xref: /dpdk/app/test-pmd/config.c (revision 912267a33eede1427e865fc591e3ee2645cd596c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdint.h>
40 #include <inttypes.h>
41 
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #include <fcntl.h>
46 #include <unistd.h>
47 
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_debug.h>
51 #include <rte_log.h>
52 #include <rte_memory.h>
53 #include <rte_memcpy.h>
54 #include <rte_memzone.h>
55 #include <rte_launch.h>
56 #include <rte_eal.h>
57 #include <rte_per_lcore.h>
58 #include <rte_lcore.h>
59 #include <rte_atomic.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_mempool.h>
62 #include <rte_mbuf.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_string_fns.h>
68 #include <rte_cycles.h>
69 #include <rte_flow.h>
70 #include <rte_errno.h>
71 #ifdef RTE_LIBRTE_IXGBE_PMD
72 #include <rte_pmd_ixgbe.h>
73 #endif
74 #ifdef RTE_LIBRTE_BNXT_PMD
75 #include <rte_pmd_bnxt.h>
76 #endif
77 #include <rte_gro.h>
78 
79 #include "testpmd.h"
80 
81 static char *flowtype_to_str(uint16_t flow_type);
82 
83 static const struct {
84 	enum tx_pkt_split split;
85 	const char *name;
86 } tx_split_name[] = {
87 	{
88 		.split = TX_PKT_SPLIT_OFF,
89 		.name = "off",
90 	},
91 	{
92 		.split = TX_PKT_SPLIT_ON,
93 		.name = "on",
94 	},
95 	{
96 		.split = TX_PKT_SPLIT_RND,
97 		.name = "rand",
98 	},
99 };
100 
101 struct rss_type_info {
102 	char str[32];
103 	uint64_t rss_type;
104 };
105 
106 static const struct rss_type_info rss_type_table[] = {
107 	{ "ipv4", ETH_RSS_IPV4 },
108 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
109 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
110 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
111 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
112 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
113 	{ "ipv6", ETH_RSS_IPV6 },
114 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
115 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
116 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
117 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
118 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
119 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
120 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
121 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
122 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
123 	{ "port", ETH_RSS_PORT },
124 	{ "vxlan", ETH_RSS_VXLAN },
125 	{ "geneve", ETH_RSS_GENEVE },
126 	{ "nvgre", ETH_RSS_NVGRE },
127 
128 };
129 
130 static void
131 print_ethaddr(const char *name, struct ether_addr *eth_addr)
132 {
133 	char buf[ETHER_ADDR_FMT_SIZE];
134 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
135 	printf("%s%s", name, buf);
136 }
137 
138 void
139 nic_stats_display(portid_t port_id)
140 {
141 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
142 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
143 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
144 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
145 	uint64_t mpps_rx, mpps_tx;
146 	struct rte_eth_stats stats;
147 	struct rte_port *port = &ports[port_id];
148 	uint8_t i;
149 	portid_t pid;
150 
151 	static const char *nic_stats_border = "########################";
152 
153 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
154 		printf("Valid port range is [0");
155 		RTE_ETH_FOREACH_DEV(pid)
156 			printf(", %d", pid);
157 		printf("]\n");
158 		return;
159 	}
160 	rte_eth_stats_get(port_id, &stats);
161 	printf("\n  %s NIC statistics for port %-2d %s\n",
162 	       nic_stats_border, port_id, nic_stats_border);
163 
164 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
165 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
166 		       "%-"PRIu64"\n",
167 		       stats.ipackets, stats.imissed, stats.ibytes);
168 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
169 		printf("  RX-nombuf:  %-10"PRIu64"\n",
170 		       stats.rx_nombuf);
171 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
172 		       "%-"PRIu64"\n",
173 		       stats.opackets, stats.oerrors, stats.obytes);
174 	}
175 	else {
176 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
177 		       "    RX-bytes: %10"PRIu64"\n",
178 		       stats.ipackets, stats.ierrors, stats.ibytes);
179 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
180 		printf("  RX-nombuf:               %10"PRIu64"\n",
181 		       stats.rx_nombuf);
182 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
183 		       "    TX-bytes: %10"PRIu64"\n",
184 		       stats.opackets, stats.oerrors, stats.obytes);
185 	}
186 
187 	if (port->rx_queue_stats_mapping_enabled) {
188 		printf("\n");
189 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
190 			printf("  Stats reg %2d RX-packets: %10"PRIu64
191 			       "    RX-errors: %10"PRIu64
192 			       "    RX-bytes: %10"PRIu64"\n",
193 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
194 		}
195 	}
196 	if (port->tx_queue_stats_mapping_enabled) {
197 		printf("\n");
198 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
199 			printf("  Stats reg %2d TX-packets: %10"PRIu64
200 			       "                             TX-bytes: %10"PRIu64"\n",
201 			       i, stats.q_opackets[i], stats.q_obytes[i]);
202 		}
203 	}
204 
205 	diff_cycles = prev_cycles[port_id];
206 	prev_cycles[port_id] = rte_rdtsc();
207 	if (diff_cycles > 0)
208 		diff_cycles = prev_cycles[port_id] - diff_cycles;
209 
210 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
211 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
212 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
213 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
214 	prev_pkts_rx[port_id] = stats.ipackets;
215 	prev_pkts_tx[port_id] = stats.opackets;
216 	mpps_rx = diff_cycles > 0 ?
217 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
218 	mpps_tx = diff_cycles > 0 ?
219 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
220 	printf("\n  Throughput (since last show)\n");
221 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
222 			mpps_rx, mpps_tx);
223 
224 	printf("  %s############################%s\n",
225 	       nic_stats_border, nic_stats_border);
226 }
227 
228 void
229 nic_stats_clear(portid_t port_id)
230 {
231 	portid_t pid;
232 
233 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
234 		printf("Valid port range is [0");
235 		RTE_ETH_FOREACH_DEV(pid)
236 			printf(", %d", pid);
237 		printf("]\n");
238 		return;
239 	}
240 	rte_eth_stats_reset(port_id);
241 	printf("\n  NIC statistics for port %d cleared\n", port_id);
242 }
243 
244 void
245 nic_xstats_display(portid_t port_id)
246 {
247 	struct rte_eth_xstat *xstats;
248 	int cnt_xstats, idx_xstat;
249 	struct rte_eth_xstat_name *xstats_names;
250 
251 	printf("###### NIC extended statistics for port %-2d\n", port_id);
252 	if (!rte_eth_dev_is_valid_port(port_id)) {
253 		printf("Error: Invalid port number %i\n", port_id);
254 		return;
255 	}
256 
257 	/* Get count */
258 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
259 	if (cnt_xstats  < 0) {
260 		printf("Error: Cannot get count of xstats\n");
261 		return;
262 	}
263 
264 	/* Get id-name lookup table */
265 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
266 	if (xstats_names == NULL) {
267 		printf("Cannot allocate memory for xstats lookup\n");
268 		return;
269 	}
270 	if (cnt_xstats != rte_eth_xstats_get_names(
271 			port_id, xstats_names, cnt_xstats)) {
272 		printf("Error: Cannot get xstats lookup\n");
273 		free(xstats_names);
274 		return;
275 	}
276 
277 	/* Get stats themselves */
278 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
279 	if (xstats == NULL) {
280 		printf("Cannot allocate memory for xstats\n");
281 		free(xstats_names);
282 		return;
283 	}
284 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
285 		printf("Error: Unable to get xstats\n");
286 		free(xstats_names);
287 		free(xstats);
288 		return;
289 	}
290 
291 	/* Display xstats */
292 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
293 		printf("%s: %"PRIu64"\n",
294 			xstats_names[idx_xstat].name,
295 			xstats[idx_xstat].value);
296 	free(xstats_names);
297 	free(xstats);
298 }
299 
300 void
301 nic_xstats_clear(portid_t port_id)
302 {
303 	rte_eth_xstats_reset(port_id);
304 }
305 
306 void
307 nic_stats_mapping_display(portid_t port_id)
308 {
309 	struct rte_port *port = &ports[port_id];
310 	uint16_t i;
311 	portid_t pid;
312 
313 	static const char *nic_stats_mapping_border = "########################";
314 
315 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
316 		printf("Valid port range is [0");
317 		RTE_ETH_FOREACH_DEV(pid)
318 			printf(", %d", pid);
319 		printf("]\n");
320 		return;
321 	}
322 
323 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
324 		printf("Port id %d - either does not support queue statistic mapping or"
325 		       " no queue statistic mapping set\n", port_id);
326 		return;
327 	}
328 
329 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
330 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
331 
332 	if (port->rx_queue_stats_mapping_enabled) {
333 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
334 			if (rx_queue_stats_mappings[i].port_id == port_id) {
335 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
336 				       rx_queue_stats_mappings[i].queue_id,
337 				       rx_queue_stats_mappings[i].stats_counter_id);
338 			}
339 		}
340 		printf("\n");
341 	}
342 
343 
344 	if (port->tx_queue_stats_mapping_enabled) {
345 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
346 			if (tx_queue_stats_mappings[i].port_id == port_id) {
347 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
348 				       tx_queue_stats_mappings[i].queue_id,
349 				       tx_queue_stats_mappings[i].stats_counter_id);
350 			}
351 		}
352 	}
353 
354 	printf("  %s####################################%s\n",
355 	       nic_stats_mapping_border, nic_stats_mapping_border);
356 }
357 
358 void
359 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
360 {
361 	struct rte_eth_rxq_info qinfo;
362 	int32_t rc;
363 	static const char *info_border = "*********************";
364 
365 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
366 	if (rc != 0) {
367 		printf("Failed to retrieve information for port: %u, "
368 			"RX queue: %hu\nerror desc: %s(%d)\n",
369 			port_id, queue_id, strerror(-rc), rc);
370 		return;
371 	}
372 
373 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
374 	       info_border, port_id, queue_id, info_border);
375 
376 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
377 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
378 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
379 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
380 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
381 	printf("\nRX drop packets: %s",
382 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
383 	printf("\nRX deferred start: %s",
384 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
385 	printf("\nRX scattered packets: %s",
386 		(qinfo.scattered_rx != 0) ? "on" : "off");
387 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
388 	printf("\n");
389 }
390 
391 void
392 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
393 {
394 	struct rte_eth_txq_info qinfo;
395 	int32_t rc;
396 	static const char *info_border = "*********************";
397 
398 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
399 	if (rc != 0) {
400 		printf("Failed to retrieve information for port: %u, "
401 			"TX queue: %hu\nerror desc: %s(%d)\n",
402 			port_id, queue_id, strerror(-rc), rc);
403 		return;
404 	}
405 
406 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
407 	       info_border, port_id, queue_id, info_border);
408 
409 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
410 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
411 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
412 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
413 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
414 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
415 	printf("\nTX deferred start: %s",
416 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
417 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
418 	printf("\n");
419 }
420 
421 void
422 port_infos_display(portid_t port_id)
423 {
424 	struct rte_port *port;
425 	struct ether_addr mac_addr;
426 	struct rte_eth_link link;
427 	struct rte_eth_dev_info dev_info;
428 	int vlan_offload;
429 	struct rte_mempool * mp;
430 	static const char *info_border = "*********************";
431 	portid_t pid;
432 	uint16_t mtu;
433 
434 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
435 		printf("Valid port range is [0");
