xref: /dpdk/app/test-pmd/config.c (revision 2f82d143fb318042f47a50694baa4507b51b7381)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 const struct rss_type_info rss_type_table[] = {
77 	{ "ipv4", ETH_RSS_IPV4 },
78 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83 	{ "ipv6", ETH_RSS_IPV6 },
84 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
90 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
91 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93 	{ "port", ETH_RSS_PORT },
94 	{ "vxlan", ETH_RSS_VXLAN },
95 	{ "geneve", ETH_RSS_GENEVE },
96 	{ "nvgre", ETH_RSS_NVGRE },
97 	{ "ip", ETH_RSS_IP },
98 	{ "udp", ETH_RSS_UDP },
99 	{ "tcp", ETH_RSS_TCP },
100 	{ "sctp", ETH_RSS_SCTP },
101 	{ "tunnel", ETH_RSS_TUNNEL },
102 	{ NULL, 0 },
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 	portid_t pid;
125 
126 	static const char *nic_stats_border = "########################";
127 
128 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129 		printf("Valid port range is [0");
130 		RTE_ETH_FOREACH_DEV(pid)
131 			printf(", %d", pid);
132 		printf("]\n");
133 		return;
134 	}
135 	rte_eth_stats_get(port_id, &stats);
136 	printf("\n  %s NIC statistics for port %-2d %s\n",
137 	       nic_stats_border, port_id, nic_stats_border);
138 
139 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141 		       "%-"PRIu64"\n",
142 		       stats.ipackets, stats.imissed, stats.ibytes);
143 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144 		printf("  RX-nombuf:  %-10"PRIu64"\n",
145 		       stats.rx_nombuf);
146 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147 		       "%-"PRIu64"\n",
148 		       stats.opackets, stats.oerrors, stats.obytes);
149 	}
150 	else {
151 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152 		       "    RX-bytes: %10"PRIu64"\n",
153 		       stats.ipackets, stats.ierrors, stats.ibytes);
154 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155 		printf("  RX-nombuf:               %10"PRIu64"\n",
156 		       stats.rx_nombuf);
157 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158 		       "    TX-bytes: %10"PRIu64"\n",
159 		       stats.opackets, stats.oerrors, stats.obytes);
160 	}
161 
162 	if (port->rx_queue_stats_mapping_enabled) {
163 		printf("\n");
164 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165 			printf("  Stats reg %2d RX-packets: %10"PRIu64
166 			       "    RX-errors: %10"PRIu64
167 			       "    RX-bytes: %10"PRIu64"\n",
168 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169 		}
170 	}
171 	if (port->tx_queue_stats_mapping_enabled) {
172 		printf("\n");
173 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174 			printf("  Stats reg %2d TX-packets: %10"PRIu64
175 			       "                             TX-bytes: %10"PRIu64"\n",
176 			       i, stats.q_opackets[i], stats.q_obytes[i]);
177 		}
178 	}
179 
180 	diff_cycles = prev_cycles[port_id];
181 	prev_cycles[port_id] = rte_rdtsc();
182 	if (diff_cycles > 0)
183 		diff_cycles = prev_cycles[port_id] - diff_cycles;
184 
185 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
187 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
189 	prev_pkts_rx[port_id] = stats.ipackets;
190 	prev_pkts_tx[port_id] = stats.opackets;
191 	mpps_rx = diff_cycles > 0 ?
192 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193 	mpps_tx = diff_cycles > 0 ?
194 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195 	printf("\n  Throughput (since last show)\n");
196 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197 			mpps_rx, mpps_tx);
198 
199 	printf("  %s############################%s\n",
200 	       nic_stats_border, nic_stats_border);
201 }
202 
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206 	portid_t pid;
207 
208 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209 		printf("Valid port range is [0");
210 		RTE_ETH_FOREACH_DEV(pid)
211 			printf(", %d", pid);
212 		printf("]\n");
213 		return;
214 	}
215 	rte_eth_stats_reset(port_id);
216 	printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218 
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222 	struct rte_eth_xstat *xstats;
223 	int cnt_xstats, idx_xstat;
224 	struct rte_eth_xstat_name *xstats_names;
225 
226 	printf("###### NIC extended statistics for port %-2d\n", port_id);
227 	if (!rte_eth_dev_is_valid_port(port_id)) {
228 		printf("Error: Invalid port number %i\n", port_id);
229 		return;
230 	}
231 
232 	/* Get count */
233 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234 	if (cnt_xstats  < 0) {
235 		printf("Error: Cannot get count of xstats\n");
236 		return;
237 	}
238 
239 	/* Get id-name lookup table */
240 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241 	if (xstats_names == NULL) {
242 		printf("Cannot allocate memory for xstats lookup\n");
243 		return;
244 	}
245 	if (cnt_xstats != rte_eth_xstats_get_names(
246 			port_id, xstats_names, cnt_xstats)) {
247 		printf("Error: Cannot get xstats lookup\n");
248 		free(xstats_names);
249 		return;
250 	}
251 
252 	/* Get stats themselves */
253 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254 	if (xstats == NULL) {
255 		printf("Cannot allocate memory for xstats\n");
256 		free(xstats_names);
257 		return;
258 	}
259 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260 		printf("Error: Unable to get xstats\n");
261 		free(xstats_names);
262 		free(xstats);
263 		return;
264 	}
265 
266 	/* Display xstats */
267 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268 		if (xstats_hide_zero && !xstats[idx_xstat].value)
269 			continue;
270 		printf("%s: %"PRIu64"\n",
271 			xstats_names[idx_xstat].name,
272 			xstats[idx_xstat].value);
273 	}
274 	free(xstats_names);
275 	free(xstats);
276 }
277 
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281 	rte_eth_xstats_reset(port_id);
282 }
283 
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287 	struct rte_port *port = &ports[port_id];
288 	uint16_t i;
289 	portid_t pid;
290 
291 	static const char *nic_stats_mapping_border = "########################";
292 
293 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294 		printf("Valid port range is [0");
295 		RTE_ETH_FOREACH_DEV(pid)
296 			printf(", %d", pid);
297 		printf("]\n");
298 		return;
299 	}
300 
301 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302 		printf("Port id %d - either does not support queue statistic mapping or"
303 		       " no queue statistic mapping set\n", port_id);
304 		return;
305 	}
306 
307 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309 
310 	if (port->rx_queue_stats_mapping_enabled) {
311 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312 			if (rx_queue_stats_mappings[i].port_id == port_id) {
313 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314 				       rx_queue_stats_mappings[i].queue_id,
315 				       rx_queue_stats_mappings[i].stats_counter_id);
316 			}
317 		}
318 		printf("\n");
319 	}
320 
321 
322 	if (port->tx_queue_stats_mapping_enabled) {
323 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324 			if (tx_queue_stats_mappings[i].port_id == port_id) {
325 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326 				       tx_queue_stats_mappings[i].queue_id,
327 				       tx_queue_stats_mappings[i].stats_counter_id);
328 			}
329 		}
330 	}
331 
332 	printf("  %s####################################%s\n",
333 	       nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335 
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339 	struct rte_eth_rxq_info qinfo;
340 	int32_t rc;
341 	static const char *info_border = "*********************";
342 
343 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344 	if (rc != 0) {
345 		printf("Failed to retrieve information for port: %u, "
346 			"RX queue: %hu\nerror desc: %s(%d)\n",
347 			port_id, queue_id, strerror(-rc), rc);
348 		return;
349 	}
350 
351 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352 	       info_border, port_id, queue_id, info_border);
353 
354 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359 	printf("\nRX drop packets: %s",
360 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361 	printf("\nRX deferred start: %s",
362 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363 	printf("\nRX scattered packets: %s",
364 		(qinfo.scattered_rx != 0) ? "on" : "off");
365 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366 	printf("\n");
367 }
368 
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372 	struct rte_eth_txq_info qinfo;
373 	int32_t rc;
374 	static const char *info_border = "*********************";
375 
376 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377 	if (rc != 0) {
378 		printf("Failed to retrieve information for port: %u, "
379 			"TX queue: %hu\nerror desc: %s(%d)\n",
380 			port_id, queue_id, strerror(-rc), rc);
381 		return;
382 	}
383 
384 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385 	       info_border, port_id, queue_id, info_border);
386 
387 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392 	printf("\nTX deferred start: %s",
393 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 port_infos_display(portid_t port_id)
400 {
401 	struct rte_port *port;
402 	struct ether_addr mac_addr;
403 	struct rte_eth_link link;
404 	struct rte_eth_dev_info dev_info;
405 	int vlan_offload;
406 	struct rte_mempool * mp;
407 	static const char *info_border = "*********************";
408 	portid_t pid;
409 	uint16_t mtu;
410 	char name[RTE_ETH_NAME_MAX_LEN];
411 
412 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
413 		printf("Valid port range is [0");
414 		RTE_ETH_FOREACH_DEV(pid)
415 			printf(", %d", pid);
416 		printf("]\n");
417 		return;
418 	}
419 	port = &ports[port_id];
420 	rte_eth_link_get_nowait(port_id, &link);
421 	memset(&dev_info, 0, sizeof(dev_info));
422 	rte_eth_dev_info_get(port_id, &dev_info);
423 	printf("\n%s Infos for port %-2d %s\n",
424 	       info_border, port_id, info_border);
425 	rte_eth_macaddr_get(port_id, &mac_addr);
426 	print_ethaddr("MAC address: ", &mac_addr);
427 	rte_eth_dev_get_name_by_port(port_id, name);
428 	printf("\nDevice name: %s", name);
429 	printf("\nDriver name: %s", dev_info.driver_name);
430 	printf("\nConnect to socket: %u", port->socket_id);
431 
432 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
433 		mp = mbuf_pool_find(port_numa[port_id]);
434 		if (mp)
435 			printf("\nmemory allocation on the socket: %d",
436 							port_numa[port_id]);
437 	} else
438 		printf("\nmemory allocation on the socket: %u",port->socket_id);
439 
440 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
441 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
442 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
443 	       ("full-duplex") : ("half-duplex"));
444 
445 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
446 		printf("MTU: %u\n", mtu);
447 
448 	printf("Promiscuous mode: %s\n",
449 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
450 	printf("Allmulticast mode: %s\n",
451 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
452 	printf("Maximum number of MAC addresses: %u\n",
453 	       (unsigned int)(port->dev_info.max_mac_addrs));
454 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
455 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
456 
457 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
458 	if (vlan_offload >= 0){
459 		printf("VLAN offload: \n");
460 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
461 			printf("  strip on \n");
462 		else
463 			printf("  strip off \n");
464 
465 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
466 			printf("  filter on \n");
467 		else
468 			printf("  filter off \n");
469 
470 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
471 			printf("  qinq(extend) on \n");
472 		else
473 			printf("  qinq(extend) off \n");
474 	}
475 
476 	if (dev_info.hash_key_size > 0)
477 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
478 	if (dev_info.reta_size > 0)
479 		printf("Redirection table size: %u\n", dev_info.reta_size);
480 	if (!dev_info.flow_type_rss_offloads)
481 		printf("No flow type is supported.\n");
482 	else {
483 		uint16_t i;
484 		char *p;
485 
486 		printf("Supported flow types:\n");
487 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
488 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
489 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
490 				continue;
491 			p = flowtype_to_str(i);
492 			if (p)
493 				printf("  %s\n", p);
494 			else
495 				printf("  user defined %d\n", i);
496 		}
497 	}
498 
499 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
500 	printf("Maximum configurable length of RX packet: %u\n",
501 		dev_info.max_rx_pktlen);
502 	if (dev_info.max_vfs)
503 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
504 	if (dev_info.max_vmdq_pools)
505 		printf("Maximum number of VMDq pools: %u\n",
506 			dev_info.max_vmdq_pools);
507 
508 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
509 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
510 	printf("Max possible number of RXDs per queue: %hu\n",
511 		dev_info.rx_desc_lim.nb_max);
512 	printf("Min possible number of RXDs per queue: %hu\n",
513 		dev_info.rx_desc_lim.nb_min);
514 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
515 
516 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
517 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
518 	printf("Max possible number of TXDs per queue: %hu\n",
519 		dev_info.tx_desc_lim.nb_max);
520 	printf("Min possible number of TXDs per queue: %hu\n",
521 		dev_info.tx_desc_lim.nb_min);
522 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
523 
524 	/* Show switch info only if valid switch domain and port id is set */
525 	if (dev_info.switch_info.domain_id !=
526 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
527 		if (dev_info.switch_info.name)
528 			printf("Switch name: %s\n", dev_info.switch_info.name);
529 
