1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * Copyright 2013-2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <errno.h> 37 #include <stdio.h> 38 #include <string.h> 39 #include <stdint.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 #include <sys/types.h> 44 #include <sys/stat.h> 45 #include <fcntl.h> 46 #include <unistd.h> 47 48 #include <rte_common.h> 49 #include <rte_byteorder.h> 50 #include <rte_debug.h> 51 #include <rte_log.h> 52 #include <rte_memory.h> 53 #include <rte_memcpy.h> 54 #include <rte_memzone.h> 55 #include <rte_launch.h> 56 #include <rte_eal.h> 57 #include <rte_per_lcore.h> 58 #include <rte_lcore.h> 59 #include <rte_atomic.h> 60 #include <rte_branch_prediction.h> 61 #include <rte_mempool.h> 62 #include <rte_mbuf.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_string_fns.h> 68 #include <rte_cycles.h> 69 #include <rte_flow.h> 70 #include <rte_errno.h> 71 #ifdef RTE_LIBRTE_IXGBE_PMD 72 #include <rte_pmd_ixgbe.h> 73 #endif 74 #ifdef RTE_LIBRTE_BNXT_PMD 75 #include <rte_pmd_bnxt.h> 76 #endif 77 #include <rte_gro.h> 78 79 #include "testpmd.h" 80 81 static char *flowtype_to_str(uint16_t flow_type); 82 83 static const struct { 84 enum tx_pkt_split split; 85 const char *name; 86 } tx_split_name[] = { 87 { 88 .split = TX_PKT_SPLIT_OFF, 89 .name = "off", 90 }, 91 { 92 .split = TX_PKT_SPLIT_ON, 93 .name = "on", 94 }, 95 { 96 .split = TX_PKT_SPLIT_RND, 97 .name = "rand", 98 }, 99 }; 100 101 struct rss_type_info { 102 char str[32]; 103 uint64_t rss_type; 104 }; 105 106 static const struct rss_type_info rss_type_table[] = { 107 { "ipv4", ETH_RSS_IPV4 }, 108 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 109 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 110 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 111 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 112 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 113 { "ipv6", ETH_RSS_IPV6 }, 114 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 115 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 116 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 117 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 118 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 119 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 120 { "ipv6-ex", ETH_RSS_IPV6_EX }, 121 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 122 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 123 { "port", ETH_RSS_PORT }, 124 { "vxlan", ETH_RSS_VXLAN }, 125 { "geneve", ETH_RSS_GENEVE }, 126 { "nvgre", ETH_RSS_NVGRE }, 127 128 }; 129 130 static void 131 print_ethaddr(const char *name, struct ether_addr *eth_addr) 132 { 133 char buf[ETHER_ADDR_FMT_SIZE]; 134 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 135 printf("%s%s", name, buf); 136 } 137 138 void 139 nic_stats_display(portid_t port_id) 140 { 141 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 142 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 143 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 144 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 145 uint64_t mpps_rx, mpps_tx; 146 struct rte_eth_stats stats; 147 struct rte_port *port = &ports[port_id]; 148 uint8_t i; 149 portid_t pid; 150 151 static const char *nic_stats_border = "########################"; 152 153 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 154 printf("Valid port range is [0"); 155 RTE_ETH_FOREACH_DEV(pid) 156 printf(", %d", pid); 157 printf("]\n"); 158 return; 159 } 160 rte_eth_stats_get(port_id, &stats); 161 printf("\n %s NIC statistics for port %-2d %s\n", 162 nic_stats_border, port_id, nic_stats_border); 163 164 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 165 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 166 "%-"PRIu64"\n", 167 stats.ipackets, stats.imissed, stats.ibytes); 168 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 169 printf(" RX-nombuf: %-10"PRIu64"\n", 170 stats.rx_nombuf); 171 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 172 "%-"PRIu64"\n", 173 stats.opackets, stats.oerrors, stats.obytes); 174 } 175 else { 176 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 177 " RX-bytes: %10"PRIu64"\n", 178 stats.ipackets, stats.ierrors, stats.ibytes); 179 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 180 printf(" RX-nombuf: %10"PRIu64"\n", 181 stats.rx_nombuf); 182 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 183 " TX-bytes: %10"PRIu64"\n", 184 stats.opackets, stats.oerrors, stats.obytes); 185 } 186 187 if (port->rx_queue_stats_mapping_enabled) { 188 printf("\n"); 189 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 190 printf(" Stats reg %2d RX-packets: %10"PRIu64 191 " RX-errors: %10"PRIu64 192 " RX-bytes: %10"PRIu64"\n", 193 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 194 } 195 } 196 if (port->tx_queue_stats_mapping_enabled) { 197 printf("\n"); 198 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 199 printf(" Stats reg %2d TX-packets: %10"PRIu64 200 " TX-bytes: %10"PRIu64"\n", 201 i, stats.q_opackets[i], stats.q_obytes[i]); 202 } 203 } 204 205 diff_cycles = prev_cycles[port_id]; 206 prev_cycles[port_id] = rte_rdtsc(); 207 if (diff_cycles > 0) 208 diff_cycles = prev_cycles[port_id] - diff_cycles; 209 210 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 211 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 212 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 213 (stats.opackets - prev_pkts_tx[port_id]) : 0; 214 prev_pkts_rx[port_id] = stats.ipackets; 215 prev_pkts_tx[port_id] = stats.opackets; 216 mpps_rx = diff_cycles > 0 ? 217 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 218 mpps_tx = diff_cycles > 0 ? 219 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 220 printf("\n Throughput (since last show)\n"); 221 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 222 mpps_rx, mpps_tx); 223 224 printf(" %s############################%s\n", 225 nic_stats_border, nic_stats_border); 226 } 227 228 void 229 nic_stats_clear(portid_t port_id) 230 { 231 portid_t pid; 232 233 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 234 printf("Valid port range is [0"); 235 RTE_ETH_FOREACH_DEV(pid) 236 printf(", %d", pid); 237 printf("]\n"); 238 return; 239 } 240 rte_eth_stats_reset(port_id); 241 printf("\n NIC statistics for port %d cleared\n", port_id); 242 } 243 244 void 245 nic_xstats_display(portid_t port_id) 246 { 247 struct rte_eth_xstat *xstats; 248 int cnt_xstats, idx_xstat; 249 struct rte_eth_xstat_name *xstats_names; 250 251 printf("###### NIC extended statistics for port %-2d\n", port_id); 252 if (!rte_eth_dev_is_valid_port(port_id)) { 253 printf("Error: Invalid port number %i\n", port_id); 254 return; 255 } 256 257 /* Get count */ 258 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 259 if (cnt_xstats < 0) { 260 printf("Error: Cannot get count of xstats\n"); 261 return; 262 } 263 264 /* Get id-name lookup table */ 265 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 266 if (xstats_names == NULL) { 267 printf("Cannot allocate memory for xstats lookup\n"); 268 return; 269 } 270 if (cnt_xstats != rte_eth_xstats_get_names( 271 port_id, xstats_names, cnt_xstats)) { 272 printf("Error: Cannot get xstats lookup\n"); 273 free(xstats_names); 274 return; 275 } 276 277 /* Get stats themselves */ 278 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 279 if (xstats == NULL) { 280 printf("Cannot allocate memory for xstats\n"); 281 free(xstats_names); 282 return; 283 } 284 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 285 printf("Error: Unable to get xstats\n"); 286 free(xstats_names); 287 free(xstats); 288 return; 289 } 290 291 /* Display xstats */ 292 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) 293 printf("%s: %"PRIu64"\n", 294 xstats_names[idx_xstat].name, 295 xstats[idx_xstat].value); 296 free(xstats_names); 297 free(xstats); 298 } 299 300 void 301 nic_xstats_clear(portid_t port_id) 302 { 303 rte_eth_xstats_reset(port_id); 304 } 305 306 void 307 nic_stats_mapping_display(portid_t port_id) 308 { 309 struct rte_port *port = &ports[port_id]; 310 uint16_t i; 311 portid_t pid; 312 313 static const char *nic_stats_mapping_border = "########################"; 314 315 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 316 printf("Valid port range is [0"); 317 RTE_ETH_FOREACH_DEV(pid) 318 printf(", %d", pid); 319 printf("]\n"); 320 return; 321 } 322 323 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 324 printf("Port id %d - either does not support queue statistic mapping or" 325 " no queue statistic mapping set\n", port_id); 326 return; 327 } 328 329 printf("\n %s NIC statistics mapping for port %-2d %s\n", 330 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 331 332 if (port->rx_queue_stats_mapping_enabled) { 333 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 334 if (rx_queue_stats_mappings[i].port_id == port_id) { 335 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 336 rx_queue_stats_mappings[i].queue_id, 337 rx_queue_stats_mappings[i].stats_counter_id); 338 } 339 } 340 printf("\n"); 341 } 342 343 344 if (port->tx_queue_stats_mapping_enabled) { 345 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 346 if (tx_queue_stats_mappings[i].port_id == port_id) { 347 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 348 tx_queue_stats_mappings[i].queue_id, 349 tx_queue_stats_mappings[i].stats_counter_id); 350 } 351 } 352 } 353 354 printf(" %s####################################%s\n", 355 nic_stats_mapping_border, nic_stats_mapping_border); 356 } 357 358 void 359 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 360 { 361 struct rte_eth_rxq_info qinfo; 362 int32_t rc; 363 static const char *info_border = "*********************"; 364 365 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 366 if (rc != 0) { 367 printf("Failed to retrieve information for port: %u, " 368 "RX queue: %hu\nerror desc: %s(%d)\n", 369 port_id, queue_id, strerror(-rc), rc); 370 return; 371 } 372 373 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 374 info_border, port_id, queue_id, info_border); 375 376 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 377 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 378 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 379 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 380 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 381 printf("\nRX drop packets: %s", 382 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 383 printf("\nRX deferred start: %s", 384 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 385 printf("\nRX scattered packets: %s", 386 (qinfo.scattered_rx != 0) ? "on" : "off"); 387 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 388 printf("\n"); 389 } 390 391 void 392 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 393 { 394 struct rte_eth_txq_info qinfo; 395 int32_t rc; 396 static const char *info_border = "*********************"; 397 398 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 399 if (rc != 0) { 400 printf("Failed to retrieve information for port: %u, " 401 "TX queue: %hu\nerror desc: %s(%d)\n", 402 port_id, queue_id, strerror(-rc), rc); 403 return; 404 } 405 406 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 407 info_border, port_id, queue_id, info_border); 408 409 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 410 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 411 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 412 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 413 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 414 printf("\nTX flags: %#x", qinfo.conf.txq_flags); 415 printf("\nTX deferred start: %s", 416 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 417 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 418 printf("\n"); 419 } 420 421 void 422 port_infos_display(portid_t port_id) 423 { 424 struct rte_port *port; 425 struct ether_addr mac_addr; 426 struct rte_eth_link link; 427 struct rte_eth_dev_info dev_info; 428 int vlan_offload; 429 struct rte_mempool * mp; 430 static const char *info_border = "*********************"; 431 portid_t pid; 432 uint16_t mtu; 433 434 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 435 printf("Valid port range is [0"); 436 RTE_ETH_FOREACH_DEV(pid) 437 printf(", %d", pid); 438 printf("]\n"); 439 return; 440 } 441 port = &ports[port_id]; 442 rte_eth_link_get_nowait(port_id, &link); 443 memset(&dev_info, 0, sizeof(dev_info)); 444 rte_eth_dev_info_get(port_id, &dev_info); 445 printf("\n%s Infos for port %-2d %s\n", 446 info_border, port_id, info_border); 