1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <string.h> 10 #include <stdint.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/types.h> 15 #include <sys/stat.h> 16 #include <fcntl.h> 17 #include <unistd.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_debug.h> 22 #include <rte_log.h> 23 #include <rte_memory.h> 24 #include <rte_memcpy.h> 25 #include <rte_memzone.h> 26 #include <rte_launch.h> 27 #include <rte_eal.h> 28 #include <rte_per_lcore.h> 29 #include <rte_lcore.h> 30 #include <rte_atomic.h> 31 #include <rte_branch_prediction.h> 32 #include <rte_mempool.h> 33 #include <rte_mbuf.h> 34 #include <rte_interrupts.h> 35 #include <rte_pci.h> 36 #include <rte_ether.h> 37 #include <rte_ethdev.h> 38 #include <rte_string_fns.h> 39 #include <rte_cycles.h> 40 #include <rte_flow.h> 41 #include <rte_errno.h> 42 #ifdef RTE_LIBRTE_IXGBE_PMD 43 #include <rte_pmd_ixgbe.h> 44 #endif 45 #ifdef RTE_LIBRTE_I40E_PMD 46 #include <rte_pmd_i40e.h> 47 #endif 48 #ifdef RTE_LIBRTE_BNXT_PMD 49 #include <rte_pmd_bnxt.h> 50 #endif 51 #include <rte_gro.h> 52 #include <cmdline_parse_etheraddr.h> 53 #include <rte_config.h> 54 55 #include "testpmd.h" 56 57 static char *flowtype_to_str(uint16_t flow_type); 58 59 static const struct { 60 enum tx_pkt_split split; 61 const char *name; 62 } tx_split_name[] = { 63 { 64 .split = TX_PKT_SPLIT_OFF, 65 .name = "off", 66 }, 67 { 68 .split = TX_PKT_SPLIT_ON, 69 .name = "on", 70 }, 71 { 72 .split = TX_PKT_SPLIT_RND, 73 .name = "rand", 74 }, 75 }; 76 77 const struct rss_type_info rss_type_table[] = { 78 { "all", ETH_RSS_IP | ETH_RSS_TCP | 79 ETH_RSS_UDP | ETH_RSS_SCTP | 80 ETH_RSS_L2_PAYLOAD }, 81 { "none", 0 }, 82 { "ipv4", ETH_RSS_IPV4 }, 83 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 84 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 85 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 86 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 87 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 88 { "ipv6", ETH_RSS_IPV6 }, 89 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 90 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 91 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 92 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 93 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 94 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 95 { "ipv6-ex", ETH_RSS_IPV6_EX }, 96 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 97 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 98 { "port", ETH_RSS_PORT }, 99 { "vxlan", ETH_RSS_VXLAN }, 100 { "geneve", ETH_RSS_GENEVE }, 101 { "nvgre", ETH_RSS_NVGRE }, 102 { "ip", ETH_RSS_IP }, 103 { "udp", ETH_RSS_UDP }, 104 { "tcp", ETH_RSS_TCP }, 105 { "sctp", ETH_RSS_SCTP }, 106 { "tunnel", ETH_RSS_TUNNEL }, 107 { NULL, 0 }, 108 }; 109 110 static void 111 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 112 { 113 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 114 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 115 printf("%s%s", name, buf); 116 } 117 118 void 119 nic_stats_display(portid_t port_id) 120 { 121 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 122 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 123 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 124 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 125 uint64_t mpps_rx, mpps_tx; 126 struct rte_eth_stats stats; 127 struct rte_port *port = &ports[port_id]; 128 uint8_t i; 129 130 static const char *nic_stats_border = "########################"; 131 132 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 133 print_valid_ports(); 134 return; 135 } 136 rte_eth_stats_get(port_id, &stats); 137 printf("\n %s NIC statistics for port %-2d %s\n", 138 nic_stats_border, port_id, nic_stats_border); 139 140 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 141 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 142 "%-"PRIu64"\n", 143 stats.ipackets, stats.imissed, stats.ibytes); 144 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 145 printf(" RX-nombuf: %-10"PRIu64"\n", 146 stats.rx_nombuf); 147 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 148 "%-"PRIu64"\n", 149 stats.opackets, stats.oerrors, stats.obytes); 150 } 151 else { 152 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 153 " RX-bytes: %10"PRIu64"\n", 154 stats.ipackets, stats.ierrors, stats.ibytes); 155 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 156 printf(" RX-nombuf: %10"PRIu64"\n", 157 stats.rx_nombuf); 158 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 159 " TX-bytes: %10"PRIu64"\n", 160 stats.opackets, stats.oerrors, stats.obytes); 161 } 162 163 if (port->rx_queue_stats_mapping_enabled) { 164 printf("\n"); 165 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 166 printf(" Stats reg %2d RX-packets: %10"PRIu64 167 " RX-errors: %10"PRIu64 168 " RX-bytes: %10"PRIu64"\n", 169 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 170 } 171 } 172 if (port->tx_queue_stats_mapping_enabled) { 173 printf("\n"); 174 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 175 printf(" Stats reg %2d TX-packets: %10"PRIu64 176 " TX-bytes: %10"PRIu64"\n", 177 i, stats.q_opackets[i], stats.q_obytes[i]); 178 } 179 } 180 181 diff_cycles = prev_cycles[port_id]; 182 prev_cycles[port_id] = rte_rdtsc(); 183 if (diff_cycles > 0) 184 diff_cycles = prev_cycles[port_id] - diff_cycles; 185 186 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 187 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 188 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 189 (stats.opackets - prev_pkts_tx[port_id]) : 0; 190 prev_pkts_rx[port_id] = stats.ipackets; 191 prev_pkts_tx[port_id] = stats.opackets; 192 mpps_rx = diff_cycles > 0 ? 193 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 194 mpps_tx = diff_cycles > 0 ? 195 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 196 printf("\n Throughput (since last show)\n"); 197 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 198 mpps_rx, mpps_tx); 199 200 printf(" %s############################%s\n", 201 nic_stats_border, nic_stats_border); 202 } 203 204 void 205 nic_stats_clear(portid_t port_id) 206 { 207 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 208 print_valid_ports(); 209 return; 210 } 211 rte_eth_stats_reset(port_id); 212 printf("\n NIC statistics for port %d cleared\n", port_id); 213 } 214 215 void 216 nic_xstats_display(portid_t port_id) 217 { 218 struct rte_eth_xstat *xstats; 219 int cnt_xstats, idx_xstat; 220 struct rte_eth_xstat_name *xstats_names; 221 222 printf("###### NIC extended statistics for port %-2d\n", port_id); 223 if (!rte_eth_dev_is_valid_port(port_id)) { 224 printf("Error: Invalid port number %i\n", port_id); 225 return; 226 } 227 228 /* Get count */ 229 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 230 if (cnt_xstats < 0) { 231 printf("Error: Cannot get count of xstats\n"); 232 return; 233 } 234 235 /* Get id-name lookup table */ 236 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 237 if (xstats_names == NULL) { 238 printf("Cannot allocate memory for xstats lookup\n"); 239 return; 240 } 241 if (cnt_xstats != rte_eth_xstats_get_names( 242 port_id, xstats_names, cnt_xstats)) { 243 printf("Error: Cannot get xstats lookup\n"); 244 free(xstats_names); 245 return; 246 } 247 248 /* Get stats themselves */ 249 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 250 if (xstats == NULL) { 251 printf("Cannot allocate memory for xstats\n"); 252 free(xstats_names); 253 return; 254 } 255 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 256 printf("Error: Unable to get xstats\n"); 257 free(xstats_names); 258 free(xstats); 259 return; 260 } 261 262 /* Display xstats */ 263 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 264 if (xstats_hide_zero && !xstats[idx_xstat].value) 265 continue; 266 printf("%s: %"PRIu64"\n", 267 xstats_names[idx_xstat].name, 268 xstats[idx_xstat].value); 269 } 270 free(xstats_names); 271 free(xstats); 272 } 273 274 void 275 nic_xstats_clear(portid_t port_id) 276 { 277 rte_eth_xstats_reset(port_id); 278 } 279 280 void 281 nic_stats_mapping_display(portid_t port_id) 282 { 283 struct rte_port *port = &ports[port_id]; 284 uint16_t i; 285 286 static const char *nic_stats_mapping_border = "########################"; 287 288 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 289 print_valid_ports(); 290 return; 291 } 292 293 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 294 printf("Port id %d - either does not support queue statistic mapping or" 295 " no queue statistic mapping set\n", port_id); 296 return; 297 } 298 299 printf("\n %s NIC statistics mapping for port %-2d %s\n", 300 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 301 302 if (port->rx_queue_stats_mapping_enabled) { 303 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 304 if (rx_queue_stats_mappings[i].port_id == port_id) { 305 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 306 rx_queue_stats_mappings[i].queue_id, 307 rx_queue_stats_mappings[i].stats_counter_id); 308 } 309 } 310 printf("\n"); 311 } 312 313 314 if (port->tx_queue_stats_mapping_enabled) { 315 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 316 if (tx_queue_stats_mappings[i].port_id == port_id) { 317 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 318 tx_queue_stats_mappings[i].queue_id, 319 tx_queue_stats_mappings[i].stats_counter_id); 320 } 321 } 322 } 323 324 printf(" %s####################################%s\n", 325 nic_stats_mapping_border, nic_stats_mapping_border); 326 } 327 328 void 329 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 330 { 331 struct rte_eth_rxq_info qinfo; 332 int32_t rc; 333 static const char *info_border = "*********************"; 334 335 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 336 if (rc != 0) { 337 printf("Failed to retrieve information for port: %u, " 338 "RX queue: %hu\nerror desc: %s(%d)\n", 339 port_id, queue_id, strerror(-rc), rc); 340 return; 341 } 342 343 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 344 info_border, port_id, queue_id, info_border); 345 346 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 347 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 348 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 349 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 350 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 351 printf("\nRX drop packets: %s", 352 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 353 printf("\nRX deferred start: %s", 354 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 355 printf("\nRX scattered packets: %s", 356 (qinfo.scattered_rx != 0) ? "on" : "off"); 357 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 358 printf("\n"); 359 } 360 361 void 362 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 363 { 364 struct rte_eth_txq_info qinfo; 365 int32_t rc; 366 static const char *info_border = "*********************"; 367 368 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 369 if (rc != 0) { 370 printf("Failed to retrieve information for port: %u, " 371 "TX queue: %hu\nerror desc: %s(%d)\n", 372 port_id, queue_id, strerror(-rc), rc); 373 return; 374 } 375 376 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 377 info_border, port_id, queue_id, info_border); 378 379 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 380 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 381 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 382 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 383 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 384 printf("\nTX deferred start: %s", 385 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 386 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 387 printf("\n"); 388 } 389 390 void 391 port_infos_display(portid_t port_id) 392 { 393 struct rte_port *port; 394 struct rte_ether_addr mac_addr; 395 struct rte_eth_link link; 396 struct rte_eth_dev_info dev_info; 397 int vlan_offload; 398 struct rte_mempool * mp; 399 static const char *info_border = "*********************"; 400 uint16_t mtu; 401 char name[RTE_ETH_NAME_MAX_LEN]; 402 403 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 404 print_valid_ports(); 405 return; 406 } 407 port = &ports[port_id]; 408 rte_eth_link_get_nowait(port_id, &link); 409 memset(&dev_info, 0, sizeof(dev_info)); 410 rte_eth_dev_info_get(port_id, &dev_info); 411 printf("\n%s Infos for port %-2d %s\n", 412 info_border, port_id, info_border); 413 rte_eth_macaddr_get(port_id, &mac_addr); 414 print_ethaddr("MAC address: ", &mac_addr); 415 rte_eth_dev_get_name_by_port(port_id, name); 416 printf("\nDevice name: %s", name); 417 printf("\nDriver name: %s", dev_info.driver_name); 418 if (dev_info.device->devargs && dev_info.device->devargs->args) 419 printf("\nDevargs: %s", dev_info.device->devargs->args); 420 printf("\nConnect to socket: %u", port->socket_id); 421 422 if (port_numa[port_id] != NUMA_NO_CONFIG) { 423 mp = mbuf_pool_find(port_numa[port_id]); 424 if (mp) 425 printf("\nmemory allocation on the socket: %d", 426 port_numa[port_id]); 427 } else 428 printf("\nmemory allocation on the socket: %u",port->socket_id); 429 430 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 431 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 432 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 433 ("full-duplex") : ("half-duplex")); 434 435 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 436 printf("MTU: %u\n", mtu); 437 438 printf("Promiscuous mode: %s\n", 439 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 440 printf("Allmulticast mode: %s\n", 441 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 442 printf("Maximum number of MAC addresses: %u\n", 443 (unsigned int)(port->dev_info.max_mac_addrs)); 444 printf("Maximum number of MAC addresses of hash filtering: %u\n", 445 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 446 447 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 448 if (vlan_offload >= 0){ 449 printf("VLAN offload: \n"); 450 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 451 printf(" strip on \n"); 452 else 453 printf(" strip off \n"); 454 455 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 456 printf(" filter on \n"); 457 else 458 printf(" filter off \n"); 459 460 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 461 printf(" qinq(extend) on \n"); 462 else 463 printf(" qinq(extend) off \n"); 464 } 465 466 if (dev_info.hash_key_size > 0) 467 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 468 if (dev_info.reta_size > 0) 469 printf("Redirection table size: %u\n", dev_info.reta_size); 470 if (!dev_info.flow_type_rss_offloads) 471 printf("No RSS offload flow type is supported.