xref: /dpdk/app/test-pmd/config.c (revision 2490bb897182f57de80fd924dd3ae48dda819b8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_branch_prediction.h>
31 #include <rte_mempool.h>
32 #include <rte_mbuf.h>
33 #include <rte_interrupts.h>
34 #include <rte_pci.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_string_fns.h>
38 #include <rte_cycles.h>
39 #include <rte_flow.h>
40 #include <rte_mtr.h>
41 #include <rte_errno.h>
42 #ifdef RTE_NET_IXGBE
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_NET_I40E
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_NET_BNXT
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #ifdef RTE_LIB_GRO
52 #include <rte_gro.h>
53 #endif
54 #include <rte_hexdump.h>
55 
56 #include "testpmd.h"
57 #include "cmdline_mtr.h"
58 
59 #define ETHDEV_FWVERS_LEN 32
60 
61 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
62 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
63 #else
64 #define CLOCK_TYPE_ID CLOCK_MONOTONIC
65 #endif
66 
67 #define NS_PER_SEC 1E9
68 
69 static char *flowtype_to_str(uint16_t flow_type);
70 
71 static const struct {
72 	enum tx_pkt_split split;
73 	const char *name;
74 } tx_split_name[] = {
75 	{
76 		.split = TX_PKT_SPLIT_OFF,
77 		.name = "off",
78 	},
79 	{
80 		.split = TX_PKT_SPLIT_ON,
81 		.name = "on",
82 	},
83 	{
84 		.split = TX_PKT_SPLIT_RND,
85 		.name = "rand",
86 	},
87 };
88 
89 const struct rss_type_info rss_type_table[] = {
90 	{ "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP |
91 		RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD |
92 		RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP |
93 		RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS},
94 	{ "none", 0 },
95 	{ "eth", RTE_ETH_RSS_ETH },
96 	{ "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY },
97 	{ "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY },
98 	{ "vlan", RTE_ETH_RSS_VLAN },
99 	{ "s-vlan", RTE_ETH_RSS_S_VLAN },
100 	{ "c-vlan", RTE_ETH_RSS_C_VLAN },
101 	{ "ipv4", RTE_ETH_RSS_IPV4 },
102 	{ "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 },
103 	{ "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP },
104 	{ "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP },
105 	{ "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP },
106 	{ "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER },
107 	{ "ipv6", RTE_ETH_RSS_IPV6 },
108 	{ "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 },
109 	{ "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP },
110 	{ "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP },
111 	{ "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP },
112 	{ "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER },
113 	{ "l2-payload", RTE_ETH_RSS_L2_PAYLOAD },
114 	{ "ipv6-ex", RTE_ETH_RSS_IPV6_EX },
115 	{ "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX },
116 	{ "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX },
117 	{ "port", RTE_ETH_RSS_PORT },
118 	{ "vxlan", RTE_ETH_RSS_VXLAN },
119 	{ "geneve", RTE_ETH_RSS_GENEVE },
120 	{ "nvgre", RTE_ETH_RSS_NVGRE },
121 	{ "ip", RTE_ETH_RSS_IP },
122 	{ "udp", RTE_ETH_RSS_UDP },
123 	{ "tcp", RTE_ETH_RSS_TCP },
124 	{ "sctp", RTE_ETH_RSS_SCTP },
125 	{ "tunnel", RTE_ETH_RSS_TUNNEL },
126 	{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
127 	{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
128 	{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
129 	{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
130 	{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
131 	{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
132 	{ "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY },
133 	{ "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY },
134 	{ "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY },
135 	{ "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY },
136 	{ "esp", RTE_ETH_RSS_ESP },
137 	{ "ah", RTE_ETH_RSS_AH },
138 	{ "l2tpv3", RTE_ETH_RSS_L2TPV3 },
139 	{ "pfcp", RTE_ETH_RSS_PFCP },
140 	{ "pppoe", RTE_ETH_RSS_PPPOE },
141 	{ "gtpu", RTE_ETH_RSS_GTPU },
142 	{ "ecpri", RTE_ETH_RSS_ECPRI },
143 	{ "mpls", RTE_ETH_RSS_MPLS },
144 	{ "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM },
145 	{ "l4-chksum", RTE_ETH_RSS_L4_CHKSUM },
146 	{ NULL, 0 },
147 };
148 
149 static const struct {
150 	enum rte_eth_fec_mode mode;
151 	const char *name;
152 } fec_mode_name[] = {
153 	{
154 		.mode = RTE_ETH_FEC_NOFEC,
155 		.name = "off",
156 	},
157 	{
158 		.mode = RTE_ETH_FEC_AUTO,
159 		.name = "auto",
160 	},
161 	{
162 		.mode = RTE_ETH_FEC_BASER,
163 		.name = "baser",
164 	},
165 	{
166 		.mode = RTE_ETH_FEC_RS,
167 		.name = "rs",
168 	},
169 };
170 
171 static void
172 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
173 {
174 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
175 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
176 	printf("%s%s", name, buf);
177 }
178 
179 static void
180 nic_xstats_display_periodic(portid_t port_id)
181 {
182 	struct xstat_display_info *xstats_info;
183 	uint64_t *prev_values, *curr_values;
184 	uint64_t diff_value, value_rate;
185 	struct timespec cur_time;
186 	uint64_t *ids_supp;
187 	size_t ids_supp_sz;
188 	uint64_t diff_ns;
189 	unsigned int i;
190 	int rc;
191 
192 	xstats_info = &ports[port_id].xstats_info;
193 
194 	ids_supp_sz = xstats_info->ids_supp_sz;
195 	if (ids_supp_sz == 0)
196 		return;
197 
198 	printf("\n");
199 
200 	ids_supp = xstats_info->ids_supp;
201 	prev_values = xstats_info->prev_values;
202 	curr_values = xstats_info->curr_values;
203 
204 	rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values,
205 				      ids_supp_sz);
206 	if (rc != (int)ids_supp_sz) {
207 		fprintf(stderr,
208 			"Failed to get values of %zu xstats for port %u - return code %d\n",
209 			ids_supp_sz, port_id, rc);
210 		return;
211 	}
212 
213 	diff_ns = 0;
214 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
215 		uint64_t ns;
216 
217 		ns = cur_time.tv_sec * NS_PER_SEC;
218 		ns += cur_time.tv_nsec;
219 
220 		if (xstats_info->prev_ns != 0)
221 			diff_ns = ns - xstats_info->prev_ns;
222 		xstats_info->prev_ns = ns;
223 	}
224 
225 	printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)");
226 	for (i = 0; i < ids_supp_sz; i++) {
227 		diff_value = (curr_values[i] > prev_values[i]) ?
228 			     (curr_values[i] - prev_values[i]) : 0;
229 		prev_values[i] = curr_values[i];
230 		value_rate = diff_ns > 0 ?
231 				(double)diff_value / diff_ns * NS_PER_SEC : 0;
232 
233 		printf("  %-25s%12"PRIu64" %15"PRIu64"\n",
234 		       xstats_display[i].name, curr_values[i], value_rate);
235 	}
236 }
237 
238 void
239 nic_stats_display(portid_t port_id)
240 {
241 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
242 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
243 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
244 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
245 	static uint64_t prev_ns[RTE_MAX_ETHPORTS];
246 	struct timespec cur_time;
247 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
248 								diff_ns;
249 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
250 	struct rte_eth_stats stats;
251 
252 	static const char *nic_stats_border = "########################";
253 
254 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
255 		print_valid_ports();
256 		return;
257 	}
258 	rte_eth_stats_get(port_id, &stats);
259 	printf("\n  %s NIC statistics for port %-2d %s\n",
260 	       nic_stats_border, port_id, nic_stats_border);
261 
262 	printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
263 	       "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
264 	printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
265 	printf("  RX-nombuf:  %-10"PRIu64"\n", stats.rx_nombuf);
266 	printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
267 	       "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
268 
269 	diff_ns = 0;
270 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
271 		uint64_t ns;
272 
273 		ns = cur_time.tv_sec * NS_PER_SEC;
274 		ns += cur_time.tv_nsec;
275 
276 		if (prev_ns[port_id] != 0)
277 			diff_ns = ns - prev_ns[port_id];
278 		prev_ns[port_id] = ns;
279 	}
280 
281 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
282 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
283 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
284 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
285 	prev_pkts_rx[port_id] = stats.ipackets;
286 	prev_pkts_tx[port_id] = stats.opackets;
287 	mpps_rx = diff_ns > 0 ?
288 		(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
289 	mpps_tx = diff_ns > 0 ?
290 		(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
291 
292 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
293 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
294 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
295 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
296 	prev_bytes_rx[port_id] = stats.ibytes;
297 	prev_bytes_tx[port_id] = stats.obytes;
298 	mbps_rx = diff_ns > 0 ?
299 		(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
300 	mbps_tx = diff_ns > 0 ?
301 		(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
302 
303 	printf("\n  Throughput (since last show)\n");
304 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
305 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
306 	       mpps_tx, mbps_tx * 8);
307 
308 	if (xstats_display_num > 0)
309 		nic_xstats_display_periodic(port_id);
310 
311 	printf("  %s############################%s\n",
312 	       nic_stats_border, nic_stats_border);
313 }
314 
315 void
316 nic_stats_clear(portid_t port_id)
317 {
318 	int ret;
319 
320 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
321 		print_valid_ports();
322 		return;
323 	}
324 
325 	ret = rte_eth_stats_reset(port_id);
326 	if (ret != 0) {
327 		fprintf(stderr,
328 			"%s: Error: failed to reset stats (port %u): %s",
329 			__func__, port_id, strerror(-ret));
330 		return;
331 	}
332 
333 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
334 	if (ret != 0) {
335 		if (ret < 0)
336 			ret = -ret;
337 		fprintf(stderr,
338 			"%s: Error: failed to get stats (port %u): %s",
339 			__func__, port_id, strerror(ret));
340 		return;
341 	}
342 	printf("\n  NIC statistics for port %d cleared\n", port_id);
343 }
344 
345 void
346 nic_xstats_display(portid_t port_id)
347 {
348 	struct rte_eth_xstat *xstats;
349 	int cnt_xstats, idx_xstat;
350 	struct rte_eth_xstat_name *xstats_names;
351 
352 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
353 		print_valid_ports();
354 		return;
355 	}
356 	printf("###### NIC extended statistics for port %-2d\n", port_id);
357 	if (!rte_eth_dev_is_valid_port(port_id)) {
358 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
359 		return;
360 	}
361 
362 	/* Get count */
363 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
364 	if (cnt_xstats  < 0) {
365 		fprintf(stderr, "Error: Cannot get count of xstats\n");
366 		return;
367 	}
368 
369 	/* Get id-name lookup table */
370 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
371 	if (xstats_names == NULL) {
372 		fprintf(stderr, "Cannot allocate memory for xstats lookup\n");
373 		return;
374 	}
375 	if (cnt_xstats != rte_eth_xstats_get_names(
376 			port_id, xstats_names, cnt_xstats)) {
377 		fprintf(stderr, "Error: Cannot get xstats lookup\n");
378 		free(xstats_names);
379 		return;
380 	}
381 
382 	/* Get stats themselves */
383 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
384 	if (xstats == NULL) {
385 		fprintf(stderr, "Cannot allocate memory for xstats\n");
386 		free(xstats_names);
387 		return;
388 	}
389 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
390 		fprintf(stderr, "Error: Unable to get xstats\n");
391 		free(xstats_names);
392 		free(xstats);
393 		return;
394 	}
395 
396 	/* Display xstats */
397 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
398 		if (xstats_hide_zero && !xstats[idx_xstat].value)
399 			continue;
400 		printf("%s: %"PRIu64"\n",
401 			xstats_names[idx_xstat].name,
402 			xstats[idx_xstat].value);
403 	}
404 	free(xstats_names);
405 	free(xstats);
406 }
407 
408 void
409 nic_xstats_clear(portid_t port_id)
410 {
411 	int ret;
412 
413 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
414 		print_valid_ports();
415 		return;
416 	}
417 
418 	ret = rte_eth_xstats_reset(port_id);
419 	if (ret != 0) {
420 		fprintf(stderr,
421 			"%s: Error: failed to reset xstats (port %u): %s\n",
422 			__func__, port_id, strerror(-ret));
423 		return;
424 	}
425 
426 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
427 	if (ret != 0) {
428 		if (ret < 0)
429 			ret = -ret;
430 		fprintf(stderr, "%s: Error: failed to get stats (port %u): %s",
431 			__func__, port_id, strerror(ret));
432 		return;
433 	}
434 }
435 
436 static const char *
437 get_queue_state_name(uint8_t queue_state)
438 {
439 	if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED)
440 		return "stopped";
441 	else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED)
442 		return "started";
443 	else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN)
444 		return "hairpin";
445 	else
446 		return "unknown";
447 }
448 
449 void
450 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
451 {
452 	struct rte_eth_burst_mode mode;
453 	struct rte_eth_rxq_info qinfo;
454 	int32_t rc;
455 	static const char *info_border = "*********************";
456 
457 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
458 	if (rc != 0) {
459 		fprintf(stderr,
460 			"Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n",
461 			port_id, queue_id, strerror(-rc), rc);
462 		return;
463 	}
464 
465 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
466 	       info_border, port_id, queue_id, info_border);
467 
468 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
469 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
470 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
471 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
472 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
473 	printf("\nRX drop packets: %s",
474 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
475 	printf("\nRX deferred start: %s",
476 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
477 	printf("\nRX scattered packets: %s",
478 		(qinfo.scattered_rx != 0) ? "on" : "off");
479 	printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state));
480 	if (qinfo.rx_buf_size != 0)
481 		printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
482 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
483 
484 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
485 		printf("\nBurst mode: %s%s",
486 		       mode.info,
487 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
488 				" (per queue)" : "");
489 
490 	printf("\n");
491 }
492 
493 void
494 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
495 {
496 	struct rte_eth_burst_mode mode;
497 	struct rte_eth_txq_info qinfo;
498 	int32_t rc;
499 	static const char *info_border = "*********************";
500 
501 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
502 	if (rc != 0) {
503 		fprintf(stderr,
504 			"Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n",
505 			port_id, queue_id, strerror(-rc), rc);
506 		return;
507 	}
508 
509 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
510 	       info_border, port_id, queue_id, info_border);
511 
512 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
513 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
514 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
515 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
516 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
517 	printf("\nTX deferred start: %s",
518 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
519 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
520 	printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state));
521 
522 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
523 		printf("\nBurst mode: %s%s",
524 		       mode.info,
525 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
526 				" (per queue)" : "");
527 
528 	printf("\n");
529 }
530 
531 static int bus_match_all(const struct rte_bus *bus, const void *data)
532 {
533 	RTE_SET_USED(bus);
534 	RTE_SET_USED(data);
535 	return 0;
536 }
537 
538 static void
539 device_infos_display_speeds(uint32_t speed_capa)
540 {
541 	printf("\n\tDevice speed capability:");
542 	if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG)
543 		printf(" Autonegotiate (all speeds)");
544 	if (speed_capa & RTE_ETH_LINK_SPEED_FIXED)
545 		printf(" Disable autonegotiate (fixed speed)  ");
546 	if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD)
547 		printf(" 10 Mbps half-duplex  ");
548 	if (speed_capa & RTE_ETH_LINK_SPEED_10M)
549 		printf(" 10 Mbps full-duplex  ");
550 	if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD)
551 		printf(" 100 Mbps half-duplex  ");
552 	if (speed_capa & RTE_ETH_LINK_SPEED_100M)
553 		printf(" 100 Mbps full-duplex  ");
554 	if (speed_capa & RTE_ETH_LINK_SPEED_1G)
555 		printf(" 1 Gbps  ");
556 	if (speed_capa & RTE_ETH_LINK_SPEED_2_5G)
557 		printf(" 2.5 Gbps  ");
558 	if (speed_capa & RTE_ETH_LINK_SPEED_5G)
559 		printf(" 5 Gbps  ");
560 	if (speed_capa & RTE_ETH_LINK_SPEED_10G)
561 		printf(" 10 Gbps  ");
562 	if (speed_capa & RTE_ETH_LINK_SPEED_20G)
563 		printf(" 20 Gbps  ");
564 	if (speed_capa & RTE_ETH_LINK_SPEED_25G)
565 		printf(" 25 Gbps  ");
566 	if (speed_capa & RTE_ETH_LINK_SPEED_40G)
567 		printf(" 40 Gbps  ");
568 	if (speed_capa & RTE_ETH_LINK_SPEED_50G)
569 		printf(" 50 Gbps  ");
570 	if (speed_capa & RTE_ETH_LINK_SPEED_56G)
571 		printf(" 56 Gbps  ");
572 	if (speed_capa & RTE_ETH_LINK_SPEED_100G)
573 		printf(" 100 Gbps  ");
574 	if (speed_capa & RTE_ETH_LINK_SPEED_200G)
575 		printf(" 200 Gbps  ");
576 }
577 
578 void
579 device_infos_display(const char *identifier)
580 {
581 	static const char *info_border = "*********************";
582 	struct rte_bus *start = NULL, *next;
583 	struct rte_dev_iterator dev_iter;
584 	char name[RTE_ETH_NAME_MAX_LEN];
585 	struct rte_ether_addr mac_addr;
586 	struct rte_device *dev;
587 	struct rte_devargs da;
588 	portid_t port_id;
589 	struct rte_eth_dev_info dev_info;
590 	char devstr[128];
591 
592 	memset(&da, 0, sizeof(da));
593 	if (!identifier)
594 		goto skip_parse;
595 
596 	if (rte_devargs_parsef(&da, "%s", identifier)) {
597 		fprintf(stderr, "cannot parse identifier\n");
598 		return;
599 	}
600 
601 skip_parse:
602 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
603 
604 		start = next;
605 		if (identifier && da.bus != next)
606 			continue;
607 
608 		/* Skip buses that don't have iterate method */
609 		if (!next->dev_iterate)
610 			continue;
611 
612 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
613 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
614 
615 			if (!dev->driver)
616 				continue;
617 			/* Check for matching device if identifier is present */
618 			if (identifier &&
619 			    strncmp(da.name, dev->name, strlen(dev->name)))
620 				continue;
621 			printf("\n%s Infos for device %s %s\n",
622 			       info_border, dev->name, info_border);
623 			printf("Bus name: %s", dev->bus->name);
624 			printf("\nDriver name: %s", dev->driver->name);
625 			printf("\nDevargs: %s",
626 			       dev->devargs ? dev->devargs->args : "");
627 			printf("\nConnect to socket: %d", dev->numa_node);
628 			printf("\n");
629 
630 			/* List ports with matching device name */
631 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
632 				printf("\n\tPort id: %-2d", port_id);
633 				if (eth_macaddr_get_print_err(port_id,
634 							      &mac_addr) == 0)
635 					print_ethaddr("\n\tMAC address: ",
636 						      &mac_addr);
637 				rte_eth_dev_get_name_by_port(port_id, name);
638 				printf("\n\tDevice name: %s", name);
639 				if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
640 					device_infos_display_speeds(dev_info.speed_capa);
641 				printf("\n");
642 			}
643 		}
644 	};
645 	rte_devargs_reset(&da);
646 }
647 
648 static void
649 print_dev_capabilities(uint64_t capabilities)
650 {
651 	uint64_t single_capa;
652 	int begin;
653 	int end;
654 	int bit;
655 
656 	if (capabilities == 0)
657 		return;
658 
659 	begin = __builtin_ctzll(capabilities);
660 	end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities);
661 
662 	single_capa = 1ULL << begin;
663 	for (bit = begin; bit < end; bit++) {
664 		if (capabilities & single_capa)
665 			printf(" %s",
666 			       rte_eth_dev_capability_name(single_capa));
667 		single_capa <<= 1;
668 	}
669 }
670 
671 void
672 port_infos_display(portid_t port_id)
673 {
674 	struct rte_port *port;
675 	struct rte_ether_addr mac_addr;
676 	struct rte_eth_link link;
677 	struct rte_eth_dev_info dev_info;
678 	int vlan_offload;
679 	struct rte_mempool * mp;
680 	static const char *info_border = "*********************";
681 	uint16_t mtu;
682 	char name[RTE_ETH_NAME_MAX_LEN];
683 	int ret;
684 	char fw_version[ETHDEV_FWVERS_LEN];
685 
686 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
687 		print_valid_ports();
688 		return;
689 	}
690 	port = &ports[port_id];
691 	ret = eth_link_get_nowait_print_err(port_id, &link);
692 	if (ret < 0)
693 		return;
694 
695 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
696 	if (ret != 0)
697 		return;
698 
699 	printf("\n%s Infos for port %-2d %s\n",
700 	       info_border, port_id, info_border);
701 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
702 		print_ethaddr("MAC address: ", &mac_addr);
703 	rte_eth_dev_get_name_by_port(port_id, name);
704 	printf("\nDevice name: %s", name);
705 	printf("\nDriver name: %s", dev_info.driver_name);
706 
707 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
708 						ETHDEV_FWVERS_LEN) == 0)
709 		printf("\nFirmware-version: %s", fw_version);
710 	else
711 		printf("\nFirmware-version: %s", "not available");
712 
713 	if (dev_info.device->devargs && dev_info.device->devargs->args)
714 		printf("\nDevargs: %s", dev_info.device->devargs->args);
715 	printf("\nConnect to socket: %u", port->socket_id);
716 
717 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
718 		mp = mbuf_pool_find(port_numa[port_id], 0);
719 		if (mp)
720 			printf("\nmemory allocation on the socket: %d",
721 							port_numa[port_id]);
722 	} else
723 		printf("\nmemory allocation on the socket: %u",port->socket_id);
724 
725 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
726 	printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
727 	printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ?