530 		printf("Switch domain Id: %u\n",
531 			dev_info.switch_info.domain_id);
532 		printf("Switch Port Id: %u\n",
533 			dev_info.switch_info.port_id);
534 	}
535 }
536 
537 void
538 port_offload_cap_display(portid_t port_id)
539 {
540 	struct rte_eth_dev_info dev_info;
541 	static const char *info_border = "************";
542 
543 	if (port_id_is_invalid(port_id, ENABLED_WARN))
544 		return;
545 
546 	rte_eth_dev_info_get(port_id, &dev_info);
547 
548 	printf("\n%s Port %d supported offload features: %s\n",
549 		info_border, port_id, info_border);
550 
551 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
552 		printf("VLAN stripped:                 ");
553 		if (ports[port_id].dev_conf.rxmode.offloads &
554 		    DEV_RX_OFFLOAD_VLAN_STRIP)
555 			printf("on\n");
556 		else
557 			printf("off\n");
558 	}
559 
560 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
561 		printf("Double VLANs stripped:         ");
562 		if (ports[port_id].dev_conf.rxmode.offloads &
563 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
564 			printf("on\n");
565 		else
566 			printf("off\n");
567 	}
568 
569 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
570 		printf("RX IPv4 checksum:              ");
571 		if (ports[port_id].dev_conf.rxmode.offloads &
572 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
573 			printf("on\n");
574 		else
575 			printf("off\n");
576 	}
577 
578 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
579 		printf("RX UDP checksum:               ");
580 		if (ports[port_id].dev_conf.rxmode.offloads &
581 		    DEV_RX_OFFLOAD_UDP_CKSUM)
582 			printf("on\n");
583 		else
584 			printf("off\n");
585 	}
586 
587 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
588 		printf("RX TCP checksum:               ");
589 		if (ports[port_id].dev_conf.rxmode.offloads &
590 		    DEV_RX_OFFLOAD_TCP_CKSUM)
591 			printf("on\n");
592 		else
593 			printf("off\n");
594 	}
595 
596 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
597 		printf("RX Outer IPv4 checksum:               ");
598 		if (ports[port_id].dev_conf.rxmode.offloads &
599 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
600 			printf("on\n");
601 		else
602 			printf("off\n");
603 	}
604 
605 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
606 		printf("Large receive offload:         ");
607 		if (ports[port_id].dev_conf.rxmode.offloads &
608 		    DEV_RX_OFFLOAD_TCP_LRO)
609 			printf("on\n");
610 		else
611 			printf("off\n");
612 	}
613 
614 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
615 		printf("VLAN insert:                   ");
616 		if (ports[port_id].dev_conf.txmode.offloads &
617 		    DEV_TX_OFFLOAD_VLAN_INSERT)
618 			printf("on\n");
619 		else
620 			printf("off\n");
621 	}
622 
623 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
624 		printf("HW timestamp:                  ");
625 		if (ports[port_id].dev_conf.rxmode.offloads &
626 		    DEV_RX_OFFLOAD_TIMESTAMP)
627 			printf("on\n");
628 		else
629 			printf("off\n");
630 	}
631 
632 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
633 		printf("Double VLANs insert:           ");
634 		if (ports[port_id].dev_conf.txmode.offloads &
635 		    DEV_TX_OFFLOAD_QINQ_INSERT)
636 			printf("on\n");
637 		else
638 			printf("off\n");
639 	}
640 
641 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
642 		printf("TX IPv4 checksum:              ");
643 		if (ports[port_id].dev_conf.txmode.offloads &
644 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
645 			printf("on\n");
646 		else
647 			printf("off\n");
648 	}
649 
650 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
651 		printf("TX UDP checksum:               ");
652 		if (ports[port_id].dev_conf.txmode.offloads &
653 		    DEV_TX_OFFLOAD_UDP_CKSUM)
654 			printf("on\n");
655 		else
656 			printf("off\n");
657 	}
658 
659 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
660 		printf("TX TCP checksum:               ");
661 		if (ports[port_id].dev_conf.txmode.offloads &
662 		    DEV_TX_OFFLOAD_TCP_CKSUM)
663 			printf("on\n");
664 		else
665 			printf("off\n");
666 	}
667 
668 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
669 		printf("TX SCTP checksum:              ");
670 		if (ports[port_id].dev_conf.txmode.offloads &
671 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
672 			printf("on\n");
673 		else
674 			printf("off\n");
675 	}
676 
677 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
678 		printf("TX Outer IPv4 checksum:        ");
679 		if (ports[port_id].dev_conf.txmode.offloads &
680 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
681 			printf("on\n");
682 		else
683 			printf("off\n");
684 	}
685 
686 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
687 		printf("TX TCP segmentation:           ");
688 		if (ports[port_id].dev_conf.txmode.offloads &
689 		    DEV_TX_OFFLOAD_TCP_TSO)
690 			printf("on\n");
691 		else
692 			printf("off\n");
693 	}
694 
695 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
696 		printf("TX UDP segmentation:           ");
697 		if (ports[port_id].dev_conf.txmode.offloads &
698 		    DEV_TX_OFFLOAD_UDP_TSO)
699 			printf("on\n");
700 		else
701 			printf("off\n");
702 	}
703 
704 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
705 		printf("TSO for VXLAN tunnel packet:   ");
706 		if (ports[port_id].dev_conf.txmode.offloads &
707 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
708 			printf("on\n");
709 		else
710 			printf("off\n");
711 	}
712 
713 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
714 		printf("TSO for GRE tunnel packet:     ");
715 		if (ports[port_id].dev_conf.txmode.offloads &
716 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
717 			printf("on\n");
718 		else
719 			printf("off\n");
720 	}
721 
722 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
723 		printf("TSO for IPIP tunnel packet:    ");
724 		if (ports[port_id].dev_conf.txmode.offloads &
725 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
726 			printf("on\n");
727 		else
728 			printf("off\n");
729 	}
730 
731 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
732 		printf("TSO for GENEVE tunnel packet:  ");
733 		if (ports[port_id].dev_conf.txmode.offloads &
734 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
735 			printf("on\n");
736 		else
737 			printf("off\n");
738 	}
739 
740 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
741 		printf("IP tunnel TSO:  ");
742 		if (ports[port_id].dev_conf.txmode.offloads &
743 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
744 			printf("on\n");
745 		else
746 			printf("off\n");
747 	}
748 
749 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
750 		printf("UDP tunnel TSO:  ");
751 		if (ports[port_id].dev_conf.txmode.offloads &
752 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
753 			printf("on\n");
754 		else
755 			printf("off\n");
756 	}
757 }
758 
759 int
760 port_id_is_invalid(portid_t port_id, enum print_warning warning)
761 {
762 	uint16_t pid;
763 
764 	if (port_id == (portid_t)RTE_PORT_ALL)
765 		return 0;
766 
767 	RTE_ETH_FOREACH_DEV(pid)
768 		if (port_id == pid)
769 			return 0;
770 
771 	if (warning == ENABLED_WARN)
772 		printf("Invalid port %d\n", port_id);
773 
774 	return 1;
775 }
776 
777 static int
778 vlan_id_is_invalid(uint16_t vlan_id)
779 {
780 	if (vlan_id < 4096)
781 		return 0;
782 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
783 	return 1;
784 }
785 
786 static int
787 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
788 {
789 	const struct rte_pci_device *pci_dev;
790 	const struct rte_bus *bus;
791 	uint64_t pci_len;
792 
793 	if (reg_off & 0x3) {
794 		printf("Port register offset 0x%X not aligned on a 4-byte "
795 		       "boundary\n",
796 		       (unsigned)reg_off);
797 		return 1;
798 	}
799 
800 	if (!ports[port_id].dev_info.device) {
801 		printf("Invalid device\n");
802 		return 0;
803 	}
804 
805 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
806 	if (bus && !strcmp(bus->name, "pci")) {
807 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
808 	} else {
809 		printf("Not a PCI device\n");
810 		return 1;
811 	}
812 
813 	pci_len = pci_dev->mem_resource[0].len;
814 	if (reg_off >= pci_len) {
815 		printf("Port %d: register offset %u (0x%X) out of port PCI "
816 		       "resource (length=%"PRIu64")\n",
817 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
818 		return 1;
819 	}
820 	return 0;
821 }
822 
823 static int
824 reg_bit_pos_is_invalid(uint8_t bit_pos)
825 {
826 	if (bit_pos <= 31)
827 		return 0;
828 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
829 	return 1;
830 }
831 
832 #define display_port_and_reg_off(port_id, reg_off) \
833 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
834 
835 static inline void
836 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
837 {
838 	display_port_and_reg_off(port_id, (unsigned)reg_off);
839 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
840 }
841 
842 void
843 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
844 {
845 	uint32_t reg_v;
846 
847 
848 	if (port_id_is_invalid(port_id, ENABLED_WARN))
849 		return;
850 	if (port_reg_off_is_invalid(port_id, reg_off))
851 		return;
852 	if (reg_bit_pos_is_invalid(bit_x))
853 		return;
854 	reg_v = port_id_pci_reg_read(port_id, reg_off);
855 	display_port_and_reg_off(port_id, (unsigned)reg_off);
856 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
857 }
858 
859 void
860 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
861 			   uint8_t bit1_pos, uint8_t bit2_pos)
862 {
863 	uint32_t reg_v;
864 	uint8_t  l_bit;
865 	uint8_t  h_bit;
866 
867 	if (port_id_is_invalid(port_id, ENABLED_WARN))
868 		return;
869 	if (port_reg_off_is_invalid(port_id, reg_off))
870 		return;
871 	if (reg_bit_pos_is_invalid(bit1_pos))
872 		return;
873 	if (reg_bit_pos_is_invalid(bit2_pos))
874 		return;
875 	if (bit1_pos > bit2_pos)
876 		l_bit = bit2_pos, h_bit = bit1_pos;
877 	else
878 		l_bit = bit1_pos, h_bit = bit2_pos;
879 
880 	reg_v = port_id_pci_reg_read(port_id, reg_off);
881 	reg_v >>= l_bit;
882 	if (h_bit < 31)
883 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
884 	display_port_and_reg_off(port_id, (unsigned)reg_off);
885 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
886 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
887 }
888 
889 void
890 port_reg_display(portid_t port_id, uint32_t reg_off)
891 {
892 	uint32_t reg_v;
893 
894 	if (port_id_is_invalid(port_id, ENABLED_WARN))
895 		return;
896 	if (port_reg_off_is_invalid(port_id, reg_off))
897 		return;
898 	reg_v = port_id_pci_reg_read(port_id, reg_off);
899 	display_port_reg_value(port_id, reg_off, reg_v);
900 }
901 
902 void
903 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
904 		 uint8_t bit_v)
905 {
906 	uint32_t reg_v;
907 
908 	if (port_id_is_invalid(port_id, ENABLED_WARN))
909 		return;
910 	if (port_reg_off_is_invalid(port_id, reg_off))
911 		return;
912 	if (reg_bit_pos_is_invalid(bit_pos))
913 		return;
914 	if (bit_v > 1) {
915 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
916 		return;
917 	}
918 	reg_v = port_id_pci_reg_read(port_id, reg_off);
919 	if (bit_v == 0)
920 		reg_v &= ~(1 << bit_pos);
921 	else
922 		reg_v |= (1 << bit_pos);
923 	port_id_pci_reg_write(port_id, reg_off, reg_v);
924 	display_port_reg_value(port_id, reg_off, reg_v);
925 }
926 
927 void
928 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
929 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
930 {
931 	uint32_t max_v;
932 	uint32_t reg_v;
933 	uint8_t  l_bit;
934 	uint8_t  h_bit;
935 
936 	if (port_id_is_invalid(port_id, ENABLED_WARN))
937 		return;
938 	if (port_reg_off_is_invalid(port_id, reg_off))
939 		return;
940 	if (reg_bit_pos_is_invalid(bit1_pos))
941 		return;
942 	if (reg_bit_pos_is_invalid(bit2_pos))
943 		return;
944 	if (bit1_pos > bit2_pos)
945 		l_bit = bit2_pos, h_bit = bit1_pos;
946 	else
947 		l_bit = bit1_pos, h_bit = bit2_pos;
948 
949 	if ((h_bit - l_bit) < 31)
950 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
951 	else
952 		max_v = 0xFFFFFFFF;
953 
954 	if (value > max_v) {
955 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
956 				(unsigned)value, (unsigned)value,
957 				(unsigned)max_v, (unsigned)max_v);
958 		return;
959 	}
960 	reg_v = port_id_pci_reg_read(port_id, reg_off);
961 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
962 	reg_v |= (value << l_bit); /* Set changed bits */
963 	port_id_pci_reg_write(port_id, reg_off, reg_v);
964 	display_port_reg_value(port_id, reg_off, reg_v);
965 }
966 
967 void
968 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
969 {
970 	if (port_id_is_invalid(port_id, ENABLED_WARN))
971 		return;
972 	if (port_reg_off_is_invalid(port_id, reg_off))
973 		return;
974 	port_id_pci_reg_write(port_id, reg_off, reg_v);
975 	display_port_reg_value(port_id, reg_off, reg_v);
976 }
977 
978 void
979 port_mtu_set(portid_t port_id, uint16_t mtu)
980 {
981 	int diag;
982 
983 	if (port_id_is_invalid(port_id, ENABLED_WARN))
984 		return;
985 	diag = rte_eth_dev_set_mtu(port_id, mtu);
986 	if (diag == 0)
987 		return;
988 	printf("Set MTU failed. diag=%d\n", diag);
989 }
990 
991 /* Generic flow management functions. */
992 
993 /** Generate flow_item[] entry. */
994 #define MK_FLOW_ITEM(t, s) \
995 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
996 		.name = # t, \
997 		.size = s, \
998 	}
999 
1000 /** Information about known flow pattern items. */
1001 static const struct {
1002 	const char *name;
1003 	size_t size;
1004 } flow_item[] = {
1005 	MK_FLOW_ITEM(END, 0),
1006 	MK_FLOW_ITEM(VOID, 0),
1007 	MK_FLOW_ITEM(INVERT, 0),
1008 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1009 	MK_FLOW_ITEM(PF, 0),
1010 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1011 	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
1012 	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
1013 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
