xref: /dpdk/app/test-pmd/config.c (revision 36735a932ca7eed41f86393f80cc8379fc74b6f5)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdarg.h>
40 #include <stdint.h>
41 #include <inttypes.h>
42 
43 #include <sys/queue.h>
44 
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_debug.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_launch.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_lcore.h>
56 #include <rte_atomic.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_mempool.h>
59 #include <rte_mbuf.h>
60 #include <rte_interrupts.h>
61 #include <rte_pci.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_string_fns.h>
65 #include <rte_cycles.h>
66 #include <rte_flow.h>
67 #include <rte_errno.h>
68 #ifdef RTE_LIBRTE_IXGBE_PMD
69 #include <rte_pmd_ixgbe.h>
70 #endif
71 #ifdef RTE_LIBRTE_BNXT_PMD
72 #include <rte_pmd_bnxt.h>
73 #endif
74 
75 #include "testpmd.h"
76 
77 static char *flowtype_to_str(uint16_t flow_type);
78 
79 static const struct {
80 	enum tx_pkt_split split;
81 	const char *name;
82 } tx_split_name[] = {
83 	{
84 		.split = TX_PKT_SPLIT_OFF,
85 		.name = "off",
86 	},
87 	{
88 		.split = TX_PKT_SPLIT_ON,
89 		.name = "on",
90 	},
91 	{
92 		.split = TX_PKT_SPLIT_RND,
93 		.name = "rand",
94 	},
95 };
96 
97 struct rss_type_info {
98 	char str[32];
99 	uint64_t rss_type;
100 };
101 
102 static const struct rss_type_info rss_type_table[] = {
103 	{ "ipv4", ETH_RSS_IPV4 },
104 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
105 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
106 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
107 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
108 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
109 	{ "ipv6", ETH_RSS_IPV6 },
110 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
111 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
112 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
113 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
114 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
115 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
116 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
117 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
118 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
119 	{ "port", ETH_RSS_PORT },
120 	{ "vxlan", ETH_RSS_VXLAN },
121 	{ "geneve", ETH_RSS_GENEVE },
122 	{ "nvgre", ETH_RSS_NVGRE },
123 
124 };
125 
126 static void
127 print_ethaddr(const char *name, struct ether_addr *eth_addr)
128 {
129 	char buf[ETHER_ADDR_FMT_SIZE];
130 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
131 	printf("%s%s", name, buf);
132 }
133 
134 void
135 nic_stats_display(portid_t port_id)
136 {
137 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
138 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
139 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
140 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
141 	uint64_t mpps_rx, mpps_tx;
142 	struct rte_eth_stats stats;
143 	struct rte_port *port = &ports[port_id];
144 	uint8_t i;
145 	portid_t pid;
146 
147 	static const char *nic_stats_border = "########################";
148 
149 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
150 		printf("Valid port range is [0");
151 		RTE_ETH_FOREACH_DEV(pid)
152 			printf(", %d", pid);
153 		printf("]\n");
154 		return;
155 	}
156 	rte_eth_stats_get(port_id, &stats);
157 	printf("\n  %s NIC statistics for port %-2d %s\n",
158 	       nic_stats_border, port_id, nic_stats_border);
159 
160 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
161 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
162 		       "%-"PRIu64"\n",
163 		       stats.ipackets, stats.imissed, stats.ibytes);
164 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
165 		printf("  RX-nombuf:  %-10"PRIu64"\n",
166 		       stats.rx_nombuf);
167 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
168 		       "%-"PRIu64"\n",
169 		       stats.opackets, stats.oerrors, stats.obytes);
170 	}
171 	else {
172 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
173 		       "    RX-bytes: %10"PRIu64"\n",
174 		       stats.ipackets, stats.ierrors, stats.ibytes);
175 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
176 		printf("  RX-nombuf:               %10"PRIu64"\n",
177 		       stats.rx_nombuf);
178 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
179 		       "    TX-bytes: %10"PRIu64"\n",
180 		       stats.opackets, stats.oerrors, stats.obytes);
181 	}
182 
183 	if (port->rx_queue_stats_mapping_enabled) {
184 		printf("\n");
185 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
186 			printf("  Stats reg %2d RX-packets: %10"PRIu64
187 			       "    RX-errors: %10"PRIu64
188 			       "    RX-bytes: %10"PRIu64"\n",
189 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
190 		}
191 	}
192 	if (port->tx_queue_stats_mapping_enabled) {
193 		printf("\n");
194 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
195 			printf("  Stats reg %2d TX-packets: %10"PRIu64
196 			       "                             TX-bytes: %10"PRIu64"\n",
197 			       i, stats.q_opackets[i], stats.q_obytes[i]);
198 		}
199 	}
200 
201 	diff_cycles = prev_cycles[port_id];
202 	prev_cycles[port_id] = rte_rdtsc();
203 	if (diff_cycles > 0)
204 		diff_cycles = prev_cycles[port_id] - diff_cycles;
205 
206 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
207 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
208 	prev_pkts_rx[port_id] = stats.ipackets;
209 	prev_pkts_tx[port_id] = stats.opackets;
210 	mpps_rx = diff_cycles > 0 ?
211 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
212 	mpps_tx = diff_cycles > 0 ?
213 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
214 	printf("\n  Throughput (since last show)\n");
215 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
216 			mpps_rx, mpps_tx);
217 
218 	printf("  %s############################%s\n",
219 	       nic_stats_border, nic_stats_border);
220 }
221 
222 void
223 nic_stats_clear(portid_t port_id)
224 {
225 	portid_t pid;
226 
227 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
228 		printf("Valid port range is [0");
229 		RTE_ETH_FOREACH_DEV(pid)
230 			printf(", %d", pid);
231 		printf("]\n");
232 		return;
233 	}
234 	rte_eth_stats_reset(port_id);
235 	printf("\n  NIC statistics for port %d cleared\n", port_id);
236 }
237 
238 void
239 nic_xstats_display(portid_t port_id)
240 {
241 	struct rte_eth_xstat *xstats;
242 	int cnt_xstats, idx_xstat;
243 	struct rte_eth_xstat_name *xstats_names;
244 
245 	printf("###### NIC extended statistics for port %-2d\n", port_id);
246 	if (!rte_eth_dev_is_valid_port(port_id)) {
247 		printf("Error: Invalid port number %i\n", port_id);
248 		return;
249 	}
250 
251 	/* Get count */
252 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
253 	if (cnt_xstats  < 0) {
254 		printf("Error: Cannot get count of xstats\n");
255 		return;
256 	}
257 
258 	/* Get id-name lookup table */
259 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
260 	if (xstats_names == NULL) {
261 		printf("Cannot allocate memory for xstats lookup\n");
262 		return;
263 	}
264 	if (cnt_xstats != rte_eth_xstats_get_names(
265 			port_id, xstats_names, cnt_xstats)) {
266 		printf("Error: Cannot get xstats lookup\n");
267 		free(xstats_names);
268 		return;
269 	}
270 
271 	/* Get stats themselves */
272 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
273 	if (xstats == NULL) {
274 		printf("Cannot allocate memory for xstats\n");
275 		free(xstats_names);
276 		return;
277 	}
278 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
279 		printf("Error: Unable to get xstats\n");
280 		free(xstats_names);
281 		free(xstats);
282 		return;
283 	}
284 
285 	/* Display xstats */
286 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
287 		printf("%s: %"PRIu64"\n",
288 			xstats_names[idx_xstat].name,
289 			xstats[idx_xstat].value);
290 	free(xstats_names);
291 	free(xstats);
292 }
293 
294 void
295 nic_xstats_clear(portid_t port_id)
296 {
297 	rte_eth_xstats_reset(port_id);
298 }
299 
300 void
301 nic_stats_mapping_display(portid_t port_id)
302 {
303 	struct rte_port *port = &ports[port_id];
304 	uint16_t i;
305 	portid_t pid;
306 
307 	static const char *nic_stats_mapping_border = "########################";
308 
309 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
310 		printf("Valid port range is [0");
311 		RTE_ETH_FOREACH_DEV(pid)
312 			printf(", %d", pid);
313 		printf("]\n");
314 		return;
315 	}
316 
317 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
318 		printf("Port id %d - either does not support queue statistic mapping or"
319 		       " no queue statistic mapping set\n", port_id);
320 		return;
321 	}
322 
323 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
324 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
325 
326 	if (port->rx_queue_stats_mapping_enabled) {
327 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
328 			if (rx_queue_stats_mappings[i].port_id == port_id) {
329 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
330 				       rx_queue_stats_mappings[i].queue_id,
331 				       rx_queue_stats_mappings[i].stats_counter_id);
332 			}
333 		}
334 		printf("\n");
335 	}
336 
337 
338 	if (port->tx_queue_stats_mapping_enabled) {
339 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
340 			if (tx_queue_stats_mappings[i].port_id == port_id) {
341 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
342 				       tx_queue_stats_mappings[i].queue_id,
343 				       tx_queue_stats_mappings[i].stats_counter_id);
344 			}
345 		}
346 	}
347 
348 	printf("  %s####################################%s\n",
349 	       nic_stats_mapping_border, nic_stats_mapping_border);
350 }
351 
352 void
353 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
354 {
355 	struct rte_eth_rxq_info qinfo;
356 	int32_t rc;
357 	static const char *info_border = "*********************";
358 
359 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
360 	if (rc != 0) {
361 		printf("Failed to retrieve information for port: %hhu, "
362 			"RX queue: %hu\nerror desc: %s(%d)\n",
363 			port_id, queue_id, strerror(-rc), rc);
364 		return;
365 	}
366 
367 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
368 	       info_border, port_id, queue_id, info_border);
369 
370 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
371 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
372 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
373 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
374 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
375 	printf("\nRX drop packets: %s",
376 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
377 	printf("\nRX deferred start: %s",
378 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
379 	printf("\nRX scattered packets: %s",
380 		(qinfo.scattered_rx != 0) ? "on" : "off");
381 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
382 	printf("\n");
383 }
384 
385 void
386 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
387 {
388 	struct rte_eth_txq_info qinfo;
389 	int32_t rc;
390 	static const char *info_border = "*********************";
391 
392 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
393 	if (rc != 0) {
394 		printf("Failed to retrieve information for port: %hhu, "
395 			"TX queue: %hu\nerror desc: %s(%d)\n",
396 			port_id, queue_id, strerror(-rc), rc);
397 		return;
398 	}
399 
400 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
401 	       info_border, port_id, queue_id, info_border);
402 
403 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
404 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
405 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
406 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
407 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
408 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
409 	printf("\nTX deferred start: %s",
410 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
411 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
412 	printf("\n");
413 }
414 
415 void
416 port_infos_display(portid_t port_id)
417 {
418 	struct rte_port *port;
419 	struct ether_addr mac_addr;
420 	struct rte_eth_link link;
421 	struct rte_eth_dev_info dev_info;
422 	int vlan_offload;
423 	struct rte_mempool * mp;
424 	static const char *info_border = "*********************";
425 	portid_t pid;
426 	uint16_t mtu;
427 
