xref: /dpdk/app/test-pmd/config.c (revision 0eb8b19bc9461a12c1b0754ffb67b7b94e81b74f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdarg.h>
40 #include <stdint.h>
41 #include <inttypes.h>
42 
43 #include <sys/queue.h>
44 
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_debug.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_launch.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_lcore.h>
56 #include <rte_atomic.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_mempool.h>
59 #include <rte_mbuf.h>
60 #include <rte_interrupts.h>
61 #include <rte_pci.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_string_fns.h>
65 #include <rte_cycles.h>
66 #include <rte_flow.h>
67 #include <rte_errno.h>
68 #ifdef RTE_LIBRTE_IXGBE_PMD
69 #include <rte_pmd_ixgbe.h>
70 #endif
71 
72 #include "testpmd.h"
73 
74 static char *flowtype_to_str(uint16_t flow_type);
75 
76 static const struct {
77 	enum tx_pkt_split split;
78 	const char *name;
79 } tx_split_name[] = {
80 	{
81 		.split = TX_PKT_SPLIT_OFF,
82 		.name = "off",
83 	},
84 	{
85 		.split = TX_PKT_SPLIT_ON,
86 		.name = "on",
87 	},
88 	{
89 		.split = TX_PKT_SPLIT_RND,
90 		.name = "rand",
91 	},
92 };
93 
94 struct rss_type_info {
95 	char str[32];
96 	uint64_t rss_type;
97 };
98 
99 static const struct rss_type_info rss_type_table[] = {
100 	{ "ipv4", ETH_RSS_IPV4 },
101 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
102 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
103 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
104 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
105 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
106 	{ "ipv6", ETH_RSS_IPV6 },
107 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
108 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
109 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
110 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
111 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
112 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
113 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
114 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
115 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
116 	{ "port", ETH_RSS_PORT },
117 	{ "vxlan", ETH_RSS_VXLAN },
118 	{ "geneve", ETH_RSS_GENEVE },
119 	{ "nvgre", ETH_RSS_NVGRE },
120 
121 };
122 
123 static void
124 print_ethaddr(const char *name, struct ether_addr *eth_addr)
125 {
126 	char buf[ETHER_ADDR_FMT_SIZE];
127 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
128 	printf("%s%s", name, buf);
129 }
130 
131 void
132 nic_stats_display(portid_t port_id)
133 {
134 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
135 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
136 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
137 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
138 	uint64_t mpps_rx, mpps_tx;
139 	struct rte_eth_stats stats;
140 	struct rte_port *port = &ports[port_id];
141 	uint8_t i;
142 	portid_t pid;
143 
144 	static const char *nic_stats_border = "########################";
145 
146 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
147 		printf("Valid port range is [0");
148 		RTE_ETH_FOREACH_DEV(pid)
149 			printf(", %d", pid);
150 		printf("]\n");
151 		return;
152 	}
153 	rte_eth_stats_get(port_id, &stats);
154 	printf("\n  %s NIC statistics for port %-2d %s\n",
155 	       nic_stats_border, port_id, nic_stats_border);
156 
157 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
158 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
159 		       "%-"PRIu64"\n",
160 		       stats.ipackets, stats.imissed, stats.ibytes);
161 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
162 		printf("  RX-nombuf:  %-10"PRIu64"\n",
163 		       stats.rx_nombuf);
164 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
165 		       "%-"PRIu64"\n",
166 		       stats.opackets, stats.oerrors, stats.obytes);
167 	}
168 	else {
169 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
170 		       "    RX-bytes: %10"PRIu64"\n",
171 		       stats.ipackets, stats.ierrors, stats.ibytes);
172 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
173 		printf("  RX-nombuf:               %10"PRIu64"\n",
174 		       stats.rx_nombuf);
175 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
176 		       "    TX-bytes: %10"PRIu64"\n",
177 		       stats.opackets, stats.oerrors, stats.obytes);
178 	}
179 
180 	if (port->rx_queue_stats_mapping_enabled) {
181 		printf("\n");
182 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
183 			printf("  Stats reg %2d RX-packets: %10"PRIu64
184 			       "    RX-errors: %10"PRIu64
185 			       "    RX-bytes: %10"PRIu64"\n",
186 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
187 		}
188 	}
189 	if (port->tx_queue_stats_mapping_enabled) {
190 		printf("\n");
191 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
192 			printf("  Stats reg %2d TX-packets: %10"PRIu64
193 			       "                             TX-bytes: %10"PRIu64"\n",
194 			       i, stats.q_opackets[i], stats.q_obytes[i]);
195 		}
196 	}
197 
198 	diff_cycles = prev_cycles[port_id];
199 	prev_cycles[port_id] = rte_rdtsc();
200 	if (diff_cycles > 0)
201 		diff_cycles = prev_cycles[port_id] - diff_cycles;
202 
203 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
204 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
205 	prev_pkts_rx[port_id] = stats.ipackets;
206 	prev_pkts_tx[port_id] = stats.opackets;
207 	mpps_rx = diff_cycles > 0 ?
