xref: /dpdk/app/test-pmd/config.c (revision 1ae1b8c72d33a1d11ba82178c924ee7df3fd6c9a)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdint.h>
40 #include <inttypes.h>
41 
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #include <fcntl.h>
46 #include <unistd.h>
47 
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_debug.h>
51 #include <rte_log.h>
52 #include <rte_memory.h>
53 #include <rte_memcpy.h>
54 #include <rte_memzone.h>
55 #include <rte_launch.h>
56 #include <rte_eal.h>
57 #include <rte_per_lcore.h>
58 #include <rte_lcore.h>
59 #include <rte_atomic.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_mempool.h>
62 #include <rte_mbuf.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_string_fns.h>
68 #include <rte_cycles.h>
69 #include <rte_flow.h>
70 #include <rte_errno.h>
71 #ifdef RTE_LIBRTE_IXGBE_PMD
72 #include <rte_pmd_ixgbe.h>
73 #endif
74 #ifdef RTE_LIBRTE_I40E_PMD
75 #include <rte_pmd_i40e.h>
76 #endif
77 #ifdef RTE_LIBRTE_BNXT_PMD
78 #include <rte_pmd_bnxt.h>
79 #endif
80 #include <rte_gro.h>
81 #include <cmdline_parse_etheraddr.h>
82 
83 #include "testpmd.h"
84 
85 static char *flowtype_to_str(uint16_t flow_type);
86 
87 static const struct {
88 	enum tx_pkt_split split;
89 	const char *name;
90 } tx_split_name[] = {
91 	{
92 		.split = TX_PKT_SPLIT_OFF,
93 		.name = "off",
94 	},
95 	{
96 		.split = TX_PKT_SPLIT_ON,
97 		.name = "on",
98 	},
99 	{
100 		.split = TX_PKT_SPLIT_RND,
101 		.name = "rand",
102 	},
103 };
104 
105 struct rss_type_info {
106 	char str[32];
107 	uint64_t rss_type;
108 };
109 
110 static const struct rss_type_info rss_type_table[] = {
111 	{ "ipv4", ETH_RSS_IPV4 },
112 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
113 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
114 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
115 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
116 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
117 	{ "ipv6", ETH_RSS_IPV6 },
118 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
119 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
120 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
121 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
122 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
123 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
124 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
125 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
126 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
127 	{ "port", ETH_RSS_PORT },
128 	{ "vxlan", ETH_RSS_VXLAN },
129 	{ "geneve", ETH_RSS_GENEVE },
130 	{ "nvgre", ETH_RSS_NVGRE },
131 
132 };
133 
134 static void
135 print_ethaddr(const char *name, struct ether_addr *eth_addr)
136 {
137 	char buf[ETHER_ADDR_FMT_SIZE];
138 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
139 	printf("%s%s", name, buf);
140 }
141 
142 void
143 nic_stats_display(portid_t port_id)
144 {
145 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
146 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
147 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
148 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
149 	uint64_t mpps_rx, mpps_tx;
150 	struct rte_eth_stats stats;
151 	struct rte_port *port = &ports[port_id];
152 	uint8_t i;
153 	portid_t pid;
154 
155 	static const char *nic_stats_border = "########################";
156 
157 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
158 		printf("Valid port range is [0");
159 		RTE_ETH_FOREACH_DEV(pid)
160 			printf(", %d", pid);
161 		printf("]\n");
162 		return;
163 	}
164 	rte_eth_stats_get(port_id, &stats);
165 	printf("\n  %s NIC statistics for port %-2d %s\n",
166 	       nic_stats_border, port_id, nic_stats_border);
167 
168 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
169 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
170 		       "%-"PRIu64"\n",
171 		       stats.ipackets, stats.imissed, stats.ibytes);
172 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
173 		printf("  RX-nombuf:  %-10"PRIu64"\n",
174 		       stats.rx_nombuf);
175 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
176 		       "%-"PRIu64"\n",
177 		       stats.opackets, stats.oerrors, stats.obytes);
178 	}
179 	else {
180 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
181 		       "    RX-bytes: %10"PRIu64"\n",
182 		       stats.ipackets, stats.ierrors, stats.ibytes);
183 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
184 		printf("  RX-nombuf:               %10"PRIu64"\n",
185 		       stats.rx_nombuf);
186 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
187 		       "    TX-bytes: %10"PRIu64"\n",
188 		       stats.opackets, stats.oerrors, stats.obytes);
189 	}
190 
191 	if (port->rx_queue_stats_mapping_enabled) {
192 		printf("\n");
193 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
194 			printf("  Stats reg %2d RX-packets: %10"PRIu64
195 			       "    RX-errors: %10"PRIu64
196 			       "    RX-bytes: %10"PRIu64"\n",
197 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
198 		}
199 	}
200 	if (port->tx_queue_stats_mapping_enabled) {
201 		printf("\n");
202 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
203 			printf("  Stats reg %2d TX-packets: %10"PRIu64
204 			       "                             TX-bytes: %10"PRIu64"\n",
205 			       i, stats.q_opackets[i], stats.q_obytes[i]);
206 		}
207 	}
208 
209 	diff_cycles = prev_cycles[port_id];
210 	prev_cycles[port_id] = rte_rdtsc();
211 	if (diff_cycles > 0)
212 		diff_cycles = prev_cycles[port_id] - diff_cycles;
213 
214 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
215 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
216 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
217 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
218 	prev_pkts_rx[port_id] = stats.ipackets;
219 	prev_pkts_tx[port_id] = stats.opackets;
220 	mpps_rx = diff_cycles > 0 ?
221 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
222 	mpps_tx = diff_cycles > 0 ?
223 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
224 	printf("\n  Throughput (since last show)\n");
225 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
226 			mpps_rx, mpps_tx);
227 
228 	printf("  %s############################%s\n",
229 	       nic_stats_border, nic_stats_border);
230 }
231 
232 void
233 nic_stats_clear(portid_t port_id)
234 {
235 	portid_t pid;
236 
237 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
238 		printf("Valid port range is [0");
239 		RTE_ETH_FOREACH_DEV(pid)
240 			printf(", %d", pid);
241 		printf("]\n");
242 		return;
243 	}
244 	rte_eth_stats_reset(port_id);
245 	printf("\n  NIC statistics for port %d cleared\n", port_id);
246 }
247 
248 void
249 nic_xstats_display(portid_t port_id)
250 {
251 	struct rte_eth_xstat *xstats;
252 	int cnt_xstats, idx_xstat;
253 	struct rte_eth_xstat_name *xstats_names;
254 
255 	printf("###### NIC extended statistics for port %-2d\n", port_id);
256 	if (!rte_eth_dev_is_valid_port(port_id)) {
257 		printf("Error: Invalid port number %i\n", port_id);
258 		return;
259 	}
260 
261 	/* Get count */
262 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
263 	if (cnt_xstats  < 0) {
264 		printf("Error: Cannot get count of xstats\n");
265 		return;
266 	}
267 
268 	/* Get id-name lookup table */
269 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
270 	if (xstats_names == NULL) {
271 		printf("Cannot allocate memory for xstats lookup\n");
272 		return;
273 	}
274 	if (cnt_xstats != rte_eth_xstats_get_names(
275 			port_id, xstats_names, cnt_xstats)) {
276 		printf("Error: Cannot get xstats lookup\n");
277 		free(xstats_names);
278 		return;
279 	}
280 
281 	/* Get stats themselves */
282 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
283 	if (xstats == NULL) {
284 		printf("Cannot allocate memory for xstats\n");
285 		free(xstats_names);
286 		return;
287 	}
288 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
289 		printf("Error: Unable to get xstats\n");
290 		free(xstats_names);
291 		free(xstats);
292 		return;
293 	}
294 
295 	/* Display xstats */
296 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
297 		if (xstats_hide_zero && !xstats[idx_xstat].value)
298 			continue;
299 		printf("%s: %"PRIu64"\n",
300 			xstats_names[idx_xstat].name,
301 			xstats[idx_xstat].value);
302 	}
303 	free(xstats_names);
304 	free(xstats);
305 }
306 
307 void
308 nic_xstats_clear(portid_t port_id)
309 {
310 	rte_eth_xstats_reset(port_id);
311 }
312 
313 void
314 nic_stats_mapping_display(portid_t port_id)
315 {
316 	struct rte_port *port = &ports[port_id];
317 	uint16_t i;
318 	portid_t pid;
319 
320 	static const char *nic_stats_mapping_border = "########################";
321 
322 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
323 		printf("Valid port range is [0");
324 		RTE_ETH_FOREACH_DEV(pid)
325 			printf(", %d", pid);
326 		printf("]\n");
327 		return;
328 	}
329 
330 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
331 		printf("Port id %d - either does not support queue statistic mapping or"
332 		       " no queue statistic mapping set\n", port_id);
333 		return;
334 	}
335 
336 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
337 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
338 
339 	if (port->rx_queue_stats_mapping_enabled) {
340 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
341 			if (rx_queue_stats_mappings[i].port_id == port_id) {
342 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
343 				       rx_queue_stats_mappings[i].queue_id,
344 				       rx_queue_stats_mappings[i].stats_counter_id);
345 			}
346 		}
347 		printf("\n");
348 	}
349 
350 
351 	if (port->tx_queue_stats_mapping_enabled) {
352 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
353 			if (tx_queue_stats_mappings[i].port_id == port_id) {
354 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
355 				       tx_queue_stats_mappings[i].queue_id,
356 				       tx_queue_stats_mappings[i].stats_counter_id);
357 			}
358 		}
359 	}
360 
361 	printf("  %s####################################%s\n",
362 	       nic_stats_mapping_border, nic_stats_mapping_border);
363 }
364 
365 void
366 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
367 {
368 	struct rte_eth_rxq_info qinfo;
369 	int32_t rc;
370 	static const char *info_border = "*********************";
371 
372 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
373 	if (rc != 0) {
374 		printf("Failed to retrieve information for port: %u, "
375 			"RX queue: %hu\nerror desc: %s(%d)\n",
376 			port_id, queue_id, strerror(-rc), rc);
377 		return;
378 	}
379 
380 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
381 	       info_border, port_id, queue_id, info_border);
382 
383 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
384 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
385 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
386 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
387 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
388 	printf("\nRX drop packets: %s",
389 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
390 	printf("\nRX deferred start: %s",
391 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
392 	printf("\nRX scattered packets: %s",
393 		(qinfo.scattered_rx != 0) ? "on" : "off");
394 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
395 	printf("\n");
396 }
397 
398 void
399 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
400 {
401 	struct rte_eth_txq_info qinfo;
402 	int32_t rc;
403 	static const char *info_border = "*********************";
404 
405 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
406 	if (rc != 0) {
407 		printf("Failed to retrieve information for port: %u, "
408 			"TX queue: %hu\nerror desc: %s(%d)\n",
409 			port_id, queue_id, strerror(-rc), rc);
410 		return;
411 	}
412 
413 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
414 	       info_border, port_id, queue_id, info_border);
415 
416 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
417 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
418 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
419 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
420 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
421 	printf("\nTX deferred start: %s",
422 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
423 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
424 	printf("\n");
425 }
426 
427 void
428 port_infos_display(portid_t port_id)
429 {
430 	struct rte_port *port;
431 	struct ether_addr mac_addr;
432 	struct rte_eth_link link;
433 	struct rte_eth_dev_info dev_info;
434 	int vlan_offload;
435 	struct rte_mempool * mp;
436 	static const char *info_border = "*********************";
437 	portid_t pid;
438 	uint16_t mtu;
439 
440 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
441 		printf("Valid port range is [0");
442 		RTE_ETH_FOREACH_DEV(pid)
443 			printf(", %d", pid);
444 		printf("]\n");
445 		return;
446 	}
447 	port = &ports[port_id];
448 	rte_eth_link_get_nowait(port_id, &link);
449 	memset(&dev_info, 0, sizeof(dev_info));
450 	rte_eth_dev_info_get(port_id, &dev_info);
451 	printf("\n%s Infos for port %-2d %s\n",
452 	       info_border, port_id, info_border);
453 	rte_eth_macaddr_get(port_id, &mac_addr);