428 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
429 		printf("Valid port range is [0");
430 		RTE_ETH_FOREACH_DEV(pid)
431 			printf(", %d", pid);
432 		printf("]\n");
433 		return;
434 	}
435 	port = &ports[port_id];
436 	rte_eth_link_get_nowait(port_id, &link);
437 	memset(&dev_info, 0, sizeof(dev_info));
438 	rte_eth_dev_info_get(port_id, &dev_info);
439 	printf("\n%s Infos for port %-2d %s\n",
440 	       info_border, port_id, info_border);
441 	rte_eth_macaddr_get(port_id, &mac_addr);
442 	print_ethaddr("MAC address: ", &mac_addr);
443 	printf("\nDriver name: %s", dev_info.driver_name);
444 	printf("\nConnect to socket: %u", port->socket_id);
445 
446 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
447 		mp = mbuf_pool_find(port_numa[port_id]);
448 		if (mp)
449 			printf("\nmemory allocation on the socket: %d",
450 							port_numa[port_id]);
451 	} else
452 		printf("\nmemory allocation on the socket: %u",port->socket_id);
453 
454 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
455 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
456 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
457 	       ("full-duplex") : ("half-duplex"));
458 
459 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
460 		printf("MTU: %u\n", mtu);
461 
462 	printf("Promiscuous mode: %s\n",
463 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
464 	printf("Allmulticast mode: %s\n",
465 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
466 	printf("Maximum number of MAC addresses: %u\n",
467 	       (unsigned int)(port->dev_info.max_mac_addrs));
468 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
469 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
470 
471 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
472 	if (vlan_offload >= 0){
473 		printf("VLAN offload: \n");
474 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
475 			printf("  strip on \n");
476 		else
477 			printf("  strip off \n");
478 
479 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
480 			printf("  filter on \n");
481 		else
482 			printf("  filter off \n");
483 
484 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
485 			printf("  qinq(extend) on \n");
486 		else
487 			printf("  qinq(extend) off \n");
488 	}
489 
490 	if (dev_info.hash_key_size > 0)
491 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
492 	if (dev_info.reta_size > 0)
493 		printf("Redirection table size: %u\n", dev_info.reta_size);
494 	if (!dev_info.flow_type_rss_offloads)
495 		printf("No flow type is supported.\n");
496 	else {
497 		uint16_t i;
498 		char *p;
499 
500 		printf("Supported flow types:\n");
501 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
502 								i++) {
503 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
504 				continue;
505 			p = flowtype_to_str(i);
506 			printf("  %s\n", (p ? p : "unknown"));
507 		}
508 	}
509 
510 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
511 	printf("Max possible number of RXDs per queue: %hu\n",
512 		dev_info.rx_desc_lim.nb_max);
513 	printf("Min possible number of RXDs per queue: %hu\n",
514 		dev_info.rx_desc_lim.nb_min);
515 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
516 
517 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
518 	printf("Max possible number of TXDs per queue: %hu\n",
519 		dev_info.tx_desc_lim.nb_max);
520 	printf("Min possible number of TXDs per queue: %hu\n",
521 		dev_info.tx_desc_lim.nb_min);
522 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
523 }
524 
525 void
526 port_offload_cap_display(portid_t port_id)
527 {
528 	struct rte_eth_dev *dev;
529 	struct rte_eth_dev_info dev_info;
530 	static const char *info_border = "************";
531 
532 	if (port_id_is_invalid(port_id, ENABLED_WARN))
533 		return;
534 
535 	dev = &rte_eth_devices[port_id];
536 	rte_eth_dev_info_get(port_id, &dev_info);
537 
538 	printf("\n%s Port %d supported offload features: %s\n",
539 		info_border, port_id, info_border);
540 
541 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
542 		printf("VLAN stripped:                 ");
543 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
544 			printf("on\n");
545 		else
546 			printf("off\n");
547 	}
548 
549 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
550 		printf("Double VLANs stripped:         ");
551 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
552 			printf("on\n");
553 		else
554 			printf("off\n");
555 	}
556 
557 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
558 		printf("RX IPv4 checksum:              ");
559 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
560 			printf("on\n");
561 		else
562 			printf("off\n");
563 	}
564 
565 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
566 		printf("RX UDP checksum:               ");
567 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
568 			printf("on\n");
569 		else
570 			printf("off\n");
571 	}
572 
573 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
574 		printf("RX TCP checksum:               ");
575 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
576 			printf("on\n");
577 		else
578 			printf("off\n");
579 	}
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
582 		printf("RX Outer IPv4 checksum:        on");
583 
584 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
585 		printf("Large receive offload:         ");
586 		if (dev->data->dev_conf.rxmode.enable_lro)
587 			printf("on\n");
588 		else
589 			printf("off\n");
590 	}
591 
592 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
593 		printf("VLAN insert:                   ");
594 		if (ports[port_id].tx_ol_flags &
595 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
596 			printf("on\n");
597 		else
598 			printf("off\n");
599 	}
600 
601 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
602 		printf("Double VLANs insert:           ");
603 		if (ports[port_id].tx_ol_flags &
604 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
605 			printf("on\n");
606 		else
607 			printf("off\n");
608 	}
609 
610 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
611 		printf("TX IPv4 checksum:              ");
612 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
613 			printf("on\n");
614 		else
615 			printf("off\n");
616 	}
617 
618 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
619 		printf("TX UDP checksum:               ");
620 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
621 			printf("on\n");
622 		else
623 			printf("off\n");
624 	}
625 
626 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
627 		printf("TX TCP checksum:               ");
628 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
629 			printf("on\n");
630 		else
631 			printf("off\n");
632 	}
633 
634 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
635 		printf("TX SCTP checksum:              ");
636 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
637 			printf("on\n");
638 		else
639 			printf("off\n");
640 	}
641 
642 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
643 		printf("TX Outer IPv4 checksum:        ");
644 		if (ports[port_id].tx_ol_flags &
645 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
646 			printf("on\n");
647 		else
648 			printf("off\n");
649 	}
650 
651 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
652 		printf("TX TCP segmentation:           ");
653 		if (ports[port_id].tso_segsz != 0)
654 			printf("on\n");
655 		else
656 			printf("off\n");
657 	}
658 
659 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
660 		printf("TX UDP segmentation:           ");
661 		if (ports[port_id].tso_segsz != 0)
662 			printf("on\n");
663 		else
664 			printf("off\n");
665 	}
666 
667 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
668 		printf("TSO for VXLAN tunnel packet:   ");
669 		if (ports[port_id].tunnel_tso_segsz)
670 			printf("on\n");
671 		else
672 			printf("off\n");
673 	}
674 
675 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
676 		printf("TSO for GRE tunnel packet:     ");
677 		if (ports[port_id].tunnel_tso_segsz)
678 			printf("on\n");
679 		else
680 			printf("off\n");
681 	}
682 
683 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
684 		printf("TSO for IPIP tunnel packet:    ");
685 		if (ports[port_id].tunnel_tso_segsz)
686 			printf("on\n");
687 		else
688 			printf("off\n");
689 	}
690 
691 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
692 		printf("TSO for GENEVE tunnel packet:  ");
693 		if (ports[port_id].tunnel_tso_segsz)
694 			printf("on\n");
695 		else
696 			printf("off\n");
697 	}
698 
699 }
700 
701 int
702 port_id_is_invalid(portid_t port_id, enum print_warning warning)
703 {
704 	if (port_id == (portid_t)RTE_PORT_ALL)
705 		return 0;
706 
707 	if (rte_eth_dev_is_valid_port(port_id))
708 		return 0;
709 
710 	if (warning == ENABLED_WARN)
711 		printf("Invalid port %d\n", port_id);
712 
713 	return 1;
714 }
715 
716 static int
717 vlan_id_is_invalid(uint16_t vlan_id)
718 {
719 	if (vlan_id < 4096)
720 		return 0;
721 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
722 	return 1;
723 }
724 
725 static int
726 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
727 {
728 	uint64_t pci_len;
729 
730 	if (reg_off & 0x3) {
731 		printf("Port register offset 0x%X not aligned on a 4-byte "
732 		       "boundary\n",
733 		       (unsigned)reg_off);
734 		return 1;
735 	}
736 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
737 	if (reg_off >= pci_len) {
738 		printf("Port %d: register offset %u (0x%X) out of port PCI "
739 		       "resource (length=%"PRIu64")\n",
740 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
741 		return 1;
742 	}
743 	return 0;
744 }
745 
746 static int
747 reg_bit_pos_is_invalid(uint8_t bit_pos)
748 {
749 	if (bit_pos <= 31)
750 		return 0;
751 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
752 	return 1;
753 }
754 
755 #define display_port_and_reg_off(port_id, reg_off) \
756 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
757 
758 static inline void
759 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
760 {
761 	display_port_and_reg_off(port_id, (unsigned)reg_off);
762 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
763 }
764 
765 void
766 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
767 {
768 	uint32_t reg_v;
769 
770 
771 	if (port_id_is_invalid(port_id, ENABLED_WARN))
772 		return;
773 	if (port_reg_off_is_invalid(port_id, reg_off))
774 		return;
775 	if (reg_bit_pos_is_invalid(bit_x))
776 		return;
777 	reg_v = port_id_pci_reg_read(port_id, reg_off);
778 	display_port_and_reg_off(port_id, (unsigned)reg_off);
779 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
780 }
781 
782 void
783 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
784 			   uint8_t bit1_pos, uint8_t bit2_pos)
785 {
786 	uint32_t reg_v;
787 	uint8_t  l_bit;
788 	uint8_t  h_bit;
789 
790 	if (port_id_is_invalid(port_id, ENABLED_WARN))
791 		return;
792 	if (port_reg_off_is_invalid(port_id, reg_off))
793 		return;
794 	if (reg_bit_pos_is_invalid(bit1_pos))
795 		return;
796 	if (reg_bit_pos_is_invalid(bit2_pos))
797 		return;
798 	if (bit1_pos > bit2_pos)
799 		l_bit = bit2_pos, h_bit = bit1_pos;
800 	else
801 		l_bit = bit1_pos, h_bit = bit2_pos;
802 
803 	reg_v = port_id_pci_reg_read(port_id, reg_off);
804 	reg_v >>= l_bit;
805 	if (h_bit < 31)
806 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
807 	display_port_and_reg_off(port_id, (unsigned)reg_off);
808 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
809 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
810 }
811 
812 void
813 port_reg_display(portid_t port_id, uint32_t reg_off)
814 {
815 	uint32_t reg_v;
816 
817 	if (port_id_is_invalid(port_id, ENABLED_WARN))
818 		return;
819 	if (port_reg_off_is_invalid(port_id, reg_off))
820 		return;
821 	reg_v = port_id_pci_reg_read(port_id, reg_off);
822 	display_port_reg_value(port_id, reg_off, reg_v);
823 }
824 
825 void
826 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
827 		 uint8_t bit_v)
828 {
829 	uint32_t reg_v;
830 
831 	if (port_id_is_invalid(port_id, ENABLED_WARN))
832 		return;
833 	if (port_reg_off_is_invalid(port_id, reg_off))
834 		return;
835 	if (reg_bit_pos_is_invalid(bit_pos))
836 		return;
837 	if (bit_v > 1) {
838 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
839 		return;
840 	}
841 	reg_v = port_id_pci_reg_read(port_id, reg_off);
842 	if (bit_v == 0)
843 		reg_v &= ~(1 << bit_pos);
