xref: /dpdk/app/test-pmd/config.c (revision 49781e37e78a1be538e498233b84a2b0e644b5eb)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 struct rss_type_info {
77 	char str[32];
78 	uint64_t rss_type;
79 };
80 
81 static const struct rss_type_info rss_type_table[] = {
82 	{ "ipv4", ETH_RSS_IPV4 },
83 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
84 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
85 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
86 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
87 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
88 	{ "ipv6", ETH_RSS_IPV6 },
89 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
90 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
91 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
92 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
93 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
94 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
95 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
96 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
97 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
98 	{ "port", ETH_RSS_PORT },
99 	{ "vxlan", ETH_RSS_VXLAN },
100 	{ "geneve", ETH_RSS_GENEVE },
101 	{ "nvgre", ETH_RSS_NVGRE },
102 
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 	portid_t pid;
125 
126 	static const char *nic_stats_border = "########################";
127 
128 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129 		printf("Valid port range is [0");
130 		RTE_ETH_FOREACH_DEV(pid)
131 			printf(", %d", pid);
132 		printf("]\n");
133 		return;
134 	}
135 	rte_eth_stats_get(port_id, &stats);
136 	printf("\n  %s NIC statistics for port %-2d %s\n",
137 	       nic_stats_border, port_id, nic_stats_border);
138 
139 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141 		       "%-"PRIu64"\n",
142 		       stats.ipackets, stats.imissed, stats.ibytes);
143 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144 		printf("  RX-nombuf:  %-10"PRIu64"\n",
145 		       stats.rx_nombuf);
146 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147 		       "%-"PRIu64"\n",
148 		       stats.opackets, stats.oerrors, stats.obytes);
149 	}
150 	else {
151 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152 		       "    RX-bytes: %10"PRIu64"\n",
153 		       stats.ipackets, stats.ierrors, stats.ibytes);
154 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155 		printf("  RX-nombuf:               %10"PRIu64"\n",
156 		       stats.rx_nombuf);
157 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158 		       "    TX-bytes: %10"PRIu64"\n",
159 		       stats.opackets, stats.oerrors, stats.obytes);
160 	}
161 
162 	if (port->rx_queue_stats_mapping_enabled) {
163 		printf("\n");
164 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165 			printf("  Stats reg %2d RX-packets: %10"PRIu64
166 			       "    RX-errors: %10"PRIu64
167 			       "    RX-bytes: %10"PRIu64"\n",
168 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169 		}
170 	}
171 	if (port->tx_queue_stats_mapping_enabled) {
172 		printf("\n");
173 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174 			printf("  Stats reg %2d TX-packets: %10"PRIu64
175 			       "                             TX-bytes: %10"PRIu64"\n",
176 			       i, stats.q_opackets[i], stats.q_obytes[i]);
177 		}
178 	}
179 
180 	diff_cycles = prev_cycles[port_id];
181 	prev_cycles[port_id] = rte_rdtsc();
182 	if (diff_cycles > 0)
183 		diff_cycles = prev_cycles[port_id] - diff_cycles;
184 
185 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
187 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
189 	prev_pkts_rx[port_id] = stats.ipackets;
190 	prev_pkts_tx[port_id] = stats.opackets;
191 	mpps_rx = diff_cycles > 0 ?
192 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193 	mpps_tx = diff_cycles > 0 ?
194 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195 	printf("\n  Throughput (since last show)\n");
196 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197 			mpps_rx, mpps_tx);
198 
199 	printf("  %s############################%s\n",
200 	       nic_stats_border, nic_stats_border);
201 }
202 
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206 	portid_t pid;
207 
208 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209 		printf("Valid port range is [0");
210 		RTE_ETH_FOREACH_DEV(pid)
211 			printf(", %d", pid);
212 		printf("]\n");
213 		return;
214 	}
215 	rte_eth_stats_reset(port_id);
216 	printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218 
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222 	struct rte_eth_xstat *xstats;
223 	int cnt_xstats, idx_xstat;
224 	struct rte_eth_xstat_name *xstats_names;
225 
226 	printf("###### NIC extended statistics for port %-2d\n", port_id);
227 	if (!rte_eth_dev_is_valid_port(port_id)) {
228 		printf("Error: Invalid port number %i\n", port_id);
229 		return;
230 	}
231 
232 	/* Get count */
233 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234 	if (cnt_xstats  < 0) {
235 		printf("Error: Cannot get count of xstats\n");
236 		return;
237 	}
238 
239 	/* Get id-name lookup table */
240 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241 	if (xstats_names == NULL) {
242 		printf("Cannot allocate memory for xstats lookup\n");
243 		return;
244 	}
245 	if (cnt_xstats != rte_eth_xstats_get_names(
246 			port_id, xstats_names, cnt_xstats)) {
247 		printf("Error: Cannot get xstats lookup\n");
248 		free(xstats_names);
249 		return;
250 	}
251 
252 	/* Get stats themselves */
253 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254 	if (xstats == NULL) {
255 		printf("Cannot allocate memory for xstats\n");
256 		free(xstats_names);
257 		return;
258 	}
259 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260 		printf("Error: Unable to get xstats\n");
261 		free(xstats_names);
262 		free(xstats);
263 		return;
264 	}
265 
266 	/* Display xstats */
267 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268 		if (xstats_hide_zero && !xstats[idx_xstat].value)
269 			continue;
270 		printf("%s: %"PRIu64"\n",
271 			xstats_names[idx_xstat].name,
272 			xstats[idx_xstat].value);
273 	}
274 	free(xstats_names);
275 	free(xstats);
276 }
277 
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281 	rte_eth_xstats_reset(port_id);
282 }
283 
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287 	struct rte_port *port = &ports[port_id];
288 	uint16_t i;
289 	portid_t pid;
290 
291 	static const char *nic_stats_mapping_border = "########################";
292 
293 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294 		printf("Valid port range is [0");
295 		RTE_ETH_FOREACH_DEV(pid)
296 			printf(", %d", pid);
297 		printf("]\n");
298 		return;
299 	}
300 
301 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302 		printf("Port id %d - either does not support queue statistic mapping or"
303 		       " no queue statistic mapping set\n", port_id);
304 		return;
305 	}
306 
307 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309 
310 	if (port->rx_queue_stats_mapping_enabled) {
311 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312 			if (rx_queue_stats_mappings[i].port_id == port_id) {
313 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314 				       rx_queue_stats_mappings[i].queue_id,
315 				       rx_queue_stats_mappings[i].stats_counter_id);
316 			}
317 		}
318 		printf("\n");
319 	}
320 
321 
322 	if (port->tx_queue_stats_mapping_enabled) {
323 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324 			if (tx_queue_stats_mappings[i].port_id == port_id) {
325 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326 				       tx_queue_stats_mappings[i].queue_id,
327 				       tx_queue_stats_mappings[i].stats_counter_id);
328 			}
329 		}
330 	}
331 
332 	printf("  %s####################################%s\n",
333 	       nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335 
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339 	struct rte_eth_rxq_info qinfo;
340 	int32_t rc;
341 	static const char *info_border = "*********************";
342 
343 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344 	if (rc != 0) {
345 		printf("Failed to retrieve information for port: %u, "
346 			"RX queue: %hu\nerror desc: %s(%d)\n",
347 			port_id, queue_id, strerror(-rc), rc);
348 		return;
349 	}
350 
351 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352 	       info_border, port_id, queue_id, info_border);
353 
354 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359 	printf("\nRX drop packets: %s",
360 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361 	printf("\nRX deferred start: %s",
362 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363 	printf("\nRX scattered packets: %s",
364 		(qinfo.scattered_rx != 0) ? "on" : "off");
365 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366 	printf("\n");
367 }
368 
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372 	struct rte_eth_txq_info qinfo;
373 	int32_t rc;
374 	static const char *info_border = "*********************";
375 
376 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377 	if (rc != 0) {
378 		printf("Failed to retrieve information for port: %u, "
379 			"TX queue: %hu\nerror desc: %s(%d)\n",
380 			port_id, queue_id, strerror(-rc), rc);
381 		return;
382 	}
383 
384 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385 	       info_border, port_id, queue_id, info_border);
386 
387 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392 	printf("\nTX deferred start: %s",
393 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 port_infos_display(portid_t port_id)
400 {
401 	struct rte_port *port;
402 	struct ether_addr mac_addr;
403 	struct rte_eth_link link;
404 	struct rte_eth_dev_info dev_info;
405 	int vlan_offload;
406 	struct rte_mempool * mp;
407 	static const char *info_border = "*********************";
408 	portid_t pid;
409 	uint16_t mtu;
410 
411 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412 		printf("Valid port range is [0");
413 		RTE_ETH_FOREACH_DEV(pid)
414 			printf(", %d", pid);
415 		printf("]\n");
416 		return;
417 	}
418 	port = &ports[port_id];
419 	rte_eth_link_get_nowait(port_id, &link);
420 	memset(&dev_info, 0, sizeof(dev_info));
421 	rte_eth_dev_info_get(port_id, &dev_info);
422 	printf("\n%s Infos for port %-2d %s\n",
423 	       info_border, port_id, info_border);
424 	rte_eth_macaddr_get(port_id, &mac_addr);
425 	print_ethaddr("MAC address: ", &mac_addr);
426 	printf("\nDriver name: %s", dev_info.driver_name);
427 	printf("\nConnect to socket: %u", port->socket_id);
428 
429 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
430 		mp = mbuf_pool_find(port_numa[port_id]);
431 		if (mp)
432 			printf("\nmemory allocation on the socket: %d",
433 							port_numa[port_id]);
434 	} else
435 		printf("\nmemory allocation on the socket: %u",port->socket_id);
436 
437 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440 	       ("full-duplex") : ("half-duplex"));
441 
442 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
443 		printf("MTU: %u\n", mtu);
444 
445 	printf("Promiscuous mode: %s\n",
446 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447 	printf("Allmulticast mode: %s\n",
448 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449 	printf("Maximum number of MAC addresses: %u\n",
450 	       (unsigned int)(port->dev_info.max_mac_addrs));
451 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
452 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
453 
454 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455 	if (vlan_offload >= 0){
456 		printf("VLAN offload: \n");
457 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458 			printf("  strip on \n");
459 		else
460 			printf("  strip off \n");
461 
462 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463 			printf("  filter on \n");
464 		else
465 			printf("  filter off \n");
466 
467 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468 			printf("  qinq(extend) on \n");
469 		else
470 			printf("  qinq(extend) off \n");
471 	}
472 
473 	if (dev_info.hash_key_size > 0)
474 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475 	if (dev_info.reta_size > 0)
476 		printf("Redirection table size: %u\n", dev_info.reta_size);
477 	if (!dev_info.flow_type_rss_offloads)
478 		printf("No flow type is supported.\n");
479 	else {
480 		uint16_t i;
481 		char *p;
482 
483 		printf("Supported flow types:\n");
484 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487 				continue;
488 			p = flowtype_to_str(i);
489 			if (p)
490 				printf("  %s\n", p);
491 			else
492 				printf("  user defined %d\n", i);
493 		}
494 	}
495 
496 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497 	printf("Maximum configurable length of RX packet: %u\n",
498 		dev_info.max_rx_pktlen);
499 	if (dev_info.max_vfs)
500 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501 	if (dev_info.max_vmdq_pools)
502 		printf("Maximum number of VMDq pools: %u\n",
503 			dev_info.max_vmdq_pools);
504 
505 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507 	printf("Max possible number of RXDs per queue: %hu\n",
508 		dev_info.rx_desc_lim.nb_max);
509 	printf("Min possible number of RXDs per queue: %hu\n",
510 		dev_info.rx_desc_lim.nb_min);
511 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512 
513 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515 	printf("Max possible number of TXDs per queue: %hu\n",
516 		dev_info.tx_desc_lim.nb_max);
517 	printf("Min possible number of TXDs per queue: %hu\n",
518 		dev_info.tx_desc_lim.nb_min);
519 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521 
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525 	struct rte_eth_dev_info dev_info;
526 	static const char *info_border = "************";
527 
528 	if (port_id_is_invalid(port_id, ENABLED_WARN))
529 		return;
530 
531 	rte_eth_dev_info_get(port_id, &dev_info);
532 
533 	printf("\n%s Port %d supported offload features: %s\n",
534 		info_border, port_id, info_border);
535 
536 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537 		printf("VLAN stripped:                 ");