208 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
209 	mpps_tx = diff_cycles > 0 ?
210 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
211 	printf("\n  Throughput (since last show)\n");
212 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
213 			mpps_rx, mpps_tx);
214 
215 	printf("  %s############################%s\n",
216 	       nic_stats_border, nic_stats_border);
217 }
218 
219 void
220 nic_stats_clear(portid_t port_id)
221 {
222 	portid_t pid;
223 
224 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
225 		printf("Valid port range is [0");
226 		RTE_ETH_FOREACH_DEV(pid)
227 			printf(", %d", pid);
228 		printf("]\n");
229 		return;
230 	}
231 	rte_eth_stats_reset(port_id);
232 	printf("\n  NIC statistics for port %d cleared\n", port_id);
233 }
234 
235 void
236 nic_xstats_display(portid_t port_id)
237 {
238 	struct rte_eth_xstat *xstats;
239 	int cnt_xstats, idx_xstat;
240 	struct rte_eth_xstat_name *xstats_names;
241 
242 	printf("###### NIC extended statistics for port %-2d\n", port_id);
243 	if (!rte_eth_dev_is_valid_port(port_id)) {
244 		printf("Error: Invalid port number %i\n", port_id);
245 		return;
246 	}
247 
248 	/* Get count */
249 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
250 	if (cnt_xstats  < 0) {
251 		printf("Error: Cannot get count of xstats\n");
252 		return;
253 	}
254 
255 	/* Get id-name lookup table */
256 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
257 	if (xstats_names == NULL) {
258 		printf("Cannot allocate memory for xstats lookup\n");
259 		return;
260 	}
261 	if (cnt_xstats != rte_eth_xstats_get_names(
262 			port_id, xstats_names, cnt_xstats)) {
263 		printf("Error: Cannot get xstats lookup\n");
264 		free(xstats_names);
265 		return;
266 	}
267 
268 	/* Get stats themselves */
269 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
270 	if (xstats == NULL) {
271 		printf("Cannot allocate memory for xstats\n");
272 		free(xstats_names);
273 		return;
274 	}
275 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
276 		printf("Error: Unable to get xstats\n");
277 		free(xstats_names);
278 		free(xstats);
279 		return;
280 	}
281 
282 	/* Display xstats */
283 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
284 		printf("%s: %"PRIu64"\n",
285 			xstats_names[idx_xstat].name,
286 			xstats[idx_xstat].value);
287 	free(xstats_names);
288 	free(xstats);
289 }
290 
291 void
292 nic_xstats_clear(portid_t port_id)
293 {
294 	rte_eth_xstats_reset(port_id);
295 }
296 
297 void
298 nic_stats_mapping_display(portid_t port_id)
299 {
300 	struct rte_port *port = &ports[port_id];
301 	uint16_t i;
302 	portid_t pid;
303 
304 	static const char *nic_stats_mapping_border = "########################";
305 
306 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
307 		printf("Valid port range is [0");
308 		RTE_ETH_FOREACH_DEV(pid)
309 			printf(", %d", pid);
310 		printf("]\n");
311 		return;
312 	}
313 
314 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
315 		printf("Port id %d - either does not support queue statistic mapping or"
316 		       " no queue statistic mapping set\n", port_id);
317 		return;
318 	}
319 
320 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
321 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
322 
323 	if (port->rx_queue_stats_mapping_enabled) {
324 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
325 			if (rx_queue_stats_mappings[i].port_id == port_id) {
326 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
327 				       rx_queue_stats_mappings[i].queue_id,
328 				       rx_queue_stats_mappings[i].stats_counter_id);
329 			}
330 		}
331 		printf("\n");
332 	}
333 
334 
335 	if (port->tx_queue_stats_mapping_enabled) {
336 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
337 			if (tx_queue_stats_mappings[i].port_id == port_id) {
338 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
339 				       tx_queue_stats_mappings[i].queue_id,
340 				       tx_queue_stats_mappings[i].stats_counter_id);
341 			}
342 		}
343 	}
344 
345 	printf("  %s####################################%s\n",
346 	       nic_stats_mapping_border, nic_stats_mapping_border);
347 }
348 
349 void
350 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
351 {
352 	struct rte_eth_rxq_info qinfo;
353 	int32_t rc;
354 	static const char *info_border = "*********************";
355 
356 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
357 	if (rc != 0) {
358 		printf("Failed to retrieve information for port: %hhu, "
359 			"RX queue: %hu\nerror desc: %s(%d)\n",
360 			port_id, queue_id, strerror(-rc), rc);
361 		return;
362 	}
363 
364 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
365 	       info_border, port_id, queue_id, info_border);
