xref: /dpdk/app/test-pmd/config.c (revision 5dba3b9c4c131b88a78bcecfef39db23ebc47873)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdint.h>
40 #include <inttypes.h>
41 
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #include <fcntl.h>
46 #include <unistd.h>
47 
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_debug.h>
51 #include <rte_log.h>
52 #include <rte_memory.h>
53 #include <rte_memcpy.h>
54 #include <rte_memzone.h>
55 #include <rte_launch.h>
56 #include <rte_eal.h>
57 #include <rte_per_lcore.h>
58 #include <rte_lcore.h>
59 #include <rte_atomic.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_mempool.h>
62 #include <rte_mbuf.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_string_fns.h>
68 #include <rte_cycles.h>
69 #include <rte_flow.h>
70 #include <rte_errno.h>
71 #ifdef RTE_LIBRTE_IXGBE_PMD
72 #include <rte_pmd_ixgbe.h>
73 #endif
74 #ifdef RTE_LIBRTE_I40E_PMD
75 #include <rte_pmd_i40e.h>
76 #endif
77 #ifdef RTE_LIBRTE_BNXT_PMD
78 #include <rte_pmd_bnxt.h>
79 #endif
80 #include <rte_gro.h>
81 #include <cmdline_parse_etheraddr.h>
82 
83 #include "testpmd.h"
84 
85 static char *flowtype_to_str(uint16_t flow_type);
86 
87 static const struct {
88 	enum tx_pkt_split split;
89 	const char *name;
90 } tx_split_name[] = {
91 	{
92 		.split = TX_PKT_SPLIT_OFF,
93 		.name = "off",
94 	},
95 	{
96 		.split = TX_PKT_SPLIT_ON,
97 		.name = "on",
98 	},
99 	{
100 		.split = TX_PKT_SPLIT_RND,
101 		.name = "rand",
102 	},
103 };
104 
105 struct rss_type_info {
106 	char str[32];
107 	uint64_t rss_type;
108 };
109 
110 static const struct rss_type_info rss_type_table[] = {
111 	{ "ipv4", ETH_RSS_IPV4 },
112 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
113 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
114 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
115 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
116 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
117 	{ "ipv6", ETH_RSS_IPV6 },
118 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
119 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
120 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
121 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
122 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
123 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
124 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
125 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
126 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
127 	{ "port", ETH_RSS_PORT },
128 	{ "vxlan", ETH_RSS_VXLAN },
129 	{ "geneve", ETH_RSS_GENEVE },
130 	{ "nvgre", ETH_RSS_NVGRE },
131 
132 };
133 
134 static void
135 print_ethaddr(const char *name, struct ether_addr *eth_addr)
136 {
137 	char buf[ETHER_ADDR_FMT_SIZE];
138 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
139 	printf("%s%s", name, buf);
140 }
141 
142 void
143 nic_stats_display(portid_t port_id)
144 {
145 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
146 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
147 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
148 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
149 	uint64_t mpps_rx, mpps_tx;
150 	struct rte_eth_stats stats;
151 	struct rte_port *port = &ports[port_id];
152 	uint8_t i;
153 	portid_t pid;
154 
155 	static const char *nic_stats_border = "########################";
156 
157 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
158 		printf("Valid port range is [0");
159 		RTE_ETH_FOREACH_DEV(pid)
160 			printf(", %d", pid);
161 		printf("]\n");
162 		return;
163 	}
164 	rte_eth_stats_get(port_id, &stats);
165 	printf("\n  %s NIC statistics for port %-2d %s\n",
166 	       nic_stats_border, port_id, nic_stats_border);
167 
168 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
169 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
170 		       "%-"PRIu64"\n",
171 		       stats.ipackets, stats.imissed, stats.ibytes);
172 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
173 		printf("  RX-nombuf:  %-10"PRIu64"\n",
174 		       stats.rx_nombuf);
175 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
176 		       "%-"PRIu64"\n",
177 		       stats.opackets, stats.oerrors, stats.obytes);
178 	}
179 	else {
180 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
181 		       "    RX-bytes: %10"PRIu64"\n",
182 		       stats.ipackets, stats.ierrors, stats.ibytes);
183 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
184 		printf("  RX-nombuf:               %10"PRIu64"\n",
185 		       stats.rx_nombuf);
186 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
187 		       "    TX-bytes: %10"PRIu64"\n",
188 		       stats.opackets, stats.oerrors, stats.obytes);
189 	}
190 
191 	if (port->rx_queue_stats_mapping_enabled) {
192 		printf("\n");
193 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
194 			printf("  Stats reg %2d RX-packets: %10"PRIu64
195 			       "    RX-errors: %10"PRIu64
196 			       "    RX-bytes: %10"PRIu64"\n",
197 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
198 		}
199 	}
200 	if (port->tx_queue_stats_mapping_enabled) {
201 		printf("\n");
202 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
203 			printf("  Stats reg %2d TX-packets: %10"PRIu64
204 			       "                             TX-bytes: %10"PRIu64"\n",
205 			       i, stats.q_opackets[i], stats.q_obytes[i]);
206 		}
207 	}
208 
209 	diff_cycles = prev_cycles[port_id];
210 	prev_cycles[port_id] = rte_rdtsc();
211 	if (diff_cycles > 0)
212 		diff_cycles = prev_cycles[port_id] - diff_cycles;
213 
214 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
215 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
216 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
217 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
218 	prev_pkts_rx[port_id] = stats.ipackets;
219 	prev_pkts_tx[port_id] = stats.opackets;
220 	mpps_rx = diff_cycles > 0 ?
221 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
222 	mpps_tx = diff_cycles > 0 ?
223 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
224 	printf("\n  Throughput (since last show)\n");
225 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
226 			mpps_rx, mpps_tx);
227 
228 	printf("  %s############################%s\n",
229 	       nic_stats_border, nic_stats_border);
230 }
231 
232 void
233 nic_stats_clear(portid_t port_id)
234 {
235 	portid_t pid;
236 
237 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
238 		printf("Valid port range is [0");
239 		RTE_ETH_FOREACH_DEV(pid)
240 			printf(", %d", pid);
241 		printf("]\n");
242 		return;
243 	}
244 	rte_eth_stats_reset(port_id);
245 	printf("\n  NIC statistics for port %d cleared\n", port_id);
246 }
247 
248 void
249 nic_xstats_display(portid_t port_id)
250 {
251 	struct rte_eth_xstat *xstats;
252 	int cnt_xstats, idx_xstat;
253 	struct rte_eth_xstat_name *xstats_names;
254 
255 	printf("###### NIC extended statistics for port %-2d\n", port_id);
256 	if (!rte_eth_dev_is_valid_port(port_id)) {
257 		printf("Error: Invalid port number %i\n", port_id);
258 		return;
259 	}
260 
261 	/* Get count */
262 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
263 	if (cnt_xstats  < 0) {
264 		printf("Error: Cannot get count of xstats\n");
265 		return;
266 	}
267 
268 	/* Get id-name lookup table */
269 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
270 	if (xstats_names == NULL) {
271 		printf("Cannot allocate memory for xstats lookup\n");
272 		return;
273 	}
274 	if (cnt_xstats != rte_eth_xstats_get_names(
275 			port_id, xstats_names, cnt_xstats)) {
276 		printf("Error: Cannot get xstats lookup\n");
277 		free(xstats_names);
278 		return;
279 	}
280 
281 	/* Get stats themselves */
282 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
283 	if (xstats == NULL) {
284 		printf("Cannot allocate memory for xstats\n");
285 		free(xstats_names);
286 		return;
287 	}
288 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
289 		printf("Error: Unable to get xstats\n");
290 		free(xstats_names);
291 		free(xstats);
292 		return;
293 	}
294 
295 	/* Display xstats */
296 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
297 		if (xstats_hide_zero && !xstats[idx_xstat].value)
298 			continue;
299 		printf("%s: %"PRIu64"\n",
300 			xstats_names[idx_xstat].name,
301 			xstats[idx_xstat].value);
302 	}
303 	free(xstats_names);
304 	free(xstats);
305 }
306 
307 void
308 nic_xstats_clear(portid_t port_id)
309 {
310 	rte_eth_xstats_reset(port_id);
311 }
312 
313 void
314 nic_stats_mapping_display(portid_t port_id)
315 {
316 	struct rte_port *port = &ports[port_id];
317 	uint16_t i;
318 	portid_t pid;
319 
320 	static const char *nic_stats_mapping_border = "########################";
321 
322 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
323 		printf("Valid port range is [0");
324 		RTE_ETH_FOREACH_DEV(pid)
325 			printf(", %d", pid);
326 		printf("]\n");
327 		return;
328 	}
329 
330 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
331 		printf("Port id %d - either does not support queue statistic mapping or"
332 		       " no queue statistic mapping set\n", port_id);
333 		return;
334 	}
335 
336 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
337 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
338 
339 	if (port->rx_queue_stats_mapping_enabled) {
340 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
341 			if (rx_queue_stats_mappings[i].port_id == port_id) {
342 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
343 				       rx_queue_stats_mappings[i].queue_id,
344 				       rx_queue_stats_mappings[i].stats_counter_id);
345 			}
346 		}
347 		printf("\n");
348 	}
349 
350 
351 	if (port->tx_queue_stats_mapping_enabled) {
352 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
353 			if (tx_queue_stats_mappings[i].port_id == port_id) {
354 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
355 				       tx_queue_stats_mappings[i].queue_id,
356 				       tx_queue_stats_mappings[i].stats_counter_id);
357 			}
358 		}
359 	}
360 
361 	printf("  %s####################################%s\n",
362 	       nic_stats_mapping_border, nic_stats_mapping_border);
363 }
364 
365 void
366 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
367 {
368 	struct rte_eth_rxq_info qinfo;
369 	int32_t rc;
370 	static const char *info_border = "*********************";
371 
372 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
373 	if (rc != 0) {
374 		printf("Failed to retrieve information for port: %u, "
375 			"RX queue: %hu\nerror desc: %s(%d)\n",
376 			port_id, queue_id, strerror(-rc), rc);
377 		return;
378 	}
379 
380 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
381 	       info_border, port_id, queue_id, info_border);
382 
383 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
384 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
385 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
386 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
387 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
388 	printf("\nRX drop packets: %s",
389 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
390 	printf("\nRX deferred start: %s",
391 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
392 	printf("\nRX scattered packets: %s",
393 		(qinfo.scattered_rx != 0) ? "on" : "off");
394 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
400 {
401 	struct rte_eth_txq_info qinfo;
402 	int32_t rc;
403 	static const char *info_border = "*********************";
404 
405 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
406 	if (rc != 0) {
407 		printf("Failed to retrieve information for port: %u, "
408 			"TX queue: %hu\nerror desc: %s(%d)\n",
409 			port_id, queue_id, strerror(-rc), rc);
410 		return;
411 	}
412 
413 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
414 	       info_border, port_id, queue_id, info_border);
415 
416 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
417 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
418 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
419 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
420 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
421 	printf("\nTX deferred start: %s",
422 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
423 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
424 	printf("\n");
425 }
426 
427 void
428 port_infos_display(portid_t port_id)
429 {
430 	struct rte_port *port;
431 	struct ether_addr mac_addr;
432 	struct rte_eth_link link;
433 	struct rte_eth_dev_info dev_info;
434 	int vlan_offload;
435 	struct rte_mempool * mp;
436 	static const char *info_border = "*********************";
437 	portid_t pid;
438 	uint16_t mtu;
439 
440 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
441 		printf("Valid port range is [0");
442 		RTE_ETH_FOREACH_DEV(pid)
443 			printf(", %d", pid);
444 		printf("]\n");
445 		return;
446 	}
447 	port = &ports[port_id];
448 	rte_eth_link_get_nowait(port_id, &link);
449 	memset(&dev_info, 0, sizeof(dev_info));
450 	rte_eth_dev_info_get(port_id, &dev_info);
451 	printf("\n%s Infos for port %-2d %s\n",
452 	       info_border, port_id, info_border);
453 	rte_eth_macaddr_get(port_id, &mac_addr);
454 	print_ethaddr("MAC address: ", &mac_addr);