454 	print_ethaddr("MAC address: ", &mac_addr);
455 	printf("\nDriver name: %s", dev_info.driver_name);
456 	printf("\nConnect to socket: %u", port->socket_id);
457 
458 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
459 		mp = mbuf_pool_find(port_numa[port_id]);
460 		if (mp)
461 			printf("\nmemory allocation on the socket: %d",
462 							port_numa[port_id]);
463 	} else
464 		printf("\nmemory allocation on the socket: %u",port->socket_id);
465 
466 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
467 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
468 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
469 	       ("full-duplex") : ("half-duplex"));
470 
471 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
472 		printf("MTU: %u\n", mtu);
473 
474 	printf("Promiscuous mode: %s\n",
475 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
476 	printf("Allmulticast mode: %s\n",
477 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
478 	printf("Maximum number of MAC addresses: %u\n",
479 	       (unsigned int)(port->dev_info.max_mac_addrs));
480 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
481 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
482 
483 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
484 	if (vlan_offload >= 0){
485 		printf("VLAN offload: \n");
486 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
487 			printf("  strip on \n");
488 		else
489 			printf("  strip off \n");
490 
491 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
492 			printf("  filter on \n");
493 		else
494 			printf("  filter off \n");
495 
496 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
497 			printf("  qinq(extend) on \n");
498 		else
499 			printf("  qinq(extend) off \n");
500 	}
501 
502 	if (dev_info.hash_key_size > 0)
503 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
504 	if (dev_info.reta_size > 0)
505 		printf("Redirection table size: %u\n", dev_info.reta_size);
506 	if (!dev_info.flow_type_rss_offloads)
507 		printf("No flow type is supported.\n");
508 	else {
509 		uint16_t i;
510 		char *p;
511 
512 		printf("Supported flow types:\n");
513 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
514 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
515 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
516 				continue;
517 			p = flowtype_to_str(i);
518 			if (p)
519 				printf("  %s\n", p);
520 			else
521 				printf("  user defined %d\n", i);
522 		}
523 	}
524 
525 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
526 	printf("Maximum configurable length of RX packet: %u\n",
527 		dev_info.max_rx_pktlen);
528 	if (dev_info.max_vfs)
529 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
530 	if (dev_info.max_vmdq_pools)
531 		printf("Maximum number of VMDq pools: %u\n",
532 			dev_info.max_vmdq_pools);
533 
534 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
535 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
536 	printf("Max possible number of RXDs per queue: %hu\n",
537 		dev_info.rx_desc_lim.nb_max);
538 	printf("Min possible number of RXDs per queue: %hu\n",
539 		dev_info.rx_desc_lim.nb_min);
540 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
541 
542 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
543 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
544 	printf("Max possible number of TXDs per queue: %hu\n",
545 		dev_info.tx_desc_lim.nb_max);
546 	printf("Min possible number of TXDs per queue: %hu\n",
547 		dev_info.tx_desc_lim.nb_min);
548 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
549 }
550 
551 void
552 port_offload_cap_display(portid_t port_id)
553 {
554 	struct rte_eth_dev_info dev_info;
555 	static const char *info_border = "************";
556 
557 	if (port_id_is_invalid(port_id, ENABLED_WARN))
558 		return;
559 
560 	rte_eth_dev_info_get(port_id, &dev_info);
561 
562 	printf("\n%s Port %d supported offload features: %s\n",
563 		info_border, port_id, info_border);
564 
565 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
566 		printf("VLAN stripped:                 ");
567 		if (ports[port_id].dev_conf.rxmode.offloads &
568 		    DEV_RX_OFFLOAD_VLAN_STRIP)
569 			printf("on\n");
570 		else
571 			printf("off\n");
572 	}
573 
574 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
575 		printf("Double VLANs stripped:         ");
576 		if (ports[port_id].dev_conf.rxmode.offloads &
577 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
578 			printf("on\n");
579 		else
580 			printf("off\n");
581 	}
582 
583 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
584 		printf("RX IPv4 checksum:              ");
585 		if (ports[port_id].dev_conf.rxmode.offloads &
586 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
587 			printf("on\n");
588 		else
589 			printf("off\n");
590 	}
591 
592 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
593 		printf("RX UDP checksum:               ");
594 		if (ports[port_id].dev_conf.rxmode.offloads &
595 		    DEV_RX_OFFLOAD_UDP_CKSUM)
596 			printf("on\n");
597 		else
598 			printf("off\n");
599 	}
600 
601 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
602 		printf("RX TCP checksum:               ");
603 		if (ports[port_id].dev_conf.rxmode.offloads &
604 		    DEV_RX_OFFLOAD_TCP_CKSUM)
605 			printf("on\n");
606 		else
607 			printf("off\n");
608 	}
609 
610 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
611 		printf("RX Outer IPv4 checksum:               ");
612 		if (ports[port_id].dev_conf.rxmode.offloads &
613 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
614 			printf("on\n");
615 		else
616 			printf("off\n");
617 	}
618 
619 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
620 		printf("Large receive offload:         ");
621 		if (ports[port_id].dev_conf.rxmode.offloads &
622 		    DEV_RX_OFFLOAD_TCP_LRO)
623 			printf("on\n");
624 		else
625 			printf("off\n");
626 	}
627 
628 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
629 		printf("VLAN insert:                   ");
630 		if (ports[port_id].dev_conf.txmode.offloads &
631 		    DEV_TX_OFFLOAD_VLAN_INSERT)
632 			printf("on\n");
633 		else
634 			printf("off\n");
635 	}
636 
637 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
638 		printf("HW timestamp:                  ");
639 		if (ports[port_id].dev_conf.rxmode.offloads &
640 		    DEV_RX_OFFLOAD_TIMESTAMP)
641 			printf("on\n");
642 		else
643 			printf("off\n");
644 	}
645 
646 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
647 		printf("Double VLANs insert:           ");
648 		if (ports[port_id].dev_conf.txmode.offloads &
649 		    DEV_TX_OFFLOAD_QINQ_INSERT)
650 			printf("on\n");
651 		else
652 			printf("off\n");
653 	}
654 
655 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
656 		printf("TX IPv4 checksum:              ");
657 		if (ports[port_id].dev_conf.txmode.offloads &
658 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
659 			printf("on\n");
660 		else
661 			printf("off\n");
662 	}
663 
664 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
665 		printf("TX UDP checksum:               ");
666 		if (ports[port_id].dev_conf.txmode.offloads &
667 		    DEV_TX_OFFLOAD_UDP_CKSUM)
668 			printf("on\n");
669 		else
670 			printf("off\n");
671 	}
672 
673 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
674 		printf("TX TCP checksum:               ");
675 		if (ports[port_id].dev_conf.txmode.offloads &
676 		    DEV_TX_OFFLOAD_TCP_CKSUM)
677 			printf("on\n");
678 		else
679 			printf("off\n");
680 	}
681 
682 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
683 		printf("TX SCTP checksum:              ");
684 		if (ports[port_id].dev_conf.txmode.offloads &
685 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
686 			printf("on\n");
687 		else
688 			printf("off\n");
689 	}
690 
691 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
692 		printf("TX Outer IPv4 checksum:        ");
693 		if (ports[port_id].dev_conf.txmode.offloads &
694 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
695 			printf("on\n");
696 		else
697 			printf("off\n");
698 	}
699 
700 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
701 		printf("TX TCP segmentation:           ");
702 		if (ports[port_id].dev_conf.txmode.offloads &
703 		    DEV_TX_OFFLOAD_TCP_TSO)
704 			printf("on\n");
705 		else
706 			printf("off\n");
707 	}
708 
709 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
710 		printf("TX UDP segmentation:           ");
711 		if (ports[port_id].dev_conf.txmode.offloads &
712 		    DEV_TX_OFFLOAD_UDP_TSO)
713 			printf("on\n");
714 		else
715 			printf("off\n");
716 	}
717 
718 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
719 		printf("TSO for VXLAN tunnel packet:   ");
720 		if (ports[port_id].dev_conf.txmode.offloads &
721 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
722 			printf("on\n");
723 		else
724 			printf("off\n");
725 	}
726 
727 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
728 		printf("TSO for GRE tunnel packet:     ");
729 		if (ports[port_id].dev_conf.txmode.offloads &
730 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
731 			printf("on\n");
732 		else
733 			printf("off\n");
734 	}
735 
736 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
737 		printf("TSO for IPIP tunnel packet:    ");
738 		if (ports[port_id].dev_conf.txmode.offloads &
739 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
740 			printf("on\n");
741 		else
742 			printf("off\n");
743 	}
744 
745 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
746 		printf("TSO for GENEVE tunnel packet:  ");
747 		if (ports[port_id].dev_conf.txmode.offloads &
748 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
749 			printf("on\n");
750 		else
751 			printf("off\n");
752 	}
753 
754 }
755 
756 int
757 port_id_is_invalid(portid_t port_id, enum print_warning warning)
758 {
759 	uint16_t pid;
760 
761 	if (port_id == (portid_t)RTE_PORT_ALL)
762 		return 0;
763 
764 	RTE_ETH_FOREACH_DEV(pid)
765 		if (port_id == pid)
766 			return 0;
767 
768 	if (warning == ENABLED_WARN)
769 		printf("Invalid port %d\n", port_id);
770 
771 	return 1;
772 }
773 
774 static int
775 vlan_id_is_invalid(uint16_t vlan_id)
776 {
777 	if (vlan_id < 4096)
778 		return 0;
779 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
780 	return 1;
781 }
782 
783 static int
784 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
785 {
786 	uint64_t pci_len;
787 
788 	if (reg_off & 0x3) {
789 		printf("Port register offset 0x%X not aligned on a 4-byte "
790 		       "boundary\n",
791 		       (unsigned)reg_off);
792 		return 1;
793 	}
794 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
795 	if (reg_off >= pci_len) {
796 		printf("Port %d: register offset %u (0x%X) out of port PCI "
797 		       "resource (length=%"PRIu64")\n",
798 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
799 		return 1;
800 	}
801 	return 0;
802 }
803 
804 static int
805 reg_bit_pos_is_invalid(uint8_t bit_pos)
806 {
807 	if (bit_pos <= 31)
808 		return 0;
809 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
810 	return 1;
811 }
812 
813 #define display_port_and_reg_off(port_id, reg_off) \
814 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
815 
816 static inline void
817 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
818 {
819 	display_port_and_reg_off(port_id, (unsigned)reg_off);
820 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
821 }
822 
823 void
824 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
825 {
826 	uint32_t reg_v;
827 
828 
829 	if (port_id_is_invalid(port_id, ENABLED_WARN))
830 		return;
831 	if (port_reg_off_is_invalid(port_id, reg_off))
832 		return;
833 	if (reg_bit_pos_is_invalid(bit_x))
834 		return;
835 	reg_v = port_id_pci_reg_read(port_id, reg_off);
836 	display_port_and_reg_off(port_id, (unsigned)reg_off);
837 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
838 }
839 
840 void
841 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
842 			   uint8_t bit1_pos, uint8_t bit2_pos)
843 {
844 	uint32_t reg_v;
845 	uint8_t  l_bit;
846 	uint8_t  h_bit;
847 
848 	if (port_id_is_invalid(port_id, ENABLED_WARN))
849 		return;
850 	if (port_reg_off_is_invalid(port_id, reg_off))
851 		return;
852 	if (reg_bit_pos_is_invalid(bit1_pos))
853 		return;
854 	if (reg_bit_pos_is_invalid(bit2_pos))
855 		return;
856 	if (bit1_pos > bit2_pos)
857 		l_bit = bit2_pos, h_bit = bit1_pos;
858 	else
859 		l_bit = bit1_pos, h_bit = bit2_pos;
860 
861 	reg_v = port_id_pci_reg_read(port_id, reg_off);
862 	reg_v >>= l_bit;
863 	if (h_bit < 31)
864 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
865 	display_port_and_reg_off(port_id, (unsigned)reg_off);
866 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
867 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
868 }
869 
870 void
871 port_reg_display(portid_t port_id, uint32_t reg_off)
872 {
873 	uint32_t reg_v;
874 
875 	if (port_id_is_invalid(port_id, ENABLED_WARN))
876 		return;
877 	if (port_reg_off_is_invalid(port_id, reg_off))
878 		return;
879 	reg_v = port_id_pci_reg_read(port_id, reg_off);
880 	display_port_reg_value(port_id, reg_off, reg_v);
881 }
882 
883 void
884 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
885 		 uint8_t bit_v)
886 {
887 	uint32_t reg_v;
