xref: /dpdk/app/test-pmd/config.c (revision 1315219a22a32aa438de3483eaacc104890ee71f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright 2013-2014 6WIND S.A.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <stdarg.h>
65 #include <errno.h>
66 #include <stdio.h>
67 #include <string.h>
68 #include <stdarg.h>
69 #include <stdint.h>
70 #include <inttypes.h>
71 
72 #include <sys/queue.h>
73 
74 #include <rte_common.h>
75 #include <rte_byteorder.h>
76 #include <rte_debug.h>
77 #include <rte_log.h>
78 #include <rte_memory.h>
79 #include <rte_memcpy.h>
80 #include <rte_memzone.h>
81 #include <rte_launch.h>
82 #include <rte_eal.h>
83 #include <rte_per_lcore.h>
84 #include <rte_lcore.h>
85 #include <rte_atomic.h>
86 #include <rte_branch_prediction.h>
87 #include <rte_mempool.h>
88 #include <rte_mbuf.h>
89 #include <rte_interrupts.h>
90 #include <rte_pci.h>
91 #include <rte_ether.h>
92 #include <rte_ethdev.h>
93 #include <rte_string_fns.h>
94 #include <rte_cycles.h>
95 #include <rte_flow.h>
96 #include <rte_errno.h>
97 #ifdef RTE_LIBRTE_IXGBE_PMD
98 #include <rte_pmd_ixgbe.h>
99 #endif
100 
101 #include "testpmd.h"
102 
103 static char *flowtype_to_str(uint16_t flow_type);
104 
105 static const struct {
106 	enum tx_pkt_split split;
107 	const char *name;
108 } tx_split_name[] = {
109 	{
110 		.split = TX_PKT_SPLIT_OFF,
111 		.name = "off",
112 	},
113 	{
114 		.split = TX_PKT_SPLIT_ON,
115 		.name = "on",
116 	},
117 	{
118 		.split = TX_PKT_SPLIT_RND,
119 		.name = "rand",
120 	},
121 };
122 
123 struct rss_type_info {
124 	char str[32];
125 	uint64_t rss_type;
126 };
127 
128 static const struct rss_type_info rss_type_table[] = {
129 	{ "ipv4", ETH_RSS_IPV4 },
130 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
131 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
132 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
133 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
134 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
135 	{ "ipv6", ETH_RSS_IPV6 },
136 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
137 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
138 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
139 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
140 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
141 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
142 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
143 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
144 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
145 	{ "port", ETH_RSS_PORT },
146 	{ "vxlan", ETH_RSS_VXLAN },
147 	{ "geneve", ETH_RSS_GENEVE },
148 	{ "nvgre", ETH_RSS_NVGRE },
149 
150 };
151 
152 static void
153 print_ethaddr(const char *name, struct ether_addr *eth_addr)
154 {
155 	char buf[ETHER_ADDR_FMT_SIZE];
156 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
157 	printf("%s%s", name, buf);
158 }
159 
160 void
161 nic_stats_display(portid_t port_id)
162 {
163 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
164 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
165 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
166 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
167 	uint64_t mpps_rx, mpps_tx;
168 	struct rte_eth_stats stats;
169 	struct rte_port *port = &ports[port_id];
170 	uint8_t i;
171 	portid_t pid;
172 
173 	static const char *nic_stats_border = "########################";
174 
175 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
176 		printf("Valid port range is [0");
177 		FOREACH_PORT(pid, ports)
178 			printf(", %d", pid);
179 		printf("]\n");
180 		return;
181 	}
182 	rte_eth_stats_get(port_id, &stats);
183 	printf("\n  %s NIC statistics for port %-2d %s\n",
184 	       nic_stats_border, port_id, nic_stats_border);
185 
186 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
187 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
188 		       "%-"PRIu64"\n",
189 		       stats.ipackets, stats.imissed, stats.ibytes);
190 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
191 		printf("  RX-nombuf:  %-10"PRIu64"\n",
192 		       stats.rx_nombuf);
193 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
194 		       "%-"PRIu64"\n",
195 		       stats.opackets, stats.oerrors, stats.obytes);
196 	}
197 	else {
198 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
199 		       "    RX-bytes: %10"PRIu64"\n",
200 		       stats.ipackets, stats.ierrors, stats.ibytes);
201 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
202 		printf("  RX-nombuf:               %10"PRIu64"\n",
203 		       stats.rx_nombuf);
204 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
205 		       "    TX-bytes: %10"PRIu64"\n",
206 		       stats.opackets, stats.oerrors, stats.obytes);
207 	}
208 
209 	if (port->rx_queue_stats_mapping_enabled) {
210 		printf("\n");
211 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
212 			printf("  Stats reg %2d RX-packets: %10"PRIu64
213 			       "    RX-errors: %10"PRIu64
214 			       "    RX-bytes: %10"PRIu64"\n",
215 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
216 		}
217 	}
218 	if (port->tx_queue_stats_mapping_enabled) {
219 		printf("\n");
220 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
221 			printf("  Stats reg %2d TX-packets: %10"PRIu64
222 			       "                             TX-bytes: %10"PRIu64"\n",
223 			       i, stats.q_opackets[i], stats.q_obytes[i]);
224 		}
225 	}
226 
227 	diff_cycles = prev_cycles[port_id];
228 	prev_cycles[port_id] = rte_rdtsc();
229 	if (diff_cycles > 0)
230 		diff_cycles = prev_cycles[port_id] - diff_cycles;
231 
232 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
233 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
234 	prev_pkts_rx[port_id] = stats.ipackets;
235 	prev_pkts_tx[port_id] = stats.opackets;
236 	mpps_rx = diff_cycles > 0 ?
237 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
238 	mpps_tx = diff_cycles > 0 ?
239 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
240 	printf("\n  Throughput (since last show)\n");
241 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
242 			mpps_rx, mpps_tx);
243 
244 	printf("  %s############################%s\n",
245 	       nic_stats_border, nic_stats_border);
246 }
247 
248 void
249 nic_stats_clear(portid_t port_id)
250 {
251 	portid_t pid;
252 
253 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
254 		printf("Valid port range is [0");
255 		FOREACH_PORT(pid, ports)
256 			printf(", %d", pid);
257 		printf("]\n");
258 		return;
259 	}
260 	rte_eth_stats_reset(port_id);
261 	printf("\n  NIC statistics for port %d cleared\n", port_id);
262 }
263 
264 void
265 nic_xstats_display(portid_t port_id)
266 {
267 	struct rte_eth_xstat *xstats;
268 	int cnt_xstats, idx_xstat;
269 	struct rte_eth_xstat_name *xstats_names;
270 
271 	printf("###### NIC extended statistics for port %-2d\n", port_id);
272 	if (!rte_eth_dev_is_valid_port(port_id)) {
273 		printf("Error: Invalid port number %i\n", port_id);
274 		return;
275 	}
276 
277 	/* Get count */
278 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
279 	if (cnt_xstats  < 0) {
280 		printf("Error: Cannot get count of xstats\n");
281 		return;
282 	}
283 
284 	/* Get id-name lookup table */
285 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
286 	if (xstats_names == NULL) {
287 		printf("Cannot allocate memory for xstats lookup\n");
288 		return;
289 	}
290 	if (cnt_xstats != rte_eth_xstats_get_names(
291 			port_id, xstats_names, cnt_xstats)) {
292 		printf("Error: Cannot get xstats lookup\n");
293 		free(xstats_names);
294 		return;
295 	}
296 
297 	/* Get stats themselves */
298 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
299 	if (xstats == NULL) {
300 		printf("Cannot allocate memory for xstats\n");
301 		free(xstats_names);
302 		return;
303 	}
304 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
305 		printf("Error: Unable to get xstats\n");
306 		free(xstats_names);
307 		free(xstats);
308 		return;
309 	}
310 
311 	/* Display xstats */
312 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
313 		printf("%s: %"PRIu64"\n",
314 			xstats_names[idx_xstat].name,
315 			xstats[idx_xstat].value);
316 	free(xstats_names);
317 	free(xstats);
318 }
319 
320 void
321 nic_xstats_clear(portid_t port_id)
322 {
323 	rte_eth_xstats_reset(port_id);
324 }
325 
326 void
327 nic_stats_mapping_display(portid_t port_id)
328 {
329 	struct rte_port *port = &ports[port_id];
330 	uint16_t i;
331 	portid_t pid;
332 
333 	static const char *nic_stats_mapping_border = "########################";
334 
335 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
336 		printf("Valid port range is [0");
337 		FOREACH_PORT(pid, ports)
338 			printf(", %d", pid);
339 		printf("]\n");
340 		return;
341 	}
342 
343 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
344 		printf("Port id %d - either does not support queue statistic mapping or"
345 		       " no queue statistic mapping set\n", port_id);
346 		return;
347 	}
348 
349 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
350 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
351 
352 	if (port->rx_queue_stats_mapping_enabled) {
353 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
354 			if (rx_queue_stats_mappings[i].port_id == port_id) {
355 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
356 				       rx_queue_stats_mappings[i].queue_id,
357 				       rx_queue_stats_mappings[i].stats_counter_id);
358 			}
359 		}
360 		printf("\n");
361 	}
362 
363 
364 	if (port->tx_queue_stats_mapping_enabled) {
365 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
366 			if (tx_queue_stats_mappings[i].port_id == port_id) {
367 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
368 				       tx_queue_stats_mappings[i].queue_id,
369 				       tx_queue_stats_mappings[i].stats_counter_id);
370 			}
371 		}
372 	}
373 
374 	printf("  %s####################################%s\n",
375 	       nic_stats_mapping_border, nic_stats_mapping_border);
376 }
377 
378 void
379 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
380 {
381 	struct rte_eth_rxq_info qinfo;
382 	int32_t rc;
383 	static const char *info_border = "*********************";
384 
385 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
386 	if (rc != 0) {
387 		printf("Failed to retrieve information for port: %hhu, "
388 			"RX queue: %hu\nerror desc: %s(%d)\n",
389 			port_id, queue_id, strerror(-rc), rc);
390 		return;
391 	}
392 
393 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
394 	       info_border, port_id, queue_id, info_border);
395 
396 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
397 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
398 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
399 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
400 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
401 	printf("\nRX drop packets: %s",
402 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
403 	printf("\nRX deferred start: %s",
404 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
405 	printf("\nRX scattered packets: %s",
406 		(qinfo.scattered_rx != 0) ? "on" : "off");
407 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
408 	printf("\n");
409 }
410 
411 void
412 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
413 {
414 	struct rte_eth_txq_info qinfo;
415 	int32_t rc;
416 	static const char *info_border = "*********************";
417 
418 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
419 	if (rc != 0) {
420 		printf("Failed to retrieve information for port: %hhu, "
421 			"TX queue: %hu\nerror desc: %s(%d)\n",
422 			port_id, queue_id, strerror(-rc), rc);
423 		return;
424 	}
425 
426 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
427 	       info_border, port_id, queue_id, info_border);
428 
429 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
430 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
431 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
432 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
433 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
434 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
435 	printf("\nTX deferred start: %s",
436 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
437 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
438 	printf("\n");
439 }
440 
441 void
442 port_infos_display(portid_t port_id)
443 {
444 	struct rte_port *port;