447 rte_eth_macaddr_get(port_id, &mac_addr); 448 print_ethaddr("MAC address: ", &mac_addr); 449 printf("\nDriver name: %s", dev_info.driver_name); 450 printf("\nConnect to socket: %u", port->socket_id); 451 452 if (port_numa[port_id] != NUMA_NO_CONFIG) { 453 mp = mbuf_pool_find(port_numa[port_id]); 454 if (mp) 455 printf("\nmemory allocation on the socket: %d", 456 port_numa[port_id]); 457 } else 458 printf("\nmemory allocation on the socket: %u",port->socket_id); 459 460 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 461 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 462 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 463 ("full-duplex") : ("half-duplex")); 464 465 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 466 printf("MTU: %u\n", mtu); 467 468 printf("Promiscuous mode: %s\n", 469 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 470 printf("Allmulticast mode: %s\n", 471 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 472 printf("Maximum number of MAC addresses: %u\n", 473 (unsigned int)(port->dev_info.max_mac_addrs)); 474 printf("Maximum number of MAC addresses of hash filtering: %u\n", 475 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 476 477 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 478 if (vlan_offload >= 0){ 479 printf("VLAN offload: \n"); 480 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 481 printf(" strip on \n"); 482 else 483 printf(" strip off \n"); 484 485 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 486 printf(" filter on \n"); 487 else 488 printf(" filter off \n"); 489 490 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 491 printf(" qinq(extend) on \n"); 492 else 493 printf(" qinq(extend) off \n"); 494 } 495 496 if (dev_info.hash_key_size > 0) 497 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 498 if (dev_info.reta_size > 0) 499 printf("Redirection table size: %u\n", dev_info.reta_size); 500 if (!dev_info.flow_type_rss_offloads) 501 printf("No flow type is supported.\n"); 502 else { 503 uint16_t i; 504 char *p; 505 506 printf("Supported flow types:\n"); 507 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 508 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 509 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 510 continue; 511 p = flowtype_to_str(i); 512 if (p) 513 printf(" %s\n", p); 514 else 515 printf(" user defined %d\n", i); 516 } 517 } 518 519 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 520 printf("Max possible number of RXDs per queue: %hu\n", 521 dev_info.rx_desc_lim.nb_max); 522 printf("Min possible number of RXDs per queue: %hu\n", 523 dev_info.rx_desc_lim.nb_min); 524 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 525 526 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 527 printf("Max possible number of TXDs per queue: %hu\n", 528 dev_info.tx_desc_lim.nb_max); 529 printf("Min possible number of TXDs per queue: %hu\n", 530 dev_info.tx_desc_lim.nb_min); 531 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 532 } 533 534 void 535 port_offload_cap_display(portid_t port_id) 536 { 537 struct rte_eth_dev *dev; 538 struct rte_eth_dev_info dev_info; 539 static const char *info_border = "************"; 540 541 if (port_id_is_invalid(port_id, ENABLED_WARN)) 542 return; 543 544 dev = &rte_eth_devices[port_id]; 545 rte_eth_dev_info_get(port_id, &dev_info); 546 547 printf("\n%s Port %d supported offload features: %s\n", 548 info_border, port_id, info_border); 549 550 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 551 printf("VLAN stripped: "); 552 if (dev->data->dev_conf.rxmode.hw_vlan_strip) 553 printf("on\n"); 554 else 555 printf("off\n"); 556 } 557 558 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 559 printf("Double VLANs stripped: "); 560 if (dev->data->dev_conf.rxmode.hw_vlan_extend) 561 printf("on\n"); 562 else 563 printf("off\n"); 564 } 565 566 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 567 printf("RX IPv4 checksum: "); 568 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 569 printf("on\n"); 570 else 571 printf("off\n"); 572 } 573 574 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 575 printf("RX UDP checksum: "); 576 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 577 printf("on\n"); 578 else 579 printf("off\n"); 580 } 581 582 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 583 printf("RX TCP checksum: "); 584 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 585 printf("on\n"); 586 else 587 printf("off\n"); 588 } 589 590 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 591 printf("RX Outer IPv4 checksum: on"); 592 593 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 594 printf("Large receive offload: "); 595 if (dev->data->dev_conf.rxmode.enable_lro) 596 printf("on\n"); 597 else 598 printf("off\n"); 599 } 600 601 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 602 printf("VLAN insert: "); 603 if (ports[port_id].tx_ol_flags & 604 TESTPMD_TX_OFFLOAD_INSERT_VLAN) 605 printf("on\n"); 606 else 607 printf("off\n"); 608 } 609 610 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) { 611 printf("HW timestamp: "); 612 if (dev->data->dev_conf.rxmode.hw_timestamp) 613 printf("on\n"); 614 else 615 printf("off\n"); 616 } 617 618 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 619 printf("Double VLANs insert: "); 620 if (ports[port_id].tx_ol_flags & 621 TESTPMD_TX_OFFLOAD_INSERT_QINQ) 622 printf("on\n"); 623 else 624 printf("off\n"); 625 } 626 627 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 628 printf("TX IPv4 checksum: "); 629 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 630 printf("on\n"); 631 else 632 printf("off\n"); 633 } 634 635 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 636 printf("TX UDP checksum: "); 637 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) 638 printf("on\n"); 639 else 640 printf("off\n"); 641 } 642 643 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 644 printf("TX TCP checksum: "); 645 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) 646 printf("on\n"); 647 else 648 printf("off\n"); 649 } 650 651 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 652 printf("TX SCTP checksum: "); 653 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) 654 printf("on\n"); 655 else 656 printf("off\n"); 657 } 658 659 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 660 printf("TX Outer IPv4 checksum: "); 661 if (ports[port_id].tx_ol_flags & 662 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 663 printf("on\n"); 664 else 665 printf("off\n"); 666 } 667 668 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 669 printf("TX TCP segmentation: "); 670 if (ports[port_id].tso_segsz != 0) 671 printf("on\n"); 672 else 673 printf("off\n"); 674 } 675 676 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 677 printf("TX UDP segmentation: "); 678 if (ports[port_id].tso_segsz != 0) 679 printf("on\n"); 680 else 681 printf("off\n"); 682 } 683 684 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 685 printf("TSO for VXLAN tunnel packet: "); 686 if (ports[port_id].tunnel_tso_segsz) 687 printf("on\n"); 688 else 689 printf("off\n"); 690 } 691 692 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 693 printf("TSO for GRE tunnel packet: "); 694 if (ports[port_id].tunnel_tso_segsz) 695 printf("on\n"); 696 else 697 printf("off\n"); 698 } 699 700 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 701 printf("TSO for IPIP tunnel packet: "); 702 if (ports[port_id].tunnel_tso_segsz) 703 printf("on\n"); 704 else 705 printf("off\n"); 706 } 707 708 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 709 printf("TSO for GENEVE tunnel packet: "); 710 if (ports[port_id].tunnel_tso_segsz) 711 printf("on\n"); 712 else 713 printf("off\n"); 714 } 715 716 } 717 718 int 719 port_id_is_invalid(portid_t port_id, enum print_warning warning) 720 { 721 if (port_id == (portid_t)RTE_PORT_ALL) 722 return 0; 723 724 if (rte_eth_dev_is_valid_port(port_id)) 725 return 0; 726 727 if (warning == ENABLED_WARN) 728 printf("Invalid port %d\n", port_id); 729 730 return 1; 731 } 732 733 static int 734 vlan_id_is_invalid(uint16_t vlan_id) 735 { 736 if (vlan_id < 4096) 737 return 0; 738 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 739 return 1; 740 } 741 742 static int 743 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 744 { 745 uint64_t pci_len; 746 747 if (reg_off & 0x3) { 748 printf("Port register offset 0x%X not aligned on a 4-byte " 749 "boundary\n", 750 (unsigned)reg_off); 751 return 1; 752 } 753 pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; 754 if (reg_off >= pci_len) { 755 printf("Port %d: register offset %u (0x%X) out of port PCI " 756 "resource (length=%"PRIu64")\n", 757 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 758 return 1; 759 } 760 return 0; 761 } 762 763 static int 764 reg_bit_pos_is_invalid(uint8_t bit_pos) 765 { 766 if (bit_pos <= 31) 767 return 0; 768 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 769 return 1; 770 } 771 772 #define display_port_and_reg_off(port_id, reg_off) \ 773 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 774 775 static inline void 776 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 777 { 778 display_port_and_reg_off(port_id, (unsigned)reg_off); 779 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 780 } 781 782 void 783 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 784 { 785 uint32_t reg_v; 786 787 788 if (port_id_is_invalid(port_id, ENABLED_WARN)) 789 return; 790 if (port_reg_off_is_invalid(port_id, reg_off)) 791 return; 792 if (reg_bit_pos_is_invalid(bit_x)) 793 return; 794 reg_v = port_id_pci_reg_read(port_id, reg_off); 795 display_port_and_reg_off(port_id, (unsigned)reg_off); 796 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 797 } 798 799 void 800 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 801 uint8_t bit1_pos, uint8_t bit2_pos) 802 { 803 uint32_t reg_v; 804 uint8_t l_bit; 805 uint8_t h_bit; 806 807 if (port_id_is_invalid(port_id, ENABLED_WARN)) 808 return; 809 if (port_reg_off_is_invalid(port_id, reg_off)) 810 return; 811 if (reg_bit_pos_is_invalid(bit1_pos)) 812 return; 813 if (reg_bit_pos_is_invalid(bit2_pos)) 814 return; 815 if (bit1_pos > bit2_pos) 816 l_bit = bit2_pos, h_bit = bit1_pos; 817 else 818 l_bit = bit1_pos, h_bit = bit2_pos; 819 820 reg_v = port_id_pci_reg_read(port_id, reg_off); 821 reg_v >>= l_bit; 822 if (h_bit < 31) 823 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 824 display_port_and_reg_off(port_id, (unsigned)reg_off); 825 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 826 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 827 } 828 829 void 830 port_reg_display(portid_t port_id, uint32_t reg_off) 831 { 832 uint32_t reg_v; 833 834 if (port_id_is_invalid(port_id, ENABLED_WARN)) 835 return; 836 if (port_reg_off_is_invalid(port_id, reg_off)) 837 return; 838 reg_v = port_id_pci_reg_read(port_id, reg_off); 839 display_port_reg_value(port_id, reg_off, reg_v); 840 } 841 842 void 843 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 844 uint8_t bit_v) 845 { 846 uint32_t reg_v; 847 848 if (port_id_is_invalid(port_id, ENABLED_WARN)) 849 return; 850 if (port_reg_off_is_invalid(port_id, reg_off)) 851 return; 852 if (reg_bit_pos_is_invalid(bit_pos)) 853 return; 854 if (bit_v > 1) { 855 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 856 return; 857 } 858 reg_v = port_id_pci_reg_read(port_id, reg_off); 859 if (bit_v == 0) 860 reg_v &= ~(1 << bit_pos); 861 else 862 reg_v |= (1 << bit_pos); 863 port_id_pci_reg_write(port_id, reg_off, reg_v); 864 display_port_reg_value(port_id, reg_off, reg_v); 865 } 866 867 void 868 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 869 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 870 { 871 uint32_t max_v; 872 uint32_t reg_v; 873 uint8_t l_bit; 874 uint8_t h_bit; 875 876 if (port_id_is_invalid(port_id, ENABLED_WARN)) 877 return; 878 if (port_reg_off_is_invalid(port_id, reg_off)) 879 return; 880 if (reg_bit_pos_is_invalid(bit1_pos)) 881 return; 882 if (reg_bit_pos_is_invalid(bit2_pos)) 883 return; 884 if (bit1_pos > bit2_pos) 885 l_bit = bit2_pos, h_bit = bit1_pos; 886 else 887 l_bit = bit1_pos, h_bit = bit2_pos; 888 889 if ((h_bit - l_bit) < 31) 890 max_v = (1 << (h_bit - l_bit + 1)) - 1; 891 else 892 max_v = 0xFFFFFFFF; 893 894 if (value > max_v) { 895 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 896 (unsigned)value, (unsigned)value, 897 (unsigned)max_v, (unsigned)max_v); 898 return; 899 } 900 reg_v = port_id_pci_reg_read(port_id, reg_off); 901 