728 	       ("full-duplex") : ("half-duplex"));
729 	printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ?
730 	       ("On") : ("Off"));
731 
732 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
733 		printf("MTU: %u\n", mtu);
734 
735 	printf("Promiscuous mode: %s\n",
736 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
737 	printf("Allmulticast mode: %s\n",
738 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
739 	printf("Maximum number of MAC addresses: %u\n",
740 	       (unsigned int)(port->dev_info.max_mac_addrs));
741 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
742 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
743 
744 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
745 	if (vlan_offload >= 0){
746 		printf("VLAN offload: \n");
747 		if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD)
748 			printf("  strip on, ");
749 		else
750 			printf("  strip off, ");
751 
752 		if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD)
753 			printf("filter on, ");
754 		else
755 			printf("filter off, ");
756 
757 		if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD)
758 			printf("extend on, ");
759 		else
760 			printf("extend off, ");
761 
762 		if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD)
763 			printf("qinq strip on\n");
764 		else
765 			printf("qinq strip off\n");
766 	}
767 
768 	if (dev_info.hash_key_size > 0)
769 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
770 	if (dev_info.reta_size > 0)
771 		printf("Redirection table size: %u\n", dev_info.reta_size);
772 	if (!dev_info.flow_type_rss_offloads)
773 		printf("No RSS offload flow type is supported.\n");
774 	else {
775 		uint16_t i;
776 		char *p;
777 
778 		printf("Supported RSS offload flow types:\n");
779 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
780 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
781 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
782 				continue;
783 			p = flowtype_to_str(i);
784 			if (p)
785 				printf("  %s\n", p);
786 			else
787 				printf("  user defined %d\n", i);
788 		}
789 	}
790 
791 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
792 	printf("Maximum configurable length of RX packet: %u\n",
793 		dev_info.max_rx_pktlen);
794 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
795 		dev_info.max_lro_pkt_size);
796 	if (dev_info.max_vfs)
797 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
798 	if (dev_info.max_vmdq_pools)
799 		printf("Maximum number of VMDq pools: %u\n",
800 			dev_info.max_vmdq_pools);
801 
802 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
803 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
804 	printf("Max possible number of RXDs per queue: %hu\n",
805 		dev_info.rx_desc_lim.nb_max);
806 	printf("Min possible number of RXDs per queue: %hu\n",
807 		dev_info.rx_desc_lim.nb_min);
808 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
809 
810 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
811 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
812 	printf("Max possible number of TXDs per queue: %hu\n",
813 		dev_info.tx_desc_lim.nb_max);
814 	printf("Min possible number of TXDs per queue: %hu\n",
815 		dev_info.tx_desc_lim.nb_min);
816 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
817 	printf("Max segment number per packet: %hu\n",
818 		dev_info.tx_desc_lim.nb_seg_max);
819 	printf("Max segment number per MTU/TSO: %hu\n",
820 		dev_info.tx_desc_lim.nb_mtu_seg_max);
821 
822 	printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa);
823 	print_dev_capabilities(dev_info.dev_capa);
824 	printf(" )\n");
825 	/* Show switch info only if valid switch domain and port id is set */
826 	if (dev_info.switch_info.domain_id !=
827 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
828 		if (dev_info.switch_info.name)
829 			printf("Switch name: %s\n", dev_info.switch_info.name);
830 
831 		printf("Switch domain Id: %u\n",
832 			dev_info.switch_info.domain_id);
833 		printf("Switch Port Id: %u\n",
834 			dev_info.switch_info.port_id);
835 		if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0)
836 			printf("Switch Rx domain: %u\n",
837 			       dev_info.switch_info.rx_domain);
838 	}
839 }
840 
841 void
842 port_summary_header_display(void)
843 {
844 	uint16_t port_number;
845 
846 	port_number = rte_eth_dev_count_avail();
847 	printf("Number of available ports: %i\n", port_number);
848 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
849 			"Driver", "Status", "Link");
850 }
851 
852 void
853 port_summary_display(portid_t port_id)
854 {
855 	struct rte_ether_addr mac_addr;
856 	struct rte_eth_link link;
857 	struct rte_eth_dev_info dev_info;
858 	char name[RTE_ETH_NAME_MAX_LEN];
859 	int ret;
860 
861 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
862 		print_valid_ports();
863 		return;
864 	}
865 
866 	ret = eth_link_get_nowait_print_err(port_id, &link);
867 	if (ret < 0)
868 		return;
869 
870 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
871 	if (ret != 0)
872 		return;
873 
874 	rte_eth_dev_get_name_by_port(port_id, name);
875 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
876 	if (ret != 0)
877 		return;
878 
879 	printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n",
880 		port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name,
881 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
882 		rte_eth_link_speed_to_str(link.link_speed));
883 }
884 
885 void
886 port_eeprom_display(portid_t port_id)
887 {
888 	struct rte_dev_eeprom_info einfo;
889 	int ret;
890 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
891 		print_valid_ports();
892 		return;
893 	}
894 
895 	int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
896 	if (len_eeprom < 0) {
897 		switch (len_eeprom) {
898 		case -ENODEV:
899 			fprintf(stderr, "port index %d invalid\n", port_id);
900 			break;
901 		case -ENOTSUP:
902 			fprintf(stderr, "operation not supported by device\n");
903 			break;
904 		case -EIO:
905 			fprintf(stderr, "device is removed\n");
906 			break;
907 		default:
908 			fprintf(stderr, "Unable to get EEPROM: %d\n",
909 				len_eeprom);
910 			break;
911 		}
912 		return;
913 	}
914 
915 	char buf[len_eeprom];
916 	einfo.offset = 0;
917 	einfo.length = len_eeprom;
918 	einfo.data = buf;
919 
920 	ret = rte_eth_dev_get_eeprom(port_id, &einfo);
921 	if (ret != 0) {
922 		switch (ret) {
923 		case -ENODEV:
924 			fprintf(stderr, "port index %d invalid\n", port_id);
925 			break;
926 		case -ENOTSUP:
927 			fprintf(stderr, "operation not supported by device\n");
928 			break;
929 		case -EIO:
930 			fprintf(stderr, "device is removed\n");
931 			break;
932 		default:
933 			fprintf(stderr, "Unable to get EEPROM: %d\n", ret);
934 			break;
935 		}
936 		return;
937 	}
938 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
939 	printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
940 }
941 
942 void
943 port_module_eeprom_display(portid_t port_id)
944 {
945 	struct rte_eth_dev_module_info minfo;
946 	struct rte_dev_eeprom_info einfo;
947 	int ret;
948 
949 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
950 		print_valid_ports();
951 		return;
952 	}
953 
954 
955 	ret = rte_eth_dev_get_module_info(port_id, &minfo);
956 	if (ret != 0) {
957 		switch (ret) {
958 		case -ENODEV:
959 			fprintf(stderr, "port index %d invalid\n", port_id);
960 			break;
961 		case -ENOTSUP:
962 			fprintf(stderr, "operation not supported by device\n");
963 			break;
964 		case -EIO:
965 			fprintf(stderr, "device is removed\n");
966 			break;
967 		default:
968 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
969 				ret);
970 			break;
971 		}
972 		return;
973 	}
974 
975 	char buf[minfo.eeprom_len];
976 	einfo.offset = 0;
977 	einfo.length = minfo.eeprom_len;
978 	einfo.data = buf;
979 
980 	ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
981 	if (ret != 0) {
982 		switch (ret) {
983 		case -ENODEV:
984 			fprintf(stderr, "port index %d invalid\n", port_id);
985 			break;
986 		case -ENOTSUP:
987 			fprintf(stderr, "operation not supported by device\n");
988 			break;
989 		case -EIO:
990 			fprintf(stderr, "device is removed\n");
991 			break;
992 		default:
993 			fprintf(stderr, "Unable to get module EEPROM: %d\n",
994 				ret);
995 			break;
996 		}
997 		return;
998 	}
999 
1000 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
1001 	printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
1002 }
1003 
1004 int
1005 port_id_is_invalid(portid_t port_id, enum print_warning warning)
1006 {
1007 	uint16_t pid;
1008 
1009 	if (port_id == (portid_t)RTE_PORT_ALL)
1010 		return 0;
1011 
1012 	RTE_ETH_FOREACH_DEV(pid)
1013 		if (port_id == pid)
1014 			return 0;
1015 
1016 	if (warning == ENABLED_WARN)
1017 		fprintf(stderr, "Invalid port %d\n", port_id);
1018 
1019 	return 1;
1020 }
1021 
1022 void print_valid_ports(void)
1023 {
1024 	portid_t pid;
1025 
1026 	printf("The valid ports array is [");
1027 	RTE_ETH_FOREACH_DEV(pid) {
1028 		printf(" %d", pid);
1029 	}
1030 	printf(" ]\n");
1031 }
1032 
1033 static int
1034 vlan_id_is_invalid(uint16_t vlan_id)
1035 {
1036 	if (vlan_id < 4096)
1037 		return 0;
1038 	fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id);
1039 	return 1;
1040 }
1041 
1042 static int
1043 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
1044 {
1045 	const struct rte_pci_device *pci_dev;
1046 	const struct rte_bus *bus;
1047 	uint64_t pci_len;
1048 
1049 	if (reg_off & 0x3) {
1050 		fprintf(stderr,
1051 			"Port register offset 0x%X not aligned on a 4-byte boundary\n",
1052 			(unsigned int)reg_off);
1053 		return 1;
1054 	}
1055 
1056 	if (!ports[port_id].dev_info.device) {
1057 		fprintf(stderr, "Invalid device\n");
1058 		return 0;
1059 	}
1060 
1061 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
1062 	if (bus && !strcmp(bus->name, "pci")) {
1063 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
1064 	} else {
1065 		fprintf(stderr, "Not a PCI device\n");
1066 		return 1;
1067 	}
1068 
1069 	pci_len = pci_dev->mem_resource[0].len;
1070 	if (reg_off >= pci_len) {
1071 		fprintf(stderr,
1072 			"Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n",
1073 			port_id, (unsigned int)reg_off, (unsigned int)reg_off,
1074 			pci_len);
1075 		return 1;
1076 	}
1077 	return 0;
1078 }
1079 
1080 static int
1081 reg_bit_pos_is_invalid(uint8_t bit_pos)
1082 {
1083 	if (bit_pos <= 31)
1084 		return 0;
1085 	fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos);
1086 	return 1;
1087 }
1088 
1089 #define display_port_and_reg_off(port_id, reg_off) \
1090 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
1091 
1092 static inline void
1093 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1094 {
1095 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1096 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1097 }
1098 
1099 void
1100 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1101 {
1102 	uint32_t reg_v;
1103 
1104 
1105 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1106 		return;
1107 	if (port_reg_off_is_invalid(port_id, reg_off))
1108 		return;
1109 	if (reg_bit_pos_is_invalid(bit_x))
1110 		return;
1111 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1112 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1113 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1114 }
1115 
1116 void
1117 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1118 			   uint8_t bit1_pos, uint8_t bit2_pos)
1119 {
1120 	uint32_t reg_v;
1121 	uint8_t  l_bit;
1122 	uint8_t  h_bit;
1123 
1124 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1125 		return;
1126 	if (port_reg_off_is_invalid(port_id, reg_off))
1127 		return;
1128 	if (reg_bit_pos_is_invalid(bit1_pos))
1129 		return;
1130 	if (reg_bit_pos_is_invalid(bit2_pos))
1131 		return;
1132 	if (bit1_pos > bit2_pos)
1133 		l_bit = bit2_pos, h_bit = bit1_pos;
1134 	else
1135 		l_bit = bit1_pos, h_bit = bit2_pos;
1136 
1137 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1138 	reg_v >>= l_bit;
1139 	if (h_bit < 31)
1140 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1141 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1142 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1143 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1144 }
1145 
1146 void
1147 port_reg_display(portid_t port_id, uint32_t reg_off)
1148 {
1149 	uint32_t reg_v;
1150 
1151 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1152 		return;
1153 	if (port_reg_off_is_invalid(port_id, reg_off))
1154 		return;
1155 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1156 	display_port_reg_value(port_id, reg_off, reg_v);
1157 }
1158 
1159 void
1160 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1161 		 uint8_t bit_v)
1162 {
1163 	uint32_t reg_v;
1164 
1165 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1166 		return;
1167 	if (port_reg_off_is_invalid(port_id, reg_off))
1168 		return;
1169 	if (reg_bit_pos_is_invalid(bit_pos))
1170 		return;
1171 	if (bit_v > 1) {
1172 		fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n",
1173 			(int) bit_v);
1174 		return;
1175 	}
1176 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1177 	if (bit_v == 0)
1178 		reg_v &= ~(1 << bit_pos);
1179 	else
1180 		reg_v |= (1 << bit_pos);
1181 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1182 	display_port_reg_value(port_id, reg_off, reg_v);
1183 }
1184 
1185 void
1186 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1187 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1188 {
1189 	uint32_t max_v;
1190 	uint32_t reg_v;
1191 	uint8_t  l_bit;
1192 	uint8_t  h_bit;
1193 
1194 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1195 		return;
1196 	if (port_reg_off_is_invalid(port_id, reg_off))
1197 		return;
1198 	if (reg_bit_pos_is_invalid(bit1_pos))
1199 		return;
1200 	if (reg_bit_pos_is_invalid(bit2_pos))
1201 		return;
1202 	if (bit1_pos > bit2_pos)
1203 		l_bit = bit2_pos, h_bit = bit1_pos;
1204 	else
1205 		l_bit = bit1_pos, h_bit = bit2_pos;
1206 
1207 	if ((h_bit - l_bit) < 31)
1208 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1209 	else
1210 		max_v = 0xFFFFFFFF;
1211 
1212 	if (value > max_v) {
1213 		fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n",
1214 				(unsigned)value, (unsigned)value,
1215 				(unsigned)max_v, (unsigned)max_v);
1216 		return;
1217 	}
1218 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1219 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1220 	reg_v |= (value << l_bit); /* Set changed bits */
1221 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1222 	display_port_reg_value(port_id, reg_off, reg_v);
1223 }
1224 
1225 void
1226 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1227 {
1228 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1229 		return;
1230 	if (port_reg_off_is_invalid(port_id, reg_off))
1231 		return;
1232 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1233 	display_port_reg_value(port_id, reg_off, reg_v);
1234 }
1235 
1236 void
1237 port_mtu_set(portid_t port_id, uint16_t mtu)
1238 {
1239 	struct rte_port *port = &ports[port_id];
1240 	int diag;
1241 
1242 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1243 		return;
1244 
1245 	if (port->need_reconfig == 0) {
1246 		diag = rte_eth_dev_set_mtu(port_id, mtu);
1247 		if (diag != 0) {
1248 			fprintf(stderr, "Set MTU failed. diag=%d\n", diag);
1249 			return;
1250 		}
1251 	}
1252 
1253 	port->dev_conf.rxmode.mtu = mtu;
1254 }
1255 
1256 /* Generic flow management functions. */
1257 
1258 static struct port_flow_tunnel *
1259 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
1260 {
1261 	struct port_flow_tunnel *flow_tunnel;
1262 
1263 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1264 		if (flow_tunnel->id == port_tunnel_id)
1265 			goto out;
1266 	}
1267 	flow_tunnel = NULL;
1268 
1269 out:
1270 	return flow_tunnel;
1271 }
1272 
1273 const char *
1274 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
1275 {
1276 	const char *type;
1277 	switch (tunnel->type) {
1278 	default:
1279 		type = "unknown";
1280 		break;
1281 	case RTE_FLOW_ITEM_TYPE_VXLAN:
1282 		type = "vxlan";
1283 		break;
1284 	case RTE_FLOW_ITEM_TYPE_GRE:
1285 		type = "gre";
1286 		break;
1287 	case RTE_FLOW_ITEM_TYPE_NVGRE:
1288 		type = "nvgre";
1289 		break;
1290 	case RTE_FLOW_ITEM_TYPE_GENEVE:
1291 		type = "geneve";
1292 		break;
1293 	}
1294 
1295 	return type;
1296 }
1297 
1298 struct port_flow_tunnel *
1299 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
1300 {
1301 	struct rte_port *port = &ports[port_id];
1302 	struct port_flow_tunnel *flow_tunnel;
1303 
1304 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1305 		if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
1306 			goto out;
1307 	}
1308 	flow_tunnel = NULL;
1309 
1310 out:
1311 	return flow_tunnel;
1312 }
1313 
1314 void port_flow_tunnel_list(portid_t port_id)
1315 {
1316 	struct rte_port *port = &ports[port_id];
1317 	struct port_flow_tunnel *flt;
1318 
1319 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1320 		printf("port %u tunnel #%u type=%s",
1321 			port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
1322 		if (flt->tunnel.tun_id)
1323 			printf(" id=%" PRIu64, flt->tunnel.tun_id);
1324 		printf("\n");
1325 	}
1326 }
1327 
1328 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
1329 {
1330 	struct rte_port *port = &ports[port_id];
1331 	struct port_flow_tunnel *flt;
1332 
1333 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1334 		if (flt->id == tunnel_id)
1335 			break;
1336 	}
1337 	if (flt) {
1338 		LIST_REMOVE(flt, chain);
1339 		free(flt);
1340 		printf("port %u: flow tunnel #%u destroyed\n",
1341 			port_id, tunnel_id);
1342 	}
1343 }
1344 
1345 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
1346 {
1347 	struct rte_port *port = &ports[port_id];
1348 	enum rte_flow_item_type	type;
1349 	struct port_flow_tunnel *flt;
1350 
1351 	if (!strcmp(ops->type, "vxlan"))
1352 		type = RTE_FLOW_ITEM_TYPE_VXLAN;
1353 	else if (!strcmp(ops->type, "gre"))
1354 		type = RTE_FLOW_ITEM_TYPE_GRE;
1355 	else if (!strcmp(ops->type, "nvgre"))
1356 		type = RTE_FLOW_ITEM_TYPE_NVGRE;
1357 	else if (!strcmp(ops->type, "geneve"))
1358 		type = RTE_FLOW_ITEM_TYPE_GENEVE;
1359 	else {
1360 		fprintf(stderr, "cannot offload \"%s\" tunnel type\n",
1361 			ops->type);
1362 		return;
1363 	}
1364 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1365 		if (flt->tunnel.type == type)
1366 			break;
1367 	}
1368 	if (!flt) {
1369 		flt = calloc(1, sizeof(*flt));
1370 		if (!flt) {
1371 			fprintf(stderr, "failed to allocate port flt object\n");
1372 			return;
1373 		}
1374 		flt->tunnel.type = type;
1375 		flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
1376 				  LIST_FIRST(&port->flow_tunnel_list)->id + 1;
1377 		LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
1378 	}
1379 	printf("port %d: flow tunnel #%u type %s\n",
1380 		port_id, flt->id, ops->type);
1381 }
1382 
1383 /** Generate a port_flow entry from attributes/pattern/actions. */
1384 static struct port_flow *
1385 port_flow_new(const struct rte_flow_attr *attr,
1386 	      const struct rte_flow_item *pattern,
1387 	      const struct rte_flow_action *actions,
1388 	      struct rte_flow_error *error)
1389 {
1390 	const struct rte_flow_conv_rule rule = {
1391 		.attr_ro = attr,
1392 		.pattern_ro = pattern,
1393 		.actions_ro = actions,
1394 	};
1395 	struct port_flow *pf;
1396 	int ret;
1397 
1398 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1399 	if (ret < 0)
1400 		return NULL;
1401 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1402 	if (!pf) {
1403 		rte_flow_error_set
1404 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1405 			 "calloc() failed");
1406 		return NULL;
1407 	}
1408 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1409 			  error) >= 0)
1410 		return pf;
1411 	free(pf);
1412 	return NULL;
1413 }
1414 
1415 /** Print a message out of a flow error. */
1416 static int
1417 port_flow_complain(struct rte_flow_error *error)
1418 {
1419 	static const char *const errstrlist[] = {
1420 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1421 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1422 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1423 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1424 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1425 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1426 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1427 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1428 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1429 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1430 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1431 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1432 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1433 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1434 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1435 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1436 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1437 	};