\n"); 472 else { 473 uint16_t i; 474 char *p; 475 476 printf("Supported RSS offload flow types:\n"); 477 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 478 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 479 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 480 continue; 481 p = flowtype_to_str(i); 482 if (p) 483 printf(" %s\n", p); 484 else 485 printf(" user defined %d\n", i); 486 } 487 } 488 489 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 490 printf("Maximum configurable length of RX packet: %u\n", 491 dev_info.max_rx_pktlen); 492 if (dev_info.max_vfs) 493 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 494 if (dev_info.max_vmdq_pools) 495 printf("Maximum number of VMDq pools: %u\n", 496 dev_info.max_vmdq_pools); 497 498 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 499 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 500 printf("Max possible number of RXDs per queue: %hu\n", 501 dev_info.rx_desc_lim.nb_max); 502 printf("Min possible number of RXDs per queue: %hu\n", 503 dev_info.rx_desc_lim.nb_min); 504 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 505 506 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 507 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 508 printf("Max possible number of TXDs per queue: %hu\n", 509 dev_info.tx_desc_lim.nb_max); 510 printf("Min possible number of TXDs per queue: %hu\n", 511 dev_info.tx_desc_lim.nb_min); 512 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 513 514 /* Show switch info only if valid switch domain and port id is set */ 515 if (dev_info.switch_info.domain_id != 516 RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { 517 if (dev_info.switch_info.name) 518 printf("Switch name: %s\n", dev_info.switch_info.name); 519 520 printf("Switch domain Id: %u\n", 521 dev_info.switch_info.domain_id); 522 printf("Switch Port Id: %u\n", 523 dev_info.switch_info.port_id); 524 } 525 } 526 527 void 528 port_summary_header_display(void) 529 { 530 uint16_t port_number; 531 532 port_number = rte_eth_dev_count_avail(); 533 printf("Number of available ports: %i\n", port_number); 534 printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", 535 "Driver", "Status", "Link"); 536 } 537 538 void 539 port_summary_display(portid_t port_id) 540 { 541 struct rte_ether_addr mac_addr; 542 struct rte_eth_link link; 543 struct rte_eth_dev_info dev_info; 544 char name[RTE_ETH_NAME_MAX_LEN]; 545 546 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 547 print_valid_ports(); 548 return; 549 } 550 551 rte_eth_link_get_nowait(port_id, &link); 552 rte_eth_dev_info_get(port_id, &dev_info); 553 rte_eth_dev_get_name_by_port(port_id, name); 554 rte_eth_macaddr_get(port_id, &mac_addr); 555 556 printf("%-4d %02X:%02X:%02X:%02X:%02X:%02X %-12s %-14s %-8s %uMbps\n", 557 port_id, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], 558 mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], 559 mac_addr.addr_bytes[4], mac_addr.addr_bytes[5], name, 560 dev_info.driver_name, (link.link_status) ? ("up") : ("down"), 561 (unsigned int) link.link_speed); 562 } 563 564 void 565 port_offload_cap_display(portid_t port_id) 566 { 567 struct rte_eth_dev_info dev_info; 568 static const char *info_border = "************"; 569 570 if (port_id_is_invalid(port_id, ENABLED_WARN)) 571 return; 572 573 rte_eth_dev_info_get(port_id, &dev_info); 574 575 printf("\n%s Port %d supported offload features: %s\n", 576 info_border, port_id, info_border); 577 578 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 579 printf("VLAN stripped: "); 580 if (ports[port_id].dev_conf.rxmode.offloads & 581 DEV_RX_OFFLOAD_VLAN_STRIP) 582 printf("on\n"); 583 else 584 printf("off\n"); 585 } 586 587 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 588 printf("Double VLANs stripped: "); 589 if (ports[port_id].dev_conf.rxmode.offloads & 590 DEV_RX_OFFLOAD_QINQ_STRIP) 591 printf("on\n"); 592 else 593 printf("off\n"); 594 } 595 596 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 597 printf("RX IPv4 checksum: "); 598 if (ports[port_id].dev_conf.rxmode.offloads & 599 DEV_RX_OFFLOAD_IPV4_CKSUM) 600 printf("on\n"); 601 else 602 printf("off\n"); 603 } 604 605 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 606 printf("RX UDP checksum: "); 607 if (ports[port_id].dev_conf.rxmode.offloads & 608 DEV_RX_OFFLOAD_UDP_CKSUM) 609 printf("on\n"); 610 else 611 printf("off\n"); 612 } 613 614 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 615 printf("RX TCP checksum: "); 616 if (ports[port_id].dev_conf.rxmode.offloads & 617 DEV_RX_OFFLOAD_TCP_CKSUM) 618 printf("on\n"); 619 else 620 printf("off\n"); 621 } 622 623 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SCTP_CKSUM) { 624 printf("RX SCTP checksum: "); 625 if (ports[port_id].dev_conf.rxmode.offloads & 626 DEV_RX_OFFLOAD_SCTP_CKSUM) 627 printf("on\n"); 628 else 629 printf("off\n"); 630 } 631 632 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) { 633 printf("RX Outer IPv4 checksum: "); 634 if (ports[port_id].dev_conf.rxmode.offloads & 635 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 636 printf("on\n"); 637 else 638 printf("off\n"); 639 } 640 641 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) { 642 printf("RX Outer UDP checksum: "); 643 if (ports[port_id].dev_conf.rxmode.offloads & 644 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) 645 printf("on\n"); 646 else 647 printf("off\n"); 648 } 649 650 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 651 printf("Large receive offload: "); 652 if (ports[port_id].dev_conf.rxmode.offloads & 653 DEV_RX_OFFLOAD_TCP_LRO) 654 printf("on\n"); 655 else 656 printf("off\n"); 657 } 658 659 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) { 660 printf("HW timestamp: "); 661 if (ports[port_id].dev_conf.rxmode.offloads & 662 DEV_RX_OFFLOAD_TIMESTAMP) 663 printf("on\n"); 664 else 665 printf("off\n"); 666 } 667 668 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) { 669 printf("Rx Keep CRC: "); 670 if (ports[port_id].dev_conf.rxmode.offloads & 671 DEV_RX_OFFLOAD_KEEP_CRC) 672 printf("on\n"); 673 else 674 printf("off\n"); 675 } 676 677 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) { 678 printf("RX offload security: "); 679 if (ports[port_id].dev_conf.rxmode.offloads & 680 DEV_RX_OFFLOAD_SECURITY) 681 printf("on\n"); 682 else 683 printf("off\n"); 684 } 685 686 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 687 printf("VLAN insert: "); 688 if (ports[port_id].dev_conf.txmode.offloads & 689 DEV_TX_OFFLOAD_VLAN_INSERT) 690 printf("on\n"); 691 else 692 printf("off\n"); 693 } 694 695 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 696 printf("Double VLANs insert: "); 697 if (ports[port_id].dev_conf.txmode.offloads & 698 DEV_TX_OFFLOAD_QINQ_INSERT) 699 printf("on\n"); 700 else 701 printf("off\n"); 702 } 703 704 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 705 printf("TX IPv4 checksum: "); 706 if (ports[port_id].dev_conf.txmode.offloads & 707 DEV_TX_OFFLOAD_IPV4_CKSUM) 708 printf("on\n"); 709 else 710 printf("off\n"); 711 } 712 713 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 714 printf("TX UDP checksum: "); 715 if (ports[port_id].dev_conf.txmode.offloads & 716 DEV_TX_OFFLOAD_UDP_CKSUM) 717 printf("on\n"); 718 else 719 printf("off\n"); 720 } 721 722 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 723 printf("TX TCP checksum: "); 724 if (ports[port_id].dev_conf.txmode.offloads & 725 DEV_TX_OFFLOAD_TCP_CKSUM) 726 printf("on\n"); 727 else 728 printf("off\n"); 729 } 730 731 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 732 printf("TX SCTP checksum: "); 733 if (ports[port_id].dev_conf.txmode.offloads & 734 DEV_TX_OFFLOAD_SCTP_CKSUM) 735 printf("on\n"); 736 else 737 printf("off\n"); 738 } 739 740 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 741 printf("TX Outer IPv4 checksum: "); 742 if (ports[port_id].dev_conf.txmode.offloads & 743 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 744 printf("on\n"); 745 else 746 printf("off\n"); 747 } 748 749 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 750 printf("TX TCP segmentation: "); 751 if (ports[port_id].dev_conf.txmode.offloads & 752 DEV_TX_OFFLOAD_TCP_TSO) 753 printf("on\n"); 754 else 755 printf("off\n"); 756 } 757 758 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 759 printf("TX UDP segmentation: "); 760 if (ports[port_id].dev_conf.txmode.offloads & 761 DEV_TX_OFFLOAD_UDP_TSO) 762 printf("on\n"); 763 else 764 printf("off\n"); 765 } 766 767 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 768 printf("TSO for VXLAN tunnel packet: "); 769 if (ports[port_id].dev_conf.txmode.offloads & 770 DEV_TX_OFFLOAD_VXLAN_TNL_TSO) 771 printf("on\n"); 772 else 773 printf("off\n"); 774 } 775 776 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 777 printf("TSO for GRE tunnel packet: "); 778 if (ports[port_id].dev_conf.txmode.offloads & 779 DEV_TX_OFFLOAD_GRE_TNL_TSO) 780 printf("on\n"); 781 else 782 printf("off\n"); 783 } 784 785 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 786 printf("TSO for IPIP tunnel packet: "); 787 if (ports[port_id].dev_conf.txmode.offloads & 788 DEV_TX_OFFLOAD_IPIP_TNL_TSO) 789 printf("on\n"); 790 else 791 printf("off\n"); 792 } 793 794 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 795 printf("TSO for GENEVE tunnel packet: "); 796 if (ports[port_id].dev_conf.txmode.offloads & 797 DEV_TX_OFFLOAD_GENEVE_TNL_TSO) 798 printf("on\n"); 799 else 800 printf("off\n"); 801 } 802 803 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) { 804 printf("IP tunnel TSO: "); 805 if (ports[port_id].dev_conf.txmode.offloads & 806 DEV_TX_OFFLOAD_IP_TNL_TSO) 807 printf("on\n"); 808 else 809 printf("off\n"); 810 } 811 812 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) { 813 printf("UDP tunnel TSO: "); 814 if (ports[port_id].dev_conf.txmode.offloads & 815 DEV_TX_OFFLOAD_UDP_TNL_TSO) 816 printf("on\n"); 817 else 818 printf("off\n"); 819 } 820 821 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { 822 printf("TX Outer UDP checksum: "); 823 if (ports[port_id].dev_conf.txmode.offloads & 824 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) 825 printf("on\n"); 826 else 827 printf("off\n"); 828 } 829 830 } 831 832 int 833 port_id_is_invalid(portid_t port_id, enum print_warning warning) 834 { 835 uint16_t pid; 836 837 if (port_id == (portid_t)RTE_PORT_ALL) 838 return 0; 839 840 RTE_ETH_FOREACH_DEV(pid) 841 if (port_id == pid) 842 return 0; 843 844 if (warning == ENABLED_WARN) 845 printf("Invalid port %d\n", port_id); 846 847 return 1; 848 } 849 850 void print_valid_ports(void) 851 { 852 portid_t pid; 853 854 printf("The valid ports array is ["); 855 RTE_ETH_FOREACH_DEV(pid) { 856 printf(" %d", pid); 857 } 858 printf(" ]\n"); 859 } 860 861 static int 862 vlan_id_is_invalid(uint16_t vlan_id) 863 { 864 if (vlan_id < 4096) 865 return 0; 866 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 867 return 1; 868 } 869 870 static int 871 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 872 { 873 const struct rte_pci_device *pci_dev; 874 const struct rte_bus *bus; 875 uint64_t pci_len; 876 877 if (reg_off & 0x3) { 878 printf("Port register offset 0x%X not aligned on a 4-byte " 879 "boundary\n", 880 (unsigned)reg_off); 881 return 1; 882 } 883 884 if (!ports[port_id].dev_info.device) { 885 printf("Invalid device\n"); 886 return 0; 887 } 888 889 bus = rte_bus_find_by_device(ports[port_id].dev_info.device); 890 if (bus && !strcmp(bus->name, "pci")) { 891 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); 892 } else { 893 printf("Not a PCI device\n"); 894 return 1; 895 } 896 897 pci_len = pci_dev->mem_resource[0].len; 898 if (reg_off >= pci_len) { 899 printf("Port %d: register offset %u (0x%X) out of port PCI " 900 "resource (length=%"PRIu64")\n", 901 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 902 return 1; 903 } 904 return 0; 905 } 906 907 static int 908 reg_bit_pos_is_invalid(uint8_t bit_pos) 909 { 910 if (bit_pos <= 31) 911 return 0; 912 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 913 return 1; 914 } 915 916 #define display_port_and_reg_off(port_id, reg_off) \ 917 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 918 919 static inline void 920 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 921 { 922 display_port_and_reg_off(port_id, (unsigned)reg_off); 923 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 924 } 925 926 void 927 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 928 { 929 uint32_t reg_v; 930 931 932 if (port_id_is_invalid(port_id, ENABLED_WARN)) 933 return; 934 if (port_reg_off_is_invalid(port_id, reg_off)) 935 return; 936 if (reg_bit_pos_is_invalid(bit_x)) 937 return; 938 reg_v = port_id_pci_reg_read(port_id, reg_off); 939 display_port_and_reg_off(port_id, (unsigned)reg_off); 940 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 941 } 942 943 void 944 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 945 uint8_t bit1_pos, uint8_t bit2_pos) 946 { 947 uint32_t reg_v; 948 uint8_t l_bit; 949 uint8_t h_bit; 950 951 if (port_id_is_invalid(port_id, ENABLED_WARN)) 952 return; 953 if (port_reg_off_is_invalid(port_id, reg_off)) 954 return; 955 if (reg_bit_pos_is_invalid(bit1_pos)) 956 return; 957 if (reg_bit_pos_is_invalid(bit2_pos)) 958 return; 959 if (bit1_pos > bit2_pos) 960 l_bit = bit2_pos, h_bit = bit1_pos; 961 else 962 l_bit = bit1_pos, h_bit = bit2_pos; 963 964 reg_v = port_id_pci_reg_read(port_id, reg_off); 965 reg_v >>= l_bit; 966 if (h_bit < 31) 967 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 968 display_port_and_reg_off(port_id, (unsigned)reg_off); 969 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 970 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 971 } 972 973 void 974 port_reg_display(portid_t port_id, uint32_t reg_off) 975 { 976 uint32_t reg_v; 977 978 if (port_id_is_invalid(port_id, ENABLED_WARN)) 979 return; 980 if (port_reg_off_is_invalid(port_id, reg_off)) 981 return; 982 reg_v = port_id_pci_reg_read(port_id, reg_off); 983 display_port_reg_value(port_id, reg_off, reg_v); 984 } 985 986 void 987 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 988 uint8_t bit_v) 989 { 990 uint32_t reg_v; 991 992 if (port_id_is_invalid(port_id, ENABLED_WARN)) 993 return; 994 if (port_reg_off_is_invalid(port_id, reg_off)) 995 return; 996 if (reg_bit_pos_is_invalid(bit_pos)) 997 return; 998 if (bit_v > 1) { 999 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 1000 return; 1001 } 1002 reg_v = port_id_pci_reg_read(port_id, reg_off); 1003 if (bit_v == 0) 1004 reg_v &= ~(1 << bit_pos); 1005 else 1006 reg_v |= (1 << bit_pos); 1007 port_id_pci_reg_write(port_id, reg_off, reg_v); 1008 display_port_reg_value(port_id, reg_off, reg_v); 1009 } 1010 1011 void 1012 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 1013 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 1014 { 1015 uint32_t max_v; 1016 uint32_t reg_v; 1017 uint8_t l_bit; 1018 uint8_t h_bit; 1019 1020 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1021 return; 1022 if (port_reg_off_is_invalid(port_id, reg_off)) 1023 return; 1024 if (reg_bit_pos_is_invalid(bit1_pos)) 1025 return; 1026 if (reg_bit_pos_is_invalid(bit2_pos)) 1027 return; 1028 if (bit1_pos > bit2_pos) 1029 l_bit = bit2_pos, h_bit = bit1_pos; 1030 else 1031 l_bit = bit1_pos, h_bit = bit2_pos; 1032 1033 if ((h_bit - l_bit) < 31) 1034 max_v = (1 << (h_bit - l_bit + 1)) - 1; 1035 else 1036 max_v = 0xFFFFFFFF; 1037 1038 if (value > max_v) { 1039 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 1040 (unsigned)value, (unsigned)value, 1041 (unsigned)max_v, (unsigned)max_v); 1042 return; 1043 } 1044 reg_v = port_id_pci_reg_read(port_id, reg_off); 1045 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 1046 reg_v |= (value << l_bit); /* Set changed bits */ 1047 port_id_pci_reg_write(port_id, reg_off, reg_v); 1048 display_port_reg_value(port_id, reg_off, reg_v); 1049 } 1050 1051 void 1052 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1053 { 1054 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1055 return; 1056 if (port_reg_off_is_invalid(port_id, reg_off)) 1057 return; 1058 port_id_pci_reg_write(port_id, reg_off, reg_v); 1059 display_port_reg_value(port_id, reg_off, reg_v); 1060 } 1061 1062 void 1063 port_mtu_set(portid_t port_id, uint16_t mtu) 1064 { 1065 int diag; 1066 struct rte_eth_dev_info dev_info; 1067 1068 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1069 return; 1070 rte_eth_dev_info_get(port_id, &dev_info); 1071 if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) { 1072 printf("Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n", 1073 mtu, dev_info.min_mtu, dev_info.max_mtu); 1074 return; 1075 } 1076 diag = rte_eth_dev_set_mtu(port_id, mtu); 1077 if (diag == 0) 1078 return; 1079 printf("Set MTU failed. diag=%d\n", diag); 1080 } 1081 1082 /* Generic flow management functions. */ 1083 1084 /** Generate a port_flow entry from attributes/pattern/actions. */ 1085 static struct port_flow * 1086 port_flow_new(const struct rte_flow_attr *attr, 1087 const struct rte_flow_item *pattern, 1088 const struct rte_flow_action *actions, 1089 struct rte_flow_error *error) 1090 { 1091 const struct rte_flow_conv_rule rule = { 1092 .attr_ro = attr, 1093 .pattern_ro = pattern, 1094 .actions_ro = actions, 1095 }; 1096 struct port_flow *pf; 1097 int ret; 1098 1099 ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); 1100 if (ret < 0) 1101 return NULL; 1102 pf = calloc(1, offsetof(struct port_flow, rule) + ret); 1103 if (!pf) { 1104 rte_flow_error_set 1105 (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1106 "calloc() failed"); 1107 return NULL; 1108 } 1109 if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, 1110 error) >= 0) 1111 return pf; 1112 free(pf); 1113 return NULL; 1114 } 1115 1116 /** Print a message out of a flow error. */ 1117 static int 1118 port_flow_complain(struct rte_flow_error *error) 1119 { 1120 static const char *const errstrlist[] = { 1121 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1122 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1123 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1124 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1125 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1126 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1127 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1128 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", 1129 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1130 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1131 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", 1132 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", 1133 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", 1134 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1135 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1136 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", 1137 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1138 }; 1139 const char *errstr; 1140 char buf[32]; 1141 int err = rte_errno; 1142 1143 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1144 !errstrlist[error->type]) 1145 errstr = "unknown type"; 1146 else 1147 errstr = errstrlist[error->type]; 1148 printf("Caught error type %d (%s): %s%s: %s\n", 1149 error->type, errstr, 1150 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1151 error->cause), buf) : "", 1152 error->message ? error->message : "(no stated reason)", 1153 rte_strerror(err)); 1154 return -err; 1155 } 1156 1157 /** Validate flow rule. */ 1158 int 1159 port_flow_validate(portid_t port_id, 1160 const struct rte_flow_attr *attr, 1161 const struct rte_flow_item *pattern, 1162 const struct rte_flow_action *actions) 1163 { 1164 struct rte_flow_error error; 1165 1166 /* Poisoning to make sure PMDs update it in case of error. */ 1167 memset(&error, 0x11, sizeof(error)); 1168 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1169 return port_flow_complain(&error); 1170 printf("Flow rule validated\n"); 1171 return 0; 1172 } 1173 1174 /** Create flow rule. */ 1175 int 1176 port_flow_create(portid_t port_id, 1177 const struct rte_flow_attr *attr, 1178 const struct rte_flow_item *pattern, 1179 const struct rte_flow_action *actions) 1180 { 1181 struct rte_flow *flow; 1182 struct rte_port *port; 1183 struct port_flow *pf; 1184 uint32_t id; 1185 struct rte_flow_error error; 1186 1187 /* Poisoning to make sure PMDs update it in case of error. */ 1188 memset(&error, 0x22, sizeof(error)); 1189 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1190 if (!flow) 1191 return port_flow_complain(&error); 1192 port = &ports[port_id]; 1193 if (port->flow_list) { 1194 if (port->flow_list->id == UINT32_MAX) { 1195 printf("Highest rule ID is already assigned, delete" 1196 " it first"); 1197 rte_flow_destroy(port_id, flow, NULL); 1198 return -ENOMEM; 1199 } 1200 id = port->flow_list->id + 1; 1201 } else 1202 id = 0; 1203 pf = port_flow_new(attr, pattern, actions, &error); 1204 if (!pf) { 1205 rte_flow_destroy(port_id, flow, NULL); 1206 return port_flow_complain(&error); 1207 } 1208 pf->next = port->flow_list; 1209 pf->id = id; 1210 pf->flow = flow; 1211 port->flow_list = pf; 1212 printf("Flow rule #%u created\n", pf->id); 1213 return 0; 1214 } 1215 1216 /** Destroy a number of flow rules. */ 1217 int 1218 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1219 { 1220 struct rte_port *port; 1221 struct port_flow **tmp; 1222 uint32_t c = 0; 1223 int ret = 0; 1224 1225 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1226 port_id == (portid_t)RTE_PORT_ALL) 1227 return -EINVAL; 1228 port = &ports[port_id]; 1229 tmp = &port->flow_list; 1230 while (*tmp) { 1231 uint32_t i; 1232 1233 for (i = 0; i != n; ++i) { 1234 struct rte_flow_error error; 1235 struct port_flow *pf = *tmp; 1236 1237 if (rule[i] != pf->id) 1238 continue; 1239 /* 1240 * Poisoning to make sure PMDs update it in case 1241 * of error. 1242 */ 1243 memset(&error, 0x33, sizeof(error)); 1244 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1245 ret = port_flow_complain(&error); 1246 continue; 1247 } 1248 printf("Flow rule #%u destroyed\n", pf->id); 1249 *tmp = pf->next; 1250 free(pf); 1251 break; 1252 } 1253 if (i == n) 1254 tmp = &(*tmp)->next; 1255 ++c; 1256 } 1257 return ret; 1258 } 1259 1260 /** Remove all flow rules. */ 1261 int 1262 port_flow_flush(portid_t port_id) 1263 { 1264 struct rte_flow_error error; 1265 struct rte_port *port; 1266 int ret = 0; 1267 1268 /* Poisoning to make sure PMDs update it in case of error. */ 1269 memset(&error, 0x44, sizeof(error)); 1270 if (rte_flow_flush(port_id, &error)) { 1271 ret = port_flow_complain(&error); 1272 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1273 port_id == (portid_t)RTE_PORT_ALL) 1274 return ret; 1275 } 1276 port = &ports[port_id]; 1277 while (port->flow_list) { 1278 struct port_flow *pf = port->flow_list->next; 1279 1280 free(port->flow_list); 1281 port->flow_list = pf; 1282 } 1283 return ret; 1284 } 1285 1286 /** Query a flow rule. */ 1287 int 1288 port_flow_query(portid_t port_id, uint32_t rule, 1289 const struct rte_flow_action *action) 1290 { 1291 struct rte_flow_error error; 1292 struct rte_port *port; 1293 struct port_flow *pf; 1294 const char *name; 1295 union { 1296 struct rte_flow_query_count count; 1297 } query; 1298 int ret; 1299 1300 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1301 port_id == (portid_t)RTE_PORT_ALL) 1302 return -EINVAL; 1303 port = &ports[port_id]; 1304 for (pf = port->flow_list; pf; pf = pf->next) 1305 if (pf->id == rule) 1306 break; 1307 if (!pf) { 1308 printf("Flow rule #%u not found\n", rule); 1309 return -ENOENT; 1310 } 1311 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 1312 &name, sizeof(name), 1313 (void *)(uintptr_t)action->type, &error); 1314 if (ret < 0) 1315 return port_flow_complain(&error); 1316 switch (action->type) { 1317 case RTE_FLOW_ACTION_TYPE_COUNT: 1318 break; 1319 default: 1320 printf("Cannot query action type %d (%s)\n", 1321 action->type, name); 1322 return -ENOTSUP; 1323 } 1324 /* Poisoning to make sure PMDs update it in case of error. */ 1325 memset(&error, 0x55, sizeof(error)); 1326 memset(&query, 0, sizeof(query)); 1327 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1328 return port_flow_complain(&error); 1329 switch (action->type) { 1330 case RTE_FLOW_ACTION_TYPE_COUNT: 1331 printf("%s:\n" 1332 " hits_set: %u\n" 1333 " bytes_set: %u\n" 1334 " hits: %" PRIu64 "\n" 1335 " bytes: %" PRIu64 "\n", 1336 name, 1337 query.count.hits_set, 1338 query.count.bytes_set, 1339 query.count.hits, 1340 query.count.bytes); 1341 break; 1342 default: 1343 printf("Cannot display result for action type %d (%s)\n", 1344 action->type, name); 1345 break; 1346 } 1347 return 0; 1348 } 1349 1350 /** List flow rules. */ 1351 void 1352 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1353 { 1354 struct rte_port *port; 1355 struct port_flow *pf; 1356 struct port_flow *list = NULL; 1357 uint32_t i; 1358 1359 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1360 port_id == (portid_t)RTE_PORT_ALL) 1361 return; 1362 port = &ports[port_id]; 1363 if (!port->flow_list) 1364 return; 1365 /* Sort flows by group, priority and ID. */ 1366 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1367 struct port_flow **tmp; 1368 const struct rte_flow_attr *curr = pf->rule.attr; 1369 1370 if (n) { 1371 /* Filter out unwanted groups. */ 1372 for (i = 0; i != n; ++i) 1373 if (curr->group == group[i]) 1374 break; 1375 if (i == n) 1376 continue; 1377 } 1378 for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { 1379 const struct rte_flow_attr *comp = (*tmp)->rule.attr; 1380 1381 if (curr->group > comp->group || 1382 (curr->group == comp->group && 1383 curr->priority > comp->priority) || 1384 (curr->group == comp->group && 1385 curr->priority == comp->priority && 1386 pf->id > (*tmp)->id)) 1387 continue; 1388 break; 1389 } 1390 pf->tmp = *tmp; 1391 *tmp = pf; 1392 } 1393 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1394 for (pf = list; pf != NULL; pf = pf->tmp) { 1395 const struct rte_flow_item *item = pf->rule.pattern; 1396 const struct rte_flow_action *action = pf->rule.actions; 1397 const char *name; 1398 1399 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", 1400 pf->id, 1401 pf->rule.attr->group, 1402 pf->rule.attr->priority, 1403 pf->rule.attr->ingress ? 