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 902 reg_v |= (value << l_bit); /* Set changed bits */ 903 port_id_pci_reg_write(port_id, reg_off, reg_v); 904 display_port_reg_value(port_id, reg_off, reg_v); 905 } 906 907 void 908 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 909 { 910 if (port_id_is_invalid(port_id, ENABLED_WARN)) 911 return; 912 if (port_reg_off_is_invalid(port_id, reg_off)) 913 return; 914 port_id_pci_reg_write(port_id, reg_off, reg_v); 915 display_port_reg_value(port_id, reg_off, reg_v); 916 } 917 918 void 919 port_mtu_set(portid_t port_id, uint16_t mtu) 920 { 921 int diag; 922 923 if (port_id_is_invalid(port_id, ENABLED_WARN)) 924 return; 925 diag = rte_eth_dev_set_mtu(port_id, mtu); 926 if (diag == 0) 927 return; 928 printf("Set MTU failed. diag=%d\n", diag); 929 } 930 931 /* Generic flow management functions. */ 932 933 /** Generate flow_item[] entry. */ 934 #define MK_FLOW_ITEM(t, s) \ 935 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 936 .name = # t, \ 937 .size = s, \ 938 } 939 940 /** Information about known flow pattern items. */ 941 static const struct { 942 const char *name; 943 size_t size; 944 } flow_item[] = { 945 MK_FLOW_ITEM(END, 0), 946 MK_FLOW_ITEM(VOID, 0), 947 MK_FLOW_ITEM(INVERT, 0), 948 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 949 MK_FLOW_ITEM(PF, 0), 950 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 951 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 952 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 953 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 954 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 955 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 956 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 957 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 958 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 959 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 960 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 961 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 962 MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), 963 MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), 964 MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 965 MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 966 MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), 967 MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), 968 MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), 969 MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), 970 }; 971 972 /** Compute storage space needed by item specification. */ 973 static void 974 flow_item_spec_size(const struct rte_flow_item *item, 975 size_t *size, size_t *pad) 976 { 977 if (!item->spec) { 978 *size = 0; 979 goto empty; 980 } 981 switch (item->type) { 982 union { 983 const struct rte_flow_item_raw *raw; 984 } spec; 985 986 case RTE_FLOW_ITEM_TYPE_RAW: 987 spec.raw = item->spec; 988 *size = offsetof(struct rte_flow_item_raw, pattern) + 989 spec.raw->length * sizeof(*spec.raw->pattern); 990 break; 991 default: 992 *size = flow_item[item->type].size; 993 break; 994 } 995 empty: 996 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 997 } 998 999 /** Generate flow_action[] entry. */ 1000 #define MK_FLOW_ACTION(t, s) \ 1001 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 1002 .name = # t, \ 1003 .size = s, \ 1004 } 1005 1006 /** Information about known flow actions. */ 1007 static const struct { 1008 const char *name; 1009 size_t size; 1010 } flow_action[] = { 1011 MK_FLOW_ACTION(END, 0), 1012 MK_FLOW_ACTION(VOID, 0), 1013 MK_FLOW_ACTION(PASSTHRU, 0), 1014 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1015 MK_FLOW_ACTION(FLAG, 0), 1016 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 1017 MK_FLOW_ACTION(DROP, 0), 1018 MK_FLOW_ACTION(COUNT, 0), 1019 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 1020 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 1021 MK_FLOW_ACTION(PF, 0), 1022 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1023 }; 1024 1025 /** Compute storage space needed by action configuration. */ 1026 static void 1027 flow_action_conf_size(const struct rte_flow_action *action, 1028 size_t *size, size_t *pad) 1029 { 1030 if (!action->conf) { 1031 *size = 0; 1032 goto empty; 1033 } 1034 switch (action->type) { 1035 union { 1036 const struct rte_flow_action_rss *rss; 1037 } conf; 1038 1039 case RTE_FLOW_ACTION_TYPE_RSS: 1040 conf.rss = action->conf; 1041 *size = offsetof(struct rte_flow_action_rss, queue) + 1042 conf.rss->num * sizeof(*conf.rss->queue); 1043 break; 1044 default: 1045 *size = flow_action[action->type].size; 1046 break; 1047 } 1048 empty: 1049 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1050 } 1051 1052 /** Generate a port_flow entry from attributes/pattern/actions. */ 1053 static struct port_flow * 1054 port_flow_new(const struct rte_flow_attr *attr, 1055 const struct rte_flow_item *pattern, 1056 const struct rte_flow_action *actions) 1057 { 1058 const struct rte_flow_item *item; 1059 const struct rte_flow_action *action; 1060 struct port_flow *pf = NULL; 1061 size_t tmp; 1062 size_t pad; 1063 size_t off1 = 0; 1064 size_t off2 = 0; 1065 int err = ENOTSUP; 1066 1067 store: 1068 item = pattern; 1069 if (pf) 1070 pf->pattern = (void *)&pf->data[off1]; 1071 do { 1072 struct rte_flow_item *dst = NULL; 1073 1074 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1075 !flow_item[item->type].name) 1076 goto notsup; 1077 if (pf) 1078 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1079 off1 += sizeof(*item); 1080 flow_item_spec_size(item, &tmp, &pad); 1081 if (item->spec) { 1082 if (pf) 1083 dst->spec = memcpy(pf->data + off2, 1084 item->spec, tmp); 1085 off2 += tmp + pad; 1086 } 1087 if (item->last) { 1088 if (pf) 1089 dst->last = memcpy(pf->data + off2, 1090 item->last, tmp); 1091 off2 += tmp + pad; 1092 } 1093 if (item->mask) { 1094 if (pf) 1095 dst->mask = memcpy(pf->data + off2, 1096 item->mask, tmp); 1097 off2 += tmp + pad; 1098 } 1099 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1100 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1101 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1102 action = actions; 1103 if (pf) 1104 pf->actions = (void *)&pf->data[off1]; 1105 do { 1106 struct rte_flow_action *dst = NULL; 1107 1108 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1109 !flow_action[action->type].name) 1110 goto notsup; 1111 if (pf) 1112 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1113 off1 += sizeof(*action); 1114 flow_action_conf_size(action, &tmp, &pad); 1115 if (action->conf) { 1116 if (pf) 1117 dst->conf = memcpy(pf->data + off2, 1118 action->conf, tmp); 1119 off2 += tmp + pad; 1120 } 1121 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1122 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1123 if (pf != NULL) 1124 return pf; 1125 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1126 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1127 pf = calloc(1, tmp + off1 + off2); 1128 if (pf == NULL) 1129 err = errno; 1130 else { 1131 *pf = (const struct port_flow){ 1132 .size = tmp + off1 + off2, 1133 .attr = *attr, 1134 }; 1135 tmp -= offsetof(struct port_flow, data); 1136 off2 = tmp + off1; 1137 off1 = tmp; 1138 goto store; 1139 } 1140 notsup: 1141 rte_errno = err; 1142 return NULL; 1143 } 1144 1145 /** Print a message out of a flow error. */ 1146 static int 1147 port_flow_complain(struct rte_flow_error *error) 1148 { 1149 static const char *const errstrlist[] = { 1150 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1151 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1152 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1153 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1154 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1155 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1156 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1157 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1158 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1159 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1160 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1161 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1162 }; 1163 const char *errstr; 1164 char buf[32]; 1165 int err = rte_errno; 1166 1167 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1168 !errstrlist[error->type]) 1169 errstr = "unknown type"; 1170 else 1171 errstr = errstrlist[error->type]; 1172 printf("Caught error type %d (%s): %s%s\n", 1173 error->type, errstr, 1174 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1175 error->cause), buf) : "", 1176 error->message ? error->message : "(no stated reason)"); 1177 return -err; 1178 } 1179 1180 /** Validate flow rule. */ 1181 int 1182 port_flow_validate(portid_t port_id, 1183 const struct rte_flow_attr *attr, 1184 const struct rte_flow_item *pattern, 1185 const struct rte_flow_action *actions) 1186 { 1187 struct rte_flow_error error; 1188 1189 /* Poisoning to make sure PMDs update it in case of error. */ 1190 memset(&error, 0x11, sizeof(error)); 1191 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1192 return port_flow_complain(&error); 1193 printf("Flow rule validated\n"); 1194 return 0; 1195 } 1196 1197 /** Create flow rule. */ 1198 int 1199 port_flow_create(portid_t port_id, 1200 const struct rte_flow_attr *attr, 1201 const struct rte_flow_item *pattern, 1202 const struct rte_flow_action *actions) 1203 { 1204 struct rte_flow *flow; 1205 struct rte_port *port; 1206 struct port_flow *pf; 1207 uint32_t id; 1208 struct rte_flow_error error; 1209 1210 /* Poisoning to make sure PMDs update it in case of error. */ 1211 memset(&error, 0x22, sizeof(error)); 1212 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1213 if (!flow) 1214 return port_flow_complain(&error); 1215 port = &ports[port_id]; 1216 if (port->flow_list) { 1217 if (port->flow_list->id == UINT32_MAX) { 1218 printf("Highest rule ID is already assigned, delete" 1219 " it first"); 1220 rte_flow_destroy(port_id, flow, NULL); 1221 return -ENOMEM; 1222 } 1223 id = port->flow_list->id + 1; 1224 } else 1225 id = 0; 1226 pf = port_flow_new(attr, pattern, actions); 1227 if (!pf) { 1228 int err = rte_errno; 1229 1230 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1231 rte_flow_destroy(port_id, flow, NULL); 1232 return -err; 1233 } 1234 pf->next = port->flow_list; 1235 pf->id = id; 1236 pf->flow = flow; 1237 port->flow_list = pf; 1238 printf("Flow rule #%u created\n", pf->id); 1239 return 0; 1240 } 1241 1242 /** Destroy a number of flow rules. */ 1243 int 1244 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1245 { 1246 struct rte_port *port; 1247 struct port_flow **tmp; 1248 uint32_t c = 0; 1249 int ret = 0; 1250 1251 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1252 port_id == (portid_t)RTE_PORT_ALL) 1253 return -EINVAL; 1254 port = &ports[port_id]; 1255 tmp = &port->flow_list; 1256 while (*tmp) { 1257 uint32_t i; 1258 1259 for (i = 0; i != n; ++i) { 1260 struct rte_flow_error error; 1261 struct port_flow *pf = *tmp; 1262 1263 if (rule[i] != pf->id) 1264 continue; 1265 /* 1266 * Poisoning to make sure PMDs update it in case 1267 * of error. 