1014 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1015 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1016 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1017 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1018 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1019 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1020 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1021 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1022 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1023 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1024 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1025 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1026 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1027 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1028 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1029 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1030 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1031 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1032 	MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1033 	MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
1034 	MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
1035 	MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1036 	MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
1037 	MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
1038 	MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
1039 	MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
1040 		     sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1041 	MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
1042 		     sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1043 };
1044 
1045 /** Pattern item specification types. */
1046 enum item_spec_type {
1047 	ITEM_SPEC,
1048 	ITEM_LAST,
1049 	ITEM_MASK,
1050 };
1051 
1052 /** Compute storage space needed by item specification and copy it. */
1053 static size_t
1054 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1055 		    enum item_spec_type type)
1056 {
1057 	size_t size = 0;
1058 	const void *item_spec =
1059 		type == ITEM_SPEC ? item->spec :
1060 		type == ITEM_LAST ? item->last :
1061 		type == ITEM_MASK ? item->mask :
1062 		NULL;
1063 
1064 	if (!item_spec)
1065 		goto empty;
1066 	switch (item->type) {
1067 		union {
1068 			const struct rte_flow_item_raw *raw;
1069 		} src;
1070 		union {
1071 			struct rte_flow_item_raw *raw;
1072 		} dst;
1073 		size_t off;
1074 
1075 	case RTE_FLOW_ITEM_TYPE_RAW:
1076 		src.raw = item_spec;
1077 		dst.raw = buf;
1078 		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1079 				     sizeof(*src.raw->pattern));
1080 		size = off + src.raw->length * sizeof(*src.raw->pattern);
1081 		if (dst.raw) {
1082 			memcpy(dst.raw, src.raw, sizeof(*src.raw));
1083 			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1084 						  src.raw->pattern,
1085 						  size - off);
1086 		}
1087 		break;
1088 	default:
1089 		size = flow_item[item->type].size;
1090 		if (buf)
1091 			memcpy(buf, item_spec, size);
1092 		break;
1093 	}
1094 empty:
1095 	return RTE_ALIGN_CEIL(size, sizeof(double));
1096 }
1097 
1098 /** Generate flow_action[] entry. */
1099 #define MK_FLOW_ACTION(t, s) \
1100 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1101 		.name = # t, \
1102 		.size = s, \
1103 	}
1104 
1105 /** Information about known flow actions. */
1106 static const struct {
1107 	const char *name;
1108 	size_t size;
1109 } flow_action[] = {
1110 	MK_FLOW_ACTION(END, 0),
1111 	MK_FLOW_ACTION(VOID, 0),
1112 	MK_FLOW_ACTION(PASSTHRU, 0),
1113 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1114 	MK_FLOW_ACTION(FLAG, 0),
1115 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1116 	MK_FLOW_ACTION(DROP, 0),
1117 	MK_FLOW_ACTION(COUNT, 0),
1118 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1119 	MK_FLOW_ACTION(PF, 0),
1120 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1121 	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1122 	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1123 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1124 	MK_FLOW_ACTION(OF_SET_MPLS_TTL,
1125 		       sizeof(struct rte_flow_action_of_set_mpls_ttl)),
1126 	MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
1127 	MK_FLOW_ACTION(OF_SET_NW_TTL,
1128 		       sizeof(struct rte_flow_action_of_set_nw_ttl)),
1129 	MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
1130 	MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
1131 	MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
1132 	MK_FLOW_ACTION(OF_POP_VLAN, 0),
1133 	MK_FLOW_ACTION(OF_PUSH_VLAN,
1134 		       sizeof(struct rte_flow_action_of_push_vlan)),
1135 	MK_FLOW_ACTION(OF_SET_VLAN_VID,
1136 		       sizeof(struct rte_flow_action_of_set_vlan_vid)),
1137 	MK_FLOW_ACTION(OF_SET_VLAN_PCP,
1138 		       sizeof(struct rte_flow_action_of_set_vlan_pcp)),
1139 	MK_FLOW_ACTION(OF_POP_MPLS,
1140 		       sizeof(struct rte_flow_action_of_pop_mpls)),
1141 	MK_FLOW_ACTION(OF_PUSH_MPLS,
1142 		       sizeof(struct rte_flow_action_of_push_mpls)),
1143 };
1144 
1145 /** Compute storage space needed by action configuration and copy it. */
1146 static size_t
1147 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1148 {
1149 	size_t size = 0;
1150 
1151 	if (!action->conf)
1152 		goto empty;
1153 	switch (action->type) {
1154 		union {
1155 			const struct rte_flow_action_rss *rss;
1156 		} src;
1157 		union {
1158 			struct rte_flow_action_rss *rss;
1159 		} dst;
1160 		size_t off;
1161 
1162 	case RTE_FLOW_ACTION_TYPE_RSS:
1163 		src.rss = action->conf;
1164 		dst.rss = buf;
1165 		off = 0;
1166 		if (dst.rss)
1167 			*dst.rss = (struct rte_flow_action_rss){
1168 				.func = src.rss->func,
1169 				.level = src.rss->level,
1170 				.types = src.rss->types,
1171 				.key_len = src.rss->key_len,
1172 				.queue_num = src.rss->queue_num,
1173 			};
1174 		off += sizeof(*src.rss);
1175 		if (src.rss->key_len) {
1176 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1177 			size = sizeof(*src.rss->key) * src.rss->key_len;
1178 			if (dst.rss)
1179 				dst.rss->key = memcpy
1180 					((void *)((uintptr_t)dst.rss + off),
1181 					 src.rss->key, size);
1182 			off += size;
1183 		}
1184 		if (src.rss->queue_num) {
1185 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1186 			size = sizeof(*src.rss->queue) * src.rss->queue_num;
1187 			if (dst.rss)
1188 				dst.rss->queue = memcpy
1189 					((void *)((uintptr_t)dst.rss + off),
1190 					 src.rss->queue, size);
1191 			off += size;
1192 		}
1193 		size = off;
1194 		break;
1195 	default:
1196 		size = flow_action[action->type].size;
1197 		if (buf)
1198 			memcpy(buf, action->conf, size);
1199 		break;
1200 	}
1201 empty:
1202 	return RTE_ALIGN_CEIL(size, sizeof(double));
1203 }
1204 
1205 /** Generate a port_flow entry from attributes/pattern/actions. */
1206 static struct port_flow *
1207 port_flow_new(const struct rte_flow_attr *attr,
1208 	      const struct rte_flow_item *pattern,
1209 	      const struct rte_flow_action *actions)
1210 {
1211 	const struct rte_flow_item *item;
1212 	const struct rte_flow_action *action;
1213 	struct port_flow *pf = NULL;
1214 	size_t tmp;
1215 	size_t off1 = 0;
1216 	size_t off2 = 0;
1217 	int err = ENOTSUP;
1218 
1219 store:
1220 	item = pattern;
1221 	if (pf)
1222 		pf->pattern = (void *)&pf->data[off1];
1223 	do {
1224 		struct rte_flow_item *dst = NULL;
1225 
1226 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1227 		    !flow_item[item->type].name)
1228 			goto notsup;
1229 		if (pf)
1230 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1231 		off1 += sizeof(*item);
1232 		if (item->spec) {
1233 			if (pf)
1234 				dst->spec = pf->data + off2;
1235 			off2 += flow_item_spec_copy
1236 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1237 		}
1238 		if (item->last) {
1239 			if (pf)
1240 				dst->last = pf->data + off2;
1241 			off2 += flow_item_spec_copy
1242 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1243 		}
1244 		if (item->mask) {
1245 			if (pf)
1246 				dst->mask = pf->data + off2;
1247 			off2 += flow_item_spec_copy
1248 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1249 		}
1250 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1251 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1252 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1253 	action = actions;
1254 	if (pf)
1255 		pf->actions = (void *)&pf->data[off1];
1256 	do {
1257 		struct rte_flow_action *dst = NULL;
1258 
1259 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1260 		    !flow_action[action->type].name)
1261 			goto notsup;
1262 		if (pf)
1263 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1264 		off1 += sizeof(*action);
1265 		if (action->conf) {
1266 			if (pf)
1267 				dst->conf = pf->data + off2;
1268 			off2 += flow_action_conf_copy
1269 				(pf ? pf->data + off2 : NULL, action);
1270 		}
1271 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1272 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1273 	if (pf != NULL)
1274 		return pf;
1275 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1276 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1277 	pf = calloc(1, tmp + off1 + off2);
1278 	if (pf == NULL)
1279 		err = errno;
1280 	else {
1281 		*pf = (const struct port_flow){
1282 			.size = tmp + off1 + off2,
1283 			.attr = *attr,
1284 		};
1285 		tmp -= offsetof(struct port_flow, data);
1286 		off2 = tmp + off1;
1287 		off1 = tmp;
1288 		goto store;
1289 	}
1290 notsup:
1291 	rte_errno = err;
1292 	return NULL;
1293 }
1294 
1295 /** Print a message out of a flow error. */
1296 static int
1297 port_flow_complain(struct rte_flow_error *error)
1298 {
1299 	static const char *const errstrlist[] = {
1300 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1301 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1302 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1303 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1304 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1305 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1306 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1307 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1308 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1309 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1310 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1311 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1312 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1313 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1314 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1315 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1316 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1317 	};
1318 	const char *errstr;
1319 	char buf[32];
1320 	int err = rte_errno;
1321 
1322 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1323 	    !errstrlist[error->type])
1324 		errstr = "unknown type";
1325 	else
1326 		errstr = errstrlist[error->type];
1327 	printf("Caught error type %d (%s): %s%s\n",
1328 	       error->type, errstr,
1329 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1330 					error->cause), buf) : "",
1331 	       error->message ? error->message : "(no stated reason)");
1332 	return -err;
1333 }
1334 
1335 /** Validate flow rule. */
1336 int
1337 port_flow_validate(portid_t port_id,
1338 		   const struct rte_flow_attr *attr,
1339 		   const struct rte_flow_item *pattern,
1340 		   const struct rte_flow_action *actions)
1341 {
1342 	struct rte_flow_error error;
1343 
1344 	/* Poisoning to make sure PMDs update it in case of error. */
1345 	memset(&error, 0x11, sizeof(error));
1346 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1347 		return port_flow_complain(&error);
1348 	printf("Flow rule validated\n");
1349 	return 0;
1350 }
1351 
1352 /** Create flow rule. */
1353 int
1354 port_flow_create(portid_t port_id,
1355 		 const struct rte_flow_attr *attr,
1356 		 const struct rte_flow_item *pattern,
1357 		 const struct rte_flow_action *actions)
1358 {
1359 	struct rte_flow *flow;
1360 	struct rte_port *port;
1361 	struct port_flow *pf;
1362 	uint32_t id;
1363 	struct rte_flow_error error;
1364 
1365 	/* Poisoning to make sure PMDs update it in case of error. */
1366 	memset(&error, 0x22, sizeof(error));
1367 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1368 	if (!flow)
1369 		return port_flow_complain(&error);
1370 	port = &ports[port_id];
1371 	if (port->flow_list) {
1372 		if (port->flow_list->id == UINT32_MAX) {
1373 			printf("Highest rule ID is already assigned, delete"
1374 			       " it first");
1375 			rte_flow_destroy(port_id, flow, NULL);
1376 			return -ENOMEM;
1377 		}
1378 		id = port->flow_list->id + 1;
1379 	} else
1380 		id = 0;
1381 	pf = port_flow_new(attr, pattern, actions);
1382 	if (!pf) {
1383 		int err = rte_errno;
1384 
1385 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1386 		rte_flow_destroy(port_id, flow, NULL);
1387 		return -err;
1388 	}
1389 	pf->next = port->flow_list;
1390 	pf->id = id;
1391 	pf->flow = flow;
1392 	port->flow_list = pf;
1393 	printf("Flow rule #%u created\n", pf->id);
1394 	return 0;
1395 }
1396 
1397 /** Destroy a number of flow rules. */
1398 int
1399 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1400 {
1401 	struct rte_port *port;
1402 	struct port_flow **tmp;
1403 	uint32_t c = 0;
1404 	int ret = 0;
1405 
1406 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1407 	    port_id == (portid_t)RTE_PORT_ALL)
1408 		return -EINVAL;
1409 	port = &ports[port_id];
1410 	tmp = &port->flow_list;
1411 	while (*tmp) {
1412 		uint32_t i;
1413 
1414 		for (i = 0; i != n; ++i) {
1415 			struct rte_flow_error error;
1416 			struct port_flow *pf = *tmp;
1417 
1418 			if (rule[i] != pf->id)
1419 				continue;
1420 			/*
1421 			 * Poisoning to make sure PMDs update it in case
1422 			 * of error.