'i' : '-', 1404 pf->rule.attr->egress ? 'e' : '-', 1405 pf->rule.attr->transfer ? 't' : '-'); 1406 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1407 if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 1408 &name, sizeof(name), 1409 (void *)(uintptr_t)item->type, 1410 NULL) <= 0) 1411 name = "[UNKNOWN]"; 1412 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1413 printf("%s ", name); 1414 ++item; 1415 } 1416 printf("=>"); 1417 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1418 if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 1419 &name, sizeof(name), 1420 (void *)(uintptr_t)action->type, 1421 NULL) <= 0) 1422 name = "[UNKNOWN]"; 1423 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1424 printf(" %s", name); 1425 ++action; 1426 } 1427 printf("\n"); 1428 } 1429 } 1430 1431 /** Restrict ingress traffic to the defined flow rules. */ 1432 int 1433 port_flow_isolate(portid_t port_id, int set) 1434 { 1435 struct rte_flow_error error; 1436 1437 /* Poisoning to make sure PMDs update it in case of error. */ 1438 memset(&error, 0x66, sizeof(error)); 1439 if (rte_flow_isolate(port_id, set, &error)) 1440 return port_flow_complain(&error); 1441 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1442 port_id, 1443 set ? "now restricted" : "not restricted anymore"); 1444 return 0; 1445 } 1446 1447 /* 1448 * RX/TX ring descriptors display functions. 1449 */ 1450 int 1451 rx_queue_id_is_invalid(queueid_t rxq_id) 1452 { 1453 if (rxq_id < nb_rxq) 1454 return 0; 1455 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1456 return 1; 1457 } 1458 1459 int 1460 tx_queue_id_is_invalid(queueid_t txq_id) 1461 { 1462 if (txq_id < nb_txq) 1463 return 0; 1464 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1465 return 1; 1466 } 1467 1468 static int 1469 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1470 { 1471 if (rxdesc_id < nb_rxd) 1472 return 0; 1473 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1474 rxdesc_id, nb_rxd); 1475 return 1; 1476 } 1477 1478 static int 1479 tx_desc_id_is_invalid(uint16_t txdesc_id) 1480 { 1481 if (txdesc_id < nb_txd) 1482 return 0; 1483 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1484 txdesc_id, nb_txd); 1485 return 1; 1486 } 1487 1488 static const struct rte_memzone * 1489 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 1490 { 1491 char mz_name[RTE_MEMZONE_NAMESIZE]; 1492 const struct rte_memzone *mz; 1493 1494 snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", 1495 port_id, q_id, ring_name); 1496 mz = rte_memzone_lookup(mz_name); 1497 if (mz == NULL) 1498 printf("%s ring memory zoneof (port %d, queue %d) not" 1499 "found (zone name = %s\n", 1500 ring_name, port_id, q_id, mz_name); 1501 return mz; 1502 } 1503 1504 union igb_ring_dword { 1505 uint64_t dword; 1506 struct { 1507 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1508 uint32_t lo; 1509 uint32_t hi; 1510 #else 1511 uint32_t hi; 1512 uint32_t lo; 1513 #endif 1514 } words; 1515 }; 1516 1517 struct igb_ring_desc_32_bytes { 1518 union igb_ring_dword lo_dword; 1519 union igb_ring_dword hi_dword; 1520 union igb_ring_dword resv1; 1521 union igb_ring_dword resv2; 1522 }; 1523 1524 struct igb_ring_desc_16_bytes { 1525 union igb_ring_dword lo_dword; 1526 union igb_ring_dword hi_dword; 1527 }; 1528 1529 static void 1530 ring_rxd_display_dword(union igb_ring_dword dword) 1531 { 1532 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1533 (unsigned)dword.words.hi); 1534 } 1535 1536 static void 1537 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1538 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1539 portid_t port_id, 1540 #else 1541 __rte_unused portid_t port_id, 1542 #endif 1543 uint16_t desc_id) 1544 { 1545 struct igb_ring_desc_16_bytes *ring = 1546 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1547 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1548 struct rte_eth_dev_info dev_info; 1549 1550 memset(&dev_info, 0, sizeof(dev_info)); 1551 rte_eth_dev_info_get(port_id, &dev_info); 1552 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1553 /* 32 bytes RX descriptor, i40e only */ 1554 struct igb_ring_desc_32_bytes *ring = 1555 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1556 ring[desc_id].lo_dword.dword = 1557 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1558 ring_rxd_display_dword(ring[desc_id].lo_dword); 1559 ring[desc_id].hi_dword.dword = 1560 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1561 ring_rxd_display_dword(ring[desc_id].hi_dword); 1562 ring[desc_id].resv1.dword = 1563 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1564 ring_rxd_display_dword(ring[desc_id].resv1); 1565 ring[desc_id].resv2.dword = 1566 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1567 ring_rxd_display_dword(ring[desc_id].resv2); 1568 1569 return; 1570 } 1571 #endif 1572 /* 16 bytes RX descriptor */ 1573 ring[desc_id].lo_dword.dword = 1574 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1575 ring_rxd_display_dword(ring[desc_id].lo_dword); 1576 ring[desc_id].hi_dword.dword = 1577 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1578 ring_rxd_display_dword(ring[desc_id].hi_dword); 1579 } 1580 1581 static void 1582 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1583 { 1584 struct igb_ring_desc_16_bytes *ring; 1585 struct igb_ring_desc_16_bytes txd; 1586 1587 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1588 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1589 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1590 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1591 (unsigned)txd.lo_dword.words.lo, 1592 (unsigned)txd.lo_dword.words.hi, 1593 (unsigned)txd.hi_dword.words.lo, 1594 (unsigned)txd.hi_dword.words.hi); 1595 } 1596 1597 void 1598 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1599 { 1600 const struct rte_memzone *rx_mz; 1601 1602 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1603 return; 1604 if (rx_queue_id_is_invalid(rxq_id)) 1605 return; 1606 if (rx_desc_id_is_invalid(rxd_id)) 1607 return; 1608 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1609 if (rx_mz == NULL) 1610 return; 1611 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1612 } 1613 1614 void 1615 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1616 { 1617 const struct rte_memzone *tx_mz; 1618 1619 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1620 return; 1621 if (tx_queue_id_is_invalid(txq_id)) 1622 return; 1623 if (tx_desc_id_is_invalid(txd_id)) 1624 return; 1625 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1626 if (tx_mz == NULL) 1627 return; 1628 ring_tx_descriptor_display(tx_mz, txd_id); 1629 } 1630 1631 void 1632 fwd_lcores_config_display(void) 1633 { 1634 lcoreid_t lc_id; 1635 1636 printf("List of forwarding lcores:"); 1637 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1638 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1639 printf("\n"); 1640 } 1641 void 1642 rxtx_config_display(void) 1643 { 1644 portid_t pid; 1645 queueid_t qid; 1646 1647 printf(" %s packet forwarding%s packets/burst=%d\n", 1648 cur_fwd_eng->fwd_mode_name, 1649 retry_enabled == 0 ? "" : " with retry", 1650 nb_pkt_per_burst); 1651 1652 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1653 printf(" packet len=%u - nb packet segments=%d\n", 1654 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1655 1656 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1657 nb_fwd_lcores, nb_fwd_ports); 1658 1659 RTE_ETH_FOREACH_DEV(pid) { 1660 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0]; 1661 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0]; 1662 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; 1663 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; 1664 uint16_t nb_rx_desc_tmp; 1665 uint16_t nb_tx_desc_tmp; 1666 struct rte_eth_rxq_info rx_qinfo; 1667 struct rte_eth_txq_info tx_qinfo; 1668 int32_t rc; 1669 1670 /* per port config */ 1671 printf(" port %d: RX queue number: %d Tx queue number: %d\n", 1672 (unsigned int)pid, nb_rxq, nb_txq); 1673 1674 printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", 1675 ports[pid].dev_conf.rxmode.offloads, 1676 ports[pid].dev_conf.txmode.offloads); 1677 1678 /* per rx queue config only for first queue to be less verbose */ 1679 for (qid = 0; qid < 1; qid++) { 1680 rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); 1681 if (rc) 1682 nb_rx_desc_tmp = nb_rx_desc[qid]; 1683 else 1684 nb_rx_desc_tmp = rx_qinfo.nb_desc; 1685 1686 printf(" RX queue: %d\n", qid); 1687 printf(" RX desc=%d - RX free threshold=%d\n", 1688 nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh); 1689 printf(" RX threshold registers: pthresh=%d hthresh=%d " 1690 " wthresh=%d\n", 1691 rx_conf[qid].rx_thresh.pthresh, 1692 rx_conf[qid].rx_thresh.hthresh, 1693 rx_conf[qid].rx_thresh.wthresh); 1694 printf(" RX Offloads=0x%"PRIx64"\n", 1695 rx_conf[qid].offloads); 1696 } 1697 1698 /* per tx queue config only for first queue to be less verbose */ 1699 for (qid = 0; qid < 1; qid++) { 1700 rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); 1701 if (rc) 1702 nb_tx_desc_tmp = nb_tx_desc[qid]; 1703 else 1704 nb_tx_desc_tmp = tx_qinfo.nb_desc; 1705 1706 printf(" TX queue: %d\n", qid); 1707 printf(" TX desc=%d - TX free threshold=%d\n", 1708 nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh); 1709 printf(" TX threshold registers: pthresh=%d hthresh=%d " 1710 " wthresh=%d\n", 1711 tx_conf[qid].tx_thresh.pthresh, 1712 tx_conf[qid].tx_thresh.hthresh, 1713 tx_conf[qid].tx_thresh.wthresh); 1714 printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", 1715 tx_conf[qid].offloads, tx_conf->tx_rs_thresh); 1716 } 1717 } 1718 } 1719 1720 void 1721 port_rss_reta_info(portid_t port_id, 1722 struct rte_eth_rss_reta_entry64 *reta_conf, 1723 uint16_t nb_entries) 1724 { 1725 uint16_t i, idx, shift; 1726 int ret; 1727 1728 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1729 return; 1730 1731 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1732 if (ret != 0) { 1733 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1734 return; 1735 } 1736 1737 for (i = 0; i < nb_entries; i++) { 1738 idx = i / RTE_RETA_GROUP_SIZE; 1739 shift = i % RTE_RETA_GROUP_SIZE; 1740 if (!(reta_conf[idx].mask & (1ULL << shift))) 1741 continue; 1742 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1743 i, reta_conf[idx].reta[shift]); 1744 } 1745 } 1746 1747 /* 1748 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1749 * key of the port. 1750 */ 1751 void 1752 port_rss_hash_conf_show(portid_t port_id, int show_rss_key) 1753 { 1754 struct rte_eth_rss_conf rss_conf = {0}; 1755 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1756 uint64_t rss_hf; 1757 uint8_t i; 1758 int diag; 1759 struct rte_eth_dev_info dev_info; 1760 uint8_t hash_key_size; 1761 1762 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1763 return; 1764 1765 rte_eth_dev_info_get(port_id, &dev_info); 1766 if (dev_info.hash_key_size > 0 && 1767 dev_info.hash_key_size <= sizeof(rss_key)) 1768 hash_key_size = dev_info.hash_key_size; 1769 else { 1770 printf("dev_info did not provide a valid hash key size\n"); 1771 return; 1772 } 1773 1774 /* Get RSS hash key if asked to display it */ 1775 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1776 rss_conf.rss_key_len = hash_key_size; 1777 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1778 if (diag != 0) { 1779 switch (diag) { 1780 case -ENODEV: 1781 printf("port index %d invalid\n", port_id); 1782 break; 1783 case -ENOTSUP: 1784 printf("operation not supported by device\n"); 1785 break; 1786 default: 1787 printf("operation failed - diag=%d\n", diag); 1788 break; 1789 } 1790 return; 1791 } 1792 rss_hf = rss_conf.rss_hf; 1793 if (rss_hf == 0) { 1794 printf("RSS disabled\n"); 1795 return; 1796 } 1797 printf("RSS functions:\n "); 1798 for (i = 0; rss_type_table[i].str; i++) { 1799 if (rss_hf & rss_type_table[i].rss_type) 1800 printf("%s ", rss_type_table[i].str); 1801 } 1802 printf("\n"); 1803 if (!show_rss_key) 1804 return; 1805 printf("RSS key:\n"); 1806 for (i = 0; i < hash_key_size; i++) 1807 printf("%02X", rss_key[i]); 1808 printf("\n"); 1809 } 1810 1811 void 1812 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1813 uint hash_key_len) 1814 { 1815 struct rte_eth_rss_conf rss_conf; 1816 int diag; 1817 unsigned int i; 1818 1819 rss_conf.rss_key = NULL; 1820 rss_conf.rss_key_len = hash_key_len; 1821 rss_conf.rss_hf = 0; 1822 for (i = 0; rss_type_table[i].str; i++) { 1823 if (!strcmp(rss_type_table[i].str, rss_type)) 1824 rss_conf.rss_hf = rss_type_table[i].rss_type; 1825 } 1826 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1827 if (diag == 0) { 1828 rss_conf.rss_key = hash_key; 1829 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1830 } 1831 if (diag == 0) 1832 return; 1833 1834 switch (diag) { 1835 case -ENODEV: 1836 printf("port index %d invalid\n", port_id); 1837 break; 1838 case -ENOTSUP: 1839 printf("operation not supported by device\n"); 1840 break; 1841 default: 1842 printf("operation failed - diag=%d\n", diag); 1843 break; 1844 } 1845 } 1846 1847 /* 1848 * Setup forwarding configuration for each logical core. 1849 */ 1850 static void 1851 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1852 { 1853 streamid_t nb_fs_per_lcore; 1854 streamid_t nb_fs; 1855 streamid_t sm_id; 1856 lcoreid_t nb_extra; 1857 lcoreid_t nb_fc; 1858 lcoreid_t nb_lc; 1859 lcoreid_t lc_id; 1860 1861 nb_fs = cfg->nb_fwd_streams; 1862 nb_fc = cfg->nb_fwd_lcores; 1863 if (nb_fs <= nb_fc) { 1864 nb_fs_per_lcore = 1; 1865 nb_extra = 0; 1866 } else { 1867 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1868 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1869 } 1870 1871 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1872 sm_id = 0; 1873 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1874 fwd_lcores[lc_id]->stream_idx = sm_id; 1875 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1876 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1877 } 1878 1879 /* 1880 * Assign extra remaining streams, if any. 1881 */ 1882 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1883 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1884 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1885 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1886 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1887 } 1888 } 1889 1890 static portid_t 1891 fwd_topology_tx_port_get(portid_t rxp) 1892 { 1893 static int warning_once = 1; 1894 1895 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 1896 1897 switch (port_topology) { 1898 default: 1899 case PORT_TOPOLOGY_PAIRED: 1900 if ((rxp & 0x1) == 0) { 1901 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 1902 return rxp + 1; 1903 if (warning_once) { 1904 printf("\nWarning! port-topology=paired" 1905 " and odd forward ports number," 1906 " the last port will pair with" 1907 " itself.