1268 */ 1269 memset(&error, 0x33, sizeof(error)); 1270 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1271 ret = port_flow_complain(&error); 1272 continue; 1273 } 1274 printf("Flow rule #%u destroyed\n", pf->id); 1275 *tmp = pf->next; 1276 free(pf); 1277 break; 1278 } 1279 if (i == n) 1280 tmp = &(*tmp)->next; 1281 ++c; 1282 } 1283 return ret; 1284 } 1285 1286 /** Remove all flow rules. */ 1287 int 1288 port_flow_flush(portid_t port_id) 1289 { 1290 struct rte_flow_error error; 1291 struct rte_port *port; 1292 int ret = 0; 1293 1294 /* Poisoning to make sure PMDs update it in case of error. */ 1295 memset(&error, 0x44, sizeof(error)); 1296 if (rte_flow_flush(port_id, &error)) { 1297 ret = port_flow_complain(&error); 1298 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1299 port_id == (portid_t)RTE_PORT_ALL) 1300 return ret; 1301 } 1302 port = &ports[port_id]; 1303 while (port->flow_list) { 1304 struct port_flow *pf = port->flow_list->next; 1305 1306 free(port->flow_list); 1307 port->flow_list = pf; 1308 } 1309 return ret; 1310 } 1311 1312 /** Query a flow rule. */ 1313 int 1314 port_flow_query(portid_t port_id, uint32_t rule, 1315 enum rte_flow_action_type action) 1316 { 1317 struct rte_flow_error error; 1318 struct rte_port *port; 1319 struct port_flow *pf; 1320 const char *name; 1321 union { 1322 struct rte_flow_query_count count; 1323 } query; 1324 1325 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1326 port_id == (portid_t)RTE_PORT_ALL) 1327 return -EINVAL; 1328 port = &ports[port_id]; 1329 for (pf = port->flow_list; pf; pf = pf->next) 1330 if (pf->id == rule) 1331 break; 1332 if (!pf) { 1333 printf("Flow rule #%u not found\n", rule); 1334 return -ENOENT; 1335 } 1336 if ((unsigned int)action >= RTE_DIM(flow_action) || 1337 !flow_action[action].name) 1338 name = "unknown"; 1339 else 1340 name = flow_action[action].name; 1341 switch (action) { 1342 case RTE_FLOW_ACTION_TYPE_COUNT: 1343 break; 1344 default: 1345 printf("Cannot query action type %d (%s)\n", action, name); 1346 return -ENOTSUP; 1347 } 1348 /* Poisoning to make sure PMDs update it in case of error. */ 1349 memset(&error, 0x55, sizeof(error)); 1350 memset(&query, 0, sizeof(query)); 1351 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1352 return port_flow_complain(&error); 1353 switch (action) { 1354 case RTE_FLOW_ACTION_TYPE_COUNT: 1355 printf("%s:\n" 1356 " hits_set: %u\n" 1357 " bytes_set: %u\n" 1358 " hits: %" PRIu64 "\n" 1359 " bytes: %" PRIu64 "\n", 1360 name, 1361 query.count.hits_set, 1362 query.count.bytes_set, 1363 query.count.hits, 1364 query.count.bytes); 1365 break; 1366 default: 1367 printf("Cannot display result for action type %d (%s)\n", 1368 action, name); 1369 break; 1370 } 1371 return 0; 1372 } 1373 1374 /** List flow rules. */ 1375 void 1376 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1377 { 1378 struct rte_port *port; 1379 struct port_flow *pf; 1380 struct port_flow *list = NULL; 1381 uint32_t i; 1382 1383 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1384 port_id == (portid_t)RTE_PORT_ALL) 1385 return; 1386 port = &ports[port_id]; 1387 if (!port->flow_list) 1388 return; 1389 /* Sort flows by group, priority and ID. */ 1390 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1391 struct port_flow **tmp; 1392 1393 if (n) { 1394 /* Filter out unwanted groups. */ 1395 for (i = 0; i != n; ++i) 1396 if (pf->attr.group == group[i]) 1397 break; 1398 if (i == n) 1399 continue; 1400 } 1401 tmp = &list; 1402 while (*tmp && 1403 (pf->attr.group > (*tmp)->attr.group || 1404 (pf->attr.group == (*tmp)->attr.group && 1405 pf->attr.priority > (*tmp)->attr.priority) || 1406 (pf->attr.group == (*tmp)->attr.group && 1407 pf->attr.priority == (*tmp)->attr.priority && 1408 pf->id > (*tmp)->id))) 1409 tmp = &(*tmp)->tmp; 1410 pf->tmp = *tmp; 1411 *tmp = pf; 1412 } 1413 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1414 for (pf = list; pf != NULL; pf = pf->tmp) { 1415 const struct rte_flow_item *item = pf->pattern; 1416 const struct rte_flow_action *action = pf->actions; 1417 1418 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1419 pf->id, 1420 pf->attr.group, 1421 pf->attr.priority, 1422 pf->attr.ingress ? 'i' : '-', 1423 pf->attr.egress ? 'e' : '-'); 1424 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1425 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1426 printf("%s ", flow_item[item->type].name); 1427 ++item; 1428 } 1429 printf("=>"); 1430 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1431 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1432 printf(" %s", flow_action[action->type].name); 1433 ++action; 1434 } 1435 printf("\n"); 1436 } 1437 } 1438 1439 /** Restrict ingress traffic to the defined flow rules. */ 1440 int 1441 port_flow_isolate(portid_t port_id, int set) 1442 { 1443 struct rte_flow_error error; 1444 1445 /* Poisoning to make sure PMDs update it in case of error. */ 1446 memset(&error, 0x66, sizeof(error)); 1447 if (rte_flow_isolate(port_id, set, &error)) 1448 return port_flow_complain(&error); 1449 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1450 port_id, 1451 set ? "now restricted" : "not restricted anymore"); 1452 return 0; 1453 } 1454 1455 /* 1456 * RX/TX ring descriptors display functions. 1457 */ 1458 int 1459 rx_queue_id_is_invalid(queueid_t rxq_id) 1460 { 1461 if (rxq_id < nb_rxq) 1462 return 0; 1463 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1464 return 1; 1465 } 1466 1467 int 1468 tx_queue_id_is_invalid(queueid_t txq_id) 1469 { 1470 if (txq_id < nb_txq) 1471 return 0; 1472 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1473 return 1; 1474 } 1475 1476 static int 1477 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1478 { 1479 if (rxdesc_id < nb_rxd) 1480 return 0; 1481 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1482 rxdesc_id, nb_rxd); 1483 return 1; 1484 } 1485 1486 static int 1487 tx_desc_id_is_invalid(uint16_t txdesc_id) 1488 { 1489 if (txdesc_id < nb_txd) 1490 return 0; 1491 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1492 txdesc_id, nb_txd); 1493 return 1; 1494 } 1495 1496 static const struct rte_memzone * 1497 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id) 1498 { 1499 char mz_name[RTE_MEMZONE_NAMESIZE]; 1500 const struct rte_memzone *mz; 1501 1502 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1503 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1504 mz = rte_memzone_lookup(mz_name); 1505 if (mz == NULL) 1506 printf("%s ring memory zoneof (port %d, queue %d) not" 1507 "found (zone name = %s\n", 1508 ring_name, port_id, q_id, mz_name); 1509 return mz; 1510 } 1511 1512 union igb_ring_dword { 1513 uint64_t dword; 1514 struct { 1515 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1516 uint32_t lo; 1517 uint32_t hi; 1518 #else 1519 uint32_t hi; 1520 uint32_t lo; 1521 #endif 1522 } words; 1523 }; 1524 1525 struct igb_ring_desc_32_bytes { 1526 union igb_ring_dword lo_dword; 1527 union igb_ring_dword hi_dword; 1528 union igb_ring_dword resv1; 1529 union igb_ring_dword resv2; 1530 }; 1531 1532 struct igb_ring_desc_16_bytes { 1533 union igb_ring_dword lo_dword; 1534 union igb_ring_dword hi_dword; 1535 }; 1536 1537 static void 1538 ring_rxd_display_dword(union igb_ring_dword dword) 1539 { 1540 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1541 (unsigned)dword.words.hi); 1542 } 1543 1544 static void 1545 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1546 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1547 uint8_t port_id, 1548 #else 1549 __rte_unused uint8_t port_id, 1550 #endif 1551 uint16_t desc_id) 1552 { 1553 struct igb_ring_desc_16_bytes *ring = 1554 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1555 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1556 struct rte_eth_dev_info dev_info; 1557 1558 memset(&dev_info, 0, sizeof(dev_info)); 1559 rte_eth_dev_info_get(port_id, &dev_info); 1560 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1561 /* 32 bytes RX descriptor, i40e only */ 1562 struct igb_ring_desc_32_bytes *ring = 1563 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1564 ring[desc_id].lo_dword.dword = 1565 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1566 ring_rxd_display_dword(ring[desc_id].lo_dword); 1567 ring[desc_id].hi_dword.dword = 1568 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1569 ring_rxd_display_dword(ring[desc_id].hi_dword); 1570 ring[desc_id].resv1.dword = 1571 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1572 ring_rxd_display_dword(ring[desc_id].resv1); 1573 ring[desc_id].resv2.dword = 1574 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1575 ring_rxd_display_dword(ring[desc_id].resv2); 1576 1577 return; 1578 } 1579 #endif 1580 /* 16 bytes RX descriptor */ 1581 ring[desc_id].lo_dword.dword = 1582 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1583 ring_rxd_display_dword(ring[desc_id].lo_dword); 1584 ring[desc_id].hi_dword.dword = 1585 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1586 ring_rxd_display_dword(ring[desc_id].hi_dword); 1587 } 1588 1589 static void 1590 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1591 { 1592 struct igb_ring_desc_16_bytes *ring; 1593 struct igb_ring_desc_16_bytes txd; 1594 1595 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1596 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1597 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1598 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1599 (unsigned)txd.lo_dword.words.lo, 1600 (unsigned)txd.lo_dword.words.hi, 1601 (unsigned)txd.hi_dword.words.lo, 1602 (unsigned)txd.hi_dword.words.hi); 1603 } 1604 1605 void 1606 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1607 { 1608 const struct rte_memzone *rx_mz; 1609 1610 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1611 return; 1612 if (rx_queue_id_is_invalid(rxq_id)) 1613 return; 1614 if (rx_desc_id_is_invalid(rxd_id)) 1615 return; 1616 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1617 if (rx_mz == NULL) 1618 return; 1619 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1620 } 1621 1622 void 1623 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1624 { 1625 const struct rte_memzone *tx_mz; 1626 1627 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1628 return; 1629 if (tx_queue_id_is_invalid(txq_id)) 1630 return; 1631 if (tx_desc_id_is_invalid(txd_id)) 1632 return; 1633 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1634 if (tx_mz == NULL) 1635 return; 1636 ring_tx_descriptor_display(tx_mz, txd_id); 1637 } 1638 1639 void 1640 fwd_lcores_config_display(void) 1641 { 1642 lcoreid_t lc_id; 1643 1644 printf("List of forwarding lcores:"); 1645 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1646 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1647 printf("\n"); 1648 } 1649 void 1650 rxtx_config_display(void) 1651 { 1652 printf(" %s packet forwarding%s - CRC stripping %s - " 1653 "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, 1654 retry_enabled == 0 ? "" : " with retry", 1655 rx_mode.hw_strip_crc ? "enabled" : "disabled", 1656 nb_pkt_per_burst); 1657 1658 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1659 printf(" packet len=%u - nb packet segments=%d\n", 1660 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1661 1662 struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf; 1663 struct rte_eth_txconf *tx_conf = &ports[0].tx_conf; 1664 1665 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1666 nb_fwd_lcores, nb_fwd_ports); 1667 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1668 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1669 printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1670 rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh, 1671 rx_conf->rx_thresh.wthresh); 1672 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1673 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1674 printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1675 tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh, 1676 tx_conf->tx_thresh.wthresh); 1677 printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n", 1678 tx_conf->tx_rs_thresh, tx_conf->txq_flags); 1679 } 1680 1681 void 1682 port_rss_reta_info(portid_t port_id, 1683 struct rte_eth_rss_reta_entry64 *reta_conf, 1684 uint16_t nb_entries) 1685 { 1686 uint16_t i, idx, shift; 1687 int ret; 1688 1689 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1690 return; 1691 1692 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1693 if (ret != 0) { 1694 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1695 return; 1696 } 1697 1698 for (i = 0; i < nb_entries; i++) { 1699 idx = i / RTE_RETA_GROUP_SIZE; 1700 shift = i % RTE_RETA_GROUP_SIZE; 1701 if (!