455 	printf("\nDriver name: %s", dev_info.driver_name);
456 	printf("\nConnect to socket: %u", port->socket_id);
457 
458 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
459 		mp = mbuf_pool_find(port_numa[port_id]);
460 		if (mp)
461 			printf("\nmemory allocation on the socket: %d",
462 							port_numa[port_id]);
463 	} else
464 		printf("\nmemory allocation on the socket: %u",port->socket_id);
465 
466 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
467 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
468 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
469 	       ("full-duplex") : ("half-duplex"));
470 
471 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
472 		printf("MTU: %u\n", mtu);
473 
474 	printf("Promiscuous mode: %s\n",
475 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
476 	printf("Allmulticast mode: %s\n",
477 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
478 	printf("Maximum number of MAC addresses: %u\n",
479 	       (unsigned int)(port->dev_info.max_mac_addrs));
480 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
481 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
482 
483 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
484 	if (vlan_offload >= 0){
485 		printf("VLAN offload: \n");
486 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
487 			printf("  strip on \n");
488 		else
489 			printf("  strip off \n");
490 
491 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
492 			printf("  filter on \n");
493 		else
494 			printf("  filter off \n");
495 
496 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
497 			printf("  qinq(extend) on \n");
498 		else
499 			printf("  qinq(extend) off \n");
500 	}
501 
502 	if (dev_info.hash_key_size > 0)
503 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
504 	if (dev_info.reta_size > 0)
505 		printf("Redirection table size: %u\n", dev_info.reta_size);
506 	if (!dev_info.flow_type_rss_offloads)
507 		printf("No flow type is supported.\n");
508 	else {
509 		uint16_t i;
510 		char *p;
511 
512 		printf("Supported flow types:\n");
513 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
514 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
515 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
516 				continue;
517 			p = flowtype_to_str(i);
518 			if (p)
519 				printf("  %s\n", p);
520 			else
521 				printf("  user defined %d\n", i);
522 		}
523 	}
524 
525 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
526 	printf("Maximum configurable length of RX packet: %u\n",
527 		dev_info.max_rx_pktlen);
528 	if (dev_info.max_vfs)
529 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
530 	if (dev_info.max_vmdq_pools)
531 		printf("Maximum number of VMDq pools: %u\n",
532 			dev_info.max_vmdq_pools);
533 
534 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
535 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
536 	printf("Max possible number of RXDs per queue: %hu\n",
537 		dev_info.rx_desc_lim.nb_max);
538 	printf("Min possible number of RXDs per queue: %hu\n",
539 		dev_info.rx_desc_lim.nb_min);
540 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
541 
542 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
543 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
544 	printf("Max possible number of TXDs per queue: %hu\n",
545 		dev_info.tx_desc_lim.nb_max);
546 	printf("Min possible number of TXDs per queue: %hu\n",
547 		dev_info.tx_desc_lim.nb_min);
548 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
549 }
550 
551 void
552 port_offload_cap_display(portid_t port_id)
553 {
554 	struct rte_eth_dev_info dev_info;
555 	static const char *info_border = "************";
556 
557 	if (port_id_is_invalid(port_id, ENABLED_WARN))
558 		return;
559 
560 	rte_eth_dev_info_get(port_id, &dev_info);
561 
562 	printf("\n%s Port %d supported offload features: %s\n",
563 		info_border, port_id, info_border);
564 
565 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
566 		printf("VLAN stripped:                 ");
567 		if (ports[port_id].dev_conf.rxmode.offloads &
568 		    DEV_RX_OFFLOAD_VLAN_STRIP)
569 			printf("on\n");
570 		else
571 			printf("off\n");
572 	}
573 
574 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
575 		printf("Double VLANs stripped:         ");
576 		if (ports[port_id].dev_conf.rxmode.offloads &
577 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
578 			printf("on\n");
579 		else
580 			printf("off\n");
581 	}
582 
583 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
584 		printf("RX IPv4 checksum:              ");
585 		if (ports[port_id].dev_conf.rxmode.offloads &
586 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
587 			printf("on\n");
588 		else
589 			printf("off\n");
590 	}
591 
592 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
593 		printf("RX UDP checksum:               ");
594 		if (ports[port_id].dev_conf.rxmode.offloads &
595 		    DEV_RX_OFFLOAD_UDP_CKSUM)
596 			printf("on\n");
597 		else
598 			printf("off\n");
599 	}
600 
601 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
602 		printf("RX TCP checksum:               ");
603 		if (ports[port_id].dev_conf.rxmode.offloads &
604 		    DEV_RX_OFFLOAD_TCP_CKSUM)
605 			printf("on\n");
606 		else
607 			printf("off\n");
608 	}
609 
610 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
611 		printf("RX Outer IPv4 checksum:               ");
612 		if (ports[port_id].dev_conf.rxmode.offloads &
613 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
614 			printf("on\n");
615 		else
616 			printf("off\n");
617 	}
618 
619 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
620 		printf("Large receive offload:         ");
621 		if (ports[port_id].dev_conf.rxmode.offloads &
622 		    DEV_RX_OFFLOAD_TCP_LRO)
623 			printf("on\n");
624 		else
625 			printf("off\n");
626 	}
627 
628 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
629 		printf("VLAN insert:                   ");
630 		if (ports[port_id].dev_conf.txmode.offloads &
631 		    DEV_TX_OFFLOAD_VLAN_INSERT)
632 			printf("on\n");
633 		else
634 			printf("off\n");
635 	}
636 
637 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
638 		printf("HW timestamp:                  ");
639 		if (ports[port_id].dev_conf.rxmode.offloads &
640 		    DEV_RX_OFFLOAD_TIMESTAMP)
641 			printf("on\n");
642 		else
643 			printf("off\n");
644 	}
645 
646 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
647 		printf("Double VLANs insert:           ");
648 		if (ports[port_id].dev_conf.txmode.offloads &
649 		    DEV_TX_OFFLOAD_QINQ_INSERT)
650 			printf("on\n");
651 		else
652 			printf("off\n");
653 	}
654 
655 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
656 		printf("TX IPv4 checksum:              ");
657 		if (ports[port_id].dev_conf.txmode.offloads &
658 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
659 			printf("on\n");
660 		else
661 			printf("off\n");
662 	}
663 
664 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
665 		printf("TX UDP checksum:               ");
666 		if (ports[port_id].dev_conf.txmode.offloads &
667 		    DEV_TX_OFFLOAD_UDP_CKSUM)
668 			printf("on\n");
669 		else
670 			printf("off\n");
671 	}
672 
673 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
674 		printf("TX TCP checksum:               ");
675 		if (ports[port_id].dev_conf.txmode.offloads &
676 		    DEV_TX_OFFLOAD_TCP_CKSUM)
677 			printf("on\n");
678 		else
679 			printf("off\n");
680 	}
681 
682 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
683 		printf("TX SCTP checksum:              ");
684 		if (ports[port_id].dev_conf.txmode.offloads &
685 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
686 			printf("on\n");
687 		else
688 			printf("off\n");
689 	}
690 
691 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
692 		printf("TX Outer IPv4 checksum:        ");
693 		if (ports[port_id].dev_conf.txmode.offloads &
694 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
695 			printf("on\n");
696 		else
697 			printf("off\n");
698 	}
699 
700 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
701 		printf("TX TCP segmentation:           ");
702 		if (ports[port_id].dev_conf.txmode.offloads &
703 		    DEV_TX_OFFLOAD_TCP_TSO)
704 			printf("on\n");
705 		else
706 			printf("off\n");
707 	}
708 
709 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
710 		printf("TX UDP segmentation:           ");
711 		if (ports[port_id].dev_conf.txmode.offloads &
712 		    DEV_TX_OFFLOAD_UDP_TSO)
713 			printf("on\n");
714 		else
715 			printf("off\n");
716 	}
717 
718 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
719 		printf("TSO for VXLAN tunnel packet:   ");
720 		if (ports[port_id].dev_conf.txmode.offloads &
721 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
722 			printf("on\n");
723 		else
724 			printf("off\n");
725 	}
726 
727 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
728 		printf("TSO for GRE tunnel packet:     ");
729 		if (ports[port_id].dev_conf.txmode.offloads &
730 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
731 			printf("on\n");
732 		else
733 			printf("off\n");
734 	}
735 
736 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
737 		printf("TSO for IPIP tunnel packet:    ");
738 		if (ports[port_id].dev_conf.txmode.offloads &
739 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
740 			printf("on\n");
741 		else
742 			printf("off\n");
743 	}
744 
745 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
746 		printf("TSO for GENEVE tunnel packet:  ");
747 		if (ports[port_id].dev_conf.txmode.offloads &
748 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
749 			printf("on\n");
750 		else
751 			printf("off\n");
752 	}
753 
754 }
755 
756 int
757 port_id_is_invalid(portid_t port_id, enum print_warning warning)
758 {
759 	if (port_id == (portid_t)RTE_PORT_ALL)
760 		return 0;
761 
762 	if (rte_eth_dev_is_valid_port(port_id))
763 		return 0;
764 
765 	if (warning == ENABLED_WARN)
766 		printf("Invalid port %d\n", port_id);
767 
768 	return 1;
769 }
770 
771 static int
772 vlan_id_is_invalid(uint16_t vlan_id)
773 {
774 	if (vlan_id < 4096)
775 		return 0;
776 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
777 	return 1;
778 }
779 
780 static int
781 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
782 {
783 	uint64_t pci_len;
784 
785 	if (reg_off & 0x3) {
786 		printf("Port register offset 0x%X not aligned on a 4-byte "
787 		       "boundary\n",
788 		       (unsigned)reg_off);
789 		return 1;
790 	}
791 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
792 	if (reg_off >= pci_len) {
793 		printf("Port %d: register offset %u (0x%X) out of port PCI "
794 		       "resource (length=%"PRIu64")\n",
795 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
796 		return 1;
797 	}
798 	return 0;
799 }
800 
801 static int
802 reg_bit_pos_is_invalid(uint8_t bit_pos)
803 {
804 	if (bit_pos <= 31)
805 		return 0;
806 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
807 	return 1;
808 }
809 
810 #define display_port_and_reg_off(port_id, reg_off) \
811 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
812 
813 static inline void
814 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
815 {
816 	display_port_and_reg_off(port_id, (unsigned)reg_off);
817 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
818 }
819 
820 void
821 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
822 {
823 	uint32_t reg_v;
824 
825 
826 	if (port_id_is_invalid(port_id, ENABLED_WARN))
827 		return;
828 	if (port_reg_off_is_invalid(port_id, reg_off))
829 		return;
830 	if (reg_bit_pos_is_invalid(bit_x))
831 		return;
832 	reg_v = port_id_pci_reg_read(port_id, reg_off);
833 	display_port_and_reg_off(port_id, (unsigned)reg_off);
834 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
835 }
836 
837 void
838 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
839 			   uint8_t bit1_pos, uint8_t bit2_pos)
840 {
841 	uint32_t reg_v;
842 	uint8_t  l_bit;
843 	uint8_t  h_bit;
844 
845 	if (port_id_is_invalid(port_id, ENABLED_WARN))
846 		return;
847 	if (port_reg_off_is_invalid(port_id, reg_off))
848 		return;
849 	if (reg_bit_pos_is_invalid(bit1_pos))
850 		return;
851 	if (reg_bit_pos_is_invalid(bit2_pos))
852 		return;
853 	if (bit1_pos > bit2_pos)
854 		l_bit = bit2_pos, h_bit = bit1_pos;
855 	else
856 		l_bit = bit1_pos, h_bit = bit2_pos;
857 
858 	reg_v = port_id_pci_reg_read(port_id, reg_off);
859 	reg_v >>= l_bit;
860 	if (h_bit < 31)
861 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
862 	display_port_and_reg_off(port_id, (unsigned)reg_off);
863 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
864 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
865 }
866 
867 void
868 port_reg_display(portid_t port_id, uint32_t reg_off)
869 {
870 	uint32_t reg_v;
871 
872 	if (port_id_is_invalid(port_id, ENABLED_WARN))
873 		return;
874 	if (port_reg_off_is_invalid(port_id, reg_off))
875 		return;
876 	reg_v = port_id_pci_reg_read(port_id, reg_off);
877 	display_port_reg_value(port_id, reg_off, reg_v);
878 }
879 
880 void
881 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
882 		 uint8_t bit_v)
883 {
884 	uint32_t reg_v;
885 
886 	if (port_id_is_invalid(port_id, ENABLED_WARN))
