xref: /dpdk/app/test-pmd/config.c (revision 39e5e20f0defa67627e5f53c2d9d62db51fa2d0c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 const struct rss_type_info rss_type_table[] = {
77 	{ "ipv4", ETH_RSS_IPV4 },
78 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83 	{ "ipv6", ETH_RSS_IPV6 },
84 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
90 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
91 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93 	{ "port", ETH_RSS_PORT },
94 	{ "vxlan", ETH_RSS_VXLAN },
95 	{ "geneve", ETH_RSS_GENEVE },
96 	{ "nvgre", ETH_RSS_NVGRE },
97 	{ "ip", ETH_RSS_IP },
98 	{ "udp", ETH_RSS_UDP },
99 	{ "tcp", ETH_RSS_TCP },
100 	{ "sctp", ETH_RSS_SCTP },
101 	{ "tunnel", ETH_RSS_TUNNEL },
102 	{ NULL, 0 },
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 	portid_t pid;
125 
126 	static const char *nic_stats_border = "########################";
127 
128 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129 		printf("Valid port range is [0");
130 		RTE_ETH_FOREACH_DEV(pid)
131 			printf(", %d", pid);
132 		printf("]\n");
133 		return;
134 	}
135 	rte_eth_stats_get(port_id, &stats);
136 	printf("\n  %s NIC statistics for port %-2d %s\n",
137 	       nic_stats_border, port_id, nic_stats_border);
138 
139 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141 		       "%-"PRIu64"\n",
142 		       stats.ipackets, stats.imissed, stats.ibytes);
143 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144 		printf("  RX-nombuf:  %-10"PRIu64"\n",
145 		       stats.rx_nombuf);
146 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147 		       "%-"PRIu64"\n",
148 		       stats.opackets, stats.oerrors, stats.obytes);
149 	}
150 	else {
151 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152 		       "    RX-bytes: %10"PRIu64"\n",
153 		       stats.ipackets, stats.ierrors, stats.ibytes);
154 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155 		printf("  RX-nombuf:               %10"PRIu64"\n",
156 		       stats.rx_nombuf);
157 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158 		       "    TX-bytes: %10"PRIu64"\n",
159 		       stats.opackets, stats.oerrors, stats.obytes);
160 	}
161 
162 	if (port->rx_queue_stats_mapping_enabled) {
163 		printf("\n");
164 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165 			printf("  Stats reg %2d RX-packets: %10"PRIu64
166 			       "    RX-errors: %10"PRIu64
167 			       "    RX-bytes: %10"PRIu64"\n",
168 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169 		}
170 	}
171 	if (port->tx_queue_stats_mapping_enabled) {
172 		printf("\n");
173 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174 			printf("  Stats reg %2d TX-packets: %10"PRIu64
175 			       "                             TX-bytes: %10"PRIu64"\n",
176 			       i, stats.q_opackets[i], stats.q_obytes[i]);
177 		}
178 	}
179 
180 	diff_cycles = prev_cycles[port_id];
181 	prev_cycles[port_id] = rte_rdtsc();
182 	if (diff_cycles > 0)
183 		diff_cycles = prev_cycles[port_id] - diff_cycles;
184 
185 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
187 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
189 	prev_pkts_rx[port_id] = stats.ipackets;
190 	prev_pkts_tx[port_id] = stats.opackets;
191 	mpps_rx = diff_cycles > 0 ?
192 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193 	mpps_tx = diff_cycles > 0 ?
194 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195 	printf("\n  Throughput (since last show)\n");
196 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197 			mpps_rx, mpps_tx);
198 
199 	printf("  %s############################%s\n",
200 	       nic_stats_border, nic_stats_border);
201 }
202 
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206 	portid_t pid;
207 
208 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209 		printf("Valid port range is [0");
210 		RTE_ETH_FOREACH_DEV(pid)
211 			printf(", %d", pid);
212 		printf("]\n");
213 		return;
214 	}
215 	rte_eth_stats_reset(port_id);
216 	printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218 
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222 	struct rte_eth_xstat *xstats;
223 	int cnt_xstats, idx_xstat;
224 	struct rte_eth_xstat_name *xstats_names;
225 
226 	printf("###### NIC extended statistics for port %-2d\n", port_id);
227 	if (!rte_eth_dev_is_valid_port(port_id)) {
228 		printf("Error: Invalid port number %i\n", port_id);
229 		return;
230 	}
231 
232 	/* Get count */
233 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234 	if (cnt_xstats  < 0) {
235 		printf("Error: Cannot get count of xstats\n");
236 		return;
237 	}
238 
239 	/* Get id-name lookup table */
240 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241 	if (xstats_names == NULL) {
242 		printf("Cannot allocate memory for xstats lookup\n");
243 		return;
244 	}
245 	if (cnt_xstats != rte_eth_xstats_get_names(
246 			port_id, xstats_names, cnt_xstats)) {
247 		printf("Error: Cannot get xstats lookup\n");
248 		free(xstats_names);
249 		return;
250 	}
251 
252 	/* Get stats themselves */
253 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254 	if (xstats == NULL) {
255 		printf("Cannot allocate memory for xstats\n");
256 		free(xstats_names);
257 		return;
258 	}
259 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260 		printf("Error: Unable to get xstats\n");
261 		free(xstats_names);
262 		free(xstats);
263 		return;
264 	}
265 
266 	/* Display xstats */
267 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268 		if (xstats_hide_zero && !xstats[idx_xstat].value)
269 			continue;
270 		printf("%s: %"PRIu64"\n",
271 			xstats_names[idx_xstat].name,
272 			xstats[idx_xstat].value);
273 	}
274 	free(xstats_names);
275 	free(xstats);
276 }
277 
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281 	rte_eth_xstats_reset(port_id);
282 }
283 
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287 	struct rte_port *port = &ports[port_id];
288 	uint16_t i;
289 	portid_t pid;
290 
291 	static const char *nic_stats_mapping_border = "########################";
292 
293 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294 		printf("Valid port range is [0");
295 		RTE_ETH_FOREACH_DEV(pid)
296 			printf(", %d", pid);
297 		printf("]\n");
298 		return;
299 	}
300 
301 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302 		printf("Port id %d - either does not support queue statistic mapping or"
303 		       " no queue statistic mapping set\n", port_id);
304 		return;
305 	}
306 
307 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309 
310 	if (port->rx_queue_stats_mapping_enabled) {
311 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312 			if (rx_queue_stats_mappings[i].port_id == port_id) {
313 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314 				       rx_queue_stats_mappings[i].queue_id,
315 				       rx_queue_stats_mappings[i].stats_counter_id);
316 			}
317 		}
318 		printf("\n");
319 	}
320 
321 
322 	if (port->tx_queue_stats_mapping_enabled) {
323 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324 			if (tx_queue_stats_mappings[i].port_id == port_id) {
325 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326 				       tx_queue_stats_mappings[i].queue_id,
327 				       tx_queue_stats_mappings[i].stats_counter_id);
328 			}
329 		}
330 	}
331 
332 	printf("  %s####################################%s\n",
333 	       nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335 
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339 	struct rte_eth_rxq_info qinfo;
340 	int32_t rc;
341 	static const char *info_border = "*********************";
342 
343 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344 	if (rc != 0) {
345 		printf("Failed to retrieve information for port: %u, "
346 			"RX queue: %hu\nerror desc: %s(%d)\n",
347 			port_id, queue_id, strerror(-rc), rc);
348 		return;
349 	}
350 
351 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352 	       info_border, port_id, queue_id, info_border);
353 
354 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359 	printf("\nRX drop packets: %s",
360 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361 	printf("\nRX deferred start: %s",
362 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363 	printf("\nRX scattered packets: %s",
364 		(qinfo.scattered_rx != 0) ? "on" : "off");
365 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366 	printf("\n");
367 }
368 
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372 	struct rte_eth_txq_info qinfo;
373 	int32_t rc;
374 	static const char *info_border = "*********************";
375 
376 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377 	if (rc != 0) {
378 		printf("Failed to retrieve information for port: %u, "
379 			"TX queue: %hu\nerror desc: %s(%d)\n",
380 			port_id, queue_id, strerror(-rc), rc);
381 		return;
382 	}
383 
384 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385 	       info_border, port_id, queue_id, info_border);
386 
387 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392 	printf("\nTX deferred start: %s",
393 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 port_infos_display(portid_t port_id)
400 {
401 	struct rte_port *port;
402 	struct ether_addr mac_addr;
403 	struct rte_eth_link link;
404 	struct rte_eth_dev_info dev_info;
405 	int vlan_offload;
406 	struct rte_mempool * mp;
407 	static const char *info_border = "*********************";
408 	portid_t pid;
409 	uint16_t mtu;
410 
411 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412 		printf("Valid port range is [0");
413 		RTE_ETH_FOREACH_DEV(pid)
414 			printf(", %d", pid);
415 		printf("]\n");
416 		return;
417 	}
418 	port = &ports[port_id];
419 	rte_eth_link_get_nowait(port_id, &link);
420 	memset(&dev_info, 0, sizeof(dev_info));
421 	rte_eth_dev_info_get(port_id, &dev_info);
422 	printf("\n%s Infos for port %-2d %s\n",
423 	       info_border, port_id, info_border);
424 	rte_eth_macaddr_get(port_id, &mac_addr);
425 	print_ethaddr("MAC address: ", &mac_addr);
426 	printf("\nDriver name: %s", dev_info.driver_name);
427 	printf("\nConnect to socket: %u", port->socket_id);
428 
429 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
430 		mp = mbuf_pool_find(port_numa[port_id]);
431 		if (mp)
432 			printf("\nmemory allocation on the socket: %d",
433 							port_numa[port_id]);
434 	} else
435 		printf("\nmemory allocation on the socket: %u",port->socket_id);
436 
437 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440 	       ("full-duplex") : ("half-duplex"));
441 
442 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
443 		printf("MTU: %u\n", mtu);
444 
445 	printf("Promiscuous mode: %s\n",
446 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447 	printf("Allmulticast mode: %s\n",
448 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449 	printf("Maximum number of MAC addresses: %u\n",
450 	       (unsigned int)(port->dev_info.max_mac_addrs));
451 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
452 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
453 
454 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455 	if (vlan_offload >= 0){
456 		printf("VLAN offload: \n");
457 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458 			printf("  strip on \n");
459 		else
460 			printf("  strip off \n");
461 
462 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463 			printf("  filter on \n");
464 		else
465 			printf("  filter off \n");
466 
467 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468 			printf("  qinq(extend) on \n");
469 		else
470 			printf("  qinq(extend) off \n");
471 	}
472 
473 	if (dev_info.hash_key_size > 0)
474 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475 	if (dev_info.reta_size > 0)
476 		printf("Redirection table size: %u\n", dev_info.reta_size);
477 	if (!dev_info.flow_type_rss_offloads)
478 		printf("No flow type is supported.\n");
479 	else {
480 		uint16_t i;
481 		char *p;
482 
483 		printf("Supported flow types:\n");
484 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487 				continue;
488 			p = flowtype_to_str(i);
489 			if (p)
490 				printf("  %s\n", p);
491 			else
492 				printf("  user defined %d\n", i);
493 		}
494 	}
495 
496 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497 	printf("Maximum configurable length of RX packet: %u\n",
498 		dev_info.max_rx_pktlen);
499 	if (dev_info.max_vfs)
500 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501 	if (dev_info.max_vmdq_pools)
502 		printf("Maximum number of VMDq pools: %u\n",
503 			dev_info.max_vmdq_pools);
504 
505 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507 	printf("Max possible number of RXDs per queue: %hu\n",
508 		dev_info.rx_desc_lim.nb_max);
509 	printf("Min possible number of RXDs per queue: %hu\n",
510 		dev_info.rx_desc_lim.nb_min);
511 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512 
513 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515 	printf("Max possible number of TXDs per queue: %hu\n",
516 		dev_info.tx_desc_lim.nb_max);