(reta_conf[idx].mask & (1ULL << shift))) 1702 continue; 1703 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1704 i, reta_conf[idx].reta[shift]); 1705 } 1706 } 1707 1708 /* 1709 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1710 * key of the port. 1711 */ 1712 void 1713 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1714 { 1715 struct rte_eth_rss_conf rss_conf; 1716 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1717 uint64_t rss_hf; 1718 uint8_t i; 1719 int diag; 1720 struct rte_eth_dev_info dev_info; 1721 uint8_t hash_key_size; 1722 1723 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1724 return; 1725 1726 memset(&dev_info, 0, sizeof(dev_info)); 1727 rte_eth_dev_info_get(port_id, &dev_info); 1728 if (dev_info.hash_key_size > 0 && 1729 dev_info.hash_key_size <= sizeof(rss_key)) 1730 hash_key_size = dev_info.hash_key_size; 1731 else { 1732 printf("dev_info did not provide a valid hash key size\n"); 1733 return; 1734 } 1735 1736 rss_conf.rss_hf = 0; 1737 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1738 if (!strcmp(rss_info, rss_type_table[i].str)) 1739 rss_conf.rss_hf = rss_type_table[i].rss_type; 1740 } 1741 1742 /* Get RSS hash key if asked to display it */ 1743 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1744 rss_conf.rss_key_len = hash_key_size; 1745 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1746 if (diag != 0) { 1747 switch (diag) { 1748 case -ENODEV: 1749 printf("port index %d invalid\n", port_id); 1750 break; 1751 case -ENOTSUP: 1752 printf("operation not supported by device\n"); 1753 break; 1754 default: 1755 printf("operation failed - diag=%d\n", diag); 1756 break; 1757 } 1758 return; 1759 } 1760 rss_hf = rss_conf.rss_hf; 1761 if (rss_hf == 0) { 1762 printf("RSS disabled\n"); 1763 return; 1764 } 1765 printf("RSS functions:\n "); 1766 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1767 if (rss_hf & rss_type_table[i].rss_type) 1768 printf("%s ", rss_type_table[i].str); 1769 } 1770 printf("\n"); 1771 if (!show_rss_key) 1772 return; 1773 printf("RSS key:\n"); 1774 for (i = 0; i < hash_key_size; i++) 1775 printf("%02X", rss_key[i]); 1776 printf("\n"); 1777 } 1778 1779 void 1780 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1781 uint hash_key_len) 1782 { 1783 struct rte_eth_rss_conf rss_conf; 1784 int diag; 1785 unsigned int i; 1786 1787 rss_conf.rss_key = NULL; 1788 rss_conf.rss_key_len = hash_key_len; 1789 rss_conf.rss_hf = 0; 1790 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1791 if (!strcmp(rss_type_table[i].str, rss_type)) 1792 rss_conf.rss_hf = rss_type_table[i].rss_type; 1793 } 1794 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1795 if (diag == 0) { 1796 rss_conf.rss_key = hash_key; 1797 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1798 } 1799 if (diag == 0) 1800 return; 1801 1802 switch (diag) { 1803 case -ENODEV: 1804 printf("port index %d invalid\n", port_id); 1805 break; 1806 case -ENOTSUP: 1807 printf("operation not supported by device\n"); 1808 break; 1809 default: 1810 printf("operation failed - diag=%d\n", diag); 1811 break; 1812 } 1813 } 1814 1815 /* 1816 * Setup forwarding configuration for each logical core. 1817 */ 1818 static void 1819 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1820 { 1821 streamid_t nb_fs_per_lcore; 1822 streamid_t nb_fs; 1823 streamid_t sm_id; 1824 lcoreid_t nb_extra; 1825 lcoreid_t nb_fc; 1826 lcoreid_t nb_lc; 1827 lcoreid_t lc_id; 1828 1829 nb_fs = cfg->nb_fwd_streams; 1830 nb_fc = cfg->nb_fwd_lcores; 1831 if (nb_fs <= nb_fc) { 1832 nb_fs_per_lcore = 1; 1833 nb_extra = 0; 1834 } else { 1835 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1836 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1837 } 1838 1839 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1840 sm_id = 0; 1841 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1842 fwd_lcores[lc_id]->stream_idx = sm_id; 1843 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1844 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1845 } 1846 1847 /* 1848 * Assign extra remaining streams, if any. 1849 */ 1850 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1851 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1852 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1853 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1854 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1855 } 1856 } 1857 1858 static void 1859 simple_fwd_config_setup(void) 1860 { 1861 portid_t i; 1862 portid_t j; 1863 portid_t inc = 2; 1864 1865 if (port_topology == PORT_TOPOLOGY_CHAINED || 1866 port_topology == PORT_TOPOLOGY_LOOP) { 1867 inc = 1; 1868 } else if (nb_fwd_ports % 2) { 1869 printf("\nWarning! Cannot handle an odd number of ports " 1870 "with the current port topology. Configuration " 1871 "must be changed to have an even number of ports, " 1872 "or relaunch application with " 1873 "--port-topology=chained\n\n"); 1874 } 1875 1876 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1877 cur_fwd_config.nb_fwd_streams = 1878 (streamid_t) cur_fwd_config.nb_fwd_ports; 1879 1880 /* reinitialize forwarding streams */ 1881 init_fwd_streams(); 1882 1883 /* 1884 * In the simple forwarding test, the number of forwarding cores 1885 * must be lower or equal to the number of forwarding ports. 1886 */ 1887 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1888 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1889 cur_fwd_config.nb_fwd_lcores = 1890 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1891 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1892 1893 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { 1894 if (port_topology != PORT_TOPOLOGY_LOOP) 1895 j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); 1896 else 1897 j = i; 1898 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1899 fwd_streams[i]->rx_queue = 0; 1900 fwd_streams[i]->tx_port = fwd_ports_ids[j]; 1901 fwd_streams[i]->tx_queue = 0; 1902 fwd_streams[i]->peer_addr = j; 1903 fwd_streams[i]->retry_enabled = retry_enabled; 1904 1905 if (port_topology == PORT_TOPOLOGY_PAIRED) { 1906 fwd_streams[j]->rx_port = fwd_ports_ids[j]; 1907 fwd_streams[j]->rx_queue = 0; 1908 fwd_streams[j]->tx_port = fwd_ports_ids[i]; 1909 fwd_streams[j]->tx_queue = 0; 1910 fwd_streams[j]->peer_addr = i; 1911 fwd_streams[j]->retry_enabled = retry_enabled; 1912 } 1913 } 1914 } 1915 1916 /** 1917 * For the RSS forwarding test all streams distributed over lcores. Each stream 1918 * being composed of a RX queue to poll on a RX port for input messages, 1919 * associated with a TX queue of a TX port where to send forwarded packets. 1920 * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" 1921 * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two 1922 * following rules: 1923 * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd 1924 * - TxQl = RxQj 1925 */ 1926 static void 1927 rss_fwd_config_setup(void) 1928 { 1929 portid_t rxp; 1930 portid_t txp; 1931 queueid_t rxq; 1932 queueid_t nb_q; 1933 streamid_t sm_id; 1934 1935 nb_q = nb_rxq; 1936 if (nb_q > nb_txq) 1937 nb_q = nb_txq; 1938 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1939 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1940 cur_fwd_config.nb_fwd_streams = 1941 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1942 1943 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1944 cur_fwd_config.nb_fwd_lcores = 1945 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1946 1947 /* reinitialize forwarding streams */ 1948 init_fwd_streams(); 1949 1950 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1951 rxp = 0; rxq = 0; 1952 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1953 struct fwd_stream *fs; 1954 1955 fs = fwd_streams[sm_id]; 1956 1957 if ((rxp & 0x1) == 0) 1958 txp = (portid_t) (rxp + 1); 1959 else 1960 txp = (portid_t) (rxp - 1); 1961 /* 1962 * if we are in loopback, simply send stuff out through the 1963 * ingress port 1964 */ 1965 if (port_topology == PORT_TOPOLOGY_LOOP) 1966 txp = rxp; 1967 1968 fs->rx_port = fwd_ports_ids[rxp]; 1969 fs->rx_queue = rxq; 1970 fs->tx_port = fwd_ports_ids[txp]; 1971 fs->tx_queue = rxq; 1972 fs->peer_addr = fs->tx_port; 1973 fs->retry_enabled = retry_enabled; 1974 rxq = (queueid_t) (rxq + 1); 1975 if (rxq < nb_q) 1976 continue; 1977 /* 1978 * rxq == nb_q 1979 * Restart from RX queue 0 on next RX port 1980 */ 1981 rxq = 0; 1982 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 1983 rxp = (portid_t) 1984 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 1985 else 1986 rxp = (portid_t) (rxp + 1); 1987 } 1988 } 1989 1990 /** 1991 * For the DCB forwarding test, each core is assigned on each traffic class. 1992 * 1993 * Each core is assigned a multi-stream, each stream being composed of 1994 * a RX queue to poll on a RX port for input messages, associated with 1995 * a TX queue of a TX port where to send forwarded packets. All RX and 1996 * TX queues are mapping to the same traffic class. 1997 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 1998 * the same core 1999 */ 2000 static void 2001 dcb_fwd_config_setup(void) 2002 { 2003 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 2004 portid_t txp, rxp = 0; 2005 queueid_t txq, rxq = 0; 2006 lcoreid_t lc_id; 2007 uint16_t nb_rx_queue, nb_tx_queue; 2008 uint16_t i, j, k, sm_id = 0; 2009 uint8_t tc = 0; 2010 2011 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2012 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2013 cur_fwd_config.nb_fwd_streams = 2014 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2015 2016 /* reinitialize forwarding streams */ 2017 init_fwd_streams(); 2018 sm_id = 0; 2019 txp = 1; 2020 /* get the dcb info on the first RX and TX ports */ 2021 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2022 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2023 2024 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2025 fwd_lcores[lc_id]->stream_nb = 0; 2026 fwd_lcores[lc_id]->stream_idx = sm_id; 2027 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2028 /* if the nb_queue is zero, means this tc is 2029 * not enabled on the POOL 2030 */ 2031 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2032 break; 2033 k = fwd_lcores[lc_id]->stream_nb + 2034 fwd_lcores[lc_id]->stream_idx; 2035 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2036 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2037 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2038 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2039 for (j = 0; j < nb_rx_queue; j++) { 2040 struct fwd_stream *fs; 2041 2042 fs = fwd_streams[k + j]; 2043 fs->rx_port = fwd_ports_ids[rxp]; 2044 fs->rx_queue = rxq + j; 2045 fs->tx_port = fwd_ports_ids[txp]; 2046 fs->tx_queue = txq + j % nb_tx_queue; 2047 fs->peer_addr = fs->tx_port; 2048 fs->retry_enabled = retry_enabled; 2049 } 2050 fwd_lcores[lc_id]->stream_nb += 2051 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2052 } 2053 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2054 2055 tc++; 2056 if (tc < rxp_dcb_info.nb_tcs) 2057 continue; 2058 /* Restart from TC 0 on next RX port */ 2059 tc = 0; 2060 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2061 rxp = (portid_t) 2062 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2063 else 2064 rxp++; 2065 if (rxp >= nb_fwd_ports) 2066 return; 2067 /* get the dcb information on next RX and TX ports */ 2068 if ((rxp & 0x1) == 0) 2069 txp = (portid_t) (rxp + 1); 2070 else 2071 txp = (portid_t) (rxp - 1); 2072 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2073 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2074 } 2075 } 2076 2077 static void 2078 icmp_echo_config_setup(void) 2079 { 2080 portid_t rxp; 2081 queueid_t rxq; 2082 lcoreid_t lc_id; 2083 uint16_t sm_id; 2084 2085 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2086 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2087 (nb_txq * nb_fwd_ports); 2088 else 2089 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2090 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2091 cur_fwd_config.nb_fwd_streams = 2092 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2093 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2094 cur_fwd_config.nb_fwd_lcores = 2095 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2096 if (verbose_level > 0) { 2097 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2098 __FUNCTION__, 2099 cur_fwd_config.nb_fwd_lcores, 2100 cur_fwd_config.nb_fwd_ports, 2101 cur_fwd_config.nb_fwd_streams); 2102 } 2103 2104 /* reinitialize forwarding streams */ 2105 init_fwd_streams(); 2106 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2107 rxp = 0; rxq = 0; 2108 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2109 if (verbose_level > 0) 2110 printf(" core=%d: \n", lc_id); 2111 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2112 struct fwd_stream *fs; 2113 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2114 fs->rx_port = fwd_ports_ids[rxp]; 2115 fs->rx_queue = rxq; 2116 fs->tx_port = fs->rx_port; 2117 fs->tx_queue = rxq; 2118 fs->peer_addr = fs->tx_port; 2119 fs->retry_enabled = retry_enabled; 2120 if (verbose_level > 0) 2121 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2122 sm_id, fs->rx_port, fs->rx_queue, 2123 fs->tx_queue); 2124 rxq = (queueid_t) (rxq + 1); 2125 if (rxq == nb_rxq) { 2126 rxq = 0; 2127 rxp = (portid_t) (rxp + 1); 2128 } 2129 } 2130 } 2131 } 2132 2133 void 2134 fwd_config_setup(void) 2135 { 2136 cur_fwd_config.fwd_eng = cur_fwd_eng; 2137 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2138 icmp_echo_config_setup(); 2139 return; 2140 } 2141 if ((nb_rxq > 1) && (nb_txq > 1)){ 2142 if (dcb_config) 2143 dcb_fwd_config_setup(); 2144 else 2145 rss_fwd_config_setup(); 2146 } 2147 else 2148 simple_fwd_config_setup(); 2149 } 2150 