887 		return;
888 	if (port_reg_off_is_invalid(port_id, reg_off))
889 		return;
890 	if (reg_bit_pos_is_invalid(bit_pos))
891 		return;
892 	if (bit_v > 1) {
893 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
894 		return;
895 	}
896 	reg_v = port_id_pci_reg_read(port_id, reg_off);
897 	if (bit_v == 0)
898 		reg_v &= ~(1 << bit_pos);
899 	else
900 		reg_v |= (1 << bit_pos);
901 	port_id_pci_reg_write(port_id, reg_off, reg_v);
902 	display_port_reg_value(port_id, reg_off, reg_v);
903 }
904 
905 void
906 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
907 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
908 {
909 	uint32_t max_v;
910 	uint32_t reg_v;
911 	uint8_t  l_bit;
912 	uint8_t  h_bit;
913 
914 	if (port_id_is_invalid(port_id, ENABLED_WARN))
915 		return;
916 	if (port_reg_off_is_invalid(port_id, reg_off))
917 		return;
918 	if (reg_bit_pos_is_invalid(bit1_pos))
919 		return;
920 	if (reg_bit_pos_is_invalid(bit2_pos))
921 		return;
922 	if (bit1_pos > bit2_pos)
923 		l_bit = bit2_pos, h_bit = bit1_pos;
924 	else
925 		l_bit = bit1_pos, h_bit = bit2_pos;
926 
927 	if ((h_bit - l_bit) < 31)
928 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
929 	else
930 		max_v = 0xFFFFFFFF;
931 
932 	if (value > max_v) {
933 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
934 				(unsigned)value, (unsigned)value,
935 				(unsigned)max_v, (unsigned)max_v);
936 		return;
937 	}
938 	reg_v = port_id_pci_reg_read(port_id, reg_off);
939 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
940 	reg_v |= (value << l_bit); /* Set changed bits */
941 	port_id_pci_reg_write(port_id, reg_off, reg_v);
942 	display_port_reg_value(port_id, reg_off, reg_v);
943 }
944 
945 void
946 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
947 {
948 	if (port_id_is_invalid(port_id, ENABLED_WARN))
949 		return;
950 	if (port_reg_off_is_invalid(port_id, reg_off))
951 		return;
952 	port_id_pci_reg_write(port_id, reg_off, reg_v);
953 	display_port_reg_value(port_id, reg_off, reg_v);
954 }
955 
956 void
957 port_mtu_set(portid_t port_id, uint16_t mtu)
958 {
959 	int diag;
960 
961 	if (port_id_is_invalid(port_id, ENABLED_WARN))
962 		return;
963 	diag = rte_eth_dev_set_mtu(port_id, mtu);
964 	if (diag == 0)
965 		return;
966 	printf("Set MTU failed. diag=%d\n", diag);
967 }
968 
969 /* Generic flow management functions. */
970 
971 /** Generate flow_item[] entry. */
972 #define MK_FLOW_ITEM(t, s) \
973 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
974 		.name = # t, \
975 		.size = s, \
976 	}
977 
978 /** Information about known flow pattern items. */
979 static const struct {
980 	const char *name;
981 	size_t size;
982 } flow_item[] = {
983 	MK_FLOW_ITEM(END, 0),
984 	MK_FLOW_ITEM(VOID, 0),
985 	MK_FLOW_ITEM(INVERT, 0),
986 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
987 	MK_FLOW_ITEM(PF, 0),
988 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
989 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
990 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
991 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
992 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
993 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
994 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
995 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
996 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
997 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
998 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
999 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1000 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1001 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1002 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1003 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1004 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1005 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1006 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1007 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1008 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1009 };
1010 
1011 /** Compute storage space needed by item specification. */
1012 static void
1013 flow_item_spec_size(const struct rte_flow_item *item,
1014 		    size_t *size, size_t *pad)
1015 {
1016 	if (!item->spec) {
1017 		*size = 0;
1018 		goto empty;
1019 	}
1020 	switch (item->type) {
1021 		union {
1022 			const struct rte_flow_item_raw *raw;
1023 		} spec;
1024 
1025 	case RTE_FLOW_ITEM_TYPE_RAW:
1026 		spec.raw = item->spec;
1027 		*size = offsetof(struct rte_flow_item_raw, pattern) +
1028 			spec.raw->length * sizeof(*spec.raw->pattern);
1029 		break;
1030 	default:
1031 		*size = flow_item[item->type].size;
1032 		break;
1033 	}
1034 empty:
1035 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1036 }
1037 
1038 /** Generate flow_action[] entry. */
1039 #define MK_FLOW_ACTION(t, s) \
1040 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1041 		.name = # t, \
1042 		.size = s, \
1043 	}
1044 
1045 /** Information about known flow actions. */
1046 static const struct {
1047 	const char *name;
1048 	size_t size;
1049 } flow_action[] = {
1050 	MK_FLOW_ACTION(END, 0),
1051 	MK_FLOW_ACTION(VOID, 0),
1052 	MK_FLOW_ACTION(PASSTHRU, 0),
1053 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1054 	MK_FLOW_ACTION(FLAG, 0),
1055 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1056 	MK_FLOW_ACTION(DROP, 0),
1057 	MK_FLOW_ACTION(COUNT, 0),
1058 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1059 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1060 	MK_FLOW_ACTION(PF, 0),
1061 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1062 };
1063 
1064 /** Compute storage space needed by action configuration. */
1065 static void
1066 flow_action_conf_size(const struct rte_flow_action *action,
1067 		      size_t *size, size_t *pad)
1068 {
1069 	if (!action->conf) {
1070 		*size = 0;
1071 		goto empty;
1072 	}
1073 	switch (action->type) {
1074 		union {
1075 			const struct rte_flow_action_rss *rss;
1076 		} conf;
1077 
1078 	case RTE_FLOW_ACTION_TYPE_RSS:
1079 		conf.rss = action->conf;
1080 		*size = offsetof(struct rte_flow_action_rss, queue) +
1081 			conf.rss->num * sizeof(*conf.rss->queue);
1082 		break;
1083 	default:
1084 		*size = flow_action[action->type].size;
1085 		break;
1086 	}
1087 empty:
1088 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1089 }
1090 
1091 /** Generate a port_flow entry from attributes/pattern/actions. */
1092 static struct port_flow *
1093 port_flow_new(const struct rte_flow_attr *attr,
1094 	      const struct rte_flow_item *pattern,
1095 	      const struct rte_flow_action *actions)
1096 {
1097 	const struct rte_flow_item *item;
1098 	const struct rte_flow_action *action;
1099 	struct port_flow *pf = NULL;
1100 	size_t tmp;
1101 	size_t pad;
1102 	size_t off1 = 0;
1103 	size_t off2 = 0;
1104 	int err = ENOTSUP;
1105 
1106 store:
1107 	item = pattern;
1108 	if (pf)
1109 		pf->pattern = (void *)&pf->data[off1];
1110 	do {
1111 		struct rte_flow_item *dst = NULL;
1112 
1113 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1114 		    !flow_item[item->type].name)
1115 			goto notsup;
1116 		if (pf)
1117 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1118 		off1 += sizeof(*item);
1119 		flow_item_spec_size(item, &tmp, &pad);
1120 		if (item->spec) {
1121 			if (pf)
1122 				dst->spec = memcpy(pf->data + off2,
1123 						   item->spec, tmp);
1124 			off2 += tmp + pad;
1125 		}
1126 		if (item->last) {
1127 			if (pf)
1128 				dst->last = memcpy(pf->data + off2,
1129 						   item->last, tmp);
1130 			off2 += tmp + pad;
1131 		}
1132 		if (item->mask) {
1133 			if (pf)
1134 				dst->mask = memcpy(pf->data + off2,
1135 						   item->mask, tmp);
1136 			off2 += tmp + pad;
1137 		}
1138 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1139 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1140 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1141 	action = actions;
1142 	if (pf)
1143 		pf->actions = (void *)&pf->data[off1];
1144 	do {
1145 		struct rte_flow_action *dst = NULL;
1146 
1147 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1148 		    !flow_action[action->type].name)
1149 			goto notsup;
1150 		if (pf)
1151 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1152 		off1 += sizeof(*action);
1153 		flow_action_conf_size(action, &tmp, &pad);
1154 		if (action->conf) {
1155 			if (pf)
1156 				dst->conf = memcpy(pf->data + off2,
1157 						   action->conf, tmp);
1158 			off2 += tmp + pad;
1159 		}
1160 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1161 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1162 	if (pf != NULL)
1163 		return pf;
1164 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1165 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1166 	pf = calloc(1, tmp + off1 + off2);
1167 	if (pf == NULL)
1168 		err = errno;
1169 	else {
1170 		*pf = (const struct port_flow){
1171 			.size = tmp + off1 + off2,
1172 			.attr = *attr,
1173 		};
1174 		tmp -= offsetof(struct port_flow, data);
1175 		off2 = tmp + off1;
1176 		off1 = tmp;
1177 		goto store;
1178 	}
1179 notsup:
1180 	rte_errno = err;
1181 	return NULL;
1182 }
1183 
1184 /** Print a message out of a flow error. */
1185 static int
1186 port_flow_complain(struct rte_flow_error *error)
1187 {
1188 	static const char *const errstrlist[] = {
1189 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1190 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1191 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1192 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1193 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1194 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1195 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1196 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1197 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1198 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1199 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1200 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1201 	};
1202 	const char *errstr;
1203 	char buf[32];
1204 	int err = rte_errno;
1205 
1206 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1207 	    !errstrlist[error->type])
1208 		errstr = "unknown type";
1209 	else
1210 		errstr = errstrlist[error->type];
1211 	printf("Caught error type %d (%s): %s%s\n",
1212 	       error->type, errstr,
1213 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1214 					error->cause), buf) : "",
1215 	       error->message ? error->message : "(no stated reason)");
1216 	return -err;
1217 }
1218 
1219 /** Validate flow rule. */
1220 int
1221 port_flow_validate(portid_t port_id,
1222 		   const struct rte_flow_attr *attr,
1223 		   const struct rte_flow_item *pattern,
1224 		   const struct rte_flow_action *actions)
1225 {
1226 	struct rte_flow_error error;
1227 
1228 	/* Poisoning to make sure PMDs update it in case of error. */
1229 	memset(&error, 0x11, sizeof(error));
1230 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1231 		return port_flow_complain(&error);
1232 	printf("Flow rule validated\n");
1233 	return 0;
1234 }
1235 
1236 /** Create flow rule. */
1237 int
1238 port_flow_create(portid_t port_id,
1239 		 const struct rte_flow_attr *attr,
1240 		 const struct rte_flow_item *pattern,
1241 		 const struct rte_flow_action *actions)
1242 {
1243 	struct rte_flow *flow;
1244 	struct rte_port *port;
1245 	struct port_flow *pf;
1246 	uint32_t id;
1247 	struct rte_flow_error error;
1248 
1249 	/* Poisoning to make sure PMDs update it in case of error. */
1250 	memset(&error, 0x22, sizeof(error));
1251 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1252 	if (!flow)
1253 		return port_flow_complain(&error);
1254 	port = &ports[port_id];
1255 	if (port->flow_list) {
1256 		if (port->flow_list->id == UINT32_MAX) {
1257 			printf("Highest rule ID is already assigned, delete"
1258 			       " it first");
1259 			rte_flow_destroy(port_id, flow, NULL);
1260 			return -ENOMEM;
1261 		}
1262 		id = port->flow_list->id + 1;
1263 	} else
1264 		id = 0;
1265 	pf = port_flow_new(attr, pattern, actions);
1266 	if (!pf) {
1267 		int err = rte_errno;
1268 
1269 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1270 		rte_flow_destroy(port_id, flow, NULL);
1271 		return -err;
1272 	}
1273 	pf->next = port->flow_list;
1274 	pf->id = id;
1275 	pf->flow = flow;
1276 	port->flow_list = pf;
1277 	printf("Flow rule #%u created\n", pf->id);
1278 	return 0;
1279 }
1280 
1281 /** Destroy a number of flow rules. */
1282 int
1283 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1284 {
1285 	struct rte_port *port;
1286 	struct port_flow **tmp;
1287 	uint32_t c = 0;
1288 	int ret = 0;
1289 
1290 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1291 	    port_id == (portid_t)RTE_PORT_ALL)
1292 		return -EINVAL;
1293 	port = &ports[port_id];
1294 	tmp = &port->flow_list;
1295 	while (*tmp) {
1296 		uint32_t i;
1297 
1298 		for (i = 0; i != n; ++i) {
1299 			struct rte_flow_error error;
1300 			struct port_flow *pf = *tmp;
1301 
1302 			if (rule[i] != pf->id)
1303 				continue;
1304 			/*
1305 			 * Poisoning to make sure PMDs update it in case
1306 			 * of error.
