz == NULL) 1494 printf("%s ring memory zoneof (port %d, queue %d) not" 1495 "found (zone name = %s\n", 1496 ring_name, port_id, q_id, mz_name); 1497 return mz; 1498 } 1499 1500 union igb_ring_dword { 1501 uint64_t dword; 1502 struct { 1503 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1504 uint32_t lo; 1505 uint32_t hi; 1506 #else 1507 uint32_t hi; 1508 uint32_t lo; 1509 #endif 1510 } words; 1511 }; 1512 1513 struct igb_ring_desc_32_bytes { 1514 union igb_ring_dword lo_dword; 1515 union igb_ring_dword hi_dword; 1516 union igb_ring_dword resv1; 1517 union igb_ring_dword resv2; 1518 }; 1519 1520 struct igb_ring_desc_16_bytes { 1521 union igb_ring_dword lo_dword; 1522 union igb_ring_dword hi_dword; 1523 }; 1524 1525 static void 1526 ring_rxd_display_dword(union igb_ring_dword dword) 1527 { 1528 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1529 (unsigned)dword.words.hi); 1530 } 1531 1532 static void 1533 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1534 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1535 uint8_t port_id, 1536 #else 1537 __rte_unused uint8_t port_id, 1538 #endif 1539 uint16_t desc_id) 1540 { 1541 struct igb_ring_desc_16_bytes *ring = 1542 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1543 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1544 struct rte_eth_dev_info dev_info; 1545 1546 memset(&dev_info, 0, sizeof(dev_info)); 1547 rte_eth_dev_info_get(port_id, &dev_info); 1548 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1549 /* 32 bytes RX descriptor, i40e only */ 1550 struct igb_ring_desc_32_bytes *ring = 1551 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1552 ring[desc_id].lo_dword.dword = 1553 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1554 ring_rxd_display_dword(ring[desc_id].lo_dword); 1555 ring[desc_id].hi_dword.dword = 1556 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1557 ring_rxd_display_dword(ring[desc_id].hi_dword); 1558 ring[desc_id].resv1.dword = 1559 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1560 ring_rxd_display_dword(ring[desc_id].resv1); 1561 ring[desc_id].resv2.dword = 1562 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1563 ring_rxd_display_dword(ring[desc_id].resv2); 1564 1565 return; 1566 } 1567 #endif 1568 /* 16 bytes RX descriptor */ 1569 ring[desc_id].lo_dword.dword = 1570 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1571 ring_rxd_display_dword(ring[desc_id].lo_dword); 1572 ring[desc_id].hi_dword.dword = 1573 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1574 ring_rxd_display_dword(ring[desc_id].hi_dword); 1575 } 1576 1577 static void 1578 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1579 { 1580 struct igb_ring_desc_16_bytes *ring; 1581 struct igb_ring_desc_16_bytes txd; 1582 1583 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1584 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1585 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1586 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1587 (unsigned)txd.lo_dword.words.lo, 1588 (unsigned)txd.lo_dword.words.hi, 1589 (unsigned)txd.hi_dword.words.lo, 1590 (unsigned)txd.hi_dword.words.hi); 1591 } 1592 1593 void 1594 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1595 { 1596 const struct rte_memzone *rx_mz; 1597 1598 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1599 return; 1600 if (rx_queue_id_is_invalid(rxq_id)) 1601 return; 1602 if (rx_desc_id_is_invalid(rxd_id)) 1603 return; 1604 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1605 if (rx_mz == NULL) 1606 return; 1607 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1608 } 1609 1610 void 1611 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1612 { 1613 const struct rte_memzone *tx_mz; 1614 1615 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1616 return; 1617 if (tx_queue_id_is_invalid(txq_id)) 1618 return; 1619 if (tx_desc_id_is_invalid(txd_id)) 1620 return; 1621 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1622 if (tx_mz == NULL) 1623 return; 1624 ring_tx_descriptor_display(tx_mz, txd_id); 1625 } 1626 1627 void 1628 fwd_lcores_config_display(void) 1629 { 1630 lcoreid_t lc_id; 1631 1632 printf("List of forwarding lcores:"); 1633 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1634 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1635 printf("\n"); 1636 } 1637 void 1638 rxtx_config_display(void) 1639 { 1640 printf(" %s packet forwarding%s - CRC stripping %s - " 1641 "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, 1642 retry_enabled == 0 ? "" : " with retry", 1643 rx_mode.hw_strip_crc ? "enabled" : "disabled", 1644 nb_pkt_per_burst); 1645 1646 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1647 printf(" packet len=%u - nb packet segments=%d\n", 1648 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1649 1650 struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf; 1651 struct rte_eth_txconf *tx_conf = &ports[0].tx_conf; 1652 1653 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1654 nb_fwd_lcores, nb_fwd_ports); 1655 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1656 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1657 printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1658 rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh, 1659 rx_conf->rx_thresh.wthresh); 1660 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1661 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1662 printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1663 tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh, 1664 tx_conf->tx_thresh.wthresh); 1665 printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n", 1666 tx_conf->tx_rs_thresh, tx_conf->txq_flags); 1667 } 1668 1669 void 1670 port_rss_reta_info(portid_t port_id, 1671 struct rte_eth_rss_reta_entry64 *reta_conf, 1672 uint16_t nb_entries) 1673 { 1674 uint16_t i, idx, shift; 1675 int ret; 1676 1677 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1678 return; 1679 1680 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1681 if (ret != 0) { 1682 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1683 return; 1684 } 1685 1686 for (i = 0; i < nb_entries; i++) { 1687 idx = i / RTE_RETA_GROUP_SIZE; 1688 shift = i % RTE_RETA_GROUP_SIZE; 1689 if (!