436 		RTE_ETH_FOREACH_DEV(pid)
437 			printf(", %d", pid);
438 		printf("]\n");
439 		return;
440 	}
441 	port = &ports[port_id];
442 	rte_eth_link_get_nowait(port_id, &link);
443 	memset(&dev_info, 0, sizeof(dev_info));
444 	rte_eth_dev_info_get(port_id, &dev_info);
445 	printf("\n%s Infos for port %-2d %s\n",
446 	       info_border, port_id, info_border);
447 	rte_eth_macaddr_get(port_id, &mac_addr);
448 	print_ethaddr("MAC address: ", &mac_addr);
449 	printf("\nDriver name: %s", dev_info.driver_name);
450 	printf("\nConnect to socket: %u", port->socket_id);
451 
452 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
453 		mp = mbuf_pool_find(port_numa[port_id]);
454 		if (mp)
455 			printf("\nmemory allocation on the socket: %d",
456 							port_numa[port_id]);
457 	} else
458 		printf("\nmemory allocation on the socket: %u",port->socket_id);
459 
460 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
461 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
462 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
463 	       ("full-duplex") : ("half-duplex"));
464 
465 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
466 		printf("MTU: %u\n", mtu);
467 
468 	printf("Promiscuous mode: %s\n",
469 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
470 	printf("Allmulticast mode: %s\n",
471 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
472 	printf("Maximum number of MAC addresses: %u\n",
473 	       (unsigned int)(port->dev_info.max_mac_addrs));
474 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
475 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
476 
477 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
478 	if (vlan_offload >= 0){
479 		printf("VLAN offload: \n");
480 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
481 			printf("  strip on \n");
482 		else
483 			printf("  strip off \n");
484 
485 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
486 			printf("  filter on \n");
487 		else
488 			printf("  filter off \n");
489 
490 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
491 			printf("  qinq(extend) on \n");
492 		else
493 			printf("  qinq(extend) off \n");
494 	}
495 
496 	if (dev_info.hash_key_size > 0)
497 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
498 	if (dev_info.reta_size > 0)
499 		printf("Redirection table size: %u\n", dev_info.reta_size);
500 	if (!dev_info.flow_type_rss_offloads)
501 		printf("No flow type is supported.\n");
502 	else {
503 		uint16_t i;
504 		char *p;
505 
506 		printf("Supported flow types:\n");
507 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
508 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
509 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
510 				continue;
511 			p = flowtype_to_str(i);
512 			if (p)
513 				printf("  %s\n", p);
514 			else
515 				printf("  user defined %d\n", i);
516 		}
517 	}
518 
519 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
520 	printf("Max possible number of RXDs per queue: %hu\n",
521 		dev_info.rx_desc_lim.nb_max);
522 	printf("Min possible number of RXDs per queue: %hu\n",
523 		dev_info.rx_desc_lim.nb_min);
524 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
525 
526 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
527 	printf("Max possible number of TXDs per queue: %hu\n",
528 		dev_info.tx_desc_lim.nb_max);
529 	printf("Min possible number of TXDs per queue: %hu\n",
530 		dev_info.tx_desc_lim.nb_min);
531 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
532 }
533 
534 void
535 port_offload_cap_display(portid_t port_id)
536 {
537 	struct rte_eth_dev *dev;
538 	struct rte_eth_dev_info dev_info;
539 	static const char *info_border = "************";
540 
541 	if (port_id_is_invalid(port_id, ENABLED_WARN))
542 		return;
543 
544 	dev = &rte_eth_devices[port_id];
545 	rte_eth_dev_info_get(port_id, &dev_info);
546 
547 	printf("\n%s Port %d supported offload features: %s\n",
548 		info_border, port_id, info_border);
549 
550 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
551 		printf("VLAN stripped:                 ");
552 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
553 			printf("on\n");
554 		else
555 			printf("off\n");
556 	}
557 
558 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
559 		printf("Double VLANs stripped:         ");
560 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
561 			printf("on\n");
562 		else
563 			printf("off\n");
564 	}
565 
566 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
567 		printf("RX IPv4 checksum:              ");
568 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
569 			printf("on\n");
570 		else
571 			printf("off\n");
572 	}
573 
574 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
575 		printf("RX UDP checksum:               ");
576 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
577 			printf("on\n");
578 		else
579 			printf("off\n");
580 	}
581 
582 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
583 		printf("RX TCP checksum:               ");
584 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
585 			printf("on\n");
586 		else
587 			printf("off\n");
588 	}
589 
590 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
591 		printf("RX Outer IPv4 checksum:        on");
592 
593 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
594 		printf("Large receive offload:         ");
595 		if (dev->data->dev_conf.rxmode.enable_lro)
596 			printf("on\n");
597 		else
598 			printf("off\n");
599 	}
600 
601 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
602 		printf("VLAN insert:                   ");
603 		if (ports[port_id].tx_ol_flags &
604 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
605 			printf("on\n");
606 		else
607 			printf("off\n");
608 	}
609 
610 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
611 		printf("HW timestamp:                  ");
612 		if (dev->data->dev_conf.rxmode.hw_timestamp)
613 			printf("on\n");
614 		else
615 			printf("off\n");
616 	}
617 
618 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
619 		printf("Double VLANs insert:           ");
620 		if (ports[port_id].tx_ol_flags &
621 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
622 			printf("on\n");
623 		else
624 			printf("off\n");
625 	}
626 
627 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
628 		printf("TX IPv4 checksum:              ");
629 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
630 			printf("on\n");
631 		else
632 			printf("off\n");
633 	}
634 
635 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636 		printf("TX UDP checksum:               ");
637 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
638 			printf("on\n");
639 		else
640 			printf("off\n");
641 	}
642 
643 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
644 		printf("TX TCP checksum:               ");
645 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
646 			printf("on\n");
647 		else
648 			printf("off\n");
649 	}
650 
651 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
652 		printf("TX SCTP checksum:              ");
653 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
654 			printf("on\n");
655 		else
656 			printf("off\n");
657 	}
658 
659 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
660 		printf("TX Outer IPv4 checksum:        ");
661 		if (ports[port_id].tx_ol_flags &
662 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
663 			printf("on\n");
664 		else
665 			printf("off\n");
666 	}
667 
668 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
669 		printf("TX TCP segmentation:           ");
670 		if (ports[port_id].tso_segsz != 0)
671 			printf("on\n");
672 		else
673 			printf("off\n");
674 	}
675 
676 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
677 		printf("TX UDP segmentation:           ");
678 		if (ports[port_id].tso_segsz != 0)
679 			printf("on\n");
680 		else
681 			printf("off\n");
682 	}
683 
684 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
685 		printf("TSO for VXLAN tunnel packet:   ");
686 		if (ports[port_id].tunnel_tso_segsz)
687 			printf("on\n");
688 		else
689 			printf("off\n");
690 	}
691 
692 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
693 		printf("TSO for GRE tunnel packet:     ");
694 		if (ports[port_id].tunnel_tso_segsz)
695 			printf("on\n");
696 		else
697 			printf("off\n");
698 	}
699 
700 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
701 		printf("TSO for IPIP tunnel packet:    ");
702 		if (ports[port_id].tunnel_tso_segsz)
703 			printf("on\n");
704 		else
705 			printf("off\n");
706 	}
707 
708 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
709 		printf("TSO for GENEVE tunnel packet:  ");
710 		if (ports[port_id].tunnel_tso_segsz)
711 			printf("on\n");
712 		else
713 			printf("off\n");
714 	}
715 
716 }
717 
718 int
719 port_id_is_invalid(portid_t port_id, enum print_warning warning)
720 {
721 	if (port_id == (portid_t)RTE_PORT_ALL)
722 		return 0;
723 
724 	if (rte_eth_dev_is_valid_port(port_id))
725 		return 0;
726 
727 	if (warning == ENABLED_WARN)
728 		printf("Invalid port %d\n", port_id);
729 
730 	return 1;
731 }
732 
733 static int
734 vlan_id_is_invalid(uint16_t vlan_id)
735 {
736 	if (vlan_id < 4096)
737 		return 0;
738 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
739 	return 1;
740 }
741 
742 static int
743 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
744 {
745 	uint64_t pci_len;
746 
747 	if (reg_off & 0x3) {
748 		printf("Port register offset 0x%X not aligned on a 4-byte "
749 		       "boundary\n",
750 		       (unsigned)reg_off);
751 		return 1;
752 	}
753 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
754 	if (reg_off >= pci_len) {
755 		printf("Port %d: register offset %u (0x%X) out of port PCI "
756 		       "resource (length=%"PRIu64")\n",
757 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
758 		return 1;
759 	}
760 	return 0;
761 }
762 
763 static int
764 reg_bit_pos_is_invalid(uint8_t bit_pos)
765 {
766 	if (bit_pos <= 31)
767 		return 0;
768 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
769 	return 1;
770 }
771 
772 #define display_port_and_reg_off(port_id, reg_off) \
773 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
774 
775 static inline void
776 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
777 {
778 	display_port_and_reg_off(port_id, (unsigned)reg_off);
779 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
780 }
781 
782 void
783 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
784 {
785 	uint32_t reg_v;
786 
787 
788 	if (port_id_is_invalid(port_id, ENABLED_WARN))
789 		return;
790 	if (port_reg_off_is_invalid(port_id, reg_off))
791 		return;
792 	if (reg_bit_pos_is_invalid(bit_x))
793 		return;
794 	reg_v = port_id_pci_reg_read(port_id, reg_off);
795 	display_port_and_reg_off(port_id, (unsigned)reg_off);
796 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
797 }
798 
799 void
800 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
801 			   uint8_t bit1_pos, uint8_t bit2_pos)
802 {
803 	uint32_t reg_v;
804 	uint8_t  l_bit;
805 	uint8_t  h_bit;
806 
807 	if (port_id_is_invalid(port_id, ENABLED_WARN))
808 		return;
809 	if (port_reg_off_is_invalid(port_id, reg_off))
810 		return;
811 	if (reg_bit_pos_is_invalid(bit1_pos))
812 		return;
813 	if (reg_bit_pos_is_invalid(bit2_pos))
814 		return;
815 	if (bit1_pos > bit2_pos)
816 		l_bit = bit2_pos, h_bit = bit1_pos;
817 	else
818 		l_bit = bit1_pos, h_bit = bit2_pos;
819 
820 	reg_v = port_id_pci_reg_read(port_id, reg_off);
821 	reg_v >>= l_bit;
822 	if (h_bit < 31)
823 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
824 	display_port_and_reg_off(port_id, (unsigned)reg_off);
825 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
826 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
827 }
828 
829 void
830 port_reg_display(portid_t port_id, uint32_t reg_off)
831 {
832 	uint32_t reg_v;
833 
834 	if (port_id_is_invalid(port_id, ENABLED_WARN))
835 		return;
836 	if (port_reg_off_is_invalid(port_id, reg_off))
837 		return;
838 	reg_v = port_id_pci_reg_read(port_id, reg_off);
839 	display_port_reg_value(port_id, reg_off, reg_v);
840 }
841 
842 void
843 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
844 		 uint8_t bit_v)
845 {
846 	uint32_t reg_v;
847 
848 	if (port_id_is_invalid(port_id, ENABLED_WARN))
849 		return;
850 	if (port_reg_off_is_invalid(port_id, reg_off))
851 		return;
852 	if (reg_bit_pos_is_invalid(bit_pos))
853 		return;
854 	if (bit_v > 1) {
855 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
856 		return;
857 	}
858 	reg_v = port_id_pci_reg_read(port_id, reg_off);
859 	if (bit_v == 0)
860 		reg_v &= ~(1 << bit_pos);
861 	else
862 		reg_v |= (1 << bit_pos);