1307 			 */
1308 			memset(&error, 0x33, sizeof(error));
1309 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1310 				ret = port_flow_complain(&error);
1311 				continue;
1312 			}
1313 			printf("Flow rule #%u destroyed\n", pf->id);
1314 			*tmp = pf->next;
1315 			free(pf);
1316 			break;
1317 		}
1318 		if (i == n)
1319 			tmp = &(*tmp)->next;
1320 		++c;
1321 	}
1322 	return ret;
1323 }
1324 
1325 /** Remove all flow rules. */
1326 int
1327 port_flow_flush(portid_t port_id)
1328 {
1329 	struct rte_flow_error error;
1330 	struct rte_port *port;
1331 	int ret = 0;
1332 
1333 	/* Poisoning to make sure PMDs update it in case of error. */
1334 	memset(&error, 0x44, sizeof(error));
1335 	if (rte_flow_flush(port_id, &error)) {
1336 		ret = port_flow_complain(&error);
1337 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1338 		    port_id == (portid_t)RTE_PORT_ALL)
1339 			return ret;
1340 	}
1341 	port = &ports[port_id];
1342 	while (port->flow_list) {
1343 		struct port_flow *pf = port->flow_list->next;
1344 
1345 		free(port->flow_list);
1346 		port->flow_list = pf;
1347 	}
1348 	return ret;
1349 }
1350 
1351 /** Query a flow rule. */
1352 int
1353 port_flow_query(portid_t port_id, uint32_t rule,
1354 		enum rte_flow_action_type action)
1355 {
1356 	struct rte_flow_error error;
1357 	struct rte_port *port;
1358 	struct port_flow *pf;
1359 	const char *name;
1360 	union {
1361 		struct rte_flow_query_count count;
1362 	} query;
1363 
1364 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1365 	    port_id == (portid_t)RTE_PORT_ALL)
1366 		return -EINVAL;
1367 	port = &ports[port_id];
1368 	for (pf = port->flow_list; pf; pf = pf->next)
1369 		if (pf->id == rule)
1370 			break;
1371 	if (!pf) {
1372 		printf("Flow rule #%u not found\n", rule);
1373 		return -ENOENT;
1374 	}
1375 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1376 	    !flow_action[action].name)
1377 		name = "unknown";
1378 	else
1379 		name = flow_action[action].name;
1380 	switch (action) {
1381 	case RTE_FLOW_ACTION_TYPE_COUNT:
1382 		break;
1383 	default:
1384 		printf("Cannot query action type %d (%s)\n", action, name);
1385 		return -ENOTSUP;
1386 	}
1387 	/* Poisoning to make sure PMDs update it in case of error. */
1388 	memset(&error, 0x55, sizeof(error));
1389 	memset(&query, 0, sizeof(query));
1390 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1391 		return port_flow_complain(&error);
1392 	switch (action) {
1393 	case RTE_FLOW_ACTION_TYPE_COUNT:
1394 		printf("%s:\n"
1395 		       " hits_set: %u\n"
1396 		       " bytes_set: %u\n"
1397 		       " hits: %" PRIu64 "\n"
1398 		       " bytes: %" PRIu64 "\n",
1399 		       name,
1400 		       query.count.hits_set,
1401 		       query.count.bytes_set,
1402 		       query.count.hits,
1403 		       query.count.bytes);
1404 		break;
1405 	default:
1406 		printf("Cannot display result for action type %d (%s)\n",
1407 		       action, name);
1408 		break;
1409 	}
1410 	return 0;
1411 }
1412 
1413 /** List flow rules. */
1414 void
1415 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1416 {
1417 	struct rte_port *port;
1418 	struct port_flow *pf;
1419 	struct port_flow *list = NULL;
1420 	uint32_t i;
1421 
1422 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1423 	    port_id == (portid_t)RTE_PORT_ALL)
1424 		return;
1425 	port = &ports[port_id];
1426 	if (!port->flow_list)
1427 		return;
1428 	/* Sort flows by group, priority and ID. */
1429 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1430 		struct port_flow **tmp;
1431 
1432 		if (n) {
1433 			/* Filter out unwanted groups. */
1434 			for (i = 0; i != n; ++i)
1435 				if (pf->attr.group == group[i])
1436 					break;
1437 			if (i == n)
1438 				continue;
1439 		}
1440 		tmp = &list;
1441 		while (*tmp &&
1442 		       (pf->attr.group > (*tmp)->attr.group ||
1443 			(pf->attr.group == (*tmp)->attr.group &&
1444 			 pf->attr.priority > (*tmp)->attr.priority) ||
1445 			(pf->attr.group == (*tmp)->attr.group &&
1446 			 pf->attr.priority == (*tmp)->attr.priority &&
1447 			 pf->id > (*tmp)->id)))
1448 			tmp = &(*tmp)->tmp;
1449 		pf->tmp = *tmp;
1450 		*tmp = pf;
1451 	}
1452 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1453 	for (pf = list; pf != NULL; pf = pf->tmp) {
1454 		const struct rte_flow_item *item = pf->pattern;
1455 		const struct rte_flow_action *action = pf->actions;
1456 
1457 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1458 		       pf->id,
1459 		       pf->attr.group,
1460 		       pf->attr.priority,
1461 		       pf->attr.ingress ? 'i' : '-',
1462 		       pf->attr.egress ? 'e' : '-');
1463 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1464 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1465 				printf("%s ", flow_item[item->type].name);
1466 			++item;
1467 		}
1468 		printf("=>");
1469 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1470 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1471 				printf(" %s", flow_action[action->type].name);
1472 			++action;
1473 		}
1474 		printf("\n");
1475 	}
1476 }
1477 
1478 /** Restrict ingress traffic to the defined flow rules. */
1479 int
1480 port_flow_isolate(portid_t port_id, int set)
1481 {
1482 	struct rte_flow_error error;
1483 
1484 	/* Poisoning to make sure PMDs update it in case of error. */
1485 	memset(&error, 0x66, sizeof(error));
1486 	if (rte_flow_isolate(port_id, set, &error))
1487 		return port_flow_complain(&error);
1488 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1489 	       port_id,
1490 	       set ? "now restricted" : "not restricted anymore");
1491 	return 0;
1492 }
1493 
1494 /*
1495  * RX/TX ring descriptors display functions.
1496  */
1497 int
1498 rx_queue_id_is_invalid(queueid_t rxq_id)
1499 {
1500 	if (rxq_id < nb_rxq)
1501 		return 0;
1502 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1503 	return 1;
1504 }
1505 
1506 int
1507 tx_queue_id_is_invalid(queueid_t txq_id)
1508 {
1509 	if (txq_id < nb_txq)
1510 		return 0;
1511 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1512 	return 1;
1513 }
1514 
1515 static int
1516 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1517 {
1518 	if (rxdesc_id < nb_rxd)
1519 		return 0;
1520 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1521 	       rxdesc_id, nb_rxd);
1522 	return 1;
1523 }
1524 
1525 static int
1526 tx_desc_id_is_invalid(uint16_t txdesc_id)
1527 {
1528 	if (txdesc_id < nb_txd)
1529 		return 0;
1530 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1531 	       txdesc_id, nb_txd);
1532 	return 1;
1533 }
1534 
1535 static const struct rte_memzone *
1536 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1537 {
1538 	char mz_name[RTE_MEMZONE_NAMESIZE];
1539 	const struct rte_memzone *mz;
1540 
1541 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1542 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1543 	mz = rte_memzone_lookup(mz_name);
1544 	if (mz == NULL)
1545 		printf("%s ring memory zoneof (port %d, queue %d) not"
1546 		       "found (zone name = %s\n",
1547 		       ring_name, port_id, q_id, mz_name);
1548 	return mz;
1549 }
1550 
1551 union igb_ring_dword {
1552 	uint64_t dword;
1553 	struct {
1554 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1555 		uint32_t lo;
1556 		uint32_t hi;
1557 #else
1558 		uint32_t hi;
1559 		uint32_t lo;
1560 #endif
1561 	} words;
1562 };
1563 
1564 struct igb_ring_desc_32_bytes {
1565 	union igb_ring_dword lo_dword;
1566 	union igb_ring_dword hi_dword;
1567 	union igb_ring_dword resv1;
1568 	union igb_ring_dword resv2;
1569 };
1570 
1571 struct igb_ring_desc_16_bytes {
1572 	union igb_ring_dword lo_dword;
1573 	union igb_ring_dword hi_dword;
1574 };
1575 
1576 static void
1577 ring_rxd_display_dword(union igb_ring_dword dword)
1578 {
1579 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1580 					(unsigned)dword.words.hi);
1581 }
1582 
1583 static void
1584 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1585 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1586 			   portid_t port_id,
1587 #else
1588 			   __rte_unused portid_t port_id,
1589 #endif
1590 			   uint16_t desc_id)
1591 {
1592 	struct igb_ring_desc_16_bytes *ring =
1593 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1594 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1595 	struct rte_eth_dev_info dev_info;
1596 
1597 	memset(&dev_info, 0, sizeof(dev_info));
1598 	rte_eth_dev_info_get(port_id, &dev_info);
1599 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1600 		/* 32 bytes RX descriptor, i40e only */
1601 		struct igb_ring_desc_32_bytes *ring =
1602 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1603 		ring[desc_id].lo_dword.dword =
1604 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1605 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1606 		ring[desc_id].hi_dword.dword =
1607 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1608 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1609 		ring[desc_id].resv1.dword =
1610 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1611 		ring_rxd_display_dword(ring[desc_id].resv1);
1612 		ring[desc_id].resv2.dword =
1613 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1614 		ring_rxd_display_dword(ring[desc_id].resv2);
1615 
1616 		return;
1617 	}
1618 #endif
1619 	/* 16 bytes RX descriptor */
1620 	ring[desc_id].lo_dword.dword =
1621 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1622 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1623 	ring[desc_id].hi_dword.dword =
1624 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1625 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1626 }
1627 
1628 static void
1629 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1630 {
1631 	struct igb_ring_desc_16_bytes *ring;
1632 	struct igb_ring_desc_16_bytes txd;
1633 
1634 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1635 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1636 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1637 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1638 			(unsigned)txd.lo_dword.words.lo,
1639 			(unsigned)txd.lo_dword.words.hi,
1640 			(unsigned)txd.hi_dword.words.lo,
1641 			(unsigned)txd.hi_dword.words.hi);
1642 }
1643 
1644 void
1645 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1646 {
1647 	const struct rte_memzone *rx_mz;
1648 
1649 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1650 		return;
1651 	if (rx_queue_id_is_invalid(rxq_id))
1652 		return;
1653 	if (rx_desc_id_is_invalid(rxd_id))
1654 		return;
1655 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1656 	if (rx_mz == NULL)
1657 		return;
1658 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1659 }
1660 
1661 void
1662 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1663 {
1664 	const struct rte_memzone *tx_mz;
1665 
1666 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1667 		return;
1668 	if (tx_queue_id_is_invalid(txq_id))
1669 		return;
1670 	if (tx_desc_id_is_invalid(txd_id))
1671 		return;
1672 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1673 	if (tx_mz == NULL)
1674 		return;
1675 	ring_tx_descriptor_display(tx_mz, txd_id);
1676 }
1677 
1678 void
1679 fwd_lcores_config_display(void)
1680 {
1681 	lcoreid_t lc_id;
1682 
1683 	printf("List of forwarding lcores:");
1684 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1685 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1686 	printf("\n");
1687 }
1688 void
1689 rxtx_config_display(void)
1690 {
1691 	portid_t pid;
1692 
1693 	printf("  %s packet forwarding%s packets/burst=%d\n",
1694 	       cur_fwd_eng->fwd_mode_name,
1695 	       retry_enabled == 0 ? "" : " with retry",
1696 	       nb_pkt_per_burst);
1697 
1698 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1699 		printf("  packet len=%u - nb packet segments=%d\n",
1700 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1701 
1702 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1703 	       nb_fwd_lcores, nb_fwd_ports);
1704 
1705 	RTE_ETH_FOREACH_DEV(pid) {
1706 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf;
1707 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf;
1708 
1709 		printf("  port %d:\n", (unsigned int)pid);
1710 		printf("  CRC stripping %s\n",
1711 				(ports[pid].dev_conf.rxmode.offloads &
1712 				 DEV_RX_OFFLOAD_CRC_STRIP) ?
1713 				"enabled" : "disabled");
1714 		printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1715 				nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1716 		printf("  RX threshold registers: pthresh=%d hthresh=%d "
1717 		       " wthresh=%d\n",
1718 				rx_conf->rx_thresh.pthresh,
1719 				rx_conf->rx_thresh.hthresh,
1720 				rx_conf->rx_thresh.wthresh);
1721 		printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1722 				nb_txq, nb_txd, tx_conf->tx_free_thresh);
1723 		printf("  TX threshold registers: pthresh=%d hthresh=%d "
1724 		       " wthresh=%d\n",
1725 				tx_conf->tx_thresh.pthresh,
1726 				tx_conf->tx_thresh.hthresh,
1727 				tx_conf->tx_thresh.wthresh);
1728 		printf("  TX RS bit threshold=%d - TXQ offloads=0x%"PRIx64"\n",
1729 				tx_conf->tx_rs_thresh, tx_conf->offloads);
1730 	}
1731 }
1732 
1733 void
1734 port_rss_reta_info(portid_t port_id,
1735 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1736 		   uint16_t nb_entries)
1737 {
1738 	uint16_t i, idx, shift;
1739 	int ret;
1740 
1741 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1742 		return;
1743 
1744 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1745 	if (ret != 0) {
1746 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1747 		return;
1748 	}
1749 
1750 	for (i = 0; i < nb_entries; i++) {
1751 		idx = i / RTE_RETA_GROUP_SIZE;
1752 		shift = i % RTE_RETA_GROUP_SIZE;
1753 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1754 			continue;
1755 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1756 					i, reta_conf[idx].reta[shift]);
1757 	}
1758 }
1759 
1760 /*
1761  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1762  * key of the port.