(reta_conf[idx].mask & (1ULL << shift))) 1690 continue; 1691 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1692 i, reta_conf[idx].reta[shift]); 1693 } 1694 } 1695 1696 /* 1697 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1698 * key of the port. 1699 */ 1700 void 1701 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1702 { 1703 struct rte_eth_rss_conf rss_conf; 1704 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1705 uint64_t rss_hf; 1706 uint8_t i; 1707 int diag; 1708 struct rte_eth_dev_info dev_info; 1709 uint8_t hash_key_size; 1710 1711 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1712 return; 1713 1714 memset(&dev_info, 0, sizeof(dev_info)); 1715 rte_eth_dev_info_get(port_id, &dev_info); 1716 if (dev_info.hash_key_size > 0 && 1717 dev_info.hash_key_size <= sizeof(rss_key)) 1718 hash_key_size = dev_info.hash_key_size; 1719 else { 1720 printf("dev_info did not provide a valid hash key size\n"); 1721 return; 1722 } 1723 1724 rss_conf.rss_hf = 0; 1725 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1726 if (!strcmp(rss_info, rss_type_table[i].str)) 1727 rss_conf.rss_hf = rss_type_table[i].rss_type; 1728 } 1729 1730 /* Get RSS hash key if asked to display it */ 1731 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1732 rss_conf.rss_key_len = hash_key_size; 1733 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1734 if (diag != 0) { 1735 switch (diag) { 1736 case -ENODEV: 1737 printf("port index %d invalid\n", port_id); 1738 break; 1739 case -ENOTSUP: 1740 printf("operation not supported by device\n"); 1741 break; 1742 default: 1743 printf("operation failed - diag=%d\n", diag); 1744 break; 1745 } 1746 return; 1747 } 1748 rss_hf = rss_conf.rss_hf; 1749 if (rss_hf == 0) { 1750 printf("RSS disabled\n"); 1751 return; 1752 } 1753 printf("RSS functions:\n "); 1754 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1755 if (rss_hf & rss_type_table[i].rss_type) 1756 printf("%s ", rss_type_table[i].str); 1757 } 1758 printf("\n"); 1759 if (!show_rss_key) 1760 return; 1761 printf("RSS key:\n"); 1762 for (i = 0; i < hash_key_size; i++) 1763 printf("%02X", rss_key[i]); 1764 printf("\n"); 1765 } 1766 1767 void 1768 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1769 uint hash_key_len) 1770 { 1771 struct rte_eth_rss_conf rss_conf; 1772 int diag; 1773 unsigned int i; 1774 1775 rss_conf.rss_key = NULL; 1776 rss_conf.rss_key_len = hash_key_len; 1777 rss_conf.rss_hf = 0; 1778 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1779 if (!strcmp(rss_type_table[i].str, rss_type)) 1780 rss_conf.rss_hf = rss_type_table[i].rss_type; 1781 } 1782 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1783 if (diag == 0) { 1784 rss_conf.rss_key = hash_key; 1785 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1786 } 1787 if (diag == 0) 1788 return; 1789 1790 switch (diag) { 1791 case -ENODEV: 1792 printf("port index %d invalid\n", port_id); 1793 break; 1794 case -ENOTSUP: 1795 printf("operation not supported by device\n"); 1796 break; 1797 default: 1798 printf("operation failed - diag=%d\n", diag); 1799 break; 1800 } 1801 } 1802 1803 /* 1804 * Setup forwarding configuration for each logical core. 1805 */ 1806 static void 1807 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1808 { 1809 streamid_t nb_fs_per_lcore; 1810 streamid_t nb_fs; 1811 streamid_t sm_id; 1812 lcoreid_t nb_extra; 1813 lcoreid_t nb_fc; 1814 lcoreid_t nb_lc; 1815 lcoreid_t lc_id; 1816 1817 nb_fs = cfg->nb_fwd_streams; 1818 nb_fc = cfg->nb_fwd_lcores; 1819 if (nb_fs <= nb_fc) { 1820 nb_fs_per_lcore = 1; 1821 nb_extra = 0; 1822 } else { 1823 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1824 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1825 } 1826 1827 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1828 sm_id = 0; 1829 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1830 fwd_lcores[lc_id]->stream_idx = sm_id; 1831 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1832 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1833 } 1834 1835 /* 1836 * Assign extra remaining streams, if any. 1837 */ 1838 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1839 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1840 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1841 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1842 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1843 } 1844 } 1845 1846 static void 1847 simple_fwd_config_setup(void) 1848 { 1849 portid_t i; 1850 portid_t j; 1851 portid_t inc = 2; 1852 1853 if (port_topology == PORT_TOPOLOGY_CHAINED || 1854 port_topology == PORT_TOPOLOGY_LOOP) { 1855 inc = 1; 1856 } else if (nb_fwd_ports % 2) { 1857 printf("\nWarning! Cannot handle an odd number of ports " 1858 "with the current port topology. Configuration " 1859 "must be changed to have an even number of ports, " 1860 "or relaunch application with " 1861 "--port-topology=chained\n\n"); 1862 } 1863 1864 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1865 cur_fwd_config.nb_fwd_streams = 1866 (streamid_t) cur_fwd_config.nb_fwd_ports; 1867 1868 /* reinitialize forwarding streams */ 1869 init_fwd_streams(); 1870 1871 /* 1872 * In the simple forwarding test, the number of forwarding cores 1873 * must be lower or equal to the number of forwarding ports. 1874 */ 1875 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1876 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1877 cur_fwd_config.nb_fwd_lcores = 1878 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1879 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1880 1881 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { 1882 if (port_topology != PORT_TOPOLOGY_LOOP) 1883 j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); 1884 else 1885 j = i; 1886 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1887 fwd_streams[i]->rx_queue = 0; 1888 fwd_streams[i]->tx_port = fwd_ports_ids[j]; 1889 fwd_streams[i]->tx_queue = 0; 1890 fwd_streams[i]->peer_addr = j; 1891 fwd_streams[i]->retry_enabled = retry_enabled; 1892 1893 if (port_topology == PORT_TOPOLOGY_PAIRED) { 1894 fwd_streams[j]->rx_port = fwd_ports_ids[j]; 1895 fwd_streams[j]->rx_queue = 0; 1896 fwd_streams[j]->tx_port = fwd_ports_ids[i]; 1897 fwd_streams[j]->tx_queue = 0; 1898 fwd_streams[j]->peer_addr = i; 1899 fwd_streams[j]->retry_enabled = retry_enabled; 1900 } 1901 } 1902 } 1903 1904 /** 1905 * For the RSS forwarding test all streams distributed over lcores. Each stream 1906 * being composed of a RX queue to poll on a RX port for input messages, 1907 * associated with a TX queue of a TX port where to send forwarded packets. 1908 * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" 1909 * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two 1910 * following rules: 1911 * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd 1912 * - TxQl = RxQj 1913 */ 1914 static void 1915 rss_fwd_config_setup(void) 1916 { 1917 portid_t rxp; 1918 portid_t txp; 1919 queueid_t rxq; 1920 queueid_t nb_q; 1921 streamid_t sm_id; 1922 1923 nb_q = nb_rxq; 1924 if (nb_q > nb_txq) 1925 nb_q = nb_txq; 1926 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1927 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1928 cur_fwd_config.nb_fwd_streams = 1929 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1930 1931 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1932 cur_fwd_config.nb_fwd_lcores = 1933 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1934 1935 /* reinitialize forwarding streams */ 1936 init_fwd_streams(); 1937 1938 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1939 rxp = 0; rxq = 0; 1940 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1941 struct fwd_stream *fs; 1942 1943 fs = fwd_streams[sm_id]; 1944 1945 if ((rxp & 0x1) == 0) 1946 txp = (portid_t) (rxp + 1); 1947 else 1948 txp = (portid_t) (rxp - 1); 1949 /* 1950 * if we are in loopback, simply send stuff out through the 1951 * ingress port 1952 */ 1953 if (port_topology == PORT_TOPOLOGY_LOOP) 1954 txp = rxp; 1955 1956 fs->rx_port = fwd_ports_ids[rxp]; 1957 fs->rx_queue = rxq; 1958 fs->tx_port = fwd_ports_ids[txp]; 1959 fs->tx_queue = rxq; 1960 fs->peer_addr = fs->tx_port; 1961 fs->retry_enabled = retry_enabled; 1962 rxq = (queueid_t) (rxq + 1); 1963 if (rxq < nb_q) 1964 continue; 1965 /* 1966 * rxq == nb_q 1967 * Restart from RX queue 0 on next RX port 1968 */ 1969 rxq = 0; 1970 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 1971 rxp = (portid_t) 1972 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 1973 else 1974 rxp = (portid_t) (rxp + 1); 1975 } 1976 } 1977 1978 /** 1979 * For the DCB forwarding test, each core is assigned on each traffic class. 