844 	else
845 		reg_v |= (1 << bit_pos);
846 	port_id_pci_reg_write(port_id, reg_off, reg_v);
847 	display_port_reg_value(port_id, reg_off, reg_v);
848 }
849 
850 void
851 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
852 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
853 {
854 	uint32_t max_v;
855 	uint32_t reg_v;
856 	uint8_t  l_bit;
857 	uint8_t  h_bit;
858 
859 	if (port_id_is_invalid(port_id, ENABLED_WARN))
860 		return;
861 	if (port_reg_off_is_invalid(port_id, reg_off))
862 		return;
863 	if (reg_bit_pos_is_invalid(bit1_pos))
864 		return;
865 	if (reg_bit_pos_is_invalid(bit2_pos))
866 		return;
867 	if (bit1_pos > bit2_pos)
868 		l_bit = bit2_pos, h_bit = bit1_pos;
869 	else
870 		l_bit = bit1_pos, h_bit = bit2_pos;
871 
872 	if ((h_bit - l_bit) < 31)
873 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
874 	else
875 		max_v = 0xFFFFFFFF;
876 
877 	if (value > max_v) {
878 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
879 				(unsigned)value, (unsigned)value,
880 				(unsigned)max_v, (unsigned)max_v);
881 		return;
882 	}
883 	reg_v = port_id_pci_reg_read(port_id, reg_off);
884 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
885 	reg_v |= (value << l_bit); /* Set changed bits */
886 	port_id_pci_reg_write(port_id, reg_off, reg_v);
887 	display_port_reg_value(port_id, reg_off, reg_v);
888 }
889 
890 void
891 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
892 {
893 	if (port_id_is_invalid(port_id, ENABLED_WARN))
894 		return;
895 	if (port_reg_off_is_invalid(port_id, reg_off))
896 		return;
897 	port_id_pci_reg_write(port_id, reg_off, reg_v);
898 	display_port_reg_value(port_id, reg_off, reg_v);
899 }
900 
901 void
902 port_mtu_set(portid_t port_id, uint16_t mtu)
903 {
904 	int diag;
905 
906 	if (port_id_is_invalid(port_id, ENABLED_WARN))
907 		return;
908 	diag = rte_eth_dev_set_mtu(port_id, mtu);
909 	if (diag == 0)
910 		return;
911 	printf("Set MTU failed. diag=%d\n", diag);
912 }
913 
914 /* Generic flow management functions. */
915 
916 /** Generate flow_item[] entry. */
917 #define MK_FLOW_ITEM(t, s) \
918 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
919 		.name = # t, \
920 		.size = s, \
921 	}
922 
923 /** Information about known flow pattern items. */
924 static const struct {
925 	const char *name;
926 	size_t size;
927 } flow_item[] = {
928 	MK_FLOW_ITEM(END, 0),
929 	MK_FLOW_ITEM(VOID, 0),
930 	MK_FLOW_ITEM(INVERT, 0),
931 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
932 	MK_FLOW_ITEM(PF, 0),
933 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
934 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
935 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
936 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
937 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
938 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
939 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
940 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
941 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
942 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
943 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
944 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
945 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
946 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
947 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
948 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
949 };
950 
951 /** Compute storage space needed by item specification. */
952 static void
953 flow_item_spec_size(const struct rte_flow_item *item,
954 		    size_t *size, size_t *pad)
955 {
956 	if (!item->spec)
957 		goto empty;
958 	switch (item->type) {
959 		union {
960 			const struct rte_flow_item_raw *raw;
961 		} spec;
962 
963 	case RTE_FLOW_ITEM_TYPE_RAW:
964 		spec.raw = item->spec;
965 		*size = offsetof(struct rte_flow_item_raw, pattern) +
966 			spec.raw->length * sizeof(*spec.raw->pattern);
967 		break;
968 	default:
969 empty:
970 		*size = 0;
971 		break;
972 	}
973 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
974 }
975 
976 /** Generate flow_action[] entry. */
977 #define MK_FLOW_ACTION(t, s) \
978 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
979 		.name = # t, \
980 		.size = s, \
981 	}
982 
983 /** Information about known flow actions. */
984 static const struct {
985 	const char *name;
986 	size_t size;
987 } flow_action[] = {
988 	MK_FLOW_ACTION(END, 0),
989 	MK_FLOW_ACTION(VOID, 0),
990 	MK_FLOW_ACTION(PASSTHRU, 0),
991 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
992 	MK_FLOW_ACTION(FLAG, 0),
993 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
994 	MK_FLOW_ACTION(DROP, 0),
995 	MK_FLOW_ACTION(COUNT, 0),
996 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
997 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
998 	MK_FLOW_ACTION(PF, 0),
999 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1000 };
1001 
1002 /** Compute storage space needed by action configuration. */
1003 static void
1004 flow_action_conf_size(const struct rte_flow_action *action,
1005 		      size_t *size, size_t *pad)
1006 {
1007 	if (!action->conf)
1008 		goto empty;
1009 	switch (action->type) {
1010 		union {
1011 			const struct rte_flow_action_rss *rss;
1012 		} conf;
1013 
1014 	case RTE_FLOW_ACTION_TYPE_RSS:
1015 		conf.rss = action->conf;
1016 		*size = offsetof(struct rte_flow_action_rss, queue) +
1017 			conf.rss->num * sizeof(*conf.rss->queue);
1018 		break;
1019 	default:
1020 empty:
1021 		*size = 0;
1022 		break;
1023 	}
1024 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1025 }
1026 
1027 /** Generate a port_flow entry from attributes/pattern/actions. */
1028 static struct port_flow *
1029 port_flow_new(const struct rte_flow_attr *attr,
1030 	      const struct rte_flow_item *pattern,
1031 	      const struct rte_flow_action *actions)
1032 {
1033 	const struct rte_flow_item *item;
1034 	const struct rte_flow_action *action;
1035 	struct port_flow *pf = NULL;
1036 	size_t tmp;
1037 	size_t pad;
1038 	size_t off1 = 0;
1039 	size_t off2 = 0;
1040 	int err = ENOTSUP;
1041 
1042 store:
1043 	item = pattern;
1044 	if (pf)
1045 		pf->pattern = (void *)&pf->data[off1];
1046 	do {
1047 		struct rte_flow_item *dst = NULL;
1048 
1049 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1050 		    !flow_item[item->type].name)
1051 			goto notsup;
1052 		if (pf)
1053 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1054 		off1 += sizeof(*item);
1055 		flow_item_spec_size(item, &tmp, &pad);
1056 		if (item->spec) {
1057 			if (pf)
1058 				dst->spec = memcpy(pf->data + off2,
1059 						   item->spec, tmp);
1060 			off2 += tmp + pad;
1061 		}
1062 		if (item->last) {
1063 			if (pf)
1064 				dst->last = memcpy(pf->data + off2,
1065 						   item->last, tmp);
1066 			off2 += tmp + pad;
1067 		}
1068 		if (item->mask) {
1069 			if (pf)
1070 				dst->mask = memcpy(pf->data + off2,
1071 						   item->mask, tmp);
1072 			off2 += tmp + pad;
1073 		}
1074 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1075 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1076 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1077 	action = actions;
1078 	if (pf)
1079 		pf->actions = (void *)&pf->data[off1];
1080 	do {
1081 		struct rte_flow_action *dst = NULL;
1082 
1083 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1084 		    !flow_action[action->type].name)
1085 			goto notsup;
1086 		if (pf)
1087 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1088 		off1 += sizeof(*action);
1089 		flow_action_conf_size(action, &tmp, &pad);
1090 		if (action->conf) {
1091 			if (pf)
1092 				dst->conf = memcpy(pf->data + off2,
1093 						   action->conf, tmp);
1094 			off2 += tmp + pad;
1095 		}
1096 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1097 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1098 	if (pf != NULL)
1099 		return pf;
1100 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1101 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1102 	pf = calloc(1, tmp + off1 + off2);
1103 	if (pf == NULL)
1104 		err = errno;
1105 	else {
1106 		*pf = (const struct port_flow){
1107 			.size = tmp + off1 + off2,
1108 			.attr = *attr,
1109 		};
1110 		tmp -= offsetof(struct port_flow, data);
1111 		off2 = tmp + off1;
1112 		off1 = tmp;
1113 		goto store;
1114 	}
1115 notsup:
1116 	rte_errno = err;
1117 	return NULL;
1118 }
1119 
1120 /** Print a message out of a flow error. */
1121 static int
1122 port_flow_complain(struct rte_flow_error *error)
1123 {
1124 	static const char *const errstrlist[] = {
1125 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1126 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1127 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1128 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1129 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1130 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1131 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1132 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1133 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1134 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1135 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1136 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1137 	};
1138 	const char *errstr;
1139 	char buf[32];
1140 	int err = rte_errno;
1141 
1142 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1143 	    !errstrlist[error->type])
1144 		errstr = "unknown type";
1145 	else
1146 		errstr = errstrlist[error->type];
1147 	printf("Caught error type %d (%s): %s%s\n",
1148 	       error->type, errstr,
1149 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1150 					error->cause), buf) : "",
1151 	       error->message ? error->message : "(no stated reason)");
1152 	return -err;
1153 }
1154 
1155 /** Validate flow rule. */
1156 int
1157 port_flow_validate(portid_t port_id,
1158 		   const struct rte_flow_attr *attr,
1159 		   const struct rte_flow_item *pattern,
1160 		   const struct rte_flow_action *actions)
1161 {
1162 	struct rte_flow_error error;
1163 
1164 	/* Poisoning to make sure PMDs update it in case of error. */
1165 	memset(&error, 0x11, sizeof(error));
1166 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1167 		return port_flow_complain(&error);
1168 	printf("Flow rule validated\n");
1169 	return 0;
1170 }
1171 
1172 /** Create flow rule. */
1173 int
1174 port_flow_create(portid_t port_id,
1175 		 const struct rte_flow_attr *attr,
1176 		 const struct rte_flow_item *pattern,
1177 		 const struct rte_flow_action *actions)
1178 {
1179 	struct rte_flow *flow;
1180 	struct rte_port *port;
1181 	struct port_flow *pf;
1182 	uint32_t id;
1183 	struct rte_flow_error error;
1184 
1185 	/* Poisoning to make sure PMDs update it in case of error. */
1186 	memset(&error, 0x22, sizeof(error));
1187 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1188 	if (!flow)
1189 		return port_flow_complain(&error);
1190 	port = &ports[port_id];
1191 	if (port->flow_list) {
1192 		if (port->flow_list->id == UINT32_MAX) {
1193 			printf("Highest rule ID is already assigned, delete"
1194 			       " it first");
1195 			rte_flow_destroy(port_id, flow, NULL);
1196 			return -ENOMEM;
1197 		}
1198 		id = port->flow_list->id + 1;
1199 	} else
1200 		id = 0;
1201 	pf = port_flow_new(attr, pattern, actions);
1202 	if (!pf) {
1203 		int err = rte_errno;
1204 
1205 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1206 		rte_flow_destroy(port_id, flow, NULL);
1207 		return -err;
1208 	}
1209 	pf->next = port->flow_list;
1210 	pf->id = id;
1211 	pf->flow = flow;
1212 	port->flow_list = pf;
1213 	printf("Flow rule #%u created\n", pf->id);
1214 	return 0;
1215 }
1216 
1217 /** Destroy a number of flow rules. */
1218 int
1219 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1220 {
1221 	struct rte_port *port;
1222 	struct port_flow **tmp;
1223 	uint32_t c = 0;
1224 	int ret = 0;
1225 
1226 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1227 	    port_id == (portid_t)RTE_PORT_ALL)
1228 		return -EINVAL;
1229 	port = &ports[port_id];
1230 	tmp = &port->flow_list;
1231 	while (*tmp) {
1232 		uint32_t i;
1233 
1234 		for (i = 0; i != n; ++i) {
1235 			struct rte_flow_error error;
1236 			struct port_flow *pf = *tmp;
1237 
1238 			if (rule[i] != pf->id)
1239 				continue;
1240 			/*
1241 			 * Poisoning to make sure PMDs update it in case
1242 			 * of error.