2151 void 2152 pkt_fwd_config_display(struct fwd_config *cfg) 2153 { 2154 struct fwd_stream *fs; 2155 lcoreid_t lc_id; 2156 streamid_t sm_id; 2157 2158 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2159 "NUMA support %s, MP over anonymous pages %s\n", 2160 cfg->fwd_eng->fwd_mode_name, 2161 retry_enabled == 0 ? "" : " with retry", 2162 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2163 numa_support == 1 ? "enabled" : "disabled", 2164 mp_anon != 0 ? "enabled" : "disabled"); 2165 2166 if (retry_enabled) 2167 printf("TX retry num: %u, delay between TX retries: %uus\n", 2168 burst_tx_retry_num, burst_tx_delay_time); 2169 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2170 printf("Logical Core %u (socket %u) forwards packets on " 2171 "%d streams:", 2172 fwd_lcores_cpuids[lc_id], 2173 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2174 fwd_lcores[lc_id]->stream_nb); 2175 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2176 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2177 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2178 "P=%d/Q=%d (socket %u) ", 2179 fs->rx_port, fs->rx_queue, 2180 ports[fs->rx_port].socket_id, 2181 fs->tx_port, fs->tx_queue, 2182 ports[fs->tx_port].socket_id); 2183 print_ethaddr("peer=", 2184 &peer_eth_addrs[fs->peer_addr]); 2185 } 2186 printf("\n"); 2187 } 2188 printf("\n"); 2189 } 2190 2191 int 2192 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2193 { 2194 unsigned int i; 2195 unsigned int lcore_cpuid; 2196 int record_now; 2197 2198 record_now = 0; 2199 again: 2200 for (i = 0; i < nb_lc; i++) { 2201 lcore_cpuid = lcorelist[i]; 2202 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2203 printf("lcore %u not enabled\n", lcore_cpuid); 2204 return -1; 2205 } 2206 if (lcore_cpuid == rte_get_master_lcore()) { 2207 printf("lcore %u cannot be masked on for running " 2208 "packet forwarding, which is the master lcore " 2209 "and reserved for command line parsing only\n", 2210 lcore_cpuid); 2211 return -1; 2212 } 2213 if (record_now) 2214 fwd_lcores_cpuids[i] = lcore_cpuid; 2215 } 2216 if (record_now == 0) { 2217 record_now = 1; 2218 goto again; 2219 } 2220 nb_cfg_lcores = (lcoreid_t) nb_lc; 2221 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2222 printf("previous number of forwarding cores %u - changed to " 2223 "number of configured cores %u\n", 2224 (unsigned int) nb_fwd_lcores, nb_lc); 2225 nb_fwd_lcores = (lcoreid_t) nb_lc; 2226 } 2227 2228 return 0; 2229 } 2230 2231 int 2232 set_fwd_lcores_mask(uint64_t lcoremask) 2233 { 2234 unsigned int lcorelist[64]; 2235 unsigned int nb_lc; 2236 unsigned int i; 2237 2238 if (lcoremask == 0) { 2239 printf("Invalid NULL mask of cores\n"); 2240 return -1; 2241 } 2242 nb_lc = 0; 2243 for (i = 0; i < 64; i++) { 2244 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2245 continue; 2246 lcorelist[nb_lc++] = i; 2247 } 2248 return set_fwd_lcores_list(lcorelist, nb_lc); 2249 } 2250 2251 void 2252 set_fwd_lcores_number(uint16_t nb_lc) 2253 { 2254 if (nb_lc > nb_cfg_lcores) { 2255 printf("nb fwd cores %u > %u (max. number of configured " 2256 "lcores) - ignored\n", 2257 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2258 return; 2259 } 2260 nb_fwd_lcores = (lcoreid_t) nb_lc; 2261 printf("Number of forwarding cores set to %u\n", 2262 (unsigned int) nb_fwd_lcores); 2263 } 2264 2265 void 2266 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2267 { 2268 unsigned int i; 2269 portid_t port_id; 2270 int record_now; 2271 2272 record_now = 0; 2273 again: 2274 for (i = 0; i < nb_pt; i++) { 2275 port_id = (portid_t) portlist[i]; 2276 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2277 return; 2278 if (record_now) 2279 fwd_ports_ids[i] = port_id; 2280 } 2281 if (record_now == 0) { 2282 record_now = 1; 2283 goto again; 2284 } 2285 nb_cfg_ports = (portid_t) nb_pt; 2286 if (nb_fwd_ports != (portid_t) nb_pt) { 2287 printf("previous number of forwarding ports %u - changed to " 2288 "number of configured ports %u\n", 2289 (unsigned int) nb_fwd_ports, nb_pt); 2290 nb_fwd_ports = (portid_t) nb_pt; 2291 } 2292 } 2293 2294 void 2295 set_fwd_ports_mask(uint64_t portmask) 2296 { 2297 unsigned int portlist[64]; 2298 unsigned int nb_pt; 2299 unsigned int i; 2300 2301 if (portmask == 0) { 2302 printf("Invalid NULL mask of ports\n"); 2303 return; 2304 } 2305 nb_pt = 0; 2306 RTE_ETH_FOREACH_DEV(i) { 2307 if (! ((uint64_t)(1ULL << i) & portmask)) 2308 continue; 2309 portlist[nb_pt++] = i; 2310 } 2311 set_fwd_ports_list(portlist, nb_pt); 2312 } 2313 2314 void 2315 set_fwd_ports_number(uint16_t nb_pt) 2316 { 2317 if (nb_pt > nb_cfg_ports) { 2318 printf("nb fwd ports %u > %u (number of configured " 2319 "ports) - ignored\n", 2320 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2321 return; 2322 } 2323 nb_fwd_ports = (portid_t) nb_pt; 2324 printf("Number of forwarding ports set to %u\n", 2325 (unsigned int) nb_fwd_ports); 2326 } 2327 2328 int 2329 port_is_forwarding(portid_t port_id) 2330 { 2331 unsigned int i; 2332 2333 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2334 return -1; 2335 2336 for (i = 0; i < nb_fwd_ports; i++) { 2337 if (fwd_ports_ids[i] == port_id) 2338 return 1; 2339 } 2340 2341 return 0; 2342 } 2343 2344 void 2345 set_nb_pkt_per_burst(uint16_t nb) 2346 { 2347 if (nb > MAX_PKT_BURST) { 2348 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2349 " ignored\n", 2350 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2351 return; 2352 } 2353 nb_pkt_per_burst = nb; 2354 printf("Number of packets per burst set to %u\n", 2355 (unsigned int) nb_pkt_per_burst); 2356 } 2357 2358 static const char * 2359 tx_split_get_name(enum tx_pkt_split split) 2360 { 2361 uint32_t i; 2362 2363 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2364 if (tx_split_name[i].split == split) 2365 return tx_split_name[i].name; 2366 } 2367 return NULL; 2368 } 2369 2370 void 2371 set_tx_pkt_split(const char *name) 2372 { 2373 uint32_t i; 2374 2375 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2376 if (strcmp(tx_split_name[i].name, name) == 0) { 2377 tx_pkt_split = tx_split_name[i].split; 2378 return; 2379 } 2380 } 2381 printf("unknown value: \"%s\"\n", name); 2382 } 2383 2384 void 2385 show_tx_pkt_segments(void) 2386 { 2387 uint32_t i, n; 2388 const char *split; 2389 2390 n = tx_pkt_nb_segs; 2391 split = tx_split_get_name(tx_pkt_split); 2392 2393 printf("Number of segments: %u\n", n); 2394 printf("Segment sizes: "); 2395 for (i = 0; i != n - 1; i++) 2396 printf("%hu,", tx_pkt_seg_lengths[i]); 2397 printf("%hu\n", tx_pkt_seg_lengths[i]); 2398 printf("Split packet: %s\n", split); 2399 } 2400 2401 void 2402 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2403 { 2404 uint16_t tx_pkt_len; 2405 unsigned i; 2406 2407 if (nb_segs >= (unsigned) nb_txd) { 2408 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2409 nb_segs, (unsigned int) nb_txd); 2410 return; 2411 } 2412 2413 /* 2414 * Check that each segment length is greater or equal than 2415 * the mbuf data sise. 2416 * Check also that the total packet length is greater or equal than the 2417 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2418 */ 2419 tx_pkt_len = 0; 2420 for (i = 0; i < nb_segs; i++) { 2421 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2422 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2423 i, seg_lengths[i], (unsigned) mbuf_data_size); 2424 return; 2425 } 2426 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2427 } 2428 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2429 printf("total packet length=%u < %d - give up\n", 2430 (unsigned) tx_pkt_len, 2431 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2432 return; 2433 } 2434 2435 for (i = 0; i < nb_segs; i++) 2436 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2437 2438 tx_pkt_length = tx_pkt_len; 2439 tx_pkt_nb_segs = (uint8_t) nb_segs; 2440 } 2441 2442 void 2443 setup_gro(const char *onoff, portid_t port_id) 2444 { 2445 if (!rte_eth_dev_is_valid_port(port_id)) { 2446 printf("invalid port id %u\n", port_id); 2447 return; 2448 } 2449 if (test_done == 0) { 2450 printf("Before enable/disable GRO," 2451 " please stop forwarding first\n"); 2452 return; 2453 } 2454 if (strcmp(onoff, "on") == 0) { 2455 if (gro_ports[port_id].enable != 0) { 2456 printf("Port %u has enabled GRO. Please" 2457 " disable GRO first\n", port_id); 2458 return; 2459 } 2460 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2461 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2462 gro_ports[port_id].param.max_flow_num = 2463 GRO_DEFAULT_FLOW_NUM; 2464 gro_ports[port_id].param.max_item_per_flow = 2465 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2466 } 2467 gro_ports[port_id].enable = 1; 2468 } else { 2469 if (gro_ports[port_id].enable == 0) { 2470 printf("Port %u has disabled GRO\n", port_id); 2471 return; 2472 } 2473 gro_ports[port_id].enable = 0; 2474 } 2475 } 2476 2477 void 2478 setup_gro_flush_cycles(uint8_t cycles) 2479 { 2480 if (test_done == 0) { 2481 printf("Before change flush interval for GRO," 2482 " please stop forwarding first.\n"); 2483 return; 2484 } 2485 2486 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 2487 GRO_DEFAULT_FLUSH_CYCLES) { 2488 printf("The flushing cycle be in the range" 2489 " of 1 to %u. Revert to the default" 2490 " value %u.\n", 2491 GRO_MAX_FLUSH_CYCLES, 2492 GRO_DEFAULT_FLUSH_CYCLES); 2493 cycles = GRO_DEFAULT_FLUSH_CYCLES; 2494 } 2495 2496 gro_flush_cycles = cycles; 2497 } 2498 2499 void 2500 show_gro(portid_t port_id) 2501 { 2502 struct rte_gro_param *param; 2503 uint32_t max_pkts_num; 2504 2505 param = &gro_ports[port_id].param; 2506 2507 if (!rte_eth_dev_is_valid_port(port_id)) { 2508 printf("Invalid port id %u.\n", port_id); 2509 return; 2510 } 2511 if (gro_ports[port_id].enable) { 2512 printf("GRO type: TCP/IPv4\n"); 2513 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2514 max_pkts_num = param->max_flow_num * 2515 param->max_item_per_flow; 2516 } else 2517 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 2518 printf("Max number of packets to perform GRO: %u\n", 2519 max_pkts_num); 2520 printf("Flushing cycles: %u\n", gro_flush_cycles); 2521 } else 2522 printf("Port %u doesn't enable GRO.\n", port_id); 2523 } 2524 2525 void 2526 setup_gso(const char *mode, portid_t port_id) 2527 { 2528 if (!rte_eth_dev_is_valid_port(port_id)) { 2529 printf("invalid port id %u\n", port_id); 2530 return; 2531 } 2532 if (strcmp(mode, "on") == 0) { 2533 if (test_done == 0) { 2534 printf("before enabling GSO," 2535 " please stop forwarding first\n"); 2536 return; 2537 } 2538 gso_ports[port_id].enable = 1; 2539 } else if (strcmp(mode, "off") == 0) { 2540 if (test_done == 0) { 2541 printf("before disabling GSO," 2542 " please stop forwarding first\n"); 2543 return; 2544 } 2545 gso_ports[port_id].enable = 0; 2546 } 2547 } 2548 2549 char* 2550 list_pkt_forwarding_modes(void) 2551 { 2552 static char fwd_modes[128] = ""; 2553 const char *separator = "|"; 2554 struct fwd_engine *fwd_eng; 2555 unsigned i = 0; 2556 2557 if (strlen (fwd_modes) == 0) { 2558 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2559 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2560 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2561 strncat(fwd_modes, separator, 2562 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2563 } 2564 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2565 } 2566 2567 return fwd_modes; 2568 } 2569 2570 char* 2571 list_pkt_forwarding_retry_modes(void) 2572 { 2573 static char fwd_modes[128] = ""; 2574 const char *separator = "|"; 2575 struct fwd_engine *fwd_eng; 2576 unsigned i = 0; 2577 2578 if (strlen(fwd_modes) == 0) { 2579 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2580 if (fwd_eng == &rx_only_engine) 2581 continue; 2582 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2583 sizeof(fwd_modes) - 2584 strlen(fwd_modes) - 1); 2585 strncat(fwd_modes, separator, 2586 sizeof(fwd_modes) - 2587 strlen(fwd_modes) - 1); 2588 } 2589 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2590 } 2591 2592 return fwd_modes; 2593 } 2594 2595 void 2596 set_pkt_forwarding_mode(const char *fwd_mode_name) 2597 { 2598 struct fwd_engine *fwd_eng; 2599 unsigned i; 2600 2601 i = 0; 2602 while ((fwd_eng = fwd_engines[i]) != NULL) { 2603 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2604 printf("Set %s packet forwarding mode%s\n", 2605 fwd_mode_name, 2606 retry_enabled == 0 ? "" : " with retry"); 2607 cur_fwd_eng = fwd_eng; 2608 return; 2609 } 2610 i++; 2611 } 2612 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2613 } 2614 2615 void 