517 	printf("Min possible number of TXDs per queue: %hu\n",
518 		dev_info.tx_desc_lim.nb_min);
519 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521 
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525 	struct rte_eth_dev_info dev_info;
526 	static const char *info_border = "************";
527 
528 	if (port_id_is_invalid(port_id, ENABLED_WARN))
529 		return;
530 
531 	rte_eth_dev_info_get(port_id, &dev_info);
532 
533 	printf("\n%s Port %d supported offload features: %s\n",
534 		info_border, port_id, info_border);
535 
536 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537 		printf("VLAN stripped:                 ");
538 		if (ports[port_id].dev_conf.rxmode.offloads &
539 		    DEV_RX_OFFLOAD_VLAN_STRIP)
540 			printf("on\n");
541 		else
542 			printf("off\n");
543 	}
544 
545 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546 		printf("Double VLANs stripped:         ");
547 		if (ports[port_id].dev_conf.rxmode.offloads &
548 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
549 			printf("on\n");
550 		else
551 			printf("off\n");
552 	}
553 
554 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555 		printf("RX IPv4 checksum:              ");
556 		if (ports[port_id].dev_conf.rxmode.offloads &
557 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
558 			printf("on\n");
559 		else
560 			printf("off\n");
561 	}
562 
563 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564 		printf("RX UDP checksum:               ");
565 		if (ports[port_id].dev_conf.rxmode.offloads &
566 		    DEV_RX_OFFLOAD_UDP_CKSUM)
567 			printf("on\n");
568 		else
569 			printf("off\n");
570 	}
571 
572 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573 		printf("RX TCP checksum:               ");
574 		if (ports[port_id].dev_conf.rxmode.offloads &
575 		    DEV_RX_OFFLOAD_TCP_CKSUM)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582 		printf("RX Outer IPv4 checksum:               ");
583 		if (ports[port_id].dev_conf.rxmode.offloads &
584 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585 			printf("on\n");
586 		else
587 			printf("off\n");
588 	}
589 
590 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591 		printf("Large receive offload:         ");
592 		if (ports[port_id].dev_conf.rxmode.offloads &
593 		    DEV_RX_OFFLOAD_TCP_LRO)
594 			printf("on\n");
595 		else
596 			printf("off\n");
597 	}
598 
599 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600 		printf("VLAN insert:                   ");
601 		if (ports[port_id].dev_conf.txmode.offloads &
602 		    DEV_TX_OFFLOAD_VLAN_INSERT)
603 			printf("on\n");
604 		else
605 			printf("off\n");
606 	}
607 
608 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609 		printf("HW timestamp:                  ");
610 		if (ports[port_id].dev_conf.rxmode.offloads &
611 		    DEV_RX_OFFLOAD_TIMESTAMP)
612 			printf("on\n");
613 		else
614 			printf("off\n");
615 	}
616 
617 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618 		printf("Double VLANs insert:           ");
619 		if (ports[port_id].dev_conf.txmode.offloads &
620 		    DEV_TX_OFFLOAD_QINQ_INSERT)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627 		printf("TX IPv4 checksum:              ");
628 		if (ports[port_id].dev_conf.txmode.offloads &
629 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
630 			printf("on\n");
631 		else
632 			printf("off\n");
633 	}
634 
635 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636 		printf("TX UDP checksum:               ");
637 		if (ports[port_id].dev_conf.txmode.offloads &
638 		    DEV_TX_OFFLOAD_UDP_CKSUM)
639 			printf("on\n");
640 		else
641 			printf("off\n");
642 	}
643 
644 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645 		printf("TX TCP checksum:               ");
646 		if (ports[port_id].dev_conf.txmode.offloads &
647 		    DEV_TX_OFFLOAD_TCP_CKSUM)
648 			printf("on\n");
649 		else
650 			printf("off\n");
651 	}
652 
653 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654 		printf("TX SCTP checksum:              ");
655 		if (ports[port_id].dev_conf.txmode.offloads &
656 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
657 			printf("on\n");
658 		else
659 			printf("off\n");
660 	}
661 
662 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663 		printf("TX Outer IPv4 checksum:        ");
664 		if (ports[port_id].dev_conf.txmode.offloads &
665 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666 			printf("on\n");
667 		else
668 			printf("off\n");
669 	}
670 
671 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672 		printf("TX TCP segmentation:           ");
673 		if (ports[port_id].dev_conf.txmode.offloads &
674 		    DEV_TX_OFFLOAD_TCP_TSO)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].dev_conf.txmode.offloads &
683 		    DEV_TX_OFFLOAD_UDP_TSO)
684 			printf("on\n");
685 		else
686 			printf("off\n");
687 	}
688 
689 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690 		printf("TSO for VXLAN tunnel packet:   ");
691 		if (ports[port_id].dev_conf.txmode.offloads &
692 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693 			printf("on\n");
694 		else
695 			printf("off\n");
696 	}
697 
698 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699 		printf("TSO for GRE tunnel packet:     ");
700 		if (ports[port_id].dev_conf.txmode.offloads &
701 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
702 			printf("on\n");
703 		else
704 			printf("off\n");
705 	}
706 
707 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708 		printf("TSO for IPIP tunnel packet:    ");
709 		if (ports[port_id].dev_conf.txmode.offloads &
710 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711 			printf("on\n");
712 		else
713 			printf("off\n");
714 	}
715 
716 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717 		printf("TSO for GENEVE tunnel packet:  ");
718 		if (ports[port_id].dev_conf.txmode.offloads &
719 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720 			printf("on\n");
721 		else
722 			printf("off\n");
723 	}
724 
725 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
726 		printf("IP tunnel TSO:  ");
727 		if (ports[port_id].dev_conf.txmode.offloads &
728 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
729 			printf("on\n");
730 		else
731 			printf("off\n");
732 	}
733 
734 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
735 		printf("UDP tunnel TSO:  ");
736 		if (ports[port_id].dev_conf.txmode.offloads &
737 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
738 			printf("on\n");
739 		else
740 			printf("off\n");
741 	}
742 }
743 
744 int
745 port_id_is_invalid(portid_t port_id, enum print_warning warning)
746 {
747 	uint16_t pid;
748 
749 	if (port_id == (portid_t)RTE_PORT_ALL)
750 		return 0;
751 
752 	RTE_ETH_FOREACH_DEV(pid)
753 		if (port_id == pid)
754 			return 0;
755 
756 	if (warning == ENABLED_WARN)
757 		printf("Invalid port %d\n", port_id);
758 
759 	return 1;
760 }
761 
762 static int
763 vlan_id_is_invalid(uint16_t vlan_id)
764 {
765 	if (vlan_id < 4096)
766 		return 0;
767 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
768 	return 1;
769 }
770 
771 static int
772 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
773 {
774 	const struct rte_pci_device *pci_dev;
775 	const struct rte_bus *bus;
776 	uint64_t pci_len;
777 
778 	if (reg_off & 0x3) {
779 		printf("Port register offset 0x%X not aligned on a 4-byte "
780 		       "boundary\n",
781 		       (unsigned)reg_off);
782 		return 1;
783 	}
784 
785 	if (!ports[port_id].dev_info.device) {
786 		printf("Invalid device\n");
787 		return 0;
788 	}
789 
790 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
791 	if (bus && !strcmp(bus->name, "pci")) {
792 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
793 	} else {
794 		printf("Not a PCI device\n");
795 		return 1;
796 	}
797 
798 	pci_len = pci_dev->mem_resource[0].len;
799 	if (reg_off >= pci_len) {
800 		printf("Port %d: register offset %u (0x%X) out of port PCI "
801 		       "resource (length=%"PRIu64")\n",
802 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
803 		return 1;
804 	}
805 	return 0;
806 }
807 
808 static int
809 reg_bit_pos_is_invalid(uint8_t bit_pos)
810 {
811 	if (bit_pos <= 31)
812 		return 0;
813 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
814 	return 1;
815 }
816 
817 #define display_port_and_reg_off(port_id, reg_off) \
818 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
819 
820 static inline void
821 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
822 {
823 	display_port_and_reg_off(port_id, (unsigned)reg_off);
824 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
825 }
826 
827 void
828 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
829 {
830 	uint32_t reg_v;
831 
832 
833 	if (port_id_is_invalid(port_id, ENABLED_WARN))
834 		return;
835 	if (port_reg_off_is_invalid(port_id, reg_off))
836 		return;
837 	if (reg_bit_pos_is_invalid(bit_x))
838 		return;
839 	reg_v = port_id_pci_reg_read(port_id, reg_off);
840 	display_port_and_reg_off(port_id, (unsigned)reg_off);
841 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
842 }
843 
844 void
845 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
846 			   uint8_t bit1_pos, uint8_t bit2_pos)
847 {
848 	uint32_t reg_v;
849 	uint8_t  l_bit;
850 	uint8_t  h_bit;
851 
852 	if (port_id_is_invalid(port_id, ENABLED_WARN))
853 		return;
854 	if (port_reg_off_is_invalid(port_id, reg_off))
855 		return;
856 	if (reg_bit_pos_is_invalid(bit1_pos))
857 		return;
858 	if (reg_bit_pos_is_invalid(bit2_pos))
859 		return;
860 	if (bit1_pos > bit2_pos)
861 		l_bit = bit2_pos, h_bit = bit1_pos;
862 	else
863 		l_bit = bit1_pos, h_bit = bit2_pos;
864 
865 	reg_v = port_id_pci_reg_read(port_id, reg_off);
866 	reg_v >>= l_bit;
867 	if (h_bit < 31)
868 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
869 	display_port_and_reg_off(port_id, (unsigned)reg_off);
870 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
871 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
872 }
873 
874 void
875 port_reg_display(portid_t port_id, uint32_t reg_off)
876 {
877 	uint32_t reg_v;
878 
879 	if (port_id_is_invalid(port_id, ENABLED_WARN))
880 		return;
881 	if (port_reg_off_is_invalid(port_id, reg_off))
882 		return;
883 	reg_v = port_id_pci_reg_read(port_id, reg_off);
884 	display_port_reg_value(port_id, reg_off, reg_v);
885 }
886 
887 void
888 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
889 		 uint8_t bit_v)
890 {
891 	uint32_t reg_v;
892 
893 	if (port_id_is_invalid(port_id, ENABLED_WARN))
894 		return;
895 	if (port_reg_off_is_invalid(port_id, reg_off))
896 		return;
897 	if (reg_bit_pos_is_invalid(bit_pos))
898 		return;
899 	if (bit_v > 1) {
900 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
901 		return;
902 	}
903 	reg_v = port_id_pci_reg_read(port_id, reg_off);
904 	if (bit_v == 0)
905 		reg_v &= ~(1 << bit_pos);
906 	else
907 		reg_v |= (1 << bit_pos);
908 	port_id_pci_reg_write(port_id, reg_off, reg_v);
909 	display_port_reg_value(port_id, reg_off, reg_v);
910 }
911 
912 void
913 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
914 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
915 {
916 	uint32_t max_v;
917 	uint32_t reg_v;
918 	uint8_t  l_bit;
919 	uint8_t  h_bit;
920 
921 	if (port_id_is_invalid(port_id, ENABLED_WARN))
922 		return;
923 	if (port_reg_off_is_invalid(port_id, reg_off))
924 		return;
925 	if (reg_bit_pos_is_invalid(bit1_pos))
926 		return;
927 	if (reg_bit_pos_is_invalid(bit2_pos))
928 		return;
929 	if (bit1_pos > bit2_pos)
930 		l_bit = bit2_pos, h_bit = bit1_pos;
931 	else
932 		l_bit = bit1_pos, h_bit = bit2_pos;
933 
934 	if ((h_bit - l_bit) < 31)
935 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
936 	else
937 		max_v = 0xFFFFFFFF;
938 
939 	if (value > max_v) {
940 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
941 				(unsigned)value, (unsigned)value,
942 				(unsigned)max_v, (unsigned)max_v);
943 		return;
944 	}
945 	reg_v = port_id_pci_reg_read(port_id, reg_off);
946 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
947 	reg_v |= (value << l_bit); /* Set changed bits */
948 	port_id_pci_reg_write(port_id, reg_off, reg_v);
949 	display_port_reg_value(port_id, reg_off, reg_v);
950 }
951 
952 void
953 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
954 {
955 	if (port_id_is_invalid(port_id, ENABLED_WARN))
956 		return;
957 	if (port_reg_off_is_invalid(port_id, reg_off))
958 		return;
959 	port_id_pci_reg_write(port_id, reg_off, reg_v);
960 	display_port_reg_value(port_id, reg_off, reg_v);
961 }
962 
963 void
964 port_mtu_set(portid_t port_id, uint16_t mtu)
965 {
966 	int diag;
967 
968 	if (port_id_is_invalid(port_id, ENABLED_WARN))
969 		return;
970 	diag = rte_eth_dev_set_mtu(port_id, mtu);
971 	if (diag == 0)
972 		return;
973 	printf("Set MTU failed. diag=%d\n", diag);
974 }
975 
976 /* Generic flow management functions. */
977 
978 /** Generate flow_item[] entry. */
979 #define MK_FLOW_ITEM(t, s) \