863 	port_id_pci_reg_write(port_id, reg_off, reg_v);
864 	display_port_reg_value(port_id, reg_off, reg_v);
865 }
866 
867 void
868 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
869 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
870 {
871 	uint32_t max_v;
872 	uint32_t reg_v;
873 	uint8_t  l_bit;
874 	uint8_t  h_bit;
875 
876 	if (port_id_is_invalid(port_id, ENABLED_WARN))
877 		return;
878 	if (port_reg_off_is_invalid(port_id, reg_off))
879 		return;
880 	if (reg_bit_pos_is_invalid(bit1_pos))
881 		return;
882 	if (reg_bit_pos_is_invalid(bit2_pos))
883 		return;
884 	if (bit1_pos > bit2_pos)
885 		l_bit = bit2_pos, h_bit = bit1_pos;
886 	else
887 		l_bit = bit1_pos, h_bit = bit2_pos;
888 
889 	if ((h_bit - l_bit) < 31)
890 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
891 	else
892 		max_v = 0xFFFFFFFF;
893 
894 	if (value > max_v) {
895 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
896 				(unsigned)value, (unsigned)value,
897 				(unsigned)max_v, (unsigned)max_v);
898 		return;
899 	}
900 	reg_v = port_id_pci_reg_read(port_id, reg_off);
901 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
902 	reg_v |= (value << l_bit); /* Set changed bits */
903 	port_id_pci_reg_write(port_id, reg_off, reg_v);
904 	display_port_reg_value(port_id, reg_off, reg_v);
905 }
906 
907 void
908 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
909 {
910 	if (port_id_is_invalid(port_id, ENABLED_WARN))
911 		return;
912 	if (port_reg_off_is_invalid(port_id, reg_off))
913 		return;
914 	port_id_pci_reg_write(port_id, reg_off, reg_v);
915 	display_port_reg_value(port_id, reg_off, reg_v);
916 }
917 
918 void
919 port_mtu_set(portid_t port_id, uint16_t mtu)
920 {
921 	int diag;
922 
923 	if (port_id_is_invalid(port_id, ENABLED_WARN))
924 		return;
925 	diag = rte_eth_dev_set_mtu(port_id, mtu);
926 	if (diag == 0)
927 		return;
928 	printf("Set MTU failed. diag=%d\n", diag);
929 }
930 
931 /* Generic flow management functions. */
932 
933 /** Generate flow_item[] entry. */
934 #define MK_FLOW_ITEM(t, s) \
935 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
936 		.name = # t, \
937 		.size = s, \
938 	}
939 
940 /** Information about known flow pattern items. */
941 static const struct {
942 	const char *name;
943 	size_t size;
944 } flow_item[] = {
945 	MK_FLOW_ITEM(END, 0),
946 	MK_FLOW_ITEM(VOID, 0),
947 	MK_FLOW_ITEM(INVERT, 0),
948 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
949 	MK_FLOW_ITEM(PF, 0),
950 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
951 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
952 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
953 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
954 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
955 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
956 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
957 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
958 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
959 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
960 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
961 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
962 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
963 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
964 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
965 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
966 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
967 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
968 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
969 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
970 };
971 
972 /** Compute storage space needed by item specification. */
973 static void
974 flow_item_spec_size(const struct rte_flow_item *item,
975 		    size_t *size, size_t *pad)
976 {
977 	if (!item->spec) {
978 		*size = 0;
979 		goto empty;
980 	}
981 	switch (item->type) {
982 		union {
983 			const struct rte_flow_item_raw *raw;
984 		} spec;
985 
986 	case RTE_FLOW_ITEM_TYPE_RAW:
987 		spec.raw = item->spec;
988 		*size = offsetof(struct rte_flow_item_raw, pattern) +
989 			spec.raw->length * sizeof(*spec.raw->pattern);
990 		break;
991 	default:
992 		*size = flow_item[item->type].size;
993 		break;
994 	}
995 empty:
996 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
997 }
998 
999 /** Generate flow_action[] entry. */
1000 #define MK_FLOW_ACTION(t, s) \
1001 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1002 		.name = # t, \
1003 		.size = s, \
1004 	}
1005 
1006 /** Information about known flow actions. */
1007 static const struct {
1008 	const char *name;
1009 	size_t size;
1010 } flow_action[] = {
1011 	MK_FLOW_ACTION(END, 0),
1012 	MK_FLOW_ACTION(VOID, 0),
1013 	MK_FLOW_ACTION(PASSTHRU, 0),
1014 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1015 	MK_FLOW_ACTION(FLAG, 0),
1016 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1017 	MK_FLOW_ACTION(DROP, 0),
1018 	MK_FLOW_ACTION(COUNT, 0),
1019 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1020 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1021 	MK_FLOW_ACTION(PF, 0),
1022 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1023 };
1024 
1025 /** Compute storage space needed by action configuration. */
1026 static void
1027 flow_action_conf_size(const struct rte_flow_action *action,
1028 		      size_t *size, size_t *pad)
1029 {
1030 	if (!action->conf) {
1031 		*size = 0;
1032 		goto empty;
1033 	}
1034 	switch (action->type) {
1035 		union {
1036 			const struct rte_flow_action_rss *rss;
1037 		} conf;
1038 
1039 	case RTE_FLOW_ACTION_TYPE_RSS:
1040 		conf.rss = action->conf;
1041 		*size = offsetof(struct rte_flow_action_rss, queue) +
1042 			conf.rss->num * sizeof(*conf.rss->queue);
1043 		break;
1044 	default:
1045 		*size = flow_action[action->type].size;
1046 		break;
1047 	}
1048 empty:
1049 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1050 }
1051 
1052 /** Generate a port_flow entry from attributes/pattern/actions. */
1053 static struct port_flow *
1054 port_flow_new(const struct rte_flow_attr *attr,
1055 	      const struct rte_flow_item *pattern,
1056 	      const struct rte_flow_action *actions)
1057 {
1058 	const struct rte_flow_item *item;
1059 	const struct rte_flow_action *action;
1060 	struct port_flow *pf = NULL;
1061 	size_t tmp;
1062 	size_t pad;
1063 	size_t off1 = 0;
1064 	size_t off2 = 0;
1065 	int err = ENOTSUP;
1066 
1067 store:
1068 	item = pattern;
1069 	if (pf)
1070 		pf->pattern = (void *)&pf->data[off1];
1071 	do {
1072 		struct rte_flow_item *dst = NULL;
1073 
1074 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1075 		    !flow_item[item->type].name)
1076 			goto notsup;
1077 		if (pf)
1078 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1079 		off1 += sizeof(*item);
1080 		flow_item_spec_size(item, &tmp, &pad);
1081 		if (item->spec) {
1082 			if (pf)
1083 				dst->spec = memcpy(pf->data + off2,
1084 						   item->spec, tmp);
1085 			off2 += tmp + pad;
1086 		}
1087 		if (item->last) {
1088 			if (pf)
1089 				dst->last = memcpy(pf->data + off2,
1090 						   item->last, tmp);
1091 			off2 += tmp + pad;
1092 		}
1093 		if (item->mask) {
1094 			if (pf)
1095 				dst->mask = memcpy(pf->data + off2,
1096 						   item->mask, tmp);
1097 			off2 += tmp + pad;
1098 		}
1099 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1100 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1101 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1102 	action = actions;
1103 	if (pf)
1104 		pf->actions = (void *)&pf->data[off1];
1105 	do {
1106 		struct rte_flow_action *dst = NULL;
1107 
1108 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1109 		    !flow_action[action->type].name)
1110 			goto notsup;
1111 		if (pf)
1112 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1113 		off1 += sizeof(*action);
1114 		flow_action_conf_size(action, &tmp, &pad);
1115 		if (action->conf) {
1116 			if (pf)
1117 				dst->conf = memcpy(pf->data + off2,
1118 						   action->conf, tmp);
1119 			off2 += tmp + pad;
1120 		}
1121 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1122 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1123 	if (pf != NULL)
1124 		return pf;
1125 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1126 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1127 	pf = calloc(1, tmp + off1 + off2);
1128 	if (pf == NULL)
1129 		err = errno;
1130 	else {
1131 		*pf = (const struct port_flow){
1132 			.size = tmp + off1 + off2,
1133 			.attr = *attr,
1134 		};
1135 		tmp -= offsetof(struct port_flow, data);
1136 		off2 = tmp + off1;
1137 		off1 = tmp;
1138 		goto store;
1139 	}
1140 notsup:
1141 	rte_errno = err;
1142 	return NULL;
1143 }
1144 
1145 /** Print a message out of a flow error. */
1146 static int
1147 port_flow_complain(struct rte_flow_error *error)
1148 {
1149 	static const char *const errstrlist[] = {
1150 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1151 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1152 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1153 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1154 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1155 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1156 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1157 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1158 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1159 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1160 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1161 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1162 	};
1163 	const char *errstr;
1164 	char buf[32];
1165 	int err = rte_errno;
1166 
1167 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1168 	    !errstrlist[error->type])
1169 		errstr = "unknown type";
1170 	else
1171 		errstr = errstrlist[error->type];
1172 	printf("Caught error type %d (%s): %s%s\n",
1173 	       error->type, errstr,
1174 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1175 					error->cause), buf) : "",
1176 	       error->message ? error->message : "(no stated reason)");
1177 	return -err;
1178 }
1179 
1180 /** Validate flow rule. */
1181 int
1182 port_flow_validate(portid_t port_id,
1183 		   const struct rte_flow_attr *attr,
1184 		   const struct rte_flow_item *pattern,
1185 		   const struct rte_flow_action *actions)
1186 {
1187 	struct rte_flow_error error;
1188 
1189 	/* Poisoning to make sure PMDs update it in case of error. */
1190 	memset(&error, 0x11, sizeof(error));
1191 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1192 		return port_flow_complain(&error);
1193 	printf("Flow rule validated\n");
1194 	return 0;
1195 }
1196 
1197 /** Create flow rule. */
1198 int
1199 port_flow_create(portid_t port_id,
1200 		 const struct rte_flow_attr *attr,
1201 		 const struct rte_flow_item *pattern,
1202 		 const struct rte_flow_action *actions)
1203 {
1204 	struct rte_flow *flow;
1205 	struct rte_port *port;
1206 	struct port_flow *pf;
1207 	uint32_t id;
1208 	struct rte_flow_error error;
1209 
1210 	/* Poisoning to make sure PMDs update it in case of error. */
1211 	memset(&error, 0x22, sizeof(error));
1212 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1213 	if (!flow)
1214 		return port_flow_complain(&error);
1215 	port = &ports[port_id];
1216 	if (port->flow_list) {
1217 		if (port->flow_list->id == UINT32_MAX) {
1218 			printf("Highest rule ID is already assigned, delete"
1219 			       " it first");
1220 			rte_flow_destroy(port_id, flow, NULL);
1221 			return -ENOMEM;
1222 		}
1223 		id = port->flow_list->id + 1;
1224 	} else
1225 		id = 0;
1226 	pf = port_flow_new(attr, pattern, actions);
1227 	if (!pf) {
1228 		int err = rte_errno;
1229 
1230 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1231 		rte_flow_destroy(port_id, flow, NULL);
1232 		return -err;
1233 	}
1234 	pf->next = port->flow_list;
1235 	pf->id = id;
1236 	pf->flow = flow;
1237 	port->flow_list = pf;
1238 	printf("Flow rule #%u created\n", pf->id);
1239 	return 0;
1240 }
1241 
1242 /** Destroy a number of flow rules. */
1243 int
1244 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1245 {
1246 	struct rte_port *port;
1247 	struct port_flow **tmp;
1248 	uint32_t c = 0;
1249 	int ret = 0;
1250 
1251 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1252 	    port_id == (portid_t)RTE_PORT_ALL)
1253 		return -EINVAL;
1254 	port = &ports[port_id];
1255 	tmp = &port->flow_list;
1256 	while (*tmp) {
1257 		uint32_t i;
1258 
1259 		for (i = 0; i != n; ++i) {
1260 			struct rte_flow_error error;
1261 			struct port_flow *pf = *tmp;
1262 
1263 			if (rule[i] != pf->id)
1264 				continue;
1265 			/*
1266 			 * Poisoning to make sure PMDs update it in case
1267 			 * of error.