1980 * 1981 * Each core is assigned a multi-stream, each stream being composed of 1982 * a RX queue to poll on a RX port for input messages, associated with 1983 * a TX queue of a TX port where to send forwarded packets. All RX and 1984 * TX queues are mapping to the same traffic class. 1985 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 1986 * the same core 1987 */ 1988 static void 1989 dcb_fwd_config_setup(void) 1990 { 1991 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 1992 portid_t txp, rxp = 0; 1993 queueid_t txq, rxq = 0; 1994 lcoreid_t lc_id; 1995 uint16_t nb_rx_queue, nb_tx_queue; 1996 uint16_t i, j, k, sm_id = 0; 1997 uint8_t tc = 0; 1998 1999 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2000 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2001 cur_fwd_config.nb_fwd_streams = 2002 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2003 2004 /* reinitialize forwarding streams */ 2005 init_fwd_streams(); 2006 sm_id = 0; 2007 txp = 1; 2008 /* get the dcb info on the first RX and TX ports */ 2009 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2010 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2011 2012 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2013 fwd_lcores[lc_id]->stream_nb = 0; 2014 fwd_lcores[lc_id]->stream_idx = sm_id; 2015 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2016 /* if the nb_queue is zero, means this tc is 2017 * not enabled on the POOL 2018 */ 2019 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2020 break; 2021 k = fwd_lcores[lc_id]->stream_nb + 2022 fwd_lcores[lc_id]->stream_idx; 2023 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2024 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2025 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2026 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2027 for (j = 0; j < nb_rx_queue; j++) { 2028 struct fwd_stream *fs; 2029 2030 fs = fwd_streams[k + j]; 2031 fs->rx_port = fwd_ports_ids[rxp]; 2032 fs->rx_queue = rxq + j; 2033 fs->tx_port = fwd_ports_ids[txp]; 2034 fs->tx_queue = txq + j % nb_tx_queue; 2035 fs->peer_addr = fs->tx_port; 2036 fs->retry_enabled = retry_enabled; 2037 } 2038 fwd_lcores[lc_id]->stream_nb += 2039 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2040 } 2041 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2042 2043 tc++; 2044 if (tc < rxp_dcb_info.nb_tcs) 2045 continue; 2046 /* Restart from TC 0 on next RX port */ 2047 tc = 0; 2048 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2049 rxp = (portid_t) 2050 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2051 else 2052 rxp++; 2053 if (rxp >= nb_fwd_ports) 2054 return; 2055 /* get the dcb information on next RX and TX ports */ 2056 if ((rxp & 0x1) == 0) 2057 txp = (portid_t) (rxp + 1); 2058 else 2059 txp = (portid_t) (rxp - 1); 2060 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2061 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2062 } 2063 } 2064 2065 static void 2066 icmp_echo_config_setup(void) 2067 { 2068 portid_t rxp; 2069 queueid_t rxq; 2070 lcoreid_t lc_id; 2071 uint16_t sm_id; 2072 2073 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2074 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2075 (nb_txq * nb_fwd_ports); 2076 else 2077 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2078 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2079 cur_fwd_config.nb_fwd_streams = 2080 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2081 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2082 cur_fwd_config.nb_fwd_lcores = 2083 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2084 if (verbose_level > 0) { 2085 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2086 __FUNCTION__, 2087 cur_fwd_config.nb_fwd_lcores, 2088 cur_fwd_config.nb_fwd_ports, 2089 cur_fwd_config.nb_fwd_streams); 2090 } 2091 2092 /* reinitialize forwarding streams */ 2093 init_fwd_streams(); 2094 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2095 rxp = 0; rxq = 0; 2096 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2097 if (verbose_level > 0) 2098 printf(" core=%d: \n", lc_id); 2099 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2100 struct fwd_stream *fs; 2101 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2102 fs->rx_port = fwd_ports_ids[rxp]; 2103 fs->rx_queue = rxq; 2104 fs->tx_port = fs->rx_port; 2105 fs->tx_queue = rxq; 2106 fs->peer_addr = fs->tx_port; 2107 fs->retry_enabled = retry_enabled; 2108 if (verbose_level > 0) 2109 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2110 sm_id, fs->rx_port, fs->rx_queue, 2111 fs->tx_queue); 2112 rxq = (queueid_t) (rxq + 1); 2113 if (rxq == nb_rxq) { 2114 rxq = 0; 2115 rxp = (portid_t) (rxp + 1); 2116 } 2117 } 2118 } 2119 } 2120 2121 void 2122 fwd_config_setup(void) 2123 { 2124 cur_fwd_config.fwd_eng = cur_fwd_eng; 2125 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2126 icmp_echo_config_setup(); 2127 return; 2128 } 2129 if ((nb_rxq > 1) && (nb_txq > 1)){ 2130 if (dcb_config) 2131 dcb_fwd_config_setup(); 2132 else 2133 rss_fwd_config_setup(); 2134 } 2135 else 2136 simple_fwd_config_setup(); 2137 } 2138 2139 void 2140 pkt_fwd_config_display(struct fwd_config *cfg) 2141 { 2142 struct fwd_stream *fs; 2143 lcoreid_t lc_id; 2144 streamid_t sm_id; 2145 2146 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2147 "NUMA support %s, MP over anonymous pages %s\n", 2148 cfg->fwd_eng->fwd_mode_name, 2149 retry_enabled == 0 ? "" : " with retry", 2150 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2151 numa_support == 1 ? "enabled" : "disabled", 2152 mp_anon != 0 ? "enabled" : "disabled"); 2153 2154 if (retry_enabled) 2155 printf("TX retry num: %u, delay between TX retries: %uus\n", 2156 burst_tx_retry_num, burst_tx_delay_time); 2157 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2158 printf("Logical Core %u (socket %u) forwards packets on " 2159 "%d streams:", 2160 fwd_lcores_cpuids[lc_id], 2161 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2162 fwd_lcores[lc_id]->stream_nb); 2163 