\n\n"); 1908 warning_once = 0; 1909 } 1910 return rxp; 1911 } 1912 return rxp - 1; 1913 case PORT_TOPOLOGY_CHAINED: 1914 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 1915 case PORT_TOPOLOGY_LOOP: 1916 return rxp; 1917 } 1918 } 1919 1920 static void 1921 simple_fwd_config_setup(void) 1922 { 1923 portid_t i; 1924 1925 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1926 cur_fwd_config.nb_fwd_streams = 1927 (streamid_t) cur_fwd_config.nb_fwd_ports; 1928 1929 /* reinitialize forwarding streams */ 1930 init_fwd_streams(); 1931 1932 /* 1933 * In the simple forwarding test, the number of forwarding cores 1934 * must be lower or equal to the number of forwarding ports. 1935 */ 1936 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1937 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1938 cur_fwd_config.nb_fwd_lcores = 1939 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1940 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1941 1942 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1943 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1944 fwd_streams[i]->rx_queue = 0; 1945 fwd_streams[i]->tx_port = 1946 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 1947 fwd_streams[i]->tx_queue = 0; 1948 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 1949 fwd_streams[i]->retry_enabled = retry_enabled; 1950 } 1951 } 1952 1953 /** 1954 * For the RSS forwarding test all streams distributed over lcores. Each stream 1955 * being composed of a RX queue to poll on a RX port for input messages, 1956 * associated with a TX queue of a TX port where to send forwarded packets. 1957 */ 1958 static void 1959 rss_fwd_config_setup(void) 1960 { 1961 portid_t rxp; 1962 portid_t txp; 1963 queueid_t rxq; 1964 queueid_t nb_q; 1965 streamid_t sm_id; 1966 1967 nb_q = nb_rxq; 1968 if (nb_q > nb_txq) 1969 nb_q = nb_txq; 1970 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1971 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1972 cur_fwd_config.nb_fwd_streams = 1973 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1974 1975 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1976 cur_fwd_config.nb_fwd_lcores = 1977 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1978 1979 /* reinitialize forwarding streams */ 1980 init_fwd_streams(); 1981 1982 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1983 rxp = 0; rxq = 0; 1984 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1985 struct fwd_stream *fs; 1986 1987 fs = fwd_streams[sm_id]; 1988 txp = fwd_topology_tx_port_get(rxp); 1989 fs->rx_port = fwd_ports_ids[rxp]; 1990 fs->rx_queue = rxq; 1991 fs->tx_port = fwd_ports_ids[txp]; 1992 fs->tx_queue = rxq; 1993 fs->peer_addr = fs->tx_port; 1994 fs->retry_enabled = retry_enabled; 1995 rxp++; 1996 if (rxp < nb_fwd_ports) 1997 continue; 1998 rxp = 0; 1999 rxq++; 2000 } 2001 } 2002 2003 /** 2004 * For the DCB forwarding test, each core is assigned on each traffic class. 2005 * 2006 * Each core is assigned a multi-stream, each stream being composed of 2007 * a RX queue to poll on a RX port for input messages, associated with 2008 * a TX queue of a TX port where to send forwarded packets. All RX and 2009 * TX queues are mapping to the same traffic class. 2010 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 2011 * the same core 2012 */ 2013 static void 2014 dcb_fwd_config_setup(void) 2015 { 2016 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 2017 portid_t txp, rxp = 0; 2018 queueid_t txq, rxq = 0; 2019 lcoreid_t lc_id; 2020 uint16_t nb_rx_queue, nb_tx_queue; 2021 uint16_t i, j, k, sm_id = 0; 2022 uint8_t tc = 0; 2023 2024 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2025 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2026 cur_fwd_config.nb_fwd_streams = 2027 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2028 2029 /* reinitialize forwarding streams */ 2030 init_fwd_streams(); 2031 sm_id = 0; 2032 txp = 1; 2033 /* get the dcb info on the first RX and TX ports */ 2034 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2035 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2036 2037 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2038 fwd_lcores[lc_id]->stream_nb = 0; 2039 fwd_lcores[lc_id]->stream_idx = sm_id; 2040 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2041 /* if the nb_queue is zero, means this tc is 2042 * not enabled on the POOL 2043 */ 2044 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2045 break; 2046 k = fwd_lcores[lc_id]->stream_nb + 2047 fwd_lcores[lc_id]->stream_idx; 2048 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2049 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2050 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2051 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2052 for (j = 0; j < nb_rx_queue; j++) { 2053 struct fwd_stream *fs; 2054 2055 fs = fwd_streams[k + j]; 2056 fs->rx_port = fwd_ports_ids[rxp]; 2057 fs->rx_queue = rxq + j; 2058 fs->tx_port = fwd_ports_ids[txp]; 2059 fs->tx_queue = txq + j % nb_tx_queue; 2060 fs->peer_addr = fs->tx_port; 2061 fs->retry_enabled = retry_enabled; 2062 } 2063 fwd_lcores[lc_id]->stream_nb += 2064 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2065 } 2066 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2067 2068 tc++; 2069 if (tc < rxp_dcb_info.nb_tcs) 2070 continue; 2071 /* Restart from TC 0 on next RX port */ 2072 tc = 0; 2073 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2074 rxp = (portid_t) 2075 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2076 else 2077 rxp++; 2078 if (rxp >= nb_fwd_ports) 2079 return; 2080 /* get the dcb information on next RX and TX ports */ 2081 if ((rxp & 0x1) == 0) 2082 txp = (portid_t) (rxp + 1); 2083 else 2084 txp = (portid_t) (rxp - 1); 2085 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2086 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2087 } 2088 } 2089 2090 static void 2091 icmp_echo_config_setup(void) 2092 { 2093 portid_t rxp; 2094 queueid_t rxq; 2095 lcoreid_t lc_id; 2096 uint16_t sm_id; 2097 2098 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2099 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2100 (nb_txq * nb_fwd_ports); 2101 else 2102 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2103 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2104 cur_fwd_config.nb_fwd_streams = 2105 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2106 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2107 cur_fwd_config.nb_fwd_lcores = 2108 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2109 if (verbose_level > 0) { 2110 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2111 __FUNCTION__, 2112 cur_fwd_config.nb_fwd_lcores, 2113 cur_fwd_config.nb_fwd_ports, 2114 cur_fwd_config.nb_fwd_streams); 2115 } 2116 2117 /* reinitialize forwarding streams */ 2118 init_fwd_streams(); 2119 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2120 rxp = 0; rxq = 0; 2121 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2122 if (verbose_level > 0) 2123 printf(" core=%d: \n", lc_id); 2124 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2125 struct fwd_stream *fs; 2126 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2127 fs->rx_port = fwd_ports_ids[rxp]; 2128 fs->rx_queue = rxq; 2129 fs->tx_port = fs->rx_port; 2130 fs->tx_queue = rxq; 2131 fs->peer_addr = fs->tx_port; 2132 fs->retry_enabled = retry_enabled; 2133 if (verbose_level > 0) 2134 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2135 sm_id, fs->rx_port, fs->rx_queue, 2136 fs->tx_queue); 2137 rxq = (queueid_t) (rxq + 1); 2138 if (rxq == nb_rxq) { 2139 rxq = 0; 2140 rxp = (portid_t) (rxp + 1); 2141 } 2142 } 2143 } 2144 } 2145 2146 #if defined RTE_LIBRTE_PMD_SOFTNIC 2147 static void 2148 softnic_fwd_config_setup(void) 2149 { 2150 struct rte_port *port; 2151 portid_t pid, softnic_portid; 2152 queueid_t i; 2153 uint8_t softnic_enable = 0; 2154 2155 RTE_ETH_FOREACH_DEV(pid) { 2156 port = &ports[pid]; 2157 const char *driver = port->dev_info.driver_name; 2158 2159 if (strcmp(driver, "net_softnic") == 0) { 2160 softnic_portid = pid; 2161 softnic_enable = 1; 2162 break; 2163 } 2164 } 2165 2166 if (softnic_enable == 0) { 2167 printf("Softnic mode not configured(%s)!\n", __func__); 2168 return; 2169 } 2170 2171 cur_fwd_config.nb_fwd_ports = 1; 2172 cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq; 2173 2174 /* Re-initialize forwarding streams */ 2175 init_fwd_streams(); 2176 2177 /* 2178 * In the softnic forwarding test, the number of forwarding cores 2179 * is set to one and remaining are used for softnic packet processing. 2180 */ 2181 cur_fwd_config.nb_fwd_lcores = 1; 2182 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2183 2184 for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) { 2185 fwd_streams[i]->rx_port = softnic_portid; 2186 fwd_streams[i]->rx_queue = i; 2187 fwd_streams[i]->tx_port = softnic_portid; 2188 fwd_streams[i]->tx_queue = i; 2189 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 2190 fwd_streams[i]->retry_enabled = retry_enabled; 2191 } 2192 } 2193 #endif 2194 2195 void 2196 fwd_config_setup(void) 2197 { 2198 cur_fwd_config.fwd_eng = cur_fwd_eng; 2199 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2200 icmp_echo_config_setup(); 2201 return; 2202 } 2203 2204 #if defined RTE_LIBRTE_PMD_SOFTNIC 2205 if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) { 2206 softnic_fwd_config_setup(); 2207 return; 2208 } 2209 #endif 2210 2211 if ((nb_rxq > 1) && (nb_txq > 1)){ 2212 if (dcb_config) 2213 dcb_fwd_config_setup(); 2214 else 2215 rss_fwd_config_setup(); 2216 } 2217 else 2218 simple_fwd_config_setup(); 2219 } 2220 2221 static const char * 2222 mp_alloc_to_str(uint8_t mode) 2223 { 2224 switch (mode) { 2225 case MP_ALLOC_NATIVE: 2226 return "native"; 2227 case MP_ALLOC_ANON: 2228 return "anon"; 2229 case MP_ALLOC_XMEM: 2230 return "xmem"; 2231 case MP_ALLOC_XMEM_HUGE: 2232 return "xmemhuge"; 2233 default: 2234 return "invalid"; 2235 } 2236 } 2237 2238 void 2239 pkt_fwd_config_display(struct fwd_config *cfg) 2240 { 2241 struct fwd_stream *fs; 2242 lcoreid_t lc_id; 2243 streamid_t sm_id; 2244 2245 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2246 "NUMA support %s, MP allocation mode: %s\n", 2247 cfg->fwd_eng->fwd_mode_name, 2248 retry_enabled == 0 ? "" : " with retry", 2249 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2250 numa_support == 1 ? "enabled" : "disabled", 2251 mp_alloc_to_str(mp_alloc_type)); 2252 2253 if (retry_enabled) 2254 printf("TX retry num: %u, delay between TX retries: %uus\n", 2255 burst_tx_retry_num, burst_tx_delay_time); 2256 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2257 printf("Logical Core %u (socket %u) forwards packets on " 2258 "%d streams:", 2259 fwd_lcores_cpuids[lc_id], 2260 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2261 fwd_lcores[lc_id]->stream_nb); 2262 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2263 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2264 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2265 "P=%d/Q=%d (socket %u) ", 2266 fs->rx_port, fs->rx_queue, 2267 ports[fs->rx_port].socket_id, 2268 fs->tx_port, fs->tx_queue, 2269 ports[fs->tx_port].socket_id); 2270 print_ethaddr("peer=", 2271 &peer_eth_addrs[fs->peer_addr]); 2272 } 2273 printf("\n"); 2274 } 2275 printf("\n"); 2276 } 2277 2278 void 2279 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 2280 { 2281 uint8_t c, new_peer_addr[6]; 2282 if (!rte_eth_dev_is_valid_port(port_id)) { 2283 printf("Error: Invalid port number %i\n", port_id); 2284 return; 2285 } 2286 if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr, 2287 sizeof(new_peer_addr)) < 0) { 2288 printf("Error: Invalid ethernet address: %s\n", peer_addr); 2289 return; 2290 } 2291 for (c = 0; c < 6; c++) 2292 peer_eth_addrs[port_id].addr_bytes[c] = 2293 new_peer_addr[c]; 2294 } 2295 2296 int 2297 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2298 { 2299 unsigned int i; 2300 unsigned int lcore_cpuid; 2301 int record_now; 2302 2303 record_now = 0; 2304 again: 2305 for (i = 0; i < nb_lc; i++) { 2306 lcore_cpuid = lcorelist[i]; 2307 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2308 printf("lcore %u not enabled\n", lcore_cpuid); 2309 return -1; 2310 } 2311 if (lcore_cpuid == rte_get_master_lcore()) { 2312 printf("lcore %u cannot be masked on for running " 2313 "packet forwarding, which is the master lcore " 2314 "and reserved for command line parsing only\n", 2315 lcore_cpuid); 2316 return -1; 2317 } 2318 if (record_now) 2319 fwd_lcores_cpuids[i] = lcore_cpuid; 2320 } 2321 if (record_now == 0) { 2322 record_now = 1; 2323 goto again; 2324 } 2325 nb_cfg_lcores = (lcoreid_t) nb_lc; 2326 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2327 printf("previous number of forwarding cores %u - changed to " 2328 "number of configured cores %u\n", 2329 (unsigned int) nb_fwd_lcores, nb_lc); 2330 nb_fwd_lcores = (lcoreid_t) nb_lc; 2331 } 2332 2333 return 0; 2334 } 2335 2336 int 2337 set_fwd_lcores_mask(uint64_t lcoremask) 2338 { 2339 unsigned int lcorelist[64]; 2340 unsigned int nb_lc; 2341 unsigned int i; 2342 2343 if (lcoremask == 0) { 2344 printf("Invalid NULL mask of cores\n"); 2345 return -1; 2346 } 2347 nb_lc = 0; 2348 for (i = 0; i < 64; i++) { 2349 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2350 continue; 2351 lcorelist[nb_lc++] = i; 2352 } 2353 return set_fwd_lcores_list(lcorelist, nb_lc); 2354 } 2355 2356 void 2357 set_fwd_lcores_number(uint16_t nb_lc) 2358 { 2359 if (nb_lc > nb_cfg_lcores) { 2360 printf("nb fwd cores %u > %u (max. number of configured " 2361 "lcores) - ignored\n", 2362 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2363 return; 2364 } 2365 nb_fwd_lcores = (lcoreid_t) nb_lc; 2366 printf("Number of forwarding cores set to %u\n", 2367 (unsigned int) nb_fwd_lcores); 2368 } 2369 2370 void 2371 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2372 { 2373 unsigned int i; 2374 portid_t port_id; 2375 int record_now; 2376 2377 record_now = 0; 2378 again: 2379 for (i = 0; i < nb_pt; i++) { 2380 port_id = (portid_t) portlist[i]; 2381 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2382 return; 2383 if (record_now) 2384 fwd_ports_ids[i] = port_id; 2385 } 2386 if (record_now == 0) { 2387 record_now = 1; 2388 goto again; 2389 } 2390 nb_cfg_ports = (portid_t) nb_pt; 2391 if (nb_fwd_ports != (portid_t) nb_pt) { 2392 printf("previous number of forwarding ports %u - changed to " 2393 "number of configured ports %u\n", 2394 (unsigned int) nb_fwd_ports, nb_pt); 2395 nb_fwd_ports = (portid_t) nb_pt; 2396 } 2397 } 2398 2399 void 2400 set_fwd_ports_mask(uint64_t portmask) 2401 { 2402 unsigned int portlist[64]; 2403 unsigned int nb_pt; 2404 unsigned int i; 2405 2406 if (portmask == 0) { 2407 printf("Invalid NULL mask of ports\n"); 2408 return; 2409 } 2410 nb_pt = 0; 2411 RTE_ETH_FOREACH_DEV(i) { 2412 if (! ((uint64_t)(1ULL << i) & portmask)) 2413 continue; 2414 portlist[nb_pt++] = i; 2415 } 2416 set_fwd_ports_list(portlist, nb_pt); 2417 } 2418 2419 void 2420 set_fwd_ports_number(uint16_t nb_pt) 2421 { 2422 if (nb_pt > nb_cfg_ports) { 2423 printf("nb fwd ports %u > %u (number of configured " 2424 "ports) - ignored\n", 2425 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2426 return; 2427 } 2428 nb_fwd_ports = (portid_t) nb_pt; 2429 printf("Number of forwarding ports set to %u\n", 2430 (unsigned int) nb_fwd_ports); 2431 } 2432 2433 int 2434 port_is_forwarding(portid_t port_id) 2435 { 2436 unsigned int i; 2437 2438 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2439 return -1; 2440 2441 for (i = 0; i < nb_fwd_ports; i++) { 2442 if (fwd_ports_ids[i] == port_id) 2443 return 1; 2444 } 2445 2446 return 0; 2447 } 2448 2449 void 2450 set_nb_pkt_per_burst(uint16_t nb) 2451 { 2452 if (nb > MAX_PKT_BURST) { 2453 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2454 " ignored\n", 2455 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2456 return; 2457 } 2458 nb_pkt_per_burst = nb; 2459 printf("Number of packets per burst set to %u\n", 2460 (unsigned int) nb_pkt_per_burst); 2461 } 2462 2463 static const char * 2464 tx_split_get_name(enum tx_pkt_split split) 2465 { 2466 uint32_t i; 2467 2468 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2469 if (tx_split_name[i].split == split) 2470 return tx_split_name[i].name; 2471 } 2472 return NULL; 2473 } 2474 2475 void 2476 set_tx_pkt_split(const char *name) 2477 { 2478 uint32_t i; 2479 2480 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2481 if (strcmp(tx_split_name[i].name, name) == 0) { 2482 tx_pkt_split = tx_split_name[i].split; 2483 return; 2484 } 2485 } 2486 printf("unknown value: \"%s\"\n", name); 2487 } 2488 2489 void 2490 show_tx_pkt_segments(void) 2491 { 2492 uint32_t i, n; 2493 const char *split; 2494 2495 n = tx_pkt_nb_segs; 2496 split = tx_split_get_name(tx_pkt_split); 2497 2498 printf("Number of segments: %u\n", n); 2499 printf("Segment sizes: "); 2500 for (i = 0; i != n - 1; i++) 2501 printf("%hu,", tx_pkt_seg_lengths[i]); 2502 printf("%hu\n", tx_pkt_seg_lengths[i]); 2503 printf("Split packet: %s\n", split); 2504 } 2505 2506 void 2507 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2508 { 2509 uint16_t tx_pkt_len; 2510 unsigned i; 2511 2512 if (nb_segs >= (unsigned) nb_txd) { 2513 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2514 nb_segs, (unsigned int) nb_txd); 2515 return; 2516 } 2517 2518 /* 2519 * Check that each segment length is greater or equal than 2520 * the mbuf data sise. 2521 * Check also that the total packet length is greater or equal than the 2522 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + 2523 * 20 + 8). 2524 */ 2525 tx_pkt_len = 0; 2526 for (i = 0; i < nb_segs; i++) { 2527 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2528 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2529 i, seg_lengths[i], (unsigned) mbuf_data_size); 2530 return; 2531 } 2532 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2533 } 2534 if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { 2535 printf("total packet length=%u < %d - give up\n", 2536 (unsigned) tx_pkt_len, 2537 (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); 2538 return; 2539 } 2540 2541 for (i = 0; i < nb_segs; i++) 2542 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2543 2544 tx_pkt_length = tx_pkt_len; 2545 tx_pkt_nb_segs = (uint8_t) nb_segs; 2546 } 2547 2548 void 2549 setup_gro(const char *onoff, portid_t port_id) 2550 { 2551 if (!rte_eth_dev_is_valid_port(port_id)) { 2552 printf("invalid port id %u\n", port_id); 2553 return; 2554 } 2555 if (test_done == 0) { 2556 printf("Before enable/disable GRO," 2557 " please stop forwarding first\n"); 2558 return; 2559 } 2560 if (strcmp(onoff, "on") == 0) { 2561 if (gro_ports[port_id].enable != 0) { 2562 printf("Port %u has enabled GRO. Please" 2563 " disable GRO first\n", port_id); 2564 return; 2565 } 2566 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2567 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2568 gro_ports[port_id].param.max_flow_num = 2569 GRO_DEFAULT_FLOW_NUM; 2570 gro_ports[port_id].param.max_item_per_flow = 2571 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2572 } 2573 gro_ports[port_id].enable = 1; 2574 } else { 2575 if (gro_ports[port_id].enable == 0) { 2576 printf("Port %u has disabled GRO\n", port_id); 2577 return; 2578 } 2579 gro_ports[port_id].enable = 0; 2580 } 2581 } 2582 2583 void 2584 setup_gro_flush_cycles(uint8_t cycles) 2585 { 2586 if (test_done == 0) { 2587 printf("Before change flush interval for GRO," 2588 " please stop forwarding first.\n"); 2589 return; 2590 } 2591 2592 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 2593 GRO_DEFAULT_FLUSH_CYCLES) { 2594 printf("The flushing cycle be in the range" 2595 " of 1 to %u. Revert to the default" 2596 " value %u.\n", 2597 GRO_MAX_FLUSH_CYCLES, 2598 GRO_DEFAULT_FLUSH_CYCLES); 2599 cycles = GRO_DEFAULT_FLUSH_CYCLES; 2600 } 2601 2602 gro_flush_cycles = cycles; 2603 } 2604 2605 void 2606 show_gro(portid_t port_id) 2607 { 2608 struct rte_gro_param *param; 2609 uint32_t max_pkts_num; 2610 2611 param = &gro_ports[port_id].param; 2612 2613 if (!rte_eth_dev_is_valid_port(port_id)) { 2614 printf("Invalid port id %u.\n", port_id); 2615 return; 2616 } 2617 if (gro_ports[port_id].enable) { 2618 printf("GRO type: TCP/IPv4\n"); 2619 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2620 max_pkts_num = param->max_flow_num * 2621 param->max_item_per_flow; 2622 } else 2623 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 2624 printf("Max number of packets to perform GRO: %u\n", 2625 max_pkts_num); 2626 printf("Flushing cycles: %u\n", gro_flush_cycles); 2627 } else 2628 printf("Port %u doesn't enable GRO.\n", port_id); 2629 } 2630 2631 void 2632 setup_gso(const char *mode, portid_t port_id) 2633 { 2634 if (!rte_eth_dev_is_valid_port(port_id)) { 2635 printf("invalid port id %u\n", port_id); 2636 return; 2637 } 2638 if (strcmp(mode, "on") == 0) { 2639 if (test_done == 0) { 2640 printf("before enabling GSO," 2641 " please stop forwarding first\n"); 2642 return; 2643 } 2644 gso_ports[port_id].enable = 1; 2645 } else if (strcmp(mode, "off") == 0) { 2646 if (test_done == 0) { 2647 printf("before disabling GSO," 2648 " please stop forwarding first\n"); 2649 return; 2650 } 2651 gso_ports[port_id].enable = 0; 2652 } 2653 } 2654 2655 char* 2656 list_pkt_forwarding_modes(void) 2657 { 2658 static char fwd_modes[128] = ""; 2659 const char *separator = "|"; 2660 struct fwd_engine *fwd_eng; 2661 unsigned i = 0; 2662 2663 if (strlen (fwd_modes) == 0) { 2664 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2665 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2666 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2667 strncat(fwd_modes, separator, 2668 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2669 } 2670 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2671 } 2672 2673 return fwd_modes; 2674 } 2675 2676 char* 2677 list_pkt_forwarding_retry_modes(void) 2678 { 2679 static char fwd_modes[128] = ""; 2680 const char *separator = "|"; 2681 struct fwd_engine *fwd_eng; 2682 unsigned i = 0; 2683 2684 if (strlen(fwd_modes) == 0) { 2685 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2686 if (fwd_eng == &rx_only_engine) 2687 continue; 2688 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2689 sizeof(fwd_modes) - 2690 strlen(fwd_modes) - 1); 2691 strncat(fwd_modes, separator, 2692 sizeof(fwd_modes) - 2693 strlen(fwd_modes) - 1); 2694 } 2695 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2696 } 2697 2698 return fwd_modes; 2699 } 2700 2701 void 2702 set_pkt_forwarding_mode(const char *fwd_mode_name) 2703 { 2704 struct fwd_engine *fwd_eng; 2705 unsigned i; 2706 2707 i = 0; 2708 while ((fwd_eng = fwd_engines[i]) != NULL) { 2709 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2710 printf("Set %s packet forwarding mode%s\n", 2711 fwd_mode_name, 2712 retry_enabled == 0 ? "" : " with retry"); 2713 cur_fwd_eng = fwd_eng; 2714 return; 2715 } 2716 i++; 2717 } 2718 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2719 } 2720 2721 void 2722 add_rx_dump_callbacks(portid_t portid) 2723 { 2724 struct rte_eth_dev_info dev_info; 2725 uint16_t queue; 2726 2727 if (port_id_is_invalid(portid, ENABLED_WARN)) 2728 return; 2729 2730 rte_eth_dev_info_get(portid, &dev_info); 2731 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 2732 if (!ports[portid].rx_dump_cb[queue]) 2733 ports[portid].rx_dump_cb[queue] = 2734 rte_eth_add_rx_callback(portid, queue, 2735 dump_rx_pkts, NULL); 2736 } 2737 2738 void 2739 add_tx_dump_callbacks(portid_t portid) 2740 { 2741 struct rte_eth_dev_info dev_info; 2742 uint16_t queue; 2743 2744 if (port_id_is_invalid(portid, ENABLED_WARN)) 2745 return; 2746 rte_eth_dev_info_get(portid, &dev_info); 2747 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 2748 if (!ports[portid].tx_dump_cb[queue]) 2749 ports[portid].tx_dump_cb[queue] = 2750 rte_eth_add_tx_callback(portid, queue, 2751 dump_tx_pkts, NULL); 2752 } 2753 2754 void 2755 remove_rx_dump_callbacks(portid_t portid) 2756 { 2757 struct rte_eth_dev_info dev_info; 2758 uint16_t queue; 2759 2760 if (port_id_is_invalid(portid, ENABLED_WARN)) 2761 return; 2762 rte_eth_dev_info_get(portid, &dev_info); 2763 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 2764 if (ports[portid].rx_dump_cb[queue]) { 2765 rte_eth_remove_rx_callback(portid, queue, 2766 ports[portid].rx_dump_cb[queue]); 2767 ports[portid].rx_dump_cb[queue] = NULL; 2768 } 2769 } 2770 2771 void 2772 remove_tx_dump_callbacks(portid_t portid) 2773 { 2774 struct rte_eth_dev_info dev_info; 2775 uint16_t queue; 2776 2777 if (port_id_is_invalid(portid, ENABLED_WARN)) 2778 return; 2779 rte_eth_dev_info_get(portid, &dev_info); 2780 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 2781 if (ports[portid].tx_dump_cb[queue]) { 2782 rte_eth_remove_tx_callback(portid, queue, 2783 ports[portid].tx_dump_cb[queue]); 2784 ports[portid].tx_dump_cb[queue] = NULL; 2785 } 2786 } 2787 2788 void 2789 configure_rxtx_dump_callbacks(uint16_t verbose) 2790 { 2791 portid_t portid; 2792 2793 #ifndef RTE_ETHDEV_RXTX_CALLBACKS 2794 TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); 2795 return; 2796 #endif 2797 2798 RTE_ETH_FOREACH_DEV(portid) 2799 { 2800 if (verbose == 1 || verbose > 2) 2801 add_rx_dump_callbacks(portid); 2802 else 2803 remove_rx_dump_callbacks(portid); 2804 if (verbose >= 2) 2805 add_tx_dump_callbacks(portid); 2806 else 2807 remove_tx_dump_callbacks(portid); 2808 } 2809 } 2810 2811 void 2812 set_verbose_level(uint16_t vb_level) 2813 { 2814 printf("Change verbose level from %u to %u\n", 2815 (unsigned int) verbose_level, (unsigned int) vb_level); 2816 verbose_level = vb_level; 2817 configure_rxtx_dump_callbacks(verbose_level); 2818 } 2819 2820 void 2821 vlan_extend_set(portid_t port_id, int on) 2822 { 2823 int diag; 2824 int vlan_offload; 2825 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2826 2827 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2828 return; 2829 2830 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2831 