1438 	const char *errstr;
1439 	char buf[32];
1440 	int err = rte_errno;
1441 
1442 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1443 	    !errstrlist[error->type])
1444 		errstr = "unknown type";
1445 	else
1446 		errstr = errstrlist[error->type];
1447 	fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n",
1448 		__func__, error->type, errstr,
1449 		error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1450 					 error->cause), buf) : "",
1451 		error->message ? error->message : "(no stated reason)",
1452 		rte_strerror(err));
1453 
1454 	switch (error->type) {
1455 	case RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER:
1456 		fprintf(stderr, "The status suggests the use of \"transfer\" "
1457 				"as the possible cause of the failure. Make "
1458 				"sure that the flow in question and its "
1459 				"indirect components (if any) are managed "
1460 				"via \"transfer\" proxy port. Use command "
1461 				"\"show port (port_id) flow transfer proxy\" "
1462 				"to figure out the proxy port ID\n");
1463 		break;
1464 	default:
1465 		break;
1466 	}
1467 
1468 	return -err;
1469 }
1470 
1471 static void
1472 rss_config_display(struct rte_flow_action_rss *rss_conf)
1473 {
1474 	uint8_t i;
1475 
1476 	if (rss_conf == NULL) {
1477 		fprintf(stderr, "Invalid rule\n");
1478 		return;
1479 	}
1480 
1481 	printf("RSS:\n"
1482 	       " queues:");
1483 	if (rss_conf->queue_num == 0)
1484 		printf(" none");
1485 	for (i = 0; i < rss_conf->queue_num; i++)
1486 		printf(" %d", rss_conf->queue[i]);
1487 	printf("\n");
1488 
1489 	printf(" function: ");
1490 	switch (rss_conf->func) {
1491 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1492 		printf("default\n");
1493 		break;
1494 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1495 		printf("toeplitz\n");
1496 		break;
1497 	case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
1498 		printf("simple_xor\n");
1499 		break;
1500 	case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
1501 		printf("symmetric_toeplitz\n");
1502 		break;
1503 	default:
1504 		printf("Unknown function\n");
1505 		return;
1506 	}
1507 
1508 	printf(" types:\n");
1509 	if (rss_conf->types == 0) {
1510 		printf("  none\n");
1511 		return;
1512 	}
1513 	for (i = 0; rss_type_table[i].str; i++) {
1514 		if ((rss_conf->types &
1515 		    rss_type_table[i].rss_type) ==
1516 		    rss_type_table[i].rss_type &&
1517 		    rss_type_table[i].rss_type != 0)
1518 			printf("  %s\n", rss_type_table[i].str);
1519 	}
1520 }
1521 
1522 static struct port_indirect_action *
1523 action_get_by_id(portid_t port_id, uint32_t id)
1524 {
1525 	struct rte_port *port;
1526 	struct port_indirect_action **ppia;
1527 	struct port_indirect_action *pia = NULL;
1528 
1529 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1530 	    port_id == (portid_t)RTE_PORT_ALL)
1531 		return NULL;
1532 	port = &ports[port_id];
1533 	ppia = &port->actions_list;
1534 	while (*ppia) {
1535 		if ((*ppia)->id == id) {
1536 			pia = *ppia;
1537 			break;
1538 		}
1539 		ppia = &(*ppia)->next;
1540 	}
1541 	if (!pia)
1542 		fprintf(stderr,
1543 			"Failed to find indirect action #%u on port %u\n",
1544 			id, port_id);
1545 	return pia;
1546 }
1547 
1548 static int
1549 action_alloc(portid_t port_id, uint32_t id,
1550 	     struct port_indirect_action **action)
1551 {
1552 	struct rte_port *port;
1553 	struct port_indirect_action **ppia;
1554 	struct port_indirect_action *pia = NULL;
1555 
1556 	*action = NULL;
1557 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1558 	    port_id == (portid_t)RTE_PORT_ALL)
1559 		return -EINVAL;
1560 	port = &ports[port_id];
1561 	if (id == UINT32_MAX) {
1562 		/* taking first available ID */
1563 		if (port->actions_list) {
1564 			if (port->actions_list->id == UINT32_MAX - 1) {
1565 				fprintf(stderr,
1566 					"Highest indirect action ID is already assigned, delete it first\n");
1567 				return -ENOMEM;
1568 			}
1569 			id = port->actions_list->id + 1;
1570 		} else {
1571 			id = 0;
1572 		}
1573 	}
1574 	pia = calloc(1, sizeof(*pia));
1575 	if (!pia) {
1576 		fprintf(stderr,
1577 			"Allocation of port %u indirect action failed\n",
1578 			port_id);
1579 		return -ENOMEM;
1580 	}
1581 	ppia = &port->actions_list;
1582 	while (*ppia && (*ppia)->id > id)
1583 		ppia = &(*ppia)->next;
1584 	if (*ppia && (*ppia)->id == id) {
1585 		fprintf(stderr,
1586 			"Indirect action #%u is already assigned, delete it first\n",
1587 			id);
1588 		free(pia);
1589 		return -EINVAL;
1590 	}
1591 	pia->next = *ppia;
1592 	pia->id = id;
1593 	*ppia = pia;
1594 	*action = pia;
1595 	return 0;
1596 }
1597 
1598 /** Create indirect action */
1599 int
1600 port_action_handle_create(portid_t port_id, uint32_t id,
1601 			  const struct rte_flow_indir_action_conf *conf,
1602 			  const struct rte_flow_action *action)
1603 {
1604 	struct port_indirect_action *pia;
1605 	int ret;
1606 	struct rte_flow_error error;
1607 
1608 	ret = action_alloc(port_id, id, &pia);
1609 	if (ret)
1610 		return ret;
1611 	if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
1612 		struct rte_flow_action_age *age =
1613 			(struct rte_flow_action_age *)(uintptr_t)(action->conf);
1614 
1615 		pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
1616 		age->context = &pia->age_type;
1617 	} else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) {
1618 		struct rte_flow_action_conntrack *ct =
1619 		(struct rte_flow_action_conntrack *)(uintptr_t)(action->conf);
1620 
1621 		memcpy(ct, &conntrack_context, sizeof(*ct));
1622 	}
1623 	/* Poisoning to make sure PMDs update it in case of error. */
1624 	memset(&error, 0x22, sizeof(error));
1625 	pia->handle = rte_flow_action_handle_create(port_id, conf, action,
1626 						    &error);
1627 	if (!pia->handle) {
1628 		uint32_t destroy_id = pia->id;
1629 		port_action_handle_destroy(port_id, 1, &destroy_id);
1630 		return port_flow_complain(&error);
1631 	}
1632 	pia->type = action->type;
1633 	printf("Indirect action #%u created\n", pia->id);
1634 	return 0;
1635 }
1636 
1637 /** Destroy indirect action */
1638 int
1639 port_action_handle_destroy(portid_t port_id,
1640 			   uint32_t n,
1641 			   const uint32_t *actions)
1642 {
1643 	struct rte_port *port;
1644 	struct port_indirect_action **tmp;
1645 	uint32_t c = 0;
1646 	int ret = 0;
1647 
1648 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1649 	    port_id == (portid_t)RTE_PORT_ALL)
1650 		return -EINVAL;
1651 	port = &ports[port_id];
1652 	tmp = &port->actions_list;
1653 	while (*tmp) {
1654 		uint32_t i;
1655 
1656 		for (i = 0; i != n; ++i) {
1657 			struct rte_flow_error error;
1658 			struct port_indirect_action *pia = *tmp;
1659 
1660 			if (actions[i] != pia->id)
1661 				continue;
1662 			/*
1663 			 * Poisoning to make sure PMDs update it in case
1664 			 * of error.
1665 			 */
1666 			memset(&error, 0x33, sizeof(error));
1667 
1668 			if (pia->handle && rte_flow_action_handle_destroy(
1669 					port_id, pia->handle, &error)) {
1670 				ret = port_flow_complain(&error);
1671 				continue;
1672 			}
1673 			*tmp = pia->next;
1674 			printf("Indirect action #%u destroyed\n", pia->id);
1675 			free(pia);
1676 			break;
1677 		}
1678 		if (i == n)
1679 			tmp = &(*tmp)->next;
1680 		++c;
1681 	}
1682 	return ret;
1683 }
1684 
1685 
1686 /** Get indirect action by port + id */
1687 struct rte_flow_action_handle *
1688 port_action_handle_get_by_id(portid_t port_id, uint32_t id)
1689 {
1690 
1691 	struct port_indirect_action *pia = action_get_by_id(port_id, id);
1692 
1693 	return (pia) ? pia->handle : NULL;
1694 }
1695 
1696 /** Update indirect action */
1697 int
1698 port_action_handle_update(portid_t port_id, uint32_t id,
1699 			  const struct rte_flow_action *action)
1700 {
1701 	struct rte_flow_error error;
1702 	struct rte_flow_action_handle *action_handle;
1703 	struct port_indirect_action *pia;
1704 	const void *update;
1705 
1706 	action_handle = port_action_handle_get_by_id(port_id, id);
1707 	if (!action_handle)
1708 		return -EINVAL;
1709 	pia = action_get_by_id(port_id, id);
1710 	if (!pia)
1711 		return -EINVAL;
1712 	switch (pia->type) {
1713 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1714 		update = action->conf;
1715 		break;
1716 	default:
1717 		update = action;
1718 		break;
1719 	}
1720 	if (rte_flow_action_handle_update(port_id, action_handle, update,
1721 					  &error)) {
1722 		return port_flow_complain(&error);
1723 	}
1724 	printf("Indirect action #%u updated\n", id);
1725 	return 0;
1726 }
1727 
1728 int
1729 port_action_handle_query(portid_t port_id, uint32_t id)
1730 {
1731 	struct rte_flow_error error;
1732 	struct port_indirect_action *pia;
1733 	union {
1734 		struct rte_flow_query_count count;
1735 		struct rte_flow_query_age age;
1736 		struct rte_flow_action_conntrack ct;
1737 	} query;
1738 
1739 	pia = action_get_by_id(port_id, id);
1740 	if (!pia)
1741 		return -EINVAL;
1742 	switch (pia->type) {
1743 	case RTE_FLOW_ACTION_TYPE_AGE:
1744 	case RTE_FLOW_ACTION_TYPE_COUNT:
1745 		break;
1746 	default:
1747 		fprintf(stderr,
1748 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1749 			id, pia->type, port_id);
1750 		return -ENOTSUP;
1751 	}
1752 	/* Poisoning to make sure PMDs update it in case of error. */
1753 	memset(&error, 0x55, sizeof(error));
1754 	memset(&query, 0, sizeof(query));
1755 	if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error))
1756 		return port_flow_complain(&error);
1757 	switch (pia->type) {
1758 	case RTE_FLOW_ACTION_TYPE_AGE:
1759 		printf("Indirect AGE action:\n"
1760 		       " aged: %u\n"
1761 		       " sec_since_last_hit_valid: %u\n"
1762 		       " sec_since_last_hit: %" PRIu32 "\n",
1763 		       query.age.aged,
1764 		       query.age.sec_since_last_hit_valid,
1765 		       query.age.sec_since_last_hit);
1766 		break;
1767 	case RTE_FLOW_ACTION_TYPE_COUNT:
1768 		printf("Indirect COUNT action:\n"
1769 		       " hits_set: %u\n"
1770 		       " bytes_set: %u\n"
1771 		       " hits: %" PRIu64 "\n"
1772 		       " bytes: %" PRIu64 "\n",
1773 		       query.count.hits_set,
1774 		       query.count.bytes_set,
1775 		       query.count.hits,
1776 		       query.count.bytes);
1777 		break;
1778 	case RTE_FLOW_ACTION_TYPE_CONNTRACK:
1779 		printf("Conntrack Context:\n"
1780 		       "  Peer: %u, Flow dir: %s, Enable: %u\n"
1781 		       "  Live: %u, SACK: %u, CACK: %u\n"
1782 		       "  Packet dir: %s, Liberal: %u, State: %u\n"
1783 		       "  Factor: %u, Retrans: %u, TCP flags: %u\n"
1784 		       "  Last Seq: %u, Last ACK: %u\n"
1785 		       "  Last Win: %u, Last End: %u\n",
1786 		       query.ct.peer_port,
1787 		       query.ct.is_original_dir ? "Original" : "Reply",
1788 		       query.ct.enable, query.ct.live_connection,
1789 		       query.ct.selective_ack, query.ct.challenge_ack_passed,
1790 		       query.ct.last_direction ? "Original" : "Reply",
1791 		       query.ct.liberal_mode, query.ct.state,
1792 		       query.ct.max_ack_window, query.ct.retransmission_limit,
1793 		       query.ct.last_index, query.ct.last_seq,
1794 		       query.ct.last_ack, query.ct.last_window,
1795 		       query.ct.last_end);
1796 		printf("  Original Dir:\n"
1797 		       "    scale: %u, fin: %u, ack seen: %u\n"
1798 		       " unacked data: %u\n    Sent end: %u,"
1799 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1800 		       query.ct.original_dir.scale,
1801 		       query.ct.original_dir.close_initiated,
1802 		       query.ct.original_dir.last_ack_seen,
1803 		       query.ct.original_dir.data_unacked,
1804 		       query.ct.original_dir.sent_end,
1805 		       query.ct.original_dir.reply_end,
1806 		       query.ct.original_dir.max_win,
1807 		       query.ct.original_dir.max_ack);
1808 		printf("  Reply Dir:\n"
1809 		       "    scale: %u, fin: %u, ack seen: %u\n"
1810 		       " unacked data: %u\n    Sent end: %u,"
1811 		       "    Reply end: %u, Max win: %u, Max ACK: %u\n",
1812 		       query.ct.reply_dir.scale,
1813 		       query.ct.reply_dir.close_initiated,
1814 		       query.ct.reply_dir.last_ack_seen,
1815 		       query.ct.reply_dir.data_unacked,
1816 		       query.ct.reply_dir.sent_end,
1817 		       query.ct.reply_dir.reply_end,
1818 		       query.ct.reply_dir.max_win,
1819 		       query.ct.reply_dir.max_ack);
1820 		break;
1821 	default:
1822 		fprintf(stderr,
1823 			"Indirect action %u (type: %d) on port %u doesn't support query\n",
1824 			id, pia->type, port_id);
1825 		break;
1826 	}
1827 	return 0;
1828 }
1829 
1830 static struct port_flow_tunnel *
1831 port_flow_tunnel_offload_cmd_prep(portid_t port_id,
1832 				  const struct rte_flow_item *pattern,
1833 				  const struct rte_flow_action *actions,
1834 				  const struct tunnel_ops *tunnel_ops)
1835 {
1836 	int ret;
1837 	struct rte_port *port;
1838 	struct port_flow_tunnel *pft;
1839 	struct rte_flow_error error;
1840 
1841 	port = &ports[port_id];
1842 	pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
1843 	if (!pft) {
1844 		fprintf(stderr, "failed to locate port flow tunnel #%u\n",
1845 			tunnel_ops->id);
1846 		return NULL;
1847 	}
1848 	if (tunnel_ops->actions) {
1849 		uint32_t num_actions;
1850 		const struct rte_flow_action *aptr;
1851 
1852 		ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
1853 						&pft->pmd_actions,
1854 						&pft->num_pmd_actions,
1855 						&error);
1856 		if (ret) {
1857 			port_flow_complain(&error);
1858 			return NULL;
1859 		}
1860 		for (aptr = actions, num_actions = 1;
1861 		     aptr->type != RTE_FLOW_ACTION_TYPE_END;
1862 		     aptr++, num_actions++);
1863 		pft->actions = malloc(
1864 				(num_actions +  pft->num_pmd_actions) *
1865 				sizeof(actions[0]));
1866 		if (!pft->actions) {
1867 			rte_flow_tunnel_action_decap_release(
1868 					port_id, pft->actions,
1869 					pft->num_pmd_actions, &error);
1870 			return NULL;
1871 		}
1872 		rte_memcpy(pft->actions, pft->pmd_actions,
1873 			   pft->num_pmd_actions * sizeof(actions[0]));
1874 		rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
1875 			   num_actions * sizeof(actions[0]));
1876 	}
1877 	if (tunnel_ops->items) {
1878 		uint32_t num_items;
1879 		const struct rte_flow_item *iptr;
1880 
1881 		ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
1882 					    &pft->pmd_items,
1883 					    &pft->num_pmd_items,
1884 					    &error);
1885 		if (ret) {
1886 			port_flow_complain(&error);
1887 			return NULL;
1888 		}
1889 		for (iptr = pattern, num_items = 1;
1890 		     iptr->type != RTE_FLOW_ITEM_TYPE_END;
1891 		     iptr++, num_items++);
1892 		pft->items = malloc((num_items + pft->num_pmd_items) *
1893 				    sizeof(pattern[0]));
1894 		if (!pft->items) {
1895 			rte_flow_tunnel_item_release(
1896 					port_id, pft->pmd_items,
1897 					pft->num_pmd_items, &error);
1898 			return NULL;
1899 		}
1900 		rte_memcpy(pft->items, pft->pmd_items,
1901 			   pft->num_pmd_items * sizeof(pattern[0]));
1902 		rte_memcpy(pft->items + pft->num_pmd_items, pattern,
1903 			   num_items * sizeof(pattern[0]));
1904 	}
1905 
1906 	return pft;
1907 }
1908 
1909 static void
1910 port_flow_tunnel_offload_cmd_release(portid_t port_id,
1911 				     const struct tunnel_ops *tunnel_ops,
1912 				     struct port_flow_tunnel *pft)
1913 {
1914 	struct rte_flow_error error;
1915 
1916 	if (tunnel_ops->actions) {
1917 		free(pft->actions);
1918 		rte_flow_tunnel_action_decap_release(
1919 			port_id, pft->pmd_actions,
1920 			pft->num_pmd_actions, &error);
1921 		pft->actions = NULL;
1922 		pft->pmd_actions = NULL;
1923 	}
1924 	if (tunnel_ops->items) {
1925 		free(pft->items);
1926 		rte_flow_tunnel_item_release(port_id, pft->pmd_items,
1927 					     pft->num_pmd_items,
1928 					     &error);
1929 		pft->items = NULL;
1930 		pft->pmd_items = NULL;
1931 	}
1932 }
1933 
1934 /** Add port meter policy */
1935 int
1936 port_meter_policy_add(portid_t port_id, uint32_t policy_id,
1937 			const struct rte_flow_action *actions)
1938 {
1939 	struct rte_mtr_error error;
1940 	const struct rte_flow_action *act = actions;
1941 	const struct rte_flow_action *start;
1942 	struct rte_mtr_meter_policy_params policy;
1943 	uint32_t i = 0, act_n;
1944 	int ret;
1945 
1946 	for (i = 0; i < RTE_COLORS; i++) {
1947 		for (act_n = 0, start = act;
1948 			act->type != RTE_FLOW_ACTION_TYPE_END; act++)
1949 			act_n++;
1950 		if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END)
1951 			policy.actions[i] = start;
1952 		else
1953 			policy.actions[i] = NULL;
1954 		act++;
1955 	}
1956 	ret = rte_mtr_meter_policy_add(port_id,
1957 			policy_id,
1958 			&policy, &error);
1959 	if (ret)
1960 		print_mtr_err_msg(&error);
1961 	return ret;
1962 }
1963 
1964 /** Validate flow rule. */
1965 int
1966 port_flow_validate(portid_t port_id,
1967 		   const struct rte_flow_attr *attr,
1968 		   const struct rte_flow_item *pattern,
1969 		   const struct rte_flow_action *actions,
1970 		   const struct tunnel_ops *tunnel_ops)
1971 {
1972 	struct rte_flow_error error;
1973 	struct port_flow_tunnel *pft = NULL;
1974 
1975 	/* Poisoning to make sure PMDs update it in case of error. */
1976 	memset(&error, 0x11, sizeof(error));
1977 	if (tunnel_ops->enabled) {
1978 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
1979 							actions, tunnel_ops);
1980 		if (!pft)
1981 			return -ENOENT;
1982 		if (pft->items)
1983 			pattern = pft->items;
1984 		if (pft->actions)
1985 			actions = pft->actions;
1986 	}
1987 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1988 		return port_flow_complain(&error);
1989 	if (tunnel_ops->enabled)
1990 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
1991 	printf("Flow rule validated\n");
1992 	return 0;
1993 }
1994 
1995 /** Return age action structure if exists, otherwise NULL. */
1996 static struct rte_flow_action_age *
1997 age_action_get(const struct rte_flow_action *actions)
1998 {
1999 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2000 		switch (actions->type) {
2001 		case RTE_FLOW_ACTION_TYPE_AGE:
2002 			return (struct rte_flow_action_age *)
2003 				(uintptr_t)actions->conf;
2004 		default:
2005 			break;
2006 		}
2007 	}
2008 	return NULL;
2009 }
2010 
2011 /** Create flow rule. */
2012 int
2013 port_flow_create(portid_t port_id,
2014 		 const struct rte_flow_attr *attr,
2015 		 const struct rte_flow_item *pattern,
2016 		 const struct rte_flow_action *actions,
2017 		 const struct tunnel_ops *tunnel_ops)
2018 {
2019 	struct rte_flow *flow;
2020 	struct rte_port *port;
2021 	struct port_flow *pf;
2022 	uint32_t id = 0;
2023 	struct rte_flow_error error;
2024 	struct port_flow_tunnel *pft = NULL;
2025 	struct rte_flow_action_age *age = age_action_get(actions);
2026 
2027 	port = &ports[port_id];
2028 	if (port->flow_list) {
2029 		if (port->flow_list->id == UINT32_MAX) {
2030 			fprintf(stderr,
2031 				"Highest rule ID is already assigned, delete it first");
2032 			return -ENOMEM;
2033 		}
2034 		id = port->flow_list->id + 1;
2035 	}
2036 	if (tunnel_ops->enabled) {
2037 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
2038 							actions, tunnel_ops);
2039 		if (!pft)
2040 			return -ENOENT;
2041 		if (pft->items)
2042 			pattern = pft->items;
2043 		if (pft->actions)
2044 			actions = pft->actions;
2045 	}
2046 	pf = port_flow_new(attr, pattern, actions, &error);
2047 	if (!pf)
2048 		return port_flow_complain(&error);
2049 	if (age) {
2050 		pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
2051 		age->context = &pf->age_type;
2052 	}
2053 	/* Poisoning to make sure PMDs update it in case of error. */
2054 	memset(&error, 0x22, sizeof(error));
2055 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
2056 	if (!flow) {
2057 		if (tunnel_ops->enabled)
2058 			port_flow_tunnel_offload_cmd_release(port_id,
2059 							     tunnel_ops, pft);
2060 		free(pf);
2061 		return port_flow_complain(&error);
2062 	}
2063 	pf->next = port->flow_list;
2064 	pf->id = id;
2065 	pf->flow = flow;
2066 	port->flow_list = pf;
2067 	if (tunnel_ops->enabled)
2068 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
2069 	printf("Flow rule #%u created\n", pf->id);
2070 	return 0;
2071 }
2072 
2073 /** Destroy a number of flow rules. */
2074 int
2075 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
2076 {
2077 	struct rte_port *port;
2078 	struct port_flow **tmp;
2079 	uint32_t c = 0;
2080 	int ret = 0;
2081 
2082 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2083 	    port_id == (portid_t)RTE_PORT_ALL)
2084 		return -EINVAL;
2085 	port = &ports[port_id];
2086 	tmp = &port->flow_list;
2087 	while (*tmp) {
2088 		uint32_t i;
2089 
2090 		for (i = 0; i != n; ++i) {
2091 			struct rte_flow_error error;
2092 			struct port_flow *pf = *tmp;
2093 
2094 			if (rule[i] != pf->id)
2095 				continue;
2096 			/*
2097 			 * Poisoning to make sure PMDs update it in case
2098 			 * of error.