445 	struct ether_addr mac_addr;
446 	struct rte_eth_link link;
447 	struct rte_eth_dev_info dev_info;
448 	int vlan_offload;
449 	struct rte_mempool * mp;
450 	static const char *info_border = "*********************";
451 	portid_t pid;
452 
453 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
454 		printf("Valid port range is [0");
455 		FOREACH_PORT(pid, ports)
456 			printf(", %d", pid);
457 		printf("]\n");
458 		return;
459 	}
460 	port = &ports[port_id];
461 	rte_eth_link_get_nowait(port_id, &link);
462 	memset(&dev_info, 0, sizeof(dev_info));
463 	rte_eth_dev_info_get(port_id, &dev_info);
464 	printf("\n%s Infos for port %-2d %s\n",
465 	       info_border, port_id, info_border);
466 	rte_eth_macaddr_get(port_id, &mac_addr);
467 	print_ethaddr("MAC address: ", &mac_addr);
468 	printf("\nDriver name: %s", dev_info.driver_name);
469 	printf("\nConnect to socket: %u", port->socket_id);
470 
471 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
472 		mp = mbuf_pool_find(port_numa[port_id]);
473 		if (mp)
474 			printf("\nmemory allocation on the socket: %d",
475 							port_numa[port_id]);
476 	} else
477 		printf("\nmemory allocation on the socket: %u",port->socket_id);
478 
479 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
480 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
481 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
482 	       ("full-duplex") : ("half-duplex"));
483 	printf("Promiscuous mode: %s\n",
484 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
485 	printf("Allmulticast mode: %s\n",
486 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
487 	printf("Maximum number of MAC addresses: %u\n",
488 	       (unsigned int)(port->dev_info.max_mac_addrs));
489 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
490 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
491 
492 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
493 	if (vlan_offload >= 0){
494 		printf("VLAN offload: \n");
495 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
496 			printf("  strip on \n");
497 		else
498 			printf("  strip off \n");
499 
500 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
501 			printf("  filter on \n");
502 		else
503 			printf("  filter off \n");
504 
505 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
506 			printf("  qinq(extend) on \n");
507 		else
508 			printf("  qinq(extend) off \n");
509 	}
510 
511 	if (dev_info.hash_key_size > 0)
512 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
513 	if (dev_info.reta_size > 0)
514 		printf("Redirection table size: %u\n", dev_info.reta_size);
515 	if (!dev_info.flow_type_rss_offloads)
516 		printf("No flow type is supported.\n");
517 	else {
518 		uint16_t i;
519 		char *p;
520 
521 		printf("Supported flow types:\n");
522 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
523 								i++) {
524 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
525 				continue;
526 			p = flowtype_to_str(i);
527 			printf("  %s\n", (p ? p : "unknown"));
528 		}
529 	}
530 
531 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
532 	printf("Max possible number of RXDs per queue: %hu\n",
533 		dev_info.rx_desc_lim.nb_max);
534 	printf("Min possible number of RXDs per queue: %hu\n",
535 		dev_info.rx_desc_lim.nb_min);
536 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
537 
538 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
539 	printf("Max possible number of TXDs per queue: %hu\n",
540 		dev_info.tx_desc_lim.nb_max);
541 	printf("Min possible number of TXDs per queue: %hu\n",
542 		dev_info.tx_desc_lim.nb_min);
543 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
544 }
545 
546 void
547 port_offload_cap_display(portid_t port_id)
548 {
549 	struct rte_eth_dev *dev;
550 	struct rte_eth_dev_info dev_info;
551 	static const char *info_border = "************";
552 
553 	if (port_id_is_invalid(port_id, ENABLED_WARN))
554 		return;
555 
556 	dev = &rte_eth_devices[port_id];
557 	rte_eth_dev_info_get(port_id, &dev_info);
558 
559 	printf("\n%s Port %d supported offload features: %s\n",
560 		info_border, port_id, info_border);
561 
562 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
563 		printf("VLAN stripped:                 ");
564 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
565 			printf("on\n");
566 		else
567 			printf("off\n");
568 	}
569 
570 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
571 		printf("Double VLANs stripped:         ");
572 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
573 			printf("on\n");
574 		else
575 			printf("off\n");
576 	}
577 
578 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
579 		printf("RX IPv4 checksum:              ");
580 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
581 			printf("on\n");
582 		else
583 			printf("off\n");
584 	}
585 
586 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
587 		printf("RX UDP checksum:               ");
588 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
589 			printf("on\n");
590 		else
591 			printf("off\n");
592 	}
593 
594 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
595 		printf("RX TCP checksum:               ");
596 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
597 			printf("on\n");
598 		else
599 			printf("off\n");
600 	}
601 
602 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
603 		printf("RX Outer IPv4 checksum:        on");
604 
605 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
606 		printf("Large receive offload:         ");
607 		if (dev->data->dev_conf.rxmode.enable_lro)
608 			printf("on\n");
609 		else
610 			printf("off\n");
611 	}
612 
613 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
614 		printf("VLAN insert:                   ");
615 		if (ports[port_id].tx_ol_flags &
616 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
617 			printf("on\n");
618 		else
619 			printf("off\n");
620 	}
621 
622 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
623 		printf("Double VLANs insert:           ");
624 		if (ports[port_id].tx_ol_flags &
625 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
626 			printf("on\n");
627 		else
628 			printf("off\n");
629 	}
630 
631 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
632 		printf("TX IPv4 checksum:              ");
633 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
634 			printf("on\n");
635 		else
636 			printf("off\n");
637 	}
638 
639 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
640 		printf("TX UDP checksum:               ");
641 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
642 			printf("on\n");
643 		else
644 			printf("off\n");
645 	}
646 
647 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
648 		printf("TX TCP checksum:               ");
649 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
650 			printf("on\n");
651 		else
652 			printf("off\n");
653 	}
654 
655 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
656 		printf("TX SCTP checksum:              ");
657 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
658 			printf("on\n");
659 		else
660 			printf("off\n");
661 	}
662 
663 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
664 		printf("TX Outer IPv4 checksum:        ");
665 		if (ports[port_id].tx_ol_flags &
666 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
667 			printf("on\n");
668 		else
669 			printf("off\n");
670 	}
671 
672 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
673 		printf("TX TCP segmentation:           ");
674 		if (ports[port_id].tso_segsz != 0)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681 		printf("TX UDP segmentation:           ");
682 		if (ports[port_id].tso_segsz != 0)
683 			printf("on\n");
684 		else
685 			printf("off\n");
686 	}
687 
688 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
689 		printf("TSO for VXLAN tunnel packet:   ");
690 		if (ports[port_id].tunnel_tso_segsz)
691 			printf("on\n");
692 		else
693 			printf("off\n");
694 	}
695 
696 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
697 		printf("TSO for GRE tunnel packet:     ");
698 		if (ports[port_id].tunnel_tso_segsz)
699 			printf("on\n");
700 		else
701 			printf("off\n");
702 	}
703 
704 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
705 		printf("TSO for IPIP tunnel packet:    ");
706 		if (ports[port_id].tunnel_tso_segsz)
707 			printf("on\n");
708 		else
709 			printf("off\n");
710 	}
711 
712 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
713 		printf("TSO for GENEVE tunnel packet:  ");
714 		if (ports[port_id].tunnel_tso_segsz)
715 			printf("on\n");
716 		else
717 			printf("off\n");
718 	}
719 
720 }
721 
722 int
723 port_id_is_invalid(portid_t port_id, enum print_warning warning)
724 {
725 	if (port_id == (portid_t)RTE_PORT_ALL)
726 		return 0;
727 
728 	if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled)
729 		return 0;
730 
731 	if (warning == ENABLED_WARN)
732 		printf("Invalid port %d\n", port_id);
733 
734 	return 1;
735 }
736 
737 static int
738 vlan_id_is_invalid(uint16_t vlan_id)
739 {
740 	if (vlan_id < 4096)
741 		return 0;
742 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
743 	return 1;
744 }
745 
746 static int
747 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
748 {
749 	uint64_t pci_len;
750 
751 	if (reg_off & 0x3) {
752 		printf("Port register offset 0x%X not aligned on a 4-byte "
753 		       "boundary\n",
754 		       (unsigned)reg_off);
755 		return 1;
756 	}
757 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
758 	if (reg_off >= pci_len) {
759 		printf("Port %d: register offset %u (0x%X) out of port PCI "
760 		       "resource (length=%"PRIu64")\n",
761 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
762 		return 1;
763 	}
764 	return 0;
765 }
766 
767 static int
768 reg_bit_pos_is_invalid(uint8_t bit_pos)
769 {
770 	if (bit_pos <= 31)
771 		return 0;
772 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
773 	return 1;
774 }
775 
776 #define display_port_and_reg_off(port_id, reg_off) \
777 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
778 
779 static inline void
780 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
781 {
782 	display_port_and_reg_off(port_id, (unsigned)reg_off);
783 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
784 }
785 
786 void
787 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
788 {
789 	uint32_t reg_v;
790 
791 
792 	if (port_id_is_invalid(port_id, ENABLED_WARN))
793 		return;
794 	if (port_reg_off_is_invalid(port_id, reg_off))
795 		return;
796 	if (reg_bit_pos_is_invalid(bit_x))
797 		return;
798 	reg_v = port_id_pci_reg_read(port_id, reg_off);
799 	display_port_and_reg_off(port_id, (unsigned)reg_off);
800 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
801 }
802 
803 void
804 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
805 			   uint8_t bit1_pos, uint8_t bit2_pos)
806 {
807 	uint32_t reg_v;
808 	uint8_t  l_bit;
809 	uint8_t  h_bit;
810 
811 	if (port_id_is_invalid(port_id, ENABLED_WARN))
812 		return;
813 	if (port_reg_off_is_invalid(port_id, reg_off))
814 		return;
815 	if (reg_bit_pos_is_invalid(bit1_pos))
816 		return;
817 	if (reg_bit_pos_is_invalid(bit2_pos))
818 		return;
819 	if (bit1_pos > bit2_pos)
820 		l_bit = bit2_pos, h_bit = bit1_pos;
821 	else
822 		l_bit = bit1_pos, h_bit = bit2_pos;
823 
824 	reg_v = port_id_pci_reg_read(port_id, reg_off);
825 	reg_v >>= l_bit;
826 	if (h_bit < 31)
827 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
828 	display_port_and_reg_off(port_id, (unsigned)reg_off);
829 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
830 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
831 }
832 
833 void
834 port_reg_display(portid_t port_id, uint32_t reg_off)
835 {
836 	uint32_t reg_v;
837 
838 	if (port_id_is_invalid(port_id, ENABLED_WARN))
839 		return;
840 	if (port_reg_off_is_invalid(port_id, reg_off))
841 		return;
842 	reg_v = port_id_pci_reg_read(port_id, reg_off);
843 	display_port_reg_value(port_id, reg_off, reg_v);
844 }
845 
846 void
847 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
848 		 uint8_t bit_v)
849 {
850 	uint32_t reg_v;
851 
852 	if (port_id_is_invalid(port_id, ENABLED_WARN))
853 		return;
854 	if (port_reg_off_is_invalid(port_id, reg_off))
855 		return;
856 	if (reg_bit_pos_is_invalid(bit_pos))
857 		return;
858 	if (bit_v > 1) {
859 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
860 		return;
861 	}