888 
889 	if (port_id_is_invalid(port_id, ENABLED_WARN))
890 		return;
891 	if (port_reg_off_is_invalid(port_id, reg_off))
892 		return;
893 	if (reg_bit_pos_is_invalid(bit_pos))
894 		return;
895 	if (bit_v > 1) {
896 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
897 		return;
898 	}
899 	reg_v = port_id_pci_reg_read(port_id, reg_off);
900 	if (bit_v == 0)
901 		reg_v &= ~(1 << bit_pos);
902 	else
903 		reg_v |= (1 << bit_pos);
904 	port_id_pci_reg_write(port_id, reg_off, reg_v);
905 	display_port_reg_value(port_id, reg_off, reg_v);
906 }
907 
908 void
909 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
910 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
911 {
912 	uint32_t max_v;
913 	uint32_t reg_v;
914 	uint8_t  l_bit;
915 	uint8_t  h_bit;
916 
917 	if (port_id_is_invalid(port_id, ENABLED_WARN))
918 		return;
919 	if (port_reg_off_is_invalid(port_id, reg_off))
920 		return;
921 	if (reg_bit_pos_is_invalid(bit1_pos))
922 		return;
923 	if (reg_bit_pos_is_invalid(bit2_pos))
924 		return;
925 	if (bit1_pos > bit2_pos)
926 		l_bit = bit2_pos, h_bit = bit1_pos;
927 	else
928 		l_bit = bit1_pos, h_bit = bit2_pos;
929 
930 	if ((h_bit - l_bit) < 31)
931 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
932 	else
933 		max_v = 0xFFFFFFFF;
934 
935 	if (value > max_v) {
936 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
937 				(unsigned)value, (unsigned)value,
938 				(unsigned)max_v, (unsigned)max_v);
939 		return;
940 	}
941 	reg_v = port_id_pci_reg_read(port_id, reg_off);
942 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
943 	reg_v |= (value << l_bit); /* Set changed bits */
944 	port_id_pci_reg_write(port_id, reg_off, reg_v);
945 	display_port_reg_value(port_id, reg_off, reg_v);
946 }
947 
948 void
949 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
950 {
951 	if (port_id_is_invalid(port_id, ENABLED_WARN))
952 		return;
953 	if (port_reg_off_is_invalid(port_id, reg_off))
954 		return;
955 	port_id_pci_reg_write(port_id, reg_off, reg_v);
956 	display_port_reg_value(port_id, reg_off, reg_v);
957 }
958 
959 void
960 port_mtu_set(portid_t port_id, uint16_t mtu)
961 {
962 	int diag;
963 
964 	if (port_id_is_invalid(port_id, ENABLED_WARN))
965 		return;
966 	diag = rte_eth_dev_set_mtu(port_id, mtu);
967 	if (diag == 0)
968 		return;
969 	printf("Set MTU failed. diag=%d\n", diag);
970 }
971 
972 /* Generic flow management functions. */
973 
974 /** Generate flow_item[] entry. */
975 #define MK_FLOW_ITEM(t, s) \
976 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
977 		.name = # t, \
978 		.size = s, \
979 	}
980 
981 /** Information about known flow pattern items. */
982 static const struct {
983 	const char *name;
984 	size_t size;
985 } flow_item[] = {
986 	MK_FLOW_ITEM(END, 0),
987 	MK_FLOW_ITEM(VOID, 0),
988 	MK_FLOW_ITEM(INVERT, 0),
989 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
990 	MK_FLOW_ITEM(PF, 0),
991 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
992 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
993 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
994 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
995 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
996 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
997 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
998 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
999 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1000 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1001 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1002 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1003 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1004 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1005 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1006 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1007 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1008 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1009 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1010 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1011 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1012 };
1013 
1014 /** Compute storage space needed by item specification. */
1015 static void
1016 flow_item_spec_size(const struct rte_flow_item *item,
1017 		    size_t *size, size_t *pad)
1018 {
1019 	if (!item->spec) {
1020 		*size = 0;
1021 		goto empty;
1022 	}
1023 	switch (item->type) {
1024 		union {
1025 			const struct rte_flow_item_raw *raw;
1026 		} spec;
1027 
1028 	case RTE_FLOW_ITEM_TYPE_RAW:
1029 		spec.raw = item->spec;
1030 		*size = offsetof(struct rte_flow_item_raw, pattern) +
1031 			spec.raw->length * sizeof(*spec.raw->pattern);
1032 		break;
1033 	default:
1034 		*size = flow_item[item->type].size;
1035 		break;
1036 	}
1037 empty:
1038 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1039 }
1040 
1041 /** Generate flow_action[] entry. */
1042 #define MK_FLOW_ACTION(t, s) \
1043 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1044 		.name = # t, \
1045 		.size = s, \
1046 	}
1047 
1048 /** Information about known flow actions. */
1049 static const struct {
1050 	const char *name;
1051 	size_t size;
1052 } flow_action[] = {
1053 	MK_FLOW_ACTION(END, 0),
1054 	MK_FLOW_ACTION(VOID, 0),
1055 	MK_FLOW_ACTION(PASSTHRU, 0),
1056 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1057 	MK_FLOW_ACTION(FLAG, 0),
1058 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1059 	MK_FLOW_ACTION(DROP, 0),
1060 	MK_FLOW_ACTION(COUNT, 0),
1061 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1062 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1063 	MK_FLOW_ACTION(PF, 0),
1064 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1065 };
1066 
1067 /** Compute storage space needed by action configuration. */
1068 static void
1069 flow_action_conf_size(const struct rte_flow_action *action,
1070 		      size_t *size, size_t *pad)
1071 {
1072 	if (!action->conf) {
1073 		*size = 0;
1074 		goto empty;
1075 	}
1076 	switch (action->type) {
1077 		union {
1078 			const struct rte_flow_action_rss *rss;
1079 		} conf;
1080 
1081 	case RTE_FLOW_ACTION_TYPE_RSS:
1082 		conf.rss = action->conf;
1083 		*size = offsetof(struct rte_flow_action_rss, queue) +
1084 			conf.rss->num * sizeof(*conf.rss->queue);
1085 		break;
1086 	default:
1087 		*size = flow_action[action->type].size;
1088 		break;
1089 	}
1090 empty:
1091 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1092 }
1093 
1094 /** Generate a port_flow entry from attributes/pattern/actions. */
1095 static struct port_flow *
1096 port_flow_new(const struct rte_flow_attr *attr,
1097 	      const struct rte_flow_item *pattern,
1098 	      const struct rte_flow_action *actions)
1099 {
1100 	const struct rte_flow_item *item;
1101 	const struct rte_flow_action *action;
1102 	struct port_flow *pf = NULL;
1103 	size_t tmp;
1104 	size_t pad;
1105 	size_t off1 = 0;
1106 	size_t off2 = 0;
1107 	int err = ENOTSUP;
1108 
1109 store:
1110 	item = pattern;
1111 	if (pf)
1112 		pf->pattern = (void *)&pf->data[off1];
1113 	do {
1114 		struct rte_flow_item *dst = NULL;
1115 
1116 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1117 		    !flow_item[item->type].name)
1118 			goto notsup;
1119 		if (pf)
1120 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1121 		off1 += sizeof(*item);
1122 		flow_item_spec_size(item, &tmp, &pad);
1123 		if (item->spec) {
1124 			if (pf)
1125 				dst->spec = memcpy(pf->data + off2,
1126 						   item->spec, tmp);
1127 			off2 += tmp + pad;
1128 		}
1129 		if (item->last) {
1130 			if (pf)
1131 				dst->last = memcpy(pf->data + off2,
1132 						   item->last, tmp);
1133 			off2 += tmp + pad;
1134 		}
1135 		if (item->mask) {
1136 			if (pf)
1137 				dst->mask = memcpy(pf->data + off2,
1138 						   item->mask, tmp);
1139 			off2 += tmp + pad;
1140 		}
1141 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1142 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1143 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1144 	action = actions;
1145 	if (pf)
1146 		pf->actions = (void *)&pf->data[off1];
1147 	do {
1148 		struct rte_flow_action *dst = NULL;
1149 
1150 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1151 		    !flow_action[action->type].name)
1152 			goto notsup;
1153 		if (pf)
1154 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1155 		off1 += sizeof(*action);
1156 		flow_action_conf_size(action, &tmp, &pad);
1157 		if (action->conf) {
1158 			if (pf)
1159 				dst->conf = memcpy(pf->data + off2,
1160 						   action->conf, tmp);
1161 			off2 += tmp + pad;
1162 		}
1163 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1164 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1165 	if (pf != NULL)
1166 		return pf;
1167 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1168 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1169 	pf = calloc(1, tmp + off1 + off2);
1170 	if (pf == NULL)
1171 		err = errno;
1172 	else {
1173 		*pf = (const struct port_flow){
1174 			.size = tmp + off1 + off2,
1175 			.attr = *attr,
1176 		};
1177 		tmp -= offsetof(struct port_flow, data);
1178 		off2 = tmp + off1;
1179 		off1 = tmp;
1180 		goto store;
1181 	}
1182 notsup:
1183 	rte_errno = err;
1184 	return NULL;
1185 }
1186 
1187 /** Print a message out of a flow error. */
1188 static int
1189 port_flow_complain(struct rte_flow_error *error)
1190 {
1191 	static const char *const errstrlist[] = {
1192 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1193 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1194 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1195 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1196 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1197 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1198 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1199 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1200 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1201 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1202 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1203 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1204 	};
1205 	const char *errstr;
1206 	char buf[32];
1207 	int err = rte_errno;
1208 
1209 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1210 	    !errstrlist[error->type])
1211 		errstr = "unknown type";
1212 	else
1213 		errstr = errstrlist[error->type];
1214 	printf("Caught error type %d (%s): %s%s\n",
1215 	       error->type, errstr,
1216 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1217 					error->cause), buf) : "",
1218 	       error->message ? error->message : "(no stated reason)");
1219 	return -err;
1220 }
1221 
1222 /** Validate flow rule. */
1223 int
1224 port_flow_validate(portid_t port_id,
1225 		   const struct rte_flow_attr *attr,
1226 		   const struct rte_flow_item *pattern,
1227 		   const struct rte_flow_action *actions)
1228 {
1229 	struct rte_flow_error error;
1230 
1231 	/* Poisoning to make sure PMDs update it in case of error. */
1232 	memset(&error, 0x11, sizeof(error));
1233 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1234 		return port_flow_complain(&error);
1235 	printf("Flow rule validated\n");
1236 	return 0;
1237 }
1238 
1239 /** Create flow rule. */
1240 int
1241 port_flow_create(portid_t port_id,
1242 		 const struct rte_flow_attr *attr,
1243 		 const struct rte_flow_item *pattern,
1244 		 const struct rte_flow_action *actions)
1245 {
1246 	struct rte_flow *flow;
1247 	struct rte_port *port;
1248 	struct port_flow *pf;
1249 	uint32_t id;
1250 	struct rte_flow_error error;
1251 
1252 	/* Poisoning to make sure PMDs update it in case of error. */
1253 	memset(&error, 0x22, sizeof(error));
1254 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1255 	if (!flow)
1256 		return port_flow_complain(&error);
1257 	port = &ports[port_id];
1258 	if (port->flow_list) {
1259 		if (port->flow_list->id == UINT32_MAX) {
1260 			printf("Highest rule ID is already assigned, delete"
1261 			       " it first");
1262 			rte_flow_destroy(port_id, flow, NULL);
1263 			return -ENOMEM;
1264 		}
1265 		id = port->flow_list->id + 1;
1266 	} else
1267 		id = 0;
1268 	pf = port_flow_new(attr, pattern, actions);
1269 	if (!pf) {
1270 		int err = rte_errno;
1271 
1272 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1273 		rte_flow_destroy(port_id, flow, NULL);
1274 		return -err;
1275 	}
1276 	pf->next = port->flow_list;
1277 	pf->id = id;
1278 	pf->flow = flow;
1279 	port->flow_list = pf;
1280 	printf("Flow rule #%u created\n", pf->id);
1281 	return 0;
1282 }
1283 
1284 /** Destroy a number of flow rules. */
1285 int
1286 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1287 {
1288 	struct rte_port *port;
1289 	struct port_flow **tmp;
1290 	uint32_t c = 0;
1291 	int ret = 0;
1292 
1293 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1294 	    port_id == (portid_t)RTE_PORT_ALL)
1295 		return -EINVAL;
1296 	port = &ports[port_id];
1297 	tmp = &port->flow_list;
1298 	while (*tmp) {
1299 		uint32_t i;
1300 
1301 		for (i = 0; i != n; ++i) {
1302 			struct rte_flow_error error;
1303 			struct port_flow *pf = *tmp;
1304 
1305 			if (rule[i] != pf->id)
1306 				continue;
1307 			/*
1308 			 * Poisoning to make sure PMDs update it in case
1309 			 * of error.