1423 			 */
1424 			memset(&error, 0x33, sizeof(error));
1425 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1426 				ret = port_flow_complain(&error);
1427 				continue;
1428 			}
1429 			printf("Flow rule #%u destroyed\n", pf->id);
1430 			*tmp = pf->next;
1431 			free(pf);
1432 			break;
1433 		}
1434 		if (i == n)
1435 			tmp = &(*tmp)->next;
1436 		++c;
1437 	}
1438 	return ret;
1439 }
1440 
1441 /** Remove all flow rules. */
1442 int
1443 port_flow_flush(portid_t port_id)
1444 {
1445 	struct rte_flow_error error;
1446 	struct rte_port *port;
1447 	int ret = 0;
1448 
1449 	/* Poisoning to make sure PMDs update it in case of error. */
1450 	memset(&error, 0x44, sizeof(error));
1451 	if (rte_flow_flush(port_id, &error)) {
1452 		ret = port_flow_complain(&error);
1453 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1454 		    port_id == (portid_t)RTE_PORT_ALL)
1455 			return ret;
1456 	}
1457 	port = &ports[port_id];
1458 	while (port->flow_list) {
1459 		struct port_flow *pf = port->flow_list->next;
1460 
1461 		free(port->flow_list);
1462 		port->flow_list = pf;
1463 	}
1464 	return ret;
1465 }
1466 
1467 /** Query a flow rule. */
1468 int
1469 port_flow_query(portid_t port_id, uint32_t rule,
1470 		enum rte_flow_action_type action)
1471 {
1472 	struct rte_flow_error error;
1473 	struct rte_port *port;
1474 	struct port_flow *pf;
1475 	const char *name;
1476 	union {
1477 		struct rte_flow_query_count count;
1478 	} query;
1479 
1480 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1481 	    port_id == (portid_t)RTE_PORT_ALL)
1482 		return -EINVAL;
1483 	port = &ports[port_id];
1484 	for (pf = port->flow_list; pf; pf = pf->next)
1485 		if (pf->id == rule)
1486 			break;
1487 	if (!pf) {
1488 		printf("Flow rule #%u not found\n", rule);
1489 		return -ENOENT;
1490 	}
1491 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1492 	    !flow_action[action].name)
1493 		name = "unknown";
1494 	else
1495 		name = flow_action[action].name;
1496 	switch (action) {
1497 	case RTE_FLOW_ACTION_TYPE_COUNT:
1498 		break;
1499 	default:
1500 		printf("Cannot query action type %d (%s)\n", action, name);
1501 		return -ENOTSUP;
1502 	}
1503 	/* Poisoning to make sure PMDs update it in case of error. */
1504 	memset(&error, 0x55, sizeof(error));
1505 	memset(&query, 0, sizeof(query));
1506 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1507 		return port_flow_complain(&error);
1508 	switch (action) {
1509 	case RTE_FLOW_ACTION_TYPE_COUNT:
1510 		printf("%s:\n"
1511 		       " hits_set: %u\n"
1512 		       " bytes_set: %u\n"
1513 		       " hits: %" PRIu64 "\n"
1514 		       " bytes: %" PRIu64 "\n",
1515 		       name,
1516 		       query.count.hits_set,
1517 		       query.count.bytes_set,
1518 		       query.count.hits,
1519 		       query.count.bytes);
1520 		break;
1521 	default:
1522 		printf("Cannot display result for action type %d (%s)\n",
1523 		       action, name);
1524 		break;
1525 	}
1526 	return 0;
1527 }
1528 
1529 /** List flow rules. */
1530 void
1531 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1532 {
1533 	struct rte_port *port;
1534 	struct port_flow *pf;
1535 	struct port_flow *list = NULL;
1536 	uint32_t i;
1537 
1538 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1539 	    port_id == (portid_t)RTE_PORT_ALL)
1540 		return;
1541 	port = &ports[port_id];
1542 	if (!port->flow_list)
1543 		return;
1544 	/* Sort flows by group, priority and ID. */
1545 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1546 		struct port_flow **tmp;
1547 
1548 		if (n) {
1549 			/* Filter out unwanted groups. */
1550 			for (i = 0; i != n; ++i)
1551 				if (pf->attr.group == group[i])
1552 					break;
1553 			if (i == n)
1554 				continue;
1555 		}
1556 		tmp = &list;
1557 		while (*tmp &&
1558 		       (pf->attr.group > (*tmp)->attr.group ||
1559 			(pf->attr.group == (*tmp)->attr.group &&
1560 			 pf->attr.priority > (*tmp)->attr.priority) ||
1561 			(pf->attr.group == (*tmp)->attr.group &&
1562 			 pf->attr.priority == (*tmp)->attr.priority &&
1563 			 pf->id > (*tmp)->id)))
1564 			tmp = &(*tmp)->tmp;
1565 		pf->tmp = *tmp;
1566 		*tmp = pf;
1567 	}
1568 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1569 	for (pf = list; pf != NULL; pf = pf->tmp) {
1570 		const struct rte_flow_item *item = pf->pattern;
1571 		const struct rte_flow_action *action = pf->actions;
1572 
1573 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1574 		       pf->id,
1575 		       pf->attr.group,
1576 		       pf->attr.priority,
1577 		       pf->attr.ingress ? 'i' : '-',
1578 		       pf->attr.egress ? 'e' : '-',
1579 		       pf->attr.transfer ? 't' : '-');
1580 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1581 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1582 				printf("%s ", flow_item[item->type].name);
1583 			++item;
1584 		}
1585 		printf("=>");
1586 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1587 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1588 				printf(" %s", flow_action[action->type].name);
1589 			++action;
1590 		}
1591 		printf("\n");
1592 	}
1593 }
1594 
1595 /** Restrict ingress traffic to the defined flow rules. */
1596 int
1597 port_flow_isolate(portid_t port_id, int set)
1598 {
1599 	struct rte_flow_error error;
1600 
1601 	/* Poisoning to make sure PMDs update it in case of error. */
1602 	memset(&error, 0x66, sizeof(error));
1603 	if (rte_flow_isolate(port_id, set, &error))
1604 		return port_flow_complain(&error);
1605 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1606 	       port_id,
1607 	       set ? "now restricted" : "not restricted anymore");
1608 	return 0;
1609 }
1610 
1611 /*
1612  * RX/TX ring descriptors display functions.
1613  */
1614 int
1615 rx_queue_id_is_invalid(queueid_t rxq_id)
1616 {
1617 	if (rxq_id < nb_rxq)
1618 		return 0;
1619 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1620 	return 1;
1621 }
1622 
1623 int
1624 tx_queue_id_is_invalid(queueid_t txq_id)
1625 {
1626 	if (txq_id < nb_txq)
1627 		return 0;
1628 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1629 	return 1;
1630 }
1631 
1632 static int
1633 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1634 {
1635 	if (rxdesc_id < nb_rxd)
1636 		return 0;
1637 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1638 	       rxdesc_id, nb_rxd);
1639 	return 1;
1640 }
1641 
1642 static int
1643 tx_desc_id_is_invalid(uint16_t txdesc_id)
1644 {
1645 	if (txdesc_id < nb_txd)
1646 		return 0;
1647 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1648 	       txdesc_id, nb_txd);
1649 	return 1;
1650 }
1651 
1652 static const struct rte_memzone *
1653 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1654 {
1655 	char mz_name[RTE_MEMZONE_NAMESIZE];
1656 	const struct rte_memzone *mz;
1657 
1658 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1659 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1660 	mz = rte_memzone_lookup(mz_name);
1661 	if (mz == NULL)
1662 		printf("%s ring memory zoneof (port %d, queue %d) not"
1663 		       "found (zone name = %s\n",
1664 		       ring_name, port_id, q_id, mz_name);
1665 	return mz;
1666 }
1667 
1668 union igb_ring_dword {
1669 	uint64_t dword;
1670 	struct {
1671 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1672 		uint32_t lo;
1673 		uint32_t hi;
1674 #else
1675 		uint32_t hi;
1676 		uint32_t lo;
1677 #endif
1678 	} words;
1679 };
1680 
1681 struct igb_ring_desc_32_bytes {
1682 	union igb_ring_dword lo_dword;
1683 	union igb_ring_dword hi_dword;
1684 	union igb_ring_dword resv1;
1685 	union igb_ring_dword resv2;
1686 };
1687 
1688 struct igb_ring_desc_16_bytes {
1689 	union igb_ring_dword lo_dword;
1690 	union igb_ring_dword hi_dword;
1691 };
1692 
1693 static void
1694 ring_rxd_display_dword(union igb_ring_dword dword)
1695 {
1696 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1697 					(unsigned)dword.words.hi);
1698 }
1699 
1700 static void
1701 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1702 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1703 			   portid_t port_id,
1704 #else
1705 			   __rte_unused portid_t port_id,
1706 #endif
1707 			   uint16_t desc_id)
1708 {
1709 	struct igb_ring_desc_16_bytes *ring =
1710 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1711 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1712 	struct rte_eth_dev_info dev_info;
1713 
1714 	memset(&dev_info, 0, sizeof(dev_info));
1715 	rte_eth_dev_info_get(port_id, &dev_info);
1716 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1717 		/* 32 bytes RX descriptor, i40e only */
1718 		struct igb_ring_desc_32_bytes *ring =
1719 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1720 		ring[desc_id].lo_dword.dword =
1721 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1722 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1723 		ring[desc_id].hi_dword.dword =
1724 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1725 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1726 		ring[desc_id].resv1.dword =
1727 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1728 		ring_rxd_display_dword(ring[desc_id].resv1);
1729 		ring[desc_id].resv2.dword =
1730 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1731 		ring_rxd_display_dword(ring[desc_id].resv2);
1732 
1733 		return;
1734 	}
1735 #endif
1736 	/* 16 bytes RX descriptor */
1737 	ring[desc_id].lo_dword.dword =
1738 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1739 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1740 	ring[desc_id].hi_dword.dword =
1741 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1742 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1743 }
1744 
1745 static void
1746 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1747 {
1748 	struct igb_ring_desc_16_bytes *ring;
1749 	struct igb_ring_desc_16_bytes txd;
1750 
1751 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1752 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1753 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1754 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1755 			(unsigned)txd.lo_dword.words.lo,
1756 			(unsigned)txd.lo_dword.words.hi,
1757 			(unsigned)txd.hi_dword.words.lo,
1758 			(unsigned)txd.hi_dword.words.hi);
1759 }
1760 
1761 void
1762 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1763 {
1764 	const struct rte_memzone *rx_mz;
1765 
1766 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1767 		return;
1768 	if (rx_queue_id_is_invalid(rxq_id))
1769 		return;
1770 	if (rx_desc_id_is_invalid(rxd_id))
1771 		return;
1772 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1773 	if (rx_mz == NULL)
1774 		return;
1775 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1776 }
1777 
1778 void
1779 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1780 {
1781 	const struct rte_memzone *tx_mz;
1782 
1783 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1784 		return;
1785 	if (tx_queue_id_is_invalid(txq_id))
1786 		return;
1787 	if (tx_desc_id_is_invalid(txd_id))
1788 		return;
1789 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1790 	if (tx_mz == NULL)
1791 		return;
1792 	ring_tx_descriptor_display(tx_mz, txd_id);
1793 }
1794 
1795 void
1796 fwd_lcores_config_display(void)
1797 {
1798 	lcoreid_t lc_id;
1799 
1800 	printf("List of forwarding lcores:");
1801 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1802 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1803 	printf("\n");
1804 }
1805 void
1806 rxtx_config_display(void)
1807 {
1808 	portid_t pid;
1809 	queueid_t qid;
1810 
1811 	printf("  %s packet forwarding%s packets/burst=%d\n",
1812 	       cur_fwd_eng->fwd_mode_name,
1813 	       retry_enabled == 0 ? "" : " with retry",
1814 	       nb_pkt_per_burst);
1815 
1816 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1817 		printf("  packet len=%u - nb packet segments=%d\n",
1818 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1819 
1820 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1821 	       nb_fwd_lcores, nb_fwd_ports);
1822 
1823 	RTE_ETH_FOREACH_DEV(pid) {
1824 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1825 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1826 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1827 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1828 
1829 		/* per port config */
1830 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1831 				(unsigned int)pid, nb_rxq, nb_txq);
1832 
1833 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1834 				ports[pid].dev_conf.rxmode.offloads,
1835 				ports[pid].dev_conf.txmode.offloads);
1836 
1837 		/* per rx queue config only for first queue to be less verbose */
1838 		for (qid = 0; qid < 1; qid++) {
1839 			printf("    RX queue: %d\n", qid);
1840 			printf("      RX desc=%d - RX free threshold=%d\n",
1841 				nb_rx_desc[qid], rx_conf[qid].rx_free_thresh);
1842 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1843 				" wthresh=%d\n",
1844 				rx_conf[qid].rx_thresh.pthresh,
1845 				rx_conf[qid].rx_thresh.hthresh,
1846 				rx_conf[qid].rx_thresh.wthresh);
1847 			printf("      RX Offloads=0x%"PRIx64"\n",
1848 				rx_conf[qid].offloads);
1849 		}
1850 
1851 		/* per tx queue config only for first queue to be less verbose */
1852 		for (qid = 0; qid < 1; qid++) {
1853 			printf("    TX queue: %d\n", qid);
1854 			printf("      TX desc=%d - TX free threshold=%d\n",
1855 				nb_tx_desc[qid], tx_conf[qid].tx_free_thresh);
1856 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1857 				" wthresh=%d\n",
1858 				tx_conf[qid].tx_thresh.pthresh,
1859 				tx_conf[qid].tx_thresh.hthresh,
1860 				tx_conf[qid].tx_thresh.wthresh);
1861 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1862 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1863 		}
1864 	}
1865 }
1866 
1867 void
1868 port_rss_reta_info(portid_t port_id,
1869 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1870 		   uint16_t nb_entries)
1871 {
1872 	uint16_t i, idx, shift;
1873 	int ret;
1874 
1875 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1876 		return;
1877 
1878 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1879 	if (ret != 0) {
1880 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1881 		return;
1882 	}
1883 
1884 	for (i = 0; i < nb_entries; i++) {
1885 		idx = i / RTE_RETA_GROUP_SIZE;
1886 		shift = i % RTE_RETA_GROUP_SIZE;
1887 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1888 			continue;
1889 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1890 					i, reta_conf[idx].reta[shift]);
1891 	}
1892 }
1893 
1894 /*
1895  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1896  * key of the port.