538 		if (ports[port_id].dev_conf.rxmode.offloads &
539 		    DEV_RX_OFFLOAD_VLAN_STRIP)
540 			printf("on\n");
541 		else
542 			printf("off\n");
543 	}
544 
545 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546 		printf("Double VLANs stripped:         ");
547 		if (ports[port_id].dev_conf.rxmode.offloads &
548 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
549 			printf("on\n");
550 		else
551 			printf("off\n");
552 	}
553 
554 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555 		printf("RX IPv4 checksum:              ");
556 		if (ports[port_id].dev_conf.rxmode.offloads &
557 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
558 			printf("on\n");
559 		else
560 			printf("off\n");
561 	}
562 
563 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564 		printf("RX UDP checksum:               ");
565 		if (ports[port_id].dev_conf.rxmode.offloads &
566 		    DEV_RX_OFFLOAD_UDP_CKSUM)
567 			printf("on\n");
568 		else
569 			printf("off\n");
570 	}
571 
572 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573 		printf("RX TCP checksum:               ");
574 		if (ports[port_id].dev_conf.rxmode.offloads &
575 		    DEV_RX_OFFLOAD_TCP_CKSUM)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582 		printf("RX Outer IPv4 checksum:               ");
583 		if (ports[port_id].dev_conf.rxmode.offloads &
584 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585 			printf("on\n");
586 		else
587 			printf("off\n");
588 	}
589 
590 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591 		printf("Large receive offload:         ");
592 		if (ports[port_id].dev_conf.rxmode.offloads &
593 		    DEV_RX_OFFLOAD_TCP_LRO)
594 			printf("on\n");
595 		else
596 			printf("off\n");
597 	}
598 
599 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600 		printf("VLAN insert:                   ");
601 		if (ports[port_id].dev_conf.txmode.offloads &
602 		    DEV_TX_OFFLOAD_VLAN_INSERT)
603 			printf("on\n");
604 		else
605 			printf("off\n");
606 	}
607 
608 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609 		printf("HW timestamp:                  ");
610 		if (ports[port_id].dev_conf.rxmode.offloads &
611 		    DEV_RX_OFFLOAD_TIMESTAMP)
612 			printf("on\n");
613 		else
614 			printf("off\n");
615 	}
616 
617 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618 		printf("Double VLANs insert:           ");
619 		if (ports[port_id].dev_conf.txmode.offloads &
620 		    DEV_TX_OFFLOAD_QINQ_INSERT)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627 		printf("TX IPv4 checksum:              ");
628 		if (ports[port_id].dev_conf.txmode.offloads &
629 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
630 			printf("on\n");
631 		else
632 			printf("off\n");
633 	}
634 
635 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636 		printf("TX UDP checksum:               ");
637 		if (ports[port_id].dev_conf.txmode.offloads &
638 		    DEV_TX_OFFLOAD_UDP_CKSUM)
639 			printf("on\n");
640 		else
641 			printf("off\n");
642 	}
643 
644 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645 		printf("TX TCP checksum:               ");
646 		if (ports[port_id].dev_conf.txmode.offloads &
647 		    DEV_TX_OFFLOAD_TCP_CKSUM)
648 			printf("on\n");
649 		else
650 			printf("off\n");
651 	}
652 
653 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654 		printf("TX SCTP checksum:              ");
655 		if (ports[port_id].dev_conf.txmode.offloads &
656 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
657 			printf("on\n");
658 		else
659 			printf("off\n");
660 	}
661 
662 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663 		printf("TX Outer IPv4 checksum:        ");
664 		if (ports[port_id].dev_conf.txmode.offloads &
665 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666 			printf("on\n");
667 		else
668 			printf("off\n");
669 	}
670 
671 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672 		printf("TX TCP segmentation:           ");
673 		if (ports[port_id].dev_conf.txmode.offloads &
674 		    DEV_TX_OFFLOAD_TCP_TSO)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].dev_conf.txmode.offloads &
683 		    DEV_TX_OFFLOAD_UDP_TSO)
684 			printf("on\n");
685 		else
686 			printf("off\n");
687 	}
688 
689 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690 		printf("TSO for VXLAN tunnel packet:   ");
691 		if (ports[port_id].dev_conf.txmode.offloads &
692 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693 			printf("on\n");
694 		else
695 			printf("off\n");
696 	}
697 
698 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699 		printf("TSO for GRE tunnel packet:     ");
700 		if (ports[port_id].dev_conf.txmode.offloads &
701 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
702 			printf("on\n");
703 		else
704 			printf("off\n");
705 	}
706 
707 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708 		printf("TSO for IPIP tunnel packet:    ");
709 		if (ports[port_id].dev_conf.txmode.offloads &
710 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711 			printf("on\n");
712 		else
713 			printf("off\n");
714 	}
715 
716 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717 		printf("TSO for GENEVE tunnel packet:  ");
718 		if (ports[port_id].dev_conf.txmode.offloads &
719 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720 			printf("on\n");
721 		else
722 			printf("off\n");
723 	}
724 
725 }
726 
727 int
728 port_id_is_invalid(portid_t port_id, enum print_warning warning)
729 {
730 	uint16_t pid;
731 
732 	if (port_id == (portid_t)RTE_PORT_ALL)
733 		return 0;
734 
735 	RTE_ETH_FOREACH_DEV(pid)
736 		if (port_id == pid)
737 			return 0;
738 
739 	if (warning == ENABLED_WARN)
740 		printf("Invalid port %d\n", port_id);
741 
742 	return 1;
743 }
744 
745 static int
746 vlan_id_is_invalid(uint16_t vlan_id)
747 {
748 	if (vlan_id < 4096)
749 		return 0;
750 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
751 	return 1;
752 }
753 
754 static int
755 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
756 {
757 	const struct rte_pci_device *pci_dev;
758 	const struct rte_bus *bus;
759 	uint64_t pci_len;
760 
761 	if (reg_off & 0x3) {
762 		printf("Port register offset 0x%X not aligned on a 4-byte "
763 		       "boundary\n",
764 		       (unsigned)reg_off);
765 		return 1;
766 	}
767 
768 	if (!ports[port_id].dev_info.device) {
769 		printf("Invalid device\n");
770 		return 0;
771 	}
772 
773 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
774 	if (bus && !strcmp(bus->name, "pci")) {
775 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
776 	} else {
777 		printf("Not a PCI device\n");
778 		return 1;
779 	}
780 
781 	pci_len = pci_dev->mem_resource[0].len;
782 	if (reg_off >= pci_len) {
783 		printf("Port %d: register offset %u (0x%X) out of port PCI "
784 		       "resource (length=%"PRIu64")\n",
785 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
786 		return 1;
787 	}
788 	return 0;
789 }
790 
791 static int
792 reg_bit_pos_is_invalid(uint8_t bit_pos)
793 {
794 	if (bit_pos <= 31)
795 		return 0;
796 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
797 	return 1;
798 }
799 
800 #define display_port_and_reg_off(port_id, reg_off) \
801 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
802 
803 static inline void
804 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
805 {
806 	display_port_and_reg_off(port_id, (unsigned)reg_off);
807 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
808 }
809 
810 void
811 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
812 {
813 	uint32_t reg_v;
814 
815 
816 	if (port_id_is_invalid(port_id, ENABLED_WARN))
817 		return;
818 	if (port_reg_off_is_invalid(port_id, reg_off))
819 		return;
820 	if (reg_bit_pos_is_invalid(bit_x))
821 		return;
822 	reg_v = port_id_pci_reg_read(port_id, reg_off);
823 	display_port_and_reg_off(port_id, (unsigned)reg_off);
824 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
825 }
826 
827 void
828 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
829 			   uint8_t bit1_pos, uint8_t bit2_pos)
830 {
831 	uint32_t reg_v;
832 	uint8_t  l_bit;
833 	uint8_t  h_bit;
834 
835 	if (port_id_is_invalid(port_id, ENABLED_WARN))
836 		return;
837 	if (port_reg_off_is_invalid(port_id, reg_off))
838 		return;
839 	if (reg_bit_pos_is_invalid(bit1_pos))
840 		return;
841 	if (reg_bit_pos_is_invalid(bit2_pos))
842 		return;
843 	if (bit1_pos > bit2_pos)
844 		l_bit = bit2_pos, h_bit = bit1_pos;
845 	else
846 		l_bit = bit1_pos, h_bit = bit2_pos;
847 
848 	reg_v = port_id_pci_reg_read(port_id, reg_off);
849 	reg_v >>= l_bit;
850 	if (h_bit < 31)
851 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
852 	display_port_and_reg_off(port_id, (unsigned)reg_off);
853 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
854 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
855 }
856 
857 void
858 port_reg_display(portid_t port_id, uint32_t reg_off)
859 {
860 	uint32_t reg_v;
861 
862 	if (port_id_is_invalid(port_id, ENABLED_WARN))
863 		return;
864 	if (port_reg_off_is_invalid(port_id, reg_off))
865 		return;
866 	reg_v = port_id_pci_reg_read(port_id, reg_off);
867 	display_port_reg_value(port_id, reg_off, reg_v);
868 }
869 
870 void
871 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
872 		 uint8_t bit_v)
873 {
874 	uint32_t reg_v;
875 
876 	if (port_id_is_invalid(port_id, ENABLED_WARN))
877 		return;
878 	if (port_reg_off_is_invalid(port_id, reg_off))
879 		return;
880 	if (reg_bit_pos_is_invalid(bit_pos))
881 		return;
882 	if (bit_v > 1) {
883 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
884 		return;
885 	}
886 	reg_v = port_id_pci_reg_read(port_id, reg_off);
887 	if (bit_v == 0)
888 		reg_v &= ~(1 << bit_pos);
889 	else
890 		reg_v |= (1 << bit_pos);
891 	port_id_pci_reg_write(port_id, reg_off, reg_v);
892 	display_port_reg_value(port_id, reg_off, reg_v);
893 }
894 
895 void
896 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
897 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
898 {
899 	uint32_t max_v;
900 	uint32_t reg_v;
901 	uint8_t  l_bit;
902 	uint8_t  h_bit;
903 
904 	if (port_id_is_invalid(port_id, ENABLED_WARN))
905 		return;
906 	if (port_reg_off_is_invalid(port_id, reg_off))
907 		return;
908 	if (reg_bit_pos_is_invalid(bit1_pos))
909 		return;
910 	if (reg_bit_pos_is_invalid(bit2_pos))
911 		return;
912 	if (bit1_pos > bit2_pos)
913 		l_bit = bit2_pos, h_bit = bit1_pos;
914 	else
915 		l_bit = bit1_pos, h_bit = bit2_pos;
916 
917 	if ((h_bit - l_bit) < 31)
918 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
919 	else
920 		max_v = 0xFFFFFFFF;
921 
922 	if (value > max_v) {
923 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
924 				(unsigned)value, (unsigned)value,
925 				(unsigned)max_v, (unsigned)max_v);
926 		return;
927 	}
928 	reg_v = port_id_pci_reg_read(port_id, reg_off);
929 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
930 	reg_v |= (value << l_bit); /* Set changed bits */
931 	port_id_pci_reg_write(port_id, reg_off, reg_v);
932 	display_port_reg_value(port_id, reg_off, reg_v);
933 }
934 
935 void
936 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
937 {
938 	if (port_id_is_invalid(port_id, ENABLED_WARN))
939 		return;
940 	if (port_reg_off_is_invalid(port_id, reg_off))
941 		return;
942 	port_id_pci_reg_write(port_id, reg_off, reg_v);
943 	display_port_reg_value(port_id, reg_off, reg_v);
944 }
945 
946 void
947 port_mtu_set(portid_t port_id, uint16_t mtu)
948 {
949 	int diag;
950 
951 	if (port_id_is_invalid(port_id, ENABLED_WARN))
952 		return;
953 	diag = rte_eth_dev_set_mtu(port_id, mtu);
954 	if (diag == 0)
955 		return;
956 	printf("Set MTU failed. diag=%d\n", diag);
957 }
958 
959 /* Generic flow management functions. */
960 
961 /** Generate flow_item[] entry. */
962 #define MK_FLOW_ITEM(t, s) \
963 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
964 		.name = # t, \
965 		.size = s, \
966 	}
967 
968 /** Information about known flow pattern items. */
969 static const struct {
970 	const char *name;
971 	size_t size;
972 } flow_item[] = {
973 	MK_FLOW_ITEM(END, 0),
974 	MK_FLOW_ITEM(VOID, 0),
975 	MK_FLOW_ITEM(INVERT, 0),
976 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
977 	MK_FLOW_ITEM(PF, 0),
978 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
979 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
980 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
981 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
982 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
983 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
984 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
985 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
986 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
987 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
988 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
989 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
990 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
991 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
992 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
993 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
994 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
995 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
996 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
997 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
998 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
999 };
1000 
1001 /** Compute storage space needed by item specification. */
1002 static void
1003 flow_item_spec_size(const struct rte_flow_item *item,
1004 		    size_t *size, size_t *pad)
1005 {
1006 	if (!item->spec) {
1007 		*size = 0;
1008 		goto empty;
1009 	}
1010 	switch (item->type) {
1011 		union {
1012 			const struct rte_flow_item_raw *raw;
1013 		} spec;
1014 
1015 	case RTE_FLOW_ITEM_TYPE_RAW:
1016 		spec.raw = item->spec;
1017 		*size = offsetof(struct rte_flow_item_raw, pattern) +
1018 			spec.raw->length * sizeof(*spec.raw->pattern);
1019 		break;
1020 	default:
1021 		*size = flow_item[item->type].size;
1022 		break;
1023 	}
1024 empty:
1025 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1026 }
1027 