1310 			 */
1311 			memset(&error, 0x33, sizeof(error));
1312 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1313 				ret = port_flow_complain(&error);
1314 				continue;
1315 			}
1316 			printf("Flow rule #%u destroyed\n", pf->id);
1317 			*tmp = pf->next;
1318 			free(pf);
1319 			break;
1320 		}
1321 		if (i == n)
1322 			tmp = &(*tmp)->next;
1323 		++c;
1324 	}
1325 	return ret;
1326 }
1327 
1328 /** Remove all flow rules. */
1329 int
1330 port_flow_flush(portid_t port_id)
1331 {
1332 	struct rte_flow_error error;
1333 	struct rte_port *port;
1334 	int ret = 0;
1335 
1336 	/* Poisoning to make sure PMDs update it in case of error. */
1337 	memset(&error, 0x44, sizeof(error));
1338 	if (rte_flow_flush(port_id, &error)) {
1339 		ret = port_flow_complain(&error);
1340 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1341 		    port_id == (portid_t)RTE_PORT_ALL)
1342 			return ret;
1343 	}
1344 	port = &ports[port_id];
1345 	while (port->flow_list) {
1346 		struct port_flow *pf = port->flow_list->next;
1347 
1348 		free(port->flow_list);
1349 		port->flow_list = pf;
1350 	}
1351 	return ret;
1352 }
1353 
1354 /** Query a flow rule. */
1355 int
1356 port_flow_query(portid_t port_id, uint32_t rule,
1357 		enum rte_flow_action_type action)
1358 {
1359 	struct rte_flow_error error;
1360 	struct rte_port *port;
1361 	struct port_flow *pf;
1362 	const char *name;
1363 	union {
1364 		struct rte_flow_query_count count;
1365 	} query;
1366 
1367 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1368 	    port_id == (portid_t)RTE_PORT_ALL)
1369 		return -EINVAL;
1370 	port = &ports[port_id];
1371 	for (pf = port->flow_list; pf; pf = pf->next)
1372 		if (pf->id == rule)
1373 			break;
1374 	if (!pf) {
1375 		printf("Flow rule #%u not found\n", rule);
1376 		return -ENOENT;
1377 	}
1378 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1379 	    !flow_action[action].name)
1380 		name = "unknown";
1381 	else
1382 		name = flow_action[action].name;
1383 	switch (action) {
1384 	case RTE_FLOW_ACTION_TYPE_COUNT:
1385 		break;
1386 	default:
1387 		printf("Cannot query action type %d (%s)\n", action, name);
1388 		return -ENOTSUP;
1389 	}
1390 	/* Poisoning to make sure PMDs update it in case of error. */
1391 	memset(&error, 0x55, sizeof(error));
1392 	memset(&query, 0, sizeof(query));
1393 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1394 		return port_flow_complain(&error);
1395 	switch (action) {
1396 	case RTE_FLOW_ACTION_TYPE_COUNT:
1397 		printf("%s:\n"
1398 		       " hits_set: %u\n"
1399 		       " bytes_set: %u\n"
1400 		       " hits: %" PRIu64 "\n"
1401 		       " bytes: %" PRIu64 "\n",
1402 		       name,
1403 		       query.count.hits_set,
1404 		       query.count.bytes_set,
1405 		       query.count.hits,
1406 		       query.count.bytes);
1407 		break;
1408 	default:
1409 		printf("Cannot display result for action type %d (%s)\n",
1410 		       action, name);
1411 		break;
1412 	}
1413 	return 0;
1414 }
1415 
1416 /** List flow rules. */
1417 void
1418 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1419 {
1420 	struct rte_port *port;
1421 	struct port_flow *pf;
1422 	struct port_flow *list = NULL;
1423 	uint32_t i;
1424 
1425 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1426 	    port_id == (portid_t)RTE_PORT_ALL)
1427 		return;
1428 	port = &ports[port_id];
1429 	if (!port->flow_list)
1430 		return;
1431 	/* Sort flows by group, priority and ID. */
1432 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1433 		struct port_flow **tmp;
1434 
1435 		if (n) {
1436 			/* Filter out unwanted groups. */
1437 			for (i = 0; i != n; ++i)
1438 				if (pf->attr.group == group[i])
1439 					break;
1440 			if (i == n)
1441 				continue;
1442 		}
1443 		tmp = &list;
1444 		while (*tmp &&
1445 		       (pf->attr.group > (*tmp)->attr.group ||
1446 			(pf->attr.group == (*tmp)->attr.group &&
1447 			 pf->attr.priority > (*tmp)->attr.priority) ||
1448 			(pf->attr.group == (*tmp)->attr.group &&
1449 			 pf->attr.priority == (*tmp)->attr.priority &&
1450 			 pf->id > (*tmp)->id)))
1451 			tmp = &(*tmp)->tmp;
1452 		pf->tmp = *tmp;
1453 		*tmp = pf;
1454 	}
1455 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1456 	for (pf = list; pf != NULL; pf = pf->tmp) {
1457 		const struct rte_flow_item *item = pf->pattern;
1458 		const struct rte_flow_action *action = pf->actions;
1459 
1460 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1461 		       pf->id,
1462 		       pf->attr.group,
1463 		       pf->attr.priority,
1464 		       pf->attr.ingress ? 'i' : '-',
1465 		       pf->attr.egress ? 'e' : '-');
1466 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1467 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1468 				printf("%s ", flow_item[item->type].name);
1469 			++item;
1470 		}
1471 		printf("=>");
1472 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1473 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1474 				printf(" %s", flow_action[action->type].name);
1475 			++action;
1476 		}
1477 		printf("\n");
1478 	}
1479 }
1480 
1481 /** Restrict ingress traffic to the defined flow rules. */
1482 int
1483 port_flow_isolate(portid_t port_id, int set)
1484 {
1485 	struct rte_flow_error error;
1486 
1487 	/* Poisoning to make sure PMDs update it in case of error. */
1488 	memset(&error, 0x66, sizeof(error));
1489 	if (rte_flow_isolate(port_id, set, &error))
1490 		return port_flow_complain(&error);
1491 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1492 	       port_id,
1493 	       set ? "now restricted" : "not restricted anymore");
1494 	return 0;
1495 }
1496 
1497 /*
1498  * RX/TX ring descriptors display functions.
1499  */
1500 int
1501 rx_queue_id_is_invalid(queueid_t rxq_id)
1502 {
1503 	if (rxq_id < nb_rxq)
1504 		return 0;
1505 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1506 	return 1;
1507 }
1508 
1509 int
1510 tx_queue_id_is_invalid(queueid_t txq_id)
1511 {
1512 	if (txq_id < nb_txq)
1513 		return 0;
1514 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1515 	return 1;
1516 }
1517 
1518 static int
1519 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1520 {
1521 	if (rxdesc_id < nb_rxd)
1522 		return 0;
1523 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1524 	       rxdesc_id, nb_rxd);
1525 	return 1;
1526 }
1527 
1528 static int
1529 tx_desc_id_is_invalid(uint16_t txdesc_id)
1530 {
1531 	if (txdesc_id < nb_txd)
1532 		return 0;
1533 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1534 	       txdesc_id, nb_txd);
1535 	return 1;
1536 }
1537 
1538 static const struct rte_memzone *
1539 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1540 {
1541 	char mz_name[RTE_MEMZONE_NAMESIZE];
1542 	const struct rte_memzone *mz;
1543 
1544 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1545 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1546 	mz = rte_memzone_lookup(mz_name);
1547 	if (mz == NULL)
1548 		printf("%s ring memory zoneof (port %d, queue %d) not"
1549 		       "found (zone name = %s\n",
1550 		       ring_name, port_id, q_id, mz_name);
1551 	return mz;
1552 }
1553 
1554 union igb_ring_dword {
1555 	uint64_t dword;
1556 	struct {
1557 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1558 		uint32_t lo;
1559 		uint32_t hi;
1560 #else
1561 		uint32_t hi;
1562 		uint32_t lo;
1563 #endif
1564 	} words;
1565 };
1566 
1567 struct igb_ring_desc_32_bytes {
1568 	union igb_ring_dword lo_dword;
1569 	union igb_ring_dword hi_dword;
1570 	union igb_ring_dword resv1;
1571 	union igb_ring_dword resv2;
1572 };
1573 
1574 struct igb_ring_desc_16_bytes {
1575 	union igb_ring_dword lo_dword;
1576 	union igb_ring_dword hi_dword;
1577 };
1578 
1579 static void
1580 ring_rxd_display_dword(union igb_ring_dword dword)
1581 {
1582 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1583 					(unsigned)dword.words.hi);
1584 }
1585 
1586 static void
1587 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1588 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1589 			   portid_t port_id,
1590 #else
1591 			   __rte_unused portid_t port_id,
1592 #endif
1593 			   uint16_t desc_id)
1594 {
1595 	struct igb_ring_desc_16_bytes *ring =
1596 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1597 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1598 	struct rte_eth_dev_info dev_info;
1599 
1600 	memset(&dev_info, 0, sizeof(dev_info));
1601 	rte_eth_dev_info_get(port_id, &dev_info);
1602 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1603 		/* 32 bytes RX descriptor, i40e only */
1604 		struct igb_ring_desc_32_bytes *ring =
1605 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1606 		ring[desc_id].lo_dword.dword =
1607 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1608 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1609 		ring[desc_id].hi_dword.dword =
1610 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1611 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1612 		ring[desc_id].resv1.dword =
1613 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1614 		ring_rxd_display_dword(ring[desc_id].resv1);
1615 		ring[desc_id].resv2.dword =
1616 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1617 		ring_rxd_display_dword(ring[desc_id].resv2);
1618 
1619 		return;
1620 	}
1621 #endif
1622 	/* 16 bytes RX descriptor */
1623 	ring[desc_id].lo_dword.dword =
1624 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1625 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1626 	ring[desc_id].hi_dword.dword =
1627 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1628 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1629 }
1630 
1631 static void
1632 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1633 {
1634 	struct igb_ring_desc_16_bytes *ring;
1635 	struct igb_ring_desc_16_bytes txd;
1636 
1637 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1638 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1639 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1640 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1641 			(unsigned)txd.lo_dword.words.lo,
1642 			(unsigned)txd.lo_dword.words.hi,
1643 			(unsigned)txd.hi_dword.words.lo,
1644 			(unsigned)txd.hi_dword.words.hi);
1645 }
1646 
1647 void
1648 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1649 {
1650 	const struct rte_memzone *rx_mz;
1651 
1652 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1653 		return;
1654 	if (rx_queue_id_is_invalid(rxq_id))
1655 		return;
1656 	if (rx_desc_id_is_invalid(rxd_id))
1657 		return;
1658 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1659 	if (rx_mz == NULL)
1660 		return;
1661 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1662 }
1663 
1664 void
1665 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1666 {
1667 	const struct rte_memzone *tx_mz;
1668 
1669 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1670 		return;
1671 	if (tx_queue_id_is_invalid(txq_id))
1672 		return;
1673 	if (tx_desc_id_is_invalid(txd_id))
1674 		return;
1675 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1676 	if (tx_mz == NULL)
1677 		return;
1678 	ring_tx_descriptor_display(tx_mz, txd_id);
1679 }
1680 
1681 void
1682 fwd_lcores_config_display(void)
1683 {
1684 	lcoreid_t lc_id;
1685 
1686 	printf("List of forwarding lcores:");
1687 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1688 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1689 	printf("\n");
1690 }
1691 void
1692 rxtx_config_display(void)
1693 {
1694 	portid_t pid;
1695 
1696 	printf("  %s packet forwarding%s packets/burst=%d\n",
1697 	       cur_fwd_eng->fwd_mode_name,
1698 	       retry_enabled == 0 ? "" : " with retry",
1699 	       nb_pkt_per_burst);
1700 
1701 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1702 		printf("  packet len=%u - nb packet segments=%d\n",
1703 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1704 
1705 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1706 	       nb_fwd_lcores, nb_fwd_ports);
1707 
1708 	RTE_ETH_FOREACH_DEV(pid) {
1709 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf;
1710 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf;
1711 
1712 		printf("  port %d:\n", (unsigned int)pid);
1713 		printf("  CRC stripping %s\n",
1714 				(ports[pid].dev_conf.rxmode.offloads &
1715 				 DEV_RX_OFFLOAD_CRC_STRIP) ?
1716 				"enabled" : "disabled");
1717 		printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1718 				nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1719 		printf("  RX threshold registers: pthresh=%d hthresh=%d "
1720 		       " wthresh=%d\n",
1721 				rx_conf->rx_thresh.pthresh,
1722 				rx_conf->rx_thresh.hthresh,
1723 				rx_conf->rx_thresh.wthresh);
1724 		printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1725 				nb_txq, nb_txd, tx_conf->tx_free_thresh);
1726 		printf("  TX threshold registers: pthresh=%d hthresh=%d "
1727 		       " wthresh=%d\n",
1728 				tx_conf->tx_thresh.pthresh,
1729 				tx_conf->tx_thresh.hthresh,
1730 				tx_conf->tx_thresh.wthresh);
1731 		printf("  TX RS bit threshold=%d - TXQ offloads=0x%"PRIx64"\n",
1732 				tx_conf->tx_rs_thresh, tx_conf->offloads);
1733 	}
1734 }
1735 
1736 void
1737 port_rss_reta_info(portid_t port_id,
1738 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1739 		   uint16_t nb_entries)
1740 {
1741 	uint16_t i, idx, shift;
1742 	int ret;
1743 
1744 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1745 		return;
1746 
1747 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1748 	if (ret != 0) {
1749 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1750 		return;
1751 	}
1752 
1753 	for (i = 0; i < nb_entries; i++) {
1754 		idx = i / RTE_RETA_GROUP_SIZE;
1755 		shift = i % RTE_RETA_GROUP_SIZE;
1756 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1757 			continue;
1758 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1759 					i, reta_conf[idx].reta[shift]);
1760 	}
1761 }
1762 
1763 /*
1764  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1765  * key of the port.