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2164 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2165 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2166 "P=%d/Q=%d (socket %u) ", 2167 fs->rx_port, fs->rx_queue, 2168 ports[fs->rx_port].socket_id, 2169 fs->tx_port, fs->tx_queue, 2170 ports[fs->tx_port].socket_id); 2171 print_ethaddr("peer=", 2172 &peer_eth_addrs[fs->peer_addr]); 2173 } 2174 printf("\n"); 2175 } 2176 printf("\n"); 2177 } 2178 2179 int 2180 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2181 { 2182 unsigned int i; 2183 unsigned int lcore_cpuid; 2184 int record_now; 2185 2186 record_now = 0; 2187 again: 2188 for (i = 0; i < nb_lc; i++) { 2189 lcore_cpuid = lcorelist[i]; 2190 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2191 printf("lcore %u not enabled\n", lcore_cpuid); 2192 return -1; 2193 } 2194 if (lcore_cpuid == rte_get_master_lcore()) { 2195 printf("lcore %u cannot be masked on for running " 2196 "packet forwarding, which is the master lcore " 2197 "and reserved for command line parsing only\n", 2198 lcore_cpuid); 2199 return -1; 2200 } 2201 if (record_now) 2202 fwd_lcores_cpuids[i] = lcore_cpuid; 2203 } 2204 if (record_now == 0) { 2205 record_now = 1; 2206 goto again; 2207 } 2208 nb_cfg_lcores = (lcoreid_t) nb_lc; 2209 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2210 printf("previous number of forwarding cores %u - changed to " 2211 "number of configured cores %u\n", 2212 (unsigned int) nb_fwd_lcores, nb_lc); 2213 nb_fwd_lcores = (lcoreid_t) nb_lc; 2214 } 2215 2216 return 0; 2217 } 2218 2219 int 2220 set_fwd_lcores_mask(uint64_t lcoremask) 2221 { 2222 unsigned int lcorelist[64]; 2223 unsigned int nb_lc; 2224 unsigned int i; 2225 2226 if (lcoremask == 0) { 2227 printf("Invalid NULL mask of cores\n"); 2228 return -1; 2229 } 2230 nb_lc = 0; 2231 for (i = 0; i < 64; i++) { 2232 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2233 continue; 2234 lcorelist[nb_lc++] = i; 2235 } 2236 return set_fwd_lcores_list(lcorelist, nb_lc); 2237 } 2238 2239 void 2240 set_fwd_lcores_number(uint16_t nb_lc) 2241 { 2242 if (nb_lc > nb_cfg_lcores) { 2243 printf("nb fwd cores %u > %u (max. number of configured " 2244 "lcores) - ignored\n", 2245 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2246 return; 2247 } 2248 nb_fwd_lcores = (lcoreid_t) nb_lc; 2249 printf("Number of forwarding cores set to %u\n", 2250 (unsigned int) nb_fwd_lcores); 2251 } 2252 2253 void 2254 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2255 { 2256 unsigned int i; 2257 portid_t port_id; 2258 int record_now; 2259 2260 record_now = 0; 2261 again: 2262 for (i = 0; i < nb_pt; i++) { 2263 port_id = (portid_t) portlist[i]; 2264 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2265 return; 2266 if (record_now) 2267 fwd_ports_ids[i] = port_id; 2268 } 2269 if (record_now == 0) { 2270 record_now = 1; 2271 goto again; 2272 } 2273 nb_cfg_ports = (portid_t) nb_pt; 2274 if (nb_fwd_ports != (portid_t) nb_pt) { 2275 printf("previous number of forwarding ports %u - changed to " 2276 "number of configured ports %u\n", 2277 (unsigned int) nb_fwd_ports, nb_pt); 2278 nb_fwd_ports = (portid_t) nb_pt; 2279 } 2280 } 2281 2282 void 2283 set_fwd_ports_mask(uint64_t portmask) 2284 { 2285 unsigned int portlist[64]; 2286 unsigned int nb_pt; 2287 unsigned int i; 2288 2289 if (portmask == 0) { 2290 printf("Invalid NULL mask of ports\n"); 2291 return; 2292 } 2293 nb_pt = 0; 2294 RTE_ETH_FOREACH_DEV(i) { 2295 if (! ((uint64_t)(1ULL << i) & portmask)) 2296 continue; 2297 portlist[nb_pt++] = i; 2298 } 2299 set_fwd_ports_list(portlist, nb_pt); 2300 } 2301 2302 void 2303 set_fwd_ports_number(uint16_t nb_pt) 2304 { 2305 if (nb_pt > nb_cfg_ports) { 2306 printf("nb fwd ports %u > %u (number of configured " 2307 "ports) - ignored\n", 2308 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2309 return; 2310 } 2311 nb_fwd_ports = (portid_t) nb_pt; 2312 printf("Number of forwarding ports set to %u\n", 2313 (unsigned int) nb_fwd_ports); 2314 } 2315 2316 int 2317 port_is_forwarding(portid_t port_id) 2318 { 2319 unsigned int i; 2320 2321 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2322 return -1; 2323 2324 for (i = 0; i < nb_fwd_ports; i++) { 2325 if (fwd_ports_ids[i] == port_id) 2326 return 1; 2327 } 2328 2329 return 0; 2330 } 2331 2332 void 2333 set_nb_pkt_per_burst(uint16_t nb) 2334 { 2335 if (nb > MAX_PKT_BURST) { 2336 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2337 " ignored\n", 2338 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2339 return; 2340 } 2341 nb_pkt_per_burst = nb; 2342 printf("Number of packets per burst set to %u\n", 2343 (unsigned int) nb_pkt_per_burst); 2344 } 2345 2346 static const char * 2347 tx_split_get_name(enum tx_pkt_split split) 2348 { 2349 uint32_t i; 2350 2351 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2352 if (tx_split_name[i].split == split) 2353 return tx_split_name[i].name; 2354 } 2355 return NULL; 2356 } 2357 2358 void 2359 set_tx_pkt_split(const char *name) 2360 { 2361 uint32_t i; 2362 2363 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2364 if (strcmp(tx_split_name[i].name, name) == 0) { 2365 tx_pkt_split = tx_split_name[i].split; 2366 return; 2367 } 2368 } 2369 printf("unknown value: \"%s\"\n", name); 2370 } 2371 2372 void 2373 show_tx_pkt_segments(void) 2374 { 2375 uint32_t i, n; 2376 const char *split; 2377 2378 n = tx_pkt_nb_segs; 2379 split = tx_split_get_name(tx_pkt_split); 2380 2381 printf("Number of segments: %u\n", n); 2382 printf("Segment sizes: "); 2383 for (i = 0; i != n - 1; i++) 2384 printf("%hu,", tx_pkt_seg_lengths[i]); 2385 printf("%hu\n", tx_pkt_seg_lengths[i]); 2386 printf("Split packet: %s\n", split); 2387 } 2388 2389 void 2390 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2391 { 2392 uint16_t tx_pkt_len; 2393 unsigned i; 2394 2395 if (nb_segs >= (unsigned) nb_txd) { 2396 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2397 nb_segs, (unsigned int) nb_txd); 2398 return; 2399 } 2400 2401 /* 2402 * Check that each segment length is greater or equal than 2403 * the mbuf data sise. 2404 * Check also that the total packet length is greater or equal than the 2405 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2406 */ 2407 tx_pkt_len = 0; 2408 for (i = 0; i < nb_segs; i++) { 2409 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2410 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2411 i, seg_lengths[i], (unsigned) mbuf_data_size); 2412 return; 2413 } 2414 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2415 } 2416 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2417 printf("total packet length=%u < %d - give up\n", 2418 (unsigned) tx_pkt_len, 2419 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2420 return; 2421 } 2422 2423 for (i = 0; i < nb_segs; i++) 2424 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2425 2426 tx_pkt_length = tx_pkt_len; 2427 tx_pkt_nb_segs = (uint8_t) nb_segs; 2428 } 2429 2430 void 2431 setup_gro(const char *mode, uint8_t port_id) 2432 { 2433 if (!rte_eth_dev_is_valid_port(port_id)) { 2434 printf("invalid port id %u\n", port_id); 2435 return; 2436 } 2437 if (test_done == 0) { 2438 printf("Before enable/disable GRO," 2439 " please stop forwarding first\n"); 2440 return; 2441 } 2442 if (strcmp(mode, "on") == 0) { 2443 if (gro_ports[port_id].enable) { 2444 printf("port %u has enabled GRO\n", port_id); 2445 return; 2446 } 2447 gro_ports[port_id].enable = 1; 2448 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2449 2450 if (gro_ports[port_id].param.max_flow_num == 0) 2451 gro_ports[port_id].param.max_flow_num = 2452 GRO_DEFAULT_FLOW_NUM; 2453 if (gro_ports[port_id].param.max_item_per_flow == 0) 2454 gro_ports[port_id].param.max_item_per_flow = 2455 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2456 } else { 2457 if (gro_ports[port_id].enable == 0) { 2458 printf("port %u has disabled GRO\n", port_id); 2459 return; 2460 } 2461 gro_ports[port_id].enable = 0; 2462 } 2463 } 2464 2465 char* 2466 list_pkt_forwarding_modes(void) 2467 { 2468 static char fwd_modes[128] = ""; 2469 const char *separator = "|"; 2470 struct fwd_engine *fwd_eng; 2471 unsigned i = 0; 2472 2473 if (strlen (fwd_modes) == 0) { 2474 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2475 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2476 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2477 strncat(fwd_modes, separator, 2478 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2479 } 2480 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2481 } 2482 2483 return fwd_modes; 2484 } 2485 2486 char* 2487 list_pkt_forwarding_retry_modes(void) 2488 { 2489 static char fwd_modes[128] = ""; 2490 const char *separator = "|"; 2491 struct fwd_engine *fwd_eng; 2492 unsigned i = 0; 2493 2494 if (strlen(fwd_modes) == 0) { 2495 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2496 if (fwd_eng == &rx_only_engine) 2497 continue; 2498 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2499 sizeof(fwd_modes) - 2500 strlen(fwd_modes) - 1); 2501 strncat(fwd_modes, separator, 2502 sizeof(fwd_modes) - 2503 strlen(fwd_modes) - 1); 2504 } 2505 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2506 } 2507 2508 return fwd_modes; 2509 } 2510 2511 void 2512 set_pkt_forwarding_mode(const char *fwd_mode_name) 2513 { 2514 struct fwd_engine *fwd_eng; 2515 unsigned i; 2516 2517 i = 0; 2518 while ((fwd_eng = fwd_engines[i]) != NULL) { 2519 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2520 printf("Set %s packet forwarding mode%s\n", 2521 fwd_mode_name, 2522 retry_enabled == 0 ? "" : " with retry"); 2523 cur_fwd_eng = fwd_eng; 2524 return; 2525 } 2526 i++; 2527 } 2528 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2529 } 2530 2531 void 2532 set_verbose_level(uint16_t vb_level) 2533 { 2534 printf("Change verbose level from %u to %u\n", 2535 (unsigned int) verbose_level, (unsigned int) vb_level); 2536 verbose_level = vb_level; 2537 } 2538 2539 void 2540 vlan_extend_set(portid_t port_id, int on) 2541 { 2542 int diag; 2543 int vlan_offload; 2544 2545 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2546 return; 2547 2548 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2549 2550 if (on) 2551 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2552 else 2553 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2554 2555 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2556 if (diag < 0) 2557 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2558 "diag=%d\n", port_id, on, diag); 2559 } 2560 2561 void 2562 rx_vlan_strip_set(portid_t port_id, int on) 2563 { 2564 int diag; 2565 int vlan_offload; 2566 2567 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2568 return; 2569 2570 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2571 2572 if (on) 2573 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2574 else 2575 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2576 2577 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2578 if (diag < 0) 2579 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2580 "diag=%d\n", port_id, on, diag); 2581 } 2582 2583 void 2584 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2585 { 2586 int diag; 2587 2588 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2589 return; 2590 2591 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2592 if (diag < 0) 2593 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2594 "diag=%d\n", port_id, queue_id, on, diag); 2595 } 2596 2597 void 2598 rx_vlan_filter_set(portid_t port_id, int on) 2599 { 2600 int diag; 2601 int vlan_offload; 2602 2603 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2604 return; 2605 2606 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2607 2608 if (on) 2609 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2610 else 2611 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2612 2613 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2614 if (diag < 0) 2615 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2616 "diag=%d\n", port_id, on, diag); 2617 } 2618 2619 int 2620 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2621 { 2622 int diag; 2623 2624 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2625 return 1; 2626 if (vlan_id_is_invalid(vlan_id)) 2627 return 1; 2628 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2629 if (diag == 0) 2630 return 0; 2631 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2632 "diag=%d\n", 2633 port_id, vlan_id, on, diag); 2634 return -1; 2635 } 2636 2637 void 2638 rx_vlan_all_filter_set(portid_t port_id, int on) 2639 { 2640 uint16_t vlan_id; 2641 2642 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2643 return; 2644 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2645 if (rx_vft_set(port_id, vlan_id, on)) 2646 break; 2647 } 2648 } 2649 2650 void 2651 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2652 { 2653 int diag; 2654 2655 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2656 return; 2657 2658 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2659 if (diag == 0) 2660 return; 2661 2662 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2663 "diag=%d\n", 2664 port_id, vlan_type, tp_id, diag); 2665 } 2666 2667 void 2668 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2669 { 2670 int vlan_offload; 2671 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2672 return; 2673 if (vlan_id_is_invalid(vlan_id)) 2674 return; 2675 2676 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2677 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2678 printf("Error, as QinQ has been enabled.\n"); 2679 return; 2680 } 2681 2682 tx_vlan_reset(port_id); 2683 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN; 2684 ports[port_id].tx_vlan_id = vlan_id; 2685 } 2686 2687 void 2688 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2689 { 2690 int vlan_offload; 2691 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2692 return; 2693 if (vlan_id_is_invalid(vlan_id)) 2694 return; 2695 if (vlan_id_is_invalid(vlan_id_outer)) 2696 return; 2697 2698 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2699 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2700 printf("Error, as QinQ hasn't been enabled.