862 	reg_v = port_id_pci_reg_read(port_id, reg_off);
863 	if (bit_v == 0)
864 		reg_v &= ~(1 << bit_pos);
865 	else
866 		reg_v |= (1 << bit_pos);
867 	port_id_pci_reg_write(port_id, reg_off, reg_v);
868 	display_port_reg_value(port_id, reg_off, reg_v);
869 }
870 
871 void
872 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
873 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
874 {
875 	uint32_t max_v;
876 	uint32_t reg_v;
877 	uint8_t  l_bit;
878 	uint8_t  h_bit;
879 
880 	if (port_id_is_invalid(port_id, ENABLED_WARN))
881 		return;
882 	if (port_reg_off_is_invalid(port_id, reg_off))
883 		return;
884 	if (reg_bit_pos_is_invalid(bit1_pos))
885 		return;
886 	if (reg_bit_pos_is_invalid(bit2_pos))
887 		return;
888 	if (bit1_pos > bit2_pos)
889 		l_bit = bit2_pos, h_bit = bit1_pos;
890 	else
891 		l_bit = bit1_pos, h_bit = bit2_pos;
892 
893 	if ((h_bit - l_bit) < 31)
894 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
895 	else
896 		max_v = 0xFFFFFFFF;
897 
898 	if (value > max_v) {
899 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
900 				(unsigned)value, (unsigned)value,
901 				(unsigned)max_v, (unsigned)max_v);
902 		return;
903 	}
904 	reg_v = port_id_pci_reg_read(port_id, reg_off);
905 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
906 	reg_v |= (value << l_bit); /* Set changed bits */
907 	port_id_pci_reg_write(port_id, reg_off, reg_v);
908 	display_port_reg_value(port_id, reg_off, reg_v);
909 }
910 
911 void
912 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
913 {
914 	if (port_id_is_invalid(port_id, ENABLED_WARN))
915 		return;
916 	if (port_reg_off_is_invalid(port_id, reg_off))
917 		return;
918 	port_id_pci_reg_write(port_id, reg_off, reg_v);
919 	display_port_reg_value(port_id, reg_off, reg_v);
920 }
921 
922 void
923 port_mtu_set(portid_t port_id, uint16_t mtu)
924 {
925 	int diag;
926 
927 	if (port_id_is_invalid(port_id, ENABLED_WARN))
928 		return;
929 	diag = rte_eth_dev_set_mtu(port_id, mtu);
930 	if (diag == 0)
931 		return;
932 	printf("Set MTU failed. diag=%d\n", diag);
933 }
934 
935 /* Generic flow management functions. */
936 
937 /** Generate flow_item[] entry. */
938 #define MK_FLOW_ITEM(t, s) \
939 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
940 		.name = # t, \
941 		.size = s, \
942 	}
943 
944 /** Information about known flow pattern items. */
945 static const struct {
946 	const char *name;
947 	size_t size;
948 } flow_item[] = {
949 	MK_FLOW_ITEM(END, 0),
950 	MK_FLOW_ITEM(VOID, 0),
951 	MK_FLOW_ITEM(INVERT, 0),
952 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
953 	MK_FLOW_ITEM(PF, 0),
954 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
955 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
956 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
957 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
958 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
959 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
960 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
961 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
962 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
963 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
964 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
965 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
966 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
967 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
968 };
969 
970 /** Compute storage space needed by item specification. */
971 static void
972 flow_item_spec_size(const struct rte_flow_item *item,
973 		    size_t *size, size_t *pad)
974 {
975 	if (!item->spec)
976 		goto empty;
977 	switch (item->type) {
978 		union {
979 			const struct rte_flow_item_raw *raw;
980 		} spec;
981 
982 	case RTE_FLOW_ITEM_TYPE_RAW:
983 		spec.raw = item->spec;
984 		*size = offsetof(struct rte_flow_item_raw, pattern) +
985 			spec.raw->length * sizeof(*spec.raw->pattern);
986 		break;
987 	default:
988 empty:
989 		*size = 0;
990 		break;
991 	}
992 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
993 }
994 
995 /** Generate flow_action[] entry. */
996 #define MK_FLOW_ACTION(t, s) \
997 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
998 		.name = # t, \
999 		.size = s, \
1000 	}
1001 
1002 /** Information about known flow actions. */
1003 static const struct {
1004 	const char *name;
1005 	size_t size;
1006 } flow_action[] = {
1007 	MK_FLOW_ACTION(END, 0),
1008 	MK_FLOW_ACTION(VOID, 0),
1009 	MK_FLOW_ACTION(PASSTHRU, 0),
1010 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1011 	MK_FLOW_ACTION(FLAG, 0),
1012 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1013 	MK_FLOW_ACTION(DROP, 0),
1014 	MK_FLOW_ACTION(COUNT, 0),
1015 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1016 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1017 	MK_FLOW_ACTION(PF, 0),
1018 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1019 };
1020 
1021 /** Compute storage space needed by action configuration. */
1022 static void
1023 flow_action_conf_size(const struct rte_flow_action *action,
1024 		      size_t *size, size_t *pad)
1025 {
1026 	if (!action->conf)
1027 		goto empty;
1028 	switch (action->type) {
1029 		union {
1030 			const struct rte_flow_action_rss *rss;
1031 		} conf;
1032 
1033 	case RTE_FLOW_ACTION_TYPE_RSS:
1034 		conf.rss = action->conf;
1035 		*size = offsetof(struct rte_flow_action_rss, queue) +
1036 			conf.rss->num * sizeof(*conf.rss->queue);
1037 		break;
1038 	default:
1039 empty:
1040 		*size = 0;
1041 		break;
1042 	}
1043 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1044 }
1045 
1046 /** Generate a port_flow entry from attributes/pattern/actions. */
1047 static struct port_flow *
1048 port_flow_new(const struct rte_flow_attr *attr,
1049 	      const struct rte_flow_item *pattern,
1050 	      const struct rte_flow_action *actions)
1051 {
1052 	const struct rte_flow_item *item;
1053 	const struct rte_flow_action *action;
1054 	struct port_flow *pf = NULL;
1055 	size_t tmp;
1056 	size_t pad;
1057 	size_t off1 = 0;
1058 	size_t off2 = 0;
1059 	int err = ENOTSUP;
1060 
1061 store:
1062 	item = pattern;
1063 	if (pf)
1064 		pf->pattern = (void *)&pf->data[off1];
1065 	do {
1066 		struct rte_flow_item *dst = NULL;
1067 
1068 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1069 		    !flow_item[item->type].name)
1070 			goto notsup;
1071 		if (pf)
1072 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1073 		off1 += sizeof(*item);
1074 		flow_item_spec_size(item, &tmp, &pad);
1075 		if (item->spec) {
1076 			if (pf)
1077 				dst->spec = memcpy(pf->data + off2,
1078 						   item->spec, tmp);
1079 			off2 += tmp + pad;
1080 		}
1081 		if (item->last) {
1082 			if (pf)
1083 				dst->last = memcpy(pf->data + off2,
1084 						   item->last, tmp);
1085 			off2 += tmp + pad;
1086 		}
1087 		if (item->mask) {
1088 			if (pf)
1089 				dst->mask = memcpy(pf->data + off2,
1090 						   item->mask, tmp);
1091 			off2 += tmp + pad;
1092 		}
1093 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1094 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1095 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1096 	action = actions;
1097 	if (pf)
1098 		pf->actions = (void *)&pf->data[off1];
1099 	do {
1100 		struct rte_flow_action *dst = NULL;
1101 
1102 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1103 		    !flow_action[action->type].name)
1104 			goto notsup;
1105 		if (pf)
1106 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1107 		off1 += sizeof(*action);
1108 		flow_action_conf_size(action, &tmp, &pad);
1109 		if (action->conf) {
1110 			if (pf)
1111 				dst->conf = memcpy(pf->data + off2,
1112 						   action->conf, tmp);
1113 			off2 += tmp + pad;
1114 		}
1115 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1116 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1117 	if (pf != NULL)
1118 		return pf;
1119 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1120 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1121 	pf = calloc(1, tmp + off1 + off2);
1122 	if (pf == NULL)
1123 		err = errno;
1124 	else {
1125 		*pf = (const struct port_flow){
1126 			.size = tmp + off1 + off2,
1127 			.attr = *attr,
1128 		};
1129 		tmp -= offsetof(struct port_flow, data);
1130 		off2 = tmp + off1;
1131 		off1 = tmp;
1132 		goto store;
1133 	}
1134 notsup:
1135 	rte_errno = err;
1136 	return NULL;
1137 }
1138 
1139 /** Print a message out of a flow error. */
1140 static int
1141 port_flow_complain(struct rte_flow_error *error)
1142 {
1143 	static const char *const errstrlist[] = {
1144 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1145 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1146 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1147 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1148 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1149 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1150 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1151 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1152 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1153 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1154 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1155 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1156 	};
1157 	const char *errstr;
1158 	char buf[32];
1159 	int err = rte_errno;
1160 
1161 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1162 	    !errstrlist[error->type])
1163 		errstr = "unknown type";
1164 	else
1165 		errstr = errstrlist[error->type];
1166 	printf("Caught error type %d (%s): %s%s\n",
1167 	       error->type, errstr,
1168 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1169 					error->cause), buf) : "",
1170 	       error->message ? error->message : "(no stated reason)");
1171 	return -err;
1172 }
1173 
1174 /** Validate flow rule. */
1175 int
1176 port_flow_validate(portid_t port_id,
1177 		   const struct rte_flow_attr *attr,
1178 		   const struct rte_flow_item *pattern,
1179 		   const struct rte_flow_action *actions)
1180 {
1181 	struct rte_flow_error error;
1182 
1183 	/* Poisoning to make sure PMDs update it in case of error. */
1184 	memset(&error, 0x11, sizeof(error));
1185 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1186 		return port_flow_complain(&error);
1187 	printf("Flow rule validated\n");
1188 	return 0;
1189 }
1190 
1191 /** Create flow rule. */
1192 int
1193 port_flow_create(portid_t port_id,
1194 		 const struct rte_flow_attr *attr,
1195 		 const struct rte_flow_item *pattern,
1196 		 const struct rte_flow_action *actions)
1197 {
1198 	struct rte_flow *flow;
1199 	struct rte_port *port;
1200 	struct port_flow *pf;
1201 	uint32_t id;
1202 	struct rte_flow_error error;
1203 
1204 	/* Poisoning to make sure PMDs update it in case of error. */
1205 	memset(&error, 0x22, sizeof(error));
1206 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1207 	if (!flow)
1208 		return port_flow_complain(&error);
1209 	port = &ports[port_id];
1210 	if (port->flow_list) {
1211 		if (port->flow_list->id == UINT32_MAX) {
1212 			printf("Highest rule ID is already assigned, delete"
1213 			       " it first");
1214 			rte_flow_destroy(port_id, flow, NULL);
1215 			return -ENOMEM;
1216 		}
1217 		id = port->flow_list->id + 1;
1218 	} else
1219 		id = 0;
1220 	pf = port_flow_new(attr, pattern, actions);
1221 	if (!pf) {
1222 		int err = rte_errno;
1223 
1224 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1225 		rte_flow_destroy(port_id, flow, NULL);
1226 		return -err;
1227 	}
1228 	pf->next = port->flow_list;
1229 	pf->id = id;
1230 	pf->flow = flow;
1231 	port->flow_list = pf;
1232 	printf("Flow rule #%u created\n", pf->id);
1233 	return 0;
1234 }
1235 
1236 /** Destroy a number of flow rules. */
1237 int
1238 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1239 {
1240 	struct rte_port *port;
1241 	struct port_flow **tmp;
1242 	uint32_t c = 0;
1243 	int ret = 0;
1244 
1245 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1246 	    port_id == (portid_t)RTE_PORT_ALL)
1247 		return -EINVAL;
1248 	port = &ports[port_id];
1249 	tmp = &port->flow_list;
1250 	while (*tmp) {
1251 		uint32_t i;
1252 
1253 		for (i = 0; i != n; ++i) {
1254 			struct rte_flow_error error;
1255 			struct port_flow *pf = *tmp;
1256 
1257 			if (rule[i] != pf->id)
1258 				continue;
1259 			/*
1260 			 * Poisoning to make sure PMDs update it in case
1261 			 * of error.