1766  */
1767 void
1768 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1769 {
1770 	struct rte_eth_rss_conf rss_conf;
1771 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1772 	uint64_t rss_hf;
1773 	uint8_t i;
1774 	int diag;
1775 	struct rte_eth_dev_info dev_info;
1776 	uint8_t hash_key_size;
1777 
1778 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1779 		return;
1780 
1781 	memset(&dev_info, 0, sizeof(dev_info));
1782 	rte_eth_dev_info_get(port_id, &dev_info);
1783 	if (dev_info.hash_key_size > 0 &&
1784 			dev_info.hash_key_size <= sizeof(rss_key))
1785 		hash_key_size = dev_info.hash_key_size;
1786 	else {
1787 		printf("dev_info did not provide a valid hash key size\n");
1788 		return;
1789 	}
1790 
1791 	rss_conf.rss_hf = 0;
1792 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1793 		if (!strcmp(rss_info, rss_type_table[i].str))
1794 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1795 	}
1796 
1797 	/* Get RSS hash key if asked to display it */
1798 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1799 	rss_conf.rss_key_len = hash_key_size;
1800 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1801 	if (diag != 0) {
1802 		switch (diag) {
1803 		case -ENODEV:
1804 			printf("port index %d invalid\n", port_id);
1805 			break;
1806 		case -ENOTSUP:
1807 			printf("operation not supported by device\n");
1808 			break;
1809 		default:
1810 			printf("operation failed - diag=%d\n", diag);
1811 			break;
1812 		}
1813 		return;
1814 	}
1815 	rss_hf = rss_conf.rss_hf;
1816 	if (rss_hf == 0) {
1817 		printf("RSS disabled\n");
1818 		return;
1819 	}
1820 	printf("RSS functions:\n ");
1821 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1822 		if (rss_hf & rss_type_table[i].rss_type)
1823 			printf("%s ", rss_type_table[i].str);
1824 	}
1825 	printf("\n");
1826 	if (!show_rss_key)
1827 		return;
1828 	printf("RSS key:\n");
1829 	for (i = 0; i < hash_key_size; i++)
1830 		printf("%02X", rss_key[i]);
1831 	printf("\n");
1832 }
1833 
1834 void
1835 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1836 			 uint hash_key_len)
1837 {
1838 	struct rte_eth_rss_conf rss_conf;
1839 	int diag;
1840 	unsigned int i;
1841 
1842 	rss_conf.rss_key = NULL;
1843 	rss_conf.rss_key_len = hash_key_len;
1844 	rss_conf.rss_hf = 0;
1845 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1846 		if (!strcmp(rss_type_table[i].str, rss_type))
1847 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1848 	}
1849 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1850 	if (diag == 0) {
1851 		rss_conf.rss_key = hash_key;
1852 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1853 	}
1854 	if (diag == 0)
1855 		return;
1856 
1857 	switch (diag) {
1858 	case -ENODEV:
1859 		printf("port index %d invalid\n", port_id);
1860 		break;
1861 	case -ENOTSUP:
1862 		printf("operation not supported by device\n");
1863 		break;
1864 	default:
1865 		printf("operation failed - diag=%d\n", diag);
1866 		break;
1867 	}
1868 }
1869 
1870 /*
1871  * Setup forwarding configuration for each logical core.
1872  */
1873 static void
1874 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1875 {
1876 	streamid_t nb_fs_per_lcore;
1877 	streamid_t nb_fs;
1878 	streamid_t sm_id;
1879 	lcoreid_t  nb_extra;
1880 	lcoreid_t  nb_fc;
1881 	lcoreid_t  nb_lc;
1882 	lcoreid_t  lc_id;
1883 
1884 	nb_fs = cfg->nb_fwd_streams;
1885 	nb_fc = cfg->nb_fwd_lcores;
1886 	if (nb_fs <= nb_fc) {
1887 		nb_fs_per_lcore = 1;
1888 		nb_extra = 0;
1889 	} else {
1890 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1891 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1892 	}
1893 
1894 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1895 	sm_id = 0;
1896 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1897 		fwd_lcores[lc_id]->stream_idx = sm_id;
1898 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1899 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1900 	}
1901 
1902 	/*
1903 	 * Assign extra remaining streams, if any.
1904 	 */
1905 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1906 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1907 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1908 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1909 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1910 	}
1911 }
1912 
1913 static void
1914 simple_fwd_config_setup(void)
1915 {
1916 	portid_t i;
1917 	portid_t j;
1918 	portid_t inc = 2;
1919 
1920 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1921 	    port_topology == PORT_TOPOLOGY_LOOP) {
1922 		inc = 1;
1923 	} else if (nb_fwd_ports % 2) {
1924 		printf("\nWarning! Cannot handle an odd number of ports "
1925 		       "with the current port topology. Configuration "
1926 		       "must be changed to have an even number of ports, "
1927 		       "or relaunch application with "
1928 		       "--port-topology=chained\n\n");
1929 	}
1930 
1931 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1932 	cur_fwd_config.nb_fwd_streams =
1933 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1934 
1935 	/* reinitialize forwarding streams */
1936 	init_fwd_streams();
1937 
1938 	/*
1939 	 * In the simple forwarding test, the number of forwarding cores
1940 	 * must be lower or equal to the number of forwarding ports.
1941 	 */
1942 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1943 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1944 		cur_fwd_config.nb_fwd_lcores =
1945 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1946 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1947 
1948 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1949 		if (port_topology != PORT_TOPOLOGY_LOOP)
1950 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1951 		else
1952 			j = i;
1953 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1954 		fwd_streams[i]->rx_queue  = 0;
1955 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1956 		fwd_streams[i]->tx_queue  = 0;
1957 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
1958 		fwd_streams[i]->retry_enabled = retry_enabled;
1959 
1960 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1961 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1962 			fwd_streams[j]->rx_queue  = 0;
1963 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1964 			fwd_streams[j]->tx_queue  = 0;
1965 			fwd_streams[j]->peer_addr = fwd_streams[j]->tx_port;
1966 			fwd_streams[j]->retry_enabled = retry_enabled;
1967 		}
1968 	}
1969 }
1970 
1971 /**
1972  * For the RSS forwarding test all streams distributed over lcores. Each stream
1973  * being composed of a RX queue to poll on a RX port for input messages,
1974  * associated with a TX queue of a TX port where to send forwarded packets.
1975  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1976  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1977  * following rules:
1978  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1979  *    - TxQl = RxQj
1980  */
1981 static void
1982 rss_fwd_config_setup(void)
1983 {
1984 	portid_t   rxp;
1985 	portid_t   txp;
1986 	queueid_t  rxq;
1987 	queueid_t  nb_q;
1988 	streamid_t  sm_id;
1989 
1990 	nb_q = nb_rxq;
1991 	if (nb_q > nb_txq)
1992 		nb_q = nb_txq;
1993 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1994 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1995 	cur_fwd_config.nb_fwd_streams =
1996 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1997 
1998 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1999 		cur_fwd_config.nb_fwd_lcores =
2000 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2001 
2002 	/* reinitialize forwarding streams */
2003 	init_fwd_streams();
2004 
2005 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2006 	rxp = 0; rxq = 0;
2007 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2008 		struct fwd_stream *fs;
2009 
2010 		fs = fwd_streams[sm_id];
2011 
2012 		if ((rxp & 0x1) == 0)
2013 			txp = (portid_t) (rxp + 1);
2014 		else
2015 			txp = (portid_t) (rxp - 1);
2016 		/*
2017 		 * if we are in loopback, simply send stuff out through the
2018 		 * ingress port
2019 		 */
2020 		if (port_topology == PORT_TOPOLOGY_LOOP)
2021 			txp = rxp;
2022 
2023 		fs->rx_port = fwd_ports_ids[rxp];
2024 		fs->rx_queue = rxq;
2025 		fs->tx_port = fwd_ports_ids[txp];
2026 		fs->tx_queue = rxq;
2027 		fs->peer_addr = fs->tx_port;
2028 		fs->retry_enabled = retry_enabled;
2029 		rxq = (queueid_t) (rxq + 1);
2030 		if (rxq < nb_q)
2031 			continue;
2032 		/*
2033 		 * rxq == nb_q
2034 		 * Restart from RX queue 0 on next RX port
2035 		 */
2036 		rxq = 0;
2037 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2038 			rxp = (portid_t)
2039 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2040 		else
2041 			rxp = (portid_t) (rxp + 1);
2042 	}
2043 }
2044 
2045 /**
2046  * For the DCB forwarding test, each core is assigned on each traffic class.
2047  *
2048  * Each core is assigned a multi-stream, each stream being composed of
2049  * a RX queue to poll on a RX port for input messages, associated with
2050  * a TX queue of a TX port where to send forwarded packets. All RX and
2051  * TX queues are mapping to the same traffic class.
2052  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2053  * the same core
2054  */
2055 static void
2056 dcb_fwd_config_setup(void)
2057 {
2058 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2059 	portid_t txp, rxp = 0;
2060 	queueid_t txq, rxq = 0;
2061 	lcoreid_t  lc_id;
2062 	uint16_t nb_rx_queue, nb_tx_queue;
2063 	uint16_t i, j, k, sm_id = 0;
2064 	uint8_t tc = 0;
2065 
2066 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2067 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2068 	cur_fwd_config.nb_fwd_streams =
2069 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2070 
2071 	/* reinitialize forwarding streams */
2072 	init_fwd_streams();
2073 	sm_id = 0;
2074 	txp = 1;
2075 	/* get the dcb info on the first RX and TX ports */
2076 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2077 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2078 
2079 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2080 		fwd_lcores[lc_id]->stream_nb = 0;
2081 		fwd_lcores[lc_id]->stream_idx = sm_id;
2082 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2083 			/* if the nb_queue is zero, means this tc is
2084 			 * not enabled on the POOL
2085 			 */
2086 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2087 				break;
2088 			k = fwd_lcores[lc_id]->stream_nb +
2089 				fwd_lcores[lc_id]->stream_idx;
2090 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2091 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2092 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2093 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2094 			for (j = 0; j < nb_rx_queue; j++) {
2095 				struct fwd_stream *fs;
2096 
2097 				fs = fwd_streams[k + j];
2098 				fs->rx_port = fwd_ports_ids[rxp];
2099 				fs->rx_queue = rxq + j;
2100 				fs->tx_port = fwd_ports_ids[txp];
2101 				fs->tx_queue = txq + j % nb_tx_queue;
2102 				fs->peer_addr = fs->tx_port;
2103 				fs->retry_enabled = retry_enabled;
2104 			}
2105 			fwd_lcores[lc_id]->stream_nb +=
2106 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2107 		}
2108 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2109 
2110 		tc++;
2111 		if (tc < rxp_dcb_info.nb_tcs)
2112 			continue;
2113 		/* Restart from TC 0 on next RX port */
2114 		tc = 0;
2115 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2116 			rxp = (portid_t)
2117 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2118 		else
2119 			rxp++;
2120 		if (rxp >= nb_fwd_ports)
2121 			return;
2122 		/* get the dcb information on next RX and TX ports */
2123 		if ((rxp & 0x1) == 0)
2124 			txp = (portid_t) (rxp + 1);
2125 		else
2126 			txp = (portid_t) (rxp - 1);
2127 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2128 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2129 	}
2130 }
2131 
2132 static void
2133 icmp_echo_config_setup(void)
2134 {
2135 	portid_t  rxp;
2136 	queueid_t rxq;
2137 	lcoreid_t lc_id;
2138 	uint16_t  sm_id;
2139 
2140 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2141 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2142 			(nb_txq * nb_fwd_ports);
2143 	else
2144 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2145 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2146 	cur_fwd_config.nb_fwd_streams =
2147 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2148 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2149 		cur_fwd_config.nb_fwd_lcores =
2150 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2151 	if (verbose_level > 0) {
2152 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2153 		       __FUNCTION__,
2154 		       cur_fwd_config.nb_fwd_lcores,
2155 		       cur_fwd_config.nb_fwd_ports,
2156 		       cur_fwd_config.nb_fwd_streams);
2157 	}
2158 
2159 	/* reinitialize forwarding streams */
2160 	init_fwd_streams();
2161 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2162 	rxp = 0; rxq = 0;
2163 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2164 		if (verbose_level > 0)
2165 			printf("  core=%d: \n", lc_id);
2166 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2167 			struct fwd_stream *fs;
2168 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2169 			fs->rx_port = fwd_ports_ids[rxp];
2170 			fs->rx_queue = rxq;
2171 			fs->tx_port = fs->rx_port;
2172 			fs->tx_queue = rxq;
2173 			fs->peer_addr = fs->tx_port;
2174 			fs->retry_enabled = retry_enabled;
2175 			if (verbose_level > 0)
2176 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2177 				       sm_id, fs->rx_port, fs->rx_queue,
2178 				       fs->tx_queue);
2179 			rxq = (queueid_t) (rxq + 1);
2180 			if (rxq == nb_rxq) {
2181 				rxq = 0;
2182 				rxp = (portid_t) (rxp + 1);
2183 			}
2184 		}
2185 	}
2186 }
2187 
2188 void
2189 fwd_config_setup(void)
2190 {
2191 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2192 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2193 		icmp_echo_config_setup();
2194 		return;
2195 	}
2196 	if ((nb_rxq > 1) && (nb_txq > 1)){
2197 		if (dcb_config)
2198 			dcb_fwd_config_setup();
2199 		else
2200 			rss_fwd_config_setup();
2201 	}
2202 	else
2203 		simple_fwd_config_setup();
2204 }
2205 
2206 void
2207 pkt_fwd_config_display(struct fwd_config *cfg)
2208 {
2209 	struct fwd_stream *fs;
2210 	lcoreid_t  lc_id;
2211 	streamid_t sm_id;
2212 
2213 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2214 		"NUMA support %s, MP over anonymous pages %s\n",
2215 		cfg->fwd_eng->fwd_mode_name,
2216 		retry_enabled == 0 ? "" : " with retry",
2217 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2218 		numa_support == 1 ? "enabled" : "disabled",
2219 		mp_anon != 0 ? "enabled" : "disabled");
2220 
2221 	if (retry_enabled)
2222 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2223 			burst_tx_retry_num, burst_tx_delay_time);
2224 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2225 		printf("Logical Core %u (socket %u) forwards packets on "
2226 		       "%d streams:",
2227 		       fwd_lcores_cpuids[lc_id],
2228 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2229 		       fwd_lcores[lc_id]->stream_nb);
2230 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2231 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2232 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2233 			       "P=%d/Q=%d (socket %u) ",
2234 			       fs->rx_port, fs->rx_queue,
2235 			       ports[fs->rx_port].socket_id,
2236 			       fs->tx_port, fs->tx_queue,
2237 			       ports[fs->tx_port].socket_id);
2238 			print_ethaddr("peer=",
2239 				      &peer_eth_addrs[fs->peer_addr]);
2240 		}
2241 		printf("\n");
2242 	}
2243 	printf("\n");
2244 }
2245 
2246 void
2247 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2248 {
2249 	uint8_t c, new_peer_addr[6];
2250 	if (!rte_eth_dev_is_valid_port(port_id)) {
2251 		printf("Error: Invalid port number %i\n", port_id);
2252 		return;
2253 	}
2254 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2255 					sizeof(new_peer_addr)) < 0) {