1763  */
1764 void
1765 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1766 {
1767 	struct rte_eth_rss_conf rss_conf;
1768 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1769 	uint64_t rss_hf;
1770 	uint8_t i;
1771 	int diag;
1772 	struct rte_eth_dev_info dev_info;
1773 	uint8_t hash_key_size;
1774 
1775 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1776 		return;
1777 
1778 	memset(&dev_info, 0, sizeof(dev_info));
1779 	rte_eth_dev_info_get(port_id, &dev_info);
1780 	if (dev_info.hash_key_size > 0 &&
1781 			dev_info.hash_key_size <= sizeof(rss_key))
1782 		hash_key_size = dev_info.hash_key_size;
1783 	else {
1784 		printf("dev_info did not provide a valid hash key size\n");
1785 		return;
1786 	}
1787 
1788 	rss_conf.rss_hf = 0;
1789 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1790 		if (!strcmp(rss_info, rss_type_table[i].str))
1791 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1792 	}
1793 
1794 	/* Get RSS hash key if asked to display it */
1795 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1796 	rss_conf.rss_key_len = hash_key_size;
1797 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1798 	if (diag != 0) {
1799 		switch (diag) {
1800 		case -ENODEV:
1801 			printf("port index %d invalid\n", port_id);
1802 			break;
1803 		case -ENOTSUP:
1804 			printf("operation not supported by device\n");
1805 			break;
1806 		default:
1807 			printf("operation failed - diag=%d\n", diag);
1808 			break;
1809 		}
1810 		return;
1811 	}
1812 	rss_hf = rss_conf.rss_hf;
1813 	if (rss_hf == 0) {
1814 		printf("RSS disabled\n");
1815 		return;
1816 	}
1817 	printf("RSS functions:\n ");
1818 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1819 		if (rss_hf & rss_type_table[i].rss_type)
1820 			printf("%s ", rss_type_table[i].str);
1821 	}
1822 	printf("\n");
1823 	if (!show_rss_key)
1824 		return;
1825 	printf("RSS key:\n");
1826 	for (i = 0; i < hash_key_size; i++)
1827 		printf("%02X", rss_key[i]);
1828 	printf("\n");
1829 }
1830 
1831 void
1832 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1833 			 uint hash_key_len)
1834 {
1835 	struct rte_eth_rss_conf rss_conf;
1836 	int diag;
1837 	unsigned int i;
1838 
1839 	rss_conf.rss_key = NULL;
1840 	rss_conf.rss_key_len = hash_key_len;
1841 	rss_conf.rss_hf = 0;
1842 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1843 		if (!strcmp(rss_type_table[i].str, rss_type))
1844 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1845 	}
1846 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1847 	if (diag == 0) {
1848 		rss_conf.rss_key = hash_key;
1849 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1850 	}
1851 	if (diag == 0)
1852 		return;
1853 
1854 	switch (diag) {
1855 	case -ENODEV:
1856 		printf("port index %d invalid\n", port_id);
1857 		break;
1858 	case -ENOTSUP:
1859 		printf("operation not supported by device\n");
1860 		break;
1861 	default:
1862 		printf("operation failed - diag=%d\n", diag);
1863 		break;
1864 	}
1865 }
1866 
1867 /*
1868  * Setup forwarding configuration for each logical core.
1869  */
1870 static void
1871 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1872 {
1873 	streamid_t nb_fs_per_lcore;
1874 	streamid_t nb_fs;
1875 	streamid_t sm_id;
1876 	lcoreid_t  nb_extra;
1877 	lcoreid_t  nb_fc;
1878 	lcoreid_t  nb_lc;
1879 	lcoreid_t  lc_id;
1880 
1881 	nb_fs = cfg->nb_fwd_streams;
1882 	nb_fc = cfg->nb_fwd_lcores;
1883 	if (nb_fs <= nb_fc) {
1884 		nb_fs_per_lcore = 1;
1885 		nb_extra = 0;
1886 	} else {
1887 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1888 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1889 	}
1890 
1891 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1892 	sm_id = 0;
1893 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1894 		fwd_lcores[lc_id]->stream_idx = sm_id;
1895 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1896 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1897 	}
1898 
1899 	/*
1900 	 * Assign extra remaining streams, if any.
1901 	 */
1902 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1903 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1904 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1905 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1906 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1907 	}
1908 }
1909 
1910 static void
1911 simple_fwd_config_setup(void)
1912 {
1913 	portid_t i;
1914 	portid_t j;
1915 	portid_t inc = 2;
1916 
1917 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1918 	    port_topology == PORT_TOPOLOGY_LOOP) {
1919 		inc = 1;
1920 	} else if (nb_fwd_ports % 2) {
1921 		printf("\nWarning! Cannot handle an odd number of ports "
1922 		       "with the current port topology. Configuration "
1923 		       "must be changed to have an even number of ports, "
1924 		       "or relaunch application with "
1925 		       "--port-topology=chained\n\n");
1926 	}
1927 
1928 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1929 	cur_fwd_config.nb_fwd_streams =
1930 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1931 
1932 	/* reinitialize forwarding streams */
1933 	init_fwd_streams();
1934 
1935 	/*
1936 	 * In the simple forwarding test, the number of forwarding cores
1937 	 * must be lower or equal to the number of forwarding ports.
1938 	 */
1939 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1940 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1941 		cur_fwd_config.nb_fwd_lcores =
1942 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1943 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1944 
1945 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1946 		if (port_topology != PORT_TOPOLOGY_LOOP)
1947 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1948 		else
1949 			j = i;
1950 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1951 		fwd_streams[i]->rx_queue  = 0;
1952 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1953 		fwd_streams[i]->tx_queue  = 0;
1954 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
1955 		fwd_streams[i]->retry_enabled = retry_enabled;
1956 
1957 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1958 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1959 			fwd_streams[j]->rx_queue  = 0;
1960 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1961 			fwd_streams[j]->tx_queue  = 0;
1962 			fwd_streams[j]->peer_addr = fwd_streams[j]->tx_port;
1963 			fwd_streams[j]->retry_enabled = retry_enabled;
1964 		}
1965 	}
1966 }
1967 
1968 /**
1969  * For the RSS forwarding test all streams distributed over lcores. Each stream
1970  * being composed of a RX queue to poll on a RX port for input messages,
1971  * associated with a TX queue of a TX port where to send forwarded packets.
1972  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1973  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1974  * following rules:
1975  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1976  *    - TxQl = RxQj
1977  */
1978 static void
1979 rss_fwd_config_setup(void)
1980 {
1981 	portid_t   rxp;
1982 	portid_t   txp;
1983 	queueid_t  rxq;
1984 	queueid_t  nb_q;
1985 	streamid_t  sm_id;
1986 
1987 	nb_q = nb_rxq;
1988 	if (nb_q > nb_txq)
1989 		nb_q = nb_txq;
1990 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1991 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1992 	cur_fwd_config.nb_fwd_streams =
1993 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1994 
1995 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1996 		cur_fwd_config.nb_fwd_lcores =
1997 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1998 
1999 	/* reinitialize forwarding streams */
2000 	init_fwd_streams();
2001 
2002 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2003 	rxp = 0; rxq = 0;
2004 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2005 		struct fwd_stream *fs;
2006 
2007 		fs = fwd_streams[sm_id];
2008 
2009 		if ((rxp & 0x1) == 0)
2010 			txp = (portid_t) (rxp + 1);
2011 		else
2012 			txp = (portid_t) (rxp - 1);
2013 		/*
2014 		 * if we are in loopback, simply send stuff out through the
2015 		 * ingress port
2016 		 */
2017 		if (port_topology == PORT_TOPOLOGY_LOOP)
2018 			txp = rxp;
2019 
2020 		fs->rx_port = fwd_ports_ids[rxp];
2021 		fs->rx_queue = rxq;
2022 		fs->tx_port = fwd_ports_ids[txp];
2023 		fs->tx_queue = rxq;
2024 		fs->peer_addr = fs->tx_port;
2025 		fs->retry_enabled = retry_enabled;
2026 		rxq = (queueid_t) (rxq + 1);
2027 		if (rxq < nb_q)
2028 			continue;
2029 		/*
2030 		 * rxq == nb_q
2031 		 * Restart from RX queue 0 on next RX port
2032 		 */
2033 		rxq = 0;
2034 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2035 			rxp = (portid_t)
2036 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2037 		else
2038 			rxp = (portid_t) (rxp + 1);
2039 	}
2040 }
2041 
2042 /**
2043  * For the DCB forwarding test, each core is assigned on each traffic class.
2044  *
2045  * Each core is assigned a multi-stream, each stream being composed of
2046  * a RX queue to poll on a RX port for input messages, associated with
2047  * a TX queue of a TX port where to send forwarded packets. All RX and
2048  * TX queues are mapping to the same traffic class.
2049  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2050  * the same core
2051  */
2052 static void
2053 dcb_fwd_config_setup(void)
2054 {
2055 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2056 	portid_t txp, rxp = 0;
2057 	queueid_t txq, rxq = 0;
2058 	lcoreid_t  lc_id;
2059 	uint16_t nb_rx_queue, nb_tx_queue;
2060 	uint16_t i, j, k, sm_id = 0;
2061 	uint8_t tc = 0;
2062 
2063 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2064 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2065 	cur_fwd_config.nb_fwd_streams =
2066 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2067 
2068 	/* reinitialize forwarding streams */
2069 	init_fwd_streams();
2070 	sm_id = 0;
2071 	txp = 1;
2072 	/* get the dcb info on the first RX and TX ports */
2073 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2074 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2075 
2076 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2077 		fwd_lcores[lc_id]->stream_nb = 0;
2078 		fwd_lcores[lc_id]->stream_idx = sm_id;
2079 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2080 			/* if the nb_queue is zero, means this tc is
2081 			 * not enabled on the POOL
2082 			 */
2083 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2084 				break;
2085 			k = fwd_lcores[lc_id]->stream_nb +
2086 				fwd_lcores[lc_id]->stream_idx;
2087 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2088 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2089 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2090 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2091 			for (j = 0; j < nb_rx_queue; j++) {
2092 				struct fwd_stream *fs;
2093 
2094 				fs = fwd_streams[k + j];
2095 				fs->rx_port = fwd_ports_ids[rxp];
2096 				fs->rx_queue = rxq + j;
2097 				fs->tx_port = fwd_ports_ids[txp];
2098 				fs->tx_queue = txq + j % nb_tx_queue;
2099 				fs->peer_addr = fs->tx_port;
2100 				fs->retry_enabled = retry_enabled;
2101 			}
2102 			fwd_lcores[lc_id]->stream_nb +=
2103 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2104 		}
2105 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2106 
2107 		tc++;
2108 		if (tc < rxp_dcb_info.nb_tcs)
2109 			continue;
2110 		/* Restart from TC 0 on next RX port */
2111 		tc = 0;
2112 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2113 			rxp = (portid_t)
2114 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2115 		else
2116 			rxp++;
2117 		if (rxp >= nb_fwd_ports)
2118 			return;
2119 		/* get the dcb information on next RX and TX ports */
2120 		if ((rxp & 0x1) == 0)
2121 			txp = (portid_t) (rxp + 1);
2122 		else
2123 			txp = (portid_t) (rxp - 1);
2124 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2125 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2126 	}
2127 }
2128 
2129 static void
2130 icmp_echo_config_setup(void)
2131 {
2132 	portid_t  rxp;
2133 	queueid_t rxq;
2134 	lcoreid_t lc_id;
2135 	uint16_t  sm_id;
2136 
2137 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2138 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2139 			(nb_txq * nb_fwd_ports);
2140 	else
2141 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2142 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2143 	cur_fwd_config.nb_fwd_streams =
2144 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2145 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2146 		cur_fwd_config.nb_fwd_lcores =
2147 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2148 	if (verbose_level > 0) {
2149 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2150 		       __FUNCTION__,
2151 		       cur_fwd_config.nb_fwd_lcores,
2152 		       cur_fwd_config.nb_fwd_ports,
2153 		       cur_fwd_config.nb_fwd_streams);
2154 	}
2155 
2156 	/* reinitialize forwarding streams */
2157 	init_fwd_streams();
2158 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2159 	rxp = 0; rxq = 0;
2160 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2161 		if (verbose_level > 0)
2162 			printf("  core=%d: \n", lc_id);
2163 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2164 			struct fwd_stream *fs;
2165 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2166 			fs->rx_port = fwd_ports_ids[rxp];
2167 			fs->rx_queue = rxq;
2168 			fs->tx_port = fs->rx_port;
2169 			fs->tx_queue = rxq;
2170 			fs->peer_addr = fs->tx_port;
2171 			fs->retry_enabled = retry_enabled;
2172 			if (verbose_level > 0)
2173 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2174 				       sm_id, fs->rx_port, fs->rx_queue,
2175 				       fs->tx_queue);
2176 			rxq = (queueid_t) (rxq + 1);
2177 			if (rxq == nb_rxq) {
2178 				rxq = 0;
2179 				rxp = (portid_t) (rxp + 1);
2180 			}
2181 		}
2182 	}
2183 }
2184 
2185 void
2186 fwd_config_setup(void)
2187 {
2188 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2189 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2190 		icmp_echo_config_setup();
2191 		return;
2192 	}
2193 	if ((nb_rxq > 1) && (nb_txq > 1)){
2194 		if (dcb_config)
2195 			dcb_fwd_config_setup();
2196 		else
2197 			rss_fwd_config_setup();
2198 	}
2199 	else
2200 		simple_fwd_config_setup();
2201 }
2202 
2203 void
2204 pkt_fwd_config_display(struct fwd_config *cfg)
2205 {
2206 	struct fwd_stream *fs;
2207 	lcoreid_t  lc_id;
2208 	streamid_t sm_id;
2209 
2210 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2211 		"NUMA support %s, MP over anonymous pages %s\n",
2212 		cfg->fwd_eng->fwd_mode_name,
2213 		retry_enabled == 0 ? "" : " with retry",
2214 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2215 		numa_support == 1 ? "enabled" : "disabled",
2216 		mp_anon != 0 ? "enabled" : "disabled");
2217 
2218 	if (retry_enabled)
2219 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2220 			burst_tx_retry_num, burst_tx_delay_time);
2221 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2222 		printf("Logical Core %u (socket %u) forwards packets on "
2223 		       "%d streams:",
2224 		       fwd_lcores_cpuids[lc_id],
2225 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2226 		       fwd_lcores[lc_id]->stream_nb);
2227 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2228 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2229 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2230 			       "P=%d/Q=%d (socket %u) ",
2231 			       fs->rx_port, fs->rx_queue,
2232 			       ports[fs->rx_port].socket_id,
2233 			       fs->tx_port, fs->tx_queue,
2234 			       ports[fs->tx_port].socket_id);
2235 			print_ethaddr("peer=",
2236 				      &peer_eth_addrs[fs->peer_addr]);
2237 		}
2238 		printf("\n");
2239 	}
2240 	printf("\n");
2241 }
2242 
2243 void
2244 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2245 {
2246 	uint8_t c, new_peer_addr[6];
2247 	if (!rte_eth_dev_is_valid_port(port_id)) {
2248 		printf("Error: Invalid port number %i\n", port_id);
2249 		return;
2250 	}
2251 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2252 					sizeof(new_peer_addr)) < 0) {