980 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
981 		.name = # t, \
982 		.size = s, \
983 	}
984 
985 /** Information about known flow pattern items. */
986 static const struct {
987 	const char *name;
988 	size_t size;
989 } flow_item[] = {
990 	MK_FLOW_ITEM(END, 0),
991 	MK_FLOW_ITEM(VOID, 0),
992 	MK_FLOW_ITEM(INVERT, 0),
993 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
994 	MK_FLOW_ITEM(PF, 0),
995 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
996 	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
997 	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
998 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
999 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1000 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1001 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1002 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1003 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1004 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1005 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1006 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1007 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1008 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1009 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1010 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1011 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1012 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1013 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1014 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1015 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1016 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1017 	MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1018 };
1019 
1020 /** Pattern item specification types. */
1021 enum item_spec_type {
1022 	ITEM_SPEC,
1023 	ITEM_LAST,
1024 	ITEM_MASK,
1025 };
1026 
1027 /** Compute storage space needed by item specification and copy it. */
1028 static size_t
1029 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1030 		    enum item_spec_type type)
1031 {
1032 	size_t size = 0;
1033 	const void *item_spec =
1034 		type == ITEM_SPEC ? item->spec :
1035 		type == ITEM_LAST ? item->last :
1036 		type == ITEM_MASK ? item->mask :
1037 		NULL;
1038 
1039 	if (!item_spec)
1040 		goto empty;
1041 	switch (item->type) {
1042 		union {
1043 			const struct rte_flow_item_raw *raw;
1044 		} src;
1045 		union {
1046 			struct rte_flow_item_raw *raw;
1047 		} dst;
1048 		size_t off;
1049 
1050 	case RTE_FLOW_ITEM_TYPE_RAW:
1051 		src.raw = item_spec;
1052 		dst.raw = buf;
1053 		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1054 				     sizeof(*src.raw->pattern));
1055 		size = off + src.raw->length * sizeof(*src.raw->pattern);
1056 		if (dst.raw) {
1057 			memcpy(dst.raw, src.raw, sizeof(*src.raw));
1058 			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1059 						  src.raw->pattern,
1060 						  size - off);
1061 		}
1062 		break;
1063 	default:
1064 		size = flow_item[item->type].size;
1065 		if (buf)
1066 			memcpy(buf, item_spec, size);
1067 		break;
1068 	}
1069 empty:
1070 	return RTE_ALIGN_CEIL(size, sizeof(double));
1071 }
1072 
1073 /** Generate flow_action[] entry. */
1074 #define MK_FLOW_ACTION(t, s) \
1075 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1076 		.name = # t, \
1077 		.size = s, \
1078 	}
1079 
1080 /** Information about known flow actions. */
1081 static const struct {
1082 	const char *name;
1083 	size_t size;
1084 } flow_action[] = {
1085 	MK_FLOW_ACTION(END, 0),
1086 	MK_FLOW_ACTION(VOID, 0),
1087 	MK_FLOW_ACTION(PASSTHRU, 0),
1088 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1089 	MK_FLOW_ACTION(FLAG, 0),
1090 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1091 	MK_FLOW_ACTION(DROP, 0),
1092 	MK_FLOW_ACTION(COUNT, 0),
1093 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1094 	MK_FLOW_ACTION(PF, 0),
1095 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1096 	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1097 	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1098 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1099 };
1100 
1101 /** Compute storage space needed by action configuration and copy it. */
1102 static size_t
1103 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1104 {
1105 	size_t size = 0;
1106 
1107 	if (!action->conf)
1108 		goto empty;
1109 	switch (action->type) {
1110 		union {
1111 			const struct rte_flow_action_rss *rss;
1112 		} src;
1113 		union {
1114 			struct rte_flow_action_rss *rss;
1115 		} dst;
1116 		size_t off;
1117 
1118 	case RTE_FLOW_ACTION_TYPE_RSS:
1119 		src.rss = action->conf;
1120 		dst.rss = buf;
1121 		off = 0;
1122 		if (dst.rss)
1123 			*dst.rss = (struct rte_flow_action_rss){
1124 				.func = src.rss->func,
1125 				.level = src.rss->level,
1126 				.types = src.rss->types,
1127 				.key_len = src.rss->key_len,
1128 				.queue_num = src.rss->queue_num,
1129 			};
1130 		off += sizeof(*src.rss);
1131 		if (src.rss->key_len) {
1132 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1133 			size = sizeof(*src.rss->key) * src.rss->key_len;
1134 			if (dst.rss)
1135 				dst.rss->key = memcpy
1136 					((void *)((uintptr_t)dst.rss + off),
1137 					 src.rss->key, size);
1138 			off += size;
1139 		}
1140 		if (src.rss->queue_num) {
1141 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1142 			size = sizeof(*src.rss->queue) * src.rss->queue_num;
1143 			if (dst.rss)
1144 				dst.rss->queue = memcpy
1145 					((void *)((uintptr_t)dst.rss + off),
1146 					 src.rss->queue, size);
1147 			off += size;
1148 		}
1149 		size = off;
1150 		break;
1151 	default:
1152 		size = flow_action[action->type].size;
1153 		if (buf)
1154 			memcpy(buf, action->conf, size);
1155 		break;
1156 	}
1157 empty:
1158 	return RTE_ALIGN_CEIL(size, sizeof(double));
1159 }
1160 
1161 /** Generate a port_flow entry from attributes/pattern/actions. */
1162 static struct port_flow *
1163 port_flow_new(const struct rte_flow_attr *attr,
1164 	      const struct rte_flow_item *pattern,
1165 	      const struct rte_flow_action *actions)
1166 {
1167 	const struct rte_flow_item *item;
1168 	const struct rte_flow_action *action;
1169 	struct port_flow *pf = NULL;
1170 	size_t tmp;
1171 	size_t off1 = 0;
1172 	size_t off2 = 0;
1173 	int err = ENOTSUP;
1174 
1175 store:
1176 	item = pattern;
1177 	if (pf)
1178 		pf->pattern = (void *)&pf->data[off1];
1179 	do {
1180 		struct rte_flow_item *dst = NULL;
1181 
1182 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1183 		    !flow_item[item->type].name)
1184 			goto notsup;
1185 		if (pf)
1186 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1187 		off1 += sizeof(*item);
1188 		if (item->spec) {
1189 			if (pf)
1190 				dst->spec = pf->data + off2;
1191 			off2 += flow_item_spec_copy
1192 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1193 		}
1194 		if (item->last) {
1195 			if (pf)
1196 				dst->last = pf->data + off2;
1197 			off2 += flow_item_spec_copy
1198 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1199 		}
1200 		if (item->mask) {
1201 			if (pf)
1202 				dst->mask = pf->data + off2;
1203 			off2 += flow_item_spec_copy
1204 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1205 		}
1206 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1207 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1208 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1209 	action = actions;
1210 	if (pf)
1211 		pf->actions = (void *)&pf->data[off1];
1212 	do {
1213 		struct rte_flow_action *dst = NULL;
1214 
1215 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1216 		    !flow_action[action->type].name)
1217 			goto notsup;
1218 		if (pf)
1219 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1220 		off1 += sizeof(*action);
1221 		if (action->conf) {
1222 			if (pf)
1223 				dst->conf = pf->data + off2;
1224 			off2 += flow_action_conf_copy
1225 				(pf ? pf->data + off2 : NULL, action);
1226 		}
1227 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1228 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1229 	if (pf != NULL)
1230 		return pf;
1231 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1232 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1233 	pf = calloc(1, tmp + off1 + off2);
1234 	if (pf == NULL)
1235 		err = errno;
1236 	else {
1237 		*pf = (const struct port_flow){
1238 			.size = tmp + off1 + off2,
1239 			.attr = *attr,
1240 		};
1241 		tmp -= offsetof(struct port_flow, data);
1242 		off2 = tmp + off1;
1243 		off1 = tmp;
1244 		goto store;
1245 	}
1246 notsup:
1247 	rte_errno = err;
1248 	return NULL;
1249 }
1250 
1251 /** Print a message out of a flow error. */
1252 static int
1253 port_flow_complain(struct rte_flow_error *error)
1254 {
1255 	static const char *const errstrlist[] = {
1256 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1257 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1258 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1259 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1260 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1261 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1262 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1263 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1264 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1265 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1266 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1267 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1268 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1269 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1270 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1271 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1272 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1273 	};
1274 	const char *errstr;
1275 	char buf[32];
1276 	int err = rte_errno;
1277 
1278 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1279 	    !errstrlist[error->type])
1280 		errstr = "unknown type";
1281 	else
1282 		errstr = errstrlist[error->type];
1283 	printf("Caught error type %d (%s): %s%s\n",
1284 	       error->type, errstr,
1285 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1286 					error->cause), buf) : "",
1287 	       error->message ? error->message : "(no stated reason)");
1288 	return -err;
1289 }
1290 
1291 /** Validate flow rule. */
1292 int
1293 port_flow_validate(portid_t port_id,
1294 		   const struct rte_flow_attr *attr,
1295 		   const struct rte_flow_item *pattern,
1296 		   const struct rte_flow_action *actions)
1297 {
1298 	struct rte_flow_error error;
1299 
1300 	/* Poisoning to make sure PMDs update it in case of error. */
1301 	memset(&error, 0x11, sizeof(error));
1302 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1303 		return port_flow_complain(&error);
1304 	printf("Flow rule validated\n");
1305 	return 0;
1306 }
1307 
1308 /** Create flow rule. */
1309 int
1310 port_flow_create(portid_t port_id,
1311 		 const struct rte_flow_attr *attr,
1312 		 const struct rte_flow_item *pattern,
1313 		 const struct rte_flow_action *actions)
1314 {
1315 	struct rte_flow *flow;
1316 	struct rte_port *port;
1317 	struct port_flow *pf;
1318 	uint32_t id;
1319 	struct rte_flow_error error;
1320 
1321 	/* Poisoning to make sure PMDs update it in case of error. */
1322 	memset(&error, 0x22, sizeof(error));
1323 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1324 	if (!flow)
1325 		return port_flow_complain(&error);
1326 	port = &ports[port_id];
1327 	if (port->flow_list) {
1328 		if (port->flow_list->id == UINT32_MAX) {
1329 			printf("Highest rule ID is already assigned, delete"
1330 			       " it first");
1331 			rte_flow_destroy(port_id, flow, NULL);
1332 			return -ENOMEM;
1333 		}
1334 		id = port->flow_list->id + 1;
1335 	} else
1336 		id = 0;
1337 	pf = port_flow_new(attr, pattern, actions);
1338 	if (!pf) {
1339 		int err = rte_errno;
1340 
1341 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1342 		rte_flow_destroy(port_id, flow, NULL);
1343 		return -err;
1344 	}
1345 	pf->next = port->flow_list;
1346 	pf->id = id;
1347 	pf->flow = flow;
1348 	port->flow_list = pf;
1349 	printf("Flow rule #%u created\n", pf->id);
1350 	return 0;
1351 }
1352 
1353 /** Destroy a number of flow rules. */
1354 int
1355 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1356 {
1357 	struct rte_port *port;
1358 	struct port_flow **tmp;
1359 	uint32_t c = 0;
1360 	int ret = 0;
1361 
1362 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1363 	    port_id == (portid_t)RTE_PORT_ALL)
1364 		return -EINVAL;
1365 	port = &ports[port_id];
1366 	tmp = &port->flow_list;
1367 	while (*tmp) {
1368 		uint32_t i;
1369 
1370 		for (i = 0; i != n; ++i) {
1371 			struct rte_flow_error error;
1372 			struct port_flow *pf = *tmp;
1373 
1374 			if (rule[i] != pf->id)
1375 				continue;
1376 			/*
1377 			 * Poisoning to make sure PMDs update it in case
1378 			 * of error.