2099 			 */
2100 			memset(&error, 0x33, sizeof(error));
2101 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
2102 				ret = port_flow_complain(&error);
2103 				continue;
2104 			}
2105 			printf("Flow rule #%u destroyed\n", pf->id);
2106 			*tmp = pf->next;
2107 			free(pf);
2108 			break;
2109 		}
2110 		if (i == n)
2111 			tmp = &(*tmp)->next;
2112 		++c;
2113 	}
2114 	return ret;
2115 }
2116 
2117 /** Remove all flow rules. */
2118 int
2119 port_flow_flush(portid_t port_id)
2120 {
2121 	struct rte_flow_error error;
2122 	struct rte_port *port;
2123 	int ret = 0;
2124 
2125 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2126 		port_id == (portid_t)RTE_PORT_ALL)
2127 		return -EINVAL;
2128 
2129 	port = &ports[port_id];
2130 
2131 	if (port->flow_list == NULL)
2132 		return ret;
2133 
2134 	/* Poisoning to make sure PMDs update it in case of error. */
2135 	memset(&error, 0x44, sizeof(error));
2136 	if (rte_flow_flush(port_id, &error)) {
2137 		port_flow_complain(&error);
2138 	}
2139 
2140 	while (port->flow_list) {
2141 		struct port_flow *pf = port->flow_list->next;
2142 
2143 		free(port->flow_list);
2144 		port->flow_list = pf;
2145 	}
2146 	return ret;
2147 }
2148 
2149 /** Dump flow rules. */
2150 int
2151 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id,
2152 		const char *file_name)
2153 {
2154 	int ret = 0;
2155 	FILE *file = stdout;
2156 	struct rte_flow_error error;
2157 	struct rte_port *port;
2158 	struct port_flow *pflow;
2159 	struct rte_flow *tmpFlow = NULL;
2160 	bool found = false;
2161 
2162 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2163 		port_id == (portid_t)RTE_PORT_ALL)
2164 		return -EINVAL;
2165 
2166 	if (!dump_all) {
2167 		port = &ports[port_id];
2168 		pflow = port->flow_list;
2169 		while (pflow) {
2170 			if (rule_id != pflow->id) {
2171 				pflow = pflow->next;
2172 			} else {
2173 				tmpFlow = pflow->flow;
2174 				if (tmpFlow)
2175 					found = true;
2176 				break;
2177 			}
2178 		}
2179 		if (found == false) {
2180 			fprintf(stderr, "Failed to dump to flow %d\n", rule_id);
2181 			return -EINVAL;
2182 		}
2183 	}
2184 
2185 	if (file_name && strlen(file_name)) {
2186 		file = fopen(file_name, "w");
2187 		if (!file) {
2188 			fprintf(stderr, "Failed to create file %s: %s\n",
2189 				file_name, strerror(errno));
2190 			return -errno;
2191 		}
2192 	}
2193 
2194 	if (!dump_all)
2195 		ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error);
2196 	else
2197 		ret = rte_flow_dev_dump(port_id, NULL, file, &error);
2198 	if (ret) {
2199 		port_flow_complain(&error);
2200 		fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret));
2201 	} else
2202 		printf("Flow dump finished\n");
2203 	if (file_name && strlen(file_name))
2204 		fclose(file);
2205 	return ret;
2206 }
2207 
2208 /** Query a flow rule. */
2209 int
2210 port_flow_query(portid_t port_id, uint32_t rule,
2211 		const struct rte_flow_action *action)
2212 {
2213 	struct rte_flow_error error;
2214 	struct rte_port *port;
2215 	struct port_flow *pf;
2216 	const char *name;
2217 	union {
2218 		struct rte_flow_query_count count;
2219 		struct rte_flow_action_rss rss_conf;
2220 		struct rte_flow_query_age age;
2221 	} query;
2222 	int ret;
2223 
2224 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2225 	    port_id == (portid_t)RTE_PORT_ALL)
2226 		return -EINVAL;
2227 	port = &ports[port_id];
2228 	for (pf = port->flow_list; pf; pf = pf->next)
2229 		if (pf->id == rule)
2230 			break;
2231 	if (!pf) {
2232 		fprintf(stderr, "Flow rule #%u not found\n", rule);
2233 		return -ENOENT;
2234 	}
2235 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2236 			    &name, sizeof(name),
2237 			    (void *)(uintptr_t)action->type, &error);
2238 	if (ret < 0)
2239 		return port_flow_complain(&error);
2240 	switch (action->type) {
2241 	case RTE_FLOW_ACTION_TYPE_COUNT:
2242 	case RTE_FLOW_ACTION_TYPE_RSS:
2243 	case RTE_FLOW_ACTION_TYPE_AGE:
2244 		break;
2245 	default:
2246 		fprintf(stderr, "Cannot query action type %d (%s)\n",
2247 			action->type, name);
2248 		return -ENOTSUP;
2249 	}
2250 	/* Poisoning to make sure PMDs update it in case of error. */
2251 	memset(&error, 0x55, sizeof(error));
2252 	memset(&query, 0, sizeof(query));
2253 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
2254 		return port_flow_complain(&error);
2255 	switch (action->type) {
2256 	case RTE_FLOW_ACTION_TYPE_COUNT:
2257 		printf("%s:\n"
2258 		       " hits_set: %u\n"
2259 		       " bytes_set: %u\n"
2260 		       " hits: %" PRIu64 "\n"
2261 		       " bytes: %" PRIu64 "\n",
2262 		       name,
2263 		       query.count.hits_set,
2264 		       query.count.bytes_set,
2265 		       query.count.hits,
2266 		       query.count.bytes);
2267 		break;
2268 	case RTE_FLOW_ACTION_TYPE_RSS:
2269 		rss_config_display(&query.rss_conf);
2270 		break;
2271 	case RTE_FLOW_ACTION_TYPE_AGE:
2272 		printf("%s:\n"
2273 		       " aged: %u\n"
2274 		       " sec_since_last_hit_valid: %u\n"
2275 		       " sec_since_last_hit: %" PRIu32 "\n",
2276 		       name,
2277 		       query.age.aged,
2278 		       query.age.sec_since_last_hit_valid,
2279 		       query.age.sec_since_last_hit);
2280 		break;
2281 	default:
2282 		fprintf(stderr,
2283 			"Cannot display result for action type %d (%s)\n",
2284 			action->type, name);
2285 		break;
2286 	}
2287 	return 0;
2288 }
2289 
2290 /** List simply and destroy all aged flows. */
2291 void
2292 port_flow_aged(portid_t port_id, uint8_t destroy)
2293 {
2294 	void **contexts;
2295 	int nb_context, total = 0, idx;
2296 	struct rte_flow_error error;
2297 	enum age_action_context_type *type;
2298 	union {
2299 		struct port_flow *pf;
2300 		struct port_indirect_action *pia;
2301 	} ctx;
2302 
2303 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2304 	    port_id == (portid_t)RTE_PORT_ALL)
2305 		return;
2306 	total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
2307 	printf("Port %u total aged flows: %d\n", port_id, total);
2308 	if (total < 0) {
2309 		port_flow_complain(&error);
2310 		return;
2311 	}
2312 	if (total == 0)
2313 		return;
2314 	contexts = malloc(sizeof(void *) * total);
2315 	if (contexts == NULL) {
2316 		fprintf(stderr, "Cannot allocate contexts for aged flow\n");
2317 		return;
2318 	}
2319 	printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
2320 	nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
2321 	if (nb_context != total) {
2322 		fprintf(stderr,
2323 			"Port:%d get aged flows count(%d) != total(%d)\n",
2324 			port_id, nb_context, total);
2325 		free(contexts);
2326 		return;
2327 	}
2328 	total = 0;
2329 	for (idx = 0; idx < nb_context; idx++) {
2330 		if (!contexts[idx]) {
2331 			fprintf(stderr, "Error: get Null context in port %u\n",
2332 				port_id);
2333 			continue;
2334 		}
2335 		type = (enum age_action_context_type *)contexts[idx];
2336 		switch (*type) {
2337 		case ACTION_AGE_CONTEXT_TYPE_FLOW:
2338 			ctx.pf = container_of(type, struct port_flow, age_type);
2339 			printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
2340 								 "\t%c%c%c\t\n",
2341 			       "Flow",
2342 			       ctx.pf->id,
2343 			       ctx.pf->rule.attr->group,
2344 			       ctx.pf->rule.attr->priority,
2345 			       ctx.pf->rule.attr->ingress ? 'i' : '-',
2346 			       ctx.pf->rule.attr->egress ? 'e' : '-',
2347 			       ctx.pf->rule.attr->transfer ? 't' : '-');
2348 			if (destroy && !port_flow_destroy(port_id, 1,
2349 							  &ctx.pf->id))
2350 				total++;
2351 			break;
2352 		case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION:
2353 			ctx.pia = container_of(type,
2354 					struct port_indirect_action, age_type);
2355 			printf("%-20s\t%" PRIu32 "\n", "Indirect action",
2356 			       ctx.pia->id);
2357 			break;
2358 		default:
2359 			fprintf(stderr, "Error: invalid context type %u\n",
2360 				port_id);
2361 			break;
2362 		}
2363 	}
2364 	printf("\n%d flows destroyed\n", total);
2365 	free(contexts);
2366 }
2367 
2368 /** List flow rules. */
2369 void
2370 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
2371 {
2372 	struct rte_port *port;
2373 	struct port_flow *pf;
2374 	struct port_flow *list = NULL;
2375 	uint32_t i;
2376 
2377 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2378 	    port_id == (portid_t)RTE_PORT_ALL)
2379 		return;
2380 	port = &ports[port_id];
2381 	if (!port->flow_list)
2382 		return;
2383 	/* Sort flows by group, priority and ID. */
2384 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2385 		struct port_flow **tmp;
2386 		const struct rte_flow_attr *curr = pf->rule.attr;
2387 
2388 		if (n) {
2389 			/* Filter out unwanted groups. */
2390 			for (i = 0; i != n; ++i)
2391 				if (curr->group == group[i])
2392 					break;
2393 			if (i == n)
2394 				continue;
2395 		}
2396 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
2397 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
2398 
2399 			if (curr->group > comp->group ||
2400 			    (curr->group == comp->group &&
2401 			     curr->priority > comp->priority) ||
2402 			    (curr->group == comp->group &&
2403 			     curr->priority == comp->priority &&
2404 			     pf->id > (*tmp)->id))
2405 				continue;
2406 			break;
2407 		}
2408 		pf->tmp = *tmp;
2409 		*tmp = pf;
2410 	}
2411 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
2412 	for (pf = list; pf != NULL; pf = pf->tmp) {
2413 		const struct rte_flow_item *item = pf->rule.pattern;
2414 		const struct rte_flow_action *action = pf->rule.actions;
2415 		const char *name;
2416 
2417 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
2418 		       pf->id,
2419 		       pf->rule.attr->group,
2420 		       pf->rule.attr->priority,
2421 		       pf->rule.attr->ingress ? 'i' : '-',
2422 		       pf->rule.attr->egress ? 'e' : '-',
2423 		       pf->rule.attr->transfer ? 't' : '-');
2424 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
2425 			if ((uint32_t)item->type > INT_MAX)
2426 				name = "PMD_INTERNAL";
2427 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
2428 					  &name, sizeof(name),
2429 					  (void *)(uintptr_t)item->type,
2430 					  NULL) <= 0)
2431 				name = "[UNKNOWN]";
2432 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
2433 				printf("%s ", name);
2434 			++item;
2435 		}
2436 		printf("=>");
2437 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
2438 			if ((uint32_t)action->type > INT_MAX)
2439 				name = "PMD_INTERNAL";
2440 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2441 					  &name, sizeof(name),
2442 					  (void *)(uintptr_t)action->type,
2443 					  NULL) <= 0)
2444 				name = "[UNKNOWN]";
2445 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
2446 				printf(" %s", name);
2447 			++action;
2448 		}
2449 		printf("\n");
2450 	}
2451 }
2452 
2453 /** Restrict ingress traffic to the defined flow rules. */
2454 int
2455 port_flow_isolate(portid_t port_id, int set)
2456 {
2457 	struct rte_flow_error error;
2458 
2459 	/* Poisoning to make sure PMDs update it in case of error. */
2460 	memset(&error, 0x66, sizeof(error));
2461 	if (rte_flow_isolate(port_id, set, &error))
2462 		return port_flow_complain(&error);
2463 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
2464 	       port_id,
2465 	       set ? "now restricted" : "not restricted anymore");
2466 	return 0;
2467 }
2468 
2469 /*
2470  * RX/TX ring descriptors display functions.
2471  */
2472 int
2473 rx_queue_id_is_invalid(queueid_t rxq_id)
2474 {
2475 	if (rxq_id < nb_rxq)
2476 		return 0;
2477 	fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n",
2478 		rxq_id, nb_rxq);
2479 	return 1;
2480 }
2481 
2482 int
2483 tx_queue_id_is_invalid(queueid_t txq_id)
2484 {
2485 	if (txq_id < nb_txq)
2486 		return 0;
2487 	fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n",
2488 		txq_id, nb_txq);
2489 	return 1;
2490 }
2491 
2492 static int
2493 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
2494 {
2495 	struct rte_port *port = &ports[port_id];
2496 	struct rte_eth_rxq_info rx_qinfo;
2497 	int ret;
2498 
2499 	ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
2500 	if (ret == 0) {
2501 		*ring_size = rx_qinfo.nb_desc;
2502 		return ret;
2503 	}
2504 
2505 	if (ret != -ENOTSUP)
2506 		return ret;
2507 	/*
2508 	 * If the rte_eth_rx_queue_info_get is not support for this PMD,
2509 	 * ring_size stored in testpmd will be used for validity verification.
2510 	 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
2511 	 * being 0, it will use a default value provided by PMDs to setup this
2512 	 * rxq. If the default value is 0, it will use the
2513 	 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
2514 	 */
2515 	if (port->nb_rx_desc[rxq_id])
2516 		*ring_size = port->nb_rx_desc[rxq_id];
2517 	else if (port->dev_info.default_rxportconf.ring_size)
2518 		*ring_size = port->dev_info.default_rxportconf.ring_size;
2519 	else
2520 		*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
2521 	return 0;
2522 }
2523 
2524 static int
2525 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
2526 {
2527 	struct rte_port *port = &ports[port_id];
2528 	struct rte_eth_txq_info tx_qinfo;
2529 	int ret;
2530 
2531 	ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
2532 	if (ret == 0) {
2533 		*ring_size = tx_qinfo.nb_desc;
2534 		return ret;
2535 	}
2536 
2537 	if (ret != -ENOTSUP)
2538 		return ret;
2539 	/*
2540 	 * If the rte_eth_tx_queue_info_get is not support for this PMD,
2541 	 * ring_size stored in testpmd will be used for validity verification.