1262 			 */
1263 			memset(&error, 0x33, sizeof(error));
1264 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1265 				ret = port_flow_complain(&error);
1266 				continue;
1267 			}
1268 			printf("Flow rule #%u destroyed\n", pf->id);
1269 			*tmp = pf->next;
1270 			free(pf);
1271 			break;
1272 		}
1273 		if (i == n)
1274 			tmp = &(*tmp)->next;
1275 		++c;
1276 	}
1277 	return ret;
1278 }
1279 
1280 /** Remove all flow rules. */
1281 int
1282 port_flow_flush(portid_t port_id)
1283 {
1284 	struct rte_flow_error error;
1285 	struct rte_port *port;
1286 	int ret = 0;
1287 
1288 	/* Poisoning to make sure PMDs update it in case of error. */
1289 	memset(&error, 0x44, sizeof(error));
1290 	if (rte_flow_flush(port_id, &error)) {
1291 		ret = port_flow_complain(&error);
1292 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1293 		    port_id == (portid_t)RTE_PORT_ALL)
1294 			return ret;
1295 	}
1296 	port = &ports[port_id];
1297 	while (port->flow_list) {
1298 		struct port_flow *pf = port->flow_list->next;
1299 
1300 		free(port->flow_list);
1301 		port->flow_list = pf;
1302 	}
1303 	return ret;
1304 }
1305 
1306 /** Query a flow rule. */
1307 int
1308 port_flow_query(portid_t port_id, uint32_t rule,
1309 		enum rte_flow_action_type action)
1310 {
1311 	struct rte_flow_error error;
1312 	struct rte_port *port;
1313 	struct port_flow *pf;
1314 	const char *name;
1315 	union {
1316 		struct rte_flow_query_count count;
1317 	} query;
1318 
1319 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1320 	    port_id == (portid_t)RTE_PORT_ALL)
1321 		return -EINVAL;
1322 	port = &ports[port_id];
1323 	for (pf = port->flow_list; pf; pf = pf->next)
1324 		if (pf->id == rule)
1325 			break;
1326 	if (!pf) {
1327 		printf("Flow rule #%u not found\n", rule);
1328 		return -ENOENT;
1329 	}
1330 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1331 	    !flow_action[action].name)
1332 		name = "unknown";
1333 	else
1334 		name = flow_action[action].name;
1335 	switch (action) {
1336 	case RTE_FLOW_ACTION_TYPE_COUNT:
1337 		break;
1338 	default:
1339 		printf("Cannot query action type %d (%s)\n", action, name);
1340 		return -ENOTSUP;
1341 	}
1342 	/* Poisoning to make sure PMDs update it in case of error. */
1343 	memset(&error, 0x55, sizeof(error));
1344 	memset(&query, 0, sizeof(query));
1345 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1346 		return port_flow_complain(&error);
1347 	switch (action) {
1348 	case RTE_FLOW_ACTION_TYPE_COUNT:
1349 		printf("%s:\n"
1350 		       " hits_set: %u\n"
1351 		       " bytes_set: %u\n"
1352 		       " hits: %" PRIu64 "\n"
1353 		       " bytes: %" PRIu64 "\n",
1354 		       name,
1355 		       query.count.hits_set,
1356 		       query.count.bytes_set,
1357 		       query.count.hits,
1358 		       query.count.bytes);
1359 		break;
1360 	default:
1361 		printf("Cannot display result for action type %d (%s)\n",
1362 		       action, name);
1363 		break;
1364 	}
1365 	return 0;
1366 }
1367 
1368 /** List flow rules. */
1369 void
1370 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1371 {
1372 	struct rte_port *port;
1373 	struct port_flow *pf;
1374 	struct port_flow *list = NULL;
1375 	uint32_t i;
1376 
1377 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1378 	    port_id == (portid_t)RTE_PORT_ALL)
1379 		return;
1380 	port = &ports[port_id];
1381 	if (!port->flow_list)
1382 		return;
1383 	/* Sort flows by group, priority and ID. */
1384 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1385 		struct port_flow **tmp;
1386 
1387 		if (n) {
1388 			/* Filter out unwanted groups. */
1389 			for (i = 0; i != n; ++i)
1390 				if (pf->attr.group == group[i])
1391 					break;
1392 			if (i == n)
1393 				continue;
1394 		}
1395 		tmp = &list;
1396 		while (*tmp &&
1397 		       (pf->attr.group > (*tmp)->attr.group ||
1398 			(pf->attr.group == (*tmp)->attr.group &&
1399 			 pf->attr.priority > (*tmp)->attr.priority) ||
1400 			(pf->attr.group == (*tmp)->attr.group &&
1401 			 pf->attr.priority == (*tmp)->attr.priority &&
1402 			 pf->id > (*tmp)->id)))
1403 			tmp = &(*tmp)->tmp;
1404 		pf->tmp = *tmp;
1405 		*tmp = pf;
1406 	}
1407 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1408 	for (pf = list; pf != NULL; pf = pf->tmp) {
1409 		const struct rte_flow_item *item = pf->pattern;
1410 		const struct rte_flow_action *action = pf->actions;
1411 
1412 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1413 		       pf->id,
1414 		       pf->attr.group,
1415 		       pf->attr.priority,
1416 		       pf->attr.ingress ? 'i' : '-',
1417 		       pf->attr.egress ? 'e' : '-');
1418 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1419 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1420 				printf("%s ", flow_item[item->type].name);
1421 			++item;
1422 		}
1423 		printf("=>");
1424 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1425 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1426 				printf(" %s", flow_action[action->type].name);
1427 			++action;
1428 		}
1429 		printf("\n");
1430 	}
1431 }
1432 
1433 /*
1434  * RX/TX ring descriptors display functions.
1435  */
1436 int
1437 rx_queue_id_is_invalid(queueid_t rxq_id)
1438 {
1439 	if (rxq_id < nb_rxq)
1440 		return 0;
1441 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1442 	return 1;
1443 }
1444 
1445 int
1446 tx_queue_id_is_invalid(queueid_t txq_id)
1447 {
1448 	if (txq_id < nb_txq)
1449 		return 0;
1450 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1451 	return 1;
1452 }
1453 
1454 static int
1455 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1456 {
1457 	if (rxdesc_id < nb_rxd)
1458 		return 0;
1459 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1460 	       rxdesc_id, nb_rxd);
1461 	return 1;
1462 }
1463 
1464 static int
1465 tx_desc_id_is_invalid(uint16_t txdesc_id)
1466 {
1467 	if (txdesc_id < nb_txd)
1468 		return 0;
1469 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1470 	       txdesc_id, nb_txd);
1471 	return 1;
1472 }
1473 
1474 static const struct rte_memzone *
1475 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1476 {
1477 	char mz_name[RTE_MEMZONE_NAMESIZE];
1478 	const struct rte_memzone *mz;
1479 
1480 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1481 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1482 	mz = rte_memzone_lookup(mz_name);
1483 	if (mz == NULL)
1484 		printf("%s ring memory zoneof (port %d, queue %d) not"
1485 		       "found (zone name = %s\n",
1486 		       ring_name, port_id, q_id, mz_name);
1487 	return mz;
1488 }
1489 
1490 union igb_ring_dword {
1491 	uint64_t dword;
1492 	struct {
1493 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1494 		uint32_t lo;
1495 		uint32_t hi;
1496 #else
1497 		uint32_t hi;
1498 		uint32_t lo;
1499 #endif
1500 	} words;
1501 };
1502 
1503 struct igb_ring_desc_32_bytes {
1504 	union igb_ring_dword lo_dword;
1505 	union igb_ring_dword hi_dword;
1506 	union igb_ring_dword resv1;
1507 	union igb_ring_dword resv2;
1508 };
1509 
1510 struct igb_ring_desc_16_bytes {
1511 	union igb_ring_dword lo_dword;
1512 	union igb_ring_dword hi_dword;
1513 };
1514 
1515 static void
1516 ring_rxd_display_dword(union igb_ring_dword dword)
1517 {
1518 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1519 					(unsigned)dword.words.hi);
1520 }
1521 
1522 static void
1523 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1524 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1525 			   uint8_t port_id,
1526 #else
1527 			   __rte_unused uint8_t port_id,
1528 #endif
1529 			   uint16_t desc_id)
1530 {
1531 	struct igb_ring_desc_16_bytes *ring =
1532 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1533 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1534 	struct rte_eth_dev_info dev_info;
1535 
1536 	memset(&dev_info, 0, sizeof(dev_info));
1537 	rte_eth_dev_info_get(port_id, &dev_info);
1538 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1539 		/* 32 bytes RX descriptor, i40e only */
1540 		struct igb_ring_desc_32_bytes *ring =
1541 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1542 		ring[desc_id].lo_dword.dword =
1543 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1544 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1545 		ring[desc_id].hi_dword.dword =
1546 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1547 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1548 		ring[desc_id].resv1.dword =
1549 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1550 		ring_rxd_display_dword(ring[desc_id].resv1);
1551 		ring[desc_id].resv2.dword =
1552 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1553 		ring_rxd_display_dword(ring[desc_id].resv2);
1554 
1555 		return;
1556 	}
1557 #endif
1558 	/* 16 bytes RX descriptor */
1559 	ring[desc_id].lo_dword.dword =
1560 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1561 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1562 	ring[desc_id].hi_dword.dword =
1563 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1564 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1565 }
1566 
1567 static void
1568 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1569 {
1570 	struct igb_ring_desc_16_bytes *ring;
1571 	struct igb_ring_desc_16_bytes txd;
1572 
1573 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1574 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1575 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1576 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1577 			(unsigned)txd.lo_dword.words.lo,
1578 			(unsigned)txd.lo_dword.words.hi,
1579 			(unsigned)txd.hi_dword.words.lo,
1580 			(unsigned)txd.hi_dword.words.hi);
1581 }
1582 
1583 void
1584 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1585 {
1586 	const struct rte_memzone *rx_mz;
1587 
1588 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1589 		return;
1590 	if (rx_queue_id_is_invalid(rxq_id))
1591 		return;
1592 	if (rx_desc_id_is_invalid(rxd_id))
1593 		return;
1594 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1595 	if (rx_mz == NULL)
1596 		return;
1597 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1598 }
1599 
1600 void
1601 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1602 {
1603 	const struct rte_memzone *tx_mz;
1604 
1605 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1606 		return;
1607 	if (tx_queue_id_is_invalid(txq_id))
1608 		return;
1609 	if (tx_desc_id_is_invalid(txd_id))
1610 		return;
1611 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1612 	if (tx_mz == NULL)
1613 		return;
1614 	ring_tx_descriptor_display(tx_mz, txd_id);
1615 }
1616 
1617 void
1618 fwd_lcores_config_display(void)
1619 {
1620 	lcoreid_t lc_id;
1621 
1622 	printf("List of forwarding lcores:");
1623 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1624 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1625 	printf("\n");
1626 }
1627 void
1628 rxtx_config_display(void)
1629 {
1630 	printf("  %s packet forwarding%s - CRC stripping %s - "
1631 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1632 	       retry_enabled == 0 ? "" : " with retry",
1633 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1634 	       nb_pkt_per_burst);
1635 
1636 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1637 		printf("  packet len=%u - nb packet segments=%d\n",
1638 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1639 
1640 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1641 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1642 
1643 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1644 	       nb_fwd_lcores, nb_fwd_ports);
1645 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1646 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1647 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1648 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1649 	       rx_conf->rx_thresh.wthresh);
1650 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1651 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1652 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1653 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1654 	       tx_conf->tx_thresh.wthresh);
1655 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1656 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1657 }
1658 
1659 void
1660 port_rss_reta_info(portid_t port_id,
1661 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1662 		   uint16_t nb_entries)
1663 {
1664 	uint16_t i, idx, shift;
1665 	int ret;
1666 
1667 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1668 		return;
1669 
1670 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1671 	if (ret != 0) {
1672 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1673 		return;
1674 	}
1675 
1676 	for (i = 0; i < nb_entries; i++) {
1677 		idx = i / RTE_RETA_GROUP_SIZE;
1678 		shift = i % RTE_RETA_GROUP_SIZE;
1679 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1680 			continue;
1681 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1682 					i, reta_conf[idx].reta[shift]);
1683 	}
1684 }
1685 
1686 /*
1687  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1688  * key of the port.