1243 			 */
1244 			memset(&error, 0x33, sizeof(error));
1245 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1246 				ret = port_flow_complain(&error);
1247 				continue;
1248 			}
1249 			printf("Flow rule #%u destroyed\n", pf->id);
1250 			*tmp = pf->next;
1251 			free(pf);
1252 			break;
1253 		}
1254 		if (i == n)
1255 			tmp = &(*tmp)->next;
1256 		++c;
1257 	}
1258 	return ret;
1259 }
1260 
1261 /** Remove all flow rules. */
1262 int
1263 port_flow_flush(portid_t port_id)
1264 {
1265 	struct rte_flow_error error;
1266 	struct rte_port *port;
1267 	int ret = 0;
1268 
1269 	/* Poisoning to make sure PMDs update it in case of error. */
1270 	memset(&error, 0x44, sizeof(error));
1271 	if (rte_flow_flush(port_id, &error)) {
1272 		ret = port_flow_complain(&error);
1273 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1274 		    port_id == (portid_t)RTE_PORT_ALL)
1275 			return ret;
1276 	}
1277 	port = &ports[port_id];
1278 	while (port->flow_list) {
1279 		struct port_flow *pf = port->flow_list->next;
1280 
1281 		free(port->flow_list);
1282 		port->flow_list = pf;
1283 	}
1284 	return ret;
1285 }
1286 
1287 /** Query a flow rule. */
1288 int
1289 port_flow_query(portid_t port_id, uint32_t rule,
1290 		enum rte_flow_action_type action)
1291 {
1292 	struct rte_flow_error error;
1293 	struct rte_port *port;
1294 	struct port_flow *pf;
1295 	const char *name;
1296 	union {
1297 		struct rte_flow_query_count count;
1298 	} query;
1299 
1300 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1301 	    port_id == (portid_t)RTE_PORT_ALL)
1302 		return -EINVAL;
1303 	port = &ports[port_id];
1304 	for (pf = port->flow_list; pf; pf = pf->next)
1305 		if (pf->id == rule)
1306 			break;
1307 	if (!pf) {
1308 		printf("Flow rule #%u not found\n", rule);
1309 		return -ENOENT;
1310 	}
1311 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1312 	    !flow_action[action].name)
1313 		name = "unknown";
1314 	else
1315 		name = flow_action[action].name;
1316 	switch (action) {
1317 	case RTE_FLOW_ACTION_TYPE_COUNT:
1318 		break;
1319 	default:
1320 		printf("Cannot query action type %d (%s)\n", action, name);
1321 		return -ENOTSUP;
1322 	}
1323 	/* Poisoning to make sure PMDs update it in case of error. */
1324 	memset(&error, 0x55, sizeof(error));
1325 	memset(&query, 0, sizeof(query));
1326 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1327 		return port_flow_complain(&error);
1328 	switch (action) {
1329 	case RTE_FLOW_ACTION_TYPE_COUNT:
1330 		printf("%s:\n"
1331 		       " hits_set: %u\n"
1332 		       " bytes_set: %u\n"
1333 		       " hits: %" PRIu64 "\n"
1334 		       " bytes: %" PRIu64 "\n",
1335 		       name,
1336 		       query.count.hits_set,
1337 		       query.count.bytes_set,
1338 		       query.count.hits,
1339 		       query.count.bytes);
1340 		break;
1341 	default:
1342 		printf("Cannot display result for action type %d (%s)\n",
1343 		       action, name);
1344 		break;
1345 	}
1346 	return 0;
1347 }
1348 
1349 /** List flow rules. */
1350 void
1351 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1352 {
1353 	struct rte_port *port;
1354 	struct port_flow *pf;
1355 	struct port_flow *list = NULL;
1356 	uint32_t i;
1357 
1358 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1359 	    port_id == (portid_t)RTE_PORT_ALL)
1360 		return;
1361 	port = &ports[port_id];
1362 	if (!port->flow_list)
1363 		return;
1364 	/* Sort flows by group, priority and ID. */
1365 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1366 		struct port_flow **tmp;
1367 
1368 		if (n) {
1369 			/* Filter out unwanted groups. */
1370 			for (i = 0; i != n; ++i)
1371 				if (pf->attr.group == group[i])
1372 					break;
1373 			if (i == n)
1374 				continue;
1375 		}
1376 		tmp = &list;
1377 		while (*tmp &&
1378 		       (pf->attr.group > (*tmp)->attr.group ||
1379 			(pf->attr.group == (*tmp)->attr.group &&
1380 			 pf->attr.priority > (*tmp)->attr.priority) ||
1381 			(pf->attr.group == (*tmp)->attr.group &&
1382 			 pf->attr.priority == (*tmp)->attr.priority &&
1383 			 pf->id > (*tmp)->id)))
1384 			tmp = &(*tmp)->tmp;
1385 		pf->tmp = *tmp;
1386 		*tmp = pf;
1387 	}
1388 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1389 	for (pf = list; pf != NULL; pf = pf->tmp) {
1390 		const struct rte_flow_item *item = pf->pattern;
1391 		const struct rte_flow_action *action = pf->actions;
1392 
1393 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1394 		       pf->id,
1395 		       pf->attr.group,
1396 		       pf->attr.priority,
1397 		       pf->attr.ingress ? 'i' : '-',
1398 		       pf->attr.egress ? 'e' : '-');
1399 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1400 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1401 				printf("%s ", flow_item[item->type].name);
1402 			++item;
1403 		}
1404 		printf("=>");
1405 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1406 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1407 				printf(" %s", flow_action[action->type].name);
1408 			++action;
1409 		}
1410 		printf("\n");
1411 	}
1412 }
1413 
1414 /*
1415  * RX/TX ring descriptors display functions.
1416  */
1417 int
1418 rx_queue_id_is_invalid(queueid_t rxq_id)
1419 {
1420 	if (rxq_id < nb_rxq)
1421 		return 0;
1422 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1423 	return 1;
1424 }
1425 
1426 int
1427 tx_queue_id_is_invalid(queueid_t txq_id)
1428 {
1429 	if (txq_id < nb_txq)
1430 		return 0;
1431 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1432 	return 1;
1433 }
1434 
1435 static int
1436 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1437 {
1438 	if (rxdesc_id < nb_rxd)
1439 		return 0;
1440 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1441 	       rxdesc_id, nb_rxd);
1442 	return 1;
1443 }
1444 
1445 static int
1446 tx_desc_id_is_invalid(uint16_t txdesc_id)
1447 {
1448 	if (txdesc_id < nb_txd)
1449 		return 0;
1450 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1451 	       txdesc_id, nb_txd);
1452 	return 1;
1453 }
1454 
1455 static const struct rte_memzone *
1456 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1457 {
1458 	char mz_name[RTE_MEMZONE_NAMESIZE];
1459 	const struct rte_memzone *mz;
1460 
1461 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1462 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1463 	mz = rte_memzone_lookup(mz_name);
1464 	if (mz == NULL)
1465 		printf("%s ring memory zoneof (port %d, queue %d) not"
1466 		       "found (zone name = %s\n",
1467 		       ring_name, port_id, q_id, mz_name);
1468 	return mz;
1469 }
1470 
1471 union igb_ring_dword {
1472 	uint64_t dword;
1473 	struct {
1474 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1475 		uint32_t lo;
1476 		uint32_t hi;
1477 #else
1478 		uint32_t hi;
1479 		uint32_t lo;
1480 #endif
1481 	} words;
1482 };
1483 
1484 struct igb_ring_desc_32_bytes {
1485 	union igb_ring_dword lo_dword;
1486 	union igb_ring_dword hi_dword;
1487 	union igb_ring_dword resv1;
1488 	union igb_ring_dword resv2;
1489 };
1490 
1491 struct igb_ring_desc_16_bytes {
1492 	union igb_ring_dword lo_dword;
1493 	union igb_ring_dword hi_dword;
1494 };
1495 
1496 static void
1497 ring_rxd_display_dword(union igb_ring_dword dword)
1498 {
1499 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1500 					(unsigned)dword.words.hi);
1501 }
1502 
1503 static void
1504 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1505 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1506 			   uint8_t port_id,
1507 #else
1508 			   __rte_unused uint8_t port_id,
1509 #endif
1510 			   uint16_t desc_id)
1511 {
1512 	struct igb_ring_desc_16_bytes *ring =
1513 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1514 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1515 	struct rte_eth_dev_info dev_info;
1516 
1517 	memset(&dev_info, 0, sizeof(dev_info));
1518 	rte_eth_dev_info_get(port_id, &dev_info);
1519 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1520 		/* 32 bytes RX descriptor, i40e only */
1521 		struct igb_ring_desc_32_bytes *ring =
1522 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1523 		ring[desc_id].lo_dword.dword =
1524 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1525 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1526 		ring[desc_id].hi_dword.dword =
1527 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1528 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1529 		ring[desc_id].resv1.dword =
1530 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1531 		ring_rxd_display_dword(ring[desc_id].resv1);
1532 		ring[desc_id].resv2.dword =
1533 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1534 		ring_rxd_display_dword(ring[desc_id].resv2);
1535 
1536 		return;
1537 	}
1538 #endif
1539 	/* 16 bytes RX descriptor */
1540 	ring[desc_id].lo_dword.dword =
1541 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1542 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1543 	ring[desc_id].hi_dword.dword =
1544 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1545 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1546 }
1547 
1548 static void
1549 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1550 {
1551 	struct igb_ring_desc_16_bytes *ring;
1552 	struct igb_ring_desc_16_bytes txd;
1553 
1554 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1555 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1556 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1557 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1558 			(unsigned)txd.lo_dword.words.lo,
1559 			(unsigned)txd.lo_dword.words.hi,
1560 			(unsigned)txd.hi_dword.words.lo,
1561 			(unsigned)txd.hi_dword.words.hi);
1562 }
1563 
1564 void
1565 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1566 {
1567 	const struct rte_memzone *rx_mz;
1568 
1569 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1570 		return;
1571 	if (rx_queue_id_is_invalid(rxq_id))
1572 		return;
1573 	if (rx_desc_id_is_invalid(rxd_id))
1574 		return;
1575 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1576 	if (rx_mz == NULL)
1577 		return;
1578 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1579 }
1580 
1581 void
1582 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1583 {
1584 	const struct rte_memzone *tx_mz;
1585 
1586 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1587 		return;
1588 	if (tx_queue_id_is_invalid(txq_id))
1589 		return;
1590 	if (tx_desc_id_is_invalid(txd_id))
1591 		return;
1592 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1593 	if (tx_mz == NULL)
1594 		return;
1595 	ring_tx_descriptor_display(tx_mz, txd_id);
1596 }
1597 
1598 void
1599 fwd_lcores_config_display(void)
1600 {
1601 	lcoreid_t lc_id;
1602 
1603 	printf("List of forwarding lcores:");
1604 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1605 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1606 	printf("\n");
1607 }
1608 void
1609 rxtx_config_display(void)
1610 {
1611 	printf("  %s packet forwarding%s - CRC stripping %s - "
1612 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1613 	       retry_enabled == 0 ? "" : " with retry",
1614 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1615 	       nb_pkt_per_burst);
1616 
1617 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1618 		printf("  packet len=%u - nb packet segments=%d\n",
1619 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1620 
1621 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1622 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1623 
1624 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1625 	       nb_fwd_lcores, nb_fwd_ports);
1626 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1627 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1628 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1629 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1630 	       rx_conf->rx_thresh.wthresh);
1631 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1632 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1633 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1634 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1635 	       tx_conf->tx_thresh.wthresh);
1636 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1637 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1638 }
1639 
1640 void
1641 port_rss_reta_info(portid_t port_id,
1642 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1643 		   uint16_t nb_entries)
1644 {
1645 	uint16_t i, idx, shift;
1646 	int ret;
1647 
1648 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1649 		return;
1650 
1651 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1652 	if (ret != 0) {
1653 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1654 		return;
1655 	}
1656 
1657 	for (i = 0; i < nb_entries; i++) {
1658 		idx = i / RTE_RETA_GROUP_SIZE;
1659 		shift = i % RTE_RETA_GROUP_SIZE;
1660 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1661 			continue;
1662 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1663 					i, reta_conf[idx].reta[shift]);
1664 	}
1665 }
1666 
1667 /*
1668  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1669  * key of the port.