1897  */
1898 void
1899 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1900 {
1901 	struct rte_eth_rss_conf rss_conf;
1902 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1903 	uint64_t rss_hf;
1904 	uint8_t i;
1905 	int diag;
1906 	struct rte_eth_dev_info dev_info;
1907 	uint8_t hash_key_size;
1908 
1909 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1910 		return;
1911 
1912 	memset(&dev_info, 0, sizeof(dev_info));
1913 	rte_eth_dev_info_get(port_id, &dev_info);
1914 	if (dev_info.hash_key_size > 0 &&
1915 			dev_info.hash_key_size <= sizeof(rss_key))
1916 		hash_key_size = dev_info.hash_key_size;
1917 	else {
1918 		printf("dev_info did not provide a valid hash key size\n");
1919 		return;
1920 	}
1921 
1922 	rss_conf.rss_hf = 0;
1923 	for (i = 0; rss_type_table[i].str; i++) {
1924 		if (!strcmp(rss_info, rss_type_table[i].str))
1925 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1926 	}
1927 
1928 	/* Get RSS hash key if asked to display it */
1929 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1930 	rss_conf.rss_key_len = hash_key_size;
1931 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1932 	if (diag != 0) {
1933 		switch (diag) {
1934 		case -ENODEV:
1935 			printf("port index %d invalid\n", port_id);
1936 			break;
1937 		case -ENOTSUP:
1938 			printf("operation not supported by device\n");
1939 			break;
1940 		default:
1941 			printf("operation failed - diag=%d\n", diag);
1942 			break;
1943 		}
1944 		return;
1945 	}
1946 	rss_hf = rss_conf.rss_hf;
1947 	if (rss_hf == 0) {
1948 		printf("RSS disabled\n");
1949 		return;
1950 	}
1951 	printf("RSS functions:\n ");
1952 	for (i = 0; rss_type_table[i].str; i++) {
1953 		if (rss_hf & rss_type_table[i].rss_type)
1954 			printf("%s ", rss_type_table[i].str);
1955 	}
1956 	printf("\n");
1957 	if (!show_rss_key)
1958 		return;
1959 	printf("RSS key:\n");
1960 	for (i = 0; i < hash_key_size; i++)
1961 		printf("%02X", rss_key[i]);
1962 	printf("\n");
1963 }
1964 
1965 void
1966 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1967 			 uint hash_key_len)
1968 {
1969 	struct rte_eth_rss_conf rss_conf;
1970 	int diag;
1971 	unsigned int i;
1972 
1973 	rss_conf.rss_key = NULL;
1974 	rss_conf.rss_key_len = hash_key_len;
1975 	rss_conf.rss_hf = 0;
1976 	for (i = 0; rss_type_table[i].str; i++) {
1977 		if (!strcmp(rss_type_table[i].str, rss_type))
1978 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1979 	}
1980 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1981 	if (diag == 0) {
1982 		rss_conf.rss_key = hash_key;
1983 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1984 	}
1985 	if (diag == 0)
1986 		return;
1987 
1988 	switch (diag) {
1989 	case -ENODEV:
1990 		printf("port index %d invalid\n", port_id);
1991 		break;
1992 	case -ENOTSUP:
1993 		printf("operation not supported by device\n");
1994 		break;
1995 	default:
1996 		printf("operation failed - diag=%d\n", diag);
1997 		break;
1998 	}
1999 }
2000 
2001 /*
2002  * Setup forwarding configuration for each logical core.
2003  */
2004 static void
2005 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2006 {
2007 	streamid_t nb_fs_per_lcore;
2008 	streamid_t nb_fs;
2009 	streamid_t sm_id;
2010 	lcoreid_t  nb_extra;
2011 	lcoreid_t  nb_fc;
2012 	lcoreid_t  nb_lc;
2013 	lcoreid_t  lc_id;
2014 
2015 	nb_fs = cfg->nb_fwd_streams;
2016 	nb_fc = cfg->nb_fwd_lcores;
2017 	if (nb_fs <= nb_fc) {
2018 		nb_fs_per_lcore = 1;
2019 		nb_extra = 0;
2020 	} else {
2021 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2022 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2023 	}
2024 
2025 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2026 	sm_id = 0;
2027 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2028 		fwd_lcores[lc_id]->stream_idx = sm_id;
2029 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2030 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2031 	}
2032 
2033 	/*
2034 	 * Assign extra remaining streams, if any.
2035 	 */
2036 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2037 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2038 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2039 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2040 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2041 	}
2042 }
2043 
2044 static portid_t
2045 fwd_topology_tx_port_get(portid_t rxp)
2046 {
2047 	static int warning_once = 1;
2048 
2049 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2050 
2051 	switch (port_topology) {
2052 	default:
2053 	case PORT_TOPOLOGY_PAIRED:
2054 		if ((rxp & 0x1) == 0) {
2055 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2056 				return rxp + 1;
2057 			if (warning_once) {
2058 				printf("\nWarning! port-topology=paired"
2059 				       " and odd forward ports number,"
2060 				       " the last port will pair with"
2061 				       " itself.\n\n");
2062 				warning_once = 0;
2063 			}
2064 			return rxp;
2065 		}
2066 		return rxp - 1;
2067 	case PORT_TOPOLOGY_CHAINED:
2068 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2069 	case PORT_TOPOLOGY_LOOP:
2070 		return rxp;
2071 	}
2072 }
2073 
2074 static void
2075 simple_fwd_config_setup(void)
2076 {
2077 	portid_t i;
2078 
2079 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2080 	cur_fwd_config.nb_fwd_streams =
2081 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2082 
2083 	/* reinitialize forwarding streams */
2084 	init_fwd_streams();
2085 
2086 	/*
2087 	 * In the simple forwarding test, the number of forwarding cores
2088 	 * must be lower or equal to the number of forwarding ports.
2089 	 */
2090 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2091 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2092 		cur_fwd_config.nb_fwd_lcores =
2093 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2094 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2095 
2096 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2097 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2098 		fwd_streams[i]->rx_queue  = 0;
2099 		fwd_streams[i]->tx_port   =
2100 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2101 		fwd_streams[i]->tx_queue  = 0;
2102 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2103 		fwd_streams[i]->retry_enabled = retry_enabled;
2104 	}
2105 }
2106 
2107 /**
2108  * For the RSS forwarding test all streams distributed over lcores. Each stream
2109  * being composed of a RX queue to poll on a RX port for input messages,
2110  * associated with a TX queue of a TX port where to send forwarded packets.
2111  */
2112 static void
2113 rss_fwd_config_setup(void)
2114 {
2115 	portid_t   rxp;
2116 	portid_t   txp;
2117 	queueid_t  rxq;
2118 	queueid_t  nb_q;
2119 	streamid_t  sm_id;
2120 
2121 	nb_q = nb_rxq;
2122 	if (nb_q > nb_txq)
2123 		nb_q = nb_txq;
2124 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2125 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2126 	cur_fwd_config.nb_fwd_streams =
2127 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2128 
2129 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2130 		cur_fwd_config.nb_fwd_lcores =
2131 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2132 
2133 	/* reinitialize forwarding streams */
2134 	init_fwd_streams();
2135 
2136 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2137 	rxp = 0; rxq = 0;
2138 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2139 		struct fwd_stream *fs;
2140 
2141 		fs = fwd_streams[sm_id];
2142 		txp = fwd_topology_tx_port_get(rxp);
2143 		fs->rx_port = fwd_ports_ids[rxp];
2144 		fs->rx_queue = rxq;
2145 		fs->tx_port = fwd_ports_ids[txp];
2146 		fs->tx_queue = rxq;
2147 		fs->peer_addr = fs->tx_port;
2148 		fs->retry_enabled = retry_enabled;
2149 		rxq = (queueid_t) (rxq + 1);
2150 		if (rxq < nb_q)
2151 			continue;
2152 		/*
2153 		 * rxq == nb_q
2154 		 * Restart from RX queue 0 on next RX port
2155 		 */
2156 		rxq = 0;
2157 		rxp++;
2158 	}
2159 }
2160 
2161 /**
2162  * For the DCB forwarding test, each core is assigned on each traffic class.
2163  *
2164  * Each core is assigned a multi-stream, each stream being composed of
2165  * a RX queue to poll on a RX port for input messages, associated with
2166  * a TX queue of a TX port where to send forwarded packets. All RX and
2167  * TX queues are mapping to the same traffic class.
2168  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2169  * the same core
2170  */
2171 static void
2172 dcb_fwd_config_setup(void)
2173 {
2174 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2175 	portid_t txp, rxp = 0;
2176 	queueid_t txq, rxq = 0;
2177 	lcoreid_t  lc_id;
2178 	uint16_t nb_rx_queue, nb_tx_queue;
2179 	uint16_t i, j, k, sm_id = 0;
2180 	uint8_t tc = 0;
2181 
2182 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2183 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2184 	cur_fwd_config.nb_fwd_streams =
2185 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2186 
2187 	/* reinitialize forwarding streams */
2188 	init_fwd_streams();
2189 	sm_id = 0;
2190 	txp = 1;
2191 	/* get the dcb info on the first RX and TX ports */
2192 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2193 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2194 
2195 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2196 		fwd_lcores[lc_id]->stream_nb = 0;
2197 		fwd_lcores[lc_id]->stream_idx = sm_id;
2198 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2199 			/* if the nb_queue is zero, means this tc is
2200 			 * not enabled on the POOL
2201 			 */
2202 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2203 				break;
2204 			k = fwd_lcores[lc_id]->stream_nb +
2205 				fwd_lcores[lc_id]->stream_idx;
2206 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2207 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2208 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2209 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2210 			for (j = 0; j < nb_rx_queue; j++) {
2211 				struct fwd_stream *fs;
2212 
2213 				fs = fwd_streams[k + j];
2214 				fs->rx_port = fwd_ports_ids[rxp];
2215 				fs->rx_queue = rxq + j;
2216 				fs->tx_port = fwd_ports_ids[txp];
2217 				fs->tx_queue = txq + j % nb_tx_queue;
2218 				fs->peer_addr = fs->tx_port;
2219 				fs->retry_enabled = retry_enabled;
2220 			}
2221 			fwd_lcores[lc_id]->stream_nb +=
2222 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2223 		}
2224 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2225 
2226 		tc++;
2227 		if (tc < rxp_dcb_info.nb_tcs)
2228 			continue;
2229 		/* Restart from TC 0 on next RX port */
2230 		tc = 0;
2231 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2232 			rxp = (portid_t)
2233 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2234 		else
2235 			rxp++;
2236 		if (rxp >= nb_fwd_ports)
2237 			return;
2238 		/* get the dcb information on next RX and TX ports */
2239 		if ((rxp & 0x1) == 0)
2240 			txp = (portid_t) (rxp + 1);
2241 		else
2242 			txp = (portid_t) (rxp - 1);
2243 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2244 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2245 	}
2246 }
2247 
2248 static void
2249 icmp_echo_config_setup(void)
2250 {
2251 	portid_t  rxp;
2252 	queueid_t rxq;
2253 	lcoreid_t lc_id;
2254 	uint16_t  sm_id;
2255 
2256 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2257 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2258 			(nb_txq * nb_fwd_ports);
2259 	else
2260 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2261 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2262 	cur_fwd_config.nb_fwd_streams =
2263 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2264 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2265 		cur_fwd_config.nb_fwd_lcores =
2266 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2267 	if (verbose_level > 0) {
2268 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2269 		       __FUNCTION__,
2270 		       cur_fwd_config.nb_fwd_lcores,
2271 		       cur_fwd_config.nb_fwd_ports,
2272 		       cur_fwd_config.nb_fwd_streams);
2273 	}
2274 
2275 	/* reinitialize forwarding streams */
2276 	init_fwd_streams();
2277 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2278 	rxp = 0; rxq = 0;
2279 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2280 		if (verbose_level > 0)
2281 			printf("  core=%d: \n", lc_id);
2282 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2283 			struct fwd_stream *fs;
2284 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2285 			fs->rx_port = fwd_ports_ids[rxp];
2286 			fs->rx_queue = rxq;
2287 			fs->tx_port = fs->rx_port;
2288 			fs->tx_queue = rxq;
2289 			fs->peer_addr = fs->tx_port;
2290 			fs->retry_enabled = retry_enabled;
2291 			if (verbose_level > 0)
2292 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2293 				       sm_id, fs->rx_port, fs->rx_queue,
2294 				       fs->tx_queue);
2295 			rxq = (queueid_t) (rxq + 1);
2296 			if (rxq == nb_rxq) {
2297 				rxq = 0;
2298 				rxp = (portid_t) (rxp + 1);
2299 			}
2300 		}
2301 	}
2302 }
2303 
2304 void
2305 fwd_config_setup(void)
2306 {
2307 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2308 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2309 		icmp_echo_config_setup();
2310 		return;
2311 	}
2312 	if ((nb_rxq > 1) && (nb_txq > 1)){
2313 		if (dcb_config)
2314 			dcb_fwd_config_setup();
2315 		else
2316 			rss_fwd_config_setup();
2317 	}
2318 	else
2319 		simple_fwd_config_setup();
2320 }
2321 
2322 void
2323 pkt_fwd_config_display(struct fwd_config *cfg)
2324 {
2325 	struct fwd_stream *fs;
2326 	lcoreid_t  lc_id;
2327 	streamid_t sm_id;
2328 
2329 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2330 		"NUMA support %s, MP over anonymous pages %s\n",
2331 		cfg->fwd_eng->fwd_mode_name,
2332 		retry_enabled == 0 ? "" : " with retry",
2333 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2334 		numa_support == 1 ? "enabled" : "disabled",
2335 		mp_anon != 0 ? "enabled" : "disabled");
2336 
2337 	if (retry_enabled)
2338 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2339 			burst_tx_retry_num, burst_tx_delay_time);
2340 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2341 		printf("Logical Core %u (socket %u) forwards packets on "
2342 		       "%d streams:",
2343 		       fwd_lcores_cpuids[lc_id],
2344 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2345 		       fwd_lcores[lc_id]->stream_nb);
2346 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2347 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2348 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2349 			       "P=%d/Q=%d (socket %u) ",
2350 			       fs->rx_port, fs->rx_queue,
2351 			       ports[fs->rx_port].socket_id,
2352 			       fs->tx_port, fs->tx_queue,
2353 			       ports[fs->tx_port].socket_id);
2354 			print_ethaddr("peer=",
2355 				      &peer_eth_addrs[fs->peer_addr]);
2356 		}
2357 		printf("\n");
2358 	}
2359 	printf("\n");
2360 }
2361 
2362 void
2363 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2364 {
2365 	uint8_t c, new_peer_addr[6];
2366 	if (!rte_eth_dev_is_valid_port(port_id)) {
2367 		printf("Error: Invalid port number %i\n", port_id);
2368 		return;
2369 	}
2370 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2371 					sizeof(new_peer_addr)) < 0) {
2372 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2373 		return;
2374 	}
2375 	for (c = 0; c < 6; c++)
2376 		peer_eth_addrs[port_id].addr_bytes[c] =
2377 			new_peer_addr[c];
2378 }
2379 
2380 int
2381 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2382 {
2383 	unsigned int i;
2384 	unsigned int lcore_cpuid;
2385 	int record_now;
2386 
2387 	record_now = 0;
2388  again:
2389 	for (i = 0; i < nb_lc; i++) {
2390 		lcore_cpuid = lcorelist[i];
2391 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2392 			printf("lcore %u not enabled\n", lcore_cpuid);