366 
367 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
368 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
369 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
370 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
371 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
372 	printf("\nRX drop packets: %s",
373 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
374 	printf("\nRX deferred start: %s",
375 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
376 	printf("\nRX scattered packets: %s",
377 		(qinfo.scattered_rx != 0) ? "on" : "off");
378 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
379 	printf("\n");
380 }
381 
382 void
383 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
384 {
385 	struct rte_eth_txq_info qinfo;
386 	int32_t rc;
387 	static const char *info_border = "*********************";
388 
389 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
390 	if (rc != 0) {
391 		printf("Failed to retrieve information for port: %hhu, "
392 			"TX queue: %hu\nerror desc: %s(%d)\n",
393 			port_id, queue_id, strerror(-rc), rc);
394 		return;
395 	}
396 
397 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
398 	       info_border, port_id, queue_id, info_border);
399 
400 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
401 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
402 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
403 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
404 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
405 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
406 	printf("\nTX deferred start: %s",
407 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
408 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
409 	printf("\n");
410 }
411 
412 void
413 port_infos_display(portid_t port_id)
414 {
415 	struct rte_port *port;
416 	struct ether_addr mac_addr;
417 	struct rte_eth_link link;
418 	struct rte_eth_dev_info dev_info;
419 	int vlan_offload;
420 	struct rte_mempool * mp;
421 	static const char *info_border = "*********************";
422 	portid_t pid;
423 	uint16_t mtu;
424 
425 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
426 		printf("Valid port range is [0");
427 		RTE_ETH_FOREACH_DEV(pid)
428 			printf(", %d", pid);
429 		printf("]\n");
430 		return;
431 	}
432 	port = &ports[port_id];
433 	rte_eth_link_get_nowait(port_id, &link);
434 	memset(&dev_info, 0, sizeof(dev_info));
435 	rte_eth_dev_info_get(port_id, &dev_info);
436 	printf("\n%s Infos for port %-2d %s\n",
437 	       info_border, port_id, info_border);
438 	rte_eth_macaddr_get(port_id, &mac_addr);
439 	print_ethaddr("MAC address: ", &mac_addr);
440 	printf("\nDriver name: %s", dev_info.driver_name);
441 	printf("\nConnect to socket: %u", port->socket_id);
442 
443 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
444 		mp = mbuf_pool_find(port_numa[port_id]);
445 		if (mp)
446 			printf("\nmemory allocation on the socket: %d",
447 							port_numa[port_id]);
448 	} else
449 		printf("\nmemory allocation on the socket: %u",port->socket_id);
450 
451 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
452 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
453 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
454 	       ("full-duplex") : ("half-duplex"));
455 
456 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
457 		printf("MTU: %u\n", mtu);
458 
459 	printf("Promiscuous mode: %s\n",
460 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
461 	printf("Allmulticast mode: %s\n",
462 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
463 	printf("Maximum number of MAC addresses: %u\n",
464 	       (unsigned int)(port->dev_info.max_mac_addrs));
465 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
466 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
467 
468 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
469 	if (vlan_offload >= 0){
470 		printf("VLAN offload: \n");
471 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
472 			printf("  strip on \n");
473 		else
474 			printf("  strip off \n");
475 
476 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
477 			printf("  filter on \n");
478 		else
479 			printf("  filter off \n");
480 
481 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
482 			printf("  qinq(extend) on \n");
483 		else
484 			printf("  qinq(extend) off \n");
485 	}
486 
487 	if (dev_info.hash_key_size > 0)
488 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
489 	if (dev_info.reta_size > 0)
490 		printf("Redirection table size: %u\n", dev_info.reta_size);
491 	if (!dev_info.flow_type_rss_offloads)
492 		printf("No flow type is supported.\n");
493 	else {
494 		uint16_t i;