1268 			 */
1269 			memset(&error, 0x33, sizeof(error));
1270 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1271 				ret = port_flow_complain(&error);
1272 				continue;
1273 			}
1274 			printf("Flow rule #%u destroyed\n", pf->id);
1275 			*tmp = pf->next;
1276 			free(pf);
1277 			break;
1278 		}
1279 		if (i == n)
1280 			tmp = &(*tmp)->next;
1281 		++c;
1282 	}
1283 	return ret;
1284 }
1285 
1286 /** Remove all flow rules. */
1287 int
1288 port_flow_flush(portid_t port_id)
1289 {
1290 	struct rte_flow_error error;
1291 	struct rte_port *port;
1292 	int ret = 0;
1293 
1294 	/* Poisoning to make sure PMDs update it in case of error. */
1295 	memset(&error, 0x44, sizeof(error));
1296 	if (rte_flow_flush(port_id, &error)) {
1297 		ret = port_flow_complain(&error);
1298 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1299 		    port_id == (portid_t)RTE_PORT_ALL)
1300 			return ret;
1301 	}
1302 	port = &ports[port_id];
1303 	while (port->flow_list) {
1304 		struct port_flow *pf = port->flow_list->next;
1305 
1306 		free(port->flow_list);
1307 		port->flow_list = pf;
1308 	}
1309 	return ret;
1310 }
1311 
1312 /** Query a flow rule. */
1313 int
1314 port_flow_query(portid_t port_id, uint32_t rule,
1315 		enum rte_flow_action_type action)
1316 {
1317 	struct rte_flow_error error;
1318 	struct rte_port *port;
1319 	struct port_flow *pf;
1320 	const char *name;
1321 	union {
1322 		struct rte_flow_query_count count;
1323 	} query;
1324 
1325 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1326 	    port_id == (portid_t)RTE_PORT_ALL)
1327 		return -EINVAL;
1328 	port = &ports[port_id];
1329 	for (pf = port->flow_list; pf; pf = pf->next)
1330 		if (pf->id == rule)
1331 			break;
1332 	if (!pf) {
1333 		printf("Flow rule #%u not found\n", rule);
1334 		return -ENOENT;
1335 	}
1336 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1337 	    !flow_action[action].name)
1338 		name = "unknown";
1339 	else
1340 		name = flow_action[action].name;
1341 	switch (action) {
1342 	case RTE_FLOW_ACTION_TYPE_COUNT:
1343 		break;
1344 	default:
1345 		printf("Cannot query action type %d (%s)\n", action, name);
1346 		return -ENOTSUP;
1347 	}
1348 	/* Poisoning to make sure PMDs update it in case of error. */
1349 	memset(&error, 0x55, sizeof(error));
1350 	memset(&query, 0, sizeof(query));
1351 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1352 		return port_flow_complain(&error);
1353 	switch (action) {
1354 	case RTE_FLOW_ACTION_TYPE_COUNT:
1355 		printf("%s:\n"
1356 		       " hits_set: %u\n"
1357 		       " bytes_set: %u\n"
1358 		       " hits: %" PRIu64 "\n"
1359 		       " bytes: %" PRIu64 "\n",
1360 		       name,
1361 		       query.count.hits_set,
1362 		       query.count.bytes_set,
1363 		       query.count.hits,
1364 		       query.count.bytes);
1365 		break;
1366 	default:
1367 		printf("Cannot display result for action type %d (%s)\n",
1368 		       action, name);
1369 		break;
1370 	}
1371 	return 0;
1372 }
1373 
1374 /** List flow rules. */
1375 void
1376 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1377 {
1378 	struct rte_port *port;
1379 	struct port_flow *pf;
1380 	struct port_flow *list = NULL;
1381 	uint32_t i;
1382 
1383 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1384 	    port_id == (portid_t)RTE_PORT_ALL)
1385 		return;
1386 	port = &ports[port_id];
1387 	if (!port->flow_list)
1388 		return;
1389 	/* Sort flows by group, priority and ID. */
1390 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1391 		struct port_flow **tmp;
1392 
1393 		if (n) {
1394 			/* Filter out unwanted groups. */
1395 			for (i = 0; i != n; ++i)
1396 				if (pf->attr.group == group[i])
1397 					break;
1398 			if (i == n)
1399 				continue;
1400 		}
1401 		tmp = &list;
1402 		while (*tmp &&
1403 		       (pf->attr.group > (*tmp)->attr.group ||
1404 			(pf->attr.group == (*tmp)->attr.group &&
1405 			 pf->attr.priority > (*tmp)->attr.priority) ||
1406 			(pf->attr.group == (*tmp)->attr.group &&
1407 			 pf->attr.priority == (*tmp)->attr.priority &&
1408 			 pf->id > (*tmp)->id)))
1409 			tmp = &(*tmp)->tmp;
1410 		pf->tmp = *tmp;
1411 		*tmp = pf;
1412 	}
1413 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1414 	for (pf = list; pf != NULL; pf = pf->tmp) {
1415 		const struct rte_flow_item *item = pf->pattern;
1416 		const struct rte_flow_action *action = pf->actions;
1417 
1418 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1419 		       pf->id,
1420 		       pf->attr.group,
1421 		       pf->attr.priority,
1422 		       pf->attr.ingress ? 'i' : '-',
1423 		       pf->attr.egress ? 'e' : '-');
1424 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1425 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1426 				printf("%s ", flow_item[item->type].name);
1427 			++item;
1428 		}
1429 		printf("=>");
1430 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1431 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1432 				printf(" %s", flow_action[action->type].name);
1433 			++action;
1434 		}
1435 		printf("\n");
1436 	}
1437 }
1438 
1439 /** Restrict ingress traffic to the defined flow rules. */
1440 int
1441 port_flow_isolate(portid_t port_id, int set)
1442 {
1443 	struct rte_flow_error error;
1444 
1445 	/* Poisoning to make sure PMDs update it in case of error. */
1446 	memset(&error, 0x66, sizeof(error));
1447 	if (rte_flow_isolate(port_id, set, &error))
1448 		return port_flow_complain(&error);
1449 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1450 	       port_id,
1451 	       set ? "now restricted" : "not restricted anymore");
1452 	return 0;
1453 }
1454 
1455 /*
1456  * RX/TX ring descriptors display functions.
1457  */
1458 int
1459 rx_queue_id_is_invalid(queueid_t rxq_id)
1460 {
1461 	if (rxq_id < nb_rxq)
1462 		return 0;
1463 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1464 	return 1;
1465 }
1466 
1467 int
1468 tx_queue_id_is_invalid(queueid_t txq_id)
1469 {
1470 	if (txq_id < nb_txq)
1471 		return 0;
1472 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1473 	return 1;
1474 }
1475 
1476 static int
1477 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1478 {
1479 	if (rxdesc_id < nb_rxd)
1480 		return 0;
1481 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1482 	       rxdesc_id, nb_rxd);
1483 	return 1;
1484 }
1485 
1486 static int
1487 tx_desc_id_is_invalid(uint16_t txdesc_id)
1488 {
1489 	if (txdesc_id < nb_txd)
1490 		return 0;
1491 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1492 	       txdesc_id, nb_txd);
1493 	return 1;
1494 }
1495 
1496 static const struct rte_memzone *
1497 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1498 {
1499 	char mz_name[RTE_MEMZONE_NAMESIZE];
1500 	const struct rte_memzone *mz;
1501 
1502 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1503 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1504 	mz = rte_memzone_lookup(mz_name);
1505 	if (mz == NULL)
1506 		printf("%s ring memory zoneof (port %d, queue %d) not"
1507 		       "found (zone name = %s\n",
1508 		       ring_name, port_id, q_id, mz_name);
1509 	return mz;
1510 }
1511 
1512 union igb_ring_dword {
1513 	uint64_t dword;
1514 	struct {
1515 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1516 		uint32_t lo;
1517 		uint32_t hi;
1518 #else
1519 		uint32_t hi;
1520 		uint32_t lo;
1521 #endif
1522 	} words;
1523 };
1524 
1525 struct igb_ring_desc_32_bytes {
1526 	union igb_ring_dword lo_dword;
1527 	union igb_ring_dword hi_dword;
1528 	union igb_ring_dword resv1;
1529 	union igb_ring_dword resv2;
1530 };
1531 
1532 struct igb_ring_desc_16_bytes {
1533 	union igb_ring_dword lo_dword;
1534 	union igb_ring_dword hi_dword;
1535 };
1536 
1537 static void
1538 ring_rxd_display_dword(union igb_ring_dword dword)
1539 {
1540 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1541 					(unsigned)dword.words.hi);
1542 }
1543 
1544 static void
1545 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1546 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1547 			   uint8_t port_id,
1548 #else
1549 			   __rte_unused uint8_t port_id,
1550 #endif
1551 			   uint16_t desc_id)
1552 {
1553 	struct igb_ring_desc_16_bytes *ring =
1554 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1555 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1556 	struct rte_eth_dev_info dev_info;
1557 
1558 	memset(&dev_info, 0, sizeof(dev_info));
1559 	rte_eth_dev_info_get(port_id, &dev_info);
1560 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1561 		/* 32 bytes RX descriptor, i40e only */
1562 		struct igb_ring_desc_32_bytes *ring =
1563 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1564 		ring[desc_id].lo_dword.dword =
1565 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1566 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1567 		ring[desc_id].hi_dword.dword =
1568 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1569 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1570 		ring[desc_id].resv1.dword =
1571 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1572 		ring_rxd_display_dword(ring[desc_id].resv1);
1573 		ring[desc_id].resv2.dword =
1574 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1575 		ring_rxd_display_dword(ring[desc_id].resv2);
1576 
1577 		return;
1578 	}
1579 #endif
1580 	/* 16 bytes RX descriptor */
1581 	ring[desc_id].lo_dword.dword =
1582 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1583 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1584 	ring[desc_id].hi_dword.dword =
1585 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1586 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1587 }
1588 
1589 static void
1590 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1591 {
1592 	struct igb_ring_desc_16_bytes *ring;
1593 	struct igb_ring_desc_16_bytes txd;
1594 
1595 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1596 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1597 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1598 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1599 			(unsigned)txd.lo_dword.words.lo,
1600 			(unsigned)txd.lo_dword.words.hi,
1601 			(unsigned)txd.hi_dword.words.lo,
1602 			(unsigned)txd.hi_dword.words.hi);
1603 }
1604 
1605 void
1606 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1607 {
1608 	const struct rte_memzone *rx_mz;
1609 
1610 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1611 		return;
1612 	if (rx_queue_id_is_invalid(rxq_id))
1613 		return;
1614 	if (rx_desc_id_is_invalid(rxd_id))
1615 		return;
1616 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1617 	if (rx_mz == NULL)
1618 		return;
1619 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1620 }
1621 
1622 void
1623 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1624 {
1625 	const struct rte_memzone *tx_mz;
1626 
1627 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1628 		return;
1629 	if (tx_queue_id_is_invalid(txq_id))
1630 		return;
1631 	if (tx_desc_id_is_invalid(txd_id))
1632 		return;
1633 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1634 	if (tx_mz == NULL)
1635 		return;
1636 	ring_tx_descriptor_display(tx_mz, txd_id);
1637 }
1638 
1639 void
1640 fwd_lcores_config_display(void)
1641 {
1642 	lcoreid_t lc_id;
1643 
1644 	printf("List of forwarding lcores:");
1645 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1646 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1647 	printf("\n");
1648 }
1649 void
1650 rxtx_config_display(void)
1651 {
1652 	printf("  %s packet forwarding%s - CRC stripping %s - "
1653 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1654 	       retry_enabled == 0 ? "" : " with retry",
1655 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1656 	       nb_pkt_per_burst);
1657 
1658 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1659 		printf("  packet len=%u - nb packet segments=%d\n",
1660 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1661 
1662 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1663 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1664 
1665 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1666 	       nb_fwd_lcores, nb_fwd_ports);
1667 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1668 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1669 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1670 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1671 	       rx_conf->rx_thresh.wthresh);
1672 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1673 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1674 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1675 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1676 	       tx_conf->tx_thresh.wthresh);
1677 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1678 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1679 }
1680 
1681 void
1682 port_rss_reta_info(portid_t port_id,
1683 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1684 		   uint16_t nb_entries)
1685 {
1686 	uint16_t i, idx, shift;
1687 	int ret;
1688 
1689 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1690 		return;
1691 
1692 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1693 	if (ret != 0) {
1694 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1695 		return;
1696 	}
1697 
1698 	for (i = 0; i < nb_entries; i++) {
1699 		idx = i / RTE_RETA_GROUP_SIZE;
1700 		shift = i % RTE_RETA_GROUP_SIZE;
1701 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1702 			continue;
1703 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1704 					i, reta_conf[idx].reta[shift]);
1705 	}
1706 }
1707 
1708 /*
1709  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1710  * key of the port.