2256 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2257 		return;
2258 	}
2259 	for (c = 0; c < 6; c++)
2260 		peer_eth_addrs[port_id].addr_bytes[c] =
2261 			new_peer_addr[c];
2262 }
2263 
2264 int
2265 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2266 {
2267 	unsigned int i;
2268 	unsigned int lcore_cpuid;
2269 	int record_now;
2270 
2271 	record_now = 0;
2272  again:
2273 	for (i = 0; i < nb_lc; i++) {
2274 		lcore_cpuid = lcorelist[i];
2275 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2276 			printf("lcore %u not enabled\n", lcore_cpuid);
2277 			return -1;
2278 		}
2279 		if (lcore_cpuid == rte_get_master_lcore()) {
2280 			printf("lcore %u cannot be masked on for running "
2281 			       "packet forwarding, which is the master lcore "
2282 			       "and reserved for command line parsing only\n",
2283 			       lcore_cpuid);
2284 			return -1;
2285 		}
2286 		if (record_now)
2287 			fwd_lcores_cpuids[i] = lcore_cpuid;
2288 	}
2289 	if (record_now == 0) {
2290 		record_now = 1;
2291 		goto again;
2292 	}
2293 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2294 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2295 		printf("previous number of forwarding cores %u - changed to "
2296 		       "number of configured cores %u\n",
2297 		       (unsigned int) nb_fwd_lcores, nb_lc);
2298 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 int
2305 set_fwd_lcores_mask(uint64_t lcoremask)
2306 {
2307 	unsigned int lcorelist[64];
2308 	unsigned int nb_lc;
2309 	unsigned int i;
2310 
2311 	if (lcoremask == 0) {
2312 		printf("Invalid NULL mask of cores\n");
2313 		return -1;
2314 	}
2315 	nb_lc = 0;
2316 	for (i = 0; i < 64; i++) {
2317 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2318 			continue;
2319 		lcorelist[nb_lc++] = i;
2320 	}
2321 	return set_fwd_lcores_list(lcorelist, nb_lc);
2322 }
2323 
2324 void
2325 set_fwd_lcores_number(uint16_t nb_lc)
2326 {
2327 	if (nb_lc > nb_cfg_lcores) {
2328 		printf("nb fwd cores %u > %u (max. number of configured "
2329 		       "lcores) - ignored\n",
2330 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2331 		return;
2332 	}
2333 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2334 	printf("Number of forwarding cores set to %u\n",
2335 	       (unsigned int) nb_fwd_lcores);
2336 }
2337 
2338 void
2339 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2340 {
2341 	unsigned int i;
2342 	portid_t port_id;
2343 	int record_now;
2344 
2345 	record_now = 0;
2346  again:
2347 	for (i = 0; i < nb_pt; i++) {
2348 		port_id = (portid_t) portlist[i];
2349 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2350 			return;
2351 		if (record_now)
2352 			fwd_ports_ids[i] = port_id;
2353 	}
2354 	if (record_now == 0) {
2355 		record_now = 1;
2356 		goto again;
2357 	}
2358 	nb_cfg_ports = (portid_t) nb_pt;
2359 	if (nb_fwd_ports != (portid_t) nb_pt) {
2360 		printf("previous number of forwarding ports %u - changed to "
2361 		       "number of configured ports %u\n",
2362 		       (unsigned int) nb_fwd_ports, nb_pt);
2363 		nb_fwd_ports = (portid_t) nb_pt;
2364 	}
2365 }
2366 
2367 void
2368 set_fwd_ports_mask(uint64_t portmask)
2369 {
2370 	unsigned int portlist[64];
2371 	unsigned int nb_pt;
2372 	unsigned int i;
2373 
2374 	if (portmask == 0) {
2375 		printf("Invalid NULL mask of ports\n");
2376 		return;
2377 	}
2378 	nb_pt = 0;
2379 	RTE_ETH_FOREACH_DEV(i) {
2380 		if (! ((uint64_t)(1ULL << i) & portmask))
2381 			continue;
2382 		portlist[nb_pt++] = i;
2383 	}
2384 	set_fwd_ports_list(portlist, nb_pt);
2385 }
2386 
2387 void
2388 set_fwd_ports_number(uint16_t nb_pt)
2389 {
2390 	if (nb_pt > nb_cfg_ports) {
2391 		printf("nb fwd ports %u > %u (number of configured "
2392 		       "ports) - ignored\n",
2393 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2394 		return;
2395 	}
2396 	nb_fwd_ports = (portid_t) nb_pt;
2397 	printf("Number of forwarding ports set to %u\n",
2398 	       (unsigned int) nb_fwd_ports);
2399 }
2400 
2401 int
2402 port_is_forwarding(portid_t port_id)
2403 {
2404 	unsigned int i;
2405 
2406 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2407 		return -1;
2408 
2409 	for (i = 0; i < nb_fwd_ports; i++) {
2410 		if (fwd_ports_ids[i] == port_id)
2411 			return 1;
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 void
2418 set_nb_pkt_per_burst(uint16_t nb)
2419 {
2420 	if (nb > MAX_PKT_BURST) {
2421 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2422 		       " ignored\n",
2423 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2424 		return;
2425 	}
2426 	nb_pkt_per_burst = nb;
2427 	printf("Number of packets per burst set to %u\n",
2428 	       (unsigned int) nb_pkt_per_burst);
2429 }
2430 
2431 static const char *
2432 tx_split_get_name(enum tx_pkt_split split)
2433 {
2434 	uint32_t i;
2435 
2436 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2437 		if (tx_split_name[i].split == split)
2438 			return tx_split_name[i].name;
2439 	}
2440 	return NULL;
2441 }
2442 
2443 void
2444 set_tx_pkt_split(const char *name)
2445 {
2446 	uint32_t i;
2447 
2448 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2449 		if (strcmp(tx_split_name[i].name, name) == 0) {
2450 			tx_pkt_split = tx_split_name[i].split;
2451 			return;
2452 		}
2453 	}
2454 	printf("unknown value: \"%s\"\n", name);
2455 }
2456 
2457 void
2458 show_tx_pkt_segments(void)
2459 {
2460 	uint32_t i, n;
2461 	const char *split;
2462 
2463 	n = tx_pkt_nb_segs;
2464 	split = tx_split_get_name(tx_pkt_split);
2465 
2466 	printf("Number of segments: %u\n", n);
2467 	printf("Segment sizes: ");
2468 	for (i = 0; i != n - 1; i++)
2469 		printf("%hu,", tx_pkt_seg_lengths[i]);
2470 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2471 	printf("Split packet: %s\n", split);
2472 }
2473 
2474 void
2475 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2476 {
2477 	uint16_t tx_pkt_len;
2478 	unsigned i;
2479 
2480 	if (nb_segs >= (unsigned) nb_txd) {
2481 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2482 		       nb_segs, (unsigned int) nb_txd);
2483 		return;
2484 	}
2485 
2486 	/*
2487 	 * Check that each segment length is greater or equal than
2488 	 * the mbuf data sise.
2489 	 * Check also that the total packet length is greater or equal than the
2490 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2491 	 */
2492 	tx_pkt_len = 0;
2493 	for (i = 0; i < nb_segs; i++) {
2494 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2495 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2496 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2497 			return;
2498 		}
2499 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2500 	}
2501 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2502 		printf("total packet length=%u < %d - give up\n",
2503 				(unsigned) tx_pkt_len,
2504 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2505 		return;
2506 	}
2507 
2508 	for (i = 0; i < nb_segs; i++)
2509 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2510 
2511 	tx_pkt_length  = tx_pkt_len;
2512 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2513 }
2514 
2515 void
2516 setup_gro(const char *onoff, portid_t port_id)
2517 {
2518 	if (!rte_eth_dev_is_valid_port(port_id)) {
2519 		printf("invalid port id %u\n", port_id);
2520 		return;
2521 	}
2522 	if (test_done == 0) {
2523 		printf("Before enable/disable GRO,"
2524 				" please stop forwarding first\n");
2525 		return;
2526 	}
2527 	if (strcmp(onoff, "on") == 0) {
2528 		if (gro_ports[port_id].enable != 0) {
2529 			printf("Port %u has enabled GRO. Please"
2530 					" disable GRO first\n", port_id);
2531 			return;
2532 		}
2533 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2534 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2535 			gro_ports[port_id].param.max_flow_num =
2536 				GRO_DEFAULT_FLOW_NUM;
2537 			gro_ports[port_id].param.max_item_per_flow =
2538 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2539 		}
2540 		gro_ports[port_id].enable = 1;
2541 	} else {
2542 		if (gro_ports[port_id].enable == 0) {
2543 			printf("Port %u has disabled GRO\n", port_id);
2544 			return;
2545 		}
2546 		gro_ports[port_id].enable = 0;
2547 	}
2548 }
2549 
2550 void
2551 setup_gro_flush_cycles(uint8_t cycles)
2552 {
2553 	if (test_done == 0) {
2554 		printf("Before change flush interval for GRO,"
2555 				" please stop forwarding first.\n");
2556 		return;
2557 	}
2558 
2559 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2560 			GRO_DEFAULT_FLUSH_CYCLES) {
2561 		printf("The flushing cycle be in the range"
2562 				" of 1 to %u. Revert to the default"
2563 				" value %u.\n",
2564 				GRO_MAX_FLUSH_CYCLES,
2565 				GRO_DEFAULT_FLUSH_CYCLES);
2566 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2567 	}
2568 
2569 	gro_flush_cycles = cycles;
2570 }
2571 
2572 void
2573 show_gro(portid_t port_id)
2574 {
2575 	struct rte_gro_param *param;
2576 	uint32_t max_pkts_num;
2577 
2578 	param = &gro_ports[port_id].param;
2579 
2580 	if (!rte_eth_dev_is_valid_port(port_id)) {
2581 		printf("Invalid port id %u.\n", port_id);
2582 		return;
2583 	}
2584 	if (gro_ports[port_id].enable) {
2585 		printf("GRO type: TCP/IPv4\n");
2586 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2587 			max_pkts_num = param->max_flow_num *
2588 				param->max_item_per_flow;
2589 		} else
2590 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2591 		printf("Max number of packets to perform GRO: %u\n",
2592 				max_pkts_num);
2593 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2594 	} else
2595 		printf("Port %u doesn't enable GRO.\n", port_id);
2596 }
2597 
2598 void
2599 setup_gso(const char *mode, portid_t port_id)
2600 {
2601 	if (!rte_eth_dev_is_valid_port(port_id)) {
2602 		printf("invalid port id %u\n", port_id);
2603 		return;
2604 	}
2605 	if (strcmp(mode, "on") == 0) {
2606 		if (test_done == 0) {
2607 			printf("before enabling GSO,"
2608 					" please stop forwarding first\n");
2609 			return;
2610 		}
2611 		gso_ports[port_id].enable = 1;
2612 	} else if (strcmp(mode, "off") == 0) {
2613 		if (test_done == 0) {
2614 			printf("before disabling GSO,"
2615 					" please stop forwarding first\n");
2616 			return;
2617 		}
2618 		gso_ports[port_id].enable = 0;
2619 	}
2620 }
2621 
2622 char*
2623 list_pkt_forwarding_modes(void)
2624 {
2625 	static char fwd_modes[128] = "";
2626 	const char *separator = "|";
2627 	struct fwd_engine *fwd_eng;
2628 	unsigned i = 0;
2629 
2630 	if (strlen (fwd_modes) == 0) {
2631 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2632 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2633 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2634 			strncat(fwd_modes, separator,
2635 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2636 		}
2637 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2638 	}
2639 
2640 	return fwd_modes;
2641 }
2642 
2643 char*
2644 list_pkt_forwarding_retry_modes(void)
2645 {
2646 	static char fwd_modes[128] = "";
2647 	const char *separator = "|";
2648 	struct fwd_engine *fwd_eng;
2649 	unsigned i = 0;
2650 
2651 	if (strlen(fwd_modes) == 0) {
2652 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2653 			if (fwd_eng == &rx_only_engine)
2654 				continue;
2655 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2656 					sizeof(fwd_modes) -
2657 					strlen(fwd_modes) - 1);
2658 			strncat(fwd_modes, separator,
2659 					sizeof(fwd_modes) -
2660 					strlen(fwd_modes) - 1);
2661 		}
2662 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2663 	}
2664 
2665 	return fwd_modes;
2666 }
2667 
2668 void
2669 set_pkt_forwarding_mode(const char *fwd_mode_name)
2670 {
2671 	struct fwd_engine *fwd_eng;
2672 	unsigned i;
2673 
2674 	i = 0;
2675 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2676 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2677 			printf("Set %s packet forwarding mode%s\n",
2678 			       fwd_mode_name,
2679 			       retry_enabled == 0 ? "" : " with retry");
2680 			cur_fwd_eng = fwd_eng;
2681 			return;
2682 		}
2683 		i++;
2684 	}
2685 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2686 }
2687 
2688 void
2689 set_verbose_level(uint16_t vb_level)
2690 {
2691 	printf("Change verbose level from %u to %u\n",
2692 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2693 	verbose_level = vb_level;
2694 }
2695 
2696 void
2697 vlan_extend_set(portid_t port_id, int on)
2698 {
2699 	int diag;
2700 	int vlan_offload;
2701 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2702 
2703 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2704 		return;
2705 
2706 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2707 
2708 	if (on) {
2709 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2710 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2711 	} else {
2712 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2713 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2714 	}
2715 
2716 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2717 	if (diag < 0)
2718 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2719 	       "diag=%d\n", port_id, on, diag);
2720 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2721 }
2722 
2723 void
2724 rx_vlan_strip_set(portid_t port_id, int on)
2725 {
2726 	int diag;
2727 	int vlan_offload;
2728 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2729 
2730 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2731 		return;
2732 
2733 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2734 
2735 	if (on) {
2736 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2737 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2738 	} else {
2739 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2740 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2741 	}
2742 
2743 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2744 	if (diag < 0)
2745 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2746 	       "diag=%d\n", port_id, on, diag);
2747 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2748 }
2749 
2750 void
2751 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2752 {
2753 	int diag;
2754 
2755 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2756 		return;
2757 
2758 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2759 	if (diag < 0)
2760 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2761 	       "diag=%d\n", port_id, queue_id, on, diag);
2762 }
2763 
2764 void
2765 rx_vlan_filter_set(portid_t port_id, int on)
2766 {
2767 	int diag;
2768 	int vlan_offload;
2769 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2770 
2771 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2772 		return;
2773 
2774 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2775 
2776 	if (on) {
2777 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2778 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2779 	} else {
2780 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2781 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2782 	}
2783 
2784 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2785 	if (diag < 0)
2786 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2787 	       "diag=%d\n", port_id, on, diag);
2788 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2789 }
2790 
2791 int
2792 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2793 {
2794 	int diag;
2795 
2796 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2797 		return 1;
2798 	if (vlan_id_is_invalid(vlan_id))
2799 		return 1;
2800 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2801 	if (diag == 0)
2802 		return 0;
2803 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2804 	       "diag=%d\n",
2805 	       port_id, vlan_id, on, diag);
2806 	return -1;
2807 }
2808 
2809 void
2810 rx_vlan_all_filter_set(portid_t port_id, int on)
2811 {
2812 	uint16_t vlan_id;
2813 
2814 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2815 		return;
2816 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2817 		if (rx_vft_set(port_id, vlan_id, on))
2818 			break;
2819 	}
2820 }
2821 
2822 void