495 		char *p;
496 
497 		printf("Supported flow types:\n");
498 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
499 								i++) {
500 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
501 				continue;
502 			p = flowtype_to_str(i);
503 			printf("  %s\n", (p ? p : "unknown"));
504 		}
505 	}
506 
507 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
508 	printf("Max possible number of RXDs per queue: %hu\n",
509 		dev_info.rx_desc_lim.nb_max);
510 	printf("Min possible number of RXDs per queue: %hu\n",
511 		dev_info.rx_desc_lim.nb_min);
512 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
513 
514 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515 	printf("Max possible number of TXDs per queue: %hu\n",
516 		dev_info.tx_desc_lim.nb_max);
517 	printf("Min possible number of TXDs per queue: %hu\n",
518 		dev_info.tx_desc_lim.nb_min);
519 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521 
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525 	struct rte_eth_dev *dev;
526 	struct rte_eth_dev_info dev_info;
527 	static const char *info_border = "************";
528 
529 	if (port_id_is_invalid(port_id, ENABLED_WARN))
530 		return;
531 
532 	dev = &rte_eth_devices[port_id];
533 	rte_eth_dev_info_get(port_id, &dev_info);
534 
535 	printf("\n%s Port %d supported offload features: %s\n",
536 		info_border, port_id, info_border);
537 
538 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
539 		printf("VLAN stripped:                 ");
540 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
541 			printf("on\n");
542 		else
543 			printf("off\n");
544 	}
545 
546 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
547 		printf("Double VLANs stripped:         ");
548 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
549 			printf("on\n");
550 		else
551 			printf("off\n");
552 	}
553 
554 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555 		printf("RX IPv4 checksum:              ");
556 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
557 			printf("on\n");
558 		else
559 			printf("off\n");
560 	}
561 
562 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
563 		printf("RX UDP checksum:               ");
564 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
565 			printf("on\n");
566 		else
567 			printf("off\n");
568 	}
569 
570 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
571 		printf("RX TCP checksum:               ");
572 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
573 			printf("on\n");
574 		else
575 			printf("off\n");
576 	}
577 
578 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
579 		printf("RX Outer IPv4 checksum:        on");
580 
581 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
582 		printf("Large receive offload:         ");
583 		if (dev->data->dev_conf.rxmode.enable_lro)
584 			printf("on\n");
585 		else
586 			printf("off\n");
587 	}
588 
589 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
590 		printf("VLAN insert:                   ");
591 		if (ports[port_id].tx_ol_flags &
592 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
593 			printf("on\n");
594 		else
595 			printf("off\n");
596 	}
597 
598 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
599 		printf("Double VLANs insert:           ");
600 		if (ports[port_id].tx_ol_flags &
601 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
602 			printf("on\n");
603 		else
604 			printf("off\n");
605 	}
606 
607 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
608 		printf("TX IPv4 checksum:              ");
609 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
610 			printf("on\n");
611 		else
612 			printf("off\n");
613 	}
614 
615 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
616 		printf("TX UDP checksum:               ");
617 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
618 			printf("on\n");
619 		else
620 			printf("off\n");
621 	}
622 
623 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
624 		printf("TX TCP checksum:               ");
625 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
626 			printf("on\n");
627 		else
628 			printf("off\n");
629 	}
630 
631 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
632 		printf("TX SCTP checksum:              ");
633 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
634 			printf("on\n");
635 		else
636 			printf("off\n");
637 	}
638 
639 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
640 		printf("TX Outer IPv4 checksum:        ");
641 		if (ports[port_id].tx_ol_flags &
642 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
643 			printf("on\n");
644 		else
645 			printf("off\n");
646 	}
647 
648 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