1028 /** Generate flow_action[] entry. */
1029 #define MK_FLOW_ACTION(t, s) \
1030 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1031 		.name = # t, \
1032 		.size = s, \
1033 	}
1034 
1035 /** Information about known flow actions. */
1036 static const struct {
1037 	const char *name;
1038 	size_t size;
1039 } flow_action[] = {
1040 	MK_FLOW_ACTION(END, 0),
1041 	MK_FLOW_ACTION(VOID, 0),
1042 	MK_FLOW_ACTION(PASSTHRU, 0),
1043 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1044 	MK_FLOW_ACTION(FLAG, 0),
1045 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1046 	MK_FLOW_ACTION(DROP, 0),
1047 	MK_FLOW_ACTION(COUNT, 0),
1048 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1049 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1050 	MK_FLOW_ACTION(PF, 0),
1051 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1052 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1053 };
1054 
1055 /** Compute storage space needed by action configuration. */
1056 static void
1057 flow_action_conf_size(const struct rte_flow_action *action,
1058 		      size_t *size, size_t *pad)
1059 {
1060 	if (!action->conf) {
1061 		*size = 0;
1062 		goto empty;
1063 	}
1064 	switch (action->type) {
1065 		union {
1066 			const struct rte_flow_action_rss *rss;
1067 		} conf;
1068 
1069 	case RTE_FLOW_ACTION_TYPE_RSS:
1070 		conf.rss = action->conf;
1071 		*size = offsetof(struct rte_flow_action_rss, queue) +
1072 			conf.rss->num * sizeof(*conf.rss->queue);
1073 		break;
1074 	default:
1075 		*size = flow_action[action->type].size;
1076 		break;
1077 	}
1078 empty:
1079 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1080 }
1081 
1082 /** Generate a port_flow entry from attributes/pattern/actions. */
1083 static struct port_flow *
1084 port_flow_new(const struct rte_flow_attr *attr,
1085 	      const struct rte_flow_item *pattern,
1086 	      const struct rte_flow_action *actions)
1087 {
1088 	const struct rte_flow_item *item;
1089 	const struct rte_flow_action *action;
1090 	struct port_flow *pf = NULL;
1091 	size_t tmp;
1092 	size_t pad;
1093 	size_t off1 = 0;
1094 	size_t off2 = 0;
1095 	int err = ENOTSUP;
1096 
1097 store:
1098 	item = pattern;
1099 	if (pf)
1100 		pf->pattern = (void *)&pf->data[off1];
1101 	do {
1102 		struct rte_flow_item *dst = NULL;
1103 
1104 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1105 		    !flow_item[item->type].name)
1106 			goto notsup;
1107 		if (pf)
1108 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1109 		off1 += sizeof(*item);
1110 		flow_item_spec_size(item, &tmp, &pad);
1111 		if (item->spec) {
1112 			if (pf)
1113 				dst->spec = memcpy(pf->data + off2,
1114 						   item->spec, tmp);
1115 			off2 += tmp + pad;
1116 		}
1117 		if (item->last) {
1118 			if (pf)
1119 				dst->last = memcpy(pf->data + off2,
1120 						   item->last, tmp);
1121 			off2 += tmp + pad;
1122 		}
1123 		if (item->mask) {
1124 			if (pf)
1125 				dst->mask = memcpy(pf->data + off2,
1126 						   item->mask, tmp);
1127 			off2 += tmp + pad;
1128 		}
1129 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1130 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1131 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1132 	action = actions;
1133 	if (pf)
1134 		pf->actions = (void *)&pf->data[off1];
1135 	do {
1136 		struct rte_flow_action *dst = NULL;
1137 
1138 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1139 		    !flow_action[action->type].name)
1140 			goto notsup;
1141 		if (pf)
1142 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1143 		off1 += sizeof(*action);
1144 		flow_action_conf_size(action, &tmp, &pad);
1145 		if (action->conf) {
1146 			if (pf)
1147 				dst->conf = memcpy(pf->data + off2,
1148 						   action->conf, tmp);
1149 			off2 += tmp + pad;
1150 		}
1151 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1152 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1153 	if (pf != NULL)
1154 		return pf;
1155 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1156 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1157 	pf = calloc(1, tmp + off1 + off2);
1158 	if (pf == NULL)
1159 		err = errno;
1160 	else {
1161 		*pf = (const struct port_flow){
1162 			.size = tmp + off1 + off2,
1163 			.attr = *attr,
1164 		};
1165 		tmp -= offsetof(struct port_flow, data);
1166 		off2 = tmp + off1;
1167 		off1 = tmp;
1168 		goto store;
1169 	}
1170 notsup:
1171 	rte_errno = err;
1172 	return NULL;
1173 }
1174 
1175 /** Print a message out of a flow error. */
1176 static int
1177 port_flow_complain(struct rte_flow_error *error)
1178 {
1179 	static const char *const errstrlist[] = {
1180 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1181 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1182 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1183 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1184 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1185 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1186 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1187 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1188 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1189 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1190 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1191 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1192 	};
1193 	const char *errstr;
1194 	char buf[32];
1195 	int err = rte_errno;
1196 
1197 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1198 	    !errstrlist[error->type])
1199 		errstr = "unknown type";
1200 	else
1201 		errstr = errstrlist[error->type];
1202 	printf("Caught error type %d (%s): %s%s\n",
1203 	       error->type, errstr,
1204 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1205 					error->cause), buf) : "",
1206 	       error->message ? error->message : "(no stated reason)");
1207 	return -err;
1208 }
1209 
1210 /** Validate flow rule. */
1211 int
1212 port_flow_validate(portid_t port_id,
1213 		   const struct rte_flow_attr *attr,
1214 		   const struct rte_flow_item *pattern,
1215 		   const struct rte_flow_action *actions)
1216 {
1217 	struct rte_flow_error error;
1218 
1219 	/* Poisoning to make sure PMDs update it in case of error. */
1220 	memset(&error, 0x11, sizeof(error));
1221 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1222 		return port_flow_complain(&error);
1223 	printf("Flow rule validated\n");
1224 	return 0;
1225 }
1226 
1227 /** Create flow rule. */
1228 int
1229 port_flow_create(portid_t port_id,
1230 		 const struct rte_flow_attr *attr,
1231 		 const struct rte_flow_item *pattern,
1232 		 const struct rte_flow_action *actions)
1233 {
1234 	struct rte_flow *flow;
1235 	struct rte_port *port;
1236 	struct port_flow *pf;
1237 	uint32_t id;
1238 	struct rte_flow_error error;
1239 
1240 	/* Poisoning to make sure PMDs update it in case of error. */
1241 	memset(&error, 0x22, sizeof(error));
1242 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1243 	if (!flow)
1244 		return port_flow_complain(&error);
1245 	port = &ports[port_id];
1246 	if (port->flow_list) {
1247 		if (port->flow_list->id == UINT32_MAX) {
1248 			printf("Highest rule ID is already assigned, delete"
1249 			       " it first");
1250 			rte_flow_destroy(port_id, flow, NULL);
1251 			return -ENOMEM;
1252 		}
1253 		id = port->flow_list->id + 1;
1254 	} else
1255 		id = 0;
1256 	pf = port_flow_new(attr, pattern, actions);
1257 	if (!pf) {
1258 		int err = rte_errno;
1259 
1260 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1261 		rte_flow_destroy(port_id, flow, NULL);
1262 		return -err;
1263 	}
1264 	pf->next = port->flow_list;
1265 	pf->id = id;
1266 	pf->flow = flow;
1267 	port->flow_list = pf;
1268 	printf("Flow rule #%u created\n", pf->id);
1269 	return 0;
1270 }
1271 
1272 /** Destroy a number of flow rules. */
1273 int
1274 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1275 {
1276 	struct rte_port *port;
1277 	struct port_flow **tmp;
1278 	uint32_t c = 0;
1279 	int ret = 0;
1280 
1281 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1282 	    port_id == (portid_t)RTE_PORT_ALL)
1283 		return -EINVAL;
1284 	port = &ports[port_id];
1285 	tmp = &port->flow_list;
1286 	while (*tmp) {
1287 		uint32_t i;
1288 
1289 		for (i = 0; i != n; ++i) {
1290 			struct rte_flow_error error;
1291 			struct port_flow *pf = *tmp;
1292 
1293 			if (rule[i] != pf->id)
1294 				continue;
1295 			/*
1296 			 * Poisoning to make sure PMDs update it in case
1297 			 * of error.
1298 			 */
1299 			memset(&error, 0x33, sizeof(error));
1300 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1301 				ret = port_flow_complain(&error);
1302 				continue;
1303 			}
1304 			printf("Flow rule #%u destroyed\n", pf->id);
1305 			*tmp = pf->next;
1306 			free(pf);
1307 			break;
1308 		}
1309 		if (i == n)
1310 			tmp = &(*tmp)->next;
1311 		++c;
1312 	}
1313 	return ret;
1314 }
1315 
1316 /** Remove all flow rules. */
1317 int
1318 port_flow_flush(portid_t port_id)
1319 {
1320 	struct rte_flow_error error;
1321 	struct rte_port *port;
1322 	int ret = 0;
1323 
1324 	/* Poisoning to make sure PMDs update it in case of error. */
1325 	memset(&error, 0x44, sizeof(error));
1326 	if (rte_flow_flush(port_id, &error)) {
1327 		ret = port_flow_complain(&error);
1328 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1329 		    port_id == (portid_t)RTE_PORT_ALL)
1330 			return ret;
1331 	}
1332 	port = &ports[port_id];
1333 	while (port->flow_list) {
1334 		struct port_flow *pf = port->flow_list->next;
1335 
1336 		free(port->flow_list);
1337 		port->flow_list = pf;
1338 	}
1339 	return ret;
1340 }
1341 
1342 /** Query a flow rule. */
1343 int
1344 port_flow_query(portid_t port_id, uint32_t rule,
1345 		enum rte_flow_action_type action)
1346 {
1347 	struct rte_flow_error error;
1348 	struct rte_port *port;
1349 	struct port_flow *pf;
1350 	const char *name;
1351 	union {
1352 		struct rte_flow_query_count count;
1353 	} query;
1354 
1355 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1356 	    port_id == (portid_t)RTE_PORT_ALL)
1357 		return -EINVAL;
1358 	port = &ports[port_id];
1359 	for (pf = port->flow_list; pf; pf = pf->next)
1360 		if (pf->id == rule)
1361 			break;
1362 	if (!pf) {
1363 		printf("Flow rule #%u not found\n", rule);
1364 		return -ENOENT;
1365 	}
1366 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1367 	    !flow_action[action].name)
1368 		name = "unknown";
1369 	else
1370 		name = flow_action[action].name;
1371 	switch (action) {
1372 	case RTE_FLOW_ACTION_TYPE_COUNT:
1373 		break;
1374 	default:
1375 		printf("Cannot query action type %d (%s)\n", action, name);
1376 		return -ENOTSUP;
1377 	}
1378 	/* Poisoning to make sure PMDs update it in case of error. */
1379 	memset(&error, 0x55, sizeof(error));
1380 	memset(&query, 0, sizeof(query));
1381 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1382 		return port_flow_complain(&error);
1383 	switch (action) {
1384 	case RTE_FLOW_ACTION_TYPE_COUNT:
1385 		printf("%s:\n"
1386 		       " hits_set: %u\n"
1387 		       " bytes_set: %u\n"
1388 		       " hits: %" PRIu64 "\n"
1389 		       " bytes: %" PRIu64 "\n",
1390 		       name,
1391 		       query.count.hits_set,
1392 		       query.count.bytes_set,
1393 		       query.count.hits,
1394 		       query.count.bytes);
1395 		break;
1396 	default:
1397 		printf("Cannot display result for action type %d (%s)\n",
1398 		       action, name);
1399 		break;
1400 	}
1401 	return 0;
1402 }
1403 
1404 /** List flow rules. */
1405 void
1406 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1407 {
1408 	struct rte_port *port;
1409 	struct port_flow *pf;
1410 	struct port_flow *list = NULL;
1411 	uint32_t i;
1412 
1413 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1414 	    port_id == (portid_t)RTE_PORT_ALL)
1415 		return;
1416 	port = &ports[port_id];
1417 	if (!port->flow_list)
1418 		return;
1419 	/* Sort flows by group, priority and ID. */
1420 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1421 		struct port_flow **tmp;
1422 
1423 		if (n) {
1424 			/* Filter out unwanted groups. */
1425 			for (i = 0; i != n; ++i)
1426 				if (pf->attr.group == group[i])
1427 					break;
1428 			if (i == n)
1429 				continue;
1430 		}
1431 		tmp = &list;
1432 		while (*tmp &&
1433 		       (pf->attr.group > (*tmp)->attr.group ||
1434 			(pf->attr.group == (*tmp)->attr.group &&
1435 			 pf->attr.priority > (*tmp)->attr.priority) ||
1436 			(pf->attr.group == (*tmp)->attr.group &&
1437 			 pf->attr.priority == (*tmp)->attr.priority &&
1438 			 pf->id > (*tmp)->id)))
1439 			tmp = &(*tmp)->tmp;
1440 		pf->tmp = *tmp;
1441 		*tmp = pf;
1442 	}
1443 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1444 	for (pf = list; pf != NULL; pf = pf->tmp) {
1445 		const struct rte_flow_item *item = pf->pattern;
1446 		const struct rte_flow_action *action = pf->actions;
1447 
1448 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1449 		       pf->id,
1450 		       pf->attr.group,
1451 		       pf->attr.priority,
1452 		       pf->attr.ingress ? 'i' : '-',
1453 		       pf->attr.egress ? 'e' : '-');
1454 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1455 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1456 				printf("%s ", flow_item[item->type].name);
1457 			++item;
1458 		}
1459 		printf("=>");
1460 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1461 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1462 				printf(" %s", flow_action[action->type].name);
1463 			++action;
1464 		}
1465 		printf("\n");
1466 	}
1467 }
1468 
1469 /** Restrict ingress traffic to the defined flow rules. */
1470 int
1471 port_flow_isolate(portid_t port_id, int set)
1472 {
1473 	struct rte_flow_error error;
1474 
1475 	/* Poisoning to make sure PMDs update it in case of error. */
1476 	memset(&error, 0x66, sizeof(error));
1477 	if (rte_flow_isolate(port_id, set, &error))
1478 		return port_flow_complain(&error);
1479 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1480 	       port_id,
1481 	       set ? "now restricted" : "not restricted anymore");
1482 	return 0;
1483 }
1484 
1485 /*
1486  * RX/TX ring descriptors display functions.