2616 set_verbose_level(uint16_t vb_level) 2617 { 2618 printf("Change verbose level from %u to %u\n", 2619 (unsigned int) verbose_level, (unsigned int) vb_level); 2620 verbose_level = vb_level; 2621 } 2622 2623 void 2624 vlan_extend_set(portid_t port_id, int on) 2625 { 2626 int diag; 2627 int vlan_offload; 2628 2629 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2630 return; 2631 2632 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2633 2634 if (on) 2635 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2636 else 2637 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2638 2639 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2640 if (diag < 0) 2641 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2642 "diag=%d\n", port_id, on, diag); 2643 } 2644 2645 void 2646 rx_vlan_strip_set(portid_t port_id, int on) 2647 { 2648 int diag; 2649 int vlan_offload; 2650 2651 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2652 return; 2653 2654 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2655 2656 if (on) 2657 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2658 else 2659 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2660 2661 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2662 if (diag < 0) 2663 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2664 "diag=%d\n", port_id, on, diag); 2665 } 2666 2667 void 2668 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2669 { 2670 int diag; 2671 2672 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2673 return; 2674 2675 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2676 if (diag < 0) 2677 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2678 "diag=%d\n", port_id, queue_id, on, diag); 2679 } 2680 2681 void 2682 rx_vlan_filter_set(portid_t port_id, int on) 2683 { 2684 int diag; 2685 int vlan_offload; 2686 2687 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2688 return; 2689 2690 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2691 2692 if (on) 2693 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2694 else 2695 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2696 2697 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2698 if (diag < 0) 2699 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2700 "diag=%d\n", port_id, on, diag); 2701 } 2702 2703 int 2704 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2705 { 2706 int diag; 2707 2708 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2709 return 1; 2710 if (vlan_id_is_invalid(vlan_id)) 2711 return 1; 2712 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2713 if (diag == 0) 2714 return 0; 2715 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2716 "diag=%d\n", 2717 port_id, vlan_id, on, diag); 2718 return -1; 2719 } 2720 2721 void 2722 rx_vlan_all_filter_set(portid_t port_id, int on) 2723 { 2724 uint16_t vlan_id; 2725 2726 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2727 return; 2728 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2729 if (rx_vft_set(port_id, vlan_id, on)) 2730 break; 2731 } 2732 } 2733 2734 void 2735 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2736 { 2737 int diag; 2738 2739 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2740 return; 2741 2742 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2743 if (diag == 0) 2744 return; 2745 2746 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2747 "diag=%d\n", 2748 port_id, vlan_type, tp_id, diag); 2749 } 2750 2751 void 2752 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2753 { 2754 int vlan_offload; 2755 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2756 return; 2757 if (vlan_id_is_invalid(vlan_id)) 2758 return; 2759 2760 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2761 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2762 printf("Error, as QinQ has been enabled.\n"); 2763 return; 2764 } 2765 2766 tx_vlan_reset(port_id); 2767 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN; 2768 ports[port_id].tx_vlan_id = vlan_id; 2769 } 2770 2771 void 2772 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2773 { 2774 int vlan_offload; 2775 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2776 return; 2777 if (vlan_id_is_invalid(vlan_id)) 2778 return; 2779 if (vlan_id_is_invalid(vlan_id_outer)) 2780 return; 2781 2782 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2783 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2784 printf("Error, as QinQ hasn't been enabled.\n"); 2785 return; 2786 } 2787 2788 tx_vlan_reset(port_id); 2789 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ; 2790 ports[port_id].tx_vlan_id = vlan_id; 2791 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2792 } 2793 2794 void 2795 tx_vlan_reset(portid_t port_id) 2796 { 2797 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2798 return; 2799 ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN | 2800 TESTPMD_TX_OFFLOAD_INSERT_QINQ); 2801 ports[port_id].tx_vlan_id = 0; 2802 ports[port_id].tx_vlan_id_outer = 0; 2803 } 2804 2805 void 2806 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2807 { 2808 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2809 return; 2810 2811 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2812 } 2813 2814 void 2815 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2816 { 2817 uint16_t i; 2818 uint8_t existing_mapping_found = 0; 2819 2820 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2821 return; 2822 2823 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2824 return; 2825 2826 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2827 printf("map_value not in required range 0..%d\n", 2828 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2829 return; 2830 } 2831 2832 if (!is_rx) { /*then tx*/ 2833 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2834 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2835 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2836 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2837 existing_mapping_found = 1; 2838 break; 2839 } 2840 } 2841 if (!existing_mapping_found) { /* A new additional mapping... */ 2842 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2843 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2844 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2845 nb_tx_queue_stats_mappings++; 2846 } 2847 } 2848 else { /*rx*/ 2849 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2850 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2851 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2852 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2853 existing_mapping_found = 1; 2854 break; 2855 } 2856 } 2857 if (!existing_mapping_found) { /* A new additional mapping... */ 2858 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2859 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2860 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2861 nb_rx_queue_stats_mappings++; 2862 } 2863 } 2864 } 2865 2866 static inline void 2867 print_fdir_mask(struct rte_eth_fdir_masks *mask) 2868 { 2869 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 2870 2871 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2872 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 2873 " tunnel_id: 0x%08x", 2874 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 2875 rte_be_to_cpu_32(mask->tunnel_id_mask)); 2876 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2877 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 2878 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 2879 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 2880 2881 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 2882 rte_be_to_cpu_16(mask->src_port_mask), 2883 rte_be_to_cpu_16(mask->dst_port_mask)); 2884 2885 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2886 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 2887 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 2888 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 2889 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 2890 2891 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2892 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 2893 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 2894 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 2895 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 2896 } 2897 2898 printf("\n"); 2899 } 2900 2901 static inline void 2902 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2903 { 2904 struct rte_eth_flex_payload_cfg *cfg; 2905 uint32_t i, j; 2906 2907 for (i = 0; i < flex_conf->nb_payloads; i++) { 2908 cfg = &flex_conf->flex_set[i]; 2909 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 2910 printf("\n RAW: "); 2911 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 2912 printf("\n L2_PAYLOAD: "); 2913 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 2914 printf("\n L3_PAYLOAD: "); 2915 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 2916 printf("\n L4_PAYLOAD: "); 2917 else 2918 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 2919 for (j = 0; j < num; j++) 2920 printf(" %-5u", cfg->src_offset[j]); 2921 } 2922 printf("\n"); 2923 } 2924 2925 static char * 2926 flowtype_to_str(uint16_t flow_type) 2927 { 2928 struct flow_type_info { 2929 char str[32]; 2930 uint16_t ftype; 2931 }; 2932 2933 uint8_t i; 2934 static struct flow_type_info flowtype_str_table[] = { 2935 {"raw", RTE_ETH_FLOW_RAW}, 2936 {"ipv4", RTE_ETH_FLOW_IPV4}, 2937 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 2938 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 2939 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 2940 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 2941 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 2942 {"ipv6", RTE_ETH_FLOW_IPV6}, 2943 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 2944 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 2945 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 2946 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 2947 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 2948 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 2949 {"port", RTE_ETH_FLOW_PORT}, 2950 {"vxlan", RTE_ETH_FLOW_VXLAN}, 2951 {"geneve", RTE_ETH_FLOW_GENEVE}, 2952 {"nvgre", RTE_ETH_FLOW_NVGRE}, 2953 }; 2954 2955 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 2956 if (flowtype_str_table[i].ftype == flow_type) 2957 return flowtype_str_table[i].str; 2958 } 2959 2960 return NULL; 2961 } 2962 2963 static inline void 2964 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2965 { 2966 struct rte_eth_fdir_flex_mask *mask; 2967 uint32_t i, j; 2968 char *p; 2969 2970 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 2971 mask = &flex_conf->flex_mask[i]; 2972 p = flowtype_to_str(mask->flow_type); 2973 printf("\n %s:\t", p ? p : "unknown"); 2974 for (j = 0; j < num; j++) 2975 printf(" %02x", mask->mask[j]); 2976 } 2977 printf("\n"); 2978 } 2979 2980 static inline void 2981 print_fdir_flow_type(uint32_t flow_types_mask) 2982 { 2983 int i; 2984 char *p; 2985 2986 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 2987 if (!