2832 if (on) { 2833 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2834 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND; 2835 } else { 2836 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2837 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND; 2838 } 2839 2840 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2841 if (diag < 0) 2842 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2843 "diag=%d\n", port_id, on, diag); 2844 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2845 } 2846 2847 void 2848 rx_vlan_strip_set(portid_t port_id, int on) 2849 { 2850 int diag; 2851 int vlan_offload; 2852 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2853 2854 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2855 return; 2856 2857 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2858 2859 if (on) { 2860 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2861 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP; 2862 } else { 2863 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2864 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; 2865 } 2866 2867 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2868 if (diag < 0) 2869 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2870 "diag=%d\n", port_id, on, diag); 2871 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2872 } 2873 2874 void 2875 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2876 { 2877 int diag; 2878 2879 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2880 return; 2881 2882 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2883 if (diag < 0) 2884 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2885 "diag=%d\n", port_id, queue_id, on, diag); 2886 } 2887 2888 void 2889 rx_vlan_filter_set(portid_t port_id, int on) 2890 { 2891 int diag; 2892 int vlan_offload; 2893 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2894 2895 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2896 return; 2897 2898 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2899 2900 if (on) { 2901 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2902 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 2903 } else { 2904 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2905 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER; 2906 } 2907 2908 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2909 if (diag < 0) 2910 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2911 "diag=%d\n", port_id, on, diag); 2912 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2913 } 2914 2915 int 2916 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2917 { 2918 int diag; 2919 2920 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2921 return 1; 2922 if (vlan_id_is_invalid(vlan_id)) 2923 return 1; 2924 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2925 if (diag == 0) 2926 return 0; 2927 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2928 "diag=%d\n", 2929 port_id, vlan_id, on, diag); 2930 return -1; 2931 } 2932 2933 void 2934 rx_vlan_all_filter_set(portid_t port_id, int on) 2935 { 2936 uint16_t vlan_id; 2937 2938 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2939 return; 2940 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2941 if (rx_vft_set(port_id, vlan_id, on)) 2942 break; 2943 } 2944 } 2945 2946 void 2947 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2948 { 2949 int diag; 2950 2951 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2952 return; 2953 2954 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2955 if (diag == 0) 2956 return; 2957 2958 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2959 "diag=%d\n", 2960 port_id, vlan_type, tp_id, diag); 2961 } 2962 2963 void 2964 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2965 { 2966 struct rte_eth_dev_info dev_info; 2967 2968 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2969 return; 2970 if (vlan_id_is_invalid(vlan_id)) 2971 return; 2972 2973 if (ports[port_id].dev_conf.txmode.offloads & 2974 DEV_TX_OFFLOAD_QINQ_INSERT) { 2975 printf("Error, as QinQ has been enabled.\n"); 2976 return; 2977 } 2978 rte_eth_dev_info_get(port_id, &dev_info); 2979 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) { 2980 printf("Error: vlan insert is not supported by port %d\n", 2981 port_id); 2982 return; 2983 } 2984 2985 tx_vlan_reset(port_id); 2986 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT; 2987 ports[port_id].tx_vlan_id = vlan_id; 2988 } 2989 2990 void 2991 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2992 { 2993 struct rte_eth_dev_info dev_info; 2994 2995 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2996 return; 2997 if (vlan_id_is_invalid(vlan_id)) 2998 return; 2999 if (vlan_id_is_invalid(vlan_id_outer)) 3000 return; 3001 3002 rte_eth_dev_info_get(port_id, &dev_info); 3003 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) { 3004 printf("Error: qinq insert not supported by port %d\n", 3005 port_id); 3006 return; 3007 } 3008 3009 tx_vlan_reset(port_id); 3010 ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT | 3011 DEV_TX_OFFLOAD_QINQ_INSERT); 3012 ports[port_id].tx_vlan_id = vlan_id; 3013 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 3014 } 3015 3016 void 3017 tx_vlan_reset(portid_t port_id) 3018 { 3019 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3020 return; 3021 ports[port_id].dev_conf.txmode.offloads &= 3022 ~(DEV_TX_OFFLOAD_VLAN_INSERT | 3023 DEV_TX_OFFLOAD_QINQ_INSERT); 3024 ports[port_id].tx_vlan_id = 0; 3025 ports[port_id].tx_vlan_id_outer = 0; 3026 } 3027 3028 void 3029 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 3030 { 3031 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3032 return; 3033 3034 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 3035 } 3036 3037 void 3038 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 3039 { 3040 uint16_t i; 3041 uint8_t existing_mapping_found = 0; 3042 3043 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3044 return; 3045 3046 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 3047 return; 3048 3049 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 3050 printf("map_value not in required range 0..%d\n", 3051 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 3052 return; 3053 } 3054 3055 if (!is_rx) { /*then tx*/ 3056 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 3057 if ((tx_queue_stats_mappings[i].port_id == port_id) && 3058 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 3059 tx_queue_stats_mappings[i].stats_counter_id = map_value; 3060 existing_mapping_found = 1; 3061 break; 3062 } 3063 } 3064 if (!existing_mapping_found) { /* A new additional mapping... */ 3065 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 3066 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 3067 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 3068 nb_tx_queue_stats_mappings++; 3069 } 3070 } 3071 else { /*rx*/ 3072 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 3073 if ((rx_queue_stats_mappings[i].port_id == port_id) && 3074 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 3075 rx_queue_stats_mappings[i].stats_counter_id = map_value; 3076 existing_mapping_found = 1; 3077 break; 3078 } 3079 } 3080 if (!existing_mapping_found) { /* A new additional mapping... */ 3081 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 3082 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 3083 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 3084 nb_rx_queue_stats_mappings++; 3085 } 3086 } 3087 } 3088 3089 void 3090 set_xstats_hide_zero(uint8_t on_off) 3091 { 3092 xstats_hide_zero = on_off; 3093 } 3094 3095 static inline void 3096 print_fdir_mask(struct rte_eth_fdir_masks *mask) 3097 { 3098 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 3099 3100 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3101 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 3102 " tunnel_id: 0x%08x", 3103 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 3104 rte_be_to_cpu_32(mask->tunnel_id_mask)); 3105 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3106 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 3107 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 3108 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 3109 3110 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 3111 rte_be_to_cpu_16(mask->src_port_mask), 3112 rte_be_to_cpu_16(mask->dst_port_mask)); 3113 3114 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3115 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 3116 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 3117 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 3118 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 3119 3120 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3121 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 3122 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 3123 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 3124 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 3125 } 3126 3127 printf("\n"); 3128 } 3129 3130 static inline void 3131 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3132 { 3133 struct rte_eth_flex_payload_cfg *cfg; 3134 uint32_t i, j; 3135 3136 for (i = 0; i < flex_conf->nb_payloads; i++) { 3137 cfg = &flex_conf->flex_set[i]; 3138 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 3139 printf("\n RAW: "); 3140 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 3141 printf("\n L2_PAYLOAD: "); 3142 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 3143 printf("\n L3_PAYLOAD: "); 3144 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 3145 printf("\n L4_PAYLOAD: "); 3146 else 3147 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 3148 for (j = 0; j < num; j++) 3149 printf(" %-5u", cfg->src_offset[j]); 3150 } 3151 printf("\n"); 3152 } 3153 3154 static char * 3155 flowtype_to_str(uint16_t flow_type) 3156 { 3157 struct flow_type_info { 3158 char str[32]; 3159 uint16_t ftype; 3160 }; 3161 3162 uint8_t i; 3163 static struct flow_type_info flowtype_str_table[] = { 3164 {"raw", RTE_ETH_FLOW_RAW}, 3165 {"ipv4", RTE_ETH_FLOW_IPV4}, 3166 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 3167 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 3168 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 3169 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 3170 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 3171 {"ipv6", RTE_ETH_FLOW_IPV6}, 3172 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 3173 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 3174 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 3175 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 3176 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 3177 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 3178 {"port", RTE_ETH_FLOW_PORT}, 3179 {"vxlan", RTE_ETH_FLOW_VXLAN}, 3180 {"geneve", RTE_ETH_FLOW_GENEVE}, 3181 {"nvgre", RTE_ETH_FLOW_NVGRE}, 3182 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, 3183 }; 3184 3185 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 3186 if (flowtype_str_table[i].ftype == flow_type) 3187 return flowtype_str_table[i].str; 3188 } 3189 3190 return NULL; 3191 } 3192 3193 static inline void 3194 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3195 { 3196 struct rte_eth_fdir_flex_mask *mask; 3197 uint32_t i, j; 3198 char *p; 3199 3200 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 3201 mask = &flex_conf->flex_mask[i]; 3202 p = flowtype_to_str(mask->flow_type); 3203 printf("\n %s:\t", p ? p : "unknown"); 3204 for (j = 0; j < num; j++) 3205 printf(" %02x", mask->mask[j]); 3206 } 3207 printf("\n"); 3208 } 3209 3210 static inline void 3211 print_fdir_flow_type(uint32_t flow_types_mask) 3212 { 3213 int i; 3214 char *p; 3215 3216 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 3217 if (!