1487  */
1488 int
1489 rx_queue_id_is_invalid(queueid_t rxq_id)
1490 {
1491 	if (rxq_id < nb_rxq)
1492 		return 0;
1493 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1494 	return 1;
1495 }
1496 
1497 int
1498 tx_queue_id_is_invalid(queueid_t txq_id)
1499 {
1500 	if (txq_id < nb_txq)
1501 		return 0;
1502 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1503 	return 1;
1504 }
1505 
1506 static int
1507 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1508 {
1509 	if (rxdesc_id < nb_rxd)
1510 		return 0;
1511 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1512 	       rxdesc_id, nb_rxd);
1513 	return 1;
1514 }
1515 
1516 static int
1517 tx_desc_id_is_invalid(uint16_t txdesc_id)
1518 {
1519 	if (txdesc_id < nb_txd)
1520 		return 0;
1521 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1522 	       txdesc_id, nb_txd);
1523 	return 1;
1524 }
1525 
1526 static const struct rte_memzone *
1527 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1528 {
1529 	char mz_name[RTE_MEMZONE_NAMESIZE];
1530 	const struct rte_memzone *mz;
1531 
1532 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1533 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1534 	mz = rte_memzone_lookup(mz_name);
1535 	if (mz == NULL)
1536 		printf("%s ring memory zoneof (port %d, queue %d) not"
1537 		       "found (zone name = %s\n",
1538 		       ring_name, port_id, q_id, mz_name);
1539 	return mz;
1540 }
1541 
1542 union igb_ring_dword {
1543 	uint64_t dword;
1544 	struct {
1545 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1546 		uint32_t lo;
1547 		uint32_t hi;
1548 #else
1549 		uint32_t hi;
1550 		uint32_t lo;
1551 #endif
1552 	} words;
1553 };
1554 
1555 struct igb_ring_desc_32_bytes {
1556 	union igb_ring_dword lo_dword;
1557 	union igb_ring_dword hi_dword;
1558 	union igb_ring_dword resv1;
1559 	union igb_ring_dword resv2;
1560 };
1561 
1562 struct igb_ring_desc_16_bytes {
1563 	union igb_ring_dword lo_dword;
1564 	union igb_ring_dword hi_dword;
1565 };
1566 
1567 static void
1568 ring_rxd_display_dword(union igb_ring_dword dword)
1569 {
1570 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1571 					(unsigned)dword.words.hi);
1572 }
1573 
1574 static void
1575 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1576 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1577 			   portid_t port_id,
1578 #else
1579 			   __rte_unused portid_t port_id,
1580 #endif
1581 			   uint16_t desc_id)
1582 {
1583 	struct igb_ring_desc_16_bytes *ring =
1584 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1585 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1586 	struct rte_eth_dev_info dev_info;
1587 
1588 	memset(&dev_info, 0, sizeof(dev_info));
1589 	rte_eth_dev_info_get(port_id, &dev_info);
1590 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1591 		/* 32 bytes RX descriptor, i40e only */
1592 		struct igb_ring_desc_32_bytes *ring =
1593 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1594 		ring[desc_id].lo_dword.dword =
1595 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1596 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1597 		ring[desc_id].hi_dword.dword =
1598 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1599 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1600 		ring[desc_id].resv1.dword =
1601 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1602 		ring_rxd_display_dword(ring[desc_id].resv1);
1603 		ring[desc_id].resv2.dword =
1604 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1605 		ring_rxd_display_dword(ring[desc_id].resv2);
1606 
1607 		return;
1608 	}
1609 #endif
1610 	/* 16 bytes RX descriptor */
1611 	ring[desc_id].lo_dword.dword =
1612 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1613 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1614 	ring[desc_id].hi_dword.dword =
1615 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1616 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1617 }
1618 
1619 static void
1620 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1621 {
1622 	struct igb_ring_desc_16_bytes *ring;
1623 	struct igb_ring_desc_16_bytes txd;
1624 
1625 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1626 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1627 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1628 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1629 			(unsigned)txd.lo_dword.words.lo,
1630 			(unsigned)txd.lo_dword.words.hi,
1631 			(unsigned)txd.hi_dword.words.lo,
1632 			(unsigned)txd.hi_dword.words.hi);
1633 }
1634 
1635 void
1636 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1637 {
1638 	const struct rte_memzone *rx_mz;
1639 
1640 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1641 		return;
1642 	if (rx_queue_id_is_invalid(rxq_id))
1643 		return;
1644 	if (rx_desc_id_is_invalid(rxd_id))
1645 		return;
1646 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1647 	if (rx_mz == NULL)
1648 		return;
1649 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1650 }
1651 
1652 void
1653 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1654 {
1655 	const struct rte_memzone *tx_mz;
1656 
1657 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1658 		return;
1659 	if (tx_queue_id_is_invalid(txq_id))
1660 		return;
1661 	if (tx_desc_id_is_invalid(txd_id))
1662 		return;
1663 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1664 	if (tx_mz == NULL)
1665 		return;
1666 	ring_tx_descriptor_display(tx_mz, txd_id);
1667 }
1668 
1669 void
1670 fwd_lcores_config_display(void)
1671 {
1672 	lcoreid_t lc_id;
1673 
1674 	printf("List of forwarding lcores:");
1675 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1676 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1677 	printf("\n");
1678 }
1679 void
1680 rxtx_config_display(void)
1681 {
1682 	portid_t pid;
1683 
1684 	printf("  %s packet forwarding%s packets/burst=%d\n",
1685 	       cur_fwd_eng->fwd_mode_name,
1686 	       retry_enabled == 0 ? "" : " with retry",
1687 	       nb_pkt_per_burst);
1688 
1689 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1690 		printf("  packet len=%u - nb packet segments=%d\n",
1691 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1692 
1693 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1694 	       nb_fwd_lcores, nb_fwd_ports);
1695 
1696 	RTE_ETH_FOREACH_DEV(pid) {
1697 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf;
1698 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf;
1699 
1700 		printf("  port %d:\n", (unsigned int)pid);
1701 		printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1702 				nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1703 		printf("  RX threshold registers: pthresh=%d hthresh=%d "
1704 		       " wthresh=%d\n",
1705 				rx_conf->rx_thresh.pthresh,
1706 				rx_conf->rx_thresh.hthresh,
1707 				rx_conf->rx_thresh.wthresh);
1708 		printf("  Rx offloads=0x%"PRIx64" RXQ offloads=0x%"PRIx64"\n",
1709 				ports[pid].dev_conf.rxmode.offloads,
1710 				rx_conf->offloads);
1711 		printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1712 				nb_txq, nb_txd, tx_conf->tx_free_thresh);
1713 		printf("  TX threshold registers: pthresh=%d hthresh=%d "
1714 		       " wthresh=%d\n",
1715 				tx_conf->tx_thresh.pthresh,
1716 				tx_conf->tx_thresh.hthresh,
1717 				tx_conf->tx_thresh.wthresh);
1718 		printf("  TX RS bit threshold=%d\n", tx_conf->tx_rs_thresh);
1719 		printf("  Tx offloads=0x%"PRIx64" TXQ offloads=0x%"PRIx64"\n",
1720 				ports[pid].dev_conf.txmode.offloads,
1721 				tx_conf->offloads);
1722 	}
1723 }
1724 
1725 void
1726 port_rss_reta_info(portid_t port_id,
1727 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1728 		   uint16_t nb_entries)
1729 {
1730 	uint16_t i, idx, shift;
1731 	int ret;
1732 
1733 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1734 		return;
1735 
1736 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1737 	if (ret != 0) {
1738 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1739 		return;
1740 	}
1741 
1742 	for (i = 0; i < nb_entries; i++) {
1743 		idx = i / RTE_RETA_GROUP_SIZE;
1744 		shift = i % RTE_RETA_GROUP_SIZE;
1745 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1746 			continue;
1747 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1748 					i, reta_conf[idx].reta[shift]);
1749 	}
1750 }
1751 
1752 /*
1753  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1754  * key of the port.
1755  */
1756 void
1757 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1758 {
1759 	struct rte_eth_rss_conf rss_conf;
1760 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1761 	uint64_t rss_hf;
1762 	uint8_t i;
1763 	int diag;
1764 	struct rte_eth_dev_info dev_info;
1765 	uint8_t hash_key_size;
1766 
1767 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1768 		return;
1769 
1770 	memset(&dev_info, 0, sizeof(dev_info));
1771 	rte_eth_dev_info_get(port_id, &dev_info);
1772 	if (dev_info.hash_key_size > 0 &&
1773 			dev_info.hash_key_size <= sizeof(rss_key))
1774 		hash_key_size = dev_info.hash_key_size;
1775 	else {
1776 		printf("dev_info did not provide a valid hash key size\n");
1777 		return;
1778 	}
1779 
1780 	rss_conf.rss_hf = 0;
1781 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1782 		if (!strcmp(rss_info, rss_type_table[i].str))
1783 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1784 	}
1785 
1786 	/* Get RSS hash key if asked to display it */
1787 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1788 	rss_conf.rss_key_len = hash_key_size;
1789 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1790 	if (diag != 0) {
1791 		switch (diag) {
1792 		case -ENODEV:
1793 			printf("port index %d invalid\n", port_id);
1794 			break;
1795 		case -ENOTSUP:
1796 			printf("operation not supported by device\n");
1797 			break;
1798 		default:
1799 			printf("operation failed - diag=%d\n", diag);
1800 			break;
1801 		}
1802 		return;
1803 	}
1804 	rss_hf = rss_conf.rss_hf;
1805 	if (rss_hf == 0) {
1806 		printf("RSS disabled\n");
1807 		return;
1808 	}
1809 	printf("RSS functions:\n ");
1810 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1811 		if (rss_hf & rss_type_table[i].rss_type)
1812 			printf("%s ", rss_type_table[i].str);
1813 	}
1814 	printf("\n");
1815 	if (!show_rss_key)
1816 		return;
1817 	printf("RSS key:\n");
1818 	for (i = 0; i < hash_key_size; i++)
1819 		printf("%02X", rss_key[i]);
1820 	printf("\n");
1821 }
1822 
1823 void
1824 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1825 			 uint hash_key_len)
1826 {
1827 	struct rte_eth_rss_conf rss_conf;
1828 	int diag;
1829 	unsigned int i;
1830 
1831 	rss_conf.rss_key = NULL;
1832 	rss_conf.rss_key_len = hash_key_len;
1833 	rss_conf.rss_hf = 0;
1834 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1835 		if (!strcmp(rss_type_table[i].str, rss_type))
1836 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1837 	}
1838 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1839 	if (diag == 0) {
1840 		rss_conf.rss_key = hash_key;
1841 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1842 	}
1843 	if (diag == 0)
1844 		return;
1845 
1846 	switch (diag) {
1847 	case -ENODEV:
1848 		printf("port index %d invalid\n", port_id);
1849 		break;
1850 	case -ENOTSUP:
1851 		printf("operation not supported by device\n");
1852 		break;
1853 	default:
1854 		printf("operation failed - diag=%d\n", diag);
1855 		break;
1856 	}
1857 }
1858 
1859 /*
1860  * Setup forwarding configuration for each logical core.