1379 			 */
1380 			memset(&error, 0x33, sizeof(error));
1381 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1382 				ret = port_flow_complain(&error);
1383 				continue;
1384 			}
1385 			printf("Flow rule #%u destroyed\n", pf->id);
1386 			*tmp = pf->next;
1387 			free(pf);
1388 			break;
1389 		}
1390 		if (i == n)
1391 			tmp = &(*tmp)->next;
1392 		++c;
1393 	}
1394 	return ret;
1395 }
1396 
1397 /** Remove all flow rules. */
1398 int
1399 port_flow_flush(portid_t port_id)
1400 {
1401 	struct rte_flow_error error;
1402 	struct rte_port *port;
1403 	int ret = 0;
1404 
1405 	/* Poisoning to make sure PMDs update it in case of error. */
1406 	memset(&error, 0x44, sizeof(error));
1407 	if (rte_flow_flush(port_id, &error)) {
1408 		ret = port_flow_complain(&error);
1409 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1410 		    port_id == (portid_t)RTE_PORT_ALL)
1411 			return ret;
1412 	}
1413 	port = &ports[port_id];
1414 	while (port->flow_list) {
1415 		struct port_flow *pf = port->flow_list->next;
1416 
1417 		free(port->flow_list);
1418 		port->flow_list = pf;
1419 	}
1420 	return ret;
1421 }
1422 
1423 /** Query a flow rule. */
1424 int
1425 port_flow_query(portid_t port_id, uint32_t rule,
1426 		enum rte_flow_action_type action)
1427 {
1428 	struct rte_flow_error error;
1429 	struct rte_port *port;
1430 	struct port_flow *pf;
1431 	const char *name;
1432 	union {
1433 		struct rte_flow_query_count count;
1434 	} query;
1435 
1436 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1437 	    port_id == (portid_t)RTE_PORT_ALL)
1438 		return -EINVAL;
1439 	port = &ports[port_id];
1440 	for (pf = port->flow_list; pf; pf = pf->next)
1441 		if (pf->id == rule)
1442 			break;
1443 	if (!pf) {
1444 		printf("Flow rule #%u not found\n", rule);
1445 		return -ENOENT;
1446 	}
1447 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1448 	    !flow_action[action].name)
1449 		name = "unknown";
1450 	else
1451 		name = flow_action[action].name;
1452 	switch (action) {
1453 	case RTE_FLOW_ACTION_TYPE_COUNT:
1454 		break;
1455 	default:
1456 		printf("Cannot query action type %d (%s)\n", action, name);
1457 		return -ENOTSUP;
1458 	}
1459 	/* Poisoning to make sure PMDs update it in case of error. */
1460 	memset(&error, 0x55, sizeof(error));
1461 	memset(&query, 0, sizeof(query));
1462 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1463 		return port_flow_complain(&error);
1464 	switch (action) {
1465 	case RTE_FLOW_ACTION_TYPE_COUNT:
1466 		printf("%s:\n"
1467 		       " hits_set: %u\n"
1468 		       " bytes_set: %u\n"
1469 		       " hits: %" PRIu64 "\n"
1470 		       " bytes: %" PRIu64 "\n",
1471 		       name,
1472 		       query.count.hits_set,
1473 		       query.count.bytes_set,
1474 		       query.count.hits,
1475 		       query.count.bytes);
1476 		break;
1477 	default:
1478 		printf("Cannot display result for action type %d (%s)\n",
1479 		       action, name);
1480 		break;
1481 	}
1482 	return 0;
1483 }
1484 
1485 /** List flow rules. */
1486 void
1487 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1488 {
1489 	struct rte_port *port;
1490 	struct port_flow *pf;
1491 	struct port_flow *list = NULL;
1492 	uint32_t i;
1493 
1494 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1495 	    port_id == (portid_t)RTE_PORT_ALL)
1496 		return;
1497 	port = &ports[port_id];
1498 	if (!port->flow_list)
1499 		return;
1500 	/* Sort flows by group, priority and ID. */
1501 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1502 		struct port_flow **tmp;
1503 
1504 		if (n) {
1505 			/* Filter out unwanted groups. */
1506 			for (i = 0; i != n; ++i)
1507 				if (pf->attr.group == group[i])
1508 					break;
1509 			if (i == n)
1510 				continue;
1511 		}
1512 		tmp = &list;
1513 		while (*tmp &&
1514 		       (pf->attr.group > (*tmp)->attr.group ||
1515 			(pf->attr.group == (*tmp)->attr.group &&
1516 			 pf->attr.priority > (*tmp)->attr.priority) ||
1517 			(pf->attr.group == (*tmp)->attr.group &&
1518 			 pf->attr.priority == (*tmp)->attr.priority &&
1519 			 pf->id > (*tmp)->id)))
1520 			tmp = &(*tmp)->tmp;
1521 		pf->tmp = *tmp;
1522 		*tmp = pf;
1523 	}
1524 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1525 	for (pf = list; pf != NULL; pf = pf->tmp) {
1526 		const struct rte_flow_item *item = pf->pattern;
1527 		const struct rte_flow_action *action = pf->actions;
1528 
1529 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1530 		       pf->id,
1531 		       pf->attr.group,
1532 		       pf->attr.priority,
1533 		       pf->attr.ingress ? 'i' : '-',
1534 		       pf->attr.egress ? 'e' : '-',
1535 		       pf->attr.transfer ? 't' : '-');
1536 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1537 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1538 				printf("%s ", flow_item[item->type].name);
1539 			++item;
1540 		}
1541 		printf("=>");
1542 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1543 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1544 				printf(" %s", flow_action[action->type].name);
1545 			++action;
1546 		}
1547 		printf("\n");
1548 	}
1549 }
1550 
1551 /** Restrict ingress traffic to the defined flow rules. */
1552 int
1553 port_flow_isolate(portid_t port_id, int set)
1554 {
1555 	struct rte_flow_error error;
1556 
1557 	/* Poisoning to make sure PMDs update it in case of error. */
1558 	memset(&error, 0x66, sizeof(error));
1559 	if (rte_flow_isolate(port_id, set, &error))
1560 		return port_flow_complain(&error);
1561 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1562 	       port_id,
1563 	       set ? "now restricted" : "not restricted anymore");
1564 	return 0;
1565 }
1566 
1567 /*
1568  * RX/TX ring descriptors display functions.
1569  */
1570 int
1571 rx_queue_id_is_invalid(queueid_t rxq_id)
1572 {
1573 	if (rxq_id < nb_rxq)
1574 		return 0;
1575 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1576 	return 1;
1577 }
1578 
1579 int
1580 tx_queue_id_is_invalid(queueid_t txq_id)
1581 {
1582 	if (txq_id < nb_txq)
1583 		return 0;
1584 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1585 	return 1;
1586 }
1587 
1588 static int
1589 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1590 {
1591 	if (rxdesc_id < nb_rxd)
1592 		return 0;
1593 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1594 	       rxdesc_id, nb_rxd);
1595 	return 1;
1596 }
1597 
1598 static int
1599 tx_desc_id_is_invalid(uint16_t txdesc_id)
1600 {
1601 	if (txdesc_id < nb_txd)
1602 		return 0;
1603 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1604 	       txdesc_id, nb_txd);
1605 	return 1;
1606 }
1607 
1608 static const struct rte_memzone *
1609 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1610 {
1611 	char mz_name[RTE_MEMZONE_NAMESIZE];
1612 	const struct rte_memzone *mz;
1613 
1614 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1615 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1616 	mz = rte_memzone_lookup(mz_name);
1617 	if (mz == NULL)
1618 		printf("%s ring memory zoneof (port %d, queue %d) not"
1619 		       "found (zone name = %s\n",
1620 		       ring_name, port_id, q_id, mz_name);
1621 	return mz;
1622 }
1623 
1624 union igb_ring_dword {
1625 	uint64_t dword;
1626 	struct {
1627 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1628 		uint32_t lo;
1629 		uint32_t hi;
1630 #else
1631 		uint32_t hi;
1632 		uint32_t lo;
1633 #endif
1634 	} words;
1635 };
1636 
1637 struct igb_ring_desc_32_bytes {
1638 	union igb_ring_dword lo_dword;
1639 	union igb_ring_dword hi_dword;
1640 	union igb_ring_dword resv1;
1641 	union igb_ring_dword resv2;
1642 };
1643 
1644 struct igb_ring_desc_16_bytes {
1645 	union igb_ring_dword lo_dword;
1646 	union igb_ring_dword hi_dword;
1647 };
1648 
1649 static void
1650 ring_rxd_display_dword(union igb_ring_dword dword)
1651 {
1652 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1653 					(unsigned)dword.words.hi);
1654 }
1655 
1656 static void
1657 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1658 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1659 			   portid_t port_id,
1660 #else
1661 			   __rte_unused portid_t port_id,
1662 #endif
1663 			   uint16_t desc_id)
1664 {
1665 	struct igb_ring_desc_16_bytes *ring =
1666 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1667 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1668 	struct rte_eth_dev_info dev_info;
1669 
1670 	memset(&dev_info, 0, sizeof(dev_info));
1671 	rte_eth_dev_info_get(port_id, &dev_info);
1672 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1673 		/* 32 bytes RX descriptor, i40e only */
1674 		struct igb_ring_desc_32_bytes *ring =
1675 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1676 		ring[desc_id].lo_dword.dword =
1677 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1678 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1679 		ring[desc_id].hi_dword.dword =
1680 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1681 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1682 		ring[desc_id].resv1.dword =
1683 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1684 		ring_rxd_display_dword(ring[desc_id].resv1);
1685 		ring[desc_id].resv2.dword =
1686 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1687 		ring_rxd_display_dword(ring[desc_id].resv2);
1688 
1689 		return;
1690 	}
1691 #endif
1692 	/* 16 bytes RX descriptor */
1693 	ring[desc_id].lo_dword.dword =
1694 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1695 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1696 	ring[desc_id].hi_dword.dword =
1697 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1698 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1699 }
1700 
1701 static void
1702 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1703 {
1704 	struct igb_ring_desc_16_bytes *ring;
1705 	struct igb_ring_desc_16_bytes txd;
1706 
1707 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1708 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1709 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1710 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1711 			(unsigned)txd.lo_dword.words.lo,
1712 			(unsigned)txd.lo_dword.words.hi,
1713 			(unsigned)txd.hi_dword.words.lo,
1714 			(unsigned)txd.hi_dword.words.hi);
1715 }
1716 
1717 void
1718 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1719 {
1720 	const struct rte_memzone *rx_mz;
1721 
1722 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1723 		return;
1724 	if (rx_queue_id_is_invalid(rxq_id))
1725 		return;
1726 	if (rx_desc_id_is_invalid(rxd_id))
1727 		return;
1728 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1729 	if (rx_mz == NULL)
1730 		return;
1731 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1732 }
1733 
1734 void
1735 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1736 {
1737 	const struct rte_memzone *tx_mz;
1738 
1739 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1740 		return;
1741 	if (tx_queue_id_is_invalid(txq_id))
1742 		return;
1743 	if (tx_desc_id_is_invalid(txd_id))
1744 		return;
1745 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1746 	if (tx_mz == NULL)
1747 		return;
1748 	ring_tx_descriptor_display(tx_mz, txd_id);
1749 }
1750 
1751 void
1752 fwd_lcores_config_display(void)
1753 {
1754 	lcoreid_t lc_id;
1755 
1756 	printf("List of forwarding lcores:");
1757 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1758 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1759 	printf("\n");
1760 }
1761 void
1762 rxtx_config_display(void)
1763 {
1764 	portid_t pid;
1765 	queueid_t qid;
1766 
1767 	printf("  %s packet forwarding%s packets/burst=%d\n",
1768 	       cur_fwd_eng->fwd_mode_name,
1769 	       retry_enabled == 0 ? "" : " with retry",
1770 	       nb_pkt_per_burst);
1771 
1772 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1773 		printf("  packet len=%u - nb packet segments=%d\n",
1774 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1775 
1776 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1777 	       nb_fwd_lcores, nb_fwd_ports);
1778 
1779 	RTE_ETH_FOREACH_DEV(pid) {
1780 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1781 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1782 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1783 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1784 
1785 		/* per port config */
1786 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1787 				(unsigned int)pid, nb_rxq, nb_txq);
1788 
1789 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1790 				ports[pid].dev_conf.rxmode.offloads,
1791 				ports[pid].dev_conf.txmode.offloads);
1792 
1793 		/* per rx queue config only for first queue to be less verbose */
1794 		for (qid = 0; qid < 1; qid++) {
1795 			printf("    RX queue: %d\n", qid);
1796 			printf("      RX desc=%d - RX free threshold=%d\n",
1797 				nb_rx_desc[qid], rx_conf[qid].rx_free_thresh);
1798 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1799 				" wthresh=%d\n",
1800 				rx_conf[qid].rx_thresh.pthresh,
1801 				rx_conf[qid].rx_thresh.hthresh,
1802 				rx_conf[qid].rx_thresh.wthresh);
1803 			printf("      RX Offloads=0x%"PRIx64"\n",
1804 				rx_conf[qid].offloads);
1805 		}
1806 
1807 		/* per tx queue config only for first queue to be less verbose */
1808 		for (qid = 0; qid < 1; qid++) {
1809 			printf("    TX queue: %d\n", qid);
1810 			printf("      TX desc=%d - TX free threshold=%d\n",
1811 				nb_tx_desc[qid], tx_conf[qid].tx_free_thresh);
1812 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1813 				" wthresh=%d\n",
1814 				tx_conf[qid].tx_thresh.pthresh,
1815 				tx_conf[qid].tx_thresh.hthresh,
1816 				tx_conf[qid].tx_thresh.wthresh);
1817 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1818 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1819 		}
1820 	}
1821 }
1822 
1823 void
1824 port_rss_reta_info(portid_t port_id,
1825 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1826 		   uint16_t nb_entries)
1827 {
1828 	uint16_t i, idx, shift;
1829 	int ret;
1830 
1831 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1832 		return;
1833 
1834 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1835 	if (ret != 0) {
1836 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1837 		return;
1838 	}
1839 
1840 	for (i = 0; i < nb_entries; i++) {
1841 		idx = i / RTE_RETA_GROUP_SIZE;
1842 		shift = i % RTE_RETA_GROUP_SIZE;
1843 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1844 			continue;
1845 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1846 					i, reta_conf[idx].reta[shift]);
1847 	}
1848 }
1849 
1850 /*
1851  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1852  * key of the port.