1711  */
1712 void
1713 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1714 {
1715 	struct rte_eth_rss_conf rss_conf;
1716 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1717 	uint64_t rss_hf;
1718 	uint8_t i;
1719 	int diag;
1720 	struct rte_eth_dev_info dev_info;
1721 	uint8_t hash_key_size;
1722 
1723 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1724 		return;
1725 
1726 	memset(&dev_info, 0, sizeof(dev_info));
1727 	rte_eth_dev_info_get(port_id, &dev_info);
1728 	if (dev_info.hash_key_size > 0 &&
1729 			dev_info.hash_key_size <= sizeof(rss_key))
1730 		hash_key_size = dev_info.hash_key_size;
1731 	else {
1732 		printf("dev_info did not provide a valid hash key size\n");
1733 		return;
1734 	}
1735 
1736 	rss_conf.rss_hf = 0;
1737 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1738 		if (!strcmp(rss_info, rss_type_table[i].str))
1739 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1740 	}
1741 
1742 	/* Get RSS hash key if asked to display it */
1743 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1744 	rss_conf.rss_key_len = hash_key_size;
1745 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1746 	if (diag != 0) {
1747 		switch (diag) {
1748 		case -ENODEV:
1749 			printf("port index %d invalid\n", port_id);
1750 			break;
1751 		case -ENOTSUP:
1752 			printf("operation not supported by device\n");
1753 			break;
1754 		default:
1755 			printf("operation failed - diag=%d\n", diag);
1756 			break;
1757 		}
1758 		return;
1759 	}
1760 	rss_hf = rss_conf.rss_hf;
1761 	if (rss_hf == 0) {
1762 		printf("RSS disabled\n");
1763 		return;
1764 	}
1765 	printf("RSS functions:\n ");
1766 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1767 		if (rss_hf & rss_type_table[i].rss_type)
1768 			printf("%s ", rss_type_table[i].str);
1769 	}
1770 	printf("\n");
1771 	if (!show_rss_key)
1772 		return;
1773 	printf("RSS key:\n");
1774 	for (i = 0; i < hash_key_size; i++)
1775 		printf("%02X", rss_key[i]);
1776 	printf("\n");
1777 }
1778 
1779 void
1780 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1781 			 uint hash_key_len)
1782 {
1783 	struct rte_eth_rss_conf rss_conf;
1784 	int diag;
1785 	unsigned int i;
1786 
1787 	rss_conf.rss_key = NULL;
1788 	rss_conf.rss_key_len = hash_key_len;
1789 	rss_conf.rss_hf = 0;
1790 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1791 		if (!strcmp(rss_type_table[i].str, rss_type))
1792 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1793 	}
1794 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1795 	if (diag == 0) {
1796 		rss_conf.rss_key = hash_key;
1797 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1798 	}
1799 	if (diag == 0)
1800 		return;
1801 
1802 	switch (diag) {
1803 	case -ENODEV:
1804 		printf("port index %d invalid\n", port_id);
1805 		break;
1806 	case -ENOTSUP:
1807 		printf("operation not supported by device\n");
1808 		break;
1809 	default:
1810 		printf("operation failed - diag=%d\n", diag);
1811 		break;
1812 	}
1813 }
1814 
1815 /*
1816  * Setup forwarding configuration for each logical core.
1817  */
1818 static void
1819 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1820 {
1821 	streamid_t nb_fs_per_lcore;
1822 	streamid_t nb_fs;
1823 	streamid_t sm_id;
1824 	lcoreid_t  nb_extra;
1825 	lcoreid_t  nb_fc;
1826 	lcoreid_t  nb_lc;
1827 	lcoreid_t  lc_id;
1828 
1829 	nb_fs = cfg->nb_fwd_streams;
1830 	nb_fc = cfg->nb_fwd_lcores;
1831 	if (nb_fs <= nb_fc) {
1832 		nb_fs_per_lcore = 1;
1833 		nb_extra = 0;
1834 	} else {
1835 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1836 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1837 	}
1838 
1839 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1840 	sm_id = 0;
1841 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1842 		fwd_lcores[lc_id]->stream_idx = sm_id;
1843 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1844 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1845 	}
1846 
1847 	/*
1848 	 * Assign extra remaining streams, if any.
1849 	 */
1850 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1851 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1852 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1853 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1854 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1855 	}
1856 }
1857 
1858 static void
1859 simple_fwd_config_setup(void)
1860 {
1861 	portid_t i;
1862 	portid_t j;
1863 	portid_t inc = 2;
1864 
1865 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1866 	    port_topology == PORT_TOPOLOGY_LOOP) {
1867 		inc = 1;
1868 	} else if (nb_fwd_ports % 2) {
1869 		printf("\nWarning! Cannot handle an odd number of ports "
1870 		       "with the current port topology. Configuration "
1871 		       "must be changed to have an even number of ports, "
1872 		       "or relaunch application with "
1873 		       "--port-topology=chained\n\n");
1874 	}
1875 
1876 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1877 	cur_fwd_config.nb_fwd_streams =
1878 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1879 
1880 	/* reinitialize forwarding streams */
1881 	init_fwd_streams();
1882 
1883 	/*
1884 	 * In the simple forwarding test, the number of forwarding cores
1885 	 * must be lower or equal to the number of forwarding ports.
1886 	 */
1887 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1888 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1889 		cur_fwd_config.nb_fwd_lcores =
1890 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1891 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1892 
1893 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1894 		if (port_topology != PORT_TOPOLOGY_LOOP)
1895 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1896 		else
1897 			j = i;
1898 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1899 		fwd_streams[i]->rx_queue  = 0;
1900 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1901 		fwd_streams[i]->tx_queue  = 0;
1902 		fwd_streams[i]->peer_addr = j;
1903 		fwd_streams[i]->retry_enabled = retry_enabled;
1904 
1905 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1906 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1907 			fwd_streams[j]->rx_queue  = 0;
1908 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1909 			fwd_streams[j]->tx_queue  = 0;
1910 			fwd_streams[j]->peer_addr = i;
1911 			fwd_streams[j]->retry_enabled = retry_enabled;
1912 		}
1913 	}
1914 }
1915 
1916 /**
1917  * For the RSS forwarding test all streams distributed over lcores. Each stream
1918  * being composed of a RX queue to poll on a RX port for input messages,
1919  * associated with a TX queue of a TX port where to send forwarded packets.
1920  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1921  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1922  * following rules:
1923  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1924  *    - TxQl = RxQj
1925  */
1926 static void
1927 rss_fwd_config_setup(void)
1928 {
1929 	portid_t   rxp;
1930 	portid_t   txp;
1931 	queueid_t  rxq;
1932 	queueid_t  nb_q;
1933 	streamid_t  sm_id;
1934 
1935 	nb_q = nb_rxq;
1936 	if (nb_q > nb_txq)
1937 		nb_q = nb_txq;
1938 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1939 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1940 	cur_fwd_config.nb_fwd_streams =
1941 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1942 
1943 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1944 		cur_fwd_config.nb_fwd_lcores =
1945 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1946 
1947 	/* reinitialize forwarding streams */
1948 	init_fwd_streams();
1949 
1950 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1951 	rxp = 0; rxq = 0;
1952 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1953 		struct fwd_stream *fs;
1954 
1955 		fs = fwd_streams[sm_id];
1956 
1957 		if ((rxp & 0x1) == 0)
1958 			txp = (portid_t) (rxp + 1);
1959 		else
1960 			txp = (portid_t) (rxp - 1);
1961 		/*
1962 		 * if we are in loopback, simply send stuff out through the
1963 		 * ingress port
1964 		 */
1965 		if (port_topology == PORT_TOPOLOGY_LOOP)
1966 			txp = rxp;
1967 
1968 		fs->rx_port = fwd_ports_ids[rxp];
1969 		fs->rx_queue = rxq;
1970 		fs->tx_port = fwd_ports_ids[txp];
1971 		fs->tx_queue = rxq;
1972 		fs->peer_addr = fs->tx_port;
1973 		fs->retry_enabled = retry_enabled;
1974 		rxq = (queueid_t) (rxq + 1);
1975 		if (rxq < nb_q)
1976 			continue;
1977 		/*
1978 		 * rxq == nb_q
1979 		 * Restart from RX queue 0 on next RX port
1980 		 */
1981 		rxq = 0;
1982 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1983 			rxp = (portid_t)
1984 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1985 		else
1986 			rxp = (portid_t) (rxp + 1);
1987 	}
1988 }
1989 
1990 /**
1991  * For the DCB forwarding test, each core is assigned on each traffic class.
1992  *
1993  * Each core is assigned a multi-stream, each stream being composed of
1994  * a RX queue to poll on a RX port for input messages, associated with
1995  * a TX queue of a TX port where to send forwarded packets. All RX and
1996  * TX queues are mapping to the same traffic class.
1997  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1998  * the same core
1999  */
2000 static void
2001 dcb_fwd_config_setup(void)
2002 {
2003 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2004 	portid_t txp, rxp = 0;
2005 	queueid_t txq, rxq = 0;
2006 	lcoreid_t  lc_id;
2007 	uint16_t nb_rx_queue, nb_tx_queue;
2008 	uint16_t i, j, k, sm_id = 0;
2009 	uint8_t tc = 0;
2010 
2011 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2012 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2013 	cur_fwd_config.nb_fwd_streams =
2014 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2015 
2016 	/* reinitialize forwarding streams */
2017 	init_fwd_streams();
2018 	sm_id = 0;
2019 	txp = 1;
2020 	/* get the dcb info on the first RX and TX ports */
2021 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2022 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2023 
2024 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2025 		fwd_lcores[lc_id]->stream_nb = 0;
2026 		fwd_lcores[lc_id]->stream_idx = sm_id;
2027 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2028 			/* if the nb_queue is zero, means this tc is
2029 			 * not enabled on the POOL
2030 			 */
2031 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2032 				break;
2033 			k = fwd_lcores[lc_id]->stream_nb +
2034 				fwd_lcores[lc_id]->stream_idx;
2035 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2036 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2037 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2038 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2039 			for (j = 0; j < nb_rx_queue; j++) {
2040 				struct fwd_stream *fs;
2041 
2042 				fs = fwd_streams[k + j];
2043 				fs->rx_port = fwd_ports_ids[rxp];