1861  */
1862 static void
1863 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1864 {
1865 	streamid_t nb_fs_per_lcore;
1866 	streamid_t nb_fs;
1867 	streamid_t sm_id;
1868 	lcoreid_t  nb_extra;
1869 	lcoreid_t  nb_fc;
1870 	lcoreid_t  nb_lc;
1871 	lcoreid_t  lc_id;
1872 
1873 	nb_fs = cfg->nb_fwd_streams;
1874 	nb_fc = cfg->nb_fwd_lcores;
1875 	if (nb_fs <= nb_fc) {
1876 		nb_fs_per_lcore = 1;
1877 		nb_extra = 0;
1878 	} else {
1879 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1880 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1881 	}
1882 
1883 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1884 	sm_id = 0;
1885 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1886 		fwd_lcores[lc_id]->stream_idx = sm_id;
1887 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1888 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1889 	}
1890 
1891 	/*
1892 	 * Assign extra remaining streams, if any.
1893 	 */
1894 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1895 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1896 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1897 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1898 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1899 	}
1900 }
1901 
1902 static portid_t
1903 fwd_topology_tx_port_get(portid_t rxp)
1904 {
1905 	static int warning_once = 1;
1906 
1907 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
1908 
1909 	switch (port_topology) {
1910 	default:
1911 	case PORT_TOPOLOGY_PAIRED:
1912 		if ((rxp & 0x1) == 0) {
1913 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
1914 				return rxp + 1;
1915 			if (warning_once) {
1916 				printf("\nWarning! port-topology=paired"
1917 				       " and odd forward ports number,"
1918 				       " the last port will pair with"
1919 				       " itself.\n\n");
1920 				warning_once = 0;
1921 			}
1922 			return rxp;
1923 		}
1924 		return rxp - 1;
1925 	case PORT_TOPOLOGY_CHAINED:
1926 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
1927 	case PORT_TOPOLOGY_LOOP:
1928 		return rxp;
1929 	}
1930 }
1931 
1932 static void
1933 simple_fwd_config_setup(void)
1934 {
1935 	portid_t i;
1936 
1937 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1938 	cur_fwd_config.nb_fwd_streams =
1939 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1940 
1941 	/* reinitialize forwarding streams */
1942 	init_fwd_streams();
1943 
1944 	/*
1945 	 * In the simple forwarding test, the number of forwarding cores
1946 	 * must be lower or equal to the number of forwarding ports.
1947 	 */
1948 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1949 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1950 		cur_fwd_config.nb_fwd_lcores =
1951 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1952 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1953 
1954 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
1955 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1956 		fwd_streams[i]->rx_queue  = 0;
1957 		fwd_streams[i]->tx_port   =
1958 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
1959 		fwd_streams[i]->tx_queue  = 0;
1960 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
1961 		fwd_streams[i]->retry_enabled = retry_enabled;
1962 	}
1963 }
1964 
1965 /**
1966  * For the RSS forwarding test all streams distributed over lcores. Each stream
1967  * being composed of a RX queue to poll on a RX port for input messages,
1968  * associated with a TX queue of a TX port where to send forwarded packets.
1969  */
1970 static void
1971 rss_fwd_config_setup(void)
1972 {
1973 	portid_t   rxp;
1974 	portid_t   txp;
1975 	queueid_t  rxq;
1976 	queueid_t  nb_q;
1977 	streamid_t  sm_id;
1978 
1979 	nb_q = nb_rxq;
1980 	if (nb_q > nb_txq)
1981 		nb_q = nb_txq;
1982 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1983 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1984 	cur_fwd_config.nb_fwd_streams =
1985 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1986 
1987 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1988 		cur_fwd_config.nb_fwd_lcores =
1989 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1990 
1991 	/* reinitialize forwarding streams */
1992 	init_fwd_streams();
1993 
1994 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1995 	rxp = 0; rxq = 0;
1996 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1997 		struct fwd_stream *fs;
1998 
1999 		fs = fwd_streams[sm_id];
2000 		txp = fwd_topology_tx_port_get(rxp);
2001 		fs->rx_port = fwd_ports_ids[rxp];
2002 		fs->rx_queue = rxq;
2003 		fs->tx_port = fwd_ports_ids[txp];
2004 		fs->tx_queue = rxq;
2005 		fs->peer_addr = fs->tx_port;
2006 		fs->retry_enabled = retry_enabled;
2007 		rxq = (queueid_t) (rxq + 1);
2008 		if (rxq < nb_q)
2009 			continue;
2010 		/*
2011 		 * rxq == nb_q
2012 		 * Restart from RX queue 0 on next RX port
2013 		 */
2014 		rxq = 0;
2015 		rxp++;
2016 	}
2017 }
2018 
2019 /**
2020  * For the DCB forwarding test, each core is assigned on each traffic class.
2021  *
2022  * Each core is assigned a multi-stream, each stream being composed of
2023  * a RX queue to poll on a RX port for input messages, associated with
2024  * a TX queue of a TX port where to send forwarded packets. All RX and
2025  * TX queues are mapping to the same traffic class.
2026  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2027  * the same core
2028  */
2029 static void
2030 dcb_fwd_config_setup(void)
2031 {
2032 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2033 	portid_t txp, rxp = 0;
2034 	queueid_t txq, rxq = 0;
2035 	lcoreid_t  lc_id;
2036 	uint16_t nb_rx_queue, nb_tx_queue;
2037 	uint16_t i, j, k, sm_id = 0;
2038 	uint8_t tc = 0;
2039 
2040 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2041 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2042 	cur_fwd_config.nb_fwd_streams =
2043 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2044 
2045 	/* reinitialize forwarding streams */
2046 	init_fwd_streams();
2047 	sm_id = 0;
2048 	txp = 1;
2049 	/* get the dcb info on the first RX and TX ports */
2050 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2051 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2052 
2053 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2054 		fwd_lcores[lc_id]->stream_nb = 0;
2055 		fwd_lcores[lc_id]->stream_idx = sm_id;
2056 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2057 			/* if the nb_queue is zero, means this tc is
2058 			 * not enabled on the POOL
2059 			 */
2060 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2061 				break;
2062 			k = fwd_lcores[lc_id]->stream_nb +
2063 				fwd_lcores[lc_id]->stream_idx;
2064 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2065 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2066 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2067 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2068 			for (j = 0; j < nb_rx_queue; j++) {
2069 				struct fwd_stream *fs;
2070 
2071 				fs = fwd_streams[k + j];
2072 				fs->rx_port = fwd_ports_ids[rxp];
2073 				fs->rx_queue = rxq + j;
2074 				fs->tx_port = fwd_ports_ids[txp];
2075 				fs->tx_queue = txq + j % nb_tx_queue;
2076 				fs->peer_addr = fs->tx_port;
2077 				fs->retry_enabled = retry_enabled;
2078 			}
2079 			fwd_lcores[lc_id]->stream_nb +=
2080 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2081 		}
2082 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2083 
2084 		tc++;
2085 		if (tc < rxp_dcb_info.nb_tcs)
2086 			continue;
2087 		/* Restart from TC 0 on next RX port */
2088 		tc = 0;
2089 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2090 			rxp = (portid_t)
2091 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2092 		else
2093 			rxp++;
2094 		if (rxp >= nb_fwd_ports)
2095 			return;
2096 		/* get the dcb information on next RX and TX ports */
2097 		if ((rxp & 0x1) == 0)
2098 			txp = (portid_t) (rxp + 1);
2099 		else
2100 			txp = (portid_t) (rxp - 1);
2101 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2102 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2103 	}
2104 }
2105 
2106 static void
2107 icmp_echo_config_setup(void)
2108 {
2109 	portid_t  rxp;
2110 	queueid_t rxq;
2111 	lcoreid_t lc_id;
2112 	uint16_t  sm_id;
2113 
2114 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2115 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2116 			(nb_txq * nb_fwd_ports);
2117 	else
2118 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2119 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2120 	cur_fwd_config.nb_fwd_streams =
2121 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2122 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2123 		cur_fwd_config.nb_fwd_lcores =
2124 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2125 	if (verbose_level > 0) {
2126 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2127 		       __FUNCTION__,
2128 		       cur_fwd_config.nb_fwd_lcores,
2129 		       cur_fwd_config.nb_fwd_ports,
2130 		       cur_fwd_config.nb_fwd_streams);
2131 	}
2132 
2133 	/* reinitialize forwarding streams */
2134 	init_fwd_streams();
2135 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2136 	rxp = 0; rxq = 0;
2137 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2138 		if (verbose_level > 0)
2139 			printf("  core=%d: \n", lc_id);
2140 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2141 			struct fwd_stream *fs;
2142 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2143 			fs->rx_port = fwd_ports_ids[rxp];
2144 			fs->rx_queue = rxq;
2145 			fs->tx_port = fs->rx_port;
2146 			fs->tx_queue = rxq;
2147 			fs->peer_addr = fs->tx_port;
2148 			fs->retry_enabled = retry_enabled;
2149 			if (verbose_level > 0)
2150 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2151 				       sm_id, fs->rx_port, fs->rx_queue,
2152 				       fs->tx_queue);
2153 			rxq = (queueid_t) (rxq + 1);
2154 			if (rxq == nb_rxq) {
2155 				rxq = 0;
2156 				rxp = (portid_t) (rxp + 1);
2157 			}
2158 		}
2159 	}
2160 }
2161 
2162 void
2163 fwd_config_setup(void)
2164 {
2165 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2166 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2167 		icmp_echo_config_setup();
2168 		return;
2169 	}
2170 	if ((nb_rxq > 1) && (nb_txq > 1)){
2171 		if (dcb_config)
2172 			dcb_fwd_config_setup();
2173 		else
2174 			rss_fwd_config_setup();
2175 	}
2176 	else
2177 		simple_fwd_config_setup();
2178 }
2179 
2180 void
2181 pkt_fwd_config_display(struct fwd_config *cfg)
2182 {
2183 	struct fwd_stream *fs;
2184 	lcoreid_t  lc_id;
2185 	streamid_t sm_id;
2186 
2187 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2188 		"NUMA support %s, MP over anonymous pages %s\n",
2189 		cfg->fwd_eng->fwd_mode_name,
2190 		retry_enabled == 0 ? "" : " with retry",
2191 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2192 		numa_support == 1 ? "enabled" : "disabled",
2193 		mp_anon != 0 ? "enabled" : "disabled");
2194 
2195 	if (retry_enabled)
2196 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2197 			burst_tx_retry_num, burst_tx_delay_time);
2198 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2199 		printf("Logical Core %u (socket %u) forwards packets on "
2200 		       "%d streams:",
2201 		       fwd_lcores_cpuids[lc_id],
2202 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2203 		       fwd_lcores[lc_id]->stream_nb);
2204 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2205 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2206 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2207 			       "P=%d/Q=%d (socket %u) ",
2208 			       fs->rx_port, fs->rx_queue,
2209 			       ports[fs->rx_port].socket_id,
2210 			       fs->tx_port, fs->tx_queue,
2211 			       ports[fs->tx_port].socket_id);
2212 			print_ethaddr("peer=",
2213 				      &peer_eth_addrs[fs->peer_addr]);
2214 		}
2215 		printf("\n");
2216 	}
2217 	printf("\n");
2218 }
2219 
2220 void
2221 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2222 {
2223 	uint8_t c, new_peer_addr[6];
2224 	if (!rte_eth_dev_is_valid_port(port_id)) {
2225 		printf("Error: Invalid port number %i\n", port_id);
2226 		return;
2227 	}
2228 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2229 					sizeof(new_peer_addr)) < 0) {
2230 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2231 		return;
2232 	}
2233 	for (c = 0; c < 6; c++)
2234 		peer_eth_addrs[port_id].addr_bytes[c] =
2235 			new_peer_addr[c];
2236 }
2237 
2238 int
2239 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2240 {
2241 	unsigned int i;
2242 	unsigned int lcore_cpuid;
2243 	int record_now;
2244 
2245 	record_now = 0;
2246  again:
2247 	for (i = 0; i < nb_lc; i++) {
2248 		lcore_cpuid = lcorelist[i];
2249 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2250 			printf("lcore %u not enabled\n", lcore_cpuid);
2251 			return -1;
2252 		}
2253 		if (lcore_cpuid == rte_get_master_lcore()) {
2254 			printf("lcore %u cannot be masked on for running "
2255 			       "packet forwarding, which is the master lcore "
2256 			       "and reserved for command line parsing only\n",
2257 			       lcore_cpuid);
2258 			return -1;
2259 		}
2260 		if (record_now)
2261 			fwd_lcores_cpuids[i] = lcore_cpuid;
2262 	}
2263 	if (record_now == 0) {
2264 		record_now = 1;
2265 		goto again;
2266 	}
2267 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2268 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2269 		printf("previous number of forwarding cores %u - changed to "
2270 		       "number of configured cores %u\n",
2271 		       (unsigned int) nb_fwd_lcores, nb_lc);
2272 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 int
2279 set_fwd_lcores_mask(uint64_t lcoremask)
2280 {
2281 	unsigned int lcorelist[64];
2282 	unsigned int nb_lc;
2283 	unsigned int i;
2284 
2285 	if (lcoremask == 0) {
2286 		printf("Invalid NULL mask of cores\n");
2287 		return -1;
2288 	}
2289 	nb_lc = 0;
2290 	for (i = 0; i < 64; i++) {
2291 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2292 			continue;
2293 		lcorelist[nb_lc++] = i;
2294 	}
2295 	return set_fwd_lcores_list(lcorelist, nb_lc);
2296 }
2297 
2298 void
2299 set_fwd_lcores_number(uint16_t nb_lc)
2300 {
2301 	if (nb_lc > nb_cfg_lcores) {
2302 		printf("nb fwd cores %u > %u (max. number of configured "
2303 		       "lcores) - ignored\n",
2304 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2305 		return;
2306 	}
2307 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2308 	printf("Number of forwarding cores set to %u\n",
2309 	       (unsigned int) nb_fwd_lcores);
2310 }
2311 
2312 void
2313 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2314 {
2315 	unsigned int i;
2316 	portid_t port_id;
2317 	int record_now;
2318 
2319 	record_now = 0;
2320  again:
2321 	for (i = 0; i < nb_pt; i++) {