1689  */
1690 void
1691 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1692 {
1693 	struct rte_eth_rss_conf rss_conf;
1694 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1695 	uint64_t rss_hf;
1696 	uint8_t i;
1697 	int diag;
1698 	struct rte_eth_dev_info dev_info;
1699 	uint8_t hash_key_size;
1700 
1701 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1702 		return;
1703 
1704 	memset(&dev_info, 0, sizeof(dev_info));
1705 	rte_eth_dev_info_get(port_id, &dev_info);
1706 	if (dev_info.hash_key_size > 0 &&
1707 			dev_info.hash_key_size <= sizeof(rss_key))
1708 		hash_key_size = dev_info.hash_key_size;
1709 	else {
1710 		printf("dev_info did not provide a valid hash key size\n");
1711 		return;
1712 	}
1713 
1714 	rss_conf.rss_hf = 0;
1715 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1716 		if (!strcmp(rss_info, rss_type_table[i].str))
1717 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1718 	}
1719 
1720 	/* Get RSS hash key if asked to display it */
1721 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1722 	rss_conf.rss_key_len = hash_key_size;
1723 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1724 	if (diag != 0) {
1725 		switch (diag) {
1726 		case -ENODEV:
1727 			printf("port index %d invalid\n", port_id);
1728 			break;
1729 		case -ENOTSUP:
1730 			printf("operation not supported by device\n");
1731 			break;
1732 		default:
1733 			printf("operation failed - diag=%d\n", diag);
1734 			break;
1735 		}
1736 		return;
1737 	}
1738 	rss_hf = rss_conf.rss_hf;
1739 	if (rss_hf == 0) {
1740 		printf("RSS disabled\n");
1741 		return;
1742 	}
1743 	printf("RSS functions:\n ");
1744 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1745 		if (rss_hf & rss_type_table[i].rss_type)
1746 			printf("%s ", rss_type_table[i].str);
1747 	}
1748 	printf("\n");
1749 	if (!show_rss_key)
1750 		return;
1751 	printf("RSS key:\n");
1752 	for (i = 0; i < hash_key_size; i++)
1753 		printf("%02X", rss_key[i]);
1754 	printf("\n");
1755 }
1756 
1757 void
1758 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1759 			 uint hash_key_len)
1760 {
1761 	struct rte_eth_rss_conf rss_conf;
1762 	int diag;
1763 	unsigned int i;
1764 
1765 	rss_conf.rss_key = NULL;
1766 	rss_conf.rss_key_len = hash_key_len;
1767 	rss_conf.rss_hf = 0;
1768 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1769 		if (!strcmp(rss_type_table[i].str, rss_type))
1770 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1771 	}
1772 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1773 	if (diag == 0) {
1774 		rss_conf.rss_key = hash_key;
1775 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1776 	}
1777 	if (diag == 0)
1778 		return;
1779 
1780 	switch (diag) {
1781 	case -ENODEV:
1782 		printf("port index %d invalid\n", port_id);
1783 		break;
1784 	case -ENOTSUP:
1785 		printf("operation not supported by device\n");
1786 		break;
1787 	default:
1788 		printf("operation failed - diag=%d\n", diag);
1789 		break;
1790 	}
1791 }
1792 
1793 /*
1794  * Setup forwarding configuration for each logical core.
1795  */
1796 static void
1797 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1798 {
1799 	streamid_t nb_fs_per_lcore;
1800 	streamid_t nb_fs;
1801 	streamid_t sm_id;
1802 	lcoreid_t  nb_extra;
1803 	lcoreid_t  nb_fc;
1804 	lcoreid_t  nb_lc;
1805 	lcoreid_t  lc_id;
1806 
1807 	nb_fs = cfg->nb_fwd_streams;
1808 	nb_fc = cfg->nb_fwd_lcores;
1809 	if (nb_fs <= nb_fc) {
1810 		nb_fs_per_lcore = 1;
1811 		nb_extra = 0;
1812 	} else {
1813 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1814 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1815 	}
1816 
1817 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1818 	sm_id = 0;
1819 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1820 		fwd_lcores[lc_id]->stream_idx = sm_id;
1821 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1822 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1823 	}
1824 
1825 	/*
1826 	 * Assign extra remaining streams, if any.
1827 	 */
1828 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1829 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1830 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1831 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1832 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1833 	}
1834 }
1835 
1836 static void
1837 simple_fwd_config_setup(void)
1838 {
1839 	portid_t i;
1840 	portid_t j;
1841 	portid_t inc = 2;
1842 
1843 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1844 	    port_topology == PORT_TOPOLOGY_LOOP) {
1845 		inc = 1;
1846 	} else if (nb_fwd_ports % 2) {
1847 		printf("\nWarning! Cannot handle an odd number of ports "
1848 		       "with the current port topology. Configuration "
1849 		       "must be changed to have an even number of ports, "
1850 		       "or relaunch application with "
1851 		       "--port-topology=chained\n\n");
1852 	}
1853 
1854 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1855 	cur_fwd_config.nb_fwd_streams =
1856 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1857 
1858 	/* reinitialize forwarding streams */
1859 	init_fwd_streams();
1860 
1861 	/*
1862 	 * In the simple forwarding test, the number of forwarding cores
1863 	 * must be lower or equal to the number of forwarding ports.
1864 	 */
1865 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1866 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1867 		cur_fwd_config.nb_fwd_lcores =
1868 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1869 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1870 
1871 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1872 		if (port_topology != PORT_TOPOLOGY_LOOP)
1873 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1874 		else
1875 			j = i;
1876 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1877 		fwd_streams[i]->rx_queue  = 0;
1878 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1879 		fwd_streams[i]->tx_queue  = 0;
1880 		fwd_streams[i]->peer_addr = j;
1881 		fwd_streams[i]->retry_enabled = retry_enabled;
1882 
1883 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1884 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1885 			fwd_streams[j]->rx_queue  = 0;
1886 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1887 			fwd_streams[j]->tx_queue  = 0;
1888 			fwd_streams[j]->peer_addr = i;
1889 			fwd_streams[j]->retry_enabled = retry_enabled;
1890 		}
1891 	}
1892 }
1893 
1894 /**
1895  * For the RSS forwarding test all streams distributed over lcores. Each stream
1896  * being composed of a RX queue to poll on a RX port for input messages,
1897  * associated with a TX queue of a TX port where to send forwarded packets.
1898  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1899  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1900  * following rules:
1901  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1902  *    - TxQl = RxQj
1903  */
1904 static void
1905 rss_fwd_config_setup(void)
1906 {
1907 	portid_t   rxp;
1908 	portid_t   txp;
1909 	queueid_t  rxq;
1910 	queueid_t  nb_q;
1911 	streamid_t  sm_id;
1912 
1913 	nb_q = nb_rxq;
1914 	if (nb_q > nb_txq)
1915 		nb_q = nb_txq;
1916 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1917 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1918 	cur_fwd_config.nb_fwd_streams =
1919 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1920 
1921 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1922 		cur_fwd_config.nb_fwd_lcores =
1923 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1924 
1925 	/* reinitialize forwarding streams */
1926 	init_fwd_streams();
1927 
1928 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1929 	rxp = 0; rxq = 0;
1930 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1931 		struct fwd_stream *fs;
1932 
1933 		fs = fwd_streams[sm_id];
1934 
1935 		if ((rxp & 0x1) == 0)
1936 			txp = (portid_t) (rxp + 1);
1937 		else
1938 			txp = (portid_t) (rxp - 1);
1939 		/*
1940 		 * if we are in loopback, simply send stuff out through the
1941 		 * ingress port
1942 		 */
1943 		if (port_topology == PORT_TOPOLOGY_LOOP)
1944 			txp = rxp;
1945 
1946 		fs->rx_port = fwd_ports_ids[rxp];
1947 		fs->rx_queue = rxq;
1948 		fs->tx_port = fwd_ports_ids[txp];
1949 		fs->tx_queue = rxq;
1950 		fs->peer_addr = fs->tx_port;
1951 		fs->retry_enabled = retry_enabled;
1952 		rxq = (queueid_t) (rxq + 1);
1953 		if (rxq < nb_q)
1954 			continue;
1955 		/*
1956 		 * rxq == nb_q
1957 		 * Restart from RX queue 0 on next RX port
1958 		 */
1959 		rxq = 0;
1960 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1961 			rxp = (portid_t)
1962 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1963 		else
1964 			rxp = (portid_t) (rxp + 1);
1965 	}
1966 }
1967 
1968 /**
1969  * For the DCB forwarding test, each core is assigned on each traffic class.
1970  *
1971  * Each core is assigned a multi-stream, each stream being composed of
1972  * a RX queue to poll on a RX port for input messages, associated with
1973  * a TX queue of a TX port where to send forwarded packets. All RX and
1974  * TX queues are mapping to the same traffic class.