1670  */
1671 void
1672 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1673 {
1674 	struct rte_eth_rss_conf rss_conf;
1675 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1676 	uint64_t rss_hf;
1677 	uint8_t i;
1678 	int diag;
1679 	struct rte_eth_dev_info dev_info;
1680 	uint8_t hash_key_size;
1681 
1682 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1683 		return;
1684 
1685 	memset(&dev_info, 0, sizeof(dev_info));
1686 	rte_eth_dev_info_get(port_id, &dev_info);
1687 	if (dev_info.hash_key_size > 0 &&
1688 			dev_info.hash_key_size <= sizeof(rss_key))
1689 		hash_key_size = dev_info.hash_key_size;
1690 	else {
1691 		printf("dev_info did not provide a valid hash key size\n");
1692 		return;
1693 	}
1694 
1695 	rss_conf.rss_hf = 0;
1696 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1697 		if (!strcmp(rss_info, rss_type_table[i].str))
1698 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1699 	}
1700 
1701 	/* Get RSS hash key if asked to display it */
1702 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1703 	rss_conf.rss_key_len = hash_key_size;
1704 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1705 	if (diag != 0) {
1706 		switch (diag) {
1707 		case -ENODEV:
1708 			printf("port index %d invalid\n", port_id);
1709 			break;
1710 		case -ENOTSUP:
1711 			printf("operation not supported by device\n");
1712 			break;
1713 		default:
1714 			printf("operation failed - diag=%d\n", diag);
1715 			break;
1716 		}
1717 		return;
1718 	}
1719 	rss_hf = rss_conf.rss_hf;
1720 	if (rss_hf == 0) {
1721 		printf("RSS disabled\n");
1722 		return;
1723 	}
1724 	printf("RSS functions:\n ");
1725 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1726 		if (rss_hf & rss_type_table[i].rss_type)
1727 			printf("%s ", rss_type_table[i].str);
1728 	}
1729 	printf("\n");
1730 	if (!show_rss_key)
1731 		return;
1732 	printf("RSS key:\n");
1733 	for (i = 0; i < hash_key_size; i++)
1734 		printf("%02X", rss_key[i]);
1735 	printf("\n");
1736 }
1737 
1738 void
1739 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1740 			 uint hash_key_len)
1741 {
1742 	struct rte_eth_rss_conf rss_conf;
1743 	int diag;
1744 	unsigned int i;
1745 
1746 	rss_conf.rss_key = NULL;
1747 	rss_conf.rss_key_len = hash_key_len;
1748 	rss_conf.rss_hf = 0;
1749 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1750 		if (!strcmp(rss_type_table[i].str, rss_type))
1751 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1752 	}
1753 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1754 	if (diag == 0) {
1755 		rss_conf.rss_key = hash_key;
1756 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1757 	}
1758 	if (diag == 0)
1759 		return;
1760 
1761 	switch (diag) {
1762 	case -ENODEV:
1763 		printf("port index %d invalid\n", port_id);
1764 		break;
1765 	case -ENOTSUP:
1766 		printf("operation not supported by device\n");
1767 		break;
1768 	default:
1769 		printf("operation failed - diag=%d\n", diag);
1770 		break;
1771 	}
1772 }
1773 
1774 /*
1775  * Setup forwarding configuration for each logical core.
1776  */
1777 static void
1778 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1779 {
1780 	streamid_t nb_fs_per_lcore;
1781 	streamid_t nb_fs;
1782 	streamid_t sm_id;
1783 	lcoreid_t  nb_extra;
1784 	lcoreid_t  nb_fc;
1785 	lcoreid_t  nb_lc;
1786 	lcoreid_t  lc_id;
1787 
1788 	nb_fs = cfg->nb_fwd_streams;
1789 	nb_fc = cfg->nb_fwd_lcores;
1790 	if (nb_fs <= nb_fc) {
1791 		nb_fs_per_lcore = 1;
1792 		nb_extra = 0;
1793 	} else {
1794 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1795 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1796 	}
1797 
1798 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1799 	sm_id = 0;
1800 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1801 		fwd_lcores[lc_id]->stream_idx = sm_id;
1802 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1803 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1804 	}
1805 
1806 	/*
1807 	 * Assign extra remaining streams, if any.
1808 	 */
1809 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1810 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1811 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1812 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1813 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1814 	}
1815 }
1816 
1817 static void
1818 simple_fwd_config_setup(void)
1819 {
1820 	portid_t i;
1821 	portid_t j;
1822 	portid_t inc = 2;
1823 
1824 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1825 	    port_topology == PORT_TOPOLOGY_LOOP) {
1826 		inc = 1;
1827 	} else if (nb_fwd_ports % 2) {
1828 		printf("\nWarning! Cannot handle an odd number of ports "
1829 		       "with the current port topology. Configuration "
1830 		       "must be changed to have an even number of ports, "
1831 		       "or relaunch application with "
1832 		       "--port-topology=chained\n\n");
1833 	}
1834 
1835 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1836 	cur_fwd_config.nb_fwd_streams =
1837 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1838 
1839 	/* reinitialize forwarding streams */
1840 	init_fwd_streams();
1841 
1842 	/*
1843 	 * In the simple forwarding test, the number of forwarding cores
1844 	 * must be lower or equal to the number of forwarding ports.
1845 	 */
1846 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1847 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1848 		cur_fwd_config.nb_fwd_lcores =
1849 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1850 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1851 
1852 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1853 		if (port_topology != PORT_TOPOLOGY_LOOP)
1854 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1855 		else
1856 			j = i;
1857 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1858 		fwd_streams[i]->rx_queue  = 0;
1859 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1860 		fwd_streams[i]->tx_queue  = 0;
1861 		fwd_streams[i]->peer_addr = j;
1862 		fwd_streams[i]->retry_enabled = retry_enabled;
1863 
1864 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1865 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1866 			fwd_streams[j]->rx_queue  = 0;
1867 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1868 			fwd_streams[j]->tx_queue  = 0;
1869 			fwd_streams[j]->peer_addr = i;
1870 			fwd_streams[j]->retry_enabled = retry_enabled;
1871 		}
1872 	}
1873 }
1874 
1875 /**
1876  * For the RSS forwarding test all streams distributed over lcores. Each stream
1877  * being composed of a RX queue to poll on a RX port for input messages,
1878  * associated with a TX queue of a TX port where to send forwarded packets.
1879  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1880  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1881  * following rules:
1882  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1883  *    - TxQl = RxQj
1884  */
1885 static void
1886 rss_fwd_config_setup(void)
1887 {
1888 	portid_t   rxp;
1889 	portid_t   txp;
1890 	queueid_t  rxq;
1891 	queueid_t  nb_q;
1892 	streamid_t  sm_id;
1893 
1894 	nb_q = nb_rxq;
1895 	if (nb_q > nb_txq)
1896 		nb_q = nb_txq;
1897 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1898 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1899 	cur_fwd_config.nb_fwd_streams =
1900 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1901 
1902 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1903 		cur_fwd_config.nb_fwd_lcores =
1904 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1905 
1906 	/* reinitialize forwarding streams */
1907 	init_fwd_streams();
1908 
1909 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1910 	rxp = 0; rxq = 0;
1911 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1912 		struct fwd_stream *fs;
1913 
1914 		fs = fwd_streams[sm_id];
1915 
1916 		if ((rxp & 0x1) == 0)
1917 			txp = (portid_t) (rxp + 1);
1918 		else
1919 			txp = (portid_t) (rxp - 1);
1920 		/*
1921 		 * if we are in loopback, simply send stuff out through the
1922 		 * ingress port
1923 		 */
1924 		if (port_topology == PORT_TOPOLOGY_LOOP)
1925 			txp = rxp;
1926 
1927 		fs->rx_port = fwd_ports_ids[rxp];
1928 		fs->rx_queue = rxq;
1929 		fs->tx_port = fwd_ports_ids[txp];
1930 		fs->tx_queue = rxq;
1931 		fs->peer_addr = fs->tx_port;
1932 		fs->retry_enabled = retry_enabled;
1933 		rxq = (queueid_t) (rxq + 1);
1934 		if (rxq < nb_q)
1935 			continue;
1936 		/*
1937 		 * rxq == nb_q
1938 		 * Restart from RX queue 0 on next RX port
1939 		 */
1940 		rxq = 0;
1941 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1942 			rxp = (portid_t)
1943 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1944 		else
1945 			rxp = (portid_t) (rxp + 1);
1946 	}
1947 }
1948 
1949 /**
1950  * For the DCB forwarding test, each core is assigned on each traffic class.
1951  *
1952  * Each core is assigned a multi-stream, each stream being composed of
1953  * a RX queue to poll on a RX port for input messages, associated with
1954  * a TX queue of a TX port where to send forwarded packets. All RX and
1955  * TX queues are mapping to the same traffic class.