1853  */
1854 void
1855 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1856 {
1857 	struct rte_eth_rss_conf rss_conf;
1858 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1859 	uint64_t rss_hf;
1860 	uint8_t i;
1861 	int diag;
1862 	struct rte_eth_dev_info dev_info;
1863 	uint8_t hash_key_size;
1864 
1865 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1866 		return;
1867 
1868 	memset(&dev_info, 0, sizeof(dev_info));
1869 	rte_eth_dev_info_get(port_id, &dev_info);
1870 	if (dev_info.hash_key_size > 0 &&
1871 			dev_info.hash_key_size <= sizeof(rss_key))
1872 		hash_key_size = dev_info.hash_key_size;
1873 	else {
1874 		printf("dev_info did not provide a valid hash key size\n");
1875 		return;
1876 	}
1877 
1878 	rss_conf.rss_hf = 0;
1879 	for (i = 0; rss_type_table[i].str; i++) {
1880 		if (!strcmp(rss_info, rss_type_table[i].str))
1881 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1882 	}
1883 
1884 	/* Get RSS hash key if asked to display it */
1885 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1886 	rss_conf.rss_key_len = hash_key_size;
1887 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1888 	if (diag != 0) {
1889 		switch (diag) {
1890 		case -ENODEV:
1891 			printf("port index %d invalid\n", port_id);
1892 			break;
1893 		case -ENOTSUP:
1894 			printf("operation not supported by device\n");
1895 			break;
1896 		default:
1897 			printf("operation failed - diag=%d\n", diag);
1898 			break;
1899 		}
1900 		return;
1901 	}
1902 	rss_hf = rss_conf.rss_hf;
1903 	if (rss_hf == 0) {
1904 		printf("RSS disabled\n");
1905 		return;
1906 	}
1907 	printf("RSS functions:\n ");
1908 	for (i = 0; rss_type_table[i].str; i++) {
1909 		if (rss_hf & rss_type_table[i].rss_type)
1910 			printf("%s ", rss_type_table[i].str);
1911 	}
1912 	printf("\n");
1913 	if (!show_rss_key)
1914 		return;
1915 	printf("RSS key:\n");
1916 	for (i = 0; i < hash_key_size; i++)
1917 		printf("%02X", rss_key[i]);
1918 	printf("\n");
1919 }
1920 
1921 void
1922 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1923 			 uint hash_key_len)
1924 {
1925 	struct rte_eth_rss_conf rss_conf;
1926 	int diag;
1927 	unsigned int i;
1928 
1929 	rss_conf.rss_key = NULL;
1930 	rss_conf.rss_key_len = hash_key_len;
1931 	rss_conf.rss_hf = 0;
1932 	for (i = 0; rss_type_table[i].str; i++) {
1933 		if (!strcmp(rss_type_table[i].str, rss_type))
1934 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1935 	}
1936 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1937 	if (diag == 0) {
1938 		rss_conf.rss_key = hash_key;
1939 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1940 	}
1941 	if (diag == 0)
1942 		return;
1943 
1944 	switch (diag) {
1945 	case -ENODEV:
1946 		printf("port index %d invalid\n", port_id);
1947 		break;
1948 	case -ENOTSUP:
1949 		printf("operation not supported by device\n");
1950 		break;
1951 	default:
1952 		printf("operation failed - diag=%d\n", diag);
1953 		break;
1954 	}
1955 }
1956 
1957 /*
1958  * Setup forwarding configuration for each logical core.
1959  */
1960 static void
1961 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1962 {
1963 	streamid_t nb_fs_per_lcore;
1964 	streamid_t nb_fs;
1965 	streamid_t sm_id;
1966 	lcoreid_t  nb_extra;
1967 	lcoreid_t  nb_fc;
1968 	lcoreid_t  nb_lc;
1969 	lcoreid_t  lc_id;
1970 
1971 	nb_fs = cfg->nb_fwd_streams;
1972 	nb_fc = cfg->nb_fwd_lcores;
1973 	if (nb_fs <= nb_fc) {
1974 		nb_fs_per_lcore = 1;
1975 		nb_extra = 0;
1976 	} else {
1977 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1978 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1979 	}
1980 
1981 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1982 	sm_id = 0;
1983 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1984 		fwd_lcores[lc_id]->stream_idx = sm_id;
1985 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1986 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1987 	}
1988 
1989 	/*
1990 	 * Assign extra remaining streams, if any.
1991 	 */
1992 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1993 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1994 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1995 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1996 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1997 	}
1998 }
1999 
2000 static portid_t
2001 fwd_topology_tx_port_get(portid_t rxp)
2002 {
2003 	static int warning_once = 1;
2004 
2005 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2006 
2007 	switch (port_topology) {
2008 	default:
2009 	case PORT_TOPOLOGY_PAIRED:
2010 		if ((rxp & 0x1) == 0) {
2011 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2012 				return rxp + 1;
2013 			if (warning_once) {
2014 				printf("\nWarning! port-topology=paired"
2015 				       " and odd forward ports number,"
2016 				       " the last port will pair with"
2017 				       " itself.\n\n");
2018 				warning_once = 0;
2019 			}
2020 			return rxp;
2021 		}
2022 		return rxp - 1;
2023 	case PORT_TOPOLOGY_CHAINED:
2024 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2025 	case PORT_TOPOLOGY_LOOP:
2026 		return rxp;
2027 	}
2028 }
2029 
2030 static void
2031 simple_fwd_config_setup(void)
2032 {
2033 	portid_t i;
2034 
2035 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2036 	cur_fwd_config.nb_fwd_streams =
2037 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2038 
2039 	/* reinitialize forwarding streams */
2040 	init_fwd_streams();
2041 
2042 	/*
2043 	 * In the simple forwarding test, the number of forwarding cores
2044 	 * must be lower or equal to the number of forwarding ports.
2045 	 */
2046 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2047 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2048 		cur_fwd_config.nb_fwd_lcores =
2049 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2050 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2051 
2052 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2053 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2054 		fwd_streams[i]->rx_queue  = 0;
2055 		fwd_streams[i]->tx_port   =
2056 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2057 		fwd_streams[i]->tx_queue  = 0;
2058 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2059 		fwd_streams[i]->retry_enabled = retry_enabled;
2060 	}
2061 }
2062 
2063 /**
2064  * For the RSS forwarding test all streams distributed over lcores. Each stream
2065  * being composed of a RX queue to poll on a RX port for input messages,
2066  * associated with a TX queue of a TX port where to send forwarded packets.
2067  */
2068 static void
2069 rss_fwd_config_setup(void)
2070 {
2071 	portid_t   rxp;
2072 	portid_t   txp;
2073 	queueid_t  rxq;
2074 	queueid_t  nb_q;
2075 	streamid_t  sm_id;
2076 
2077 	nb_q = nb_rxq;
2078 	if (nb_q > nb_txq)
2079 		nb_q = nb_txq;
2080 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2081 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2082 	cur_fwd_config.nb_fwd_streams =
2083 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2084 
2085 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2086 		cur_fwd_config.nb_fwd_lcores =
2087 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2088 
2089 	/* reinitialize forwarding streams */
2090 	init_fwd_streams();
2091 
2092 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2093 	rxp = 0; rxq = 0;
2094 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2095 		struct fwd_stream *fs;
2096 
2097 		fs = fwd_streams[sm_id];
2098 		txp = fwd_topology_tx_port_get(rxp);
2099 		fs->rx_port = fwd_ports_ids[rxp];
2100 		fs->rx_queue = rxq;
2101 		fs->tx_port = fwd_ports_ids[txp];
2102 		fs->tx_queue = rxq;
2103 		fs->peer_addr = fs->tx_port;
2104 		fs->retry_enabled = retry_enabled;
2105 		rxq = (queueid_t) (rxq + 1);
2106 		if (rxq < nb_q)
2107 			continue;
2108 		/*
2109 		 * rxq == nb_q
2110 		 * Restart from RX queue 0 on next RX port
2111 		 */
2112 		rxq = 0;
2113 		rxp++;
2114 	}
2115 }
2116 
2117 /**
2118  * For the DCB forwarding test, each core is assigned on each traffic class.
2119  *
2120  * Each core is assigned a multi-stream, each stream being composed of
2121  * a RX queue to poll on a RX port for input messages, associated with
2122  * a TX queue of a TX port where to send forwarded packets. All RX and
2123  * TX queues are mapping to the same traffic class.
2124  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2125  * the same core
2126  */
2127 static void
2128 dcb_fwd_config_setup(void)
2129 {
2130 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2131 	portid_t txp, rxp = 0;
2132 	queueid_t txq, rxq = 0;
2133 	lcoreid_t  lc_id;
2134 	uint16_t nb_rx_queue, nb_tx_queue;
2135 	uint16_t i, j, k, sm_id = 0;
2136 	uint8_t tc = 0;
2137 
2138 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2139 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2140 	cur_fwd_config.nb_fwd_streams =
2141 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2142 
2143 	/* reinitialize forwarding streams */
2144 	init_fwd_streams();
2145 	sm_id = 0;
2146 	txp = 1;
2147 	/* get the dcb info on the first RX and TX ports */
2148 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2149 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2150 
2151 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2152 		fwd_lcores[lc_id]->stream_nb = 0;
2153 		fwd_lcores[lc_id]->stream_idx = sm_id;
2154 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2155 			/* if the nb_queue is zero, means this tc is
2156 			 * not enabled on the POOL
2157 			 */
2158 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2159 				break;
2160 			k = fwd_lcores[lc_id]->stream_nb +
2161 				fwd_lcores[lc_id]->stream_idx;
2162 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2163 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2164 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2165 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2166 			for (j = 0; j < nb_rx_queue; j++) {
2167 				struct fwd_stream *fs;
2168 
2169 				fs = fwd_streams[k + j];
2170 				fs->rx_port = fwd_ports_ids[rxp];
2171 				fs->rx_queue = rxq + j;
2172 				fs->tx_port = fwd_ports_ids[txp];
2173 				fs->tx_queue = txq + j % nb_tx_queue;
2174 				fs->peer_addr = fs->tx_port;
2175 				fs->retry_enabled = retry_enabled;
2176 			}
2177 			fwd_lcores[lc_id]->stream_nb +=
2178 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2179 		}
2180 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2181 
2182 		tc++;
2183 		if (tc < rxp_dcb_info.nb_tcs)
2184 			continue;
2185 		/* Restart from TC 0 on next RX port */
2186 		tc = 0;
2187 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2188 			rxp = (portid_t)
2189 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2190 		else
2191 			rxp++;
2192 		if (rxp >= nb_fwd_ports)
2193 			return;
2194 		/* get the dcb information on next RX and TX ports */
2195 		if ((rxp & 0x1) == 0)
2196 			txp = (portid_t) (rxp + 1);
2197 		else
2198 			txp = (portid_t) (rxp - 1);
2199 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2200 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2201 	}
2202 }
2203 
2204 static void
2205 icmp_echo_config_setup(void)
2206 {
2207 	portid_t  rxp;
2208 	queueid_t rxq;
2209 	lcoreid_t lc_id;
2210 	uint16_t  sm_id;
2211 
2212 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2213 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2214 			(nb_txq * nb_fwd_ports);
2215 	else
2216 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2217 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2218 	cur_fwd_config.nb_fwd_streams =
2219 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2220 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2221 		cur_fwd_config.nb_fwd_lcores =
2222 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2223 	if (verbose_level > 0) {
2224 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2225 		       __FUNCTION__,
2226 		       cur_fwd_config.nb_fwd_lcores,
2227 		       cur_fwd_config.nb_fwd_ports,
2228 		       cur_fwd_config.nb_fwd_streams);
2229 	}
2230 
2231 	/* reinitialize forwarding streams */
2232 	init_fwd_streams();
2233 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2234 	rxp = 0; rxq = 0;
2235 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2236 		if (verbose_level > 0)
2237 			printf("  core=%d: \n", lc_id);
2238 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2239 			struct fwd_stream *fs;
2240 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2241 			fs->rx_port = fwd_ports_ids[rxp];
2242 			fs->rx_queue = rxq;
2243 			fs->tx_port = fs->rx_port;
2244 			fs->tx_queue = rxq;
2245 			fs->peer_addr = fs->tx_port;
2246 			fs->retry_enabled = retry_enabled;
2247 			if (verbose_level > 0)
2248 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2249 				       sm_id, fs->rx_port, fs->rx_queue,
2250 				       fs->tx_queue);
2251 			rxq = (queueid_t) (rxq + 1);
2252 			if (rxq == nb_rxq) {
2253 				rxq = 0;
2254 				rxp = (portid_t) (rxp + 1);
2255 			}
2256 		}
2257 	}
2258 }
2259 
2260 void
2261 fwd_config_setup(void)
2262 {
2263 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2264 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2265 		icmp_echo_config_setup();
2266 		return;
2267 	}
2268 	if ((nb_rxq > 1) && (nb_txq > 1)){
2269 		if (dcb_config)
2270 			dcb_fwd_config_setup();
2271 		else
2272 			rss_fwd_config_setup();
2273 	}
2274 	else
2275 		simple_fwd_config_setup();
2276 }
2277 
2278 void
2279 pkt_fwd_config_display(struct fwd_config *cfg)
2280 {
2281 	struct fwd_stream *fs;
2282 	lcoreid_t  lc_id;
2283 	streamid_t sm_id;
2284 
2285 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2286 		"NUMA support %s, MP over anonymous pages %s\n",
2287 		cfg->fwd_eng->fwd_mode_name,
2288 		retry_enabled == 0 ? "" : " with retry",
2289 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2290 		numa_support == 1 ? "enabled" : "disabled",
2291 		mp_anon != 0 ? "enabled" : "disabled");
2292 
2293 	if (retry_enabled)
2294 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2295 			burst_tx_retry_num, burst_tx_delay_time);
2296 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2297 		printf("Logical Core %u (socket %u) forwards packets on "
2298 		       "%d streams:",
2299 		       fwd_lcores_cpuids[lc_id],
2300 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2301 		       fwd_lcores[lc_id]->stream_nb);
2302 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2303 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2304 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2305 			       "P=%d/Q=%d (socket %u) ",
2306 			       fs->rx_port, fs->rx_queue,
2307 			       ports[fs->rx_port].socket_id,
2308 			       fs->tx_port, fs->tx_queue,
2309 			       ports[fs->tx_port].socket_id);
2310 			print_ethaddr("peer=",
2311 				      &peer_eth_addrs[fs->peer_addr]);
2312 		}
2313 		printf("\n");
2314 	}
2315 	printf("\n");
2316 }
2317 
2318 void
2319 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2320 {
2321 	uint8_t c, new_peer_addr[6];
2322 	if (!rte_eth_dev_is_valid_port(port_id)) {
2323 		printf("Error: Invalid port number %i\n", port_id);
2324 		return;
2325 	}
2326 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2327 					sizeof(new_peer_addr)) < 0) {
2328 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2329 		return;
2330 	}
2331 	for (c = 0; c < 6; c++)
2332 		peer_eth_addrs[port_id].addr_bytes[c] =
2333 			new_peer_addr[c];
2334 }
2335 
2336 int
2337 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2338 {
2339 	unsigned int i;
2340 	unsigned int lcore_cpuid;
2341 	int record_now;
2342 
2343 	record_now = 0;
2344  again:
2345 	for (i = 0; i < nb_lc; i++) {
2346 		lcore_cpuid = lcorelist[i];
2347 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2348 			printf("lcore %u not enabled\n", lcore_cpuid);