\n"); 2701 return; 2702 } 2703 2704 tx_vlan_reset(port_id); 2705 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ; 2706 ports[port_id].tx_vlan_id = vlan_id; 2707 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2708 } 2709 2710 void 2711 tx_vlan_reset(portid_t port_id) 2712 { 2713 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2714 return; 2715 ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN | 2716 TESTPMD_TX_OFFLOAD_INSERT_QINQ); 2717 ports[port_id].tx_vlan_id = 0; 2718 ports[port_id].tx_vlan_id_outer = 0; 2719 } 2720 2721 void 2722 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2723 { 2724 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2725 return; 2726 2727 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2728 } 2729 2730 void 2731 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2732 { 2733 uint16_t i; 2734 uint8_t existing_mapping_found = 0; 2735 2736 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2737 return; 2738 2739 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2740 return; 2741 2742 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2743 printf("map_value not in required range 0..%d\n", 2744 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2745 return; 2746 } 2747 2748 if (!is_rx) { /*then tx*/ 2749 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2750 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2751 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2752 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2753 existing_mapping_found = 1; 2754 break; 2755 } 2756 } 2757 if (!existing_mapping_found) { /* A new additional mapping... */ 2758 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2759 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2760 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2761 nb_tx_queue_stats_mappings++; 2762 } 2763 } 2764 else { /*rx*/ 2765 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2766 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2767 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2768 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2769 existing_mapping_found = 1; 2770 break; 2771 } 2772 } 2773 if (!existing_mapping_found) { /* A new additional mapping... */ 2774 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2775 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2776 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2777 nb_rx_queue_stats_mappings++; 2778 } 2779 } 2780 } 2781 2782 static inline void 2783 print_fdir_mask(struct rte_eth_fdir_masks *mask) 2784 { 2785 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 2786 2787 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2788 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 2789 " tunnel_id: 0x%08x", 2790 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 2791 rte_be_to_cpu_32(mask->tunnel_id_mask)); 2792 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2793 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 2794 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 2795 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 2796 2797 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 2798 rte_be_to_cpu_16(mask->src_port_mask), 2799 rte_be_to_cpu_16(mask->dst_port_mask)); 2800 2801 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2802 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 2803 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 2804 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 2805 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 2806 2807 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2808 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 2809 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 2810 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 2811 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 2812 } 2813 2814 printf("\n"); 2815 } 2816 2817 static inline void 2818 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2819 { 2820 struct rte_eth_flex_payload_cfg *cfg; 2821 uint32_t i, j; 2822 2823 for (i = 0; i < flex_conf->nb_payloads; i++) { 2824 cfg = &flex_conf->flex_set[i]; 2825 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 2826 printf("\n RAW: "); 2827 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 2828 printf("\n L2_PAYLOAD: "); 2829 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 2830 printf("\n L3_PAYLOAD: "); 2831 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 2832 printf("\n L4_PAYLOAD: "); 2833 else 2834 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 2835 for (j = 0; j < num; j++) 2836 printf(" %-5u", cfg->src_offset[j]); 2837 } 2838 printf("\n"); 2839 } 2840 2841 static char * 2842 flowtype_to_str(uint16_t flow_type) 2843 { 2844 struct flow_type_info { 2845 char str[32]; 2846 uint16_t ftype; 2847 }; 2848 2849 uint8_t i; 2850 static struct flow_type_info flowtype_str_table[] = { 2851 {"raw", RTE_ETH_FLOW_RAW}, 2852 {"ipv4", RTE_ETH_FLOW_IPV4}, 2853 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 2854 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 2855 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 2856 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 2857 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 2858 {"ipv6", RTE_ETH_FLOW_IPV6}, 2859 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 2860 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 2861 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 2862 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 2863 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 2864 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 2865 {"port", RTE_ETH_FLOW_PORT}, 2866 {"vxlan", RTE_ETH_FLOW_VXLAN}, 2867 {"geneve", RTE_ETH_FLOW_GENEVE}, 2868 {"nvgre", RTE_ETH_FLOW_NVGRE}, 2869 }; 2870 2871 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 2872 if (flowtype_str_table[i].ftype == flow_type) 2873 return flowtype_str_table[i].str; 2874 } 2875 2876 return NULL; 2877 } 2878 2879 static inline void 2880 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2881 { 2882 struct rte_eth_fdir_flex_mask *mask; 2883 uint32_t i, j; 2884 char *p; 2885 2886 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 2887 mask = &flex_conf->flex_mask[i]; 2888 p = flowtype_to_str(mask->flow_type); 2889 printf("\n %s:\t", p ? p : "unknown"); 2890 for (j = 0; j < num; j++) 2891 printf(" %02x", mask->mask[j]); 2892 } 2893 printf("\n"); 2894 } 2895 2896 static inline void 2897 print_fdir_flow_type(uint32_t flow_types_mask) 2898 { 2899 int i; 2900 char *p; 2901 2902 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 2903 if (!