649 		printf("TX TCP segmentation:           ");
650 		if (ports[port_id].tso_segsz != 0)
651 			printf("on\n");
652 		else
653 			printf("off\n");
654 	}
655 
656 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
657 		printf("TX UDP segmentation:           ");
658 		if (ports[port_id].tso_segsz != 0)
659 			printf("on\n");
660 		else
661 			printf("off\n");
662 	}
663 
664 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
665 		printf("TSO for VXLAN tunnel packet:   ");
666 		if (ports[port_id].tunnel_tso_segsz)
667 			printf("on\n");
668 		else
669 			printf("off\n");
670 	}
671 
672 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
673 		printf("TSO for GRE tunnel packet:     ");
674 		if (ports[port_id].tunnel_tso_segsz)
675 			printf("on\n");
676 		else
677 			printf("off\n");
678 	}
679 
680 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
681 		printf("TSO for IPIP tunnel packet:    ");
682 		if (ports[port_id].tunnel_tso_segsz)
683 			printf("on\n");
684 		else
685 			printf("off\n");
686 	}
687 
688 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
689 		printf("TSO for GENEVE tunnel packet:  ");
690 		if (ports[port_id].tunnel_tso_segsz)
691 			printf("on\n");
692 		else
693 			printf("off\n");
694 	}
695 
696 }
697 
698 int
699 port_id_is_invalid(portid_t port_id, enum print_warning warning)
700 {
701 	if (port_id == (portid_t)RTE_PORT_ALL)
702 		return 0;
703 
704 	if (rte_eth_dev_is_valid_port(port_id))
705 		return 0;
706 
707 	if (warning == ENABLED_WARN)
708 		printf("Invalid port %d\n", port_id);
709 
710 	return 1;
711 }
712 
713 static int
714 vlan_id_is_invalid(uint16_t vlan_id)
715 {
716 	if (vlan_id < 4096)
717 		return 0;
718 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
719 	return 1;
720 }
721 
722 static int
723 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
724 {
725 	uint64_t pci_len;
726 
727 	if (reg_off & 0x3) {
728 		printf("Port register offset 0x%X not aligned on a 4-byte "
729 		       "boundary\n",
730 		       (unsigned)reg_off);
731 		return 1;
732 	}
733 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
734 	if (reg_off >= pci_len) {
735 		printf("Port %d: register offset %u (0x%X) out of port PCI "
736 		       "resource (length=%"PRIu64")\n",
737 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
738 		return 1;
739 	}
740 	return 0;
741 }
742 
743 static int
744 reg_bit_pos_is_invalid(uint8_t bit_pos)
745 {
746 	if (bit_pos <= 31)
747 		return 0;
748 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
749 	return 1;
750 }
751 
752 #define display_port_and_reg_off(port_id, reg_off) \
753 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
754 
755 static inline void
756 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
757 {
758 	display_port_and_reg_off(port_id, (unsigned)reg_off);
759 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
760 }
761 
762 void
763 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
764 {
765 	uint32_t reg_v;
766 
767 
768 	if (port_id_is_invalid(port_id, ENABLED_WARN))
769 		return;
770 	if (port_reg_off_is_invalid(port_id, reg_off))
771 		return;
772 	if (reg_bit_pos_is_invalid(bit_x))
773 		return;
774 	reg_v = port_id_pci_reg_read(port_id, reg_off);
775 	display_port_and_reg_off(port_id, (unsigned)reg_off);
776 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
777 }
778 
779 void
780 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
781 			   uint8_t bit1_pos, uint8_t bit2_pos)
782 {
783 	uint32_t reg_v;
784 	uint8_t  l_bit;
785 	uint8_t  h_bit;
786 
787 	if (port_id_is_invalid(port_id, ENABLED_WARN))
788 		return;
789 	if (port_reg_off_is_invalid(port_id, reg_off))
790 		return;
791 	if (reg_bit_pos_is_invalid(bit1_pos))
792 		return;
793 	if (reg_bit_pos_is_invalid(bit2_pos))
794 		return;
795 	if (bit1_pos > bit2_pos)
796 		l_bit = bit2_pos, h_bit = bit1_pos;
797 	else
798 		l_bit = bit1_pos, h_bit = bit2_pos;
799 
800 	reg_v = port_id_pci_reg_read(port_id, reg_off);
801 	reg_v >>= l_bit;
802 	if (h_bit < 31)
803 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
804 	display_port_and_reg_off(port_id, (unsigned)reg_off);
805 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
806 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
807 }
808 
809 void
810 port_reg_display(portid_t port_id, uint32_t reg_off)
811 {
812 	uint32_t reg_v;
813 
814 	if (port_id_is_invalid(port_id, ENABLED_WARN))
815 		return;
816 	if (port_reg_off_is_invalid(port_id, reg_off))
817 		return;
818 	reg_v = port_id_pci_reg_read(port_id, reg_off);
819 	display_port_reg_value(port_id, reg_off, reg_v);
820 }
821 
822 void
823 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
824 		 uint8_t bit_v)
825 {