2393 			return -1;
2394 		}
2395 		if (lcore_cpuid == rte_get_master_lcore()) {
2396 			printf("lcore %u cannot be masked on for running "
2397 			       "packet forwarding, which is the master lcore "
2398 			       "and reserved for command line parsing only\n",
2399 			       lcore_cpuid);
2400 			return -1;
2401 		}
2402 		if (record_now)
2403 			fwd_lcores_cpuids[i] = lcore_cpuid;
2404 	}
2405 	if (record_now == 0) {
2406 		record_now = 1;
2407 		goto again;
2408 	}
2409 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2410 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2411 		printf("previous number of forwarding cores %u - changed to "
2412 		       "number of configured cores %u\n",
2413 		       (unsigned int) nb_fwd_lcores, nb_lc);
2414 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 int
2421 set_fwd_lcores_mask(uint64_t lcoremask)
2422 {
2423 	unsigned int lcorelist[64];
2424 	unsigned int nb_lc;
2425 	unsigned int i;
2426 
2427 	if (lcoremask == 0) {
2428 		printf("Invalid NULL mask of cores\n");
2429 		return -1;
2430 	}
2431 	nb_lc = 0;
2432 	for (i = 0; i < 64; i++) {
2433 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2434 			continue;
2435 		lcorelist[nb_lc++] = i;
2436 	}
2437 	return set_fwd_lcores_list(lcorelist, nb_lc);
2438 }
2439 
2440 void
2441 set_fwd_lcores_number(uint16_t nb_lc)
2442 {
2443 	if (nb_lc > nb_cfg_lcores) {
2444 		printf("nb fwd cores %u > %u (max. number of configured "
2445 		       "lcores) - ignored\n",
2446 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2447 		return;
2448 	}
2449 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2450 	printf("Number of forwarding cores set to %u\n",
2451 	       (unsigned int) nb_fwd_lcores);
2452 }
2453 
2454 void
2455 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2456 {
2457 	unsigned int i;
2458 	portid_t port_id;
2459 	int record_now;
2460 
2461 	record_now = 0;
2462  again:
2463 	for (i = 0; i < nb_pt; i++) {
2464 		port_id = (portid_t) portlist[i];
2465 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2466 			return;
2467 		if (record_now)
2468 			fwd_ports_ids[i] = port_id;
2469 	}
2470 	if (record_now == 0) {
2471 		record_now = 1;
2472 		goto again;
2473 	}
2474 	nb_cfg_ports = (portid_t) nb_pt;
2475 	if (nb_fwd_ports != (portid_t) nb_pt) {
2476 		printf("previous number of forwarding ports %u - changed to "
2477 		       "number of configured ports %u\n",
2478 		       (unsigned int) nb_fwd_ports, nb_pt);
2479 		nb_fwd_ports = (portid_t) nb_pt;
2480 	}
2481 }
2482 
2483 void
2484 set_fwd_ports_mask(uint64_t portmask)
2485 {
2486 	unsigned int portlist[64];
2487 	unsigned int nb_pt;
2488 	unsigned int i;
2489 
2490 	if (portmask == 0) {
2491 		printf("Invalid NULL mask of ports\n");
2492 		return;
2493 	}
2494 	nb_pt = 0;
2495 	RTE_ETH_FOREACH_DEV(i) {
2496 		if (! ((uint64_t)(1ULL << i) & portmask))
2497 			continue;
2498 		portlist[nb_pt++] = i;
2499 	}
2500 	set_fwd_ports_list(portlist, nb_pt);
2501 }
2502 
2503 void
2504 set_fwd_ports_number(uint16_t nb_pt)
2505 {
2506 	if (nb_pt > nb_cfg_ports) {
2507 		printf("nb fwd ports %u > %u (number of configured "
2508 		       "ports) - ignored\n",
2509 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2510 		return;
2511 	}
2512 	nb_fwd_ports = (portid_t) nb_pt;
2513 	printf("Number of forwarding ports set to %u\n",
2514 	       (unsigned int) nb_fwd_ports);
2515 }
2516 
2517 int
2518 port_is_forwarding(portid_t port_id)
2519 {
2520 	unsigned int i;
2521 
2522 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2523 		return -1;
2524 
2525 	for (i = 0; i < nb_fwd_ports; i++) {
2526 		if (fwd_ports_ids[i] == port_id)
2527 			return 1;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 void
2534 set_nb_pkt_per_burst(uint16_t nb)
2535 {
2536 	if (nb > MAX_PKT_BURST) {
2537 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2538 		       " ignored\n",
2539 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2540 		return;
2541 	}
2542 	nb_pkt_per_burst = nb;
2543 	printf("Number of packets per burst set to %u\n",
2544 	       (unsigned int) nb_pkt_per_burst);
2545 }
2546 
2547 static const char *
2548 tx_split_get_name(enum tx_pkt_split split)
2549 {
2550 	uint32_t i;
2551 
2552 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2553 		if (tx_split_name[i].split == split)
2554 			return tx_split_name[i].name;
2555 	}
2556 	return NULL;
2557 }
2558 
2559 void
2560 set_tx_pkt_split(const char *name)
2561 {
2562 	uint32_t i;
2563 
2564 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2565 		if (strcmp(tx_split_name[i].name, name) == 0) {
2566 			tx_pkt_split = tx_split_name[i].split;
2567 			return;
2568 		}
2569 	}
2570 	printf("unknown value: \"%s\"\n", name);
2571 }
2572 
2573 void
2574 show_tx_pkt_segments(void)
2575 {
2576 	uint32_t i, n;
2577 	const char *split;
2578 
2579 	n = tx_pkt_nb_segs;
2580 	split = tx_split_get_name(tx_pkt_split);
2581 
2582 	printf("Number of segments: %u\n", n);
2583 	printf("Segment sizes: ");
2584 	for (i = 0; i != n - 1; i++)
2585 		printf("%hu,", tx_pkt_seg_lengths[i]);
2586 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2587 	printf("Split packet: %s\n", split);
2588 }
2589 
2590 void
2591 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2592 {
2593 	uint16_t tx_pkt_len;
2594 	unsigned i;
2595 
2596 	if (nb_segs >= (unsigned) nb_txd) {
2597 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2598 		       nb_segs, (unsigned int) nb_txd);
2599 		return;
2600 	}
2601 
2602 	/*
2603 	 * Check that each segment length is greater or equal than
2604 	 * the mbuf data sise.
2605 	 * Check also that the total packet length is greater or equal than the
2606 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2607 	 */
2608 	tx_pkt_len = 0;
2609 	for (i = 0; i < nb_segs; i++) {
2610 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2611 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2612 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2613 			return;
2614 		}
2615 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2616 	}
2617 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2618 		printf("total packet length=%u < %d - give up\n",
2619 				(unsigned) tx_pkt_len,
2620 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2621 		return;
2622 	}
2623 
2624 	for (i = 0; i < nb_segs; i++)
2625 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2626 
2627 	tx_pkt_length  = tx_pkt_len;
2628 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2629 }
2630 
2631 void
2632 setup_gro(const char *onoff, portid_t port_id)
2633 {
2634 	if (!rte_eth_dev_is_valid_port(port_id)) {
2635 		printf("invalid port id %u\n", port_id);
2636 		return;
2637 	}
2638 	if (test_done == 0) {
2639 		printf("Before enable/disable GRO,"
2640 				" please stop forwarding first\n");
2641 		return;
2642 	}
2643 	if (strcmp(onoff, "on") == 0) {
2644 		if (gro_ports[port_id].enable != 0) {
2645 			printf("Port %u has enabled GRO. Please"
2646 					" disable GRO first\n", port_id);
2647 			return;
2648 		}
2649 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2650 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2651 			gro_ports[port_id].param.max_flow_num =
2652 				GRO_DEFAULT_FLOW_NUM;
2653 			gro_ports[port_id].param.max_item_per_flow =
2654 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2655 		}
2656 		gro_ports[port_id].enable = 1;
2657 	} else {
2658 		if (gro_ports[port_id].enable == 0) {
2659 			printf("Port %u has disabled GRO\n", port_id);
2660 			return;
2661 		}
2662 		gro_ports[port_id].enable = 0;
2663 	}
2664 }
2665 
2666 void
2667 setup_gro_flush_cycles(uint8_t cycles)
2668 {
2669 	if (test_done == 0) {
2670 		printf("Before change flush interval for GRO,"
2671 				" please stop forwarding first.\n");
2672 		return;
2673 	}
2674 
2675 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2676 			GRO_DEFAULT_FLUSH_CYCLES) {
2677 		printf("The flushing cycle be in the range"
2678 				" of 1 to %u. Revert to the default"
2679 				" value %u.\n",
2680 				GRO_MAX_FLUSH_CYCLES,
2681 				GRO_DEFAULT_FLUSH_CYCLES);
2682 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2683 	}
2684 
2685 	gro_flush_cycles = cycles;
2686 }
2687 
2688 void
2689 show_gro(portid_t port_id)
2690 {
2691 	struct rte_gro_param *param;
2692 	uint32_t max_pkts_num;
2693 
2694 	param = &gro_ports[port_id].param;
2695 
2696 	if (!rte_eth_dev_is_valid_port(port_id)) {
2697 		printf("Invalid port id %u.\n", port_id);
2698 		return;
2699 	}
2700 	if (gro_ports[port_id].enable) {
2701 		printf("GRO type: TCP/IPv4\n");
2702 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2703 			max_pkts_num = param->max_flow_num *
2704 				param->max_item_per_flow;
2705 		} else
2706 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2707 		printf("Max number of packets to perform GRO: %u\n",
2708 				max_pkts_num);
2709 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2710 	} else
2711 		printf("Port %u doesn't enable GRO.\n", port_id);
2712 }
2713 
2714 void
2715 setup_gso(const char *mode, portid_t port_id)
2716 {
2717 	if (!rte_eth_dev_is_valid_port(port_id)) {
2718 		printf("invalid port id %u\n", port_id);
2719 		return;
2720 	}
2721 	if (strcmp(mode, "on") == 0) {
2722 		if (test_done == 0) {
2723 			printf("before enabling GSO,"
2724 					" please stop forwarding first\n");
2725 			return;
2726 		}
2727 		gso_ports[port_id].enable = 1;
2728 	} else if (strcmp(mode, "off") == 0) {
2729 		if (test_done == 0) {
2730 			printf("before disabling GSO,"
2731 					" please stop forwarding first\n");
2732 			return;
2733 		}
2734 		gso_ports[port_id].enable = 0;
2735 	}
2736 }
2737 
2738 char*
2739 list_pkt_forwarding_modes(void)
2740 {
2741 	static char fwd_modes[128] = "";
2742 	const char *separator = "|";
2743 	struct fwd_engine *fwd_eng;
2744 	unsigned i = 0;
2745 
2746 	if (strlen (fwd_modes) == 0) {
2747 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2748 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2749 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2750 			strncat(fwd_modes, separator,
2751 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2752 		}
2753 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2754 	}
2755 
2756 	return fwd_modes;
2757 }
2758 
2759 char*
2760 list_pkt_forwarding_retry_modes(void)
2761 {
2762 	static char fwd_modes[128] = "";
2763 	const char *separator = "|";
2764 	struct fwd_engine *fwd_eng;
2765 	unsigned i = 0;
2766 
2767 	if (strlen(fwd_modes) == 0) {
2768 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2769 			if (fwd_eng == &rx_only_engine)
2770 				continue;
2771 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2772 					sizeof(fwd_modes) -
2773 					strlen(fwd_modes) - 1);
2774 			strncat(fwd_modes, separator,
2775 					sizeof(fwd_modes) -
2776 					strlen(fwd_modes) - 1);
2777 		}
2778 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2779 	}
2780 
2781 	return fwd_modes;
2782 }
2783 
2784 void
2785 set_pkt_forwarding_mode(const char *fwd_mode_name)
2786 {
2787 	struct fwd_engine *fwd_eng;
2788 	unsigned i;
2789 
2790 	i = 0;
2791 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2792 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2793 			printf("Set %s packet forwarding mode%s\n",
2794 			       fwd_mode_name,
2795 			       retry_enabled == 0 ? "" : " with retry");
2796 			cur_fwd_eng = fwd_eng;
2797 			return;
2798 		}
2799 		i++;
2800 	}
2801 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2802 }
2803 
2804 void
2805 set_verbose_level(uint16_t vb_level)
2806 {
2807 	printf("Change verbose level from %u to %u\n",
2808 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2809 	verbose_level = vb_level;
2810 }
2811 
2812 void
2813 vlan_extend_set(portid_t port_id, int on)
2814 {
2815 	int diag;
2816 	int vlan_offload;
2817 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2818 
2819 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2820 		return;
2821 
2822 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2823 
2824 	if (on) {
2825 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2826 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2827 	} else {
2828 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2829 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2830 	}
2831 
2832 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2833 	if (diag < 0)
2834 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2835 	       "diag=%d\n", port_id, on, diag);
2836 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2837 }
2838 
2839 void
2840 rx_vlan_strip_set(portid_t port_id, int on)
2841 {
2842 	int diag;
2843 	int vlan_offload;
2844 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2845 
2846 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2847 		return;
2848 
2849 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2850 
2851 	if (on) {
2852 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2853 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2854 	} else {
2855 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2856 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2857 	}
2858 
2859 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2860 	if (diag < 0)
2861 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2862 	       "diag=%d\n", port_id, on, diag);
2863 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2864 }
2865 
2866 void
2867 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2868 {
2869 	int diag;
2870 
2871 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2872 		return;
2873 
2874 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2875 	if (diag < 0)
2876 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2877 	       "diag=%d\n", port_id, queue_id, on, diag);
2878 }
2879 
2880 void
2881 rx_vlan_filter_set(portid_t port_id, int on)
2882 {
2883 	int diag;
2884 	int vlan_offload;
2885 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2886 
2887 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2888 		return;
2889 
2890 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2891 
2892 	if (on) {
2893 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2894 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2895 	} else {
2896 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2897 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2898 	}
2899 
2900 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2901 	if (diag < 0)
2902 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2903 	       "diag=%d\n", port_id, on, diag);
2904 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2905 }
2906 
2907 int
2908 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2909 {
2910 	int diag;
2911 
2912 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2913 		return 1;
2914 	if (vlan_id_is_invalid(vlan_id))
2915 		return 1;
2916 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2917 	if (diag == 0)
2918 		return 0;
2919 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2920 	       "diag=%d\n",
2921 	       port_id, vlan_id, on, diag);
2922 	return -1;
2923 }
2924 
2925 void
2926 rx_vlan_all_filter_set(portid_t port_id, int on)
2927 {
2928 	uint16_t vlan_id;
2929 
2930 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2931 		return;
2932 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2933 		if (rx_vft_set(port_id, vlan_id, on))
2934 			break;
2935 	}
2936 }
2937 
2938 void
2939 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2940 {
2941 	int diag;
2942 
2943 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2944 		return;
2945 
2946 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2947 	if (diag == 0)
2948 		return;
2949 
2950 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2951 	       "diag=%d\n",