1956  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1957  * the same core
1958  */
1959 static void
1960 dcb_fwd_config_setup(void)
1961 {
1962 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1963 	portid_t txp, rxp = 0;
1964 	queueid_t txq, rxq = 0;
1965 	lcoreid_t  lc_id;
1966 	uint16_t nb_rx_queue, nb_tx_queue;
1967 	uint16_t i, j, k, sm_id = 0;
1968 	uint8_t tc = 0;
1969 
1970 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1971 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1972 	cur_fwd_config.nb_fwd_streams =
1973 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1974 
1975 	/* reinitialize forwarding streams */
1976 	init_fwd_streams();
1977 	sm_id = 0;
1978 	txp = 1;
1979 	/* get the dcb info on the first RX and TX ports */
1980 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
1981 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
1982 
1983 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
1984 		fwd_lcores[lc_id]->stream_nb = 0;
1985 		fwd_lcores[lc_id]->stream_idx = sm_id;
1986 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
1987 			/* if the nb_queue is zero, means this tc is
1988 			 * not enabled on the POOL
1989 			 */
1990 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
1991 				break;
1992 			k = fwd_lcores[lc_id]->stream_nb +
1993 				fwd_lcores[lc_id]->stream_idx;
1994 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
1995 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
1996 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
1997 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
1998 			for (j = 0; j < nb_rx_queue; j++) {
1999 				struct fwd_stream *fs;
2000 
2001 				fs = fwd_streams[k + j];
2002 				fs->rx_port = fwd_ports_ids[rxp];
2003 				fs->rx_queue = rxq + j;
2004 				fs->tx_port = fwd_ports_ids[txp];
2005 				fs->tx_queue = txq + j % nb_tx_queue;
2006 				fs->peer_addr = fs->tx_port;
2007 				fs->retry_enabled = retry_enabled;
2008 			}
2009 			fwd_lcores[lc_id]->stream_nb +=
2010 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2011 		}
2012 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2013 
2014 		tc++;
2015 		if (tc < rxp_dcb_info.nb_tcs)
2016 			continue;
2017 		/* Restart from TC 0 on next RX port */
2018 		tc = 0;
2019 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2020 			rxp = (portid_t)
2021 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2022 		else
2023 			rxp++;
2024 		if (rxp >= nb_fwd_ports)
2025 			return;
2026 		/* get the dcb information on next RX and TX ports */
2027 		if ((rxp & 0x1) == 0)
2028 			txp = (portid_t) (rxp + 1);
2029 		else
2030 			txp = (portid_t) (rxp - 1);
2031 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2032 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2033 	}
2034 }
2035 
2036 static void
2037 icmp_echo_config_setup(void)
2038 {
2039 	portid_t  rxp;
2040 	queueid_t rxq;
2041 	lcoreid_t lc_id;
2042 	uint16_t  sm_id;
2043 
2044 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2045 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2046 			(nb_txq * nb_fwd_ports);
2047 	else
2048 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2049 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2050 	cur_fwd_config.nb_fwd_streams =
2051 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2052 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2053 		cur_fwd_config.nb_fwd_lcores =
2054 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2055 	if (verbose_level > 0) {
2056 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2057 		       __FUNCTION__,
2058 		       cur_fwd_config.nb_fwd_lcores,
2059 		       cur_fwd_config.nb_fwd_ports,
2060 		       cur_fwd_config.nb_fwd_streams);
2061 	}
2062 
2063 	/* reinitialize forwarding streams */
2064 	init_fwd_streams();
2065 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2066 	rxp = 0; rxq = 0;
2067 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2068 		if (verbose_level > 0)
2069 			printf("  core=%d: \n", lc_id);
2070 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2071 			struct fwd_stream *fs;
2072 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2073 			fs->rx_port = fwd_ports_ids[rxp];
2074 			fs->rx_queue = rxq;
2075 			fs->tx_port = fs->rx_port;
2076 			fs->tx_queue = rxq;
2077 			fs->peer_addr = fs->tx_port;
2078 			fs->retry_enabled = retry_enabled;
2079 			if (verbose_level > 0)
2080 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2081 				       sm_id, fs->rx_port, fs->rx_queue,
2082 				       fs->tx_queue);
2083 			rxq = (queueid_t) (rxq + 1);
2084 			if (rxq == nb_rxq) {
2085 				rxq = 0;
2086 				rxp = (portid_t) (rxp + 1);
2087 			}
2088 		}
2089 	}
2090 }
2091 
2092 void
2093 fwd_config_setup(void)
2094 {
2095 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2096 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2097 		icmp_echo_config_setup();
2098 		return;
2099 	}
2100 	if ((nb_rxq > 1) && (nb_txq > 1)){
2101 		if (dcb_config)
2102 			dcb_fwd_config_setup();
2103 		else
2104 			rss_fwd_config_setup();
2105 	}
2106 	else
2107 		simple_fwd_config_setup();
2108 }
2109 
2110 void
2111 pkt_fwd_config_display(struct fwd_config *cfg)
2112 {
2113 	struct fwd_stream *fs;
2114 	lcoreid_t  lc_id;
2115 	streamid_t sm_id;
2116 
2117 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2118 		"NUMA support %s, MP over anonymous pages %s\n",
2119 		cfg->fwd_eng->fwd_mode_name,
2120 		retry_enabled == 0 ? "" : " with retry",
2121 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2122 		numa_support == 1 ? "enabled" : "disabled",
2123 		mp_anon != 0 ? "enabled" : "disabled");
2124 
2125 	if (retry_enabled)
2126 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2127 			burst_tx_retry_num, burst_tx_delay_time);
2128 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2129 		printf("Logical Core %u (socket %u) forwards packets on "
2130 		       "%d streams:",
2131 		       fwd_lcores_cpuids[lc_id],
2132 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2133 		       fwd_lcores[lc_id]->stream_nb);
2134 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2135 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2136 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2137 			       "P=%d/Q=%d (socket %u) ",
2138 			       fs->rx_port, fs->rx_queue,
2139 			       ports[fs->rx_port].socket_id,
2140 			       fs->tx_port, fs->tx_queue,
2141 			       ports[fs->tx_port].socket_id);
2142 			print_ethaddr("peer=",
2143 				      &peer_eth_addrs[fs->peer_addr]);
2144 		}
2145 		printf("\n");
2146 	}
2147 	printf("\n");
2148 }
2149 
2150 int
2151 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2152 {
2153 	unsigned int i;
2154 	unsigned int lcore_cpuid;
2155 	int record_now;
2156 
2157 	record_now = 0;
2158  again:
2159 	for (i = 0; i < nb_lc; i++) {
2160 		lcore_cpuid = lcorelist[i];
2161 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2162 			printf("lcore %u not enabled\n", lcore_cpuid);
2163 			return -1;
2164 		}
2165 		if (lcore_cpuid == rte_get_master_lcore()) {
2166 			printf("lcore %u cannot be masked on for running "
2167 			       "packet forwarding, which is the master lcore "
2168 			       "and reserved for command line parsing only\n",
2169 			       lcore_cpuid);
2170 			return -1;
2171 		}
2172 		if (record_now)
2173 			fwd_lcores_cpuids[i] = lcore_cpuid;
2174 	}
2175 	if (record_now == 0) {
2176 		record_now = 1;
2177 		goto again;
2178 	}
2179 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2180 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2181 		printf("previous number of forwarding cores %u - changed to "
2182 		       "number of configured cores %u\n",
2183 		       (unsigned int) nb_fwd_lcores, nb_lc);
2184 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 int
2191 set_fwd_lcores_mask(uint64_t lcoremask)
2192 {
2193 	unsigned int lcorelist[64];
2194 	unsigned int nb_lc;
2195 	unsigned int i;
2196 
2197 	if (lcoremask == 0) {
2198 		printf("Invalid NULL mask of cores\n");
2199 		return -1;
2200 	}
2201 	nb_lc = 0;
2202 	for (i = 0; i < 64; i++) {
2203 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2204 			continue;
2205 		lcorelist[nb_lc++] = i;
2206 	}
2207 	return set_fwd_lcores_list(lcorelist, nb_lc);
2208 }
2209 
2210 void
2211 set_fwd_lcores_number(uint16_t nb_lc)
2212 {
2213 	if (nb_lc > nb_cfg_lcores) {
2214 		printf("nb fwd cores %u > %u (max. number of configured "
2215 		       "lcores) - ignored\n",
2216 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2217 		return;
2218 	}
2219 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2220 	printf("Number of forwarding cores set to %u\n",
2221 	       (unsigned int) nb_fwd_lcores);
2222 }
2223 
2224 void
2225 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2226 {
2227 	unsigned int i;
2228 	portid_t port_id;
2229 	int record_now;
2230 
2231 	record_now = 0;
2232  again:
2233 	for (i = 0; i < nb_pt; i++) {
2234 		port_id = (portid_t) portlist[i];
2235 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2236 			return;
2237 		if (record_now)
2238 			fwd_ports_ids[i] = port_id;
2239 	}
2240 	if (record_now == 0) {
2241 		record_now = 1;
2242 		goto again;
2243 	}
2244 	nb_cfg_ports = (portid_t) nb_pt;
2245 	if (nb_fwd_ports != (portid_t) nb_pt) {
2246 		printf("previous number of forwarding ports %u - changed to "
2247 		       "number of configured ports %u\n",
2248 		       (unsigned int) nb_fwd_ports, nb_pt);
2249 		nb_fwd_ports = (portid_t) nb_pt;
2250 	}
2251 }
2252 
2253 void
2254 set_fwd_ports_mask(uint64_t portmask)
2255 {
2256 	unsigned int portlist[64];
2257 	unsigned int nb_pt;
2258 	unsigned int i;
2259 
2260 	if (portmask == 0) {
2261 		printf("Invalid NULL mask of ports\n");
2262 		return;
2263 	}
2264 	nb_pt = 0;
2265 	RTE_ETH_FOREACH_DEV(i) {
2266 		if (! ((uint64_t)(1ULL << i) & portmask))
2267 			continue;
2268 		portlist[nb_pt++] = i;
2269 	}
2270 	set_fwd_ports_list(portlist, nb_pt);
2271 }
2272 
2273 void
2274 set_fwd_ports_number(uint16_t nb_pt)
2275 {
2276 	if (nb_pt > nb_cfg_ports) {
2277 		printf("nb fwd ports %u > %u (number of configured "
2278 		       "ports) - ignored\n",
2279 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2280 		return;
2281 	}
2282 	nb_fwd_ports = (portid_t) nb_pt;
2283 	printf("Number of forwarding ports set to %u\n",
2284 	       (unsigned int) nb_fwd_ports);
2285 }
2286 
2287 int
2288 port_is_forwarding(portid_t port_id)
2289 {
2290 	unsigned int i;
2291 
2292 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2293 		return -1;
2294 
2295 	for (i = 0; i < nb_fwd_ports; i++) {
2296 		if (fwd_ports_ids[i] == port_id)
2297 			return 1;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 void
2304 set_nb_pkt_per_burst(uint16_t nb)
2305 {
2306 	if (nb > MAX_PKT_BURST) {
2307 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2308 		       " ignored\n",
2309 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2310 		return;
2311 	}
2312 	nb_pkt_per_burst = nb;
2313 	printf("Number of packets per burst set to %u\n",
2314 	       (unsigned int) nb_pkt_per_burst);
2315 }
2316 
2317 static const char *
2318 tx_split_get_name(enum tx_pkt_split split)
2319 {
2320 	uint32_t i;
2321 
2322 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2323 		if (tx_split_name[i].split == split)
2324 			return tx_split_name[i].name;
2325 	}
2326 	return NULL;
2327 }
2328 
2329 void
2330 set_tx_pkt_split(const char *name)
2331 {
2332 	uint32_t i;
2333 
2334 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2335 		if (strcmp(tx_split_name[i].name, name) == 0) {
2336 			tx_pkt_split = tx_split_name[i].split;
2337 			return;
2338 		}
2339 	}
2340 	printf("unknown value: \"%s\"\n", name);
2341 }
2342 
2343 void
2344 show_tx_pkt_segments(void)
2345 {
2346 	uint32_t i, n;
2347 	const char *split;
2348 
2349 	n = tx_pkt_nb_segs;
2350 	split = tx_split_get_name(tx_pkt_split);
2351 
2352 	printf("Number of segments: %u\n", n);
2353 	printf("Segment sizes: ");
2354 	for (i = 0; i != n - 1; i++)
2355 		printf("%hu,", tx_pkt_seg_lengths[i]);
2356 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2357 	printf("Split packet: %s\n", split);
2358 }
2359 
2360 void
2361 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2362 {
2363 	uint16_t tx_pkt_len;
2364 	unsigned i;
2365 
2366 	if (nb_segs >= (unsigned) nb_txd) {
2367 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2368 		       nb_segs, (unsigned int) nb_txd);
2369 		return;
2370 	}
2371 
2372 	/*
2373 	 * Check that each segment length is greater or equal than
2374 	 * the mbuf data sise.