(flow_types_mask & (1 << i))) 2904 continue; 2905 p = flowtype_to_str(i); 2906 if (p) 2907 printf(" %s", p); 2908 else 2909 printf(" unknown"); 2910 } 2911 printf("\n"); 2912 } 2913 2914 void 2915 fdir_get_infos(portid_t port_id) 2916 { 2917 struct rte_eth_fdir_stats fdir_stat; 2918 struct rte_eth_fdir_info fdir_info; 2919 int ret; 2920 2921 static const char *fdir_stats_border = "########################"; 2922 2923 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2924 return; 2925 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 2926 if (ret < 0) { 2927 printf("\n FDIR is not supported on port %-2d\n", 2928 port_id); 2929 return; 2930 } 2931 2932 memset(&fdir_info, 0, sizeof(fdir_info)); 2933 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2934 RTE_ETH_FILTER_INFO, &fdir_info); 2935 memset(&fdir_stat, 0, sizeof(fdir_stat)); 2936 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2937 RTE_ETH_FILTER_STATS, &fdir_stat); 2938 printf("\n %s FDIR infos for port %-2d %s\n", 2939 fdir_stats_border, port_id, fdir_stats_border); 2940 printf(" MODE: "); 2941 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 2942 printf(" PERFECT\n"); 2943 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 2944 printf(" PERFECT-MAC-VLAN\n"); 2945 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2946 printf(" PERFECT-TUNNEL\n"); 2947 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 2948 printf(" SIGNATURE\n"); 2949 else 2950 printf(" DISABLE\n"); 2951 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 2952 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 2953 printf(" SUPPORTED FLOW TYPE: "); 2954 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 2955 } 2956 printf(" FLEX PAYLOAD INFO:\n"); 2957 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 2958 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 2959 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 2960 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 2961 fdir_info.flex_payload_unit, 2962 fdir_info.max_flex_payload_segment_num, 2963 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 2964 printf(" MASK: "); 2965 print_fdir_mask(&fdir_info.mask); 2966 if (fdir_info.flex_conf.nb_payloads > 0) { 2967 printf(" FLEX PAYLOAD SRC OFFSET:"); 2968 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2969 } 2970 if (fdir_info.flex_conf.nb_flexmasks > 0) { 2971 printf(" FLEX MASK CFG:"); 2972 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2973 } 2974 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 2975 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 2976 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 2977 fdir_info.guarant_spc, fdir_info.best_spc); 2978 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 2979 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 2980 " add: %-10"PRIu64" remove: %"PRIu64"\n" 2981 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 2982 fdir_stat.collision, fdir_stat.free, 2983 fdir_stat.maxhash, fdir_stat.maxlen, 2984 fdir_stat.add, fdir_stat.remove, 2985 fdir_stat.f_add, fdir_stat.f_remove); 2986 printf(" %s############################%s\n", 2987 fdir_stats_border, fdir_stats_border); 2988 } 2989 2990 void 2991 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 2992 { 2993 struct rte_port *port; 2994 struct rte_eth_fdir_flex_conf *flex_conf; 2995 int i, idx = 0; 2996 2997 port = &ports[port_id]; 2998 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2999 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3000 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3001 idx = i; 3002 break; 3003 } 3004 } 3005 if (i >= RTE_ETH_FLOW_MAX) { 3006 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3007 idx = flex_conf->nb_flexmasks; 3008 flex_conf->nb_flexmasks++; 3009 } else { 3010 printf("The flex mask table is full. Can not set flex" 3011 " mask for flow_type(%u).", cfg->flow_type); 3012 return; 3013 } 3014 } 3015 rte_memcpy(&flex_conf->flex_mask[idx], 3016 cfg, 3017 sizeof(struct rte_eth_fdir_flex_mask)); 3018 } 3019 3020 void 3021 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3022 { 3023 struct rte_port *port; 3024 struct rte_eth_fdir_flex_conf *flex_conf; 3025 int i, idx = 0; 3026 3027 port = &ports[port_id]; 3028 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3029 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3030 if (cfg->type == flex_conf->flex_set[i].type) { 3031 idx = i; 3032 break; 3033 } 3034 } 3035 if (i >= RTE_ETH_PAYLOAD_MAX) { 3036 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3037 idx = flex_conf->nb_payloads; 3038 flex_conf->nb_payloads++; 3039 } else { 3040 printf("The flex payload table is full. Can not set" 3041 " flex payload for type(%u).", cfg->type); 3042 return; 3043 } 3044 } 3045 rte_memcpy(&flex_conf->flex_set[idx], 3046 cfg, 3047 sizeof(struct rte_eth_flex_payload_cfg)); 3048 3049 } 3050 3051 void 3052 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3053 { 3054 #ifdef RTE_LIBRTE_IXGBE_PMD 3055 int diag; 3056 3057 if (is_rx) 3058 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3059 else 3060 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3061 3062 if (diag == 0) 3063 return; 3064 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3065 is_rx ? "rx" : "tx", port_id, diag); 3066 return; 3067 #endif 3068 printf("VF %s setting not supported for port %d\n", 3069 is_rx ? "Rx" : "Tx", port_id); 3070 RTE_SET_USED(vf); 3071 RTE_SET_USED(on); 3072 } 3073 3074 int 3075 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3076 { 3077 int diag; 3078 struct rte_eth_link link; 3079 3080 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3081 return 1; 3082 rte_eth_link_get_nowait(port_id, &link); 3083 if (rate > link.link_speed) { 3084 printf("Invalid rate value:%u bigger than link speed: %u\n", 3085 rate, link.link_speed); 3086 return 1; 3087 } 3088 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3089 if (diag == 0) 3090 return diag; 3091 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3092 port_id, diag); 3093 return diag; 3094 } 3095 3096 int 3097 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3098 { 3099 int diag = -ENOTSUP; 3100 3101 #ifdef RTE_LIBRTE_IXGBE_PMD 3102 if (diag == -ENOTSUP) 3103 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3104 q_msk); 3105 #endif 3106 #ifdef RTE_LIBRTE_BNXT_PMD 3107 if (diag == -ENOTSUP) 3108 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3109 #endif 3110 if (diag == 0) 3111 return diag; 3112 3113 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3114 port_id, diag); 3115 return diag; 3116 } 3117 3118 /* 3119 * Functions to manage the set of filtered Multicast MAC addresses. 3120 * 3121 * A pool of filtered multicast MAC addresses is associated with each port. 3122 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3123 * The address of the pool and the number of valid multicast MAC addresses 3124 * recorded in the pool are stored in the fields "mc_addr_pool" and 3125 * "mc_addr_nb" of the "rte_port" data structure. 