2823 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2824 {
2825 	int diag;
2826 
2827 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2828 		return;
2829 
2830 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2831 	if (diag == 0)
2832 		return;
2833 
2834 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2835 	       "diag=%d\n",
2836 	       port_id, vlan_type, tp_id, diag);
2837 }
2838 
2839 void
2840 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2841 {
2842 	int vlan_offload;
2843 	struct rte_eth_dev_info dev_info;
2844 
2845 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2846 		return;
2847 	if (vlan_id_is_invalid(vlan_id))
2848 		return;
2849 
2850 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2851 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2852 		printf("Error, as QinQ has been enabled.\n");
2853 		return;
2854 	}
2855 	rte_eth_dev_info_get(port_id, &dev_info);
2856 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2857 		printf("Error: vlan insert is not supported by port %d\n",
2858 			port_id);
2859 		return;
2860 	}
2861 
2862 	tx_vlan_reset(port_id);
2863 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2864 	ports[port_id].tx_vlan_id = vlan_id;
2865 }
2866 
2867 void
2868 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2869 {
2870 	int vlan_offload;
2871 	struct rte_eth_dev_info dev_info;
2872 
2873 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2874 		return;
2875 	if (vlan_id_is_invalid(vlan_id))
2876 		return;
2877 	if (vlan_id_is_invalid(vlan_id_outer))
2878 		return;
2879 
2880 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2881 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2882 		printf("Error, as QinQ hasn't been enabled.\n");
2883 		return;
2884 	}
2885 	rte_eth_dev_info_get(port_id, &dev_info);
2886 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2887 		printf("Error: qinq insert not supported by port %d\n",
2888 			port_id);
2889 		return;
2890 	}
2891 
2892 	tx_vlan_reset(port_id);
2893 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2894 	ports[port_id].tx_vlan_id = vlan_id;
2895 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2896 }
2897 
2898 void
2899 tx_vlan_reset(portid_t port_id)
2900 {
2901 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2902 		return;
2903 	ports[port_id].dev_conf.txmode.offloads &=
2904 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
2905 				  DEV_TX_OFFLOAD_QINQ_INSERT);
2906 	ports[port_id].tx_vlan_id = 0;
2907 	ports[port_id].tx_vlan_id_outer = 0;
2908 }
2909 
2910 void
2911 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2912 {
2913 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2914 		return;
2915 
2916 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2917 }
2918 
2919 void
2920 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2921 {
2922 	uint16_t i;
2923 	uint8_t existing_mapping_found = 0;
2924 
2925 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2926 		return;
2927 
2928 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2929 		return;
2930 
2931 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2932 		printf("map_value not in required range 0..%d\n",
2933 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2934 		return;
2935 	}
2936 
2937 	if (!is_rx) { /*then tx*/
2938 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2939 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2940 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2941 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2942 				existing_mapping_found = 1;
2943 				break;
2944 			}
2945 		}
2946 		if (!existing_mapping_found) { /* A new additional mapping... */
2947 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2948 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2949 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2950 			nb_tx_queue_stats_mappings++;
2951 		}
2952 	}
2953 	else { /*rx*/
2954 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2955 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2956 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2957 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2958 				existing_mapping_found = 1;
2959 				break;
2960 			}
2961 		}
2962 		if (!existing_mapping_found) { /* A new additional mapping... */
2963 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2964 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2965 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2966 			nb_rx_queue_stats_mappings++;
2967 		}
2968 	}
2969 }
2970 
2971 void
2972 set_xstats_hide_zero(uint8_t on_off)
2973 {
2974 	xstats_hide_zero = on_off;
2975 }
2976 
2977 static inline void
2978 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2979 {
2980 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2981 
2982 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2983 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2984 			" tunnel_id: 0x%08x",
2985 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2986 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2987 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2988 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2989 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2990 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2991 
2992 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2993 			rte_be_to_cpu_16(mask->src_port_mask),
2994 			rte_be_to_cpu_16(mask->dst_port_mask));
2995 
2996 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2997 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2998 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2999 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3000 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3001 
3002 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3003 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3004 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3005 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3006 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3007 	}
3008 
3009 	printf("\n");
3010 }
3011 
3012 static inline void
3013 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3014 {
3015 	struct rte_eth_flex_payload_cfg *cfg;
3016 	uint32_t i, j;
3017 
3018 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3019 		cfg = &flex_conf->flex_set[i];
3020 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3021 			printf("\n    RAW:  ");
3022 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3023 			printf("\n    L2_PAYLOAD:  ");
3024 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3025 			printf("\n    L3_PAYLOAD:  ");
3026 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3027 			printf("\n    L4_PAYLOAD:  ");
3028 		else
3029 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3030 		for (j = 0; j < num; j++)
3031 			printf("  %-5u", cfg->src_offset[j]);
3032 	}
3033 	printf("\n");
3034 }
3035 
3036 static char *
3037 flowtype_to_str(uint16_t flow_type)
3038 {
3039 	struct flow_type_info {
3040 		char str[32];
3041 		uint16_t ftype;
3042 	};
3043 
3044 	uint8_t i;
3045 	static struct flow_type_info flowtype_str_table[] = {
3046 		{"raw", RTE_ETH_FLOW_RAW},
3047 		{"ipv4", RTE_ETH_FLOW_IPV4},
3048 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3049 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3050 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3051 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3052 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3053 		{"ipv6", RTE_ETH_FLOW_IPV6},
3054 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3055 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3056 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3057 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3058 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3059 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3060 		{"port", RTE_ETH_FLOW_PORT},
3061 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3062 		{"geneve", RTE_ETH_FLOW_GENEVE},
3063 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3064 	};
3065 
3066 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3067 		if (flowtype_str_table[i].ftype == flow_type)
3068 			return flowtype_str_table[i].str;
3069 	}
3070 
3071 	return NULL;
3072 }
3073 
3074 static inline void
3075 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3076 {
3077 	struct rte_eth_fdir_flex_mask *mask;
3078 	uint32_t i, j;
3079 	char *p;
3080 
3081 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3082 		mask = &flex_conf->flex_mask[i];
3083 		p = flowtype_to_str(mask->flow_type);
3084 		printf("\n    %s:\t", p ? p : "unknown");
3085 		for (j = 0; j < num; j++)
3086 			printf(" %02x", mask->mask[j]);
3087 	}
3088 	printf("\n");
3089 }
3090 
3091 static inline void
3092 print_fdir_flow_type(uint32_t flow_types_mask)
3093 {
3094 	int i;
3095 	char *p;
3096 
3097 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3098 		if (!(flow_types_mask & (1 << i)))
3099 			continue;
3100 		p = flowtype_to_str(i);
3101 		if (p)
3102 			printf(" %s", p);
3103 		else
3104 			printf(" unknown");
3105 	}
3106 	printf("\n");
3107 }
3108 
3109 void
3110 fdir_get_infos(portid_t port_id)
3111 {
3112 	struct rte_eth_fdir_stats fdir_stat;
3113 	struct rte_eth_fdir_info fdir_info;
3114 	int ret;
3115 
3116 	static const char *fdir_stats_border = "########################";
3117 
3118 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3119 		return;
3120 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3121 	if (ret < 0) {
3122 		printf("\n FDIR is not supported on port %-2d\n",
3123 			port_id);
3124 		return;
3125 	}
3126 
3127 	memset(&fdir_info, 0, sizeof(fdir_info));
3128 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3129 			       RTE_ETH_FILTER_INFO, &fdir_info);
3130 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3131 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3132 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3133 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3134 	       fdir_stats_border, port_id, fdir_stats_border);
3135 	printf("  MODE: ");
3136 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3137 		printf("  PERFECT\n");
3138 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3139 		printf("  PERFECT-MAC-VLAN\n");
3140 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3141 		printf("  PERFECT-TUNNEL\n");
3142 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3143 		printf("  SIGNATURE\n");
3144 	else
3145 		printf("  DISABLE\n");
3146 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3147 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3148 		printf("  SUPPORTED FLOW TYPE: ");
3149 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3150 	}
3151 	printf("  FLEX PAYLOAD INFO:\n");
3152 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3153 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3154 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3155 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3156 		fdir_info.flex_payload_unit,
3157 		fdir_info.max_flex_payload_segment_num,
3158 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3159 	printf("  MASK: ");
3160 	print_fdir_mask(&fdir_info.mask);
3161 	if (fdir_info.flex_conf.nb_payloads > 0) {
3162 		printf("  FLEX PAYLOAD SRC OFFSET:");
3163 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3164 	}
3165 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3166 		printf("  FLEX MASK CFG:");
3167 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3168 	}
3169 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3170 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3171 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3172 	       fdir_info.guarant_spc, fdir_info.best_spc);
3173 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3174 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3175 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3176 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3177 	       fdir_stat.collision, fdir_stat.free,
3178 	       fdir_stat.maxhash, fdir_stat.maxlen,
3179 	       fdir_stat.add, fdir_stat.remove,
3180 	       fdir_stat.f_add, fdir_stat.f_remove);
3181 	printf("  %s############################%s\n",
3182 	       fdir_stats_border, fdir_stats_border);
3183 }
3184 
3185 void
3186 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3187 {
3188 	struct rte_port *port;
3189 	struct rte_eth_fdir_flex_conf *flex_conf;
3190 	int i, idx = 0;
3191 
3192 	port = &ports[port_id];
3193 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3194 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3195 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3196 			idx = i;
3197 			break;
3198 		}
3199 	}
3200 	if (i >= RTE_ETH_FLOW_MAX) {
3201 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3202 			idx = flex_conf->nb_flexmasks;
3203 			flex_conf->nb_flexmasks++;
3204 		} else {
3205 			printf("The flex mask table is full. Can not set flex"
3206 				" mask for flow_type(%u).", cfg->flow_type);
3207 			return;
3208 		}
3209 	}
3210 	rte_memcpy(&flex_conf->flex_mask[idx],
3211 			 cfg,
3212 			 sizeof(struct rte_eth_fdir_flex_mask));
3213 }
3214 
3215 void
3216 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3217 {
3218 	struct rte_port *port;
3219 	struct rte_eth_fdir_flex_conf *flex_conf;
3220 	int i, idx = 0;
3221 
3222 	port = &ports[port_id];
3223 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3224 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3225 		if (cfg->type == flex_conf->flex_set[i].type) {
3226 			idx = i;
3227 			break;
3228 		}
3229 	}
3230 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3231 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3232 			idx = flex_conf->nb_payloads;
3233 			flex_conf->nb_payloads++;
3234 		} else {
3235 			printf("The flex payload table is full. Can not set"
3236 				" flex payload for type(%u).", cfg->type);
3237 			return;
3238 		}
3239 	}
3240 	rte_memcpy(&flex_conf->flex_set[idx],
3241 			 cfg,
3242 			 sizeof(struct rte_eth_flex_payload_cfg));
3243 
3244 }
3245 
3246 void
3247 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3248 {
3249 #ifdef RTE_LIBRTE_IXGBE_PMD
3250 	int diag;
3251 
3252 	if (is_rx)
3253 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3254 	else
3255 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3256 
3257 	if (diag == 0)
3258 		return;
3259 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3260 			is_rx ? "rx" : "tx", port_id, diag);
3261 	return;
3262 #endif
3263 	printf("VF %s setting not supported for port %d\n",
3264 			is_rx ? "Rx" : "Tx", port_id);
3265 	RTE_SET_USED(vf);
3266 	RTE_SET_USED(on);
3267 }
3268 
3269 int
3270 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3271 {
3272 	int diag;
3273 	struct rte_eth_link link;
3274 
3275 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3276 		return 1;
3277 	rte_eth_link_get_nowait(port_id, &link);
3278 	if (rate > link.link_speed) {
3279 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3280 			rate, link.link_speed);
3281 		return 1;
3282 	}
3283 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3284 	if (diag == 0)
3285 		return diag;
3286 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3287 		port_id, diag);
3288 	return diag;
3289 }
3290 
3291 int
3292 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3293 {
3294 	int diag = -ENOTSUP;
3295 
3296 	RTE_SET_USED(vf);
3297 	RTE_SET_USED(rate);
3298 	RTE_SET_USED(q_msk);
3299 
3300 #ifdef RTE_LIBRTE_IXGBE_PMD
3301 	if (diag == -ENOTSUP)
3302 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3303 						       q_msk);
3304 #endif
3305 #ifdef RTE_LIBRTE_BNXT_PMD
3306 	if (diag == -ENOTSUP)
3307 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3308 #endif
3309 	if (diag == 0)
3310 		return diag;
3311 
3312 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3313 		port_id, diag);
3314 	return diag;
3315 }
3316 
3317 /*
3318  * Functions to manage the set of filtered Multicast MAC addresses.