(flow_types_mask & (1 << i))) 3218 continue; 3219 p = flowtype_to_str(i); 3220 if (p) 3221 printf(" %s", p); 3222 else 3223 printf(" unknown"); 3224 } 3225 printf("\n"); 3226 } 3227 3228 void 3229 fdir_get_infos(portid_t port_id) 3230 { 3231 struct rte_eth_fdir_stats fdir_stat; 3232 struct rte_eth_fdir_info fdir_info; 3233 int ret; 3234 3235 static const char *fdir_stats_border = "########################"; 3236 3237 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3238 return; 3239 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 3240 if (ret < 0) { 3241 printf("\n FDIR is not supported on port %-2d\n", 3242 port_id); 3243 return; 3244 } 3245 3246 memset(&fdir_info, 0, sizeof(fdir_info)); 3247 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3248 RTE_ETH_FILTER_INFO, &fdir_info); 3249 memset(&fdir_stat, 0, sizeof(fdir_stat)); 3250 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3251 RTE_ETH_FILTER_STATS, &fdir_stat); 3252 printf("\n %s FDIR infos for port %-2d %s\n", 3253 fdir_stats_border, port_id, fdir_stats_border); 3254 printf(" MODE: "); 3255 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 3256 printf(" PERFECT\n"); 3257 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 3258 printf(" PERFECT-MAC-VLAN\n"); 3259 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3260 printf(" PERFECT-TUNNEL\n"); 3261 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 3262 printf(" SIGNATURE\n"); 3263 else 3264 printf(" DISABLE\n"); 3265 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 3266 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 3267 printf(" SUPPORTED FLOW TYPE: "); 3268 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 3269 } 3270 printf(" FLEX PAYLOAD INFO:\n"); 3271 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 3272 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 3273 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 3274 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 3275 fdir_info.flex_payload_unit, 3276 fdir_info.max_flex_payload_segment_num, 3277 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 3278 printf(" MASK: "); 3279 print_fdir_mask(&fdir_info.mask); 3280 if (fdir_info.flex_conf.nb_payloads > 0) { 3281 printf(" FLEX PAYLOAD SRC OFFSET:"); 3282 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3283 } 3284 if (fdir_info.flex_conf.nb_flexmasks > 0) { 3285 printf(" FLEX MASK CFG:"); 3286 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3287 } 3288 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 3289 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 3290 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 3291 fdir_info.guarant_spc, fdir_info.best_spc); 3292 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 3293 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 3294 " add: %-10"PRIu64" remove: %"PRIu64"\n" 3295 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 3296 fdir_stat.collision, fdir_stat.free, 3297 fdir_stat.maxhash, fdir_stat.maxlen, 3298 fdir_stat.add, fdir_stat.remove, 3299 fdir_stat.f_add, fdir_stat.f_remove); 3300 printf(" %s############################%s\n", 3301 fdir_stats_border, fdir_stats_border); 3302 } 3303 3304 void 3305 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 3306 { 3307 struct rte_port *port; 3308 struct rte_eth_fdir_flex_conf *flex_conf; 3309 int i, idx = 0; 3310 3311 port = &ports[port_id]; 3312 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3313 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3314 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3315 idx = i; 3316 break; 3317 } 3318 } 3319 if (i >= RTE_ETH_FLOW_MAX) { 3320 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3321 idx = flex_conf->nb_flexmasks; 3322 flex_conf->nb_flexmasks++; 3323 } else { 3324 printf("The flex mask table is full. Can not set flex" 3325 " mask for flow_type(%u).", cfg->flow_type); 3326 return; 3327 } 3328 } 3329 rte_memcpy(&flex_conf->flex_mask[idx], 3330 cfg, 3331 sizeof(struct rte_eth_fdir_flex_mask)); 3332 } 3333 3334 void 3335 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3336 { 3337 struct rte_port *port; 3338 struct rte_eth_fdir_flex_conf *flex_conf; 3339 int i, idx = 0; 3340 3341 port = &ports[port_id]; 3342 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3343 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3344 if (cfg->type == flex_conf->flex_set[i].type) { 3345 idx = i; 3346 break; 3347 } 3348 } 3349 if (i >= RTE_ETH_PAYLOAD_MAX) { 3350 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3351 idx = flex_conf->nb_payloads; 3352 flex_conf->nb_payloads++; 3353 } else { 3354 printf("The flex payload table is full. Can not set" 3355 " flex payload for type(%u).", cfg->type); 3356 return; 3357 } 3358 } 3359 rte_memcpy(&flex_conf->flex_set[idx], 3360 cfg, 3361 sizeof(struct rte_eth_flex_payload_cfg)); 3362 3363 } 3364 3365 void 3366 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3367 { 3368 #ifdef RTE_LIBRTE_IXGBE_PMD 3369 int diag; 3370 3371 if (is_rx) 3372 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3373 else 3374 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3375 3376 if (diag == 0) 3377 return; 3378 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3379 is_rx ? "rx" : "tx", port_id, diag); 3380 return; 3381 #endif 3382 printf("VF %s setting not supported for port %d\n", 3383 is_rx ? "Rx" : "Tx", port_id); 3384 RTE_SET_USED(vf); 3385 RTE_SET_USED(on); 3386 } 3387 3388 int 3389 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3390 { 3391 int diag; 3392 struct rte_eth_link link; 3393 3394 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3395 return 1; 3396 rte_eth_link_get_nowait(port_id, &link); 3397 if (rate > link.link_speed) { 3398 printf("Invalid rate value:%u bigger than link speed: %u\n", 3399 rate, link.link_speed); 3400 return 1; 3401 } 3402 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3403 if (diag == 0) 3404 return diag; 3405 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3406 port_id, diag); 3407 return diag; 3408 } 3409 3410 int 3411 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3412 { 3413 int diag = -ENOTSUP; 3414 3415 RTE_SET_USED(vf); 3416 RTE_SET_USED(rate); 3417 RTE_SET_USED(q_msk); 3418 3419 #ifdef RTE_LIBRTE_IXGBE_PMD 3420 if (diag == -ENOTSUP) 3421 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3422 q_msk); 3423 #endif 3424 #ifdef RTE_LIBRTE_BNXT_PMD 3425 if (diag == -ENOTSUP) 3426 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3427 #endif 3428 if (diag == 0) 3429 return diag; 3430 3431 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3432 port_id, diag); 3433 return diag; 3434 } 3435 3436 /* 3437 * Functions to manage the set of filtered Multicast MAC addresses. 3438 * 3439 * A pool of filtered multicast MAC addresses is associated with each port. 3440 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3441 * The address of the pool and the number of valid multicast MAC addresses 3442 * recorded in the pool are stored in the fields "mc_addr_pool" and 3443 * "mc_addr_nb" of the "rte_port" data structure. 3444 * 3445 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3446 * to be supplied a contiguous array of multicast MAC addresses. 3447 * To comply with this constraint, the set of multicast addresses recorded 3448 * into the pool are systematically compacted at the beginning of the pool. 3449 * Hence, when a multicast address is removed from the pool, all following 3450 * addresses, if any, are copied back to keep the set contiguous. 3451 */ 3452 #define MCAST_POOL_INC 32 3453 3454 static int 3455 mcast_addr_pool_extend(struct rte_port *port) 3456 { 3457 struct rte_ether_addr *mc_pool; 3458 size_t mc_pool_size; 3459 3460 /* 3461 * If a free entry is available at the end of the pool, just 3462 * increment the number of recorded multicast addresses. 3463 */ 3464 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3465 port->mc_addr_nb++; 3466 return 0; 3467 } 3468 3469 /* 3470 * [re]allocate a pool with MCAST_POOL_INC more entries. 3471 * The previous test guarantees that port->mc_addr_nb is a multiple 3472 * of MCAST_POOL_INC. 3473 */ 3474 mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + 3475 MCAST_POOL_INC); 3476 mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, 3477 mc_pool_size); 3478 if (mc_pool == NULL) { 3479 printf("allocation of pool of %u multicast addresses failed\n", 3480 port->mc_addr_nb + MCAST_POOL_INC); 3481 return -ENOMEM; 3482 } 3483 3484 port->mc_addr_pool = mc_pool; 3485 port->mc_addr_nb++; 3486 return 0; 3487 3488 } 3489 3490 static void 3491 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3492 { 3493 port->mc_addr_nb--; 3494 if (addr_idx == port->mc_addr_nb) { 3495 /* No need to recompact the set of multicast addressses. */ 3496 if (port->mc_addr_nb == 0) { 3497 /* free the pool of multicast addresses. */ 3498 free(port->mc_addr_pool); 3499 port->mc_addr_pool = NULL; 3500 } 3501 return; 3502 } 3503 memmove(&port->mc_addr_pool[addr_idx], 3504 &port->mc_addr_pool[addr_idx + 1], 3505 sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); 3506 } 3507 3508 static void 3509 eth_port_multicast_addr_list_set(portid_t port_id) 3510 { 3511 struct rte_port *port; 3512 int diag; 3513 3514 port = &ports[port_id]; 3515 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3516 port->mc_addr_nb); 3517 if (diag == 0) 3518 return; 3519 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3520 port->mc_addr_nb, port_id, -diag); 3521 } 3522 3523 void 3524 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) 3525 { 3526 struct rte_port *port; 3527 uint32_t i; 3528 3529 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3530 return; 3531 3532 port = &ports[port_id]; 3533 3534 /* 3535 * Check that the added multicast MAC address is not already recorded 3536 * in the pool of multicast addresses. 3537 */ 3538 for (i = 0; i < port->mc_addr_nb; i++) { 3539 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3540 printf("multicast address already filtered by port\n"); 3541 return; 3542 } 3543 } 3544 3545 if (mcast_addr_pool_extend(port) != 0) 3546 return; 3547 rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3548 eth_port_multicast_addr_list_set(port_id); 3549 } 3550 3551 void 3552 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) 3553 { 3554 struct rte_port *port; 3555 uint32_t i; 3556 3557 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3558 return; 3559 3560 port = &ports[port_id]; 3561 3562 /* 3563 * Search the pool of multicast MAC addresses for the removed address. 3564 */ 3565 for (i = 0; i < port->mc_addr_nb; i++) { 3566 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3567 break; 3568 } 3569 if (i == port->mc_addr_nb) { 3570 printf("multicast address not filtered by port %d\n", port_id); 3571 return; 3572 } 3573 3574 mcast_addr_pool_remove(port, i); 3575 eth_port_multicast_addr_list_set(port_id); 3576 } 3577 3578 void 3579 port_dcb_info_display(portid_t port_id) 3580 { 3581 struct rte_eth_dcb_info dcb_info; 3582 uint16_t i; 3583 int ret; 3584 static const char *border = "================"; 3585 3586 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3587 return; 3588 3589 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3590 if (ret) { 3591 printf("\n Failed to get dcb infos on port %-2d\n", 3592 port_id); 3593 return; 3594 } 3595 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3596 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3597 printf("\n TC : "); 3598 for (i = 0; i < dcb_info.nb_tcs; i++) 3599 printf("\t%4d", i); 3600 printf("\n Priority : "); 3601 for (i = 0; i < dcb_info.nb_tcs; i++) 3602 printf("\t%4d", dcb_info.prio_tc[i]); 3603 printf("\n BW percent :"); 3604 for (i = 0; i < dcb_info.nb_tcs; i++) 3605 printf("\t%4d%%", dcb_info.tc_bws[i]); 3606 printf("\n RXQ base : "); 3607 for (i = 0; i < dcb_info.nb_tcs; i++) 3608 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3609 printf("\n RXQ number :"); 3610 for (i = 0; i < dcb_info.nb_tcs; i++) 3611 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3612 printf("\n TXQ base : "); 3613 for (i = 0; i < dcb_info.nb_tcs; i++) 3614 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3615 printf("\n TXQ number :"); 3616 for (i = 0; i < dcb_info.nb_tcs; i++) 3617 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3618 printf("\n"); 3619 } 3620 3621 uint8_t * 3622 open_file(const char *file_path, uint32_t *size) 3623 { 3624 int fd = open(file_path, O_RDONLY); 3625 off_t pkg_size; 3626 uint8_t *buf = NULL; 3627 int ret = 0; 3628 struct stat st_buf; 3629 3630 if (size) 3631 *size = 0; 3632 3633 if (fd == -1) { 3634 printf("%s: Failed to open %s\n", __func__, file_path); 3635 return buf; 3636 } 3637 3638 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 3639 close(fd); 3640 printf("%s: File operations failed\n", __func__); 3641 return buf; 3642 } 3643 3644 pkg_size = st_buf.st_size; 3645 if (pkg_size < 0) { 3646 close(fd); 3647 printf("%s: File operations failed\n", __func__); 3648 return buf; 3649 } 3650 3651 buf = (uint8_t *)malloc(pkg_size); 3652 if (!buf) { 3653 close(fd); 3654 printf("%s: Failed to malloc memory\n", __func__); 3655 return buf; 3656 } 3657 3658 ret = read(fd, buf, pkg_size); 3659 if (ret < 0) { 3660 close(fd); 3661 printf("%s: File read operation failed\n", __func__); 3662 close_file(buf); 3663 return NULL; 3664 } 3665 3666 if (size) 3667 *size = pkg_size; 3668 3669 close(fd); 3670 3671 return buf; 3672 } 3673 3674 int 3675 save_file(const char *file_path, uint8_t *buf, uint32_t size) 3676 { 3677 FILE *fh = fopen(file_path, "wb"); 3678 3679 if (fh == NULL) { 3680 printf("%s: Failed to open %s\n", __func__, file_path); 3681 return -1; 3682 } 3683 3684 if (fwrite(buf, 1, size, fh) != size) { 3685 fclose(fh); 3686 printf("%s: File write operation failed\n", __func__); 3687 return -1; 3688 } 3689 3690 fclose(fh); 3691 3692 return 0; 3693 } 3694 3695 int 3696 close_file(uint8_t *buf) 3697 { 3698 if (buf) { 3699 free((void *)buf); 3700 return 0; 3701 } 3702 3703 return -1; 3704 } 3705 3706 void 3707 port_queue_region_info_display(portid_t port_id, void *buf) 3708 { 3709 #ifdef RTE_LIBRTE_I40E_PMD 3710 uint16_t i, j; 3711 struct rte_pmd_i40e_queue_regions *info = 3712 (struct rte_pmd_i40e_queue_regions *)buf; 3713 static const char *queue_region_info_stats_border = "-------"; 3714 3715 if (!info->queue_region_number) 3716 printf("there is no region has been set before"); 3717 3718 printf("\n %s All queue region info for port=%2d %s", 3719 queue_region_info_stats_border, port_id, 3720 queue_region_info_stats_border); 3721 printf("\n queue_region_number: %-14u \n", 3722 info->queue_region_number); 3723 3724 for (i = 0; i < info->queue_region_number; i++) { 3725 printf("\n region_id: %-14u queue_number: %-14u " 3726 "queue_start_index: %-14u \n", 3727 info->region[i].region_id, 3728 info->region[i].queue_num, 3729 info->region[i].queue_start_index); 3730 3731 printf(" user_priority_num is %-14u :", 3732 info->region[i].user_priority_num); 3733 for (j = 0; j < info->region[i].user_priority_num; j++) 3734 printf(" %-14u ", info->region[i].user_priority[j]); 3735 3736 printf("\n flowtype_num is %-14u :", 3737 info->region[i].flowtype_num); 3738 for (j = 0; j < info->region[i].flowtype_num; j++) 3739 printf(" %-14u ", info->region[i].hw_flowtype[j]); 3740 } 3741 #else 3742 RTE_SET_USED(port_id); 3743 RTE_SET_USED(buf); 3744 #endif 3745 3746 printf("\n\n"); 3747 } 3748