2375 	 * Check also that the total packet length is greater or equal than the
2376 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2377 	 */
2378 	tx_pkt_len = 0;
2379 	for (i = 0; i < nb_segs; i++) {
2380 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2381 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2382 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2383 			return;
2384 		}
2385 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2386 	}
2387 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2388 		printf("total packet length=%u < %d - give up\n",
2389 				(unsigned) tx_pkt_len,
2390 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2391 		return;
2392 	}
2393 
2394 	for (i = 0; i < nb_segs; i++)
2395 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2396 
2397 	tx_pkt_length  = tx_pkt_len;
2398 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2399 }
2400 
2401 char*
2402 list_pkt_forwarding_modes(void)
2403 {
2404 	static char fwd_modes[128] = "";
2405 	const char *separator = "|";
2406 	struct fwd_engine *fwd_eng;
2407 	unsigned i = 0;
2408 
2409 	if (strlen (fwd_modes) == 0) {
2410 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2411 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2412 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2413 			strncat(fwd_modes, separator,
2414 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2415 		}
2416 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2417 	}
2418 
2419 	return fwd_modes;
2420 }
2421 
2422 char*
2423 list_pkt_forwarding_retry_modes(void)
2424 {
2425 	static char fwd_modes[128] = "";
2426 	const char *separator = "|";
2427 	struct fwd_engine *fwd_eng;
2428 	unsigned i = 0;
2429 
2430 	if (strlen(fwd_modes) == 0) {
2431 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2432 			if (fwd_eng == &rx_only_engine)
2433 				continue;
2434 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2435 					sizeof(fwd_modes) -
2436 					strlen(fwd_modes) - 1);
2437 			strncat(fwd_modes, separator,
2438 					sizeof(fwd_modes) -
2439 					strlen(fwd_modes) - 1);
2440 		}
2441 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2442 	}
2443 
2444 	return fwd_modes;
2445 }
2446 
2447 void
2448 set_pkt_forwarding_mode(const char *fwd_mode_name)
2449 {
2450 	struct fwd_engine *fwd_eng;
2451 	unsigned i;
2452 
2453 	i = 0;
2454 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2455 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2456 			printf("Set %s packet forwarding mode%s\n",
2457 			       fwd_mode_name,
2458 			       retry_enabled == 0 ? "" : " with retry");
2459 			cur_fwd_eng = fwd_eng;
2460 			return;
2461 		}
2462 		i++;
2463 	}
2464 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2465 }
2466 
2467 void
2468 set_verbose_level(uint16_t vb_level)
2469 {
2470 	printf("Change verbose level from %u to %u\n",
2471 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2472 	verbose_level = vb_level;
2473 }
2474 
2475 void
2476 vlan_extend_set(portid_t port_id, int on)
2477 {
2478 	int diag;
2479 	int vlan_offload;
2480 
2481 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2482 		return;
2483 
2484 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2485 
2486 	if (on)
2487 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2488 	else
2489 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2490 
2491 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2492 	if (diag < 0)
2493 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2494 	       "diag=%d\n", port_id, on, diag);
2495 }
2496 
2497 void
2498 rx_vlan_strip_set(portid_t port_id, int on)
2499 {
2500 	int diag;
2501 	int vlan_offload;
2502 
2503 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2504 		return;
2505 
2506 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2507 
2508 	if (on)
2509 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2510 	else
2511 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2512 
2513 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2514 	if (diag < 0)
2515 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2516 	       "diag=%d\n", port_id, on, diag);
2517 }
2518 
2519 void
2520 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2521 {
2522 	int diag;
2523 
2524 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2525 		return;
2526 
2527 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2528 	if (diag < 0)
2529 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2530 	       "diag=%d\n", port_id, queue_id, on, diag);
2531 }
2532 
2533 void
2534 rx_vlan_filter_set(portid_t port_id, int on)
2535 {
2536 	int diag;
2537 	int vlan_offload;
2538 
2539 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2540 		return;
2541 
2542 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2543 
2544 	if (on)
2545 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2546 	else
2547 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2548 
2549 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2550 	if (diag < 0)
2551 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2552 	       "diag=%d\n", port_id, on, diag);
2553 }
2554 
2555 int
2556 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2557 {
2558 	int diag;
2559 
2560 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2561 		return 1;
2562 	if (vlan_id_is_invalid(vlan_id))
2563 		return 1;
2564 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2565 	if (diag == 0)
2566 		return 0;
2567 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2568 	       "diag=%d\n",
2569 	       port_id, vlan_id, on, diag);
2570 	return -1;
2571 }
2572 
2573 void
2574 rx_vlan_all_filter_set(portid_t port_id, int on)
2575 {
2576 	uint16_t vlan_id;
2577 
2578 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2579 		return;
2580 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2581 		if (rx_vft_set(port_id, vlan_id, on))
2582 			break;
2583 	}
2584 }
2585 
2586 void
2587 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2588 {
2589 	int diag;
2590 
2591 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2592 		return;
2593 
2594 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2595 	if (diag == 0)
2596 		return;
2597 
2598 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2599 	       "diag=%d\n",
2600 	       port_id, vlan_type, tp_id, diag);
2601 }
2602 
2603 void
2604 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2605 {
2606 	int vlan_offload;
2607 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2608 		return;
2609 	if (vlan_id_is_invalid(vlan_id))
2610 		return;
2611 
2612 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2613 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2614 		printf("Error, as QinQ has been enabled.\n");
2615 		return;
2616 	}
2617 
2618 	tx_vlan_reset(port_id);
2619 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2620 	ports[port_id].tx_vlan_id = vlan_id;
2621 }
2622 
2623 void
2624 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2625 {
2626 	int vlan_offload;
2627 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2628 		return;
2629 	if (vlan_id_is_invalid(vlan_id))
2630 		return;
2631 	if (vlan_id_is_invalid(vlan_id_outer))
2632 		return;
2633 
2634 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2635 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2636 		printf("Error, as QinQ hasn't been enabled.\n");
2637 		return;
2638 	}
2639 
2640 	tx_vlan_reset(port_id);
2641 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2642 	ports[port_id].tx_vlan_id = vlan_id;
2643 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2644 }
2645 
2646 void
2647 tx_vlan_reset(portid_t port_id)
2648 {
2649 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2650 		return;
2651 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2652 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2653 	ports[port_id].tx_vlan_id = 0;
2654 	ports[port_id].tx_vlan_id_outer = 0;
2655 }
2656 
2657 void
2658 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2659 {
2660 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2661 		return;
2662 
2663 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2664 }
2665 
2666 void
2667 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2668 {
2669 	uint16_t i;
2670 	uint8_t existing_mapping_found = 0;
2671 
2672 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2673 		return;
2674 
2675 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2676 		return;
2677 
2678 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2679 		printf("map_value not in required range 0..%d\n",
2680 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2681 		return;
2682 	}
2683 
2684 	if (!is_rx) { /*then tx*/
2685 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2686 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2687 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2688 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2689 				existing_mapping_found = 1;
2690 				break;
2691 			}
2692 		}
2693 		if (!existing_mapping_found) { /* A new additional mapping... */
2694 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2695 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2696 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2697 			nb_tx_queue_stats_mappings++;
2698 		}
2699 	}
2700 	else { /*rx*/
2701 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2702 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2703 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2704 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2705 				existing_mapping_found = 1;
2706 				break;
2707 			}
2708 		}
2709 		if (!existing_mapping_found) { /* A new additional mapping... */
2710 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2711 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2712 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2713 			nb_rx_queue_stats_mappings++;
2714 		}
2715 	}
2716 }
2717 
2718 static inline void
2719 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2720 {
2721 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2722 
2723 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2724 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2725 			" tunnel_id: 0x%08x",
2726 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2727 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2728 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2729 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2730 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2731 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2732 
2733 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2734 			rte_be_to_cpu_16(mask->src_port_mask),
2735 			rte_be_to_cpu_16(mask->dst_port_mask));
2736 
2737 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2738 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2739 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2740 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2741 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2742 
2743 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2744 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2745 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2746 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2747 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2748 	}
2749 
2750 	printf("\n");
2751 }
2752 
2753 static inline void
2754 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2755 {
2756 	struct rte_eth_flex_payload_cfg *cfg;
2757 	uint32_t i, j;
2758 
2759 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2760 		cfg = &flex_conf->flex_set[i];
2761 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2762 			printf("\n    RAW:  ");
2763 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2764 			printf("\n    L2_PAYLOAD:  ");
2765 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2766 			printf("\n    L3_PAYLOAD:  ");
2767 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2768 			printf("\n    L4_PAYLOAD:  ");
2769 		else
2770 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2771 		for (j = 0; j < num; j++)
2772 			printf("  %-5u", cfg->src_offset[j]);
2773 	}
2774 	printf("\n");
2775 }
2776 
2777 static char *
2778 flowtype_to_str(uint16_t flow_type)
2779 {
2780 	struct flow_type_info {
2781 		char str[32];
2782 		uint16_t ftype;
2783 	};
2784 
2785 	uint8_t i;
2786 	static struct flow_type_info flowtype_str_table[] = {
2787 		{"raw", RTE_ETH_FLOW_RAW},
2788 		{"ipv4", RTE_ETH_FLOW_IPV4},
2789 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2790 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2791 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2792 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2793 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2794 		{"ipv6", RTE_ETH_FLOW_IPV6},
2795 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2796 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2797 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2798 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2799 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2800 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2801 		{"port", RTE_ETH_FLOW_PORT},
2802 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2803 		{"geneve", RTE_ETH_FLOW_GENEVE},
2804 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2805 	};
2806 
2807 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2808 		if (flowtype_str_table[i].ftype == flow_type)
2809 			return flowtype_str_table[i].str;
2810 	}
2811 
2812 	return NULL;
2813 }
2814 
2815 static inline void
2816 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2817 {
2818 	struct rte_eth_fdir_flex_mask *mask;
2819 	uint32_t i, j;
2820 	char *p;
2821 
2822 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2823 		mask = &flex_conf->flex_mask[i];
2824 		p = flowtype_to_str(mask->flow_type);
2825 		printf("\n    %s:\t", p ? p : "unknown");
2826 		for (j = 0; j < num; j++)
2827 			printf(" %02x", mask->mask[j]);
2828 	}
2829 	printf("\n");
2830 }
2831 
2832 static inline void
2833 print_fdir_flow_type(uint32_t flow_types_mask)
2834 {
2835 	int i;
2836 	char *p;
2837 
2838 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2839 		if (!(flow_types_mask & (1 << i)))