3319  *
3320  * A pool of filtered multicast MAC addresses is associated with each port.
3321  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3322  * The address of the pool and the number of valid multicast MAC addresses
3323  * recorded in the pool are stored in the fields "mc_addr_pool" and
3324  * "mc_addr_nb" of the "rte_port" data structure.
3325  *
3326  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3327  * to be supplied a contiguous array of multicast MAC addresses.
3328  * To comply with this constraint, the set of multicast addresses recorded
3329  * into the pool are systematically compacted at the beginning of the pool.
3330  * Hence, when a multicast address is removed from the pool, all following
3331  * addresses, if any, are copied back to keep the set contiguous.
3332  */
3333 #define MCAST_POOL_INC 32
3334 
3335 static int
3336 mcast_addr_pool_extend(struct rte_port *port)
3337 {
3338 	struct ether_addr *mc_pool;
3339 	size_t mc_pool_size;
3340 
3341 	/*
3342 	 * If a free entry is available at the end of the pool, just
3343 	 * increment the number of recorded multicast addresses.
3344 	 */
3345 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3346 		port->mc_addr_nb++;
3347 		return 0;
3348 	}
3349 
3350 	/*
3351 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3352 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3353 	 * of MCAST_POOL_INC.
3354 	 */
3355 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3356 						    MCAST_POOL_INC);
3357 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3358 						mc_pool_size);
3359 	if (mc_pool == NULL) {
3360 		printf("allocation of pool of %u multicast addresses failed\n",
3361 		       port->mc_addr_nb + MCAST_POOL_INC);
3362 		return -ENOMEM;
3363 	}
3364 
3365 	port->mc_addr_pool = mc_pool;
3366 	port->mc_addr_nb++;
3367 	return 0;
3368 
3369 }
3370 
3371 static void
3372 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3373 {
3374 	port->mc_addr_nb--;
3375 	if (addr_idx == port->mc_addr_nb) {
3376 		/* No need to recompact the set of multicast addressses. */
3377 		if (port->mc_addr_nb == 0) {
3378 			/* free the pool of multicast addresses. */
3379 			free(port->mc_addr_pool);
3380 			port->mc_addr_pool = NULL;
3381 		}
3382 		return;
3383 	}
3384 	memmove(&port->mc_addr_pool[addr_idx],
3385 		&port->mc_addr_pool[addr_idx + 1],
3386 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3387 }
3388 
3389 static void
3390 eth_port_multicast_addr_list_set(portid_t port_id)
3391 {
3392 	struct rte_port *port;
3393 	int diag;
3394 
3395 	port = &ports[port_id];
3396 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3397 					    port->mc_addr_nb);
3398 	if (diag == 0)
3399 		return;
3400 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3401 	       port->mc_addr_nb, port_id, -diag);
3402 }
3403 
3404 void
3405 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3406 {
3407 	struct rte_port *port;
3408 	uint32_t i;
3409 
3410 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3411 		return;
3412 
3413 	port = &ports[port_id];
3414 
3415 	/*
3416 	 * Check that the added multicast MAC address is not already recorded
3417 	 * in the pool of multicast addresses.
3418 	 */
3419 	for (i = 0; i < port->mc_addr_nb; i++) {
3420 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3421 			printf("multicast address already filtered by port\n");
3422 			return;
3423 		}
3424 	}
3425 
3426 	if (mcast_addr_pool_extend(port) != 0)
3427 		return;
3428 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3429 	eth_port_multicast_addr_list_set(port_id);
3430 }
3431 
3432 void
3433 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3434 {
3435 	struct rte_port *port;
3436 	uint32_t i;
3437 
3438 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3439 		return;
3440 
3441 	port = &ports[port_id];
3442 
3443 	/*
3444 	 * Search the pool of multicast MAC addresses for the removed address.
3445 	 */
3446 	for (i = 0; i < port->mc_addr_nb; i++) {
3447 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3448 			break;
3449 	}
3450 	if (i == port->mc_addr_nb) {
3451 		printf("multicast address not filtered by port %d\n", port_id);
3452 		return;
3453 	}
3454 
3455 	mcast_addr_pool_remove(port, i);
3456 	eth_port_multicast_addr_list_set(port_id);
3457 }
3458 
3459 void
3460 port_dcb_info_display(portid_t port_id)
3461 {
3462 	struct rte_eth_dcb_info dcb_info;
3463 	uint16_t i;
3464 	int ret;
3465 	static const char *border = "================";
3466 
3467 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3468 		return;
3469 
3470 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3471 	if (ret) {
3472 		printf("\n Failed to get dcb infos on port %-2d\n",
3473 			port_id);
3474 		return;
3475 	}
3476 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3477 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3478 	printf("\n  TC :        ");
3479 	for (i = 0; i < dcb_info.nb_tcs; i++)
3480 		printf("\t%4d", i);
3481 	printf("\n  Priority :  ");
3482 	for (i = 0; i < dcb_info.nb_tcs; i++)
3483 		printf("\t%4d", dcb_info.prio_tc[i]);
3484 	printf("\n  BW percent :");
3485 	for (i = 0; i < dcb_info.nb_tcs; i++)
3486 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3487 	printf("\n  RXQ base :  ");
3488 	for (i = 0; i < dcb_info.nb_tcs; i++)
3489 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3490 	printf("\n  RXQ number :");
3491 	for (i = 0; i < dcb_info.nb_tcs; i++)
3492 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3493 	printf("\n  TXQ base :  ");
3494 	for (i = 0; i < dcb_info.nb_tcs; i++)
3495 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3496 	printf("\n  TXQ number :");
3497 	for (i = 0; i < dcb_info.nb_tcs; i++)
3498 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3499 	printf("\n");
3500 }
3501 
3502 uint8_t *
3503 open_file(const char *file_path, uint32_t *size)
3504 {
3505 	int fd = open(file_path, O_RDONLY);
3506 	off_t pkg_size;
3507 	uint8_t *buf = NULL;
3508 	int ret = 0;
3509 	struct stat st_buf;
3510 
3511 	if (size)
3512 		*size = 0;
3513 
3514 	if (fd == -1) {
3515 		printf("%s: Failed to open %s\n", __func__, file_path);
3516 		return buf;
3517 	}
3518 
3519 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3520 		close(fd);
3521 		printf("%s: File operations failed\n", __func__);
3522 		return buf;
3523 	}
3524 
3525 	pkg_size = st_buf.st_size;
3526 	if (pkg_size < 0) {
3527 		close(fd);
3528 		printf("%s: File operations failed\n", __func__);
3529 		return buf;
3530 	}
3531 
3532 	buf = (uint8_t *)malloc(pkg_size);
3533 	if (!buf) {
3534 		close(fd);
3535 		printf("%s: Failed to malloc memory\n",	__func__);
3536 		return buf;
3537 	}
3538 
3539 	ret = read(fd, buf, pkg_size);
3540 	if (ret < 0) {
3541 		close(fd);
3542 		printf("%s: File read operation failed\n", __func__);
3543 		close_file(buf);
3544 		return NULL;
3545 	}
3546 
3547 	if (size)
3548 		*size = pkg_size;
3549 
3550 	close(fd);
3551 
3552 	return buf;
3553 }
3554 
3555 int
3556 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3557 {
3558 	FILE *fh = fopen(file_path, "wb");
3559 
3560 	if (fh == NULL) {
3561 		printf("%s: Failed to open %s\n", __func__, file_path);
3562 		return -1;
3563 	}
3564 
3565 	if (fwrite(buf, 1, size, fh) != size) {
3566 		fclose(fh);
3567 		printf("%s: File write operation failed\n", __func__);
3568 		return -1;
3569 	}
3570 
3571 	fclose(fh);
3572 
3573 	return 0;
3574 }
3575 
3576 int
3577 close_file(uint8_t *buf)
3578 {
3579 	if (buf) {
3580 		free((void *)buf);
3581 		return 0;
3582 	}
3583 
3584 	return -1;
3585 }
3586 
3587 void
3588 port_queue_region_info_display(portid_t port_id, void *buf)
3589 {
3590 #ifdef RTE_LIBRTE_I40E_PMD
3591 	uint16_t i, j;
3592 	struct rte_pmd_i40e_queue_regions *info =
3593 		(struct rte_pmd_i40e_queue_regions *)buf;
3594 	static const char *queue_region_info_stats_border = "-------";
3595 
3596 	if (!info->queue_region_number)
3597 		printf("there is no region has been set before");
3598 
3599 	printf("\n	%s All queue region info for port=%2d %s",
3600 			queue_region_info_stats_border, port_id,
3601 			queue_region_info_stats_border);
3602 	printf("\n	queue_region_number: %-14u \n",
3603 			info->queue_region_number);
3604 
3605 	for (i = 0; i < info->queue_region_number; i++) {
3606 		printf("\n	region_id: %-14u queue_number: %-14u "
3607 			"queue_start_index: %-14u \n",
3608 			info->region[i].region_id,
3609 			info->region[i].queue_num,
3610 			info->region[i].queue_start_index);
3611 
3612 		printf("  user_priority_num is	%-14u :",
3613 					info->region[i].user_priority_num);
3614 		for (j = 0; j < info->region[i].user_priority_num; j++)
3615 			printf(" %-14u ", info->region[i].user_priority[j]);
3616 
3617 		printf("\n	flowtype_num is  %-14u :",
3618 				info->region[i].flowtype_num);
3619 		for (j = 0; j < info->region[i].flowtype_num; j++)
3620 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3621 	}
3622 #else
3623 	RTE_SET_USED(port_id);
3624 	RTE_SET_USED(buf);
3625 #endif
3626 
3627 	printf("\n\n");
3628 }
3629