2322 		port_id = (portid_t) portlist[i];
2323 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2324 			return;
2325 		if (record_now)
2326 			fwd_ports_ids[i] = port_id;
2327 	}
2328 	if (record_now == 0) {
2329 		record_now = 1;
2330 		goto again;
2331 	}
2332 	nb_cfg_ports = (portid_t) nb_pt;
2333 	if (nb_fwd_ports != (portid_t) nb_pt) {
2334 		printf("previous number of forwarding ports %u - changed to "
2335 		       "number of configured ports %u\n",
2336 		       (unsigned int) nb_fwd_ports, nb_pt);
2337 		nb_fwd_ports = (portid_t) nb_pt;
2338 	}
2339 }
2340 
2341 void
2342 set_fwd_ports_mask(uint64_t portmask)
2343 {
2344 	unsigned int portlist[64];
2345 	unsigned int nb_pt;
2346 	unsigned int i;
2347 
2348 	if (portmask == 0) {
2349 		printf("Invalid NULL mask of ports\n");
2350 		return;
2351 	}
2352 	nb_pt = 0;
2353 	RTE_ETH_FOREACH_DEV(i) {
2354 		if (! ((uint64_t)(1ULL << i) & portmask))
2355 			continue;
2356 		portlist[nb_pt++] = i;
2357 	}
2358 	set_fwd_ports_list(portlist, nb_pt);
2359 }
2360 
2361 void
2362 set_fwd_ports_number(uint16_t nb_pt)
2363 {
2364 	if (nb_pt > nb_cfg_ports) {
2365 		printf("nb fwd ports %u > %u (number of configured "
2366 		       "ports) - ignored\n",
2367 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2368 		return;
2369 	}
2370 	nb_fwd_ports = (portid_t) nb_pt;
2371 	printf("Number of forwarding ports set to %u\n",
2372 	       (unsigned int) nb_fwd_ports);
2373 }
2374 
2375 int
2376 port_is_forwarding(portid_t port_id)
2377 {
2378 	unsigned int i;
2379 
2380 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2381 		return -1;
2382 
2383 	for (i = 0; i < nb_fwd_ports; i++) {
2384 		if (fwd_ports_ids[i] == port_id)
2385 			return 1;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 void
2392 set_nb_pkt_per_burst(uint16_t nb)
2393 {
2394 	if (nb > MAX_PKT_BURST) {
2395 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2396 		       " ignored\n",
2397 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2398 		return;
2399 	}
2400 	nb_pkt_per_burst = nb;
2401 	printf("Number of packets per burst set to %u\n",
2402 	       (unsigned int) nb_pkt_per_burst);
2403 }
2404 
2405 static const char *
2406 tx_split_get_name(enum tx_pkt_split split)
2407 {
2408 	uint32_t i;
2409 
2410 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2411 		if (tx_split_name[i].split == split)
2412 			return tx_split_name[i].name;
2413 	}
2414 	return NULL;
2415 }
2416 
2417 void
2418 set_tx_pkt_split(const char *name)
2419 {
2420 	uint32_t i;
2421 
2422 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2423 		if (strcmp(tx_split_name[i].name, name) == 0) {
2424 			tx_pkt_split = tx_split_name[i].split;
2425 			return;
2426 		}
2427 	}
2428 	printf("unknown value: \"%s\"\n", name);
2429 }
2430 
2431 void
2432 show_tx_pkt_segments(void)
2433 {
2434 	uint32_t i, n;
2435 	const char *split;
2436 
2437 	n = tx_pkt_nb_segs;
2438 	split = tx_split_get_name(tx_pkt_split);
2439 
2440 	printf("Number of segments: %u\n", n);
2441 	printf("Segment sizes: ");
2442 	for (i = 0; i != n - 1; i++)
2443 		printf("%hu,", tx_pkt_seg_lengths[i]);
2444 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2445 	printf("Split packet: %s\n", split);
2446 }
2447 
2448 void
2449 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2450 {
2451 	uint16_t tx_pkt_len;
2452 	unsigned i;
2453 
2454 	if (nb_segs >= (unsigned) nb_txd) {
2455 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2456 		       nb_segs, (unsigned int) nb_txd);
2457 		return;
2458 	}
2459 
2460 	/*
2461 	 * Check that each segment length is greater or equal than
2462 	 * the mbuf data sise.
2463 	 * Check also that the total packet length is greater or equal than the
2464 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2465 	 */
2466 	tx_pkt_len = 0;
2467 	for (i = 0; i < nb_segs; i++) {
2468 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2469 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2470 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2471 			return;
2472 		}
2473 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2474 	}
2475 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2476 		printf("total packet length=%u < %d - give up\n",
2477 				(unsigned) tx_pkt_len,
2478 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2479 		return;
2480 	}
2481 
2482 	for (i = 0; i < nb_segs; i++)
2483 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2484 
2485 	tx_pkt_length  = tx_pkt_len;
2486 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2487 }
2488 
2489 void
2490 setup_gro(const char *onoff, portid_t port_id)
2491 {
2492 	if (!rte_eth_dev_is_valid_port(port_id)) {
2493 		printf("invalid port id %u\n", port_id);
2494 		return;
2495 	}
2496 	if (test_done == 0) {
2497 		printf("Before enable/disable GRO,"
2498 				" please stop forwarding first\n");
2499 		return;
2500 	}
2501 	if (strcmp(onoff, "on") == 0) {
2502 		if (gro_ports[port_id].enable != 0) {
2503 			printf("Port %u has enabled GRO. Please"
2504 					" disable GRO first\n", port_id);
2505 			return;
2506 		}
2507 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2508 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2509 			gro_ports[port_id].param.max_flow_num =
2510 				GRO_DEFAULT_FLOW_NUM;
2511 			gro_ports[port_id].param.max_item_per_flow =
2512 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2513 		}
2514 		gro_ports[port_id].enable = 1;
2515 	} else {
2516 		if (gro_ports[port_id].enable == 0) {
2517 			printf("Port %u has disabled GRO\n", port_id);
2518 			return;
2519 		}
2520 		gro_ports[port_id].enable = 0;
2521 	}
2522 }
2523 
2524 void
2525 setup_gro_flush_cycles(uint8_t cycles)
2526 {
2527 	if (test_done == 0) {
2528 		printf("Before change flush interval for GRO,"
2529 				" please stop forwarding first.\n");
2530 		return;
2531 	}
2532 
2533 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2534 			GRO_DEFAULT_FLUSH_CYCLES) {
2535 		printf("The flushing cycle be in the range"
2536 				" of 1 to %u. Revert to the default"
2537 				" value %u.\n",
2538 				GRO_MAX_FLUSH_CYCLES,
2539 				GRO_DEFAULT_FLUSH_CYCLES);
2540 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2541 	}
2542 
2543 	gro_flush_cycles = cycles;
2544 }
2545 
2546 void
2547 show_gro(portid_t port_id)
2548 {
2549 	struct rte_gro_param *param;
2550 	uint32_t max_pkts_num;
2551 
2552 	param = &gro_ports[port_id].param;
2553 
2554 	if (!rte_eth_dev_is_valid_port(port_id)) {
2555 		printf("Invalid port id %u.\n", port_id);
2556 		return;
2557 	}
2558 	if (gro_ports[port_id].enable) {
2559 		printf("GRO type: TCP/IPv4\n");
2560 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2561 			max_pkts_num = param->max_flow_num *
2562 				param->max_item_per_flow;
2563 		} else
2564 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2565 		printf("Max number of packets to perform GRO: %u\n",
2566 				max_pkts_num);
2567 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2568 	} else
2569 		printf("Port %u doesn't enable GRO.\n", port_id);
2570 }
2571 
2572 void
2573 setup_gso(const char *mode, portid_t port_id)
2574 {
2575 	if (!rte_eth_dev_is_valid_port(port_id)) {
2576 		printf("invalid port id %u\n", port_id);
2577 		return;
2578 	}
2579 	if (strcmp(mode, "on") == 0) {
2580 		if (test_done == 0) {
2581 			printf("before enabling GSO,"
2582 					" please stop forwarding first\n");
2583 			return;
2584 		}
2585 		gso_ports[port_id].enable = 1;
2586 	} else if (strcmp(mode, "off") == 0) {
2587 		if (test_done == 0) {
2588 			printf("before disabling GSO,"
2589 					" please stop forwarding first\n");
2590 			return;
2591 		}
2592 		gso_ports[port_id].enable = 0;
2593 	}
2594 }
2595 
2596 char*
2597 list_pkt_forwarding_modes(void)
2598 {
2599 	static char fwd_modes[128] = "";
2600 	const char *separator = "|";
2601 	struct fwd_engine *fwd_eng;
2602 	unsigned i = 0;
2603 
2604 	if (strlen (fwd_modes) == 0) {
2605 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2606 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2607 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2608 			strncat(fwd_modes, separator,
2609 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2610 		}
2611 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2612 	}
2613 
2614 	return fwd_modes;
2615 }
2616 
2617 char*
2618 list_pkt_forwarding_retry_modes(void)
2619 {
2620 	static char fwd_modes[128] = "";
2621 	const char *separator = "|";
2622 	struct fwd_engine *fwd_eng;
2623 	unsigned i = 0;
2624 
2625 	if (strlen(fwd_modes) == 0) {
2626 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2627 			if (fwd_eng == &rx_only_engine)
2628 				continue;
2629 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2630 					sizeof(fwd_modes) -
2631 					strlen(fwd_modes) - 1);
2632 			strncat(fwd_modes, separator,
2633 					sizeof(fwd_modes) -
2634 					strlen(fwd_modes) - 1);
2635 		}
2636 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2637 	}
2638 
2639 	return fwd_modes;
2640 }
2641 
2642 void
2643 set_pkt_forwarding_mode(const char *fwd_mode_name)
2644 {
2645 	struct fwd_engine *fwd_eng;
2646 	unsigned i;
2647 
2648 	i = 0;
2649 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2650 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2651 			printf("Set %s packet forwarding mode%s\n",
2652 			       fwd_mode_name,
2653 			       retry_enabled == 0 ? "" : " with retry");
2654 			cur_fwd_eng = fwd_eng;
2655 			return;
2656 		}
2657 		i++;
2658 	}
2659 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2660 }
2661 
2662 void
2663 set_verbose_level(uint16_t vb_level)
2664 {
2665 	printf("Change verbose level from %u to %u\n",
2666 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2667 	verbose_level = vb_level;
2668 }
2669 
2670 void
2671 vlan_extend_set(portid_t port_id, int on)
2672 {
2673 	int diag;
2674 	int vlan_offload;
2675 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2676 
2677 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2678 		return;
2679 
2680 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2681 
2682 	if (on) {
2683 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2684 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2685 	} else {
2686 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2687 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2688 	}
2689 
2690 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2691 	if (diag < 0)
2692 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2693 	       "diag=%d\n", port_id, on, diag);
2694 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2695 }
2696 
2697 void
2698 rx_vlan_strip_set(portid_t port_id, int on)
2699 {
2700 	int diag;
2701 	int vlan_offload;
2702 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2703 
2704 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2705 		return;
2706 
2707 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2708 
2709 	if (on) {
2710 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2711 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2712 	} else {
2713 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2714 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2715 	}
2716 
2717 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2718 	if (diag < 0)
2719 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2720 	       "diag=%d\n", port_id, on, diag);
2721 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2722 }
2723 
2724 void
2725 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2726 {
2727 	int diag;
2728 
2729 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2730 		return;
2731 
2732 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2733 	if (diag < 0)
2734 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2735 	       "diag=%d\n", port_id, queue_id, on, diag);
2736 }
2737 
2738 void
2739 rx_vlan_filter_set(portid_t port_id, int on)
2740 {
2741 	int diag;
2742 	int vlan_offload;
2743 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2744 
2745 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2746 		return;
2747 
2748 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2749 
2750 	if (on) {
2751 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2752 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2753 	} else {
2754 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2755 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2756 	}
2757 
2758 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2759 	if (diag < 0)
2760 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2761 	       "diag=%d\n", port_id, on, diag);
2762 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2763 }
2764 
2765 int
2766 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2767 {
2768 	int diag;
2769 
2770 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2771 		return 1;
2772 	if (vlan_id_is_invalid(vlan_id))
2773 		return 1;
2774 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2775 	if (diag == 0)
2776 		return 0;
2777 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2778 	       "diag=%d\n",
2779 	       port_id, vlan_id, on, diag);
2780 	return -1;
2781 }
2782 
2783 void
2784 rx_vlan_all_filter_set(portid_t port_id, int on)
2785 {
2786 	uint16_t vlan_id;
2787 
2788 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2789 		return;
2790 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2791 		if (rx_vft_set(port_id, vlan_id, on))
2792 			break;
2793 	}
2794 }
2795 
2796 void
2797 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2798 {
2799 	int diag;
2800 
2801 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2802 		return;
2803 
2804 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2805 	if (diag == 0)
2806 		return;
2807 
2808 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2809 	       "diag=%d\n",
2810 	       port_id, vlan_type, tp_id, diag);
2811 }
2812 
2813 void
2814 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2815 {
2816 	int vlan_offload;
2817 	struct rte_eth_dev_info dev_info;
2818 
2819 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2820 		return;
2821 	if (vlan_id_is_invalid(vlan_id))
2822 		return;
2823 
2824 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2825 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2826 		printf("Error, as QinQ has been enabled.\n");
2827 		return;
2828 	}
2829 	rte_eth_dev_info_get(port_id, &dev_info);
2830 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2831 		printf("Error: vlan insert is not supported by port %d\n",
2832 			port_id);
2833 		return;
2834 	}
2835 
2836 	tx_vlan_reset(port_id);
2837 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2838 	ports[port_id].tx_vlan_id = vlan_id;
2839 }
2840 
2841 void
2842 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2843 {