2840 			continue;
2841 		p = flowtype_to_str(i);
2842 		if (p)
2843 			printf(" %s", p);
2844 		else
2845 			printf(" unknown");
2846 	}
2847 	printf("\n");
2848 }
2849 
2850 void
2851 fdir_get_infos(portid_t port_id)
2852 {
2853 	struct rte_eth_fdir_stats fdir_stat;
2854 	struct rte_eth_fdir_info fdir_info;
2855 	int ret;
2856 
2857 	static const char *fdir_stats_border = "########################";
2858 
2859 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2860 		return;
2861 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2862 	if (ret < 0) {
2863 		printf("\n FDIR is not supported on port %-2d\n",
2864 			port_id);
2865 		return;
2866 	}
2867 
2868 	memset(&fdir_info, 0, sizeof(fdir_info));
2869 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2870 			       RTE_ETH_FILTER_INFO, &fdir_info);
2871 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2872 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2873 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2874 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2875 	       fdir_stats_border, port_id, fdir_stats_border);
2876 	printf("  MODE: ");
2877 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2878 		printf("  PERFECT\n");
2879 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2880 		printf("  PERFECT-MAC-VLAN\n");
2881 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2882 		printf("  PERFECT-TUNNEL\n");
2883 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2884 		printf("  SIGNATURE\n");
2885 	else
2886 		printf("  DISABLE\n");
2887 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2888 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2889 		printf("  SUPPORTED FLOW TYPE: ");
2890 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2891 	}
2892 	printf("  FLEX PAYLOAD INFO:\n");
2893 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2894 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2895 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2896 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2897 		fdir_info.flex_payload_unit,
2898 		fdir_info.max_flex_payload_segment_num,
2899 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2900 	printf("  MASK: ");
2901 	print_fdir_mask(&fdir_info.mask);
2902 	if (fdir_info.flex_conf.nb_payloads > 0) {
2903 		printf("  FLEX PAYLOAD SRC OFFSET:");
2904 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2905 	}
2906 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2907 		printf("  FLEX MASK CFG:");
2908 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2909 	}
2910 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2911 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2912 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2913 	       fdir_info.guarant_spc, fdir_info.best_spc);
2914 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2915 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2916 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2917 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2918 	       fdir_stat.collision, fdir_stat.free,
2919 	       fdir_stat.maxhash, fdir_stat.maxlen,
2920 	       fdir_stat.add, fdir_stat.remove,
2921 	       fdir_stat.f_add, fdir_stat.f_remove);
2922 	printf("  %s############################%s\n",
2923 	       fdir_stats_border, fdir_stats_border);
2924 }
2925 
2926 void
2927 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2928 {
2929 	struct rte_port *port;
2930 	struct rte_eth_fdir_flex_conf *flex_conf;
2931 	int i, idx = 0;
2932 
2933 	port = &ports[port_id];
2934 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2935 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2936 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2937 			idx = i;
2938 			break;
2939 		}
2940 	}
2941 	if (i >= RTE_ETH_FLOW_MAX) {
2942 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2943 			idx = flex_conf->nb_flexmasks;
2944 			flex_conf->nb_flexmasks++;
2945 		} else {
2946 			printf("The flex mask table is full. Can not set flex"
2947 				" mask for flow_type(%u).", cfg->flow_type);
2948 			return;
2949 		}
2950 	}
2951 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2952 			 cfg,
2953 			 sizeof(struct rte_eth_fdir_flex_mask));
2954 }
2955 
2956 void
2957 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2958 {
2959 	struct rte_port *port;
2960 	struct rte_eth_fdir_flex_conf *flex_conf;
2961 	int i, idx = 0;
2962 
2963 	port = &ports[port_id];
2964 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2965 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2966 		if (cfg->type == flex_conf->flex_set[i].type) {
2967 			idx = i;
2968 			break;
2969 		}
2970 	}
2971 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2972 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2973 			idx = flex_conf->nb_payloads;
2974 			flex_conf->nb_payloads++;
2975 		} else {
2976 			printf("The flex payload table is full. Can not set"
2977 				" flex payload for type(%u).", cfg->type);
2978 			return;
2979 		}
2980 	}
2981 	(void)rte_memcpy(&flex_conf->flex_set[idx],
2982 			 cfg,
2983 			 sizeof(struct rte_eth_flex_payload_cfg));
2984 
2985 }
2986 
2987 #ifdef RTE_LIBRTE_IXGBE_PMD
2988 void
2989 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
2990 {
2991 	int diag;
2992 
2993 	if (is_rx)
2994 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
2995 	else
2996 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
2997 
2998 	if (diag == 0)
2999 		return;
3000 	if(is_rx)
3001 		printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed "
3002 	       		"diag=%d\n", port_id, diag);
3003 	else
3004 		printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed "
3005 	       		"diag=%d\n", port_id, diag);
3006 
3007 }
3008 #endif
3009 
3010 int
3011 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3012 {
3013 	int diag;
3014 	struct rte_eth_link link;
3015 
3016 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3017 		return 1;
3018 	rte_eth_link_get_nowait(port_id, &link);
3019 	if (rate > link.link_speed) {
3020 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3021 			rate, link.link_speed);
3022 		return 1;
3023 	}
3024 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3025 	if (diag == 0)
3026 		return diag;
3027 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3028 		port_id, diag);
3029 	return diag;
3030 }
3031 
3032 int
3033 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3034 {
3035 	int diag = -ENOTSUP;
3036 
3037 #ifdef RTE_LIBRTE_IXGBE_PMD
3038 	if (diag == -ENOTSUP)
3039 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3040 						       q_msk);
3041 #endif
3042 #ifdef RTE_LIBRTE_BNXT_PMD
3043 	if (diag == -ENOTSUP)
3044 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3045 #endif
3046 	if (diag == 0)
3047 		return diag;
3048 
3049 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3050 		port_id, diag);
3051 	return diag;
3052 }
3053 
3054 /*
3055  * Functions to manage the set of filtered Multicast MAC addresses.
3056  *
3057  * A pool of filtered multicast MAC addresses is associated with each port.
3058  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3059  * The address of the pool and the number of valid multicast MAC addresses
3060  * recorded in the pool are stored in the fields "mc_addr_pool" and
3061  * "mc_addr_nb" of the "rte_port" data structure.
3062  *
3063  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3064  * to be supplied a contiguous array of multicast MAC addresses.
3065  * To comply with this constraint, the set of multicast addresses recorded
3066  * into the pool are systematically compacted at the beginning of the pool.
3067  * Hence, when a multicast address is removed from the pool, all following
3068  * addresses, if any, are copied back to keep the set contiguous.
3069  */
3070 #define MCAST_POOL_INC 32
3071 
3072 static int
3073 mcast_addr_pool_extend(struct rte_port *port)
3074 {
3075 	struct ether_addr *mc_pool;
3076 	size_t mc_pool_size;
3077 
3078 	/*
3079 	 * If a free entry is available at the end of the pool, just
3080 	 * increment the number of recorded multicast addresses.
3081 	 */
3082 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3083 		port->mc_addr_nb++;
3084 		return 0;
3085 	}
3086 
3087 	/*
3088 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3089 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3090 	 * of MCAST_POOL_INC.
3091 	 */
3092 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3093 						    MCAST_POOL_INC);
3094 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3095 						mc_pool_size);
3096 	if (mc_pool == NULL) {
3097 		printf("allocation of pool of %u multicast addresses failed\n",
3098 		       port->mc_addr_nb + MCAST_POOL_INC);
3099 		return -ENOMEM;
3100 	}
3101 
3102 	port->mc_addr_pool = mc_pool;
3103 	port->mc_addr_nb++;
3104 	return 0;
3105 
3106 }
3107 
3108 static void
3109 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3110 {
3111 	port->mc_addr_nb--;
3112 	if (addr_idx == port->mc_addr_nb) {
3113 		/* No need to recompact the set of multicast addressses. */
3114 		if (port->mc_addr_nb == 0) {
3115 			/* free the pool of multicast addresses. */
3116 			free(port->mc_addr_pool);
3117 			port->mc_addr_pool = NULL;
3118 		}
3119 		return;
3120 	}
3121 	memmove(&port->mc_addr_pool[addr_idx],
3122 		&port->mc_addr_pool[addr_idx + 1],
3123 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3124 }
3125 
3126 static void
3127 eth_port_multicast_addr_list_set(uint8_t port_id)
3128 {
3129 	struct rte_port *port;
3130 	int diag;
3131 
3132 	port = &ports[port_id];
3133 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3134 					    port->mc_addr_nb);
3135 	if (diag == 0)
3136 		return;
3137 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3138 	       port->mc_addr_nb, port_id, -diag);
3139 }
3140 
3141 void
3142 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3143 {
3144 	struct rte_port *port;
3145 	uint32_t i;
3146 
3147 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3148 		return;
3149 
3150 	port = &ports[port_id];
3151 
3152 	/*
3153 	 * Check that the added multicast MAC address is not already recorded
3154 	 * in the pool of multicast addresses.
3155 	 */
3156 	for (i = 0; i < port->mc_addr_nb; i++) {
3157 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3158 			printf("multicast address already filtered by port\n");
3159 			return;
3160 		}
3161 	}
3162 
3163 	if (mcast_addr_pool_extend(port) != 0)
3164 		return;
3165 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3166 	eth_port_multicast_addr_list_set(port_id);
3167 }
3168 
3169 void
3170 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3171 {
3172 	struct rte_port *port;
3173 	uint32_t i;
3174 
3175 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3176 		return;
3177 
3178 	port = &ports[port_id];
3179 
3180 	/*
3181 	 * Search the pool of multicast MAC addresses for the removed address.
3182 	 */
3183 	for (i = 0; i < port->mc_addr_nb; i++) {
3184 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3185 			break;
3186 	}
3187 	if (i == port->mc_addr_nb) {
3188 		printf("multicast address not filtered by port %d\n", port_id);
3189 		return;
3190 	}
3191 
3192 	mcast_addr_pool_remove(port, i);
3193 	eth_port_multicast_addr_list_set(port_id);
3194 }
3195 
3196 void
3197 port_dcb_info_display(uint8_t port_id)
3198 {
3199 	struct rte_eth_dcb_info dcb_info;
3200 	uint16_t i;
3201 	int ret;
3202 	static const char *border = "================";
3203 
3204 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3205 		return;
3206 
3207 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3208 	if (ret) {
3209 		printf("\n Failed to get dcb infos on port %-2d\n",
3210 			port_id);
3211 		return;
3212 	}
3213 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3214 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3215 	printf("\n  TC :        ");
3216 	for (i = 0; i < dcb_info.nb_tcs; i++)
3217 		printf("\t%4d", i);
3218 	printf("\n  Priority :  ");
3219 	for (i = 0; i < dcb_info.nb_tcs; i++)
3220 		printf("\t%4d", dcb_info.prio_tc[i]);
3221 	printf("\n  BW percent :");
3222 	for (i = 0; i < dcb_info.nb_tcs; i++)
3223 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3224 	printf("\n  RXQ base :  ");
3225 	for (i = 0; i < dcb_info.nb_tcs; i++)
3226 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3227 	printf("\n  RXQ number :");
3228 	for (i = 0; i < dcb_info.nb_tcs; i++)
3229 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3230 	printf("\n  TXQ base :  ");
3231 	for (i = 0; i < dcb_info.nb_tcs; i++)
3232 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3233 	printf("\n  TXQ number :");
3234 	for (i = 0; i < dcb_info.nb_tcs; i++)
3235 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3236 	printf("\n");
3237 }
3238 
3239 uint8_t *
3240 open_ddp_package_file(const char *file_path, uint32_t *size)
3241 {
3242 	FILE *fh = fopen(file_path, "rb");
3243 	uint32_t pkg_size;
3244 	uint8_t *buf = NULL;
3245 	int ret = 0;
3246 
3247 	if (size)
3248 		*size = 0;
3249 
3250 	if (fh == NULL) {
3251 		printf("%s: Failed to open %s\n", __func__, file_path);
3252 		return buf;
3253 	}
3254 
3255 	ret = fseek(fh, 0, SEEK_END);
3256 	if (ret < 0) {
3257 		fclose(fh);
3258 		printf("%s: File operations failed\n", __func__);
3259 		return buf;
3260 	}
3261 
3262 	pkg_size = ftell(fh);
3263 
3264 	buf = (uint8_t *)malloc(pkg_size);
3265 	if (!buf) {
3266 		fclose(fh);
3267 		printf("%s: Failed to malloc memory\n",	__func__);
3268 		return buf;
3269 	}
3270 
3271 	ret = fseek(fh, 0, SEEK_SET);
3272 	if (ret < 0) {
3273 		fclose(fh);
3274 		printf("%s: File seek operation failed\n", __func__);
3275 		close_ddp_package_file(buf);
3276 		return NULL;
3277 	}
3278 
3279 	ret = fread(buf, 1, pkg_size, fh);
3280 	if (ret < 0) {
3281 		fclose(fh);
3282 		printf("%s: File read operation failed\n", __func__);
3283 		close_ddp_package_file(buf);
3284 		return NULL;
3285 	}
3286 
3287 	if (size)
3288 		*size = pkg_size;
3289 
3290 	fclose(fh);
3291 
3292 	return buf;
3293 }
3294 
3295 int
3296 close_ddp_package_file(uint8_t *buf)
3297 {
3298 	if (buf) {
3299 		free((void *)buf);
3300 		return 0;
3301 	}
3302 
3303 	return -1;
3304 }
3305