2542 	 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
2543 	 * being 0, it will use a default value provided by PMDs to setup this
2544 	 * txq. If the default value is 0, it will use the
2545 	 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
2546 	 */
2547 	if (port->nb_tx_desc[txq_id])
2548 		*ring_size = port->nb_tx_desc[txq_id];
2549 	else if (port->dev_info.default_txportconf.ring_size)
2550 		*ring_size = port->dev_info.default_txportconf.ring_size;
2551 	else
2552 		*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
2553 	return 0;
2554 }
2555 
2556 static int
2557 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
2558 {
2559 	uint16_t ring_size;
2560 	int ret;
2561 
2562 	ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
2563 	if (ret)
2564 		return 1;
2565 
2566 	if (rxdesc_id < ring_size)
2567 		return 0;
2568 
2569 	fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n",
2570 		rxdesc_id, ring_size);
2571 	return 1;
2572 }
2573 
2574 static int
2575 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
2576 {
2577 	uint16_t ring_size;
2578 	int ret;
2579 
2580 	ret = get_tx_ring_size(port_id, txq_id, &ring_size);
2581 	if (ret)
2582 		return 1;
2583 
2584 	if (txdesc_id < ring_size)
2585 		return 0;
2586 
2587 	fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n",
2588 		txdesc_id, ring_size);
2589 	return 1;
2590 }
2591 
2592 static const struct rte_memzone *
2593 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
2594 {
2595 	char mz_name[RTE_MEMZONE_NAMESIZE];
2596 	const struct rte_memzone *mz;
2597 
2598 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
2599 			port_id, q_id, ring_name);
2600 	mz = rte_memzone_lookup(mz_name);
2601 	if (mz == NULL)
2602 		fprintf(stderr,
2603 			"%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n",
2604 			ring_name, port_id, q_id, mz_name);
2605 	return mz;
2606 }
2607 
2608 union igb_ring_dword {
2609 	uint64_t dword;
2610 	struct {
2611 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
2612 		uint32_t lo;
2613 		uint32_t hi;
2614 #else
2615 		uint32_t hi;
2616 		uint32_t lo;
2617 #endif
2618 	} words;
2619 };
2620 
2621 struct igb_ring_desc_32_bytes {
2622 	union igb_ring_dword lo_dword;
2623 	union igb_ring_dword hi_dword;
2624 	union igb_ring_dword resv1;
2625 	union igb_ring_dword resv2;
2626 };
2627 
2628 struct igb_ring_desc_16_bytes {
2629 	union igb_ring_dword lo_dword;
2630 	union igb_ring_dword hi_dword;
2631 };
2632 
2633 static void
2634 ring_rxd_display_dword(union igb_ring_dword dword)
2635 {
2636 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
2637 					(unsigned)dword.words.hi);
2638 }
2639 
2640 static void
2641 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
2642 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2643 			   portid_t port_id,
2644 #else
2645 			   __rte_unused portid_t port_id,
2646 #endif
2647 			   uint16_t desc_id)
2648 {
2649 	struct igb_ring_desc_16_bytes *ring =
2650 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
2651 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2652 	int ret;
2653 	struct rte_eth_dev_info dev_info;
2654 
2655 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2656 	if (ret != 0)
2657 		return;
2658 
2659 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
2660 		/* 32 bytes RX descriptor, i40e only */
2661 		struct igb_ring_desc_32_bytes *ring =
2662 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
2663 		ring[desc_id].lo_dword.dword =
2664 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2665 		ring_rxd_display_dword(ring[desc_id].lo_dword);
2666 		ring[desc_id].hi_dword.dword =
2667 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2668 		ring_rxd_display_dword(ring[desc_id].hi_dword);
2669 		ring[desc_id].resv1.dword =
2670 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
2671 		ring_rxd_display_dword(ring[desc_id].resv1);
2672 		ring[desc_id].resv2.dword =
2673 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
2674 		ring_rxd_display_dword(ring[desc_id].resv2);
2675 
2676 		return;
2677 	}
2678 #endif
2679 	/* 16 bytes RX descriptor */
2680 	ring[desc_id].lo_dword.dword =
2681 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2682 	ring_rxd_display_dword(ring[desc_id].lo_dword);
2683 	ring[desc_id].hi_dword.dword =
2684 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2685 	ring_rxd_display_dword(ring[desc_id].hi_dword);
2686 }
2687 
2688 static void
2689 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
2690 {
2691 	struct igb_ring_desc_16_bytes *ring;
2692 	struct igb_ring_desc_16_bytes txd;
2693 
2694 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
2695 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2696 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2697 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
2698 			(unsigned)txd.lo_dword.words.lo,
2699 			(unsigned)txd.lo_dword.words.hi,
2700 			(unsigned)txd.hi_dword.words.lo,
2701 			(unsigned)txd.hi_dword.words.hi);
2702 }
2703 
2704 void
2705 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
2706 {
2707 	const struct rte_memzone *rx_mz;
2708 
2709 	if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
2710 		return;
2711 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
2712 	if (rx_mz == NULL)
2713 		return;
2714 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
2715 }
2716 
2717 void
2718 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
2719 {
2720 	const struct rte_memzone *tx_mz;
2721 
2722 	if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
2723 		return;
2724 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
2725 	if (tx_mz == NULL)
2726 		return;
2727 	ring_tx_descriptor_display(tx_mz, txd_id);
2728 }
2729 
2730 void
2731 fwd_lcores_config_display(void)
2732 {
2733 	lcoreid_t lc_id;
2734 
2735 	printf("List of forwarding lcores:");
2736 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
2737 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
2738 	printf("\n");
2739 }
2740 void
2741 rxtx_config_display(void)
2742 {
2743 	portid_t pid;
2744 	queueid_t qid;
2745 
2746 	printf("  %s packet forwarding%s packets/burst=%d\n",
2747 	       cur_fwd_eng->fwd_mode_name,
2748 	       retry_enabled == 0 ? "" : " with retry",
2749 	       nb_pkt_per_burst);
2750 
2751 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
2752 		printf("  packet len=%u - nb packet segments=%d\n",
2753 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
2754 
2755 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
2756 	       nb_fwd_lcores, nb_fwd_ports);
2757 
2758 	RTE_ETH_FOREACH_DEV(pid) {
2759 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
2760 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
2761 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
2762 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
2763 		struct rte_eth_rxq_info rx_qinfo;
2764 		struct rte_eth_txq_info tx_qinfo;
2765 		uint16_t rx_free_thresh_tmp;
2766 		uint16_t tx_free_thresh_tmp;
2767 		uint16_t tx_rs_thresh_tmp;
2768 		uint16_t nb_rx_desc_tmp;
2769 		uint16_t nb_tx_desc_tmp;
2770 		uint64_t offloads_tmp;
2771 		uint8_t pthresh_tmp;
2772 		uint8_t hthresh_tmp;
2773 		uint8_t wthresh_tmp;
2774 		int32_t rc;
2775 
2776 		/* per port config */
2777 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
2778 				(unsigned int)pid, nb_rxq, nb_txq);
2779 
2780 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
2781 				ports[pid].dev_conf.rxmode.offloads,
2782 				ports[pid].dev_conf.txmode.offloads);
2783 
2784 		/* per rx queue config only for first queue to be less verbose */
2785 		for (qid = 0; qid < 1; qid++) {
2786 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
2787 			if (rc) {
2788 				nb_rx_desc_tmp = nb_rx_desc[qid];
2789 				rx_free_thresh_tmp =
2790 					rx_conf[qid].rx_free_thresh;
2791 				pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
2792 				hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
2793 				wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
2794 				offloads_tmp = rx_conf[qid].offloads;
2795 			} else {
2796 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
2797 				rx_free_thresh_tmp =
2798 						rx_qinfo.conf.rx_free_thresh;
2799 				pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
2800 				hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
2801 				wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
2802 				offloads_tmp = rx_qinfo.conf.offloads;
2803 			}
2804 
2805 			printf("    RX queue: %d\n", qid);
2806 			printf("      RX desc=%d - RX free threshold=%d\n",
2807 				nb_rx_desc_tmp, rx_free_thresh_tmp);
2808 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
2809 				" wthresh=%d\n",
2810 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2811 			printf("      RX Offloads=0x%"PRIx64, offloads_tmp);
2812 			if (rx_conf->share_group > 0)
2813 				printf(" share_group=%u share_qid=%u",
2814 				       rx_conf->share_group,
2815 				       rx_conf->share_qid);
2816 			printf("\n");
2817 		}
2818 
2819 		/* per tx queue config only for first queue to be less verbose */
2820 		for (qid = 0; qid < 1; qid++) {
2821 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
2822 			if (rc) {
2823 				nb_tx_desc_tmp = nb_tx_desc[qid];
2824 				tx_free_thresh_tmp =
2825 					tx_conf[qid].tx_free_thresh;
2826 				pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
2827 				hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
2828 				wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
2829 				offloads_tmp = tx_conf[qid].offloads;
2830 				tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
2831 			} else {
2832 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
2833 				tx_free_thresh_tmp =
2834 						tx_qinfo.conf.tx_free_thresh;
2835 				pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
2836 				hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
2837 				wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
2838 				offloads_tmp = tx_qinfo.conf.offloads;
2839 				tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
2840 			}
2841 
2842 			printf("    TX queue: %d\n", qid);
2843 			printf("      TX desc=%d - TX free threshold=%d\n",
2844 				nb_tx_desc_tmp, tx_free_thresh_tmp);
2845 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
2846 				" wthresh=%d\n",
2847 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2848 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
2849 				offloads_tmp, tx_rs_thresh_tmp);
2850 		}
2851 	}
2852 }
2853 
2854 void
2855 port_rss_reta_info(portid_t port_id,
2856 		   struct rte_eth_rss_reta_entry64 *reta_conf,
2857 		   uint16_t nb_entries)
2858 {
2859 	uint16_t i, idx, shift;
2860 	int ret;
2861 
2862 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2863 		return;
2864 
2865 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
2866 	if (ret != 0) {
2867 		fprintf(stderr,
2868 			"Failed to get RSS RETA info, return code = %d\n",
2869 			ret);
2870 		return;
2871 	}
2872 
2873 	for (i = 0; i < nb_entries; i++) {
2874 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
2875 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
2876 		if (!(reta_conf[idx].mask & (1ULL << shift)))
2877 			continue;
2878 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
2879 					i, reta_conf[idx].reta[shift]);
2880 	}
2881 }
2882 
2883 /*
2884  * Displays the RSS hash functions of a port, and, optionally, the RSS hash
2885  * key of the port.
2886  */
2887 void
2888 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
2889 {
2890 	struct rte_eth_rss_conf rss_conf = {0};
2891 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
2892 	uint64_t rss_hf;
2893 	uint8_t i;
2894 	int diag;
2895 	struct rte_eth_dev_info dev_info;
2896 	uint8_t hash_key_size;
2897 	int ret;
2898 
2899 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2900 		return;
2901 
2902 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2903 	if (ret != 0)
2904 		return;
2905 
2906 	if (dev_info.hash_key_size > 0 &&
2907 			dev_info.hash_key_size <= sizeof(rss_key))
2908 		hash_key_size = dev_info.hash_key_size;
2909 	else {
2910 		fprintf(stderr,
2911 			"dev_info did not provide a valid hash key size\n");
2912 		return;
2913 	}
2914 
2915 	/* Get RSS hash key if asked to display it */
2916 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2917 	rss_conf.rss_key_len = hash_key_size;
2918 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2919 	if (diag != 0) {
2920 		switch (diag) {
2921 		case -ENODEV:
2922 			fprintf(stderr, "port index %d invalid\n", port_id);
2923 			break;
2924 		case -ENOTSUP:
2925 			fprintf(stderr, "operation not supported by device\n");
2926 			break;
2927 		default:
2928 			fprintf(stderr, "operation failed - diag=%d\n", diag);
2929 			break;
2930 		}
2931 		return;
2932 	}
2933 	rss_hf = rss_conf.rss_hf;
2934 	if (rss_hf == 0) {
2935 		printf("RSS disabled\n");
2936 		return;
2937 	}
2938 	printf("RSS functions:\n ");
2939 	for (i = 0; rss_type_table[i].str; i++) {
2940 		if (rss_type_table[i].rss_type == 0)
2941 			continue;
2942 		if ((rss_hf & rss_type_table[i].rss_type) == rss_type_table[i].rss_type)
2943 			printf("%s ", rss_type_table[i].str);
2944 	}
2945 	printf("\n");
2946 	if (!show_rss_key)
2947 		return;
2948 	printf("RSS key:\n");
2949 	for (i = 0; i < hash_key_size; i++)
2950 		printf("%02X", rss_key[i]);
2951 	printf("\n");
2952 }
2953 
2954 void
2955 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2956 			 uint8_t hash_key_len)
2957 {
2958 	struct rte_eth_rss_conf rss_conf;
2959 	int diag;
2960 	unsigned int i;
2961 
2962 	rss_conf.rss_key = NULL;
2963 	rss_conf.rss_key_len = 0;
2964 	rss_conf.rss_hf = 0;
2965 	for (i = 0; rss_type_table[i].str; i++) {
2966 		if (!strcmp(rss_type_table[i].str, rss_type))
2967 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2968 	}
2969 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2970 	if (diag == 0) {
2971 		rss_conf.rss_key = hash_key;
2972 		rss_conf.rss_key_len = hash_key_len;
2973 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2974 	}
2975 	if (diag == 0)
2976 		return;
2977 
2978 	switch (diag) {
2979 	case -ENODEV:
2980 		fprintf(stderr, "port index %d invalid\n", port_id);
2981 		break;
2982 	case -ENOTSUP:
2983 		fprintf(stderr, "operation not supported by device\n");
2984 		break;
2985 	default:
2986 		fprintf(stderr, "operation failed - diag=%d\n", diag);
2987 		break;
2988 	}
2989 }
2990 
2991 /*
2992  * Check whether a shared rxq scheduled on other lcores.
2993  */
2994 static bool
2995 fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc,
2996 			   portid_t src_port, queueid_t src_rxq,
2997 			   uint32_t share_group, queueid_t share_rxq)
2998 {
2999 	streamid_t sm_id;
3000 	streamid_t nb_fs_per_lcore;
3001 	lcoreid_t  nb_fc;
3002 	lcoreid_t  lc_id;
3003 	struct fwd_stream *fs;
3004 	struct rte_port *port;
3005 	struct rte_eth_dev_info *dev_info;
3006 	struct rte_eth_rxconf *rxq_conf;
3007 
3008 	nb_fc = cur_fwd_config.nb_fwd_lcores;
3009 	/* Check remaining cores. */
3010 	for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) {
3011 		sm_id = fwd_lcores[lc_id]->stream_idx;
3012 		nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
3013 		for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
3014 		     sm_id++) {
3015 			fs = fwd_streams[sm_id];
3016 			port = &ports[fs->rx_port];
3017 			dev_info = &port->dev_info;
3018 			rxq_conf = &port->rx_conf[fs->rx_queue];
3019 			if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
3020 			    == 0 || rxq_conf->share_group == 0)
3021 				/* Not shared rxq. */
3022 				continue;
3023 			if (domain_id != port->dev_info.switch_info.domain_id)
3024 				continue;
3025 			if (rxq_conf->share_group != share_group)
3026 				continue;
3027 			if (rxq_conf->share_qid != share_rxq)
3028 				continue;
3029 			printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n",
3030 			       share_group, share_rxq);
3031 			printf("  lcore %hhu Port %hu queue %hu\n",
3032 			       src_lc, src_port, src_rxq);
3033 			printf("  lcore %hhu Port %hu queue %hu\n",
3034 			       lc_id, fs->rx_port, fs->rx_queue);
3035 			printf("Please use --nb-cores=%hu to limit number of forwarding cores\n",
3036 			       nb_rxq);
3037 			return true;
3038 		}
3039 	}
3040 	return false;
3041 }
3042 
3043 /*
3044  * Check shared rxq configuration.
3045  *
3046  * Shared group must not being scheduled on different core.
3047  */
3048 bool
3049 pkt_fwd_shared_rxq_check(void)
3050 {
3051 	streamid_t sm_id;
3052 	streamid_t nb_fs_per_lcore;
3053 	lcoreid_t  nb_fc;
3054 	lcoreid_t  lc_id;
3055 	struct fwd_stream *fs;
3056 	uint16_t domain_id;
3057 	struct rte_port *port;
3058 	struct rte_eth_dev_info *dev_info;
3059 	struct rte_eth_rxconf *rxq_conf;
3060 
3061 	if (rxq_share == 0)
3062 		return true;
3063 	nb_fc = cur_fwd_config.nb_fwd_lcores;
3064 	/*
3065 	 * Check streams on each core, make sure the same switch domain +
3066 	 * group + queue doesn't get scheduled on other cores.
3067 	 */
3068 	for (lc_id = 0; lc_id < nb_fc; lc_id++) {
3069 		sm_id = fwd_lcores[lc_id]->stream_idx;
3070 		nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
3071 		for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
3072 		     sm_id++) {
3073 			fs = fwd_streams[sm_id];
3074 			/* Update lcore info stream being scheduled. */
3075 			fs->lcore = fwd_lcores[lc_id];
3076 			port = &ports[fs->rx_port];
3077 			dev_info = &port->dev_info;
3078 			rxq_conf = &port->rx_conf[fs->rx_queue];
3079 			if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
3080 			    == 0 || rxq_conf->share_group == 0)
3081 				/* Not shared rxq. */
3082 				continue;
3083 			/* Check shared rxq not scheduled on remaining cores. */
3084 			domain_id = port->dev_info.switch_info.domain_id;
3085 			if (fwd_stream_on_other_lcores(domain_id, lc_id,
3086 						       fs->rx_port,
3087 						       fs->rx_queue,
3088 						       rxq_conf->share_group,
3089 						       rxq_conf->share_qid))
3090 				return false;
3091 		}
3092 	}
3093 	return true;
3094 }
3095 
3096 /*
3097  * Setup forwarding configuration for each logical core.
3098  */
3099 static void
3100 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
3101 {
3102 	streamid_t nb_fs_per_lcore;
3103 	streamid_t nb_fs;
3104 	streamid_t sm_id;
3105 	lcoreid_t  nb_extra;
3106 	lcoreid_t  nb_fc;
3107 	lcoreid_t  nb_lc;
3108 	lcoreid_t  lc_id;
3109 
3110 	nb_fs = cfg->nb_fwd_streams;
3111 	nb_fc = cfg->nb_fwd_lcores;
3112 	if (nb_fs <= nb_fc) {
3113 		nb_fs_per_lcore = 1;
3114 		nb_extra = 0;
3115 	} else {
3116 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
3117 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
3118 	}
3119 
3120 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
3121 	sm_id = 0;
3122 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
3123 		fwd_lcores[lc_id]->stream_idx = sm_id;
3124 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
3125 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3126 	}
3127 
3128 	/*
3129 	 * Assign extra remaining streams, if any.
3130 	 */
3131 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
3132 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
3133 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
3134 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
3135 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3136 	}
3137 }
3138 
3139 static portid_t
3140 fwd_topology_tx_port_get(portid_t rxp)
3141 {
3142 	static int warning_once = 1;
3143 
3144 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
3145 
3146 	switch (port_topology) {
3147 	default:
3148 	case PORT_TOPOLOGY_PAIRED:
3149 		if ((rxp & 0x1) == 0) {
3150 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
3151 				return rxp + 1;
3152 			if (warning_once) {
3153 				fprintf(stderr,
3154 					"\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n");
3155 				warning_once = 0;
3156 			}
3157 			return rxp;
3158 		}
3159 		return rxp - 1;
3160 	case PORT_TOPOLOGY_CHAINED:
3161 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
3162 	case PORT_TOPOLOGY_LOOP:
3163 		return rxp;
3164 	}
3165 }
3166 
3167 static void
3168 simple_fwd_config_setup(void)
3169 {
3170 	portid_t i;
3171 
3172 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
3173 	cur_fwd_config.nb_fwd_streams =
3174 		(streamid_t) cur_fwd_config.nb_fwd_ports;
3175 
3176 	/* reinitialize forwarding streams */
3177 	init_fwd_streams();
3178 
3179 	/*
3180 	 * In the simple forwarding test, the number of forwarding cores
3181 	 * must be lower or equal to the number of forwarding ports.
3182 	 */
3183 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3184 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
3185 		cur_fwd_config.nb_fwd_lcores =
3186 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
3187 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3188 
3189 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
3190 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
3191 		fwd_streams[i]->rx_queue  = 0;
3192 		fwd_streams[i]->tx_port   =
3193 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
3194 		fwd_streams[i]->tx_queue  = 0;
3195 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
3196 		fwd_streams[i]->retry_enabled = retry_enabled;
3197 	}
3198 }
3199 
3200 /**
3201  * For the RSS forwarding test all streams distributed over lcores. Each stream
3202  * being composed of a RX queue to poll on a RX port for input messages,
3203  * associated with a TX queue of a TX port where to send forwarded packets.
3204  */
3205 static void
3206 rss_fwd_config_setup(void)
3207 {
3208 	portid_t   rxp;
3209 	portid_t   txp;
3210 	queueid_t  rxq;
3211 	queueid_t  nb_q;
3212 	streamid_t  sm_id;
3213 	int start;
3214 	int end;
3215 
3216 	nb_q = nb_rxq;
3217 	if (nb_q > nb_txq)
3218 		nb_q = nb_txq;
3219 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3220 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3221 	cur_fwd_config.nb_fwd_streams =
3222 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
3223 
3224 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3225 		cur_fwd_config.nb_fwd_lcores =
3226 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3227 
3228 	/* reinitialize forwarding streams */
3229 	init_fwd_streams();
3230 
3231 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3232 
3233 	if (proc_id > 0 && nb_q % num_procs != 0)
3234 		printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n");
3235 
3236 	/**
3237 	 * In multi-process, All queues are allocated to different
3238 	 * processes based on num_procs and proc_id. For example:
3239 	 * if supports 4 queues(nb_q), 2 processes(num_procs),
3240 	 * the 0~1 queue for primary process.
3241 	 * the 2~3 queue for secondary process.
3242 	 */
3243 	start = proc_id * nb_q / num_procs;
3244 	end = start + nb_q / num_procs;
3245 	rxp = 0;
3246 	rxq = start;
3247 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
3248 		struct fwd_stream *fs;
3249 
3250 		fs = fwd_streams[sm_id];
3251 		txp = fwd_topology_tx_port_get(rxp);
3252 		fs->rx_port = fwd_ports_ids[rxp];
3253 		fs->rx_queue = rxq;
3254 		fs->tx_port = fwd_ports_ids[txp];
3255 		fs->tx_queue = rxq;
3256 		fs->peer_addr = fs->tx_port;
3257 		fs->retry_enabled = retry_enabled;
3258 		rxp++;
3259 		if (rxp < nb_fwd_ports)
3260 			continue;
3261 		rxp = 0;
3262 		rxq++;
3263 		if (rxq >= end)
3264 			rxq = start;
3265 	}
3266 }
3267 
3268 static uint16_t
3269 get_fwd_port_total_tc_num(void)
3270 {
3271 	struct rte_eth_dcb_info dcb_info;
3272 	uint16_t total_tc_num = 0;
3273 	unsigned int i;
3274 
3275 	for (i = 0; i < nb_fwd_ports; i++) {
3276 		(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info);
3277 		total_tc_num += dcb_info.nb_tcs;
3278 	}
3279 
3280 	return total_tc_num;
3281 }
3282 
3283 /**
3284  * For the DCB forwarding test, each core is assigned on each traffic class.
3285  *
3286  * Each core is assigned a multi-stream, each stream being composed of
3287  * a RX queue to poll on a RX port for input messages, associated with
3288  * a TX queue of a TX port where to send forwarded packets. All RX and
3289  * TX queues are mapping to the same traffic class.
3290  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
3291  * the same core
3292  */
3293 static void
3294 dcb_fwd_config_setup(void)
3295 {
3296 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
3297 	portid_t txp, rxp = 0;
3298 	queueid_t txq, rxq = 0;
3299 	lcoreid_t  lc_id;
3300 	uint16_t nb_rx_queue, nb_tx_queue;
3301 	uint16_t i, j, k, sm_id = 0;
3302 	uint16_t total_tc_num;
3303 	struct rte_port *port;
3304 	uint8_t tc = 0;
3305 	portid_t pid;
3306 	int ret;
3307 
3308 	/*
3309 	 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED
3310 	 * or RTE_PORT_STOPPED.
3311 	 *
3312 	 * Re-configure ports to get updated mapping between tc and queue in
3313 	 * case the queue number of the port is changed. Skip for started ports
3314 	 * since modifying queue number and calling dev_configure need to stop
3315 	 * ports first.