(flow_types_mask & (1 << i))) 2988 continue; 2989 p = flowtype_to_str(i); 2990 if (p) 2991 printf(" %s", p); 2992 else 2993 printf(" unknown"); 2994 } 2995 printf("\n"); 2996 } 2997 2998 void 2999 fdir_get_infos(portid_t port_id) 3000 { 3001 struct rte_eth_fdir_stats fdir_stat; 3002 struct rte_eth_fdir_info fdir_info; 3003 int ret; 3004 3005 static const char *fdir_stats_border = "########################"; 3006 3007 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3008 return; 3009 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 3010 if (ret < 0) { 3011 printf("\n FDIR is not supported on port %-2d\n", 3012 port_id); 3013 return; 3014 } 3015 3016 memset(&fdir_info, 0, sizeof(fdir_info)); 3017 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3018 RTE_ETH_FILTER_INFO, &fdir_info); 3019 memset(&fdir_stat, 0, sizeof(fdir_stat)); 3020 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3021 RTE_ETH_FILTER_STATS, &fdir_stat); 3022 printf("\n %s FDIR infos for port %-2d %s\n", 3023 fdir_stats_border, port_id, fdir_stats_border); 3024 printf(" MODE: "); 3025 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 3026 printf(" PERFECT\n"); 3027 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 3028 printf(" PERFECT-MAC-VLAN\n"); 3029 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3030 printf(" PERFECT-TUNNEL\n"); 3031 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 3032 printf(" SIGNATURE\n"); 3033 else 3034 printf(" DISABLE\n"); 3035 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 3036 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 3037 printf(" SUPPORTED FLOW TYPE: "); 3038 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 3039 } 3040 printf(" FLEX PAYLOAD INFO:\n"); 3041 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 3042 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 3043 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 3044 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 3045 fdir_info.flex_payload_unit, 3046 fdir_info.max_flex_payload_segment_num, 3047 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 3048 printf(" MASK: "); 3049 print_fdir_mask(&fdir_info.mask); 3050 if (fdir_info.flex_conf.nb_payloads > 0) { 3051 printf(" FLEX PAYLOAD SRC OFFSET:"); 3052 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3053 } 3054 if (fdir_info.flex_conf.nb_flexmasks > 0) { 3055 printf(" FLEX MASK CFG:"); 3056 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3057 } 3058 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 3059 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 3060 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 3061 fdir_info.guarant_spc, fdir_info.best_spc); 3062 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 3063 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 3064 " add: %-10"PRIu64" remove: %"PRIu64"\n" 3065 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 3066 fdir_stat.collision, fdir_stat.free, 3067 fdir_stat.maxhash, fdir_stat.maxlen, 3068 fdir_stat.add, fdir_stat.remove, 3069 fdir_stat.f_add, fdir_stat.f_remove); 3070 printf(" %s############################%s\n", 3071 fdir_stats_border, fdir_stats_border); 3072 } 3073 3074 void 3075 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 3076 { 3077 struct rte_port *port; 3078 struct rte_eth_fdir_flex_conf *flex_conf; 3079 int i, idx = 0; 3080 3081 port = &ports[port_id]; 3082 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3083 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3084 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3085 idx = i; 3086 break; 3087 } 3088 } 3089 if (i >= RTE_ETH_FLOW_MAX) { 3090 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3091 idx = flex_conf->nb_flexmasks; 3092 flex_conf->nb_flexmasks++; 3093 } else { 3094 printf("The flex mask table is full. Can not set flex" 3095 " mask for flow_type(%u).", cfg->flow_type); 3096 return; 3097 } 3098 } 3099 rte_memcpy(&flex_conf->flex_mask[idx], 3100 cfg, 3101 sizeof(struct rte_eth_fdir_flex_mask)); 3102 } 3103 3104 void 3105 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3106 { 3107 struct rte_port *port; 3108 struct rte_eth_fdir_flex_conf *flex_conf; 3109 int i, idx = 0; 3110 3111 port = &ports[port_id]; 3112 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3113 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3114 if (cfg->type == flex_conf->flex_set[i].type) { 3115 idx = i; 3116 break; 3117 } 3118 } 3119 if (i >= RTE_ETH_PAYLOAD_MAX) { 3120 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3121 idx = flex_conf->nb_payloads; 3122 flex_conf->nb_payloads++; 3123 } else { 3124 printf("The flex payload table is full. Can not set" 3125 " flex payload for type(%u).", cfg->type); 3126 return; 3127 } 3128 } 3129 rte_memcpy(&flex_conf->flex_set[idx], 3130 cfg, 3131 sizeof(struct rte_eth_flex_payload_cfg)); 3132 3133 } 3134 3135 void 3136 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3137 { 3138 #ifdef RTE_LIBRTE_IXGBE_PMD 3139 int diag; 3140 3141 if (is_rx) 3142 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3143 else 3144 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3145 3146 if (diag == 0) 3147 return; 3148 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3149 is_rx ? "rx" : "tx", port_id, diag); 3150 return; 3151 #endif 3152 printf("VF %s setting not supported for port %d\n", 3153 is_rx ? "Rx" : "Tx", port_id); 3154 RTE_SET_USED(vf); 3155 RTE_SET_USED(on); 3156 } 3157 3158 int 3159 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3160 { 3161 int diag; 3162 struct rte_eth_link link; 3163 3164 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3165 return 1; 3166 rte_eth_link_get_nowait(port_id, &link); 3167 if (rate > link.link_speed) { 3168 printf("Invalid rate value:%u bigger than link speed: %u\n", 3169 rate, link.link_speed); 3170 return 1; 3171 } 3172 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3173 if (diag == 0) 3174 return diag; 3175 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3176 port_id, diag); 3177 return diag; 3178 } 3179 3180 int 3181 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3182 { 3183 int diag = -ENOTSUP; 3184 3185 #ifdef RTE_LIBRTE_IXGBE_PMD 3186 if (diag == -ENOTSUP) 3187 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3188 q_msk); 3189 #endif 3190 #ifdef RTE_LIBRTE_BNXT_PMD 3191 if (diag == -ENOTSUP) 3192 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3193 #endif 3194 if (diag == 0) 3195 return diag; 3196 3197 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3198 port_id, diag); 3199 return diag; 3200 } 3201 3202 /* 3203 * Functions to manage the set of filtered Multicast MAC addresses. 3204 * 3205 * A pool of filtered multicast MAC addresses is associated with each port. 3206 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3207 * The address of the pool and the number of valid multicast MAC addresses 3208 * recorded in the pool are stored in the fields "mc_addr_pool" and 3209 * "mc_addr_nb" of the "rte_port" data structure. 3210 * 3211 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3212 * to be supplied a contiguous array of multicast MAC addresses. 3213 * To comply with this constraint, the set of multicast addresses recorded 3214 * into the pool are systematically compacted at the beginning of the pool. 3215 * Hence, when a multicast address is removed from the pool, all following 3216 * addresses, if any, are copied back to keep the set contiguous. 3217 */ 3218 #define MCAST_POOL_INC 32 3219 3220 static int 3221 mcast_addr_pool_extend(struct rte_port *port) 3222 { 3223 struct ether_addr *mc_pool; 3224 size_t mc_pool_size; 3225 3226 /* 3227 * If a free entry is available at the end of the pool, just 3228 * increment the number of recorded multicast addresses. 3229 */ 3230 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3231 port->mc_addr_nb++; 3232 return 0; 3233 } 3234 3235 /* 3236 * [re]allocate a pool with MCAST_POOL_INC more entries. 3237 * The previous test guarantees that port->mc_addr_nb is a multiple 3238 * of MCAST_POOL_INC. 3239 */ 3240 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3241 MCAST_POOL_INC); 3242 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3243 mc_pool_size); 3244 if (mc_pool == NULL) { 3245 printf("allocation of pool of %u multicast addresses failed\n", 3246 port->mc_addr_nb + MCAST_POOL_INC); 3247 return -ENOMEM; 3248 } 3249 3250 port->mc_addr_pool = mc_pool; 3251 port->mc_addr_nb++; 3252 return 0; 3253 3254 } 3255 3256 static void 3257 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3258 { 3259 port->mc_addr_nb--; 3260 if (addr_idx == port->mc_addr_nb) { 3261 /* No need to recompact the set of multicast addressses. */ 3262 if (port->mc_addr_nb == 0) { 3263 /* free the pool of multicast addresses. */ 3264 free(port->mc_addr_pool); 3265 port->mc_addr_pool = NULL; 3266 } 3267 return; 3268 } 3269 memmove(&port->mc_addr_pool[addr_idx], 3270 &port->mc_addr_pool[addr_idx + 1], 3271 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3272 } 3273 3274 static void 3275 eth_port_multicast_addr_list_set(uint8_t port_id) 3276 { 3277 struct rte_port *port; 3278 int diag; 3279 3280 port = &ports[port_id]; 3281 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3282 port->mc_addr_nb); 3283 if (diag == 0) 3284 return; 3285 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3286 port->mc_addr_nb, port_id, -diag); 3287 } 3288 3289 void 3290 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr) 3291 { 3292 struct rte_port *port; 3293 uint32_t i; 3294 3295 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3296 return; 3297 3298 port = &ports[port_id]; 3299 3300 /* 3301 * Check that the added multicast MAC address is not already recorded 3302 * in the pool of multicast addresses. 3303 */ 3304 for (i = 0; i < port->mc_addr_nb; i++) { 3305 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3306 printf("multicast address already filtered by port\n"); 3307 return; 3308 } 3309 } 3310 3311 if (mcast_addr_pool_extend(port) != 0) 3312 return; 3313 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3314 eth_port_multicast_addr_list_set(port_id); 3315 } 3316 3317 void 3318 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr) 3319 { 3320 struct rte_port *port; 3321 uint32_t i; 3322 3323 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3324 return; 3325 3326 port = &ports[port_id]; 3327 3328 /* 3329 * Search the pool of multicast MAC addresses for the removed address. 3330 */ 3331 for (i = 0; i < port->mc_addr_nb; i++) { 3332 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3333 break; 3334 } 3335 if (i == port->mc_addr_nb) { 3336 printf("multicast address not filtered by port %d\n", port_id); 3337 return; 3338 } 3339 3340 mcast_addr_pool_remove(port, i); 3341 eth_port_multicast_addr_list_set(port_id); 3342 } 3343 3344 void 3345 port_dcb_info_display(uint8_t port_id) 3346 { 3347 struct rte_eth_dcb_info dcb_info; 3348 uint16_t i; 3349 int ret; 3350 static const char *border = "================"; 3351 3352 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3353 return; 3354 3355 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3356 if (ret) { 3357 printf("\n Failed to get dcb infos on port %-2d\n", 3358 port_id); 3359 return; 3360 } 3361 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3362 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3363 printf("\n TC : "); 3364 for (i = 0; i < dcb_info.nb_tcs; i++) 3365 printf("\t%4d", i); 3366 printf("\n Priority : "); 3367 for (i = 0; i < dcb_info.nb_tcs; i++) 3368 printf("\t%4d", dcb_info.prio_tc[i]); 3369 printf("\n BW percent :"); 3370 for (i = 0; i < dcb_info.nb_tcs; i++) 3371 printf("\t%4d%%", dcb_info.tc_bws[i]); 3372 printf("\n RXQ base : "); 3373 for (i = 0; i < dcb_info.nb_tcs; i++) 3374 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3375 printf("\n RXQ number :"); 3376 for (i = 0; i < dcb_info.nb_tcs; i++) 3377 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3378 printf("\n TXQ base : "); 3379 for (i = 0; i < dcb_info.nb_tcs; i++) 3380 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3381 printf("\n TXQ number :"); 3382 for (i = 0; i < dcb_info.nb_tcs; i++) 3383 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3384 printf("\n"); 3385 } 3386 3387 uint8_t * 3388 open_ddp_package_file(const char *file_path, uint32_t *size) 3389 { 3390 int fd = open(file_path, O_RDONLY); 3391 off_t pkg_size; 3392 uint8_t *buf = NULL; 3393 int ret = 0; 3394 struct stat st_buf; 3395 3396 if (size) 3397 *size = 0; 3398 3399 if (fd == -1) { 3400 printf("%s: Failed to open %s\n", __func__, file_path); 3401 return buf; 3402 } 3403 3404 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 3405 close(fd); 3406 printf("%s: File operations failed\n", __func__); 3407 return buf; 3408 } 3409 3410 pkg_size = st_buf.st_size; 3411 if (pkg_size < 0) { 3412 close(fd); 3413 printf("%s: File operations failed\n", __func__); 3414 return buf; 3415 } 3416 3417 buf = (uint8_t *)malloc(pkg_size); 3418 if (!buf) { 3419 close(fd); 3420 printf("%s: Failed to malloc memory\n", __func__); 3421 return buf; 3422 } 3423 3424 ret = read(fd, buf, pkg_size); 3425 if (ret < 0) { 3426 close(fd); 3427 printf("%s: File read operation failed\n", __func__); 3428 close_ddp_package_file(buf); 3429 return NULL; 3430 } 3431 3432 if (size) 3433 *size = pkg_size; 3434 3435 close(fd); 3436 3437 return buf; 3438 } 3439 3440 int 3441 save_ddp_package_file(const char *file_path, uint8_t *buf, uint32_t size) 3442 { 3443 FILE *fh = fopen(file_path, "wb"); 3444 3445 if (fh == NULL) { 3446 printf("%s: Failed to open %s\n", __func__, file_path); 3447 return -1; 3448 } 3449 3450 if (fwrite(buf, 1, size, fh) != size) { 3451 fclose(fh); 3452 printf("%s: File write operation failed\n", __func__); 3453 return -1; 3454 } 3455 3456 fclose(fh); 3457 3458 return 0; 3459 } 3460 3461 int 3462 close_ddp_package_file(uint8_t *buf) 3463 { 3464 if (buf) { 3465 free((void *)buf); 3466 return 0; 3467 } 3468 3469 return -1; 3470 } 3471