2253 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2254 		return;
2255 	}
2256 	for (c = 0; c < 6; c++)
2257 		peer_eth_addrs[port_id].addr_bytes[c] =
2258 			new_peer_addr[c];
2259 }
2260 
2261 int
2262 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2263 {
2264 	unsigned int i;
2265 	unsigned int lcore_cpuid;
2266 	int record_now;
2267 
2268 	record_now = 0;
2269  again:
2270 	for (i = 0; i < nb_lc; i++) {
2271 		lcore_cpuid = lcorelist[i];
2272 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2273 			printf("lcore %u not enabled\n", lcore_cpuid);
2274 			return -1;
2275 		}
2276 		if (lcore_cpuid == rte_get_master_lcore()) {
2277 			printf("lcore %u cannot be masked on for running "
2278 			       "packet forwarding, which is the master lcore "
2279 			       "and reserved for command line parsing only\n",
2280 			       lcore_cpuid);
2281 			return -1;
2282 		}
2283 		if (record_now)
2284 			fwd_lcores_cpuids[i] = lcore_cpuid;
2285 	}
2286 	if (record_now == 0) {
2287 		record_now = 1;
2288 		goto again;
2289 	}
2290 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2291 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2292 		printf("previous number of forwarding cores %u - changed to "
2293 		       "number of configured cores %u\n",
2294 		       (unsigned int) nb_fwd_lcores, nb_lc);
2295 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 int
2302 set_fwd_lcores_mask(uint64_t lcoremask)
2303 {
2304 	unsigned int lcorelist[64];
2305 	unsigned int nb_lc;
2306 	unsigned int i;
2307 
2308 	if (lcoremask == 0) {
2309 		printf("Invalid NULL mask of cores\n");
2310 		return -1;
2311 	}
2312 	nb_lc = 0;
2313 	for (i = 0; i < 64; i++) {
2314 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2315 			continue;
2316 		lcorelist[nb_lc++] = i;
2317 	}
2318 	return set_fwd_lcores_list(lcorelist, nb_lc);
2319 }
2320 
2321 void
2322 set_fwd_lcores_number(uint16_t nb_lc)
2323 {
2324 	if (nb_lc > nb_cfg_lcores) {
2325 		printf("nb fwd cores %u > %u (max. number of configured "
2326 		       "lcores) - ignored\n",
2327 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2328 		return;
2329 	}
2330 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2331 	printf("Number of forwarding cores set to %u\n",
2332 	       (unsigned int) nb_fwd_lcores);
2333 }
2334 
2335 void
2336 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2337 {
2338 	unsigned int i;
2339 	portid_t port_id;
2340 	int record_now;
2341 
2342 	record_now = 0;
2343  again:
2344 	for (i = 0; i < nb_pt; i++) {
2345 		port_id = (portid_t) portlist[i];
2346 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2347 			return;
2348 		if (record_now)
2349 			fwd_ports_ids[i] = port_id;
2350 	}
2351 	if (record_now == 0) {
2352 		record_now = 1;
2353 		goto again;
2354 	}
2355 	nb_cfg_ports = (portid_t) nb_pt;
2356 	if (nb_fwd_ports != (portid_t) nb_pt) {
2357 		printf("previous number of forwarding ports %u - changed to "
2358 		       "number of configured ports %u\n",
2359 		       (unsigned int) nb_fwd_ports, nb_pt);
2360 		nb_fwd_ports = (portid_t) nb_pt;
2361 	}
2362 }
2363 
2364 void
2365 set_fwd_ports_mask(uint64_t portmask)
2366 {
2367 	unsigned int portlist[64];
2368 	unsigned int nb_pt;
2369 	unsigned int i;
2370 
2371 	if (portmask == 0) {
2372 		printf("Invalid NULL mask of ports\n");
2373 		return;
2374 	}
2375 	nb_pt = 0;
2376 	RTE_ETH_FOREACH_DEV(i) {
2377 		if (! ((uint64_t)(1ULL << i) & portmask))
2378 			continue;
2379 		portlist[nb_pt++] = i;
2380 	}
2381 	set_fwd_ports_list(portlist, nb_pt);
2382 }
2383 
2384 void
2385 set_fwd_ports_number(uint16_t nb_pt)
2386 {
2387 	if (nb_pt > nb_cfg_ports) {
2388 		printf("nb fwd ports %u > %u (number of configured "
2389 		       "ports) - ignored\n",
2390 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2391 		return;
2392 	}
2393 	nb_fwd_ports = (portid_t) nb_pt;
2394 	printf("Number of forwarding ports set to %u\n",
2395 	       (unsigned int) nb_fwd_ports);
2396 }
2397 
2398 int
2399 port_is_forwarding(portid_t port_id)
2400 {
2401 	unsigned int i;
2402 
2403 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2404 		return -1;
2405 
2406 	for (i = 0; i < nb_fwd_ports; i++) {
2407 		if (fwd_ports_ids[i] == port_id)
2408 			return 1;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 void
2415 set_nb_pkt_per_burst(uint16_t nb)
2416 {
2417 	if (nb > MAX_PKT_BURST) {
2418 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2419 		       " ignored\n",
2420 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2421 		return;
2422 	}
2423 	nb_pkt_per_burst = nb;
2424 	printf("Number of packets per burst set to %u\n",
2425 	       (unsigned int) nb_pkt_per_burst);
2426 }
2427 
2428 static const char *
2429 tx_split_get_name(enum tx_pkt_split split)
2430 {
2431 	uint32_t i;
2432 
2433 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2434 		if (tx_split_name[i].split == split)
2435 			return tx_split_name[i].name;
2436 	}
2437 	return NULL;
2438 }
2439 
2440 void
2441 set_tx_pkt_split(const char *name)
2442 {
2443 	uint32_t i;
2444 
2445 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2446 		if (strcmp(tx_split_name[i].name, name) == 0) {
2447 			tx_pkt_split = tx_split_name[i].split;
2448 			return;
2449 		}
2450 	}
2451 	printf("unknown value: \"%s\"\n", name);
2452 }
2453 
2454 void
2455 show_tx_pkt_segments(void)
2456 {
2457 	uint32_t i, n;
2458 	const char *split;
2459 
2460 	n = tx_pkt_nb_segs;
2461 	split = tx_split_get_name(tx_pkt_split);
2462 
2463 	printf("Number of segments: %u\n", n);
2464 	printf("Segment sizes: ");
2465 	for (i = 0; i != n - 1; i++)
2466 		printf("%hu,", tx_pkt_seg_lengths[i]);
2467 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2468 	printf("Split packet: %s\n", split);
2469 }
2470 
2471 void
2472 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2473 {
2474 	uint16_t tx_pkt_len;
2475 	unsigned i;
2476 
2477 	if (nb_segs >= (unsigned) nb_txd) {
2478 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2479 		       nb_segs, (unsigned int) nb_txd);
2480 		return;
2481 	}
2482 
2483 	/*
2484 	 * Check that each segment length is greater or equal than
2485 	 * the mbuf data sise.
2486 	 * Check also that the total packet length is greater or equal than the
2487 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2488 	 */
2489 	tx_pkt_len = 0;
2490 	for (i = 0; i < nb_segs; i++) {
2491 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2492 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2493 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2494 			return;
2495 		}
2496 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2497 	}
2498 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2499 		printf("total packet length=%u < %d - give up\n",
2500 				(unsigned) tx_pkt_len,
2501 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2502 		return;
2503 	}
2504 
2505 	for (i = 0; i < nb_segs; i++)
2506 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2507 
2508 	tx_pkt_length  = tx_pkt_len;
2509 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2510 }
2511 
2512 void
2513 setup_gro(const char *onoff, portid_t port_id)
2514 {
2515 	if (!rte_eth_dev_is_valid_port(port_id)) {
2516 		printf("invalid port id %u\n", port_id);
2517 		return;
2518 	}
2519 	if (test_done == 0) {
2520 		printf("Before enable/disable GRO,"
2521 				" please stop forwarding first\n");
2522 		return;
2523 	}
2524 	if (strcmp(onoff, "on") == 0) {
2525 		if (gro_ports[port_id].enable != 0) {
2526 			printf("Port %u has enabled GRO. Please"
2527 					" disable GRO first\n", port_id);
2528 			return;
2529 		}
2530 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2531 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2532 			gro_ports[port_id].param.max_flow_num =
2533 				GRO_DEFAULT_FLOW_NUM;
2534 			gro_ports[port_id].param.max_item_per_flow =
2535 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2536 		}
2537 		gro_ports[port_id].enable = 1;
2538 	} else {
2539 		if (gro_ports[port_id].enable == 0) {
2540 			printf("Port %u has disabled GRO\n", port_id);
2541 			return;
2542 		}
2543 		gro_ports[port_id].enable = 0;
2544 	}
2545 }
2546 
2547 void
2548 setup_gro_flush_cycles(uint8_t cycles)
2549 {
2550 	if (test_done == 0) {
2551 		printf("Before change flush interval for GRO,"
2552 				" please stop forwarding first.\n");
2553 		return;
2554 	}
2555 
2556 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2557 			GRO_DEFAULT_FLUSH_CYCLES) {
2558 		printf("The flushing cycle be in the range"
2559 				" of 1 to %u. Revert to the default"
2560 				" value %u.\n",
2561 				GRO_MAX_FLUSH_CYCLES,
2562 				GRO_DEFAULT_FLUSH_CYCLES);
2563 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2564 	}
2565 
2566 	gro_flush_cycles = cycles;
2567 }
2568 
2569 void
2570 show_gro(portid_t port_id)
2571 {
2572 	struct rte_gro_param *param;
2573 	uint32_t max_pkts_num;
2574 
2575 	param = &gro_ports[port_id].param;
2576 
2577 	if (!rte_eth_dev_is_valid_port(port_id)) {
2578 		printf("Invalid port id %u.\n", port_id);
2579 		return;
2580 	}
2581 	if (gro_ports[port_id].enable) {
2582 		printf("GRO type: TCP/IPv4\n");
2583 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2584 			max_pkts_num = param->max_flow_num *
2585 				param->max_item_per_flow;
2586 		} else
2587 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2588 		printf("Max number of packets to perform GRO: %u\n",
2589 				max_pkts_num);
2590 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2591 	} else
2592 		printf("Port %u doesn't enable GRO.\n", port_id);
2593 }
2594 
2595 void
2596 setup_gso(const char *mode, portid_t port_id)
2597 {
2598 	if (!rte_eth_dev_is_valid_port(port_id)) {
2599 		printf("invalid port id %u\n", port_id);
2600 		return;
2601 	}
2602 	if (strcmp(mode, "on") == 0) {
2603 		if (test_done == 0) {
2604 			printf("before enabling GSO,"
2605 					" please stop forwarding first\n");
2606 			return;
2607 		}
2608 		gso_ports[port_id].enable = 1;
2609 	} else if (strcmp(mode, "off") == 0) {
2610 		if (test_done == 0) {
2611 			printf("before disabling GSO,"
2612 					" please stop forwarding first\n");
2613 			return;
2614 		}
2615 		gso_ports[port_id].enable = 0;
2616 	}
2617 }
2618 
2619 char*
2620 list_pkt_forwarding_modes(void)
2621 {
2622 	static char fwd_modes[128] = "";
2623 	const char *separator = "|";
2624 	struct fwd_engine *fwd_eng;
2625 	unsigned i = 0;
2626 
2627 	if (strlen (fwd_modes) == 0) {
2628 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2629 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2630 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2631 			strncat(fwd_modes, separator,
2632 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2633 		}
2634 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2635 	}
2636 
2637 	return fwd_modes;
2638 }
2639 
2640 char*
2641 list_pkt_forwarding_retry_modes(void)
2642 {
2643 	static char fwd_modes[128] = "";
2644 	const char *separator = "|";
2645 	struct fwd_engine *fwd_eng;
2646 	unsigned i = 0;
2647 
2648 	if (strlen(fwd_modes) == 0) {
2649 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2650 			if (fwd_eng == &rx_only_engine)
2651 				continue;
2652 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2653 					sizeof(fwd_modes) -
2654 					strlen(fwd_modes) - 1);
2655 			strncat(fwd_modes, separator,
2656 					sizeof(fwd_modes) -
2657 					strlen(fwd_modes) - 1);
2658 		}
2659 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2660 	}
2661 
2662 	return fwd_modes;
2663 }
2664 
2665 void
2666 set_pkt_forwarding_mode(const char *fwd_mode_name)
2667 {
2668 	struct fwd_engine *fwd_eng;
2669 	unsigned i;
2670 
2671 	i = 0;
2672 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2673 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2674 			printf("Set %s packet forwarding mode%s\n",
2675 			       fwd_mode_name,
2676 			       retry_enabled == 0 ? "" : " with retry");
2677 			cur_fwd_eng = fwd_eng;
2678 			return;
2679 		}
2680 		i++;
2681 	}
2682 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2683 }
2684 
2685 void
2686 set_verbose_level(uint16_t vb_level)
2687 {
2688 	printf("Change verbose level from %u to %u\n",
2689 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2690 	verbose_level = vb_level;
2691 }
2692 
2693 void
2694 vlan_extend_set(portid_t port_id, int on)
2695 {
2696 	int diag;
2697 	int vlan_offload;
2698 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2699 
2700 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2701 		return;
2702 
2703 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2704 
2705 	if (on) {
2706 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2707 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2708 	} else {
2709 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2710 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2711 	}
2712 
2713 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2714 	if (diag < 0)
2715 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2716 	       "diag=%d\n", port_id, on, diag);
2717 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2718 }
2719 
2720 void
2721 rx_vlan_strip_set(portid_t port_id, int on)
2722 {
2723 	int diag;
2724 	int vlan_offload;
2725 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2726 
2727 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2728 		return;
2729 
2730 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2731 
2732 	if (on) {
2733 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2734 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2735 	} else {
2736 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2737 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2738 	}
2739 
2740 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2741 	if (diag < 0)
2742 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2743 	       "diag=%d\n", port_id, on, diag);
2744 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2745 }
2746 
2747 void
2748 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2749 {
2750 	int diag;
2751 
2752 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2753 		return;
2754 
2755 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2756 	if (diag < 0)
2757 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2758 	       "diag=%d\n", port_id, queue_id, on, diag);
2759 }
2760 
2761 void
2762 rx_vlan_filter_set(portid_t port_id, int on)
2763 {
2764 	int diag;
2765 	int vlan_offload;
2766 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2767 
2768 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2769 		return;
2770 
2771 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2772 
2773 	if (on) {
2774 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2775 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2776 	} else {
2777 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2778 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2779 	}
2780 
2781 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2782 	if (diag < 0)
2783 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2784 	       "diag=%d\n", port_id, on, diag);
2785 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2786 }
2787 
2788 int
2789 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2790 {
2791 	int diag;
2792 
2793 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2794 		return 1;
2795 	if (vlan_id_is_invalid(vlan_id))
2796 		return 1;
2797 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2798 	if (diag == 0)
2799 		return 0;
2800 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2801 	       "diag=%d\n",
2802 	       port_id, vlan_id, on, diag);
2803 	return -1;
2804 }
2805 
2806 void
2807 rx_vlan_all_filter_set(portid_t port_id, int on)
2808 {
2809 	uint16_t vlan_id;
2810 
2811 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2812 		return;
2813 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2814 		if (rx_vft_set(port_id, vlan_id, on))
2815 			break;
2816 	}
2817 }
2818 
2819 void
2820 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2821 {