2349 			return -1;
2350 		}
2351 		if (lcore_cpuid == rte_get_master_lcore()) {
2352 			printf("lcore %u cannot be masked on for running "
2353 			       "packet forwarding, which is the master lcore "
2354 			       "and reserved for command line parsing only\n",
2355 			       lcore_cpuid);
2356 			return -1;
2357 		}
2358 		if (record_now)
2359 			fwd_lcores_cpuids[i] = lcore_cpuid;
2360 	}
2361 	if (record_now == 0) {
2362 		record_now = 1;
2363 		goto again;
2364 	}
2365 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2366 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2367 		printf("previous number of forwarding cores %u - changed to "
2368 		       "number of configured cores %u\n",
2369 		       (unsigned int) nb_fwd_lcores, nb_lc);
2370 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 int
2377 set_fwd_lcores_mask(uint64_t lcoremask)
2378 {
2379 	unsigned int lcorelist[64];
2380 	unsigned int nb_lc;
2381 	unsigned int i;
2382 
2383 	if (lcoremask == 0) {
2384 		printf("Invalid NULL mask of cores\n");
2385 		return -1;
2386 	}
2387 	nb_lc = 0;
2388 	for (i = 0; i < 64; i++) {
2389 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2390 			continue;
2391 		lcorelist[nb_lc++] = i;
2392 	}
2393 	return set_fwd_lcores_list(lcorelist, nb_lc);
2394 }
2395 
2396 void
2397 set_fwd_lcores_number(uint16_t nb_lc)
2398 {
2399 	if (nb_lc > nb_cfg_lcores) {
2400 		printf("nb fwd cores %u > %u (max. number of configured "
2401 		       "lcores) - ignored\n",
2402 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2403 		return;
2404 	}
2405 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2406 	printf("Number of forwarding cores set to %u\n",
2407 	       (unsigned int) nb_fwd_lcores);
2408 }
2409 
2410 void
2411 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2412 {
2413 	unsigned int i;
2414 	portid_t port_id;
2415 	int record_now;
2416 
2417 	record_now = 0;
2418  again:
2419 	for (i = 0; i < nb_pt; i++) {
2420 		port_id = (portid_t) portlist[i];
2421 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2422 			return;
2423 		if (record_now)
2424 			fwd_ports_ids[i] = port_id;
2425 	}
2426 	if (record_now == 0) {
2427 		record_now = 1;
2428 		goto again;
2429 	}
2430 	nb_cfg_ports = (portid_t) nb_pt;
2431 	if (nb_fwd_ports != (portid_t) nb_pt) {
2432 		printf("previous number of forwarding ports %u - changed to "
2433 		       "number of configured ports %u\n",
2434 		       (unsigned int) nb_fwd_ports, nb_pt);
2435 		nb_fwd_ports = (portid_t) nb_pt;
2436 	}
2437 }
2438 
2439 void
2440 set_fwd_ports_mask(uint64_t portmask)
2441 {
2442 	unsigned int portlist[64];
2443 	unsigned int nb_pt;
2444 	unsigned int i;
2445 
2446 	if (portmask == 0) {
2447 		printf("Invalid NULL mask of ports\n");
2448 		return;
2449 	}
2450 	nb_pt = 0;
2451 	RTE_ETH_FOREACH_DEV(i) {
2452 		if (! ((uint64_t)(1ULL << i) & portmask))
2453 			continue;
2454 		portlist[nb_pt++] = i;
2455 	}
2456 	set_fwd_ports_list(portlist, nb_pt);
2457 }
2458 
2459 void
2460 set_fwd_ports_number(uint16_t nb_pt)
2461 {
2462 	if (nb_pt > nb_cfg_ports) {
2463 		printf("nb fwd ports %u > %u (number of configured "
2464 		       "ports) - ignored\n",
2465 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2466 		return;
2467 	}
2468 	nb_fwd_ports = (portid_t) nb_pt;
2469 	printf("Number of forwarding ports set to %u\n",
2470 	       (unsigned int) nb_fwd_ports);
2471 }
2472 
2473 int
2474 port_is_forwarding(portid_t port_id)
2475 {
2476 	unsigned int i;
2477 
2478 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2479 		return -1;
2480 
2481 	for (i = 0; i < nb_fwd_ports; i++) {
2482 		if (fwd_ports_ids[i] == port_id)
2483 			return 1;
2484 	}
2485 
2486 	return 0;
2487 }
2488 
2489 void
2490 set_nb_pkt_per_burst(uint16_t nb)
2491 {
2492 	if (nb > MAX_PKT_BURST) {
2493 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2494 		       " ignored\n",
2495 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2496 		return;
2497 	}
2498 	nb_pkt_per_burst = nb;
2499 	printf("Number of packets per burst set to %u\n",
2500 	       (unsigned int) nb_pkt_per_burst);
2501 }
2502 
2503 static const char *
2504 tx_split_get_name(enum tx_pkt_split split)
2505 {
2506 	uint32_t i;
2507 
2508 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2509 		if (tx_split_name[i].split == split)
2510 			return tx_split_name[i].name;
2511 	}
2512 	return NULL;
2513 }
2514 
2515 void
2516 set_tx_pkt_split(const char *name)
2517 {
2518 	uint32_t i;
2519 
2520 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2521 		if (strcmp(tx_split_name[i].name, name) == 0) {
2522 			tx_pkt_split = tx_split_name[i].split;
2523 			return;
2524 		}
2525 	}
2526 	printf("unknown value: \"%s\"\n", name);
2527 }
2528 
2529 void
2530 show_tx_pkt_segments(void)
2531 {
2532 	uint32_t i, n;
2533 	const char *split;
2534 
2535 	n = tx_pkt_nb_segs;
2536 	split = tx_split_get_name(tx_pkt_split);
2537 
2538 	printf("Number of segments: %u\n", n);
2539 	printf("Segment sizes: ");
2540 	for (i = 0; i != n - 1; i++)
2541 		printf("%hu,", tx_pkt_seg_lengths[i]);
2542 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2543 	printf("Split packet: %s\n", split);
2544 }
2545 
2546 void
2547 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2548 {
2549 	uint16_t tx_pkt_len;
2550 	unsigned i;
2551 
2552 	if (nb_segs >= (unsigned) nb_txd) {
2553 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2554 		       nb_segs, (unsigned int) nb_txd);
2555 		return;
2556 	}
2557 
2558 	/*
2559 	 * Check that each segment length is greater or equal than
2560 	 * the mbuf data sise.
2561 	 * Check also that the total packet length is greater or equal than the
2562 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2563 	 */
2564 	tx_pkt_len = 0;
2565 	for (i = 0; i < nb_segs; i++) {
2566 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2567 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2568 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2569 			return;
2570 		}
2571 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2572 	}
2573 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2574 		printf("total packet length=%u < %d - give up\n",
2575 				(unsigned) tx_pkt_len,
2576 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2577 		return;
2578 	}
2579 
2580 	for (i = 0; i < nb_segs; i++)
2581 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2582 
2583 	tx_pkt_length  = tx_pkt_len;
2584 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2585 }
2586 
2587 void
2588 setup_gro(const char *onoff, portid_t port_id)
2589 {
2590 	if (!rte_eth_dev_is_valid_port(port_id)) {
2591 		printf("invalid port id %u\n", port_id);
2592 		return;
2593 	}
2594 	if (test_done == 0) {
2595 		printf("Before enable/disable GRO,"
2596 				" please stop forwarding first\n");
2597 		return;
2598 	}
2599 	if (strcmp(onoff, "on") == 0) {
2600 		if (gro_ports[port_id].enable != 0) {
2601 			printf("Port %u has enabled GRO. Please"
2602 					" disable GRO first\n", port_id);
2603 			return;
2604 		}
2605 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2606 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2607 			gro_ports[port_id].param.max_flow_num =
2608 				GRO_DEFAULT_FLOW_NUM;
2609 			gro_ports[port_id].param.max_item_per_flow =
2610 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2611 		}
2612 		gro_ports[port_id].enable = 1;
2613 	} else {
2614 		if (gro_ports[port_id].enable == 0) {
2615 			printf("Port %u has disabled GRO\n", port_id);
2616 			return;
2617 		}
2618 		gro_ports[port_id].enable = 0;
2619 	}
2620 }
2621 
2622 void
2623 setup_gro_flush_cycles(uint8_t cycles)
2624 {
2625 	if (test_done == 0) {
2626 		printf("Before change flush interval for GRO,"
2627 				" please stop forwarding first.\n");
2628 		return;
2629 	}
2630 
2631 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2632 			GRO_DEFAULT_FLUSH_CYCLES) {
2633 		printf("The flushing cycle be in the range"
2634 				" of 1 to %u. Revert to the default"
2635 				" value %u.\n",
2636 				GRO_MAX_FLUSH_CYCLES,
2637 				GRO_DEFAULT_FLUSH_CYCLES);
2638 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2639 	}
2640 
2641 	gro_flush_cycles = cycles;
2642 }
2643 
2644 void
2645 show_gro(portid_t port_id)
2646 {
2647 	struct rte_gro_param *param;
2648 	uint32_t max_pkts_num;
2649 
2650 	param = &gro_ports[port_id].param;
2651 
2652 	if (!rte_eth_dev_is_valid_port(port_id)) {
2653 		printf("Invalid port id %u.\n", port_id);
2654 		return;
2655 	}
2656 	if (gro_ports[port_id].enable) {
2657 		printf("GRO type: TCP/IPv4\n");
2658 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2659 			max_pkts_num = param->max_flow_num *
2660 				param->max_item_per_flow;
2661 		} else
2662 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2663 		printf("Max number of packets to perform GRO: %u\n",
2664 				max_pkts_num);
2665 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2666 	} else
2667 		printf("Port %u doesn't enable GRO.\n", port_id);
2668 }
2669 
2670 void
2671 setup_gso(const char *mode, portid_t port_id)
2672 {
2673 	if (!rte_eth_dev_is_valid_port(port_id)) {
2674 		printf("invalid port id %u\n", port_id);
2675 		return;
2676 	}
2677 	if (strcmp(mode, "on") == 0) {
2678 		if (test_done == 0) {
2679 			printf("before enabling GSO,"
2680 					" please stop forwarding first\n");
2681 			return;
2682 		}
2683 		gso_ports[port_id].enable = 1;
2684 	} else if (strcmp(mode, "off") == 0) {
2685 		if (test_done == 0) {
2686 			printf("before disabling GSO,"
2687 					" please stop forwarding first\n");
2688 			return;
2689 		}
2690 		gso_ports[port_id].enable = 0;
2691 	}
2692 }
2693 
2694 char*
2695 list_pkt_forwarding_modes(void)
2696 {
2697 	static char fwd_modes[128] = "";
2698 	const char *separator = "|";
2699 	struct fwd_engine *fwd_eng;
2700 	unsigned i = 0;
2701 
2702 	if (strlen (fwd_modes) == 0) {
2703 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2704 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2705 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2706 			strncat(fwd_modes, separator,
2707 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2708 		}
2709 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2710 	}
2711 
2712 	return fwd_modes;
2713 }
2714 
2715 char*
2716 list_pkt_forwarding_retry_modes(void)
2717 {
2718 	static char fwd_modes[128] = "";
2719 	const char *separator = "|";
2720 	struct fwd_engine *fwd_eng;
2721 	unsigned i = 0;
2722 
2723 	if (strlen(fwd_modes) == 0) {
2724 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2725 			if (fwd_eng == &rx_only_engine)
2726 				continue;
2727 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2728 					sizeof(fwd_modes) -
2729 					strlen(fwd_modes) - 1);
2730 			strncat(fwd_modes, separator,
2731 					sizeof(fwd_modes) -
2732 					strlen(fwd_modes) - 1);
2733 		}
2734 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2735 	}
2736 
2737 	return fwd_modes;
2738 }
2739 
2740 void
2741 set_pkt_forwarding_mode(const char *fwd_mode_name)
2742 {
2743 	struct fwd_engine *fwd_eng;
2744 	unsigned i;
2745 
2746 	i = 0;
2747 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2748 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2749 			printf("Set %s packet forwarding mode%s\n",
2750 			       fwd_mode_name,
2751 			       retry_enabled == 0 ? "" : " with retry");
2752 			cur_fwd_eng = fwd_eng;
2753 			return;
2754 		}
2755 		i++;
2756 	}
2757 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2758 }
2759 
2760 void
2761 set_verbose_level(uint16_t vb_level)
2762 {
2763 	printf("Change verbose level from %u to %u\n",
2764 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2765 	verbose_level = vb_level;
2766 }
2767 
2768 void
2769 vlan_extend_set(portid_t port_id, int on)
2770 {
2771 	int diag;
2772 	int vlan_offload;
2773 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2774 
2775 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2776 		return;
2777 
2778 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2779 
2780 	if (on) {
2781 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2782 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2783 	} else {
2784 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2785 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2786 	}
2787 
2788 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2789 	if (diag < 0)
2790 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2791 	       "diag=%d\n", port_id, on, diag);
2792 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2793 }
2794 
2795 void
2796 rx_vlan_strip_set(portid_t port_id, int on)
2797 {
2798 	int diag;
2799 	int vlan_offload;
2800 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2801 
2802 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2803 		return;
2804 
2805 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2806 
2807 	if (on) {
2808 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2809 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2810 	} else {
2811 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2812 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2813 	}
2814 
2815 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2816 	if (diag < 0)
2817 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2818 	       "diag=%d\n", port_id, on, diag);
2819 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2820 }
2821 
2822 void
2823 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2824 {
2825 	int diag;
2826 
2827 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2828 		return;
2829 
2830 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2831 	if (diag < 0)
2832 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2833 	       "diag=%d\n", port_id, queue_id, on, diag);
2834 }
2835 
2836 void
2837 rx_vlan_filter_set(portid_t port_id, int on)
2838 {
2839 	int diag;
2840 	int vlan_offload;
2841 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2842 
2843 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2844 		return;
2845 
2846 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2847 
2848 	if (on) {
2849 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2850 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2851 	} else {
2852 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2853 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2854 	}
2855 
2856 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2857 	if (diag < 0)
2858 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2859 	       "diag=%d\n", port_id, on, diag);
2860 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2861 }
2862 
2863 int
2864 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2865 {
2866 	int diag;
2867 
2868 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2869 		return 1;
2870 	if (vlan_id_is_invalid(vlan_id))
2871 		return 1;
2872 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2873 	if (diag == 0)
2874 		return 0;
2875 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2876 	       "diag=%d\n",
2877 	       port_id, vlan_id, on, diag);
2878 	return -1;
2879 }
2880 
2881 void
2882 rx_vlan_all_filter_set(portid_t port_id, int on)
2883 {
2884 	uint16_t vlan_id;
2885 
2886 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2887 		return;
2888 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2889 		if (rx_vft_set(port_id, vlan_id, on))
2890 			break;
2891 	}
2892 }
2893 
2894 void
2895 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2896 {
2897 	int diag;
2898 
2899 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2900 		return;
2901 
2902 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2903 	if (diag == 0)
2904 		return;
2905 
2906 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2907 	       "diag=%d\n",