2044 				fs->rx_queue = rxq + j;
2045 				fs->tx_port = fwd_ports_ids[txp];
2046 				fs->tx_queue = txq + j % nb_tx_queue;
2047 				fs->peer_addr = fs->tx_port;
2048 				fs->retry_enabled = retry_enabled;
2049 			}
2050 			fwd_lcores[lc_id]->stream_nb +=
2051 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2052 		}
2053 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2054 
2055 		tc++;
2056 		if (tc < rxp_dcb_info.nb_tcs)
2057 			continue;
2058 		/* Restart from TC 0 on next RX port */
2059 		tc = 0;
2060 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2061 			rxp = (portid_t)
2062 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2063 		else
2064 			rxp++;
2065 		if (rxp >= nb_fwd_ports)
2066 			return;
2067 		/* get the dcb information on next RX and TX ports */
2068 		if ((rxp & 0x1) == 0)
2069 			txp = (portid_t) (rxp + 1);
2070 		else
2071 			txp = (portid_t) (rxp - 1);
2072 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2073 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2074 	}
2075 }
2076 
2077 static void
2078 icmp_echo_config_setup(void)
2079 {
2080 	portid_t  rxp;
2081 	queueid_t rxq;
2082 	lcoreid_t lc_id;
2083 	uint16_t  sm_id;
2084 
2085 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2086 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2087 			(nb_txq * nb_fwd_ports);
2088 	else
2089 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2090 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2091 	cur_fwd_config.nb_fwd_streams =
2092 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2093 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2094 		cur_fwd_config.nb_fwd_lcores =
2095 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2096 	if (verbose_level > 0) {
2097 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2098 		       __FUNCTION__,
2099 		       cur_fwd_config.nb_fwd_lcores,
2100 		       cur_fwd_config.nb_fwd_ports,
2101 		       cur_fwd_config.nb_fwd_streams);
2102 	}
2103 
2104 	/* reinitialize forwarding streams */
2105 	init_fwd_streams();
2106 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2107 	rxp = 0; rxq = 0;
2108 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2109 		if (verbose_level > 0)
2110 			printf("  core=%d: \n", lc_id);
2111 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2112 			struct fwd_stream *fs;
2113 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2114 			fs->rx_port = fwd_ports_ids[rxp];
2115 			fs->rx_queue = rxq;
2116 			fs->tx_port = fs->rx_port;
2117 			fs->tx_queue = rxq;
2118 			fs->peer_addr = fs->tx_port;
2119 			fs->retry_enabled = retry_enabled;
2120 			if (verbose_level > 0)
2121 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2122 				       sm_id, fs->rx_port, fs->rx_queue,
2123 				       fs->tx_queue);
2124 			rxq = (queueid_t) (rxq + 1);
2125 			if (rxq == nb_rxq) {
2126 				rxq = 0;
2127 				rxp = (portid_t) (rxp + 1);
2128 			}
2129 		}
2130 	}
2131 }
2132 
2133 void
2134 fwd_config_setup(void)
2135 {
2136 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2137 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2138 		icmp_echo_config_setup();
2139 		return;
2140 	}
2141 	if ((nb_rxq > 1) && (nb_txq > 1)){
2142 		if (dcb_config)
2143 			dcb_fwd_config_setup();
2144 		else
2145 			rss_fwd_config_setup();
2146 	}
2147 	else
2148 		simple_fwd_config_setup();
2149 }
2150 
2151 void
2152 pkt_fwd_config_display(struct fwd_config *cfg)
2153 {
2154 	struct fwd_stream *fs;
2155 	lcoreid_t  lc_id;
2156 	streamid_t sm_id;
2157 
2158 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2159 		"NUMA support %s, MP over anonymous pages %s\n",
2160 		cfg->fwd_eng->fwd_mode_name,
2161 		retry_enabled == 0 ? "" : " with retry",
2162 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2163 		numa_support == 1 ? "enabled" : "disabled",
2164 		mp_anon != 0 ? "enabled" : "disabled");
2165 
2166 	if (retry_enabled)
2167 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2168 			burst_tx_retry_num, burst_tx_delay_time);
2169 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2170 		printf("Logical Core %u (socket %u) forwards packets on "
2171 		       "%d streams:",
2172 		       fwd_lcores_cpuids[lc_id],
2173 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2174 		       fwd_lcores[lc_id]->stream_nb);
2175 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2176 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2177 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2178 			       "P=%d/Q=%d (socket %u) ",
2179 			       fs->rx_port, fs->rx_queue,
2180 			       ports[fs->rx_port].socket_id,
2181 			       fs->tx_port, fs->tx_queue,
2182 			       ports[fs->tx_port].socket_id);
2183 			print_ethaddr("peer=",
2184 				      &peer_eth_addrs[fs->peer_addr]);
2185 		}
2186 		printf("\n");
2187 	}
2188 	printf("\n");
2189 }
2190 
2191 int
2192 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2193 {
2194 	unsigned int i;
2195 	unsigned int lcore_cpuid;
2196 	int record_now;
2197 
2198 	record_now = 0;
2199  again:
2200 	for (i = 0; i < nb_lc; i++) {
2201 		lcore_cpuid = lcorelist[i];
2202 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2203 			printf("lcore %u not enabled\n", lcore_cpuid);
2204 			return -1;
2205 		}
2206 		if (lcore_cpuid == rte_get_master_lcore()) {
2207 			printf("lcore %u cannot be masked on for running "
2208 			       "packet forwarding, which is the master lcore "
2209 			       "and reserved for command line parsing only\n",
2210 			       lcore_cpuid);
2211 			return -1;
2212 		}
2213 		if (record_now)
2214 			fwd_lcores_cpuids[i] = lcore_cpuid;
2215 	}
2216 	if (record_now == 0) {
2217 		record_now = 1;
2218 		goto again;
2219 	}
2220 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2221 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2222 		printf("previous number of forwarding cores %u - changed to "
2223 		       "number of configured cores %u\n",
2224 		       (unsigned int) nb_fwd_lcores, nb_lc);
2225 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 int
2232 set_fwd_lcores_mask(uint64_t lcoremask)
2233 {
2234 	unsigned int lcorelist[64];
2235 	unsigned int nb_lc;
2236 	unsigned int i;
2237 
2238 	if (lcoremask == 0) {
2239 		printf("Invalid NULL mask of cores\n");
2240 		return -1;
2241 	}
2242 	nb_lc = 0;
2243 	for (i = 0; i < 64; i++) {
2244 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2245 			continue;
2246 		lcorelist[nb_lc++] = i;
2247 	}
2248 	return set_fwd_lcores_list(lcorelist, nb_lc);
2249 }
2250 
2251 void
2252 set_fwd_lcores_number(uint16_t nb_lc)
2253 {
2254 	if (nb_lc > nb_cfg_lcores) {
2255 		printf("nb fwd cores %u > %u (max. number of configured "
2256 		       "lcores) - ignored\n",
2257 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2258 		return;
2259 	}
2260 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2261 	printf("Number of forwarding cores set to %u\n",
2262 	       (unsigned int) nb_fwd_lcores);
2263 }
2264 
2265 void
2266 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2267 {
2268 	unsigned int i;
2269 	portid_t port_id;
2270 	int record_now;
2271 
2272 	record_now = 0;
2273  again:
2274 	for (i = 0; i < nb_pt; i++) {
2275 		port_id = (portid_t) portlist[i];
2276 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2277 			return;
2278 		if (record_now)
2279 			fwd_ports_ids[i] = port_id;
2280 	}
2281 	if (record_now == 0) {
2282 		record_now = 1;
2283 		goto again;
2284 	}
2285 	nb_cfg_ports = (portid_t) nb_pt;
2286 	if (nb_fwd_ports != (portid_t) nb_pt) {
2287 		printf("previous number of forwarding ports %u - changed to "
2288 		       "number of configured ports %u\n",
2289 		       (unsigned int) nb_fwd_ports, nb_pt);
2290 		nb_fwd_ports = (portid_t) nb_pt;
2291 	}
2292 }
2293 
2294 void
2295 set_fwd_ports_mask(uint64_t portmask)
2296 {
2297 	unsigned int portlist[64];
2298 	unsigned int nb_pt;
2299 	unsigned int i;
2300 
2301 	if (portmask == 0) {
2302 		printf("Invalid NULL mask of ports\n");
2303 		return;
2304 	}
2305 	nb_pt = 0;
2306 	RTE_ETH_FOREACH_DEV(i) {
2307 		if (! ((uint64_t)(1ULL << i) & portmask))
2308 			continue;
2309 		portlist[nb_pt++] = i;
2310 	}
2311 	set_fwd_ports_list(portlist, nb_pt);
2312 }
2313 
2314 void
2315 set_fwd_ports_number(uint16_t nb_pt)
2316 {
2317 	if (nb_pt > nb_cfg_ports) {
2318 		printf("nb fwd ports %u > %u (number of configured "
2319 		       "ports) - ignored\n",
2320 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2321 		return;
2322 	}
2323 	nb_fwd_ports = (portid_t) nb_pt;
2324 	printf("Number of forwarding ports set to %u\n",
2325 	       (unsigned int) nb_fwd_ports);
2326 }
2327 
2328 int
2329 port_is_forwarding(portid_t port_id)
2330 {
2331 	unsigned int i;
2332 
2333 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2334 		return -1;
2335 
2336 	for (i = 0; i < nb_fwd_ports; i++) {
2337 		if (fwd_ports_ids[i] == port_id)
2338 			return 1;
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 void
2345 set_nb_pkt_per_burst(uint16_t nb)
2346 {
2347 	if (nb > MAX_PKT_BURST) {
2348 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2349 		       " ignored\n",
2350 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2351 		return;
2352 	}
2353 	nb_pkt_per_burst = nb;
2354 	printf("Number of packets per burst set to %u\n",
2355 	       (unsigned int) nb_pkt_per_burst);
2356 }
2357 
2358 static const char *
2359 tx_split_get_name(enum tx_pkt_split split)
2360 {
2361 	uint32_t i;
2362 
2363 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2364 		if (tx_split_name[i].split == split)
2365 			return tx_split_name[i].name;
2366 	}
2367 	return NULL;
2368 }
2369 
2370 void
2371 set_tx_pkt_split(const char *name)
2372 {
2373 	uint32_t i;
2374 
2375 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2376 		if (strcmp(tx_split_name[i].name, name) == 0) {
2377 			tx_pkt_split = tx_split_name[i].split;
2378 			return;
2379 		}
2380 	}
2381 	printf("unknown value: \"%s\"\n", name);
2382 }
2383 
2384 void
2385 show_tx_pkt_segments(void)
2386 {
2387 	uint32_t i, n;
2388 	const char *split;
2389 
2390 	n = tx_pkt_nb_segs;
2391 	split = tx_split_get_name(tx_pkt_split);
2392 
2393 	printf("Number of segments: %u\n", n);
2394 	printf("Segment sizes: ");
2395 	for (i = 0; i != n - 1; i++)
2396 		printf("%hu,", tx_pkt_seg_lengths[i]);
2397 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2398 	printf("Split packet: %s\n", split);
2399 }
2400 
2401 void
2402 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2403 {
2404 	uint16_t tx_pkt_len;
2405 	unsigned i;
2406 
2407 	if (nb_segs >= (unsigned) nb_txd) {
2408 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2409 		       nb_segs, (unsigned int) nb_txd);
2410 		return;
2411 	}
2412 
2413 	/*
2414 	 * Check that each segment length is greater or equal than
2415 	 * the mbuf data sise.