2822 	int diag;
2823 
2824 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2825 		return;
2826 
2827 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2828 	if (diag == 0)
2829 		return;
2830 
2831 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2832 	       "diag=%d\n",
2833 	       port_id, vlan_type, tp_id, diag);
2834 }
2835 
2836 void
2837 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2838 {
2839 	int vlan_offload;
2840 	struct rte_eth_dev_info dev_info;
2841 
2842 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2843 		return;
2844 	if (vlan_id_is_invalid(vlan_id))
2845 		return;
2846 
2847 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2848 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2849 		printf("Error, as QinQ has been enabled.\n");
2850 		return;
2851 	}
2852 	rte_eth_dev_info_get(port_id, &dev_info);
2853 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2854 		printf("Error: vlan insert is not supported by port %d\n",
2855 			port_id);
2856 		return;
2857 	}
2858 
2859 	tx_vlan_reset(port_id);
2860 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2861 	ports[port_id].tx_vlan_id = vlan_id;
2862 }
2863 
2864 void
2865 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2866 {
2867 	int vlan_offload;
2868 	struct rte_eth_dev_info dev_info;
2869 
2870 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2871 		return;
2872 	if (vlan_id_is_invalid(vlan_id))
2873 		return;
2874 	if (vlan_id_is_invalid(vlan_id_outer))
2875 		return;
2876 
2877 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2878 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2879 		printf("Error, as QinQ hasn't been enabled.\n");
2880 		return;
2881 	}
2882 	rte_eth_dev_info_get(port_id, &dev_info);
2883 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2884 		printf("Error: qinq insert not supported by port %d\n",
2885 			port_id);
2886 		return;
2887 	}
2888 
2889 	tx_vlan_reset(port_id);
2890 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2891 	ports[port_id].tx_vlan_id = vlan_id;
2892 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2893 }
2894 
2895 void
2896 tx_vlan_reset(portid_t port_id)
2897 {
2898 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2899 		return;
2900 	ports[port_id].dev_conf.txmode.offloads &=
2901 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2902 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2903 	ports[port_id].tx_vlan_id = 0;
2904 	ports[port_id].tx_vlan_id_outer = 0;
2905 }
2906 
2907 void
2908 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2909 {
2910 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2911 		return;
2912 
2913 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2914 }
2915 
2916 void
2917 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2918 {
2919 	uint16_t i;
2920 	uint8_t existing_mapping_found = 0;
2921 
2922 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2923 		return;
2924 
2925 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2926 		return;
2927 
2928 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2929 		printf("map_value not in required range 0..%d\n",
2930 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2931 		return;
2932 	}
2933 
2934 	if (!is_rx) { /*then tx*/
2935 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2936 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2937 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2938 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2939 				existing_mapping_found = 1;
2940 				break;
2941 			}
2942 		}
2943 		if (!existing_mapping_found) { /* A new additional mapping... */
2944 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2945 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2946 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2947 			nb_tx_queue_stats_mappings++;
2948 		}
2949 	}
2950 	else { /*rx*/
2951 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2952 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2953 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2954 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2955 				existing_mapping_found = 1;
2956 				break;
2957 			}
2958 		}
2959 		if (!existing_mapping_found) { /* A new additional mapping... */
2960 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2961 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2962 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2963 			nb_rx_queue_stats_mappings++;
2964 		}
2965 	}
2966 }
2967 
2968 void
2969 set_xstats_hide_zero(uint8_t on_off)
2970 {
2971 	xstats_hide_zero = on_off;
2972 }
2973 
2974 static inline void
2975 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2976 {
2977 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2978 
2979 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2980 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2981 			" tunnel_id: 0x%08x",
2982 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2983 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2984 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2985 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2986 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2987 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2988 
2989 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2990 			rte_be_to_cpu_16(mask->src_port_mask),
2991 			rte_be_to_cpu_16(mask->dst_port_mask));
2992 
2993 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2994 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2995 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2996 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2997 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2998 
2999 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3000 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3001 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3002 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3003 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3004 	}
3005 
3006 	printf("\n");
3007 }
3008 
3009 static inline void
3010 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3011 {
3012 	struct rte_eth_flex_payload_cfg *cfg;
3013 	uint32_t i, j;
3014 
3015 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3016 		cfg = &flex_conf->flex_set[i];
3017 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3018 			printf("\n    RAW:  ");
3019 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3020 			printf("\n    L2_PAYLOAD:  ");
3021 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3022 			printf("\n    L3_PAYLOAD:  ");
3023 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3024 			printf("\n    L4_PAYLOAD:  ");
3025 		else
3026 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3027 		for (j = 0; j < num; j++)
3028 			printf("  %-5u", cfg->src_offset[j]);
3029 	}
3030 	printf("\n");
3031 }
3032 
3033 static char *
3034 flowtype_to_str(uint16_t flow_type)
3035 {
3036 	struct flow_type_info {
3037 		char str[32];
3038 		uint16_t ftype;
3039 	};
3040 
3041 	uint8_t i;
3042 	static struct flow_type_info flowtype_str_table[] = {
3043 		{"raw", RTE_ETH_FLOW_RAW},
3044 		{"ipv4", RTE_ETH_FLOW_IPV4},
3045 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3046 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3047 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3048 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3049 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3050 		{"ipv6", RTE_ETH_FLOW_IPV6},
3051 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3052 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3053 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3054 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3055 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3056 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3057 		{"port", RTE_ETH_FLOW_PORT},
3058 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3059 		{"geneve", RTE_ETH_FLOW_GENEVE},
3060 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3061 	};
3062 
3063 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3064 		if (flowtype_str_table[i].ftype == flow_type)
3065 			return flowtype_str_table[i].str;
3066 	}
3067 
3068 	return NULL;
3069 }
3070 
3071 static inline void
3072 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3073 {
3074 	struct rte_eth_fdir_flex_mask *mask;
3075 	uint32_t i, j;
3076 	char *p;
3077 
3078 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3079 		mask = &flex_conf->flex_mask[i];
3080 		p = flowtype_to_str(mask->flow_type);
3081 		printf("\n    %s:\t", p ? p : "unknown");
3082 		for (j = 0; j < num; j++)
3083 			printf(" %02x", mask->mask[j]);
3084 	}
3085 	printf("\n");
3086 }
3087 
3088 static inline void
3089 print_fdir_flow_type(uint32_t flow_types_mask)
3090 {
3091 	int i;
3092 	char *p;
3093 
3094 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3095 		if (!(flow_types_mask & (1 << i)))
3096 			continue;
3097 		p = flowtype_to_str(i);
3098 		if (p)
3099 			printf(" %s", p);
3100 		else
3101 			printf(" unknown");
3102 	}
3103 	printf("\n");
3104 }
3105 
3106 void
3107 fdir_get_infos(portid_t port_id)
3108 {
3109 	struct rte_eth_fdir_stats fdir_stat;
3110 	struct rte_eth_fdir_info fdir_info;
3111 	int ret;
3112 
3113 	static const char *fdir_stats_border = "########################";
3114 
3115 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3116 		return;
3117 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3118 	if (ret < 0) {
3119 		printf("\n FDIR is not supported on port %-2d\n",
3120 			port_id);
3121 		return;
3122 	}
3123 
3124 	memset(&fdir_info, 0, sizeof(fdir_info));
3125 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3126 			       RTE_ETH_FILTER_INFO, &fdir_info);
3127 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3128 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3129 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3130 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3131 	       fdir_stats_border, port_id, fdir_stats_border);
3132 	printf("  MODE: ");
3133 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3134 		printf("  PERFECT\n");
3135 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3136 		printf("  PERFECT-MAC-VLAN\n");
3137 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3138 		printf("  PERFECT-TUNNEL\n");
3139 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3140 		printf("  SIGNATURE\n");
3141 	else
3142 		printf("  DISABLE\n");
3143 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3144 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3145 		printf("  SUPPORTED FLOW TYPE: ");
3146 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3147 	}
3148 	printf("  FLEX PAYLOAD INFO:\n");
3149 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3150 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3151 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3152 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3153 		fdir_info.flex_payload_unit,
3154 		fdir_info.max_flex_payload_segment_num,
3155 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3156 	printf("  MASK: ");
3157 	print_fdir_mask(&fdir_info.mask);
3158 	if (fdir_info.flex_conf.nb_payloads > 0) {
3159 		printf("  FLEX PAYLOAD SRC OFFSET:");
3160 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3161 	}
3162 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3163 		printf("  FLEX MASK CFG:");
3164 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3165 	}
3166 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3167 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3168 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3169 	       fdir_info.guarant_spc, fdir_info.best_spc);
3170 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3171 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3172 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3173 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3174 	       fdir_stat.collision, fdir_stat.free,
3175 	       fdir_stat.maxhash, fdir_stat.maxlen,
3176 	       fdir_stat.add, fdir_stat.remove,
3177 	       fdir_stat.f_add, fdir_stat.f_remove);
3178 	printf("  %s############################%s\n",
3179 	       fdir_stats_border, fdir_stats_border);
3180 }
3181 
3182 void
3183 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3184 {
3185 	struct rte_port *port;
3186 	struct rte_eth_fdir_flex_conf *flex_conf;
3187 	int i, idx = 0;
3188 
3189 	port = &ports[port_id];
3190 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3191 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3192 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3193 			idx = i;
3194 			break;
3195 		}
3196 	}
3197 	if (i >= RTE_ETH_FLOW_MAX) {
3198 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3199 			idx = flex_conf->nb_flexmasks;
3200 			flex_conf->nb_flexmasks++;
3201 		} else {
3202 			printf("The flex mask table is full. Can not set flex"
3203 				" mask for flow_type(%u).", cfg->flow_type);
3204 			return;
3205 		}
3206 	}
3207 	rte_memcpy(&flex_conf->flex_mask[idx],
3208 			 cfg,
3209 			 sizeof(struct rte_eth_fdir_flex_mask));
3210 }
3211 
3212 void
3213 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3214 {
3215 	struct rte_port *port;
3216 	struct rte_eth_fdir_flex_conf *flex_conf;
3217 	int i, idx = 0;
3218 
3219 	port = &ports[port_id];
3220 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3221 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3222 		if (cfg->type == flex_conf->flex_set[i].type) {
3223 			idx = i;
3224 			break;
3225 		}
3226 	}
3227 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3228 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3229 			idx = flex_conf->nb_payloads;
3230 			flex_conf->nb_payloads++;
3231 		} else {
3232 			printf("The flex payload table is full. Can not set"
3233 				" flex payload for type(%u).", cfg->type);
3234 			return;
3235 		}
3236 	}
3237 	rte_memcpy(&flex_conf->flex_set[idx],
3238 			 cfg,
3239 			 sizeof(struct rte_eth_flex_payload_cfg));
3240 
3241 }
3242 
3243 void
3244 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3245 {
3246 #ifdef RTE_LIBRTE_IXGBE_PMD
3247 	int diag;
3248 
3249 	if (is_rx)
3250 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3251 	else
3252 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3253 
3254 	if (diag == 0)
3255 		return;
3256 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3257 			is_rx ? "rx" : "tx", port_id, diag);
3258 	return;
3259 #endif
3260 	printf("VF %s setting not supported for port %d\n",
3261 			is_rx ? "Rx" : "Tx", port_id);
3262 	RTE_SET_USED(vf);
3263 	RTE_SET_USED(on);
3264 }
3265 
3266 int
3267 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3268 {
3269 	int diag;
3270 	struct rte_eth_link link;
3271 
3272 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3273 		return 1;
3274 	rte_eth_link_get_nowait(port_id, &link);
3275 	if (rate > link.link_speed) {
3276 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3277 			rate, link.link_speed);
3278 		return 1;
3279 	}
3280 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3281 	if (diag == 0)
3282 		return diag;
3283 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3284 		port_id, diag);
3285 	return diag;
3286 }
3287 
3288 int
3289 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3290 {
3291 	int diag = -ENOTSUP;
3292 
3293 	RTE_SET_USED(vf);
3294 	RTE_SET_USED(rate);
3295 	RTE_SET_USED(q_msk);
3296 
3297 #ifdef RTE_LIBRTE_IXGBE_PMD
3298 	if (diag == -ENOTSUP)
3299 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3300 						       q_msk);
3301 #endif
3302 #ifdef RTE_LIBRTE_BNXT_PMD
3303 	if (diag == -ENOTSUP)
3304 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3305 #endif
3306 	if (diag == 0)
3307 		return diag;
3308 
3309 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3310 		port_id, diag);
3311 	return diag;
3312 }
3313 
3314 /*
3315  * Functions to manage the set of filtered Multicast MAC addresses.