1975  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1976  * the same core
1977  */
1978 static void
1979 dcb_fwd_config_setup(void)
1980 {
1981 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1982 	portid_t txp, rxp = 0;
1983 	queueid_t txq, rxq = 0;
1984 	lcoreid_t  lc_id;
1985 	uint16_t nb_rx_queue, nb_tx_queue;
1986 	uint16_t i, j, k, sm_id = 0;
1987 	uint8_t tc = 0;
1988 
1989 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1990 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1991 	cur_fwd_config.nb_fwd_streams =
1992 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1993 
1994 	/* reinitialize forwarding streams */
1995 	init_fwd_streams();
1996 	sm_id = 0;
1997 	txp = 1;
1998 	/* get the dcb info on the first RX and TX ports */
1999 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2000 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2001 
2002 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2003 		fwd_lcores[lc_id]->stream_nb = 0;
2004 		fwd_lcores[lc_id]->stream_idx = sm_id;
2005 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2006 			/* if the nb_queue is zero, means this tc is
2007 			 * not enabled on the POOL
2008 			 */
2009 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2010 				break;
2011 			k = fwd_lcores[lc_id]->stream_nb +
2012 				fwd_lcores[lc_id]->stream_idx;
2013 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2014 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2015 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2016 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2017 			for (j = 0; j < nb_rx_queue; j++) {
2018 				struct fwd_stream *fs;
2019 
2020 				fs = fwd_streams[k + j];
2021 				fs->rx_port = fwd_ports_ids[rxp];
2022 				fs->rx_queue = rxq + j;
2023 				fs->tx_port = fwd_ports_ids[txp];
2024 				fs->tx_queue = txq + j % nb_tx_queue;
2025 				fs->peer_addr = fs->tx_port;
2026 				fs->retry_enabled = retry_enabled;
2027 			}
2028 			fwd_lcores[lc_id]->stream_nb +=
2029 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2030 		}
2031 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2032 
2033 		tc++;
2034 		if (tc < rxp_dcb_info.nb_tcs)
2035 			continue;
2036 		/* Restart from TC 0 on next RX port */
2037 		tc = 0;
2038 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2039 			rxp = (portid_t)
2040 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2041 		else
2042 			rxp++;
2043 		if (rxp >= nb_fwd_ports)
2044 			return;
2045 		/* get the dcb information on next RX and TX ports */
2046 		if ((rxp & 0x1) == 0)
2047 			txp = (portid_t) (rxp + 1);
2048 		else
2049 			txp = (portid_t) (rxp - 1);
2050 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2051 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2052 	}
2053 }
2054 
2055 static void
2056 icmp_echo_config_setup(void)
2057 {
2058 	portid_t  rxp;
2059 	queueid_t rxq;
2060 	lcoreid_t lc_id;
2061 	uint16_t  sm_id;
2062 
2063 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2064 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2065 			(nb_txq * nb_fwd_ports);
2066 	else
2067 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2068 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2069 	cur_fwd_config.nb_fwd_streams =
2070 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2071 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2072 		cur_fwd_config.nb_fwd_lcores =
2073 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2074 	if (verbose_level > 0) {
2075 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2076 		       __FUNCTION__,
2077 		       cur_fwd_config.nb_fwd_lcores,
2078 		       cur_fwd_config.nb_fwd_ports,
2079 		       cur_fwd_config.nb_fwd_streams);
2080 	}
2081 
2082 	/* reinitialize forwarding streams */
2083 	init_fwd_streams();
2084 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2085 	rxp = 0; rxq = 0;
2086 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2087 		if (verbose_level > 0)
2088 			printf("  core=%d: \n", lc_id);
2089 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2090 			struct fwd_stream *fs;
2091 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2092 			fs->rx_port = fwd_ports_ids[rxp];
2093 			fs->rx_queue = rxq;
2094 			fs->tx_port = fs->rx_port;
2095 			fs->tx_queue = rxq;
2096 			fs->peer_addr = fs->tx_port;
2097 			fs->retry_enabled = retry_enabled;
2098 			if (verbose_level > 0)
2099 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2100 				       sm_id, fs->rx_port, fs->rx_queue,
2101 				       fs->tx_queue);
2102 			rxq = (queueid_t) (rxq + 1);
2103 			if (rxq == nb_rxq) {
2104 				rxq = 0;
2105 				rxp = (portid_t) (rxp + 1);
2106 			}
2107 		}
2108 	}
2109 }
2110 
2111 void
2112 fwd_config_setup(void)
2113 {
2114 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2115 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2116 		icmp_echo_config_setup();
2117 		return;
2118 	}
2119 	if ((nb_rxq > 1) && (nb_txq > 1)){
2120 		if (dcb_config)
2121 			dcb_fwd_config_setup();
2122 		else
2123 			rss_fwd_config_setup();
2124 	}
2125 	else
2126 		simple_fwd_config_setup();
2127 }
2128 
2129 void
2130 pkt_fwd_config_display(struct fwd_config *cfg)
2131 {
2132 	struct fwd_stream *fs;
2133 	lcoreid_t  lc_id;
2134 	streamid_t sm_id;
2135 
2136 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2137 		"NUMA support %s, MP over anonymous pages %s\n",
2138 		cfg->fwd_eng->fwd_mode_name,
2139 		retry_enabled == 0 ? "" : " with retry",
2140 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2141 		numa_support == 1 ? "enabled" : "disabled",
2142 		mp_anon != 0 ? "enabled" : "disabled");
2143 
2144 	if (retry_enabled)
2145 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2146 			burst_tx_retry_num, burst_tx_delay_time);
2147 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2148 		printf("Logical Core %u (socket %u) forwards packets on "
2149 		       "%d streams:",
2150 		       fwd_lcores_cpuids[lc_id],
2151 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2152 		       fwd_lcores[lc_id]->stream_nb);
2153 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2154 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2155 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2156 			       "P=%d/Q=%d (socket %u) ",
2157 			       fs->rx_port, fs->rx_queue,
2158 			       ports[fs->rx_port].socket_id,
2159 			       fs->tx_port, fs->tx_queue,
2160 			       ports[fs->tx_port].socket_id);
2161 			print_ethaddr("peer=",
2162 				      &peer_eth_addrs[fs->peer_addr]);
2163 		}
2164 		printf("\n");
2165 	}
2166 	printf("\n");
2167 }
2168 
2169 int
2170 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2171 {
2172 	unsigned int i;
2173 	unsigned int lcore_cpuid;
2174 	int record_now;
2175 
2176 	record_now = 0;
2177  again:
2178 	for (i = 0; i < nb_lc; i++) {
2179 		lcore_cpuid = lcorelist[i];
2180 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2181 			printf("lcore %u not enabled\n", lcore_cpuid);
2182 			return -1;
2183 		}
2184 		if (lcore_cpuid == rte_get_master_lcore()) {
2185 			printf("lcore %u cannot be masked on for running "
2186 			       "packet forwarding, which is the master lcore "
2187 			       "and reserved for command line parsing only\n",
2188 			       lcore_cpuid);
2189 			return -1;
2190 		}
2191 		if (record_now)
2192 			fwd_lcores_cpuids[i] = lcore_cpuid;
2193 	}
2194 	if (record_now == 0) {
2195 		record_now = 1;
2196 		goto again;
2197 	}
2198 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2199 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2200 		printf("previous number of forwarding cores %u - changed to "
2201 		       "number of configured cores %u\n",
2202 		       (unsigned int) nb_fwd_lcores, nb_lc);
2203 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 int
2210 set_fwd_lcores_mask(uint64_t lcoremask)
2211 {
2212 	unsigned int lcorelist[64];
2213 	unsigned int nb_lc;
2214 	unsigned int i;
2215 
2216 	if (lcoremask == 0) {
2217 		printf("Invalid NULL mask of cores\n");
2218 		return -1;
2219 	}
2220 	nb_lc = 0;
2221 	for (i = 0; i < 64; i++) {
2222 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2223 			continue;
2224 		lcorelist[nb_lc++] = i;
2225 	}
2226 	return set_fwd_lcores_list(lcorelist, nb_lc);
2227 }
2228 
2229 void
2230 set_fwd_lcores_number(uint16_t nb_lc)
2231 {
2232 	if (nb_lc > nb_cfg_lcores) {
2233 		printf("nb fwd cores %u > %u (max. number of configured "
2234 		       "lcores) - ignored\n",
2235 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2236 		return;
2237 	}
2238 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2239 	printf("Number of forwarding cores set to %u\n",
2240 	       (unsigned int) nb_fwd_lcores);
2241 }
2242 
2243 void
2244 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2245 {
2246 	unsigned int i;
2247 	portid_t port_id;
2248 	int record_now;
2249 
2250 	record_now = 0;
2251  again:
2252 	for (i = 0; i < nb_pt; i++) {
2253 		port_id = (portid_t) portlist[i];
2254 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2255 			return;
2256 		if (record_now)
2257 			fwd_ports_ids[i] = port_id;
2258 	}
2259 	if (record_now == 0) {
2260 		record_now = 1;
2261 		goto again;
2262 	}
2263 	nb_cfg_ports = (portid_t) nb_pt;
2264 	if (nb_fwd_ports != (portid_t) nb_pt) {
2265 		printf("previous number of forwarding ports %u - changed to "
2266 		       "number of configured ports %u\n",
2267 		       (unsigned int) nb_fwd_ports, nb_pt);
2268 		nb_fwd_ports = (portid_t) nb_pt;
2269 	}
2270 }
2271 
2272 void
2273 set_fwd_ports_mask(uint64_t portmask)
2274 {
2275 	unsigned int portlist[64];
2276 	unsigned int nb_pt;
2277 	unsigned int i;
2278 
2279 	if (portmask == 0) {
2280 		printf("Invalid NULL mask of ports\n");
2281 		return;
2282 	}
2283 	nb_pt = 0;
2284 	for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) {
2285 		if (! ((uint64_t)(1ULL << i) & portmask))
2286 			continue;
2287 		portlist[nb_pt++] = i;
2288 	}
2289 	set_fwd_ports_list(portlist, nb_pt);
2290 }
2291 
2292 void
2293 set_fwd_ports_number(uint16_t nb_pt)
2294 {
2295 	if (nb_pt > nb_cfg_ports) {
2296 		printf("nb fwd ports %u > %u (number of configured "
2297 		       "ports) - ignored\n",
2298 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2299 		return;
2300 	}
2301 	nb_fwd_ports = (portid_t) nb_pt;
2302 	printf("Number of forwarding ports set to %u\n",
2303 	       (unsigned int) nb_fwd_ports);
2304 }
2305 
2306 int
2307 port_is_forwarding(portid_t port_id)
2308 {
2309 	unsigned int i;
2310 
2311 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2312 		return -1;
2313 
2314 	for (i = 0; i < nb_fwd_ports; i++) {
2315 		if (fwd_ports_ids[i] == port_id)
2316 			return 1;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 void
2323 set_nb_pkt_per_burst(uint16_t nb)
2324 {
2325 	if (nb > MAX_PKT_BURST) {
2326 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2327 		       " ignored\n",
2328 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2329 		return;
2330 	}
2331 	nb_pkt_per_burst = nb;
2332 	printf("Number of packets per burst set to %u\n",
2333 	       (unsigned int) nb_pkt_per_burst);
2334 }
2335 
2336 static const char *
2337 tx_split_get_name(enum tx_pkt_split split)
2338 {
2339 	uint32_t i;
2340 
2341 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2342 		if (tx_split_name[i].split == split)
2343 			return tx_split_name[i].name;
2344 	}
2345 	return NULL;
2346 }
2347 
2348 void
2349 set_tx_pkt_split(const char *name)
2350 {
2351 	uint32_t i;
2352 
2353 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2354 		if (strcmp(tx_split_name[i].name, name) == 0) {
2355 			tx_pkt_split = tx_split_name[i].split;
2356 			return;
2357 		}
2358 	}
2359 	printf("unknown value: \"%s\"\n", name);
2360 }
2361 
2362 void
2363 show_tx_pkt_segments(void)
2364 {
2365 	uint32_t i, n;
2366 	const char *split;
2367 
2368 	n = tx_pkt_nb_segs;
2369 	split = tx_split_get_name(tx_pkt_split);
2370 
2371 	printf("Number of segments: %u\n", n);
2372 	printf("Segment sizes: ");
2373 	for (i = 0; i != n - 1; i++)
2374 		printf("%hu,", tx_pkt_seg_lengths[i]);
2375 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2376 	printf("Split packet: %s\n", split);
2377 }
2378 
2379 void
2380 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2381 {
2382 	uint16_t tx_pkt_len;
2383 	unsigned i;
2384 
2385 	if (nb_segs >= (unsigned) nb_txd) {
2386 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2387 		       nb_segs, (unsigned int) nb_txd);
2388 		return;
2389 	}
2390 
2391 	/*
2392 	 * Check that each segment length is greater or equal than
2393 	 * the mbuf data sise.