2416 	 * Check also that the total packet length is greater or equal than the
2417 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2418 	 */
2419 	tx_pkt_len = 0;
2420 	for (i = 0; i < nb_segs; i++) {
2421 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2422 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2423 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2424 			return;
2425 		}
2426 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2427 	}
2428 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2429 		printf("total packet length=%u < %d - give up\n",
2430 				(unsigned) tx_pkt_len,
2431 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2432 		return;
2433 	}
2434 
2435 	for (i = 0; i < nb_segs; i++)
2436 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2437 
2438 	tx_pkt_length  = tx_pkt_len;
2439 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2440 }
2441 
2442 void
2443 setup_gro(const char *onoff, portid_t port_id)
2444 {
2445 	if (!rte_eth_dev_is_valid_port(port_id)) {
2446 		printf("invalid port id %u\n", port_id);
2447 		return;
2448 	}
2449 	if (test_done == 0) {
2450 		printf("Before enable/disable GRO,"
2451 				" please stop forwarding first\n");
2452 		return;
2453 	}
2454 	if (strcmp(onoff, "on") == 0) {
2455 		if (gro_ports[port_id].enable != 0) {
2456 			printf("Port %u has enabled GRO. Please"
2457 					" disable GRO first\n", port_id);
2458 			return;
2459 		}
2460 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2461 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2462 			gro_ports[port_id].param.max_flow_num =
2463 				GRO_DEFAULT_FLOW_NUM;
2464 			gro_ports[port_id].param.max_item_per_flow =
2465 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2466 		}
2467 		gro_ports[port_id].enable = 1;
2468 	} else {
2469 		if (gro_ports[port_id].enable == 0) {
2470 			printf("Port %u has disabled GRO\n", port_id);
2471 			return;
2472 		}
2473 		gro_ports[port_id].enable = 0;
2474 	}
2475 }
2476 
2477 void
2478 setup_gro_flush_cycles(uint8_t cycles)
2479 {
2480 	if (test_done == 0) {
2481 		printf("Before change flush interval for GRO,"
2482 				" please stop forwarding first.\n");
2483 		return;
2484 	}
2485 
2486 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2487 			GRO_DEFAULT_FLUSH_CYCLES) {
2488 		printf("The flushing cycle be in the range"
2489 				" of 1 to %u. Revert to the default"
2490 				" value %u.\n",
2491 				GRO_MAX_FLUSH_CYCLES,
2492 				GRO_DEFAULT_FLUSH_CYCLES);
2493 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2494 	}
2495 
2496 	gro_flush_cycles = cycles;
2497 }
2498 
2499 void
2500 show_gro(portid_t port_id)
2501 {
2502 	struct rte_gro_param *param;
2503 	uint32_t max_pkts_num;
2504 
2505 	param = &gro_ports[port_id].param;
2506 
2507 	if (!rte_eth_dev_is_valid_port(port_id)) {
2508 		printf("Invalid port id %u.\n", port_id);
2509 		return;
2510 	}
2511 	if (gro_ports[port_id].enable) {
2512 		printf("GRO type: TCP/IPv4\n");
2513 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2514 			max_pkts_num = param->max_flow_num *
2515 				param->max_item_per_flow;
2516 		} else
2517 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2518 		printf("Max number of packets to perform GRO: %u\n",
2519 				max_pkts_num);
2520 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2521 	} else
2522 		printf("Port %u doesn't enable GRO.\n", port_id);
2523 }
2524 
2525 void
2526 setup_gso(const char *mode, portid_t port_id)
2527 {
2528 	if (!rte_eth_dev_is_valid_port(port_id)) {
2529 		printf("invalid port id %u\n", port_id);
2530 		return;
2531 	}
2532 	if (strcmp(mode, "on") == 0) {
2533 		if (test_done == 0) {
2534 			printf("before enabling GSO,"
2535 					" please stop forwarding first\n");
2536 			return;
2537 		}
2538 		gso_ports[port_id].enable = 1;
2539 	} else if (strcmp(mode, "off") == 0) {
2540 		if (test_done == 0) {
2541 			printf("before disabling GSO,"
2542 					" please stop forwarding first\n");
2543 			return;
2544 		}
2545 		gso_ports[port_id].enable = 0;
2546 	}
2547 }
2548 
2549 char*
2550 list_pkt_forwarding_modes(void)
2551 {
2552 	static char fwd_modes[128] = "";
2553 	const char *separator = "|";
2554 	struct fwd_engine *fwd_eng;
2555 	unsigned i = 0;
2556 
2557 	if (strlen (fwd_modes) == 0) {
2558 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2559 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2560 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2561 			strncat(fwd_modes, separator,
2562 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2563 		}
2564 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2565 	}
2566 
2567 	return fwd_modes;
2568 }
2569 
2570 char*
2571 list_pkt_forwarding_retry_modes(void)
2572 {
2573 	static char fwd_modes[128] = "";
2574 	const char *separator = "|";
2575 	struct fwd_engine *fwd_eng;
2576 	unsigned i = 0;
2577 
2578 	if (strlen(fwd_modes) == 0) {
2579 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2580 			if (fwd_eng == &rx_only_engine)
2581 				continue;
2582 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2583 					sizeof(fwd_modes) -
2584 					strlen(fwd_modes) - 1);
2585 			strncat(fwd_modes, separator,
2586 					sizeof(fwd_modes) -
2587 					strlen(fwd_modes) - 1);
2588 		}
2589 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2590 	}
2591 
2592 	return fwd_modes;
2593 }
2594 
2595 void
2596 set_pkt_forwarding_mode(const char *fwd_mode_name)
2597 {
2598 	struct fwd_engine *fwd_eng;
2599 	unsigned i;
2600 
2601 	i = 0;
2602 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2603 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2604 			printf("Set %s packet forwarding mode%s\n",
2605 			       fwd_mode_name,
2606 			       retry_enabled == 0 ? "" : " with retry");
2607 			cur_fwd_eng = fwd_eng;
2608 			return;
2609 		}
2610 		i++;
2611 	}
2612 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2613 }
2614 
2615 void
2616 set_verbose_level(uint16_t vb_level)
2617 {
2618 	printf("Change verbose level from %u to %u\n",
2619 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2620 	verbose_level = vb_level;
2621 }
2622 
2623 void
2624 vlan_extend_set(portid_t port_id, int on)
2625 {
2626 	int diag;
2627 	int vlan_offload;
2628 
2629 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2630 		return;
2631 
2632 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2633 
2634 	if (on)
2635 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2636 	else
2637 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2638 
2639 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2640 	if (diag < 0)
2641 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2642 	       "diag=%d\n", port_id, on, diag);
2643 }
2644 
2645 void
2646 rx_vlan_strip_set(portid_t port_id, int on)
2647 {
2648 	int diag;
2649 	int vlan_offload;
2650 
2651 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2652 		return;
2653 
2654 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2655 
2656 	if (on)
2657 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2658 	else
2659 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2660 
2661 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2662 	if (diag < 0)
2663 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2664 	       "diag=%d\n", port_id, on, diag);
2665 }
2666 
2667 void
2668 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2669 {
2670 	int diag;
2671 
2672 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2673 		return;
2674 
2675 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2676 	if (diag < 0)
2677 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2678 	       "diag=%d\n", port_id, queue_id, on, diag);
2679 }
2680 
2681 void
2682 rx_vlan_filter_set(portid_t port_id, int on)
2683 {
2684 	int diag;
2685 	int vlan_offload;
2686 
2687 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2688 		return;
2689 
2690 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2691 
2692 	if (on)
2693 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2694 	else
2695 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2696 
2697 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2698 	if (diag < 0)
2699 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2700 	       "diag=%d\n", port_id, on, diag);
2701 }
2702 
2703 int
2704 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2705 {
2706 	int diag;
2707 
2708 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2709 		return 1;
2710 	if (vlan_id_is_invalid(vlan_id))
2711 		return 1;
2712 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2713 	if (diag == 0)
2714 		return 0;
2715 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2716 	       "diag=%d\n",
2717 	       port_id, vlan_id, on, diag);
2718 	return -1;
2719 }
2720 
2721 void
2722 rx_vlan_all_filter_set(portid_t port_id, int on)
2723 {
2724 	uint16_t vlan_id;
2725 
2726 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2727 		return;
2728 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2729 		if (rx_vft_set(port_id, vlan_id, on))
2730 			break;
2731 	}
2732 }
2733 
2734 void
2735 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2736 {
2737 	int diag;
2738 
2739 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2740 		return;
2741 
2742 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2743 	if (diag == 0)
2744 		return;
2745 
2746 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2747 	       "diag=%d\n",
2748 	       port_id, vlan_type, tp_id, diag);
2749 }
2750 
2751 void
2752 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2753 {
2754 	int vlan_offload;
2755 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2756 		return;
2757 	if (vlan_id_is_invalid(vlan_id))
2758 		return;
2759 
2760 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2761 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2762 		printf("Error, as QinQ has been enabled.\n");
2763 		return;
2764 	}
2765 
2766 	tx_vlan_reset(port_id);
2767 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2768 	ports[port_id].tx_vlan_id = vlan_id;
2769 }
2770 
2771 void
2772 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2773 {
2774 	int vlan_offload;
2775 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2776 		return;
2777 	if (vlan_id_is_invalid(vlan_id))
2778 		return;
2779 	if (vlan_id_is_invalid(vlan_id_outer))
2780 		return;
2781 
2782 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2783 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2784 		printf("Error, as QinQ hasn't been enabled.\n");
2785 		return;
2786 	}
2787 
2788 	tx_vlan_reset(port_id);
2789 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2790 	ports[port_id].tx_vlan_id = vlan_id;
2791 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2792 }
2793 
2794 void
2795 tx_vlan_reset(portid_t port_id)
2796 {
2797 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2798 		return;
2799 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2800 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2801 	ports[port_id].tx_vlan_id = 0;
2802 	ports[port_id].tx_vlan_id_outer = 0;
2803 }
2804 
2805 void
2806 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2807 {
2808 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2809 		return;
2810 
2811 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2812 }
2813 
2814 void
2815 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2816 {
2817 	uint16_t i;
2818 	uint8_t existing_mapping_found = 0;
2819 
2820 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2821 		return;
2822 
2823 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2824 		return;
2825 
2826 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2827 		printf("map_value not in required range 0..%d\n",
2828 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2829 		return;
2830 	}
2831 
2832 	if (!is_rx) { /*then tx*/
2833 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2834 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2835 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2836 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2837 				existing_mapping_found = 1;
2838 				break;
2839 			}
2840 		}
2841 		if (!existing_mapping_found) { /* A new additional mapping... */
2842 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2843 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2844 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2845 			nb_tx_queue_stats_mappings++;
2846 		}
2847 	}
2848 	else { /*rx*/
2849 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2850 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2851 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2852 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2853 				existing_mapping_found = 1;
2854 				break;
2855 			}
2856 		}
2857 		if (!existing_mapping_found) { /* A new additional mapping... */
2858 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2859 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2860 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2861 			nb_rx_queue_stats_mappings++;
2862 		}
2863 	}
2864 }
2865 
2866 static inline void
2867 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2868 {
2869 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2870 
2871 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2872 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2873 			" tunnel_id: 0x%08x",
2874 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2875 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2876 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2877 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2878 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2879 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2880 
2881 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2882 			rte_be_to_cpu_16(mask->src_port_mask),
2883 			rte_be_to_cpu_16(mask->dst_port_mask));
2884 
2885 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2886 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2887 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2888 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2889 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2890 
2891 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2892 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2893 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2894 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2895 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2896 	}
2897 
2898 	printf("\n");
2899 }
2900 
2901 static inline void
2902 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2903 {
2904 	struct rte_eth_flex_payload_cfg *cfg;
2905 	uint32_t i, j;
2906 
2907 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2908 		cfg = &flex_conf->flex_set[i];
2909 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2910 			printf("\n    RAW:  ");
2911 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2912 			printf("\n    L2_PAYLOAD:  ");
2913 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2914 			printf("\n    L3_PAYLOAD:  ");
2915 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2916 			printf("\n    L4_PAYLOAD:  ");
2917 		else
2918 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2919 		for (j = 0; j < num; j++)
2920 			printf("  %-5u", cfg->src_offset[j]);
2921 	}
2922 	printf("\n");
2923 }
2924 
2925 static char *
2926 flowtype_to_str(uint16_t flow_type)
2927 {
2928 	struct flow_type_info {
2929 		char str[32];
2930 		uint16_t ftype;
2931 	};
2932 
2933 	uint8_t i;
2934 	static struct flow_type_info flowtype_str_table[] = {
2935 		{"raw", RTE_ETH_FLOW_RAW},
2936 		{"ipv4", RTE_ETH_FLOW_IPV4},
2937 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2938 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2939 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2940 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2941 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2942 		{"ipv6", RTE_ETH_FLOW_IPV6},