3316  *
3317  * A pool of filtered multicast MAC addresses is associated with each port.
3318  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3319  * The address of the pool and the number of valid multicast MAC addresses
3320  * recorded in the pool are stored in the fields "mc_addr_pool" and
3321  * "mc_addr_nb" of the "rte_port" data structure.
3322  *
3323  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3324  * to be supplied a contiguous array of multicast MAC addresses.
3325  * To comply with this constraint, the set of multicast addresses recorded
3326  * into the pool are systematically compacted at the beginning of the pool.
3327  * Hence, when a multicast address is removed from the pool, all following
3328  * addresses, if any, are copied back to keep the set contiguous.
3329  */
3330 #define MCAST_POOL_INC 32
3331 
3332 static int
3333 mcast_addr_pool_extend(struct rte_port *port)
3334 {
3335 	struct ether_addr *mc_pool;
3336 	size_t mc_pool_size;
3337 
3338 	/*
3339 	 * If a free entry is available at the end of the pool, just
3340 	 * increment the number of recorded multicast addresses.
3341 	 */
3342 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3343 		port->mc_addr_nb++;
3344 		return 0;
3345 	}
3346 
3347 	/*
3348 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3349 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3350 	 * of MCAST_POOL_INC.
3351 	 */
3352 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3353 						    MCAST_POOL_INC);
3354 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3355 						mc_pool_size);
3356 	if (mc_pool == NULL) {
3357 		printf("allocation of pool of %u multicast addresses failed\n",
3358 		       port->mc_addr_nb + MCAST_POOL_INC);
3359 		return -ENOMEM;
3360 	}
3361 
3362 	port->mc_addr_pool = mc_pool;
3363 	port->mc_addr_nb++;
3364 	return 0;
3365 
3366 }
3367 
3368 static void
3369 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3370 {
3371 	port->mc_addr_nb--;
3372 	if (addr_idx == port->mc_addr_nb) {
3373 		/* No need to recompact the set of multicast addressses. */
3374 		if (port->mc_addr_nb == 0) {
3375 			/* free the pool of multicast addresses. */
3376 			free(port->mc_addr_pool);
3377 			port->mc_addr_pool = NULL;
3378 		}
3379 		return;
3380 	}
3381 	memmove(&port->mc_addr_pool[addr_idx],
3382 		&port->mc_addr_pool[addr_idx + 1],
3383 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3384 }
3385 
3386 static void
3387 eth_port_multicast_addr_list_set(portid_t port_id)
3388 {
3389 	struct rte_port *port;
3390 	int diag;
3391 
3392 	port = &ports[port_id];
3393 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3394 					    port->mc_addr_nb);
3395 	if (diag == 0)
3396 		return;
3397 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3398 	       port->mc_addr_nb, port_id, -diag);
3399 }
3400 
3401 void
3402 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3403 {
3404 	struct rte_port *port;
3405 	uint32_t i;
3406 
3407 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3408 		return;
3409 
3410 	port = &ports[port_id];
3411 
3412 	/*
3413 	 * Check that the added multicast MAC address is not already recorded
3414 	 * in the pool of multicast addresses.
3415 	 */
3416 	for (i = 0; i < port->mc_addr_nb; i++) {
3417 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3418 			printf("multicast address already filtered by port\n");
3419 			return;
3420 		}
3421 	}
3422 
3423 	if (mcast_addr_pool_extend(port) != 0)
3424 		return;
3425 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3426 	eth_port_multicast_addr_list_set(port_id);
3427 }
3428 
3429 void
3430 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3431 {
3432 	struct rte_port *port;
3433 	uint32_t i;
3434 
3435 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3436 		return;
3437 
3438 	port = &ports[port_id];
3439 
3440 	/*
3441 	 * Search the pool of multicast MAC addresses for the removed address.
3442 	 */
3443 	for (i = 0; i < port->mc_addr_nb; i++) {
3444 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3445 			break;
3446 	}
3447 	if (i == port->mc_addr_nb) {
3448 		printf("multicast address not filtered by port %d\n", port_id);
3449 		return;
3450 	}
3451 
3452 	mcast_addr_pool_remove(port, i);
3453 	eth_port_multicast_addr_list_set(port_id);
3454 }
3455 
3456 void
3457 port_dcb_info_display(portid_t port_id)
3458 {
3459 	struct rte_eth_dcb_info dcb_info;
3460 	uint16_t i;
3461 	int ret;
3462 	static const char *border = "================";
3463 
3464 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3465 		return;
3466 
3467 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3468 	if (ret) {
3469 		printf("\n Failed to get dcb infos on port %-2d\n",
3470 			port_id);
3471 		return;
3472 	}
3473 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3474 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3475 	printf("\n  TC :        ");
3476 	for (i = 0; i < dcb_info.nb_tcs; i++)
3477 		printf("\t%4d", i);
3478 	printf("\n  Priority :  ");
3479 	for (i = 0; i < dcb_info.nb_tcs; i++)
3480 		printf("\t%4d", dcb_info.prio_tc[i]);
3481 	printf("\n  BW percent :");
3482 	for (i = 0; i < dcb_info.nb_tcs; i++)
3483 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3484 	printf("\n  RXQ base :  ");
3485 	for (i = 0; i < dcb_info.nb_tcs; i++)
3486 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3487 	printf("\n  RXQ number :");
3488 	for (i = 0; i < dcb_info.nb_tcs; i++)
3489 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3490 	printf("\n  TXQ base :  ");
3491 	for (i = 0; i < dcb_info.nb_tcs; i++)
3492 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3493 	printf("\n  TXQ number :");
3494 	for (i = 0; i < dcb_info.nb_tcs; i++)
3495 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3496 	printf("\n");
3497 }
3498 
3499 uint8_t *
3500 open_file(const char *file_path, uint32_t *size)
3501 {
3502 	int fd = open(file_path, O_RDONLY);
3503 	off_t pkg_size;
3504 	uint8_t *buf = NULL;
3505 	int ret = 0;
3506 	struct stat st_buf;
3507 
3508 	if (size)
3509 		*size = 0;
3510 
3511 	if (fd == -1) {
3512 		printf("%s: Failed to open %s\n", __func__, file_path);
3513 		return buf;
3514 	}
3515 
3516 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3517 		close(fd);
3518 		printf("%s: File operations failed\n", __func__);
3519 		return buf;
3520 	}
3521 
3522 	pkg_size = st_buf.st_size;
3523 	if (pkg_size < 0) {
3524 		close(fd);
3525 		printf("%s: File operations failed\n", __func__);
3526 		return buf;
3527 	}
3528 
3529 	buf = (uint8_t *)malloc(pkg_size);
3530 	if (!buf) {
3531 		close(fd);
3532 		printf("%s: Failed to malloc memory\n",	__func__);
3533 		return buf;
3534 	}
3535 
3536 	ret = read(fd, buf, pkg_size);
3537 	if (ret < 0) {
3538 		close(fd);
3539 		printf("%s: File read operation failed\n", __func__);
3540 		close_file(buf);
3541 		return NULL;
3542 	}
3543 
3544 	if (size)
3545 		*size = pkg_size;
3546 
3547 	close(fd);
3548 
3549 	return buf;
3550 }
3551 
3552 int
3553 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3554 {
3555 	FILE *fh = fopen(file_path, "wb");
3556 
3557 	if (fh == NULL) {
3558 		printf("%s: Failed to open %s\n", __func__, file_path);
3559 		return -1;
3560 	}
3561 
3562 	if (fwrite(buf, 1, size, fh) != size) {
3563 		fclose(fh);
3564 		printf("%s: File write operation failed\n", __func__);
3565 		return -1;
3566 	}
3567 
3568 	fclose(fh);
3569 
3570 	return 0;
3571 }
3572 
3573 int
3574 close_file(uint8_t *buf)
3575 {
3576 	if (buf) {
3577 		free((void *)buf);
3578 		return 0;
3579 	}
3580 
3581 	return -1;
3582 }
3583 
3584 void
3585 port_queue_region_info_display(portid_t port_id, void *buf)
3586 {
3587 #ifdef RTE_LIBRTE_I40E_PMD
3588 	uint16_t i, j;
3589 	struct rte_pmd_i40e_queue_regions *info =
3590 		(struct rte_pmd_i40e_queue_regions *)buf;
3591 	static const char *queue_region_info_stats_border = "-------";
3592 
3593 	if (!info->queue_region_number)
3594 		printf("there is no region has been set before");
3595 
3596 	printf("\n	%s All queue region info for port=%2d %s",
3597 			queue_region_info_stats_border, port_id,
3598 			queue_region_info_stats_border);
3599 	printf("\n	queue_region_number: %-14u \n",
3600 			info->queue_region_number);
3601 
3602 	for (i = 0; i < info->queue_region_number; i++) {
3603 		printf("\n	region_id: %-14u queue_number: %-14u "
3604 			"queue_start_index: %-14u \n",
3605 			info->region[i].region_id,
3606 			info->region[i].queue_num,
3607 			info->region[i].queue_start_index);
3608 
3609 		printf("  user_priority_num is	%-14u :",
3610 					info->region[i].user_priority_num);
3611 		for (j = 0; j < info->region[i].user_priority_num; j++)
3612 			printf(" %-14u ", info->region[i].user_priority[j]);
3613 
3614 		printf("\n	flowtype_num is  %-14u :",
3615 				info->region[i].flowtype_num);
3616 		for (j = 0; j < info->region[i].flowtype_num; j++)
3617 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3618 	}
3619 #else
3620 	RTE_SET_USED(port_id);
3621 	RTE_SET_USED(buf);
3622 #endif
3623 
3624 	printf("\n\n");
3625 }
3626