2394 	 * Check also that the total packet length is greater or equal than the
2395 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2396 	 */
2397 	tx_pkt_len = 0;
2398 	for (i = 0; i < nb_segs; i++) {
2399 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2400 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2401 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2402 			return;
2403 		}
2404 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2405 	}
2406 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2407 		printf("total packet length=%u < %d - give up\n",
2408 				(unsigned) tx_pkt_len,
2409 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2410 		return;
2411 	}
2412 
2413 	for (i = 0; i < nb_segs; i++)
2414 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2415 
2416 	tx_pkt_length  = tx_pkt_len;
2417 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2418 }
2419 
2420 char*
2421 list_pkt_forwarding_modes(void)
2422 {
2423 	static char fwd_modes[128] = "";
2424 	const char *separator = "|";
2425 	struct fwd_engine *fwd_eng;
2426 	unsigned i = 0;
2427 
2428 	if (strlen (fwd_modes) == 0) {
2429 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2430 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2431 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2432 			strncat(fwd_modes, separator,
2433 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2434 		}
2435 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2436 	}
2437 
2438 	return fwd_modes;
2439 }
2440 
2441 char*
2442 list_pkt_forwarding_retry_modes(void)
2443 {
2444 	static char fwd_modes[128] = "";
2445 	const char *separator = "|";
2446 	struct fwd_engine *fwd_eng;
2447 	unsigned i = 0;
2448 
2449 	if (strlen(fwd_modes) == 0) {
2450 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2451 			if (fwd_eng == &rx_only_engine)
2452 				continue;
2453 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2454 					sizeof(fwd_modes) -
2455 					strlen(fwd_modes) - 1);
2456 			strncat(fwd_modes, separator,
2457 					sizeof(fwd_modes) -
2458 					strlen(fwd_modes) - 1);
2459 		}
2460 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2461 	}
2462 
2463 	return fwd_modes;
2464 }
2465 
2466 void
2467 set_pkt_forwarding_mode(const char *fwd_mode_name)
2468 {
2469 	struct fwd_engine *fwd_eng;
2470 	unsigned i;
2471 
2472 	i = 0;
2473 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2474 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2475 			printf("Set %s packet forwarding mode%s\n",
2476 			       fwd_mode_name,
2477 			       retry_enabled == 0 ? "" : " with retry");
2478 			cur_fwd_eng = fwd_eng;
2479 			return;
2480 		}
2481 		i++;
2482 	}
2483 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2484 }
2485 
2486 void
2487 set_verbose_level(uint16_t vb_level)
2488 {
2489 	printf("Change verbose level from %u to %u\n",
2490 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2491 	verbose_level = vb_level;
2492 }
2493 
2494 void
2495 vlan_extend_set(portid_t port_id, int on)
2496 {
2497 	int diag;
2498 	int vlan_offload;
2499 
2500 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2501 		return;
2502 
2503 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2504 
2505 	if (on)
2506 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2507 	else
2508 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2509 
2510 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2511 	if (diag < 0)
2512 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2513 	       "diag=%d\n", port_id, on, diag);
2514 }
2515 
2516 void
2517 rx_vlan_strip_set(portid_t port_id, int on)
2518 {
2519 	int diag;
2520 	int vlan_offload;
2521 
2522 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2523 		return;
2524 
2525 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2526 
2527 	if (on)
2528 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2529 	else
2530 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2531 
2532 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2533 	if (diag < 0)
2534 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2535 	       "diag=%d\n", port_id, on, diag);
2536 }
2537 
2538 void
2539 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2540 {
2541 	int diag;
2542 
2543 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2544 		return;
2545 
2546 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2547 	if (diag < 0)
2548 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2549 	       "diag=%d\n", port_id, queue_id, on, diag);
2550 }
2551 
2552 void
2553 rx_vlan_filter_set(portid_t port_id, int on)
2554 {
2555 	int diag;
2556 	int vlan_offload;
2557 
2558 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2559 		return;
2560 
2561 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2562 
2563 	if (on)
2564 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2565 	else
2566 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2567 
2568 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2569 	if (diag < 0)
2570 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2571 	       "diag=%d\n", port_id, on, diag);
2572 }
2573 
2574 int
2575 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2576 {
2577 	int diag;
2578 
2579 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2580 		return 1;
2581 	if (vlan_id_is_invalid(vlan_id))
2582 		return 1;
2583 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2584 	if (diag == 0)
2585 		return 0;
2586 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2587 	       "diag=%d\n",
2588 	       port_id, vlan_id, on, diag);
2589 	return -1;
2590 }
2591 
2592 void
2593 rx_vlan_all_filter_set(portid_t port_id, int on)
2594 {
2595 	uint16_t vlan_id;
2596 
2597 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2598 		return;
2599 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2600 		if (rx_vft_set(port_id, vlan_id, on))
2601 			break;
2602 	}
2603 }
2604 
2605 void
2606 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2607 {
2608 	int diag;
2609 
2610 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2611 		return;
2612 
2613 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2614 	if (diag == 0)
2615 		return;
2616 
2617 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2618 	       "diag=%d\n",
2619 	       port_id, vlan_type, tp_id, diag);
2620 }
2621 
2622 void
2623 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2624 {
2625 	int vlan_offload;
2626 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2627 		return;
2628 	if (vlan_id_is_invalid(vlan_id))
2629 		return;
2630 
2631 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2632 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2633 		printf("Error, as QinQ has been enabled.\n");
2634 		return;
2635 	}
2636 
2637 	tx_vlan_reset(port_id);
2638 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2639 	ports[port_id].tx_vlan_id = vlan_id;
2640 }
2641 
2642 void
2643 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2644 {
2645 	int vlan_offload;
2646 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2647 		return;
2648 	if (vlan_id_is_invalid(vlan_id))
2649 		return;
2650 	if (vlan_id_is_invalid(vlan_id_outer))
2651 		return;
2652 
2653 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2654 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2655 		printf("Error, as QinQ hasn't been enabled.\n");
2656 		return;
2657 	}
2658 
2659 	tx_vlan_reset(port_id);
2660 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2661 	ports[port_id].tx_vlan_id = vlan_id;
2662 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2663 }
2664 
2665 void
2666 tx_vlan_reset(portid_t port_id)
2667 {
2668 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2669 		return;
2670 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2671 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2672 	ports[port_id].tx_vlan_id = 0;
2673 	ports[port_id].tx_vlan_id_outer = 0;
2674 }
2675 
2676 void
2677 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2678 {
2679 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2680 		return;
2681 
2682 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2683 }
2684 
2685 void
2686 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2687 {
2688 	uint16_t i;
2689 	uint8_t existing_mapping_found = 0;
2690 
2691 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2692 		return;
2693 
2694 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2695 		return;
2696 
2697 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2698 		printf("map_value not in required range 0..%d\n",
2699 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2700 		return;
2701 	}
2702 
2703 	if (!is_rx) { /*then tx*/
2704 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2705 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2706 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2707 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2708 				existing_mapping_found = 1;
2709 				break;
2710 			}
2711 		}
2712 		if (!existing_mapping_found) { /* A new additional mapping... */
2713 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2714 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2715 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2716 			nb_tx_queue_stats_mappings++;
2717 		}
2718 	}
2719 	else { /*rx*/
2720 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2721 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2722 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2723 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2724 				existing_mapping_found = 1;
2725 				break;
2726 			}
2727 		}
2728 		if (!existing_mapping_found) { /* A new additional mapping... */
2729 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2730 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2731 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2732 			nb_rx_queue_stats_mappings++;
2733 		}
2734 	}
2735 }
2736 
2737 static inline void
2738 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2739 {
2740 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2741 
2742 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2743 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2744 			" tunnel_id: 0x%08x",
2745 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2746 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2747 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2748 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2749 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2750 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2751 
2752 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2753 			rte_be_to_cpu_16(mask->src_port_mask),
2754 			rte_be_to_cpu_16(mask->dst_port_mask));
2755 
2756 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2757 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2758 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2759 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2760 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2761 
2762 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2763 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2764 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2765 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2766 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2767 	}
2768 
2769 	printf("\n");
2770 }
2771 
2772 static inline void
2773 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2774 {
2775 	struct rte_eth_flex_payload_cfg *cfg;
2776 	uint32_t i, j;
2777 
2778 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2779 		cfg = &flex_conf->flex_set[i];
2780 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2781 			printf("\n    RAW:  ");
2782 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2783 			printf("\n    L2_PAYLOAD:  ");
2784 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2785 			printf("\n    L3_PAYLOAD:  ");
2786 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2787 			printf("\n    L4_PAYLOAD:  ");
2788 		else
2789 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2790 		for (j = 0; j < num; j++)
2791 			printf("  %-5u", cfg->src_offset[j]);
2792 	}
2793 	printf("\n");
2794 }
2795 
2796 static char *
2797 flowtype_to_str(uint16_t flow_type)
2798 {
2799 	struct flow_type_info {
2800 		char str[32];
2801 		uint16_t ftype;
2802 	};
2803 
2804 	uint8_t i;
2805 	static struct flow_type_info flowtype_str_table[] = {
2806 		{"raw", RTE_ETH_FLOW_RAW},
2807 		{"ipv4", RTE_ETH_FLOW_IPV4},
2808 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2809 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2810 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2811 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2812 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2813 		{"ipv6", RTE_ETH_FLOW_IPV6},
2814 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2815 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2816 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2817 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2818 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2819 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2820 		{"port", RTE_ETH_FLOW_PORT},
2821 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2822 		{"geneve", RTE_ETH_FLOW_GENEVE},
2823 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2824 	};
2825 
2826 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2827 		if (flowtype_str_table[i].ftype == flow_type)
2828 			return flowtype_str_table[i].str;
2829 	}
2830 
2831 	return NULL;
2832 }
2833 
2834 static inline void
2835 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2836 {
2837 	struct rte_eth_fdir_flex_mask *mask;
2838 	uint32_t i, j;
2839 	char *p;
2840 
2841 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2842 		mask = &flex_conf->flex_mask[i];
2843 		p = flowtype_to_str(mask->flow_type);
2844 		printf("\n    %s:\t", p ? p : "unknown");
2845 		for (j = 0; j < num; j++)
2846 			printf(" %02x", mask->mask[j]);
2847 	}
2848 	printf("\n");
2849 }
2850 
2851 static inline void
2852 print_fdir_flow_type(uint32_t flow_types_mask)
2853 {
2854 	int i;