2943 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2944 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2945 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2946 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2947 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2948 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2949 		{"port", RTE_ETH_FLOW_PORT},
2950 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2951 		{"geneve", RTE_ETH_FLOW_GENEVE},
2952 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2953 	};
2954 
2955 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2956 		if (flowtype_str_table[i].ftype == flow_type)
2957 			return flowtype_str_table[i].str;
2958 	}
2959 
2960 	return NULL;
2961 }
2962 
2963 static inline void
2964 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2965 {
2966 	struct rte_eth_fdir_flex_mask *mask;
2967 	uint32_t i, j;
2968 	char *p;
2969 
2970 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2971 		mask = &flex_conf->flex_mask[i];
2972 		p = flowtype_to_str(mask->flow_type);
2973 		printf("\n    %s:\t", p ? p : "unknown");
2974 		for (j = 0; j < num; j++)
2975 			printf(" %02x", mask->mask[j]);
2976 	}
2977 	printf("\n");
2978 }
2979 
2980 static inline void
2981 print_fdir_flow_type(uint32_t flow_types_mask)
2982 {
2983 	int i;
2984 	char *p;
2985 
2986 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2987 		if (!(flow_types_mask & (1 << i)))
2988 			continue;
2989 		p = flowtype_to_str(i);
2990 		if (p)
2991 			printf(" %s", p);
2992 		else
2993 			printf(" unknown");
2994 	}
2995 	printf("\n");
2996 }
2997 
2998 void
2999 fdir_get_infos(portid_t port_id)
3000 {
3001 	struct rte_eth_fdir_stats fdir_stat;
3002 	struct rte_eth_fdir_info fdir_info;
3003 	int ret;
3004 
3005 	static const char *fdir_stats_border = "########################";
3006 
3007 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3008 		return;
3009 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3010 	if (ret < 0) {
3011 		printf("\n FDIR is not supported on port %-2d\n",
3012 			port_id);
3013 		return;
3014 	}
3015 
3016 	memset(&fdir_info, 0, sizeof(fdir_info));
3017 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3018 			       RTE_ETH_FILTER_INFO, &fdir_info);
3019 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3020 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3021 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3022 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3023 	       fdir_stats_border, port_id, fdir_stats_border);
3024 	printf("  MODE: ");
3025 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3026 		printf("  PERFECT\n");
3027 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3028 		printf("  PERFECT-MAC-VLAN\n");
3029 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3030 		printf("  PERFECT-TUNNEL\n");
3031 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3032 		printf("  SIGNATURE\n");
3033 	else
3034 		printf("  DISABLE\n");
3035 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3036 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3037 		printf("  SUPPORTED FLOW TYPE: ");
3038 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3039 	}
3040 	printf("  FLEX PAYLOAD INFO:\n");
3041 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3042 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3043 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3044 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3045 		fdir_info.flex_payload_unit,
3046 		fdir_info.max_flex_payload_segment_num,
3047 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3048 	printf("  MASK: ");
3049 	print_fdir_mask(&fdir_info.mask);
3050 	if (fdir_info.flex_conf.nb_payloads > 0) {
3051 		printf("  FLEX PAYLOAD SRC OFFSET:");
3052 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3053 	}
3054 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3055 		printf("  FLEX MASK CFG:");
3056 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3057 	}
3058 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3059 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3060 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3061 	       fdir_info.guarant_spc, fdir_info.best_spc);
3062 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3063 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3064 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3065 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3066 	       fdir_stat.collision, fdir_stat.free,
3067 	       fdir_stat.maxhash, fdir_stat.maxlen,
3068 	       fdir_stat.add, fdir_stat.remove,
3069 	       fdir_stat.f_add, fdir_stat.f_remove);
3070 	printf("  %s############################%s\n",
3071 	       fdir_stats_border, fdir_stats_border);
3072 }
3073 
3074 void
3075 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3076 {
3077 	struct rte_port *port;
3078 	struct rte_eth_fdir_flex_conf *flex_conf;
3079 	int i, idx = 0;
3080 
3081 	port = &ports[port_id];
3082 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3083 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3084 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3085 			idx = i;
3086 			break;
3087 		}
3088 	}
3089 	if (i >= RTE_ETH_FLOW_MAX) {
3090 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3091 			idx = flex_conf->nb_flexmasks;
3092 			flex_conf->nb_flexmasks++;
3093 		} else {
3094 			printf("The flex mask table is full. Can not set flex"
3095 				" mask for flow_type(%u).", cfg->flow_type);
3096 			return;
3097 		}
3098 	}
3099 	rte_memcpy(&flex_conf->flex_mask[idx],
3100 			 cfg,
3101 			 sizeof(struct rte_eth_fdir_flex_mask));
3102 }
3103 
3104 void
3105 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3106 {
3107 	struct rte_port *port;
3108 	struct rte_eth_fdir_flex_conf *flex_conf;
3109 	int i, idx = 0;
3110 
3111 	port = &ports[port_id];
3112 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3113 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3114 		if (cfg->type == flex_conf->flex_set[i].type) {
3115 			idx = i;
3116 			break;
3117 		}
3118 	}
3119 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3120 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3121 			idx = flex_conf->nb_payloads;
3122 			flex_conf->nb_payloads++;
3123 		} else {
3124 			printf("The flex payload table is full. Can not set"
3125 				" flex payload for type(%u).", cfg->type);
3126 			return;
3127 		}
3128 	}
3129 	rte_memcpy(&flex_conf->flex_set[idx],
3130 			 cfg,
3131 			 sizeof(struct rte_eth_flex_payload_cfg));
3132 
3133 }
3134 
3135 void
3136 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3137 {
3138 #ifdef RTE_LIBRTE_IXGBE_PMD
3139 	int diag;
3140 
3141 	if (is_rx)
3142 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3143 	else
3144 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3145 
3146 	if (diag == 0)
3147 		return;
3148 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3149 			is_rx ? "rx" : "tx", port_id, diag);
3150 	return;
3151 #endif
3152 	printf("VF %s setting not supported for port %d\n",
3153 			is_rx ? "Rx" : "Tx", port_id);
3154 	RTE_SET_USED(vf);
3155 	RTE_SET_USED(on);
3156 }
3157 
3158 int
3159 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3160 {
3161 	int diag;
3162 	struct rte_eth_link link;
3163 
3164 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3165 		return 1;
3166 	rte_eth_link_get_nowait(port_id, &link);
3167 	if (rate > link.link_speed) {
3168 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3169 			rate, link.link_speed);
3170 		return 1;
3171 	}
3172 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3173 	if (diag == 0)
3174 		return diag;
3175 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3176 		port_id, diag);
3177 	return diag;
3178 }
3179 
3180 int
3181 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3182 {
3183 	int diag = -ENOTSUP;
3184 
3185 #ifdef RTE_LIBRTE_IXGBE_PMD
3186 	if (diag == -ENOTSUP)
3187 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3188 						       q_msk);
3189 #endif
3190 #ifdef RTE_LIBRTE_BNXT_PMD
3191 	if (diag == -ENOTSUP)
3192 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3193 #endif
3194 	if (diag == 0)
3195 		return diag;
3196 
3197 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3198 		port_id, diag);
3199 	return diag;
3200 }
3201 
3202 /*
3203  * Functions to manage the set of filtered Multicast MAC addresses.
3204  *
3205  * A pool of filtered multicast MAC addresses is associated with each port.
3206  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3207  * The address of the pool and the number of valid multicast MAC addresses
3208  * recorded in the pool are stored in the fields "mc_addr_pool" and
3209  * "mc_addr_nb" of the "rte_port" data structure.
3210  *
3211  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3212  * to be supplied a contiguous array of multicast MAC addresses.
3213  * To comply with this constraint, the set of multicast addresses recorded
3214  * into the pool are systematically compacted at the beginning of the pool.
3215  * Hence, when a multicast address is removed from the pool, all following
3216  * addresses, if any, are copied back to keep the set contiguous.
3217  */
3218 #define MCAST_POOL_INC 32
3219 
3220 static int
3221 mcast_addr_pool_extend(struct rte_port *port)
3222 {
3223 	struct ether_addr *mc_pool;
3224 	size_t mc_pool_size;
3225 
3226 	/*
3227 	 * If a free entry is available at the end of the pool, just
3228 	 * increment the number of recorded multicast addresses.
3229 	 */
3230 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3231 		port->mc_addr_nb++;
3232 		return 0;
3233 	}
3234 
3235 	/*
3236 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3237 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3238 	 * of MCAST_POOL_INC.
3239 	 */
3240 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3241 						    MCAST_POOL_INC);
3242 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3243 						mc_pool_size);
3244 	if (mc_pool == NULL) {
3245 		printf("allocation of pool of %u multicast addresses failed\n",
3246 		       port->mc_addr_nb + MCAST_POOL_INC);
3247 		return -ENOMEM;
3248 	}
3249 
3250 	port->mc_addr_pool = mc_pool;
3251 	port->mc_addr_nb++;
3252 	return 0;
3253 
3254 }
3255 
3256 static void
3257 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3258 {
3259 	port->mc_addr_nb--;
3260 	if (addr_idx == port->mc_addr_nb) {
3261 		/* No need to recompact the set of multicast addressses. */
3262 		if (port->mc_addr_nb == 0) {
3263 			/* free the pool of multicast addresses. */
3264 			free(port->mc_addr_pool);
3265 			port->mc_addr_pool = NULL;
3266 		}
3267 		return;
3268 	}
3269 	memmove(&port->mc_addr_pool[addr_idx],
3270 		&port->mc_addr_pool[addr_idx + 1],
3271 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3272 }
3273 
3274 static void
3275 eth_port_multicast_addr_list_set(uint8_t port_id)
3276 {
3277 	struct rte_port *port;
3278 	int diag;
3279 
3280 	port = &ports[port_id];
3281 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3282 					    port->mc_addr_nb);
3283 	if (diag == 0)
3284 		return;
3285 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3286 	       port->mc_addr_nb, port_id, -diag);
3287 }
3288 
3289 void
3290 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3291 {
3292 	struct rte_port *port;
3293 	uint32_t i;
3294 
3295 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3296 		return;
3297 
3298 	port = &ports[port_id];
3299 
3300 	/*
3301 	 * Check that the added multicast MAC address is not already recorded
3302 	 * in the pool of multicast addresses.
3303 	 */
3304 	for (i = 0; i < port->mc_addr_nb; i++) {
3305 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3306 			printf("multicast address already filtered by port\n");
3307 			return;
3308 		}
3309 	}
3310 
3311 	if (mcast_addr_pool_extend(port) != 0)
3312 		return;
3313 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3314 	eth_port_multicast_addr_list_set(port_id);
3315 }
3316 
3317 void
3318 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3319 {
3320 	struct rte_port *port;
3321 	uint32_t i;
3322 
3323 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3324 		return;
3325 
3326 	port = &ports[port_id];
3327 
3328 	/*
3329 	 * Search the pool of multicast MAC addresses for the removed address.
3330 	 */
3331 	for (i = 0; i < port->mc_addr_nb; i++) {
3332 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3333 			break;
3334 	}
3335 	if (i == port->mc_addr_nb) {
3336 		printf("multicast address not filtered by port %d\n", port_id);
3337 		return;
3338 	}
3339 
3340 	mcast_addr_pool_remove(port, i);
3341 	eth_port_multicast_addr_list_set(port_id);
3342 }
3343 
3344 void
3345 port_dcb_info_display(uint8_t port_id)
3346 {
3347 	struct rte_eth_dcb_info dcb_info;
3348 	uint16_t i;
3349 	int ret;
3350 	static const char *border = "================";
3351 
3352 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3353 		return;
3354 
3355 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3356 	if (ret) {
3357 		printf("\n Failed to get dcb infos on port %-2d\n",
3358 			port_id);
3359 		return;
3360 	}
3361 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3362 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3363 	printf("\n  TC :        ");
3364 	for (i = 0; i < dcb_info.nb_tcs; i++)
3365 		printf("\t%4d", i);
3366 	printf("\n  Priority :  ");
3367 	for (i = 0; i < dcb_info.nb_tcs; i++)
3368 		printf("\t%4d", dcb_info.prio_tc[i]);
3369 	printf("\n  BW percent :");
3370 	for (i = 0; i < dcb_info.nb_tcs; i++)
3371 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3372 	printf("\n  RXQ base :  ");
3373 	for (i = 0; i < dcb_info.nb_tcs; i++)
3374 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3375 	printf("\n  RXQ number :");
3376 	for (i = 0; i < dcb_info.nb_tcs; i++)
3377 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3378 	printf("\n  TXQ base :  ");
3379 	for (i = 0; i < dcb_info.nb_tcs; i++)
3380 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3381 	printf("\n  TXQ number :");
3382 	for (i = 0; i < dcb_info.nb_tcs; i++)
3383 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3384 	printf("\n");
3385 }
3386 
3387 uint8_t *
3388 open_ddp_package_file(const char *file_path, uint32_t *size)
3389 {
3390 	int fd = open(file_path, O_RDONLY);
3391 	off_t pkg_size;
3392 	uint8_t *buf = NULL;
3393 	int ret = 0;
3394 	struct stat st_buf;
3395 
3396 	if (size)
3397 		*size = 0;
3398 
3399 	if (fd == -1) {
3400 		printf("%s: Failed to open %s\n", __func__, file_path);
3401 		return buf;
3402 	}
3403 
3404 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3405 		close(fd);
3406 		printf("%s: File operations failed\n", __func__);
3407 		return buf;
3408 	}
3409 
3410 	pkg_size = st_buf.st_size;
3411 	if (pkg_size < 0) {
3412 		close(fd);
3413 		printf("%s: File operations failed\n", __func__);
3414 		return buf;
3415 	}
3416 
3417 	buf = (uint8_t *)malloc(pkg_size);
3418 	if (!buf) {
3419 		close(fd);
3420 		printf("%s: Failed to malloc memory\n",	__func__);
3421 		return buf;
3422 	}
3423 
3424 	ret = read(fd, buf, pkg_size);
3425 	if (ret < 0) {
3426 		close(fd);
3427 		printf("%s: File read operation failed\n", __func__);
3428 		close_ddp_package_file(buf);
3429 		return NULL;
3430 	}
3431 
3432 	if (size)
3433 		*size = pkg_size;
3434 
3435 	close(fd);
3436 
3437 	return buf;
3438 }
3439 
3440 int
3441 save_ddp_package_file(const char *file_path, uint8_t *buf, uint32_t size)
3442 {
3443 	FILE *fh = fopen(file_path, "wb");
3444 
3445 	if (fh == NULL) {
3446 		printf("%s: Failed to open %s\n", __func__, file_path);
3447 		return -1;
3448 	}
3449 
3450 	if (fwrite(buf, 1, size, fh) != size) {
3451 		fclose(fh);
3452 		printf("%s: File write operation failed\n", __func__);
3453 		return -1;
3454 	}
3455 
3456 	fclose(fh);
3457 
3458 	return 0;
3459 }
3460 
3461 int
3462 close_ddp_package_file(uint8_t *buf)
3463 {
3464 	if (buf) {
3465 		free((void *)buf);
3466 		return 0;
3467 	}
3468 
3469 	return -1;
3470 }
3471