2908 	       port_id, vlan_type, tp_id, diag);
2909 }
2910 
2911 void
2912 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2913 {
2914 	int vlan_offload;
2915 	struct rte_eth_dev_info dev_info;
2916 
2917 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2918 		return;
2919 	if (vlan_id_is_invalid(vlan_id))
2920 		return;
2921 
2922 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2923 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2924 		printf("Error, as QinQ has been enabled.\n");
2925 		return;
2926 	}
2927 	rte_eth_dev_info_get(port_id, &dev_info);
2928 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2929 		printf("Error: vlan insert is not supported by port %d\n",
2930 			port_id);
2931 		return;
2932 	}
2933 
2934 	tx_vlan_reset(port_id);
2935 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2936 	ports[port_id].tx_vlan_id = vlan_id;
2937 }
2938 
2939 void
2940 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2941 {
2942 	int vlan_offload;
2943 	struct rte_eth_dev_info dev_info;
2944 
2945 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2946 		return;
2947 	if (vlan_id_is_invalid(vlan_id))
2948 		return;
2949 	if (vlan_id_is_invalid(vlan_id_outer))
2950 		return;
2951 
2952 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2953 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2954 		printf("Error, as QinQ hasn't been enabled.\n");
2955 		return;
2956 	}
2957 	rte_eth_dev_info_get(port_id, &dev_info);
2958 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2959 		printf("Error: qinq insert not supported by port %d\n",
2960 			port_id);
2961 		return;
2962 	}
2963 
2964 	tx_vlan_reset(port_id);
2965 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2966 	ports[port_id].tx_vlan_id = vlan_id;
2967 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2968 }
2969 
2970 void
2971 tx_vlan_reset(portid_t port_id)
2972 {
2973 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2974 		return;
2975 	ports[port_id].dev_conf.txmode.offloads &=
2976 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2977 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2978 	ports[port_id].tx_vlan_id = 0;
2979 	ports[port_id].tx_vlan_id_outer = 0;
2980 }
2981 
2982 void
2983 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2984 {
2985 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2986 		return;
2987 
2988 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2989 }
2990 
2991 void
2992 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2993 {
2994 	uint16_t i;
2995 	uint8_t existing_mapping_found = 0;
2996 
2997 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2998 		return;
2999 
3000 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3001 		return;
3002 
3003 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3004 		printf("map_value not in required range 0..%d\n",
3005 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3006 		return;
3007 	}
3008 
3009 	if (!is_rx) { /*then tx*/
3010 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3011 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3012 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3013 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3014 				existing_mapping_found = 1;
3015 				break;
3016 			}
3017 		}
3018 		if (!existing_mapping_found) { /* A new additional mapping... */
3019 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3020 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3021 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3022 			nb_tx_queue_stats_mappings++;
3023 		}
3024 	}
3025 	else { /*rx*/
3026 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3027 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3028 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3029 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3030 				existing_mapping_found = 1;
3031 				break;
3032 			}
3033 		}
3034 		if (!existing_mapping_found) { /* A new additional mapping... */
3035 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3036 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3037 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3038 			nb_rx_queue_stats_mappings++;
3039 		}
3040 	}
3041 }
3042 
3043 void
3044 set_xstats_hide_zero(uint8_t on_off)
3045 {
3046 	xstats_hide_zero = on_off;
3047 }
3048 
3049 static inline void
3050 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3051 {
3052 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3053 
3054 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3055 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3056 			" tunnel_id: 0x%08x",
3057 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3058 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3059 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3060 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3061 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3062 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3063 
3064 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3065 			rte_be_to_cpu_16(mask->src_port_mask),
3066 			rte_be_to_cpu_16(mask->dst_port_mask));
3067 
3068 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3069 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3070 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3071 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3072 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3073 
3074 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3075 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3076 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3077 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3078 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3079 	}
3080 
3081 	printf("\n");
3082 }
3083 
3084 static inline void
3085 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3086 {
3087 	struct rte_eth_flex_payload_cfg *cfg;
3088 	uint32_t i, j;
3089 
3090 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3091 		cfg = &flex_conf->flex_set[i];
3092 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3093 			printf("\n    RAW:  ");
3094 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3095 			printf("\n    L2_PAYLOAD:  ");
3096 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3097 			printf("\n    L3_PAYLOAD:  ");
3098 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3099 			printf("\n    L4_PAYLOAD:  ");
3100 		else
3101 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3102 		for (j = 0; j < num; j++)
3103 			printf("  %-5u", cfg->src_offset[j]);
3104 	}
3105 	printf("\n");
3106 }
3107 
3108 static char *
3109 flowtype_to_str(uint16_t flow_type)
3110 {
3111 	struct flow_type_info {
3112 		char str[32];
3113 		uint16_t ftype;
3114 	};
3115 
3116 	uint8_t i;
3117 	static struct flow_type_info flowtype_str_table[] = {
3118 		{"raw", RTE_ETH_FLOW_RAW},
3119 		{"ipv4", RTE_ETH_FLOW_IPV4},
3120 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3121 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3122 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3123 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3124 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3125 		{"ipv6", RTE_ETH_FLOW_IPV6},
3126 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3127 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3128 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3129 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3130 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3131 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3132 		{"port", RTE_ETH_FLOW_PORT},
3133 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3134 		{"geneve", RTE_ETH_FLOW_GENEVE},
3135 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3136 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3137 	};
3138 
3139 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3140 		if (flowtype_str_table[i].ftype == flow_type)
3141 			return flowtype_str_table[i].str;
3142 	}
3143 
3144 	return NULL;
3145 }
3146 
3147 static inline void
3148 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3149 {
3150 	struct rte_eth_fdir_flex_mask *mask;
3151 	uint32_t i, j;
3152 	char *p;
3153 
3154 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3155 		mask = &flex_conf->flex_mask[i];
3156 		p = flowtype_to_str(mask->flow_type);
3157 		printf("\n    %s:\t", p ? p : "unknown");
3158 		for (j = 0; j < num; j++)
3159 			printf(" %02x", mask->mask[j]);
3160 	}
3161 	printf("\n");
3162 }
3163 
3164 static inline void
3165 print_fdir_flow_type(uint32_t flow_types_mask)
3166 {
3167 	int i;
3168 	char *p;
3169 
3170 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3171 		if (!(flow_types_mask & (1 << i)))
3172 			continue;
3173 		p = flowtype_to_str(i);
3174 		if (p)
3175 			printf(" %s", p);
3176 		else
3177 			printf(" unknown");
3178 	}
3179 	printf("\n");
3180 }
3181 
3182 void
3183 fdir_get_infos(portid_t port_id)
3184 {
3185 	struct rte_eth_fdir_stats fdir_stat;
3186 	struct rte_eth_fdir_info fdir_info;
3187 	int ret;
3188 
3189 	static const char *fdir_stats_border = "########################";
3190 
3191 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3192 		return;
3193 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3194 	if (ret < 0) {
3195 		printf("\n FDIR is not supported on port %-2d\n",
3196 			port_id);
3197 		return;
3198 	}
3199 
3200 	memset(&fdir_info, 0, sizeof(fdir_info));
3201 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3202 			       RTE_ETH_FILTER_INFO, &fdir_info);
3203 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3204 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3205 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3206 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3207 	       fdir_stats_border, port_id, fdir_stats_border);
3208 	printf("  MODE: ");
3209 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3210 		printf("  PERFECT\n");
3211 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3212 		printf("  PERFECT-MAC-VLAN\n");
3213 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3214 		printf("  PERFECT-TUNNEL\n");
3215 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3216 		printf("  SIGNATURE\n");
3217 	else
3218 		printf("  DISABLE\n");
3219 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3220 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3221 		printf("  SUPPORTED FLOW TYPE: ");
3222 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3223 	}
3224 	printf("  FLEX PAYLOAD INFO:\n");
3225 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3226 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3227 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3228 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3229 		fdir_info.flex_payload_unit,
3230 		fdir_info.max_flex_payload_segment_num,
3231 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3232 	printf("  MASK: ");
3233 	print_fdir_mask(&fdir_info.mask);
3234 	if (fdir_info.flex_conf.nb_payloads > 0) {
3235 		printf("  FLEX PAYLOAD SRC OFFSET:");
3236 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3237 	}
3238 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3239 		printf("  FLEX MASK CFG:");
3240 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3241 	}
3242 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3243 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3244 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3245 	       fdir_info.guarant_spc, fdir_info.best_spc);
3246 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3247 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3248 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3249 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3250 	       fdir_stat.collision, fdir_stat.free,
3251 	       fdir_stat.maxhash, fdir_stat.maxlen,
3252 	       fdir_stat.add, fdir_stat.remove,
3253 	       fdir_stat.f_add, fdir_stat.f_remove);
3254 	printf("  %s############################%s\n",
3255 	       fdir_stats_border, fdir_stats_border);
3256 }
3257 
3258 void
3259 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3260 {
3261 	struct rte_port *port;
3262 	struct rte_eth_fdir_flex_conf *flex_conf;
3263 	int i, idx = 0;
3264 
3265 	port = &ports[port_id];
3266 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3267 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3268 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3269 			idx = i;
3270 			break;
3271 		}
3272 	}
3273 	if (i >= RTE_ETH_FLOW_MAX) {
3274 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3275 			idx = flex_conf->nb_flexmasks;
3276 			flex_conf->nb_flexmasks++;
3277 		} else {
3278 			printf("The flex mask table is full. Can not set flex"
3279 				" mask for flow_type(%u).", cfg->flow_type);
3280 			return;
3281 		}
3282 	}
3283 	rte_memcpy(&flex_conf->flex_mask[idx],
3284 			 cfg,
3285 			 sizeof(struct rte_eth_fdir_flex_mask));
3286 }
3287 
3288 void
3289 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3290 {
3291 	struct rte_port *port;
3292 	struct rte_eth_fdir_flex_conf *flex_conf;
3293 	int i, idx = 0;
3294 
3295 	port = &ports[port_id];
3296 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3297 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3298 		if (cfg->type == flex_conf->flex_set[i].type) {
3299 			idx = i;
3300 			break;
3301 		}
3302 	}
3303 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3304 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3305 			idx = flex_conf->nb_payloads;
3306 			flex_conf->nb_payloads++;
3307 		} else {
3308 			printf("The flex payload table is full. Can not set"
3309 				" flex payload for type(%u).", cfg->type);
3310 			return;
3311 		}
3312 	}
3313 	rte_memcpy(&flex_conf->flex_set[idx],
3314 			 cfg,
3315 			 sizeof(struct rte_eth_flex_payload_cfg));
3316 
3317 }
3318 
3319 void
3320 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3321 {
3322 #ifdef RTE_LIBRTE_IXGBE_PMD
3323 	int diag;
3324 
3325 	if (is_rx)
3326 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3327 	else
3328 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3329 
3330 	if (diag == 0)
3331 		return;
3332 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3333 			is_rx ? "rx" : "tx", port_id, diag);
3334 	return;
3335 #endif
3336 	printf("VF %s setting not supported for port %d\n",
3337 			is_rx ? "Rx" : "Tx", port_id);
3338 	RTE_SET_USED(vf);
3339 	RTE_SET_USED(on);
3340 }
3341 
3342 int
3343 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3344 {
3345 	int diag;
3346 	struct rte_eth_link link;
3347 
3348 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3349 		return 1;
3350 	rte_eth_link_get_nowait(port_id, &link);
3351 	if (rate > link.link_speed) {
3352 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3353 			rate, link.link_speed);
3354 		return 1;
3355 	}
3356 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3357 	if (diag == 0)
3358 		return diag;
3359 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3360 		port_id, diag);
3361 	return diag;
3362 }
3363 
3364 int
3365 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3366 {
3367 	int diag = -ENOTSUP;
3368 
3369 	RTE_SET_USED(vf);
3370 	RTE_SET_USED(rate);
3371 	RTE_SET_USED(q_msk);
3372 
3373 #ifdef RTE_LIBRTE_IXGBE_PMD
3374 	if (diag == -ENOTSUP)
3375 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3376 						       q_msk);
3377 #endif
3378 #ifdef RTE_LIBRTE_BNXT_PMD
3379 	if (diag == -ENOTSUP)
3380 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3381 #endif
3382 	if (diag == 0)
3383 		return diag;
3384 
3385 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3386 		port_id, diag);
3387 	return diag;
3388 }
3389 
3390 /*
3391  * Functions to manage the set of filtered Multicast MAC addresses.