2844 	int vlan_offload;
2845 	struct rte_eth_dev_info dev_info;
2846 
2847 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2848 		return;
2849 	if (vlan_id_is_invalid(vlan_id))
2850 		return;
2851 	if (vlan_id_is_invalid(vlan_id_outer))
2852 		return;
2853 
2854 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2855 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2856 		printf("Error, as QinQ hasn't been enabled.\n");
2857 		return;
2858 	}
2859 	rte_eth_dev_info_get(port_id, &dev_info);
2860 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2861 		printf("Error: qinq insert not supported by port %d\n",
2862 			port_id);
2863 		return;
2864 	}
2865 
2866 	tx_vlan_reset(port_id);
2867 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2868 	ports[port_id].tx_vlan_id = vlan_id;
2869 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2870 }
2871 
2872 void
2873 tx_vlan_reset(portid_t port_id)
2874 {
2875 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2876 		return;
2877 	ports[port_id].dev_conf.txmode.offloads &=
2878 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2879 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2880 	ports[port_id].tx_vlan_id = 0;
2881 	ports[port_id].tx_vlan_id_outer = 0;
2882 }
2883 
2884 void
2885 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2886 {
2887 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2888 		return;
2889 
2890 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2891 }
2892 
2893 void
2894 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2895 {
2896 	uint16_t i;
2897 	uint8_t existing_mapping_found = 0;
2898 
2899 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2900 		return;
2901 
2902 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2903 		return;
2904 
2905 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2906 		printf("map_value not in required range 0..%d\n",
2907 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2908 		return;
2909 	}
2910 
2911 	if (!is_rx) { /*then tx*/
2912 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2913 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2914 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2915 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2916 				existing_mapping_found = 1;
2917 				break;
2918 			}
2919 		}
2920 		if (!existing_mapping_found) { /* A new additional mapping... */
2921 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2922 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2923 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2924 			nb_tx_queue_stats_mappings++;
2925 		}
2926 	}
2927 	else { /*rx*/
2928 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2929 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2930 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2931 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2932 				existing_mapping_found = 1;
2933 				break;
2934 			}
2935 		}
2936 		if (!existing_mapping_found) { /* A new additional mapping... */
2937 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2938 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2939 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2940 			nb_rx_queue_stats_mappings++;
2941 		}
2942 	}
2943 }
2944 
2945 void
2946 set_xstats_hide_zero(uint8_t on_off)
2947 {
2948 	xstats_hide_zero = on_off;
2949 }
2950 
2951 static inline void
2952 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2953 {
2954 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2955 
2956 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2957 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2958 			" tunnel_id: 0x%08x",
2959 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2960 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2961 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2962 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2963 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2964 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2965 
2966 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2967 			rte_be_to_cpu_16(mask->src_port_mask),
2968 			rte_be_to_cpu_16(mask->dst_port_mask));
2969 
2970 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2971 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2972 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2973 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2974 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2975 
2976 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2977 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2978 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2979 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2980 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2981 	}
2982 
2983 	printf("\n");
2984 }
2985 
2986 static inline void
2987 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2988 {
2989 	struct rte_eth_flex_payload_cfg *cfg;
2990 	uint32_t i, j;
2991 
2992 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2993 		cfg = &flex_conf->flex_set[i];
2994 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2995 			printf("\n    RAW:  ");
2996 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2997 			printf("\n    L2_PAYLOAD:  ");
2998 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2999 			printf("\n    L3_PAYLOAD:  ");
3000 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3001 			printf("\n    L4_PAYLOAD:  ");
3002 		else
3003 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3004 		for (j = 0; j < num; j++)
3005 			printf("  %-5u", cfg->src_offset[j]);
3006 	}
3007 	printf("\n");
3008 }
3009 
3010 static char *
3011 flowtype_to_str(uint16_t flow_type)
3012 {
3013 	struct flow_type_info {
3014 		char str[32];
3015 		uint16_t ftype;
3016 	};
3017 
3018 	uint8_t i;
3019 	static struct flow_type_info flowtype_str_table[] = {
3020 		{"raw", RTE_ETH_FLOW_RAW},
3021 		{"ipv4", RTE_ETH_FLOW_IPV4},
3022 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3023 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3024 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3025 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3026 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3027 		{"ipv6", RTE_ETH_FLOW_IPV6},
3028 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3029 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3030 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3031 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3032 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3033 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3034 		{"port", RTE_ETH_FLOW_PORT},
3035 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3036 		{"geneve", RTE_ETH_FLOW_GENEVE},
3037 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3038 	};
3039 
3040 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3041 		if (flowtype_str_table[i].ftype == flow_type)
3042 			return flowtype_str_table[i].str;
3043 	}
3044 
3045 	return NULL;
3046 }
3047 
3048 static inline void
3049 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3050 {
3051 	struct rte_eth_fdir_flex_mask *mask;
3052 	uint32_t i, j;
3053 	char *p;
3054 
3055 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3056 		mask = &flex_conf->flex_mask[i];
3057 		p = flowtype_to_str(mask->flow_type);
3058 		printf("\n    %s:\t", p ? p : "unknown");
3059 		for (j = 0; j < num; j++)
3060 			printf(" %02x", mask->mask[j]);
3061 	}
3062 	printf("\n");
3063 }
3064 
3065 static inline void
3066 print_fdir_flow_type(uint32_t flow_types_mask)
3067 {
3068 	int i;
3069 	char *p;
3070 
3071 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3072 		if (!(flow_types_mask & (1 << i)))
3073 			continue;
3074 		p = flowtype_to_str(i);
3075 		if (p)
3076 			printf(" %s", p);
3077 		else
3078 			printf(" unknown");
3079 	}
3080 	printf("\n");
3081 }
3082 
3083 void
3084 fdir_get_infos(portid_t port_id)
3085 {
3086 	struct rte_eth_fdir_stats fdir_stat;
3087 	struct rte_eth_fdir_info fdir_info;
3088 	int ret;
3089 
3090 	static const char *fdir_stats_border = "########################";
3091 
3092 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3093 		return;
3094 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3095 	if (ret < 0) {
3096 		printf("\n FDIR is not supported on port %-2d\n",
3097 			port_id);
3098 		return;
3099 	}
3100 
3101 	memset(&fdir_info, 0, sizeof(fdir_info));
3102 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3103 			       RTE_ETH_FILTER_INFO, &fdir_info);
3104 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3105 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3106 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3107 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3108 	       fdir_stats_border, port_id, fdir_stats_border);
3109 	printf("  MODE: ");
3110 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3111 		printf("  PERFECT\n");
3112 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3113 		printf("  PERFECT-MAC-VLAN\n");
3114 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3115 		printf("  PERFECT-TUNNEL\n");
3116 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3117 		printf("  SIGNATURE\n");
3118 	else
3119 		printf("  DISABLE\n");
3120 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3121 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3122 		printf("  SUPPORTED FLOW TYPE: ");
3123 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3124 	}
3125 	printf("  FLEX PAYLOAD INFO:\n");
3126 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3127 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3128 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3129 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3130 		fdir_info.flex_payload_unit,
3131 		fdir_info.max_flex_payload_segment_num,
3132 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3133 	printf("  MASK: ");
3134 	print_fdir_mask(&fdir_info.mask);
3135 	if (fdir_info.flex_conf.nb_payloads > 0) {
3136 		printf("  FLEX PAYLOAD SRC OFFSET:");
3137 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3138 	}
3139 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3140 		printf("  FLEX MASK CFG:");
3141 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3142 	}
3143 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3144 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3145 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3146 	       fdir_info.guarant_spc, fdir_info.best_spc);
3147 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3148 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3149 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3150 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3151 	       fdir_stat.collision, fdir_stat.free,
3152 	       fdir_stat.maxhash, fdir_stat.maxlen,
3153 	       fdir_stat.add, fdir_stat.remove,
3154 	       fdir_stat.f_add, fdir_stat.f_remove);
3155 	printf("  %s############################%s\n",
3156 	       fdir_stats_border, fdir_stats_border);
3157 }
3158 
3159 void
3160 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3161 {
3162 	struct rte_port *port;
3163 	struct rte_eth_fdir_flex_conf *flex_conf;
3164 	int i, idx = 0;
3165 
3166 	port = &ports[port_id];
3167 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3168 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3169 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3170 			idx = i;
3171 			break;
3172 		}
3173 	}
3174 	if (i >= RTE_ETH_FLOW_MAX) {
3175 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3176 			idx = flex_conf->nb_flexmasks;
3177 			flex_conf->nb_flexmasks++;
3178 		} else {
3179 			printf("The flex mask table is full. Can not set flex"
3180 				" mask for flow_type(%u).", cfg->flow_type);
3181 			return;
3182 		}
3183 	}
3184 	rte_memcpy(&flex_conf->flex_mask[idx],
3185 			 cfg,
3186 			 sizeof(struct rte_eth_fdir_flex_mask));
3187 }
3188 
3189 void
3190 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3191 {
3192 	struct rte_port *port;
3193 	struct rte_eth_fdir_flex_conf *flex_conf;
3194 	int i, idx = 0;
3195 
3196 	port = &ports[port_id];
3197 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3198 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3199 		if (cfg->type == flex_conf->flex_set[i].type) {
3200 			idx = i;
3201 			break;
3202 		}
3203 	}
3204 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3205 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3206 			idx = flex_conf->nb_payloads;
3207 			flex_conf->nb_payloads++;
3208 		} else {
3209 			printf("The flex payload table is full. Can not set"
3210 				" flex payload for type(%u).", cfg->type);
3211 			return;
3212 		}
3213 	}
3214 	rte_memcpy(&flex_conf->flex_set[idx],
3215 			 cfg,
3216 			 sizeof(struct rte_eth_flex_payload_cfg));
3217 
3218 }
3219 
3220 void
3221 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3222 {
3223 #ifdef RTE_LIBRTE_IXGBE_PMD
3224 	int diag;
3225 
3226 	if (is_rx)
3227 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3228 	else
3229 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3230 
3231 	if (diag == 0)
3232 		return;
3233 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3234 			is_rx ? "rx" : "tx", port_id, diag);
3235 	return;
3236 #endif
3237 	printf("VF %s setting not supported for port %d\n",
3238 			is_rx ? "Rx" : "Tx", port_id);
3239 	RTE_SET_USED(vf);
3240 	RTE_SET_USED(on);
3241 }
3242 
3243 int
3244 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3245 {
3246 	int diag;
3247 	struct rte_eth_link link;
3248 
3249 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3250 		return 1;
3251 	rte_eth_link_get_nowait(port_id, &link);
3252 	if (rate > link.link_speed) {
3253 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3254 			rate, link.link_speed);
3255 		return 1;
3256 	}
3257 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3258 	if (diag == 0)
3259 		return diag;
3260 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3261 		port_id, diag);
3262 	return diag;
3263 }
3264 
3265 int
3266 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3267 {
3268 	int diag = -ENOTSUP;
3269 
3270 	RTE_SET_USED(vf);
3271 	RTE_SET_USED(rate);
3272 	RTE_SET_USED(q_msk);
3273 
3274 #ifdef RTE_LIBRTE_IXGBE_PMD
3275 	if (diag == -ENOTSUP)
3276 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3277 						       q_msk);
3278 #endif
3279 #ifdef RTE_LIBRTE_BNXT_PMD
3280 	if (diag == -ENOTSUP)
3281 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3282 #endif
3283 	if (diag == 0)
3284 		return diag;
3285 
3286 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3287 		port_id, diag);
3288 	return diag;
3289 }
3290 
3291 /*
3292  * Functions to manage the set of filtered Multicast MAC addresses.