3126 * 3127 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3128 * to be supplied a contiguous array of multicast MAC addresses. 3129 * To comply with this constraint, the set of multicast addresses recorded 3130 * into the pool are systematically compacted at the beginning of the pool. 3131 * Hence, when a multicast address is removed from the pool, all following 3132 * addresses, if any, are copied back to keep the set contiguous. 3133 */ 3134 #define MCAST_POOL_INC 32 3135 3136 static int 3137 mcast_addr_pool_extend(struct rte_port *port) 3138 { 3139 struct ether_addr *mc_pool; 3140 size_t mc_pool_size; 3141 3142 /* 3143 * If a free entry is available at the end of the pool, just 3144 * increment the number of recorded multicast addresses. 3145 */ 3146 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3147 port->mc_addr_nb++; 3148 return 0; 3149 } 3150 3151 /* 3152 * [re]allocate a pool with MCAST_POOL_INC more entries. 3153 * The previous test guarantees that port->mc_addr_nb is a multiple 3154 * of MCAST_POOL_INC. 3155 */ 3156 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3157 MCAST_POOL_INC); 3158 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3159 mc_pool_size); 3160 if (mc_pool == NULL) { 3161 printf("allocation of pool of %u multicast addresses failed\n", 3162 port->mc_addr_nb + MCAST_POOL_INC); 3163 return -ENOMEM; 3164 } 3165 3166 port->mc_addr_pool = mc_pool; 3167 port->mc_addr_nb++; 3168 return 0; 3169 3170 } 3171 3172 static void 3173 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3174 { 3175 port->mc_addr_nb--; 3176 if (addr_idx == port->mc_addr_nb) { 3177 /* No need to recompact the set of multicast addressses. */ 3178 if (port->mc_addr_nb == 0) { 3179 /* free the pool of multicast addresses. */ 3180 free(port->mc_addr_pool); 3181 port->mc_addr_pool = NULL; 3182 } 3183 return; 3184 } 3185 memmove(&port->mc_addr_pool[addr_idx], 3186 &port->mc_addr_pool[addr_idx + 1], 3187 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3188 } 3189 3190 static void 3191 eth_port_multicast_addr_list_set(uint8_t port_id) 3192 { 3193 struct rte_port *port; 3194 int diag; 3195 3196 port = &ports[port_id]; 3197 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3198 port->mc_addr_nb); 3199 if (diag == 0) 3200 return; 3201 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3202 port->mc_addr_nb, port_id, -diag); 3203 } 3204 3205 void 3206 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr) 3207 { 3208 struct rte_port *port; 3209 uint32_t i; 3210 3211 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3212 return; 3213 3214 port = &ports[port_id]; 3215 3216 /* 3217 * Check that the added multicast MAC address is not already recorded 3218 * in the pool of multicast addresses. 3219 */ 3220 for (i = 0; i < port->mc_addr_nb; i++) { 3221 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3222 printf("multicast address already filtered by port\n"); 3223 return; 3224 } 3225 } 3226 3227 if (mcast_addr_pool_extend(port) != 0) 3228 return; 3229 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3230 eth_port_multicast_addr_list_set(port_id); 3231 } 3232 3233 void 3234 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr) 3235 { 3236 struct rte_port *port; 3237 uint32_t i; 3238 3239 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3240 return; 3241 3242 port = &ports[port_id]; 3243 3244 /* 3245 * Search the pool of multicast MAC addresses for the removed address. 3246 */ 3247 for (i = 0; i < port->mc_addr_nb; i++) { 3248 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3249 break; 3250 } 3251 if (i == port->mc_addr_nb) { 3252 printf("multicast address not filtered by port %d\n", port_id); 3253 return; 3254 } 3255 3256 mcast_addr_pool_remove(port, i); 3257 eth_port_multicast_addr_list_set(port_id); 3258 } 3259 3260 void 3261 port_dcb_info_display(uint8_t port_id) 3262 { 3263 struct rte_eth_dcb_info dcb_info; 3264 uint16_t i; 3265 int ret; 3266 static const char *border = "================"; 3267 3268 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3269 return; 3270 3271 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3272 if (ret) { 3273 printf("\n Failed to get dcb infos on port %-2d\n", 3274 port_id); 3275 return; 3276 } 3277 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3278 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3279 printf("\n TC : "); 3280 for (i = 0; i < dcb_info.nb_tcs; i++) 3281 printf("\t%4d", i); 3282 printf("\n Priority : "); 3283 for (i = 0; i < dcb_info.nb_tcs; i++) 3284 printf("\t%4d", dcb_info.prio_tc[i]); 3285 printf("\n BW percent :"); 3286 for (i = 0; i < dcb_info.nb_tcs; i++) 3287 printf("\t%4d%%", dcb_info.tc_bws[i]); 3288 printf("\n RXQ base : "); 3289 for (i = 0; i < dcb_info.nb_tcs; i++) 3290 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3291 printf("\n RXQ number :"); 3292 for (i = 0; i < dcb_info.nb_tcs; i++) 3293 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3294 printf("\n TXQ base : "); 3295 for (i = 0; i < dcb_info.nb_tcs; i++) 3296 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3297 printf("\n TXQ number :"); 3298 for (i = 0; i < dcb_info.nb_tcs; i++) 3299 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3300 printf("\n"); 3301 } 3302 3303 uint8_t * 3304 open_ddp_package_file(const char *file_path, uint32_t *size) 3305 { 3306 FILE *fh = fopen(file_path, "rb"); 3307 uint32_t pkg_size; 3308 uint8_t *buf = NULL; 3309 int ret = 0; 3310 3311 if (size) 3312 *size = 0; 3313 3314 if (fh == NULL) { 3315 printf("%s: Failed to open %s\n", __func__, file_path); 3316 return buf; 3317 } 3318 3319 ret = fseek(fh, 0, SEEK_END); 3320 if (ret < 0) { 3321 fclose(fh); 3322 printf("%s: File operations failed\n", __func__); 3323 return buf; 3324 } 3325 3326 pkg_size = ftell(fh); 3327 3328 buf = (uint8_t *)malloc(pkg_size); 3329 if (!buf) { 3330 fclose(fh); 3331 printf("%s: Failed to malloc memory\n", __func__); 3332 return buf; 3333 } 3334 3335 ret = fseek(fh, 0, SEEK_SET); 3336 if (ret < 0) { 3337 fclose(fh); 3338 printf("%s: File seek operation failed\n", __func__); 3339 close_ddp_package_file(buf); 3340 return NULL; 3341 } 3342 3343 ret = fread(buf, 1, pkg_size, fh); 3344 if (ret < 0) { 3345 fclose(fh); 3346 printf("%s: File read operation failed\n", __func__); 3347 close_ddp_package_file(buf); 3348 return NULL; 3349 } 3350 3351 if (size) 3352 *size = pkg_size; 3353 3354 fclose(fh); 3355 3356 return buf; 3357 } 3358 3359 int 3360 save_ddp_package_file(const char *file_path, uint8_t *buf, uint32_t size) 3361 { 3362 FILE *fh = fopen(file_path, "wb"); 3363 3364 if (fh == NULL) { 3365 printf("%s: Failed to open %s\n", __func__, file_path); 3366 return -1; 3367 } 3368 3369 if (fwrite(buf, 1, size, fh) != size) { 3370 fclose(fh); 3371 printf("%s: File write operation failed\n", __func__); 3372 return -1; 3373 } 3374 3375 fclose(fh); 3376 3377 return 0; 3378 } 3379 3380 int 3381 close_ddp_package_file(uint8_t *buf) 3382 { 3383 if (buf) { 3384 free((void *)buf); 3385 return 0; 3386 } 3387 3388 return -1; 3389 } 3390