3392  *
3393  * A pool of filtered multicast MAC addresses is associated with each port.
3394  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3395  * The address of the pool and the number of valid multicast MAC addresses
3396  * recorded in the pool are stored in the fields "mc_addr_pool" and
3397  * "mc_addr_nb" of the "rte_port" data structure.
3398  *
3399  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3400  * to be supplied a contiguous array of multicast MAC addresses.
3401  * To comply with this constraint, the set of multicast addresses recorded
3402  * into the pool are systematically compacted at the beginning of the pool.
3403  * Hence, when a multicast address is removed from the pool, all following
3404  * addresses, if any, are copied back to keep the set contiguous.
3405  */
3406 #define MCAST_POOL_INC 32
3407 
3408 static int
3409 mcast_addr_pool_extend(struct rte_port *port)
3410 {
3411 	struct ether_addr *mc_pool;
3412 	size_t mc_pool_size;
3413 
3414 	/*
3415 	 * If a free entry is available at the end of the pool, just
3416 	 * increment the number of recorded multicast addresses.
3417 	 */
3418 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3419 		port->mc_addr_nb++;
3420 		return 0;
3421 	}
3422 
3423 	/*
3424 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3425 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3426 	 * of MCAST_POOL_INC.
3427 	 */
3428 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3429 						    MCAST_POOL_INC);
3430 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3431 						mc_pool_size);
3432 	if (mc_pool == NULL) {
3433 		printf("allocation of pool of %u multicast addresses failed\n",
3434 		       port->mc_addr_nb + MCAST_POOL_INC);
3435 		return -ENOMEM;
3436 	}
3437 
3438 	port->mc_addr_pool = mc_pool;
3439 	port->mc_addr_nb++;
3440 	return 0;
3441 
3442 }
3443 
3444 static void
3445 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3446 {
3447 	port->mc_addr_nb--;
3448 	if (addr_idx == port->mc_addr_nb) {
3449 		/* No need to recompact the set of multicast addressses. */
3450 		if (port->mc_addr_nb == 0) {
3451 			/* free the pool of multicast addresses. */
3452 			free(port->mc_addr_pool);
3453 			port->mc_addr_pool = NULL;
3454 		}
3455 		return;
3456 	}
3457 	memmove(&port->mc_addr_pool[addr_idx],
3458 		&port->mc_addr_pool[addr_idx + 1],
3459 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3460 }
3461 
3462 static void
3463 eth_port_multicast_addr_list_set(portid_t port_id)
3464 {
3465 	struct rte_port *port;
3466 	int diag;
3467 
3468 	port = &ports[port_id];
3469 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3470 					    port->mc_addr_nb);
3471 	if (diag == 0)
3472 		return;
3473 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3474 	       port->mc_addr_nb, port_id, -diag);
3475 }
3476 
3477 void
3478 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3479 {
3480 	struct rte_port *port;
3481 	uint32_t i;
3482 
3483 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3484 		return;
3485 
3486 	port = &ports[port_id];
3487 
3488 	/*
3489 	 * Check that the added multicast MAC address is not already recorded
3490 	 * in the pool of multicast addresses.
3491 	 */
3492 	for (i = 0; i < port->mc_addr_nb; i++) {
3493 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3494 			printf("multicast address already filtered by port\n");
3495 			return;
3496 		}
3497 	}
3498 
3499 	if (mcast_addr_pool_extend(port) != 0)
3500 		return;
3501 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3502 	eth_port_multicast_addr_list_set(port_id);
3503 }
3504 
3505 void
3506 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3507 {
3508 	struct rte_port *port;
3509 	uint32_t i;
3510 
3511 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3512 		return;
3513 
3514 	port = &ports[port_id];
3515 
3516 	/*
3517 	 * Search the pool of multicast MAC addresses for the removed address.
3518 	 */
3519 	for (i = 0; i < port->mc_addr_nb; i++) {
3520 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3521 			break;
3522 	}
3523 	if (i == port->mc_addr_nb) {
3524 		printf("multicast address not filtered by port %d\n", port_id);
3525 		return;
3526 	}
3527 
3528 	mcast_addr_pool_remove(port, i);
3529 	eth_port_multicast_addr_list_set(port_id);
3530 }
3531 
3532 void
3533 port_dcb_info_display(portid_t port_id)
3534 {
3535 	struct rte_eth_dcb_info dcb_info;
3536 	uint16_t i;
3537 	int ret;
3538 	static const char *border = "================";
3539 
3540 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3541 		return;
3542 
3543 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3544 	if (ret) {
3545 		printf("\n Failed to get dcb infos on port %-2d\n",
3546 			port_id);
3547 		return;
3548 	}
3549 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3550 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3551 	printf("\n  TC :        ");
3552 	for (i = 0; i < dcb_info.nb_tcs; i++)
3553 		printf("\t%4d", i);
3554 	printf("\n  Priority :  ");
3555 	for (i = 0; i < dcb_info.nb_tcs; i++)
3556 		printf("\t%4d", dcb_info.prio_tc[i]);
3557 	printf("\n  BW percent :");
3558 	for (i = 0; i < dcb_info.nb_tcs; i++)
3559 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3560 	printf("\n  RXQ base :  ");
3561 	for (i = 0; i < dcb_info.nb_tcs; i++)
3562 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3563 	printf("\n  RXQ number :");
3564 	for (i = 0; i < dcb_info.nb_tcs; i++)
3565 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3566 	printf("\n  TXQ base :  ");
3567 	for (i = 0; i < dcb_info.nb_tcs; i++)
3568 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3569 	printf("\n  TXQ number :");
3570 	for (i = 0; i < dcb_info.nb_tcs; i++)
3571 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3572 	printf("\n");
3573 }
3574 
3575 uint8_t *
3576 open_file(const char *file_path, uint32_t *size)
3577 {
3578 	int fd = open(file_path, O_RDONLY);
3579 	off_t pkg_size;
3580 	uint8_t *buf = NULL;
3581 	int ret = 0;
3582 	struct stat st_buf;
3583 
3584 	if (size)
3585 		*size = 0;
3586 
3587 	if (fd == -1) {
3588 		printf("%s: Failed to open %s\n", __func__, file_path);
3589 		return buf;
3590 	}
3591 
3592 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3593 		close(fd);
3594 		printf("%s: File operations failed\n", __func__);
3595 		return buf;
3596 	}
3597 
3598 	pkg_size = st_buf.st_size;
3599 	if (pkg_size < 0) {
3600 		close(fd);
3601 		printf("%s: File operations failed\n", __func__);
3602 		return buf;
3603 	}
3604 
3605 	buf = (uint8_t *)malloc(pkg_size);
3606 	if (!buf) {
3607 		close(fd);
3608 		printf("%s: Failed to malloc memory\n",	__func__);
3609 		return buf;
3610 	}
3611 
3612 	ret = read(fd, buf, pkg_size);
3613 	if (ret < 0) {
3614 		close(fd);
3615 		printf("%s: File read operation failed\n", __func__);
3616 		close_file(buf);
3617 		return NULL;
3618 	}
3619 
3620 	if (size)
3621 		*size = pkg_size;
3622 
3623 	close(fd);
3624 
3625 	return buf;
3626 }
3627 
3628 int
3629 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3630 {
3631 	FILE *fh = fopen(file_path, "wb");
3632 
3633 	if (fh == NULL) {
3634 		printf("%s: Failed to open %s\n", __func__, file_path);
3635 		return -1;
3636 	}
3637 
3638 	if (fwrite(buf, 1, size, fh) != size) {
3639 		fclose(fh);
3640 		printf("%s: File write operation failed\n", __func__);
3641 		return -1;
3642 	}
3643 
3644 	fclose(fh);
3645 
3646 	return 0;
3647 }
3648 
3649 int
3650 close_file(uint8_t *buf)
3651 {
3652 	if (buf) {
3653 		free((void *)buf);
3654 		return 0;
3655 	}
3656 
3657 	return -1;
3658 }
3659 
3660 void
3661 port_queue_region_info_display(portid_t port_id, void *buf)
3662 {
3663 #ifdef RTE_LIBRTE_I40E_PMD
3664 	uint16_t i, j;
3665 	struct rte_pmd_i40e_queue_regions *info =
3666 		(struct rte_pmd_i40e_queue_regions *)buf;
3667 	static const char *queue_region_info_stats_border = "-------";
3668 
3669 	if (!info->queue_region_number)
3670 		printf("there is no region has been set before");
3671 
3672 	printf("\n	%s All queue region info for port=%2d %s",
3673 			queue_region_info_stats_border, port_id,
3674 			queue_region_info_stats_border);
3675 	printf("\n	queue_region_number: %-14u \n",
3676 			info->queue_region_number);
3677 
3678 	for (i = 0; i < info->queue_region_number; i++) {
3679 		printf("\n	region_id: %-14u queue_number: %-14u "
3680 			"queue_start_index: %-14u \n",
3681 			info->region[i].region_id,
3682 			info->region[i].queue_num,
3683 			info->region[i].queue_start_index);
3684 
3685 		printf("  user_priority_num is	%-14u :",
3686 					info->region[i].user_priority_num);
3687 		for (j = 0; j < info->region[i].user_priority_num; j++)
3688 			printf(" %-14u ", info->region[i].user_priority[j]);
3689 
3690 		printf("\n	flowtype_num is  %-14u :",
3691 				info->region[i].flowtype_num);
3692 		for (j = 0; j < info->region[i].flowtype_num; j++)
3693 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3694 	}
3695 #else
3696 	RTE_SET_USED(port_id);
3697 	RTE_SET_USED(buf);
3698 #endif
3699 
3700 	printf("\n\n");
3701 }
3702