3293  *
3294  * A pool of filtered multicast MAC addresses is associated with each port.
3295  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3296  * The address of the pool and the number of valid multicast MAC addresses
3297  * recorded in the pool are stored in the fields "mc_addr_pool" and
3298  * "mc_addr_nb" of the "rte_port" data structure.
3299  *
3300  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3301  * to be supplied a contiguous array of multicast MAC addresses.
3302  * To comply with this constraint, the set of multicast addresses recorded
3303  * into the pool are systematically compacted at the beginning of the pool.
3304  * Hence, when a multicast address is removed from the pool, all following
3305  * addresses, if any, are copied back to keep the set contiguous.
3306  */
3307 #define MCAST_POOL_INC 32
3308 
3309 static int
3310 mcast_addr_pool_extend(struct rte_port *port)
3311 {
3312 	struct ether_addr *mc_pool;
3313 	size_t mc_pool_size;
3314 
3315 	/*
3316 	 * If a free entry is available at the end of the pool, just
3317 	 * increment the number of recorded multicast addresses.
3318 	 */
3319 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3320 		port->mc_addr_nb++;
3321 		return 0;
3322 	}
3323 
3324 	/*
3325 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3326 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3327 	 * of MCAST_POOL_INC.
3328 	 */
3329 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3330 						    MCAST_POOL_INC);
3331 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3332 						mc_pool_size);
3333 	if (mc_pool == NULL) {
3334 		printf("allocation of pool of %u multicast addresses failed\n",
3335 		       port->mc_addr_nb + MCAST_POOL_INC);
3336 		return -ENOMEM;
3337 	}
3338 
3339 	port->mc_addr_pool = mc_pool;
3340 	port->mc_addr_nb++;
3341 	return 0;
3342 
3343 }
3344 
3345 static void
3346 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3347 {
3348 	port->mc_addr_nb--;
3349 	if (addr_idx == port->mc_addr_nb) {
3350 		/* No need to recompact the set of multicast addressses. */
3351 		if (port->mc_addr_nb == 0) {
3352 			/* free the pool of multicast addresses. */
3353 			free(port->mc_addr_pool);
3354 			port->mc_addr_pool = NULL;
3355 		}
3356 		return;
3357 	}
3358 	memmove(&port->mc_addr_pool[addr_idx],
3359 		&port->mc_addr_pool[addr_idx + 1],
3360 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3361 }
3362 
3363 static void
3364 eth_port_multicast_addr_list_set(portid_t port_id)
3365 {
3366 	struct rte_port *port;
3367 	int diag;
3368 
3369 	port = &ports[port_id];
3370 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3371 					    port->mc_addr_nb);
3372 	if (diag == 0)
3373 		return;
3374 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3375 	       port->mc_addr_nb, port_id, -diag);
3376 }
3377 
3378 void
3379 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3380 {
3381 	struct rte_port *port;
3382 	uint32_t i;
3383 
3384 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3385 		return;
3386 
3387 	port = &ports[port_id];
3388 
3389 	/*
3390 	 * Check that the added multicast MAC address is not already recorded
3391 	 * in the pool of multicast addresses.
3392 	 */
3393 	for (i = 0; i < port->mc_addr_nb; i++) {
3394 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3395 			printf("multicast address already filtered by port\n");
3396 			return;
3397 		}
3398 	}
3399 
3400 	if (mcast_addr_pool_extend(port) != 0)
3401 		return;
3402 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3403 	eth_port_multicast_addr_list_set(port_id);
3404 }
3405 
3406 void
3407 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3408 {
3409 	struct rte_port *port;
3410 	uint32_t i;
3411 
3412 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3413 		return;
3414 
3415 	port = &ports[port_id];
3416 
3417 	/*
3418 	 * Search the pool of multicast MAC addresses for the removed address.
3419 	 */
3420 	for (i = 0; i < port->mc_addr_nb; i++) {
3421 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3422 			break;
3423 	}
3424 	if (i == port->mc_addr_nb) {
3425 		printf("multicast address not filtered by port %d\n", port_id);
3426 		return;
3427 	}
3428 
3429 	mcast_addr_pool_remove(port, i);
3430 	eth_port_multicast_addr_list_set(port_id);
3431 }
3432 
3433 void
3434 port_dcb_info_display(portid_t port_id)
3435 {
3436 	struct rte_eth_dcb_info dcb_info;
3437 	uint16_t i;
3438 	int ret;
3439 	static const char *border = "================";
3440 
3441 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3442 		return;
3443 
3444 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3445 	if (ret) {
3446 		printf("\n Failed to get dcb infos on port %-2d\n",
3447 			port_id);
3448 		return;
3449 	}
3450 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3451 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3452 	printf("\n  TC :        ");
3453 	for (i = 0; i < dcb_info.nb_tcs; i++)
3454 		printf("\t%4d", i);
3455 	printf("\n  Priority :  ");
3456 	for (i = 0; i < dcb_info.nb_tcs; i++)
3457 		printf("\t%4d", dcb_info.prio_tc[i]);
3458 	printf("\n  BW percent :");
3459 	for (i = 0; i < dcb_info.nb_tcs; i++)
3460 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3461 	printf("\n  RXQ base :  ");
3462 	for (i = 0; i < dcb_info.nb_tcs; i++)
3463 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3464 	printf("\n  RXQ number :");
3465 	for (i = 0; i < dcb_info.nb_tcs; i++)
3466 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3467 	printf("\n  TXQ base :  ");
3468 	for (i = 0; i < dcb_info.nb_tcs; i++)
3469 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3470 	printf("\n  TXQ number :");
3471 	for (i = 0; i < dcb_info.nb_tcs; i++)
3472 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3473 	printf("\n");
3474 }
3475 
3476 uint8_t *
3477 open_file(const char *file_path, uint32_t *size)
3478 {
3479 	int fd = open(file_path, O_RDONLY);
3480 	off_t pkg_size;
3481 	uint8_t *buf = NULL;
3482 	int ret = 0;
3483 	struct stat st_buf;
3484 
3485 	if (size)
3486 		*size = 0;
3487 
3488 	if (fd == -1) {
3489 		printf("%s: Failed to open %s\n", __func__, file_path);
3490 		return buf;
3491 	}
3492 
3493 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3494 		close(fd);
3495 		printf("%s: File operations failed\n", __func__);
3496 		return buf;
3497 	}
3498 
3499 	pkg_size = st_buf.st_size;
3500 	if (pkg_size < 0) {
3501 		close(fd);
3502 		printf("%s: File operations failed\n", __func__);
3503 		return buf;
3504 	}
3505 
3506 	buf = (uint8_t *)malloc(pkg_size);
3507 	if (!buf) {
3508 		close(fd);
3509 		printf("%s: Failed to malloc memory\n",	__func__);
3510 		return buf;
3511 	}
3512 
3513 	ret = read(fd, buf, pkg_size);
3514 	if (ret < 0) {
3515 		close(fd);
3516 		printf("%s: File read operation failed\n", __func__);
3517 		close_file(buf);
3518 		return NULL;
3519 	}
3520 
3521 	if (size)
3522 		*size = pkg_size;
3523 
3524 	close(fd);
3525 
3526 	return buf;
3527 }
3528 
3529 int
3530 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3531 {
3532 	FILE *fh = fopen(file_path, "wb");
3533 
3534 	if (fh == NULL) {
3535 		printf("%s: Failed to open %s\n", __func__, file_path);
3536 		return -1;
3537 	}
3538 
3539 	if (fwrite(buf, 1, size, fh) != size) {
3540 		fclose(fh);
3541 		printf("%s: File write operation failed\n", __func__);
3542 		return -1;
3543 	}
3544 
3545 	fclose(fh);
3546 
3547 	return 0;
3548 }
3549 
3550 int
3551 close_file(uint8_t *buf)
3552 {
3553 	if (buf) {
3554 		free((void *)buf);
3555 		return 0;
3556 	}
3557 
3558 	return -1;
3559 }
3560 
3561 void
3562 port_queue_region_info_display(portid_t port_id, void *buf)
3563 {
3564 #ifdef RTE_LIBRTE_I40E_PMD
3565 	uint16_t i, j;
3566 	struct rte_pmd_i40e_queue_regions *info =
3567 		(struct rte_pmd_i40e_queue_regions *)buf;
3568 	static const char *queue_region_info_stats_border = "-------";
3569 
3570 	if (!info->queue_region_number)
3571 		printf("there is no region has been set before");
3572 
3573 	printf("\n	%s All queue region info for port=%2d %s",
3574 			queue_region_info_stats_border, port_id,
3575 			queue_region_info_stats_border);
3576 	printf("\n	queue_region_number: %-14u \n",
3577 			info->queue_region_number);
3578 
3579 	for (i = 0; i < info->queue_region_number; i++) {
3580 		printf("\n	region_id: %-14u queue_number: %-14u "
3581 			"queue_start_index: %-14u \n",
3582 			info->region[i].region_id,
3583 			info->region[i].queue_num,
3584 			info->region[i].queue_start_index);
3585 
3586 		printf("  user_priority_num is	%-14u :",
3587 					info->region[i].user_priority_num);
3588 		for (j = 0; j < info->region[i].user_priority_num; j++)
3589 			printf(" %-14u ", info->region[i].user_priority[j]);
3590 
3591 		printf("\n	flowtype_num is  %-14u :",
3592 				info->region[i].flowtype_num);
3593 		for (j = 0; j < info->region[i].flowtype_num; j++)
3594 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3595 	}
3596 #else
3597 	RTE_SET_USED(port_id);
3598 	RTE_SET_USED(buf);
3599 #endif
3600 
3601 	printf("\n\n");
3602 }
3603