2855 	char *p;
2856 
2857 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2858 		if (!(flow_types_mask & (1 << i)))
2859 			continue;
2860 		p = flowtype_to_str(i);
2861 		if (p)
2862 			printf(" %s", p);
2863 		else
2864 			printf(" unknown");
2865 	}
2866 	printf("\n");
2867 }
2868 
2869 void
2870 fdir_get_infos(portid_t port_id)
2871 {
2872 	struct rte_eth_fdir_stats fdir_stat;
2873 	struct rte_eth_fdir_info fdir_info;
2874 	int ret;
2875 
2876 	static const char *fdir_stats_border = "########################";
2877 
2878 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2879 		return;
2880 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2881 	if (ret < 0) {
2882 		printf("\n FDIR is not supported on port %-2d\n",
2883 			port_id);
2884 		return;
2885 	}
2886 
2887 	memset(&fdir_info, 0, sizeof(fdir_info));
2888 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2889 			       RTE_ETH_FILTER_INFO, &fdir_info);
2890 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2891 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2892 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2893 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2894 	       fdir_stats_border, port_id, fdir_stats_border);
2895 	printf("  MODE: ");
2896 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2897 		printf("  PERFECT\n");
2898 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2899 		printf("  PERFECT-MAC-VLAN\n");
2900 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2901 		printf("  PERFECT-TUNNEL\n");
2902 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2903 		printf("  SIGNATURE\n");
2904 	else
2905 		printf("  DISABLE\n");
2906 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2907 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2908 		printf("  SUPPORTED FLOW TYPE: ");
2909 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2910 	}
2911 	printf("  FLEX PAYLOAD INFO:\n");
2912 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2913 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2914 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2915 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2916 		fdir_info.flex_payload_unit,
2917 		fdir_info.max_flex_payload_segment_num,
2918 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2919 	printf("  MASK: ");
2920 	print_fdir_mask(&fdir_info.mask);
2921 	if (fdir_info.flex_conf.nb_payloads > 0) {
2922 		printf("  FLEX PAYLOAD SRC OFFSET:");
2923 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2924 	}
2925 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2926 		printf("  FLEX MASK CFG:");
2927 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2928 	}
2929 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2930 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2931 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2932 	       fdir_info.guarant_spc, fdir_info.best_spc);
2933 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2934 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2935 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2936 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2937 	       fdir_stat.collision, fdir_stat.free,
2938 	       fdir_stat.maxhash, fdir_stat.maxlen,
2939 	       fdir_stat.add, fdir_stat.remove,
2940 	       fdir_stat.f_add, fdir_stat.f_remove);
2941 	printf("  %s############################%s\n",
2942 	       fdir_stats_border, fdir_stats_border);
2943 }
2944 
2945 void
2946 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2947 {
2948 	struct rte_port *port;
2949 	struct rte_eth_fdir_flex_conf *flex_conf;
2950 	int i, idx = 0;
2951 
2952 	port = &ports[port_id];
2953 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2954 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2955 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2956 			idx = i;
2957 			break;
2958 		}
2959 	}
2960 	if (i >= RTE_ETH_FLOW_MAX) {
2961 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2962 			idx = flex_conf->nb_flexmasks;
2963 			flex_conf->nb_flexmasks++;
2964 		} else {
2965 			printf("The flex mask table is full. Can not set flex"
2966 				" mask for flow_type(%u).", cfg->flow_type);
2967 			return;
2968 		}
2969 	}
2970 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2971 			 cfg,
2972 			 sizeof(struct rte_eth_fdir_flex_mask));
2973 }
2974 
2975 void
2976 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2977 {
2978 	struct rte_port *port;
2979 	struct rte_eth_fdir_flex_conf *flex_conf;
2980 	int i, idx = 0;
2981 
2982 	port = &ports[port_id];
2983 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2984 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2985 		if (cfg->type == flex_conf->flex_set[i].type) {
2986 			idx = i;
2987 			break;
2988 		}
2989 	}
2990 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2991 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2992 			idx = flex_conf->nb_payloads;
2993 			flex_conf->nb_payloads++;
2994 		} else {
2995 			printf("The flex payload table is full. Can not set"
2996 				" flex payload for type(%u).", cfg->type);
2997 			return;
2998 		}
2999 	}
3000 	(void)rte_memcpy(&flex_conf->flex_set[idx],
3001 			 cfg,
3002 			 sizeof(struct rte_eth_flex_payload_cfg));
3003 
3004 }
3005 
3006 #ifdef RTE_LIBRTE_IXGBE_PMD
3007 void
3008 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3009 {
3010 	int diag;
3011 
3012 	if (is_rx)
3013 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3014 	else
3015 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3016 
3017 	if (diag == 0)
3018 		return;
3019 	if(is_rx)
3020 		printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed "
3021 	       		"diag=%d\n", port_id, diag);
3022 	else
3023 		printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed "
3024 	       		"diag=%d\n", port_id, diag);
3025 
3026 }
3027 #endif
3028 
3029 int
3030 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3031 {
3032 	int diag;
3033 	struct rte_eth_link link;
3034 
3035 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3036 		return 1;
3037 	rte_eth_link_get_nowait(port_id, &link);
3038 	if (rate > link.link_speed) {
3039 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3040 			rate, link.link_speed);
3041 		return 1;
3042 	}
3043 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3044 	if (diag == 0)
3045 		return diag;
3046 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3047 		port_id, diag);
3048 	return diag;
3049 }
3050 
3051 #ifdef RTE_LIBRTE_IXGBE_PMD
3052 int
3053 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3054 {
3055 	int diag;
3056 
3057 	diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk);
3058 	if (diag == 0)
3059 		return diag;
3060 	printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n",
3061 		port_id, diag);
3062 	return diag;
3063 }
3064 #endif
3065 
3066 /*
3067  * Functions to manage the set of filtered Multicast MAC addresses.
3068  *
3069  * A pool of filtered multicast MAC addresses is associated with each port.
3070  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3071  * The address of the pool and the number of valid multicast MAC addresses
3072  * recorded in the pool are stored in the fields "mc_addr_pool" and
3073  * "mc_addr_nb" of the "rte_port" data structure.
3074  *
3075  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3076  * to be supplied a contiguous array of multicast MAC addresses.
3077  * To comply with this constraint, the set of multicast addresses recorded
3078  * into the pool are systematically compacted at the beginning of the pool.
3079  * Hence, when a multicast address is removed from the pool, all following
3080  * addresses, if any, are copied back to keep the set contiguous.
3081  */
3082 #define MCAST_POOL_INC 32
3083 
3084 static int
3085 mcast_addr_pool_extend(struct rte_port *port)
3086 {
3087 	struct ether_addr *mc_pool;
3088 	size_t mc_pool_size;
3089 
3090 	/*
3091 	 * If a free entry is available at the end of the pool, just
3092 	 * increment the number of recorded multicast addresses.
3093 	 */
3094 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3095 		port->mc_addr_nb++;
3096 		return 0;
3097 	}
3098 
3099 	/*
3100 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3101 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3102 	 * of MCAST_POOL_INC.
3103 	 */
3104 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3105 						    MCAST_POOL_INC);
3106 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3107 						mc_pool_size);
3108 	if (mc_pool == NULL) {
3109 		printf("allocation of pool of %u multicast addresses failed\n",
3110 		       port->mc_addr_nb + MCAST_POOL_INC);
3111 		return -ENOMEM;
3112 	}
3113 
3114 	port->mc_addr_pool = mc_pool;
3115 	port->mc_addr_nb++;
3116 	return 0;
3117 
3118 }
3119 
3120 static void
3121 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3122 {
3123 	port->mc_addr_nb--;
3124 	if (addr_idx == port->mc_addr_nb) {
3125 		/* No need to recompact the set of multicast addressses. */
3126 		if (port->mc_addr_nb == 0) {
3127 			/* free the pool of multicast addresses. */
3128 			free(port->mc_addr_pool);
3129 			port->mc_addr_pool = NULL;
3130 		}
3131 		return;
3132 	}
3133 	memmove(&port->mc_addr_pool[addr_idx],
3134 		&port->mc_addr_pool[addr_idx + 1],
3135 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3136 }
3137 
3138 static void
3139 eth_port_multicast_addr_list_set(uint8_t port_id)
3140 {
3141 	struct rte_port *port;
3142 	int diag;
3143 
3144 	port = &ports[port_id];
3145 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3146 					    port->mc_addr_nb);
3147 	if (diag == 0)
3148 		return;
3149 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3150 	       port->mc_addr_nb, port_id, -diag);
3151 }
3152 
3153 void
3154 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3155 {
3156 	struct rte_port *port;
3157 	uint32_t i;
3158 
3159 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3160 		return;
3161 
3162 	port = &ports[port_id];
3163 
3164 	/*
3165 	 * Check that the added multicast MAC address is not already recorded
3166 	 * in the pool of multicast addresses.
3167 	 */
3168 	for (i = 0; i < port->mc_addr_nb; i++) {
3169 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3170 			printf("multicast address already filtered by port\n");
3171 			return;
3172 		}
3173 	}
3174 
3175 	if (mcast_addr_pool_extend(port) != 0)
3176 		return;
3177 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3178 	eth_port_multicast_addr_list_set(port_id);
3179 }
3180 
3181 void
3182 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3183 {
3184 	struct rte_port *port;
3185 	uint32_t i;
3186 
3187 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3188 		return;
3189 
3190 	port = &ports[port_id];
3191 
3192 	/*
3193 	 * Search the pool of multicast MAC addresses for the removed address.
3194 	 */
3195 	for (i = 0; i < port->mc_addr_nb; i++) {
3196 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3197 			break;
3198 	}
3199 	if (i == port->mc_addr_nb) {
3200 		printf("multicast address not filtered by port %d\n", port_id);
3201 		return;
3202 	}
3203 
3204 	mcast_addr_pool_remove(port, i);
3205 	eth_port_multicast_addr_list_set(port_id);
3206 }
3207 
3208 void
3209 port_dcb_info_display(uint8_t port_id)
3210 {
3211 	struct rte_eth_dcb_info dcb_info;
3212 	uint16_t i;
3213 	int ret;
3214 	static const char *border = "================";
3215 
3216 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3217 		return;
3218 
3219 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3220 	if (ret) {
3221 		printf("\n Failed to get dcb infos on port %-2d\n",
3222 			port_id);
3223 		return;
3224 	}
3225 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3226 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3227 	printf("\n  TC :        ");
3228 	for (i = 0; i < dcb_info.nb_tcs; i++)
3229 		printf("\t%4d", i);
3230 	printf("\n  Priority :  ");
3231 	for (i = 0; i < dcb_info.nb_tcs; i++)
3232 		printf("\t%4d", dcb_info.prio_tc[i]);
3233 	printf("\n  BW percent :");
3234 	for (i = 0; i < dcb_info.nb_tcs; i++)
3235 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3236 	printf("\n  RXQ base :  ");
3237 	for (i = 0; i < dcb_info.nb_tcs; i++)
3238 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3239 	printf("\n  RXQ number :");
3240 	for (i = 0; i < dcb_info.nb_tcs; i++)
3241 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3242 	printf("\n  TXQ base :  ");
3243 	for (i = 0; i < dcb_info.nb_tcs; i++)
3244 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3245 	printf("\n  TXQ number :");
3246 	for (i = 0; i < dcb_info.nb_tcs; i++)
3247 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3248 	printf("\n");
3249 }
3250 
3251 uint8_t *
3252 open_ddp_package_file(const char *file_path, uint32_t *size)
3253 {
3254 	FILE *fh = fopen(file_path, "rb");
3255 	uint32_t pkg_size;
3256 	uint8_t *buf = NULL;
3257 	int ret = 0;
3258 
3259 	if (size)
3260 		*size = 0;
3261 
3262 	if (fh == NULL) {
3263 		printf("%s: Failed to open %s\n", __func__, file_path);
3264 		return buf;
3265 	}
3266 
3267 	ret = fseek(fh, 0, SEEK_END);
3268 	if (ret < 0) {
3269 		fclose(fh);
3270 		printf("%s: File operations failed\n", __func__);
3271 		return buf;
3272 	}
3273 
3274 	pkg_size = ftell(fh);
3275 
3276 	buf = (uint8_t *)malloc(pkg_size);
3277 	if (!buf) {
3278 		fclose(fh);
3279 		printf("%s: Failed to malloc memory\n",	__func__);
3280 		return buf;
3281 	}
3282 
3283 	ret = fseek(fh, 0, SEEK_SET);
3284 	if (ret < 0) {
3285 		fclose(fh);
3286 		printf("%s: File seek operation failed\n", __func__);
3287 		close_ddp_package_file(buf);
3288 		return NULL;
3289 	}
3290 
3291 	ret = fread(buf, 1, pkg_size, fh);
3292 	if (ret < 0) {
3293 		fclose(fh);
3294 		printf("%s: File read operation failed\n", __func__);
3295 		close_ddp_package_file(buf);
3296 		return NULL;
3297 	}
3298 
3299 	if (size)
3300 		*size = pkg_size;
3301 
3302 	fclose(fh);
3303 
3304 	return buf;
3305 }
3306 
3307 int
3308 close_ddp_package_file(uint8_t *buf)
3309 {
3310 	if (buf) {
3311 		free((void *)buf);
3312 		return 0;
3313 	}
3314 
3315 	return -1;
3316 }
3317