2952 	       port_id, vlan_type, tp_id, diag);
2953 }
2954 
2955 void
2956 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2957 {
2958 	int vlan_offload;
2959 	struct rte_eth_dev_info dev_info;
2960 
2961 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2962 		return;
2963 	if (vlan_id_is_invalid(vlan_id))
2964 		return;
2965 
2966 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2967 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2968 		printf("Error, as QinQ has been enabled.\n");
2969 		return;
2970 	}
2971 	rte_eth_dev_info_get(port_id, &dev_info);
2972 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2973 		printf("Error: vlan insert is not supported by port %d\n",
2974 			port_id);
2975 		return;
2976 	}
2977 
2978 	tx_vlan_reset(port_id);
2979 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2980 	ports[port_id].tx_vlan_id = vlan_id;
2981 }
2982 
2983 void
2984 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2985 {
2986 	int vlan_offload;
2987 	struct rte_eth_dev_info dev_info;
2988 
2989 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2990 		return;
2991 	if (vlan_id_is_invalid(vlan_id))
2992 		return;
2993 	if (vlan_id_is_invalid(vlan_id_outer))
2994 		return;
2995 
2996 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2997 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2998 		printf("Error, as QinQ hasn't been enabled.\n");
2999 		return;
3000 	}
3001 	rte_eth_dev_info_get(port_id, &dev_info);
3002 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
3003 		printf("Error: qinq insert not supported by port %d\n",
3004 			port_id);
3005 		return;
3006 	}
3007 
3008 	tx_vlan_reset(port_id);
3009 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
3010 	ports[port_id].tx_vlan_id = vlan_id;
3011 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
3012 }
3013 
3014 void
3015 tx_vlan_reset(portid_t port_id)
3016 {
3017 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3018 		return;
3019 	ports[port_id].dev_conf.txmode.offloads &=
3020 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
3021 				  DEV_TX_OFFLOAD_QINQ_INSERT);
3022 	ports[port_id].tx_vlan_id = 0;
3023 	ports[port_id].tx_vlan_id_outer = 0;
3024 }
3025 
3026 void
3027 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
3028 {
3029 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3030 		return;
3031 
3032 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
3033 }
3034 
3035 void
3036 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
3037 {
3038 	uint16_t i;
3039 	uint8_t existing_mapping_found = 0;
3040 
3041 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3042 		return;
3043 
3044 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3045 		return;
3046 
3047 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3048 		printf("map_value not in required range 0..%d\n",
3049 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3050 		return;
3051 	}
3052 
3053 	if (!is_rx) { /*then tx*/
3054 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3055 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3056 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3057 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3058 				existing_mapping_found = 1;
3059 				break;
3060 			}
3061 		}
3062 		if (!existing_mapping_found) { /* A new additional mapping... */
3063 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3064 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3065 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3066 			nb_tx_queue_stats_mappings++;
3067 		}
3068 	}
3069 	else { /*rx*/
3070 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3071 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3072 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3073 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3074 				existing_mapping_found = 1;
3075 				break;
3076 			}
3077 		}
3078 		if (!existing_mapping_found) { /* A new additional mapping... */
3079 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3080 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3081 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3082 			nb_rx_queue_stats_mappings++;
3083 		}
3084 	}
3085 }
3086 
3087 void
3088 set_xstats_hide_zero(uint8_t on_off)
3089 {
3090 	xstats_hide_zero = on_off;
3091 }
3092 
3093 static inline void
3094 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3095 {
3096 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3097 
3098 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3099 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3100 			" tunnel_id: 0x%08x",
3101 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3102 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3103 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3104 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3105 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3106 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3107 
3108 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3109 			rte_be_to_cpu_16(mask->src_port_mask),
3110 			rte_be_to_cpu_16(mask->dst_port_mask));
3111 
3112 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3113 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3114 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3115 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3116 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3117 
3118 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3119 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3120 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3121 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3122 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3123 	}
3124 
3125 	printf("\n");
3126 }
3127 
3128 static inline void
3129 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3130 {
3131 	struct rte_eth_flex_payload_cfg *cfg;
3132 	uint32_t i, j;
3133 
3134 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3135 		cfg = &flex_conf->flex_set[i];
3136 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3137 			printf("\n    RAW:  ");
3138 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3139 			printf("\n    L2_PAYLOAD:  ");
3140 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3141 			printf("\n    L3_PAYLOAD:  ");
3142 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3143 			printf("\n    L4_PAYLOAD:  ");
3144 		else
3145 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3146 		for (j = 0; j < num; j++)
3147 			printf("  %-5u", cfg->src_offset[j]);
3148 	}
3149 	printf("\n");
3150 }
3151 
3152 static char *
3153 flowtype_to_str(uint16_t flow_type)
3154 {
3155 	struct flow_type_info {
3156 		char str[32];
3157 		uint16_t ftype;
3158 	};
3159 
3160 	uint8_t i;
3161 	static struct flow_type_info flowtype_str_table[] = {
3162 		{"raw", RTE_ETH_FLOW_RAW},
3163 		{"ipv4", RTE_ETH_FLOW_IPV4},
3164 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3165 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3166 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3167 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3168 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3169 		{"ipv6", RTE_ETH_FLOW_IPV6},
3170 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3171 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3172 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3173 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3174 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3175 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3176 		{"port", RTE_ETH_FLOW_PORT},
3177 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3178 		{"geneve", RTE_ETH_FLOW_GENEVE},
3179 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3180 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3181 	};
3182 
3183 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3184 		if (flowtype_str_table[i].ftype == flow_type)
3185 			return flowtype_str_table[i].str;
3186 	}
3187 
3188 	return NULL;
3189 }
3190 
3191 static inline void
3192 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3193 {
3194 	struct rte_eth_fdir_flex_mask *mask;
3195 	uint32_t i, j;
3196 	char *p;
3197 
3198 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3199 		mask = &flex_conf->flex_mask[i];
3200 		p = flowtype_to_str(mask->flow_type);
3201 		printf("\n    %s:\t", p ? p : "unknown");
3202 		for (j = 0; j < num; j++)
3203 			printf(" %02x", mask->mask[j]);
3204 	}
3205 	printf("\n");
3206 }
3207 
3208 static inline void
3209 print_fdir_flow_type(uint32_t flow_types_mask)
3210 {
3211 	int i;
3212 	char *p;
3213 
3214 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3215 		if (!(flow_types_mask & (1 << i)))
3216 			continue;
3217 		p = flowtype_to_str(i);
3218 		if (p)
3219 			printf(" %s", p);
3220 		else
3221 			printf(" unknown");
3222 	}
3223 	printf("\n");
3224 }
3225 
3226 void
3227 fdir_get_infos(portid_t port_id)
3228 {
3229 	struct rte_eth_fdir_stats fdir_stat;
3230 	struct rte_eth_fdir_info fdir_info;
3231 	int ret;
3232 
3233 	static const char *fdir_stats_border = "########################";
3234 
3235 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3236 		return;
3237 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3238 	if (ret < 0) {
3239 		printf("\n FDIR is not supported on port %-2d\n",
3240 			port_id);
3241 		return;
3242 	}
3243 
3244 	memset(&fdir_info, 0, sizeof(fdir_info));
3245 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3246 			       RTE_ETH_FILTER_INFO, &fdir_info);
3247 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3248 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3249 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3250 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3251 	       fdir_stats_border, port_id, fdir_stats_border);
3252 	printf("  MODE: ");
3253 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3254 		printf("  PERFECT\n");
3255 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3256 		printf("  PERFECT-MAC-VLAN\n");
3257 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3258 		printf("  PERFECT-TUNNEL\n");
3259 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3260 		printf("  SIGNATURE\n");
3261 	else
3262 		printf("  DISABLE\n");
3263 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3264 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3265 		printf("  SUPPORTED FLOW TYPE: ");
3266 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3267 	}
3268 	printf("  FLEX PAYLOAD INFO:\n");
3269 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3270 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3271 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3272 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3273 		fdir_info.flex_payload_unit,
3274 		fdir_info.max_flex_payload_segment_num,
3275 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3276 	printf("  MASK: ");
3277 	print_fdir_mask(&fdir_info.mask);
3278 	if (fdir_info.flex_conf.nb_payloads > 0) {
3279 		printf("  FLEX PAYLOAD SRC OFFSET:");
3280 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3281 	}
3282 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3283 		printf("  FLEX MASK CFG:");
3284 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3285 	}
3286 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3287 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3288 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3289 	       fdir_info.guarant_spc, fdir_info.best_spc);
3290 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3291 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3292 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3293 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3294 	       fdir_stat.collision, fdir_stat.free,
3295 	       fdir_stat.maxhash, fdir_stat.maxlen,
3296 	       fdir_stat.add, fdir_stat.remove,
3297 	       fdir_stat.f_add, fdir_stat.f_remove);
3298 	printf("  %s############################%s\n",
3299 	       fdir_stats_border, fdir_stats_border);
3300 }
3301 
3302 void
3303 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3304 {
3305 	struct rte_port *port;
3306 	struct rte_eth_fdir_flex_conf *flex_conf;
3307 	int i, idx = 0;
3308 
3309 	port = &ports[port_id];
3310 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3311 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3312 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3313 			idx = i;
3314 			break;
3315 		}
3316 	}
3317 	if (i >= RTE_ETH_FLOW_MAX) {
3318 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3319 			idx = flex_conf->nb_flexmasks;
3320 			flex_conf->nb_flexmasks++;
3321 		} else {
3322 			printf("The flex mask table is full. Can not set flex"
3323 				" mask for flow_type(%u).", cfg->flow_type);
3324 			return;
3325 		}
3326 	}
3327 	rte_memcpy(&flex_conf->flex_mask[idx],
3328 			 cfg,
3329 			 sizeof(struct rte_eth_fdir_flex_mask));
3330 }
3331 
3332 void
3333 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3334 {
3335 	struct rte_port *port;
3336 	struct rte_eth_fdir_flex_conf *flex_conf;
3337 	int i, idx = 0;
3338 
3339 	port = &ports[port_id];
3340 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3341 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3342 		if (cfg->type == flex_conf->flex_set[i].type) {
3343 			idx = i;
3344 			break;
3345 		}
3346 	}
3347 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3348 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3349 			idx = flex_conf->nb_payloads;
3350 			flex_conf->nb_payloads++;
3351 		} else {
3352 			printf("The flex payload table is full. Can not set"
3353 				" flex payload for type(%u).", cfg->type);
3354 			return;
3355 		}
3356 	}
3357 	rte_memcpy(&flex_conf->flex_set[idx],
3358 			 cfg,
3359 			 sizeof(struct rte_eth_flex_payload_cfg));
3360 
3361 }
3362 
3363 void
3364 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3365 {
3366 #ifdef RTE_LIBRTE_IXGBE_PMD
3367 	int diag;
3368 
3369 	if (is_rx)
3370 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3371 	else
3372 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3373 
3374 	if (diag == 0)
3375 		return;
3376 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3377 			is_rx ? "rx" : "tx", port_id, diag);
3378 	return;
3379 #endif
3380 	printf("VF %s setting not supported for port %d\n",
3381 			is_rx ? "Rx" : "Tx", port_id);
3382 	RTE_SET_USED(vf);
3383 	RTE_SET_USED(on);
3384 }
3385 
3386 int
3387 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3388 {
3389 	int diag;
3390 	struct rte_eth_link link;
3391 
3392 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3393 		return 1;
3394 	rte_eth_link_get_nowait(port_id, &link);
3395 	if (rate > link.link_speed) {
3396 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3397 			rate, link.link_speed);
3398 		return 1;
3399 	}
3400 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3401 	if (diag == 0)
3402 		return diag;
3403 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3404 		port_id, diag);
3405 	return diag;
3406 }
3407 
3408 int
3409 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3410 {
3411 	int diag = -ENOTSUP;
3412 
3413 	RTE_SET_USED(vf);
3414 	RTE_SET_USED(rate);
3415 	RTE_SET_USED(q_msk);
3416 
3417 #ifdef RTE_LIBRTE_IXGBE_PMD
3418 	if (diag == -ENOTSUP)
3419 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3420 						       q_msk);
3421 #endif
3422 #ifdef RTE_LIBRTE_BNXT_PMD
3423 	if (diag == -ENOTSUP)
3424 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3425 #endif
3426 	if (diag == 0)
3427 		return diag;
3428 
3429 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3430 		port_id, diag);
3431 	return diag;
3432 }
3433 
3434 /*
3435  * Functions to manage the set of filtered Multicast MAC addresses.