3316 	 */
3317 	for (pid = 0; pid < nb_fwd_ports; pid++) {
3318 		if (port_is_started(pid) == 1)
3319 			continue;
3320 
3321 		port = &ports[pid];
3322 		ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq,
3323 					    &port->dev_conf);
3324 		if (ret < 0) {
3325 			fprintf(stderr,
3326 				"Failed to re-configure port %d, ret = %d.\n",
3327 				pid, ret);
3328 			return;
3329 		}
3330 	}
3331 
3332 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3333 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3334 	cur_fwd_config.nb_fwd_streams =
3335 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3336 	total_tc_num = get_fwd_port_total_tc_num();
3337 	if (cur_fwd_config.nb_fwd_lcores > total_tc_num)
3338 		cur_fwd_config.nb_fwd_lcores = total_tc_num;
3339 
3340 	/* reinitialize forwarding streams */
3341 	init_fwd_streams();
3342 	sm_id = 0;
3343 	txp = 1;
3344 	/* get the dcb info on the first RX and TX ports */
3345 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3346 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3347 
3348 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3349 		fwd_lcores[lc_id]->stream_nb = 0;
3350 		fwd_lcores[lc_id]->stream_idx = sm_id;
3351 		for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) {
3352 			/* if the nb_queue is zero, means this tc is
3353 			 * not enabled on the POOL
3354 			 */
3355 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
3356 				break;
3357 			k = fwd_lcores[lc_id]->stream_nb +
3358 				fwd_lcores[lc_id]->stream_idx;
3359 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
3360 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
3361 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3362 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
3363 			for (j = 0; j < nb_rx_queue; j++) {
3364 				struct fwd_stream *fs;
3365 
3366 				fs = fwd_streams[k + j];
3367 				fs->rx_port = fwd_ports_ids[rxp];
3368 				fs->rx_queue = rxq + j;
3369 				fs->tx_port = fwd_ports_ids[txp];
3370 				fs->tx_queue = txq + j % nb_tx_queue;
3371 				fs->peer_addr = fs->tx_port;
3372 				fs->retry_enabled = retry_enabled;
3373 			}
3374 			fwd_lcores[lc_id]->stream_nb +=
3375 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3376 		}
3377 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
3378 
3379 		tc++;
3380 		if (tc < rxp_dcb_info.nb_tcs)
3381 			continue;
3382 		/* Restart from TC 0 on next RX port */
3383 		tc = 0;
3384 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
3385 			rxp = (portid_t)
3386 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
3387 		else
3388 			rxp++;
3389 		if (rxp >= nb_fwd_ports)
3390 			return;
3391 		/* get the dcb information on next RX and TX ports */
3392 		if ((rxp & 0x1) == 0)
3393 			txp = (portid_t) (rxp + 1);
3394 		else
3395 			txp = (portid_t) (rxp - 1);
3396 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3397 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3398 	}
3399 }
3400 
3401 static void
3402 icmp_echo_config_setup(void)
3403 {
3404 	portid_t  rxp;
3405 	queueid_t rxq;
3406 	lcoreid_t lc_id;
3407 	uint16_t  sm_id;
3408 
3409 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
3410 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
3411 			(nb_txq * nb_fwd_ports);
3412 	else
3413 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3414 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3415 	cur_fwd_config.nb_fwd_streams =
3416 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3417 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3418 		cur_fwd_config.nb_fwd_lcores =
3419 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3420 	if (verbose_level > 0) {
3421 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
3422 		       __FUNCTION__,
3423 		       cur_fwd_config.nb_fwd_lcores,
3424 		       cur_fwd_config.nb_fwd_ports,
3425 		       cur_fwd_config.nb_fwd_streams);
3426 	}
3427 
3428 	/* reinitialize forwarding streams */
3429 	init_fwd_streams();
3430 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3431 	rxp = 0; rxq = 0;
3432 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3433 		if (verbose_level > 0)
3434 			printf("  core=%d: \n", lc_id);
3435 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3436 			struct fwd_stream *fs;
3437 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3438 			fs->rx_port = fwd_ports_ids[rxp];
3439 			fs->rx_queue = rxq;
3440 			fs->tx_port = fs->rx_port;
3441 			fs->tx_queue = rxq;
3442 			fs->peer_addr = fs->tx_port;
3443 			fs->retry_enabled = retry_enabled;
3444 			if (verbose_level > 0)
3445 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
3446 				       sm_id, fs->rx_port, fs->rx_queue,
3447 				       fs->tx_queue);
3448 			rxq = (queueid_t) (rxq + 1);
3449 			if (rxq == nb_rxq) {
3450 				rxq = 0;
3451 				rxp = (portid_t) (rxp + 1);
3452 			}
3453 		}
3454 	}
3455 }
3456 
3457 void
3458 fwd_config_setup(void)
3459 {
3460 	struct rte_port *port;
3461 	portid_t pt_id;
3462 	unsigned int i;
3463 
3464 	cur_fwd_config.fwd_eng = cur_fwd_eng;
3465 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
3466 		icmp_echo_config_setup();
3467 		return;
3468 	}
3469 
3470 	if ((nb_rxq > 1) && (nb_txq > 1)){
3471 		if (dcb_config) {
3472 			for (i = 0; i < nb_fwd_ports; i++) {
3473 				pt_id = fwd_ports_ids[i];
3474 				port = &ports[pt_id];
3475 				if (!port->dcb_flag) {
3476 					fprintf(stderr,
3477 						"In DCB mode, all forwarding ports must be configured in this mode.\n");
3478 					return;
3479 				}
3480 			}
3481 			if (nb_fwd_lcores == 1) {
3482 				fprintf(stderr,
3483 					"In DCB mode,the nb forwarding cores should be larger than 1.\n");
3484 				return;
3485 			}
3486 
3487 			dcb_fwd_config_setup();
3488 		} else
3489 			rss_fwd_config_setup();
3490 	}
3491 	else
3492 		simple_fwd_config_setup();
3493 }
3494 
3495 static const char *
3496 mp_alloc_to_str(uint8_t mode)
3497 {
3498 	switch (mode) {
3499 	case MP_ALLOC_NATIVE:
3500 		return "native";
3501 	case MP_ALLOC_ANON:
3502 		return "anon";
3503 	case MP_ALLOC_XMEM:
3504 		return "xmem";
3505 	case MP_ALLOC_XMEM_HUGE:
3506 		return "xmemhuge";
3507 	case MP_ALLOC_XBUF:
3508 		return "xbuf";
3509 	default:
3510 		return "invalid";
3511 	}
3512 }
3513 
3514 void
3515 pkt_fwd_config_display(struct fwd_config *cfg)
3516 {
3517 	struct fwd_stream *fs;
3518 	lcoreid_t  lc_id;
3519 	streamid_t sm_id;
3520 
3521 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
3522 		"NUMA support %s, MP allocation mode: %s\n",
3523 		cfg->fwd_eng->fwd_mode_name,
3524 		retry_enabled == 0 ? "" : " with retry",
3525 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
3526 		numa_support == 1 ? "enabled" : "disabled",
3527 		mp_alloc_to_str(mp_alloc_type));
3528 
3529 	if (retry_enabled)
3530 		printf("TX retry num: %u, delay between TX retries: %uus\n",
3531 			burst_tx_retry_num, burst_tx_delay_time);
3532 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
3533 		printf("Logical Core %u (socket %u) forwards packets on "
3534 		       "%d streams:",
3535 		       fwd_lcores_cpuids[lc_id],
3536 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
3537 		       fwd_lcores[lc_id]->stream_nb);
3538 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3539 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3540 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
3541 			       "P=%d/Q=%d (socket %u) ",
3542 			       fs->rx_port, fs->rx_queue,
3543 			       ports[fs->rx_port].socket_id,
3544 			       fs->tx_port, fs->tx_queue,
3545 			       ports[fs->tx_port].socket_id);
3546 			print_ethaddr("peer=",
3547 				      &peer_eth_addrs[fs->peer_addr]);
3548 		}
3549 		printf("\n");
3550 	}
3551 	printf("\n");
3552 }
3553 
3554 void
3555 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
3556 {
3557 	struct rte_ether_addr new_peer_addr;
3558 	if (!rte_eth_dev_is_valid_port(port_id)) {
3559 		fprintf(stderr, "Error: Invalid port number %i\n", port_id);
3560 		return;
3561 	}
3562 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
3563 		fprintf(stderr, "Error: Invalid ethernet address: %s\n",
3564 			peer_addr);
3565 		return;
3566 	}
3567 	peer_eth_addrs[port_id] = new_peer_addr;
3568 }
3569 
3570 int
3571 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
3572 {
3573 	unsigned int i;
3574 	unsigned int lcore_cpuid;
3575 	int record_now;
3576 
3577 	record_now = 0;
3578  again:
3579 	for (i = 0; i < nb_lc; i++) {
3580 		lcore_cpuid = lcorelist[i];
3581 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
3582 			fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid);
3583 			return -1;
3584 		}
3585 		if (lcore_cpuid == rte_get_main_lcore()) {
3586 			fprintf(stderr,
3587 				"lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n",
3588 				lcore_cpuid);
3589 			return -1;
3590 		}
3591 		if (record_now)
3592 			fwd_lcores_cpuids[i] = lcore_cpuid;
3593 	}
3594 	if (record_now == 0) {
3595 		record_now = 1;
3596 		goto again;
3597 	}
3598 	nb_cfg_lcores = (lcoreid_t) nb_lc;
3599 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
3600 		printf("previous number of forwarding cores %u - changed to "
3601 		       "number of configured cores %u\n",
3602 		       (unsigned int) nb_fwd_lcores, nb_lc);
3603 		nb_fwd_lcores = (lcoreid_t) nb_lc;
3604 	}
3605 
3606 	return 0;
3607 }
3608 
3609 int
3610 set_fwd_lcores_mask(uint64_t lcoremask)
3611 {
3612 	unsigned int lcorelist[64];
3613 	unsigned int nb_lc;
3614 	unsigned int i;
3615 
3616 	if (lcoremask == 0) {
3617 		fprintf(stderr, "Invalid NULL mask of cores\n");
3618 		return -1;
3619 	}
3620 	nb_lc = 0;
3621 	for (i = 0; i < 64; i++) {
3622 		if (! ((uint64_t)(1ULL << i) & lcoremask))
3623 			continue;
3624 		lcorelist[nb_lc++] = i;
3625 	}
3626 	return set_fwd_lcores_list(lcorelist, nb_lc);
3627 }
3628 
3629 void
3630 set_fwd_lcores_number(uint16_t nb_lc)
3631 {
3632 	if (test_done == 0) {
3633 		fprintf(stderr, "Please stop forwarding first\n");
3634 		return;
3635 	}
3636 	if (nb_lc > nb_cfg_lcores) {
3637 		fprintf(stderr,
3638 			"nb fwd cores %u > %u (max. number of configured lcores) - ignored\n",
3639 			(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
3640 		return;
3641 	}
3642 	nb_fwd_lcores = (lcoreid_t) nb_lc;
3643 	printf("Number of forwarding cores set to %u\n",
3644 	       (unsigned int) nb_fwd_lcores);
3645 }
3646 
3647 void
3648 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
3649 {
3650 	unsigned int i;
3651 	portid_t port_id;
3652 	int record_now;
3653 
3654 	record_now = 0;
3655  again:
3656 	for (i = 0; i < nb_pt; i++) {
3657 		port_id = (portid_t) portlist[i];
3658 		if (port_id_is_invalid(port_id, ENABLED_WARN))
3659 			return;
3660 		if (record_now)
3661 			fwd_ports_ids[i] = port_id;
3662 	}
3663 	if (record_now == 0) {
3664 		record_now = 1;
3665 		goto again;
3666 	}
3667 	nb_cfg_ports = (portid_t) nb_pt;
3668 	if (nb_fwd_ports != (portid_t) nb_pt) {
3669 		printf("previous number of forwarding ports %u - changed to "
3670 		       "number of configured ports %u\n",
3671 		       (unsigned int) nb_fwd_ports, nb_pt);
3672 		nb_fwd_ports = (portid_t) nb_pt;
3673 	}
3674 }
3675 
3676 /**
3677  * Parse the user input and obtain the list of forwarding ports
3678  *
3679  * @param[in] list
3680  *   String containing the user input. User can specify
3681  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
3682  *   For example, if the user wants to use all the available
3683  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
3684  *   If the user wants to use only the ports 1,2 then the input
3685  *   is 1,2.
3686  *   valid characters are '-' and ','
3687  * @param[out] values
3688  *   This array will be filled with a list of port IDs
3689  *   based on the user input
3690  *   Note that duplicate entries are discarded and only the first
3691  *   count entries in this array are port IDs and all the rest
3692  *   will contain default values
3693  * @param[in] maxsize
3694  *   This parameter denotes 2 things
3695  *   1) Number of elements in the values array
3696  *   2) Maximum value of each element in the values array
3697  * @return
3698  *   On success, returns total count of parsed port IDs
3699  *   On failure, returns 0
3700  */
3701 static unsigned int
3702 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
3703 {
3704 	unsigned int count = 0;
3705 	char *end = NULL;
3706 	int min, max;
3707 	int value, i;
3708 	unsigned int marked[maxsize];
3709 
3710 	if (list == NULL || values == NULL)
3711 		return 0;
3712 
3713 	for (i = 0; i < (int)maxsize; i++)
3714 		marked[i] = 0;
3715 
3716 	min = INT_MAX;
3717 
3718 	do {
3719 		/*Remove the blank spaces if any*/
3720 		while (isblank(*list))
3721 			list++;
3722 		if (*list == '\0')
3723 			break;
3724 		errno = 0;
3725 		value = strtol(list, &end, 10);
3726 		if (errno || end == NULL)
3727 			return 0;
3728 		if (value < 0 || value >= (int)maxsize)
3729 			return 0;
3730 		while (isblank(*end))
3731 			end++;
3732 		if (*end == '-' && min == INT_MAX) {
3733 			min = value;
3734 		} else if ((*end == ',') || (*end == '\0')) {
3735 			max = value;
3736 			if (min == INT_MAX)
3737 				min = value;
3738 			for (i = min; i <= max; i++) {
3739 				if (count < maxsize) {
3740 					if (marked[i])
3741 						continue;
3742 					values[count] = i;
3743 					marked[i] = 1;
3744 					count++;
3745 				}
3746 			}
3747 			min = INT_MAX;
3748 		} else
3749 			return 0;
3750 		list = end + 1;
3751 	} while (*end != '\0');
3752 
3753 	return count;
3754 }
3755 
3756 void
3757 parse_fwd_portlist(const char *portlist)
3758 {
3759 	unsigned int portcount;
3760 	unsigned int portindex[RTE_MAX_ETHPORTS];
3761 	unsigned int i, valid_port_count = 0;
3762 
3763 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
3764 	if (!portcount)
3765 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
3766 
3767 	/*
3768 	 * Here we verify the validity of the ports
3769 	 * and thereby calculate the total number of
3770 	 * valid ports
3771 	 */
3772 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
3773 		if (rte_eth_dev_is_valid_port(portindex[i])) {
3774 			portindex[valid_port_count] = portindex[i];
3775 			valid_port_count++;
3776 		}
3777 	}
3778 
3779 	set_fwd_ports_list(portindex, valid_port_count);
3780 }
3781 
3782 void
3783 set_fwd_ports_mask(uint64_t portmask)
3784 {
3785 	unsigned int portlist[64];
3786 	unsigned int nb_pt;
3787 	unsigned int i;
3788 
3789 	if (portmask == 0) {
3790 		fprintf(stderr, "Invalid NULL mask of ports\n");
3791 		return;
3792 	}
3793 	nb_pt = 0;
3794 	RTE_ETH_FOREACH_DEV(i) {
3795 		if (! ((uint64_t)(1ULL << i) & portmask))
3796 			continue;
3797 		portlist[nb_pt++] = i;
3798 	}
3799 	set_fwd_ports_list(portlist, nb_pt);
3800 }
3801 
3802 void
3803 set_fwd_ports_number(uint16_t nb_pt)
3804 {
3805 	if (nb_pt > nb_cfg_ports) {
3806 		fprintf(stderr,
3807 			"nb fwd ports %u > %u (number of configured ports) - ignored\n",
3808 			(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
3809 		return;
3810 	}
3811 	nb_fwd_ports = (portid_t) nb_pt;
3812 	printf("Number of forwarding ports set to %u\n",
3813 	       (unsigned int) nb_fwd_ports);
3814 }
3815 
3816 int
3817 port_is_forwarding(portid_t port_id)
3818 {
3819 	unsigned int i;
3820 
3821 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3822 		return -1;
3823 
3824 	for (i = 0; i < nb_fwd_ports; i++) {
3825 		if (fwd_ports_ids[i] == port_id)
3826 			return 1;
3827 	}
3828 
3829 	return 0;
3830 }
3831 
3832 void
3833 set_nb_pkt_per_burst(uint16_t nb)
3834 {
3835 	if (nb > MAX_PKT_BURST) {
3836 		fprintf(stderr,
3837 			"nb pkt per burst: %u > %u (maximum packet per burst)  ignored\n",
3838 			(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
3839 		return;
3840 	}
3841 	nb_pkt_per_burst = nb;
3842 	printf("Number of packets per burst set to %u\n",
3843 	       (unsigned int) nb_pkt_per_burst);
3844 }
3845 
3846 static const char *
3847 tx_split_get_name(enum tx_pkt_split split)
3848 {
3849 	uint32_t i;
3850 
3851 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3852 		if (tx_split_name[i].split == split)
3853 			return tx_split_name[i].name;
3854 	}
3855 	return NULL;
3856 }
3857 
3858 void
3859 set_tx_pkt_split(const char *name)
3860 {
3861 	uint32_t i;
3862 
3863 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3864 		if (strcmp(tx_split_name[i].name, name) == 0) {
3865 			tx_pkt_split = tx_split_name[i].split;
3866 			return;
3867 		}
3868 	}
3869 	fprintf(stderr, "unknown value: \"%s\"\n", name);
3870 }
3871 
3872 int
3873 parse_fec_mode(const char *name, uint32_t *fec_capa)
3874 {
3875 	uint8_t i;
3876 
3877 	for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
3878 		if (strcmp(fec_mode_name[i].name, name) == 0) {
3879 			*fec_capa =
3880 				RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
3881 			return 0;
3882 		}
3883 	}
3884 	return -1;
3885 }
3886 
3887 void
3888 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
3889 {
3890 	unsigned int i, j;
3891 
3892 	printf("FEC capabilities:\n");
3893 
3894 	for (i = 0; i < num; i++) {
3895 		printf("%s : ",
3896 			rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
3897 
3898 		for (j = 0; j < RTE_DIM(fec_mode_name); j++) {
3899 			if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
3900 						speed_fec_capa[i].capa)
3901 				printf("%s ", fec_mode_name[j].name);
3902 		}
3903 		printf("\n");
3904 	}
3905 }
3906 
3907 void
3908 show_rx_pkt_offsets(void)
3909 {
3910 	uint32_t i, n;
3911 
3912 	n = rx_pkt_nb_offs;
3913 	printf("Number of offsets: %u\n", n);
3914 	if (n) {
3915 		printf("Segment offsets: ");
3916 		for (i = 0; i != n - 1; i++)
3917 			printf("%hu,", rx_pkt_seg_offsets[i]);
3918 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3919 	}
3920 }
3921 
3922 void
3923 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
3924 {
3925 	unsigned int i;
3926 
3927 	if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
3928 		printf("nb segments per RX packets=%u >= "
3929 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
3930 		return;
3931 	}
3932 
3933 	/*
3934 	 * No extra check here, the segment length will be checked by PMD
3935 	 * in the extended queue setup.
3936 	 */
3937 	for (i = 0; i < nb_offs; i++) {
3938 		if (seg_offsets[i] >= UINT16_MAX) {
3939 			printf("offset[%u]=%u > UINT16_MAX - give up\n",
3940 			       i, seg_offsets[i]);
3941 			return;
3942 		}
3943 	}
3944 
3945 	for (i = 0; i < nb_offs; i++)
3946 		rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
3947 
3948 	rx_pkt_nb_offs = (uint8_t) nb_offs;
3949 }
3950 
3951 void
3952 show_rx_pkt_segments(void)
3953 {
3954 	uint32_t i, n;
3955 
3956 	n = rx_pkt_nb_segs;
3957 	printf("Number of segments: %u\n", n);
3958 	if (n) {
3959 		printf("Segment sizes: ");
3960 		for (i = 0; i != n - 1; i++)
3961 			printf("%hu,", rx_pkt_seg_lengths[i]);
3962 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3963 	}
3964 }
3965 
3966 void
3967 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3968 {
3969 	unsigned int i;
3970 
3971 	if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
3972 		printf("nb segments per RX packets=%u >= "
3973 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
3974 		return;
3975 	}
3976 
3977 	/*
3978 	 * No extra check here, the segment length will be checked by PMD
3979 	 * in the extended queue setup.
3980 	 */
3981 	for (i = 0; i < nb_segs; i++) {
3982 		if (seg_lengths[i] >= UINT16_MAX) {
3983 			printf("length[%u]=%u > UINT16_MAX - give up\n",
3984 			       i, seg_lengths[i]);
3985 			return;
3986 		}
3987 	}
3988 
3989 	for (i = 0; i < nb_segs; i++)
3990 		rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3991 
3992 	rx_pkt_nb_segs = (uint8_t) nb_segs;
3993 }
3994 
3995 void
3996 show_tx_pkt_segments(void)
3997 {
3998 	uint32_t i, n;
3999 	const char *split;
4000 
4001 	n = tx_pkt_nb_segs;
4002 	split = tx_split_get_name(tx_pkt_split);
4003 
4004 	printf("Number of segments: %u\n", n);
4005 	printf("Segment sizes: ");
4006 	for (i = 0; i != n - 1; i++)
4007 		printf("%hu,", tx_pkt_seg_lengths[i]);
4008 	printf("%hu\n", tx_pkt_seg_lengths[i]);
4009 	printf("Split packet: %s\n", split);
4010 }
4011 
4012 static bool
4013 nb_segs_is_invalid(unsigned int nb_segs)
4014 {
4015 	uint16_t ring_size;
4016 	uint16_t queue_id;
4017 	uint16_t port_id;
4018 	int ret;
4019 
4020 	RTE_ETH_FOREACH_DEV(port_id) {
4021 		for (queue_id = 0; queue_id < nb_txq; queue_id++) {
4022 			ret = get_tx_ring_size(port_id, queue_id, &ring_size);
4023 			if (ret) {
4024 				/* Port may not be initialized yet, can't say
4025 				 * the port is invalid in this stage.
4026 				 */
4027 				continue;
4028 			}
4029 			if (ring_size < nb_segs) {
4030 				printf("nb segments per TX packets=%u >= TX "
4031 				       "queue(%u) ring_size=%u - txpkts ignored\n",
4032 				       nb_segs, queue_id, ring_size);
4033 				return true;
4034 			}
4035 		}
4036 	}
4037 
4038 	return false;
4039 }
4040 
4041 void
4042 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
4043 {
4044 	uint16_t tx_pkt_len;
4045 	unsigned int i;
4046 
4047 	/*
4048 	 * For single segment settings failed check is ignored.
4049 	 * It is a very basic capability to send the single segment
4050 	 * packets, suppose it is always supported.
4051 	 */
4052 	if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) {
4053 		fprintf(stderr,
4054 			"Tx segment size(%u) is not supported - txpkts ignored\n",
4055 			nb_segs);
4056 		return;
4057 	}
4058 
4059 	if (nb_segs > RTE_MAX_SEGS_PER_PKT) {
4060 		fprintf(stderr,
4061 			"Tx segment size(%u) is bigger than max number of segment(%u)\n",
4062 			nb_segs, RTE_MAX_SEGS_PER_PKT);
4063 		return;
4064 	}
4065 
4066 	/*
4067 	 * Check that each segment length is greater or equal than
4068 	 * the mbuf data size.
4069 	 * Check also that the total packet length is greater or equal than the
4070 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
4071 	 * 20 + 8).
4072 	 */
4073 	tx_pkt_len = 0;
4074 	for (i = 0; i < nb_segs; i++) {
4075 		if (seg_lengths[i] > mbuf_data_size[0]) {
4076 			fprintf(stderr,
4077 				"length[%u]=%u > mbuf_data_size=%u - give up\n",
4078 				i, seg_lengths[i], mbuf_data_size[0]);
4079 			return;
4080 		}
4081 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
4082 	}
4083 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
4084 		fprintf(stderr, "total packet length=%u < %d - give up\n",
4085 				(unsigned) tx_pkt_len,
4086 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
4087 		return;
4088 	}
4089 
4090 	for (i = 0; i < nb_segs; i++)
4091 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
4092 
4093 	tx_pkt_length  = tx_pkt_len;
4094 	tx_pkt_nb_segs = (uint8_t) nb_segs;
4095 }
4096 
4097 void
4098 show_tx_pkt_times(void)
4099 {
4100 	printf("Interburst gap: %u\n", tx_pkt_times_inter);
4101 	printf("Intraburst gap: %u\n", tx_pkt_times_intra);
4102 }
4103 
4104 void
4105 set_tx_pkt_times(unsigned int *tx_times)
4106 {
4107 	tx_pkt_times_inter = tx_times[0];
4108 	tx_pkt_times_intra = tx_times[1];
4109 }
4110 
4111 #ifdef RTE_LIB_GRO
4112 void
4113 setup_gro(const char *onoff, portid_t port_id)
4114 {
4115 	if (!rte_eth_dev_is_valid_port(port_id)) {
4116 		fprintf(stderr, "invalid port id %u\n", port_id);
4117 		return;
4118 	}
4119 	if (test_done == 0) {
4120 		fprintf(stderr,
4121 			"Before enable/disable GRO, please stop forwarding first\n");
4122 		return;
4123 	}
4124 	if (strcmp(onoff, "on") == 0) {
4125 		if (gro_ports[port_id].enable != 0) {
4126 			fprintf(stderr,
4127 				"Port %u has enabled GRO. Please disable GRO first\n",
4128 				port_id);
4129 			return;
4130 		}
4131 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
4132 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
4133 			gro_ports[port_id].param.max_flow_num =
4134 				GRO_DEFAULT_FLOW_NUM;
4135 			gro_ports[port_id].param.max_item_per_flow =
4136 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
4137 		}
4138 		gro_ports[port_id].enable = 1;
4139 	} else {
4140 		if (gro_ports[port_id].enable == 0) {
4141 			fprintf(stderr, "Port %u has disabled GRO\n", port_id);
4142 			return;
4143 		}
4144 		gro_ports[port_id].enable = 0;
4145 	}
4146 }
4147 
4148 void
4149 setup_gro_flush_cycles(uint8_t cycles)
4150 {
4151 	if (test_done == 0) {
4152 		fprintf(stderr,
4153 			"Before change flush interval for GRO, please stop forwarding first.\n");
4154 		return;
4155 	}
4156 
4157 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
4158 			GRO_DEFAULT_FLUSH_CYCLES) {
4159 		fprintf(stderr,
4160 			"The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n",
4161 			GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES);
4162 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
4163 	}
4164 
4165 	gro_flush_cycles = cycles;
4166 }
4167 
4168 void
4169 show_gro(portid_t port_id)
4170 {
4171 	struct rte_gro_param *param;
4172 	uint32_t max_pkts_num;
4173 
4174 	param = &gro_ports[port_id].param;
4175 
4176 	if (!rte_eth_dev_is_valid_port(port_id)) {
4177 		fprintf(stderr, "Invalid port id %u.\n", port_id);
4178 		return;
4179 	}
4180 	if (gro_ports[port_id].enable) {
4181 		printf("GRO type: TCP/IPv4\n");
4182 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
4183 			max_pkts_num = param->max_flow_num *
4184 				param->max_item_per_flow;
4185 		} else
4186 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
4187 		printf("Max number of packets to perform GRO: %u\n",
4188 				max_pkts_num);
4189 		printf("Flushing cycles: %u\n", gro_flush_cycles);
4190 	} else
4191 		printf("Port %u doesn't enable GRO.\n", port_id);
4192 }
4193 #endif /* RTE_LIB_GRO */
4194 
4195 #ifdef RTE_LIB_GSO
4196 void
4197 setup_gso(const char *mode, portid_t port_id)
4198 {
4199 	if (!rte_eth_dev_is_valid_port(port_id)) {
4200 		fprintf(stderr, "invalid port id %u\n", port_id);
4201 		return;
4202 	}
4203 	if (strcmp(mode, "on") == 0) {
4204 		if (test_done == 0) {
4205 			fprintf(stderr,
4206 				"before enabling GSO, please stop forwarding first\n");
4207 			return;
4208 		}
4209 		gso_ports[port_id].enable = 1;
4210 	} else if (strcmp(mode, "off") == 0) {
4211 		if (test_done == 0) {
4212 			fprintf(stderr,
4213 				"before disabling GSO, please stop forwarding first\n");
4214 			return;
4215 		}
4216 		gso_ports[port_id].enable = 0;
4217 	}
4218 }
4219 #endif /* RTE_LIB_GSO */
4220 
4221 char*
4222 list_pkt_forwarding_modes(void)
4223 {
4224 	static char fwd_modes[128] = "";
4225 	const char *separator = "|";
4226 	struct fwd_engine *fwd_eng;
4227 	unsigned i = 0;
4228 
4229 	if (strlen (fwd_modes) == 0) {
4230 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4231 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4232 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4233 			strncat(fwd_modes, separator,
4234 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4235 		}
4236 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4237 	}
4238 
4239 	return fwd_modes;
4240 }
4241 
4242 char*
4243 list_pkt_forwarding_retry_modes(void)
4244 {
4245 	static char fwd_modes[128] = "";
4246 	const char *separator = "|";
4247 	struct fwd_engine *fwd_eng;
4248 	unsigned i = 0;
4249 
4250 	if (strlen(fwd_modes) == 0) {
4251 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4252 			if (fwd_eng == &rx_only_engine)
4253 				continue;
4254 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4255 					sizeof(fwd_modes) -
4256 					strlen(fwd_modes) - 1);
4257 			strncat(fwd_modes, separator,
4258 					sizeof(fwd_modes) -
4259 					strlen(fwd_modes) - 1);
4260 		}
4261 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4262 	}
4263 
4264 	return fwd_modes;
4265 }
4266 
4267 void
4268 set_pkt_forwarding_mode(const char *fwd_mode_name)
4269 {
4270 	struct fwd_engine *fwd_eng;
4271 	unsigned i;
4272 
4273 	i = 0;
4274 	while ((fwd_eng = fwd_engines[i]) != NULL) {
4275 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
4276 			printf("Set %s packet forwarding mode%s\n",
4277 			       fwd_mode_name,
4278 			       retry_enabled == 0 ? "" : " with retry");
4279 			cur_fwd_eng = fwd_eng;
4280 			return;
4281 		}
4282 		i++;
4283 	}
4284 	fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name);
4285 }
4286 
4287 void
4288 add_rx_dump_callbacks(portid_t portid)
4289 {
4290 	struct rte_eth_dev_info dev_info;
4291 	uint16_t queue;
4292 	int ret;
4293 
4294 	if (port_id_is_invalid(portid, ENABLED_WARN))
4295 		return;
4296 
4297 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4298 	if (ret != 0)
4299 		return;
4300 
4301 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4302 		if (!ports[portid].rx_dump_cb[queue])
4303 			ports[portid].rx_dump_cb[queue] =
4304 				rte_eth_add_rx_callback(portid, queue,
4305 					dump_rx_pkts, NULL);
4306 }
4307 
4308 void
4309 add_tx_dump_callbacks(portid_t portid)
4310 {
4311 	struct rte_eth_dev_info dev_info;
4312 	uint16_t queue;
4313 	int ret;
4314 
4315 	if (port_id_is_invalid(portid, ENABLED_WARN))
4316 		return;
4317 
4318 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4319 	if (ret != 0)
4320 		return;
4321 
4322 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4323 		if (!ports[portid].tx_dump_cb[queue])
4324 			ports[portid].tx_dump_cb[queue] =
4325 				rte_eth_add_tx_callback(portid, queue,
4326 							dump_tx_pkts, NULL);
4327 }
4328 
4329 void
4330 remove_rx_dump_callbacks(portid_t portid)
4331 {
4332 	struct rte_eth_dev_info dev_info;
4333 	uint16_t queue;
4334 	int ret;
4335 
4336 	if (port_id_is_invalid(portid, ENABLED_WARN))
4337 		return;
4338 
4339 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4340 	if (ret != 0)
4341 		return;
4342 
4343 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4344 		if (ports[portid].rx_dump_cb[queue]) {
4345 			rte_eth_remove_rx_callback(portid, queue,
4346 				ports[portid].rx_dump_cb[queue]);
4347 			ports[portid].rx_dump_cb[queue] = NULL;
4348 		}
4349 }
4350 
4351 void
4352 remove_tx_dump_callbacks(portid_t portid)
4353 {
4354 	struct rte_eth_dev_info dev_info;
4355 	uint16_t queue;
4356 	int ret;
4357 
4358 	if (port_id_is_invalid(portid, ENABLED_WARN))
4359 		return;
4360 
4361 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4362 	if (ret != 0)
4363 		return;
4364 
4365 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4366 		if (ports[portid].tx_dump_cb[queue]) {
4367 			rte_eth_remove_tx_callback(portid, queue,
4368 				ports[portid].tx_dump_cb[queue]);
4369 			ports[portid].tx_dump_cb[queue] = NULL;
4370 		}
4371 }
4372 
4373 void
4374 configure_rxtx_dump_callbacks(uint16_t verbose)
4375 {
4376 	portid_t portid;
4377 
4378 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
4379 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
4380 		return;
4381 #endif
4382 
4383 	RTE_ETH_FOREACH_DEV(portid)
4384 	{
4385 		if (verbose == 1 || verbose > 2)
4386 			add_rx_dump_callbacks(portid);
4387 		else
4388 			remove_rx_dump_callbacks(portid);
4389 		if (verbose >= 2)
4390 			add_tx_dump_callbacks(portid);
4391 		else
4392 			remove_tx_dump_callbacks(portid);
4393 	}
4394 }
4395 
4396 void
4397 set_verbose_level(uint16_t vb_level)
4398 {
4399 	printf("Change verbose level from %u to %u\n",
4400 	       (unsigned int) verbose_level, (unsigned int) vb_level);
4401 	verbose_level = vb_level;
4402 	configure_rxtx_dump_callbacks(verbose_level);
4403 }
4404 
4405 void
4406 vlan_extend_set(portid_t port_id, int on)
4407 {
4408 	int diag;
4409 	int vlan_offload;
4410 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4411 
4412 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4413 		return;
4414 
4415 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4416 
4417 	if (on) {
4418 		vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD;
4419 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
4420 	} else {
4421 		vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD;
4422 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
4423 	}
4424 
4425 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4426 	if (diag < 0) {
4427 		fprintf(stderr,
4428 			"rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n",
4429 			port_id, on, diag);
4430 		return;
4431 	}
4432 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4433 }
4434 
4435 void
4436 rx_vlan_strip_set(portid_t port_id, int on)
4437 {
4438 	int diag;
4439 	int vlan_offload;
4440 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4441 
4442 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4443 		return;
4444 
4445 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4446 
4447 	if (on) {
4448 		vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD;
4449 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
4450 	} else {
4451 		vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD;
4452 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
4453 	}
4454 
4455 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4456 	if (diag < 0) {
4457 		fprintf(stderr,
4458 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4459 			__func__, port_id, on, diag);
4460 		return;
4461 	}
4462 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4463 }
4464 
4465 void
4466 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
4467 {
4468 	int diag;
4469 
4470 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4471 		return;
4472 
4473 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
4474 	if (diag < 0)
4475 		fprintf(stderr,
4476 			"%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n",
4477 			__func__, port_id, queue_id, on, diag);
4478 }
4479 
4480 void
4481 rx_vlan_filter_set(portid_t port_id, int on)
4482 {
4483 	int diag;
4484 	int vlan_offload;
4485 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4486 
4487 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4488 		return;
4489 
4490 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4491 
4492 	if (on) {
4493 		vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD;
4494 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
4495 	} else {
4496 		vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD;
4497 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
4498 	}
4499 
4500 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4501 	if (diag < 0) {
4502 		fprintf(stderr,
4503 			"%s(port_pi=%d, on=%d) failed diag=%d\n",
4504 			__func__, port_id, on, diag);
4505 		return;
4506 	}
4507 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4508 }
4509 
4510 void
4511 rx_vlan_qinq_strip_set(portid_t port_id, int on)
4512 {
4513 	int diag;
4514 	int vlan_offload;
4515 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4516 
4517 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4518 		return;
4519 
4520 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4521 
4522 	if (on) {
4523 		vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD;
4524 		port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
4525 	} else {
4526 		vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD;
4527 		port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
4528 	}
4529 
4530 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4531 	if (diag < 0) {
4532 		fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n",
4533 			__func__, port_id, on, diag);
4534 		return;
4535 	}
4536 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4537 }
4538 
4539 int
4540 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
4541 {
4542 	int diag;
4543 
4544 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4545 		return 1;
4546 	if (vlan_id_is_invalid(vlan_id))
4547 		return 1;
4548 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
4549 	if (diag == 0)
4550 		return 0;
4551 	fprintf(stderr,
4552 		"rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n",
4553 		port_id, vlan_id, on, diag);
4554 	return -1;
4555 }
4556 
4557 void
4558 rx_vlan_all_filter_set(portid_t port_id, int on)
4559 {
4560 	uint16_t vlan_id;
4561 
4562 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4563 		return;
4564 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
4565 		if (rx_vft_set(port_id, vlan_id, on))
4566 			break;
4567 	}
4568 }
4569 
4570 void
4571 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
4572 {
4573 	int diag;
4574 
4575 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4576 		return;
4577 
4578 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
4579 	if (diag == 0)
4580 		return;
4581 
4582 	fprintf(stderr,
4583 		"tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n",
4584 		port_id, vlan_type, tp_id, diag);
4585 }
4586 
4587 void
4588 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
4589 {
4590 	struct rte_eth_dev_info dev_info;
4591 	int ret;
4592 
4593 	if (vlan_id_is_invalid(vlan_id))
4594 		return;
4595 
4596 	if (ports[port_id].dev_conf.txmode.offloads &
4597 	    RTE_ETH_TX_OFFLOAD_QINQ_INSERT) {
4598 		fprintf(stderr, "Error, as QinQ has been enabled.\n");
4599 		return;
4600 	}
4601 
4602 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4603 	if (ret != 0)
4604 		return;
4605 
4606 	if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) {
4607 		fprintf(stderr,
4608 			"Error: vlan insert is not supported by port %d\n",
4609 			port_id);
4610 		return;
4611 	}
4612 
4613 	tx_vlan_reset(port_id);
4614 	ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT;
4615 	ports[port_id].tx_vlan_id = vlan_id;
4616 }
4617 
4618 void
4619 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
4620 {
4621 	struct rte_eth_dev_info dev_info;
4622 	int ret;
4623 
4624 	if (vlan_id_is_invalid(vlan_id))
4625 		return;
4626 	if (vlan_id_is_invalid(vlan_id_outer))
4627 		return;
4628 
4629 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4630 	if (ret != 0)
4631 		return;
4632 
4633 	if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) {
4634 		fprintf(stderr,
4635 			"Error: qinq insert not supported by port %d\n",
4636 			port_id);
4637 		return;
4638 	}
4639 
4640 	tx_vlan_reset(port_id);
4641 	ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
4642 						    RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
4643 	ports[port_id].tx_vlan_id = vlan_id;
4644 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
4645 }
4646 
4647 void
4648 tx_vlan_reset(portid_t port_id)
4649 {
4650 	ports[port_id].dev_conf.txmode.offloads &=
4651 				~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
4652 				  RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
4653 	ports[port_id].tx_vlan_id = 0;
4654 	ports[port_id].tx_vlan_id_outer = 0;
4655 }
4656 
4657 void
4658 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
4659 {
4660 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4661 		return;
4662 
4663 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
4664 }
4665 
4666 void
4667 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
4668 {
4669 	int ret;
4670 
4671 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4672 		return;
4673 
4674 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
4675 		return;
4676 
4677 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
4678 		fprintf(stderr, "map_value not in required range 0..%d\n",
4679 			RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
4680 		return;
4681 	}
4682 
4683 	if (!is_rx) { /* tx */
4684 		ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
4685 							     map_value);
4686 		if (ret) {
4687 			fprintf(stderr,
4688 				"failed to set tx queue stats mapping.\n");
4689 			return;
4690 		}
4691 	} else { /* rx */
4692 		ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
4693 							     map_value);
4694 		if (ret) {
4695 			fprintf(stderr,
4696 				"failed to set rx queue stats mapping.\n");
4697 			return;
4698 		}
4699 	}
4700 }
4701 
4702 void
4703 set_xstats_hide_zero(uint8_t on_off)
4704 {
4705 	xstats_hide_zero = on_off;
4706 }
4707 
4708 void
4709 set_record_core_cycles(uint8_t on_off)
4710 {
4711 	record_core_cycles = on_off;
4712 }
4713 
4714 void
4715 set_record_burst_stats(uint8_t on_off)
4716 {
4717 	record_burst_stats = on_off;
4718 }
4719 
4720 static char*
4721 flowtype_to_str(uint16_t flow_type)
4722 {
4723 	struct flow_type_info {
4724 		char str[32];
4725 		uint16_t ftype;
4726 	};
4727 
4728 	uint8_t i;
4729 	static struct flow_type_info flowtype_str_table[] = {
4730 		{"raw", RTE_ETH_FLOW_RAW},
4731 		{"ipv4", RTE_ETH_FLOW_IPV4},
4732 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
4733 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
4734 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
4735 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
4736 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
4737 		{"ipv6", RTE_ETH_FLOW_IPV6},
4738 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
4739 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
4740 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
4741 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
4742 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
4743 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
4744 		{"ipv6-ex", RTE_ETH_FLOW_IPV6_EX},
4745 		{"ipv6-tcp-ex", RTE_ETH_FLOW_IPV6_TCP_EX},
4746 		{"ipv6-udp-ex", RTE_ETH_FLOW_IPV6_UDP_EX},
4747 		{"port", RTE_ETH_FLOW_PORT},
4748 		{"vxlan", RTE_ETH_FLOW_VXLAN},
4749 		{"geneve", RTE_ETH_FLOW_GENEVE},
4750 		{"nvgre", RTE_ETH_FLOW_NVGRE},
4751 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
4752 		{"gtpu", RTE_ETH_FLOW_GTPU},
4753 	};
4754 
4755 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
4756 		if (flowtype_str_table[i].ftype == flow_type)
4757 			return flowtype_str_table[i].str;
4758 	}
4759 
4760 	return NULL;
4761 }
4762 
4763 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
4764 
4765 static inline void
4766 print_fdir_mask(struct rte_eth_fdir_masks *mask)
4767 {
4768 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
4769 
4770 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4771 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
4772 			" tunnel_id: 0x%08x",
4773 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
4774 			rte_be_to_cpu_32(mask->tunnel_id_mask));
4775 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