3436  *
3437  * A pool of filtered multicast MAC addresses is associated with each port.
3438  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3439  * The address of the pool and the number of valid multicast MAC addresses
3440  * recorded in the pool are stored in the fields "mc_addr_pool" and
3441  * "mc_addr_nb" of the "rte_port" data structure.
3442  *
3443  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3444  * to be supplied a contiguous array of multicast MAC addresses.
3445  * To comply with this constraint, the set of multicast addresses recorded
3446  * into the pool are systematically compacted at the beginning of the pool.
3447  * Hence, when a multicast address is removed from the pool, all following
3448  * addresses, if any, are copied back to keep the set contiguous.
3449  */
3450 #define MCAST_POOL_INC 32
3451 
3452 static int
3453 mcast_addr_pool_extend(struct rte_port *port)
3454 {
3455 	struct ether_addr *mc_pool;
3456 	size_t mc_pool_size;
3457 
3458 	/*
3459 	 * If a free entry is available at the end of the pool, just
3460 	 * increment the number of recorded multicast addresses.
3461 	 */
3462 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3463 		port->mc_addr_nb++;
3464 		return 0;
3465 	}
3466 
3467 	/*
3468 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3469 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3470 	 * of MCAST_POOL_INC.
3471 	 */
3472 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3473 						    MCAST_POOL_INC);
3474 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3475 						mc_pool_size);
3476 	if (mc_pool == NULL) {
3477 		printf("allocation of pool of %u multicast addresses failed\n",
3478 		       port->mc_addr_nb + MCAST_POOL_INC);
3479 		return -ENOMEM;
3480 	}
3481 
3482 	port->mc_addr_pool = mc_pool;
3483 	port->mc_addr_nb++;
3484 	return 0;
3485 
3486 }
3487 
3488 static void
3489 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3490 {
3491 	port->mc_addr_nb--;
3492 	if (addr_idx == port->mc_addr_nb) {
3493 		/* No need to recompact the set of multicast addressses. */
3494 		if (port->mc_addr_nb == 0) {
3495 			/* free the pool of multicast addresses. */
3496 			free(port->mc_addr_pool);
3497 			port->mc_addr_pool = NULL;
3498 		}
3499 		return;
3500 	}
3501 	memmove(&port->mc_addr_pool[addr_idx],
3502 		&port->mc_addr_pool[addr_idx + 1],
3503 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3504 }
3505 
3506 static void
3507 eth_port_multicast_addr_list_set(portid_t port_id)
3508 {
3509 	struct rte_port *port;
3510 	int diag;
3511 
3512 	port = &ports[port_id];
3513 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3514 					    port->mc_addr_nb);
3515 	if (diag == 0)
3516 		return;
3517 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3518 	       port->mc_addr_nb, port_id, -diag);
3519 }
3520 
3521 void
3522 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3523 {
3524 	struct rte_port *port;
3525 	uint32_t i;
3526 
3527 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3528 		return;
3529 
3530 	port = &ports[port_id];
3531 
3532 	/*
3533 	 * Check that the added multicast MAC address is not already recorded
3534 	 * in the pool of multicast addresses.
3535 	 */
3536 	for (i = 0; i < port->mc_addr_nb; i++) {
3537 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3538 			printf("multicast address already filtered by port\n");
3539 			return;
3540 		}
3541 	}
3542 
3543 	if (mcast_addr_pool_extend(port) != 0)
3544 		return;
3545 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3546 	eth_port_multicast_addr_list_set(port_id);
3547 }
3548 
3549 void
3550 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3551 {
3552 	struct rte_port *port;
3553 	uint32_t i;
3554 
3555 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3556 		return;
3557 
3558 	port = &ports[port_id];
3559 
3560 	/*
3561 	 * Search the pool of multicast MAC addresses for the removed address.
3562 	 */
3563 	for (i = 0; i < port->mc_addr_nb; i++) {
3564 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3565 			break;
3566 	}
3567 	if (i == port->mc_addr_nb) {
3568 		printf("multicast address not filtered by port %d\n", port_id);
3569 		return;
3570 	}
3571 
3572 	mcast_addr_pool_remove(port, i);
3573 	eth_port_multicast_addr_list_set(port_id);
3574 }
3575 
3576 void
3577 port_dcb_info_display(portid_t port_id)
3578 {
3579 	struct rte_eth_dcb_info dcb_info;
3580 	uint16_t i;
3581 	int ret;
3582 	static const char *border = "================";
3583 
3584 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3585 		return;
3586 
3587 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3588 	if (ret) {
3589 		printf("\n Failed to get dcb infos on port %-2d\n",
3590 			port_id);
3591 		return;
3592 	}
3593 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3594 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3595 	printf("\n  TC :        ");
3596 	for (i = 0; i < dcb_info.nb_tcs; i++)
3597 		printf("\t%4d", i);
3598 	printf("\n  Priority :  ");
3599 	for (i = 0; i < dcb_info.nb_tcs; i++)
3600 		printf("\t%4d", dcb_info.prio_tc[i]);
3601 	printf("\n  BW percent :");
3602 	for (i = 0; i < dcb_info.nb_tcs; i++)
3603 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3604 	printf("\n  RXQ base :  ");
3605 	for (i = 0; i < dcb_info.nb_tcs; i++)
3606 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3607 	printf("\n  RXQ number :");
3608 	for (i = 0; i < dcb_info.nb_tcs; i++)
3609 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3610 	printf("\n  TXQ base :  ");
3611 	for (i = 0; i < dcb_info.nb_tcs; i++)
3612 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3613 	printf("\n  TXQ number :");
3614 	for (i = 0; i < dcb_info.nb_tcs; i++)
3615 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3616 	printf("\n");
3617 }
3618 
3619 uint8_t *
3620 open_file(const char *file_path, uint32_t *size)
3621 {
3622 	int fd = open(file_path, O_RDONLY);
3623 	off_t pkg_size;
3624 	uint8_t *buf = NULL;
3625 	int ret = 0;
3626 	struct stat st_buf;
3627 
3628 	if (size)
3629 		*size = 0;
3630 
3631 	if (fd == -1) {
3632 		printf("%s: Failed to open %s\n", __func__, file_path);
3633 		return buf;
3634 	}
3635 
3636 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3637 		close(fd);
3638 		printf("%s: File operations failed\n", __func__);
3639 		return buf;
3640 	}
3641 
3642 	pkg_size = st_buf.st_size;
3643 	if (pkg_size < 0) {
3644 		close(fd);
3645 		printf("%s: File operations failed\n", __func__);
3646 		return buf;
3647 	}
3648 
3649 	buf = (uint8_t *)malloc(pkg_size);
3650 	if (!buf) {
3651 		close(fd);
3652 		printf("%s: Failed to malloc memory\n",	__func__);
3653 		return buf;
3654 	}
3655 
3656 	ret = read(fd, buf, pkg_size);
3657 	if (ret < 0) {
3658 		close(fd);
3659 		printf("%s: File read operation failed\n", __func__);
3660 		close_file(buf);
3661 		return NULL;
3662 	}
3663 
3664 	if (size)
3665 		*size = pkg_size;
3666 
3667 	close(fd);
3668 
3669 	return buf;
3670 }
3671 
3672 int
3673 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3674 {
3675 	FILE *fh = fopen(file_path, "wb");
3676 
3677 	if (fh == NULL) {
3678 		printf("%s: Failed to open %s\n", __func__, file_path);
3679 		return -1;
3680 	}
3681 
3682 	if (fwrite(buf, 1, size, fh) != size) {
3683 		fclose(fh);
3684 		printf("%s: File write operation failed\n", __func__);
3685 		return -1;
3686 	}
3687 
3688 	fclose(fh);
3689 
3690 	return 0;
3691 }
3692 
3693 int
3694 close_file(uint8_t *buf)
3695 {
3696 	if (buf) {
3697 		free((void *)buf);
3698 		return 0;
3699 	}
3700 
3701 	return -1;
3702 }
3703 
3704 void
3705 port_queue_region_info_display(portid_t port_id, void *buf)
3706 {
3707 #ifdef RTE_LIBRTE_I40E_PMD
3708 	uint16_t i, j;
3709 	struct rte_pmd_i40e_queue_regions *info =
3710 		(struct rte_pmd_i40e_queue_regions *)buf;
3711 	static const char *queue_region_info_stats_border = "-------";
3712 
3713 	if (!info->queue_region_number)
3714 		printf("there is no region has been set before");
3715 
3716 	printf("\n	%s All queue region info for port=%2d %s",
3717 			queue_region_info_stats_border, port_id,
3718 			queue_region_info_stats_border);
3719 	printf("\n	queue_region_number: %-14u \n",
3720 			info->queue_region_number);
3721 
3722 	for (i = 0; i < info->queue_region_number; i++) {
3723 		printf("\n	region_id: %-14u queue_number: %-14u "
3724 			"queue_start_index: %-14u \n",
3725 			info->region[i].region_id,
3726 			info->region[i].queue_num,
3727 			info->region[i].queue_start_index);
3728 
3729 		printf("  user_priority_num is	%-14u :",
3730 					info->region[i].user_priority_num);
3731 		for (j = 0; j < info->region[i].user_priority_num; j++)
3732 			printf(" %-14u ", info->region[i].user_priority[j]);
3733 
3734 		printf("\n	flowtype_num is  %-14u :",
3735 				info->region[i].flowtype_num);
3736 		for (j = 0; j < info->region[i].flowtype_num; j++)
3737 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3738 	}
3739 #else
3740 	RTE_SET_USED(port_id);
3741 	RTE_SET_USED(buf);
3742 #endif
3743 
3744 	printf("\n\n");
3745 }
3746