4776 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
4777 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
4778 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
4779 
4780 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
4781 			rte_be_to_cpu_16(mask->src_port_mask),
4782 			rte_be_to_cpu_16(mask->dst_port_mask));
4783 
4784 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4785 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
4786 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
4787 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
4788 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
4789 
4790 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4791 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
4792 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
4793 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
4794 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
4795 	}
4796 
4797 	printf("\n");
4798 }
4799 
4800 static inline void
4801 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4802 {
4803 	struct rte_eth_flex_payload_cfg *cfg;
4804 	uint32_t i, j;
4805 
4806 	for (i = 0; i < flex_conf->nb_payloads; i++) {
4807 		cfg = &flex_conf->flex_set[i];
4808 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
4809 			printf("\n    RAW:  ");
4810 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
4811 			printf("\n    L2_PAYLOAD:  ");
4812 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
4813 			printf("\n    L3_PAYLOAD:  ");
4814 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
4815 			printf("\n    L4_PAYLOAD:  ");
4816 		else
4817 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
4818 		for (j = 0; j < num; j++)
4819 			printf("  %-5u", cfg->src_offset[j]);
4820 	}
4821 	printf("\n");
4822 }
4823 
4824 static inline void
4825 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4826 {
4827 	struct rte_eth_fdir_flex_mask *mask;
4828 	uint32_t i, j;
4829 	char *p;
4830 
4831 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
4832 		mask = &flex_conf->flex_mask[i];
4833 		p = flowtype_to_str(mask->flow_type);
4834 		printf("\n    %s:\t", p ? p : "unknown");
4835 		for (j = 0; j < num; j++)
4836 			printf(" %02x", mask->mask[j]);
4837 	}
4838 	printf("\n");
4839 }
4840 
4841 static inline void
4842 print_fdir_flow_type(uint32_t flow_types_mask)
4843 {
4844 	int i;
4845 	char *p;
4846 
4847 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
4848 		if (!(flow_types_mask & (1 << i)))
4849 			continue;
4850 		p = flowtype_to_str(i);
4851 		if (p)
4852 			printf(" %s", p);
4853 		else
4854 			printf(" unknown");
4855 	}
4856 	printf("\n");
4857 }
4858 
4859 static int
4860 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
4861 		    struct rte_eth_fdir_stats *fdir_stat)
4862 {
4863 	int ret = -ENOTSUP;
4864 
4865 #ifdef RTE_NET_I40E
4866 	if (ret == -ENOTSUP) {
4867 		ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
4868 		if (!ret)
4869 			ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
4870 	}
4871 #endif
4872 #ifdef RTE_NET_IXGBE
4873 	if (ret == -ENOTSUP) {
4874 		ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
4875 		if (!ret)
4876 			ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
4877 	}
4878 #endif
4879 	switch (ret) {
4880 	case 0:
4881 		break;
4882 	case -ENOTSUP:
4883 		fprintf(stderr, "\n FDIR is not supported on port %-2d\n",
4884 			port_id);
4885 		break;
4886 	default:
4887 		fprintf(stderr, "programming error: (%s)\n", strerror(-ret));
4888 		break;
4889 	}
4890 	return ret;
4891 }
4892 
4893 void
4894 fdir_get_infos(portid_t port_id)
4895 {
4896 	struct rte_eth_fdir_stats fdir_stat;
4897 	struct rte_eth_fdir_info fdir_info;
4898 
4899 	static const char *fdir_stats_border = "########################";
4900 
4901 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4902 		return;
4903 
4904 	memset(&fdir_info, 0, sizeof(fdir_info));
4905 	memset(&fdir_stat, 0, sizeof(fdir_stat));
4906 	if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
4907 		return;
4908 
4909 	printf("\n  %s FDIR infos for port %-2d     %s\n",
4910 	       fdir_stats_border, port_id, fdir_stats_border);
4911 	printf("  MODE: ");
4912 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
4913 		printf("  PERFECT\n");
4914 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
4915 		printf("  PERFECT-MAC-VLAN\n");
4916 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4917 		printf("  PERFECT-TUNNEL\n");
4918 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
4919 		printf("  SIGNATURE\n");
4920 	else
4921 		printf("  DISABLE\n");
4922 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
4923 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
4924 		printf("  SUPPORTED FLOW TYPE: ");
4925 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
4926 	}
4927 	printf("  FLEX PAYLOAD INFO:\n");
4928 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
4929 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
4930 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
4931 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
4932 		fdir_info.flex_payload_unit,
4933 		fdir_info.max_flex_payload_segment_num,
4934 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
4935 	printf("  MASK: ");
4936 	print_fdir_mask(&fdir_info.mask);
4937 	if (fdir_info.flex_conf.nb_payloads > 0) {
4938 		printf("  FLEX PAYLOAD SRC OFFSET:");
4939 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4940 	}
4941 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
4942 		printf("  FLEX MASK CFG:");
4943 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4944 	}
4945 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
4946 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
4947 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
4948 	       fdir_info.guarant_spc, fdir_info.best_spc);
4949 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
4950 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
4951 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
4952 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
4953 	       fdir_stat.collision, fdir_stat.free,
4954 	       fdir_stat.maxhash, fdir_stat.maxlen,
4955 	       fdir_stat.add, fdir_stat.remove,
4956 	       fdir_stat.f_add, fdir_stat.f_remove);
4957 	printf("  %s############################%s\n",
4958 	       fdir_stats_border, fdir_stats_border);
4959 }
4960 
4961 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */
4962 
4963 void
4964 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
4965 {
4966 	struct rte_port *port;
4967 	struct rte_eth_fdir_flex_conf *flex_conf;
4968 	int i, idx = 0;
4969 
4970 	port = &ports[port_id];
4971 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4972 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
4973 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
4974 			idx = i;
4975 			break;
4976 		}
4977 	}
4978 	if (i >= RTE_ETH_FLOW_MAX) {
4979 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
4980 			idx = flex_conf->nb_flexmasks;
4981 			flex_conf->nb_flexmasks++;
4982 		} else {
4983 			fprintf(stderr,
4984 				"The flex mask table is full. Can not set flex mask for flow_type(%u).",
4985 				cfg->flow_type);
4986 			return;
4987 		}
4988 	}
4989 	rte_memcpy(&flex_conf->flex_mask[idx],
4990 			 cfg,
4991 			 sizeof(struct rte_eth_fdir_flex_mask));
4992 }
4993 
4994 void
4995 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
4996 {
4997 	struct rte_port *port;
4998 	struct rte_eth_fdir_flex_conf *flex_conf;
4999 	int i, idx = 0;
5000 
5001 	port = &ports[port_id];
5002 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
5003 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
5004 		if (cfg->type == flex_conf->flex_set[i].type) {
5005 			idx = i;
5006 			break;
5007 		}
5008 	}
5009 	if (i >= RTE_ETH_PAYLOAD_MAX) {
5010 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
5011 			idx = flex_conf->nb_payloads;
5012 			flex_conf->nb_payloads++;
5013 		} else {
5014 			fprintf(stderr,
5015 				"The flex payload table is full. Can not set flex payload for type(%u).",
5016 				cfg->type);
5017 			return;
5018 		}
5019 	}
5020 	rte_memcpy(&flex_conf->flex_set[idx],
5021 			 cfg,
5022 			 sizeof(struct rte_eth_flex_payload_cfg));
5023 
5024 }
5025 
5026 void
5027 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
5028 {
5029 #ifdef RTE_NET_IXGBE
5030 	int diag;
5031 
5032 	if (is_rx)
5033 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
5034 	else
5035 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
5036 
5037 	if (diag == 0)
5038 		return;
5039 	fprintf(stderr,
5040 		"rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
5041 		is_rx ? "rx" : "tx", port_id, diag);
5042 	return;
5043 #endif
5044 	fprintf(stderr, "VF %s setting not supported for port %d\n",
5045 		is_rx ? "Rx" : "Tx", port_id);
5046 	RTE_SET_USED(vf);
5047 	RTE_SET_USED(on);
5048 }
5049 
5050 int
5051 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
5052 {
5053 	int diag;
5054 	struct rte_eth_link link;
5055 	int ret;
5056 
5057 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5058 		return 1;
5059 	ret = eth_link_get_nowait_print_err(port_id, &link);
5060 	if (ret < 0)
5061 		return 1;
5062 	if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN &&
5063 	    rate > link.link_speed) {
5064 		fprintf(stderr,
5065 			"Invalid rate value:%u bigger than link speed: %u\n",
5066 			rate, link.link_speed);
5067 		return 1;
5068 	}
5069 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
5070 	if (diag == 0)
5071 		return diag;
5072 	fprintf(stderr,
5073 		"rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
5074 		port_id, diag);
5075 	return diag;
5076 }
5077 
5078 int
5079 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
5080 {
5081 	int diag = -ENOTSUP;
5082 
5083 	RTE_SET_USED(vf);
5084 	RTE_SET_USED(rate);
5085 	RTE_SET_USED(q_msk);
5086 
5087 #ifdef RTE_NET_IXGBE
5088 	if (diag == -ENOTSUP)
5089 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
5090 						       q_msk);
5091 #endif
5092 #ifdef RTE_NET_BNXT
5093 	if (diag == -ENOTSUP)
5094 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
5095 #endif
5096 	if (diag == 0)
5097 		return diag;
5098 
5099 	fprintf(stderr,
5100 		"%s for port_id=%d failed diag=%d\n",
5101 		__func__, port_id, diag);
5102 	return diag;
5103 }
5104 
5105 /*
5106  * Functions to manage the set of filtered Multicast MAC addresses.
5107  *
5108  * A pool of filtered multicast MAC addresses is associated with each port.
5109  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
5110  * The address of the pool and the number of valid multicast MAC addresses
5111  * recorded in the pool are stored in the fields "mc_addr_pool" and
5112  * "mc_addr_nb" of the "rte_port" data structure.
5113  *
5114  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
5115  * to be supplied a contiguous array of multicast MAC addresses.
5116  * To comply with this constraint, the set of multicast addresses recorded
5117  * into the pool are systematically compacted at the beginning of the pool.
5118  * Hence, when a multicast address is removed from the pool, all following
5119  * addresses, if any, are copied back to keep the set contiguous.
5120  */
5121 #define MCAST_POOL_INC 32
5122 
5123 static int
5124 mcast_addr_pool_extend(struct rte_port *port)
5125 {
5126 	struct rte_ether_addr *mc_pool;
5127 	size_t mc_pool_size;
5128 
5129 	/*
5130 	 * If a free entry is available at the end of the pool, just
5131 	 * increment the number of recorded multicast addresses.
5132 	 */
5133 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
5134 		port->mc_addr_nb++;
5135 		return 0;
5136 	}
5137 
5138 	/*
5139 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
5140 	 * The previous test guarantees that port->mc_addr_nb is a multiple
5141 	 * of MCAST_POOL_INC.
5142 	 */
5143 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
5144 						    MCAST_POOL_INC);
5145 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
5146 						mc_pool_size);
5147 	if (mc_pool == NULL) {
5148 		fprintf(stderr,
5149 			"allocation of pool of %u multicast addresses failed\n",
5150 			port->mc_addr_nb + MCAST_POOL_INC);
5151 		return -ENOMEM;
5152 	}
5153 
5154 	port->mc_addr_pool = mc_pool;
5155 	port->mc_addr_nb++;
5156 	return 0;
5157 
5158 }
5159 
5160 static void
5161 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
5162 {
5163 	if (mcast_addr_pool_extend(port) != 0)
5164 		return;
5165 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
5166 }
5167 
5168 static void
5169 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
5170 {
5171 	port->mc_addr_nb--;
5172 	if (addr_idx == port->mc_addr_nb) {
5173 		/* No need to recompact the set of multicast addresses. */
5174 		if (port->mc_addr_nb == 0) {
5175 			/* free the pool of multicast addresses. */
5176 			free(port->mc_addr_pool);
5177 			port->mc_addr_pool = NULL;
5178 		}
5179 		return;
5180 	}
5181 	memmove(&port->mc_addr_pool[addr_idx],
5182 		&port->mc_addr_pool[addr_idx + 1],
5183 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
5184 }
5185 
5186 static int
5187 eth_port_multicast_addr_list_set(portid_t port_id)
5188 {
5189 	struct rte_port *port;
5190 	int diag;
5191 
5192 	port = &ports[port_id];
5193 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
5194 					    port->mc_addr_nb);
5195 	if (diag < 0)
5196 		fprintf(stderr,
5197 			"rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
5198 			port_id, port->mc_addr_nb, diag);
5199 
5200 	return diag;
5201 }
5202 
5203 void
5204 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
5205 {
5206 	struct rte_port *port;
5207 	uint32_t i;
5208 
5209 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5210 		return;
5211 
5212 	port = &ports[port_id];
5213 
5214 	/*
5215 	 * Check that the added multicast MAC address is not already recorded
5216 	 * in the pool of multicast addresses.
5217 	 */
5218 	for (i = 0; i < port->mc_addr_nb; i++) {
5219 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
5220 			fprintf(stderr,
5221 				"multicast address already filtered by port\n");
5222 			return;
5223 		}
5224 	}
5225 
5226 	mcast_addr_pool_append(port, mc_addr);
5227 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5228 		/* Rollback on failure, remove the address from the pool */
5229 		mcast_addr_pool_remove(port, i);
5230 }
5231 
5232 void
5233 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
5234 {
5235 	struct rte_port *port;
5236 	uint32_t i;
5237 
5238 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5239 		return;
5240 
5241 	port = &ports[port_id];
5242 
5243 	/*
5244 	 * Search the pool of multicast MAC addresses for the removed address.
5245 	 */
5246 	for (i = 0; i < port->mc_addr_nb; i++) {
5247 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
5248 			break;
5249 	}
5250 	if (i == port->mc_addr_nb) {
5251 		fprintf(stderr, "multicast address not filtered by port %d\n",
5252 			port_id);
5253 		return;
5254 	}
5255 
5256 	mcast_addr_pool_remove(port, i);
5257 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5258 		/* Rollback on failure, add the address back into the pool */
5259 		mcast_addr_pool_append(port, mc_addr);
5260 }
5261 
5262 void
5263 port_dcb_info_display(portid_t port_id)
5264 {
5265 	struct rte_eth_dcb_info dcb_info;
5266 	uint16_t i;
5267 	int ret;
5268 	static const char *border = "================";
5269 
5270 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5271 		return;
5272 
5273 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
5274 	if (ret) {
5275 		fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n",
5276 			port_id);
5277 		return;
5278 	}
5279 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
5280 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
5281 	printf("\n  TC :        ");
5282 	for (i = 0; i < dcb_info.nb_tcs; i++)
5283 		printf("\t%4d", i);
5284 	printf("\n  Priority :  ");
5285 	for (i = 0; i < dcb_info.nb_tcs; i++)
5286 		printf("\t%4d", dcb_info.prio_tc[i]);
5287 	printf("\n  BW percent :");
5288 	for (i = 0; i < dcb_info.nb_tcs; i++)
5289 		printf("\t%4d%%", dcb_info.tc_bws[i]);
5290 	printf("\n  RXQ base :  ");
5291 	for (i = 0; i < dcb_info.nb_tcs; i++)
5292 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
5293 	printf("\n  RXQ number :");
5294 	for (i = 0; i < dcb_info.nb_tcs; i++)
5295 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
5296 	printf("\n  TXQ base :  ");
5297 	for (i = 0; i < dcb_info.nb_tcs; i++)
5298 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
5299 	printf("\n  TXQ number :");
5300 	for (i = 0; i < dcb_info.nb_tcs; i++)
5301 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
5302 	printf("\n");
5303 }
5304 
5305 uint8_t *
5306 open_file(const char *file_path, uint32_t *size)
5307 {
5308 	int fd = open(file_path, O_RDONLY);
5309 	off_t pkg_size;
5310 	uint8_t *buf = NULL;
5311 	int ret = 0;
5312 	struct stat st_buf;
5313 
5314 	if (size)
5315 		*size = 0;
5316 
5317 	if (fd == -1) {
5318 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5319 		return buf;
5320 	}
5321 
5322 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
5323 		close(fd);
5324 		fprintf(stderr, "%s: File operations failed\n", __func__);
5325 		return buf;
5326 	}
5327 
5328 	pkg_size = st_buf.st_size;
5329 	if (pkg_size < 0) {
5330 		close(fd);
5331 		fprintf(stderr, "%s: File operations failed\n", __func__);
5332 		return buf;
5333 	}
5334 
5335 	buf = (uint8_t *)malloc(pkg_size);
5336 	if (!buf) {
5337 		close(fd);
5338 		fprintf(stderr, "%s: Failed to malloc memory\n", __func__);
5339 		return buf;
5340 	}
5341 
5342 	ret = read(fd, buf, pkg_size);
5343 	if (ret < 0) {
5344 		close(fd);
5345 		fprintf(stderr, "%s: File read operation failed\n", __func__);
5346 		close_file(buf);
5347 		return NULL;
5348 	}
5349 
5350 	if (size)
5351 		*size = pkg_size;
5352 
5353 	close(fd);
5354 
5355 	return buf;
5356 }
5357 
5358 int
5359 save_file(const char *file_path, uint8_t *buf, uint32_t size)
5360 {
5361 	FILE *fh = fopen(file_path, "wb");
5362 
5363 	if (fh == NULL) {
5364 		fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
5365 		return -1;
5366 	}
5367 
5368 	if (fwrite(buf, 1, size, fh) != size) {
5369 		fclose(fh);
5370 		fprintf(stderr, "%s: File write operation failed\n", __func__);
5371 		return -1;
5372 	}
5373 
5374 	fclose(fh);
5375 
5376 	return 0;
5377 }
5378 
5379 int
5380 close_file(uint8_t *buf)
5381 {
5382 	if (buf) {
5383 		free((void *)buf);
5384 		return 0;
5385 	}
5386 
5387 	return -1;
5388 }
5389 
5390 void
5391 port_queue_region_info_display(portid_t port_id, void *buf)
5392 {
5393 #ifdef RTE_NET_I40E
5394 	uint16_t i, j;
5395 	struct rte_pmd_i40e_queue_regions *info =
5396 		(struct rte_pmd_i40e_queue_regions *)buf;
5397 	static const char *queue_region_info_stats_border = "-------";
5398 
5399 	if (!info->queue_region_number)
5400 		printf("there is no region has been set before");
5401 
5402 	printf("\n	%s All queue region info for port=%2d %s",
5403 			queue_region_info_stats_border, port_id,
5404 			queue_region_info_stats_border);
5405 	printf("\n	queue_region_number: %-14u \n",
5406 			info->queue_region_number);
5407 
5408 	for (i = 0; i < info->queue_region_number; i++) {
5409 		printf("\n	region_id: %-14u queue_number: %-14u "
5410 			"queue_start_index: %-14u \n",
5411 			info->region[i].region_id,
5412 			info->region[i].queue_num,
5413 			info->region[i].queue_start_index);
5414 
5415 		printf("  user_priority_num is	%-14u :",
5416 					info->region[i].user_priority_num);
5417 		for (j = 0; j < info->region[i].user_priority_num; j++)
5418 			printf(" %-14u ", info->region[i].user_priority[j]);
5419 
5420 		printf("\n	flowtype_num is  %-14u :",
5421 				info->region[i].flowtype_num);
5422 		for (j = 0; j < info->region[i].flowtype_num; j++)
5423 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
5424 	}
5425 #else
5426 	RTE_SET_USED(port_id);
5427 	RTE_SET_USED(buf);
5428 #endif
5429 
5430 	printf("\n\n");
5431 }
5432 
5433 void
5434 show_macs(portid_t port_id)
5435 {
5436 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5437 	struct rte_eth_dev_info dev_info;
5438 	int32_t i, rc, num_macs = 0;
5439 
5440 	if (eth_dev_info_get_print_err(port_id, &dev_info))
5441 		return;
5442 
5443 	struct rte_ether_addr addr[dev_info.max_mac_addrs];
5444 	rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs);
5445 	if (rc < 0)
5446 		return;
5447 
5448 	for (i = 0; i < rc; i++) {
5449 
5450 		/* skip zero address */
5451 		if (rte_is_zero_ether_addr(&addr[i]))
5452 			continue;
5453 
5454 		num_macs++;
5455 	}
5456 
5457 	printf("Number of MAC address added: %d\n", num_macs);
5458 
5459 	for (i = 0; i < rc; i++) {
5460 
5461 		/* skip zero address */
5462 		if (rte_is_zero_ether_addr(&addr[i]))
5463 			continue;
5464 
5465 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]);
5466 		printf("  %s\n", buf);
5467 	}
5468 }
5469 
5470 void
5471 show_mcast_macs(portid_t port_id)
5472 {
5473 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5474 	struct rte_ether_addr *addr;
5475 	struct rte_port *port;
5476 	uint32_t i;
5477 
5478 	port = &ports[port_id];
5479 
5480 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
5481 
5482 	for (i = 0; i < port->mc_addr_nb; i++) {
5483 		addr = &port->mc_addr_pool[i];
5484 
5485 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5486 		printf("  %s\n", buf);
5487 	}
5488 }
5489