826 	uint32_t reg_v;
827 
828 	if (port_id_is_invalid(port_id, ENABLED_WARN))
829 		return;
830 	if (port_reg_off_is_invalid(port_id, reg_off))
831 		return;
832 	if (reg_bit_pos_is_invalid(bit_pos))
833 		return;
834 	if (bit_v > 1) {
835 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
836 		return;
837 	}
838 	reg_v = port_id_pci_reg_read(port_id, reg_off);
839 	if (bit_v == 0)
840 		reg_v &= ~(1 << bit_pos);
841 	else
842 		reg_v |= (1 << bit_pos);
843 	port_id_pci_reg_write(port_id, reg_off, reg_v);
844 	display_port_reg_value(port_id, reg_off, reg_v);
845 }
846 
847 void
848 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
849 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
850 {
851 	uint32_t max_v;
852 	uint32_t reg_v;
853 	uint8_t  l_bit;
854 	uint8_t  h_bit;
855 
856 	if (port_id_is_invalid(port_id, ENABLED_WARN))
857 		return;
858 	if (port_reg_off_is_invalid(port_id, reg_off))
859 		return;
860 	if (reg_bit_pos_is_invalid(bit1_pos))
861 		return;
862 	if (reg_bit_pos_is_invalid(bit2_pos))
863 		return;
864 	if (bit1_pos > bit2_pos)
865 		l_bit = bit2_pos, h_bit = bit1_pos;
866 	else
867 		l_bit = bit1_pos, h_bit = bit2_pos;
868 
869 	if ((h_bit - l_bit) < 31)
870 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
871 	else
872 		max_v = 0xFFFFFFFF;
873 
874 	if (value > max_v) {
875 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
876 				(unsigned)value, (unsigned)value,
877 				(unsigned)max_v, (unsigned)max_v);
878 		return;
879 	}
880 	reg_v = port_id_pci_reg_read(port_id, reg_off);
881 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
882 	reg_v |= (value << l_bit); /* Set changed bits */
883 	port_id_pci_reg_write(port_id, reg_off, reg_v);
884 	display_port_reg_value(port_id, reg_off, reg_v);
885 }
886 
887 void
888 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
889 {
890 	if (port_id_is_invalid(port_id, ENABLED_WARN))
891 		return;
892 	if (port_reg_off_is_invalid(port_id, reg_off))
893 		return;
894 	port_id_pci_reg_write(port_id, reg_off, reg_v);
895 	display_port_reg_value(port_id, reg_off, reg_v);
896 }
897 
898 void
899 port_mtu_set(portid_t port_id, uint16_t mtu)
900 {
901 	int diag;
902 
903 	if (port_id_is_invalid(port_id, ENABLED_WARN))
904 		return;
905 	diag = rte_eth_dev_set_mtu(port_id, mtu);
906 	if (diag == 0)
907 		return;
908 	printf("Set MTU failed. diag=%d\n", diag);
909 }
910 
911 /* Generic flow management functions. */
912 
913 /** Generate flow_item[] entry. */
914 #define MK_FLOW_ITEM(t, s) \
915 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
916 		.name = # t, \
917 		.size = s, \
918 	}
919 
920 /** Information about known flow pattern items. */
921 static const struct {
922 	const char *name;
923 	size_t size;
924 } flow_item[] = {
925 	MK_FLOW_ITEM(END, 0),
926 	MK_FLOW_ITEM(VOID, 0),
927 	MK_FLOW_ITEM(INVERT, 0),
928 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
929 	MK_FLOW_ITEM(PF, 0),
930 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
931 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
932 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
933 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
934 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
935 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
936 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
937 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
938 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
939 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
940 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
941 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
942 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
943 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
944 };
945 
946 /** Compute storage space needed by item specification. */
947 static void
948 flow_item_spec_size(const struct rte_flow_item *item,
949 		    size_t *size, size_t *pad)
950 {
951 	if (!item->spec)
952 		goto empty;
953 	switch (item->type) {
954 		union {
955 			const struct rte_flow_item_raw *raw;
956 		} spec;
957 
958 	case RTE_FLOW_ITEM_TYPE_RAW:
959 		spec.raw = item->spec;
960 		*size = offsetof(struct rte_flow_item_raw, pattern) +
961 			spec.raw->length * sizeof(*spec.raw->pattern);
962 		break;
963 	default:
964 empty:
965 		*size = 0;
966 		break;
967 	}
968 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
969 }
970 
971 /** Generate flow_action[] entry. */
972 #define MK_FLOW_ACTION(t, s) \
973 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
974 		.name = # t, \
975 		.size = s, \
976 	}
977 
978 /** Information about known flow actions. */
979 static const struct {
980 	const char *name;
981 	size_t size;
982 } flow_action[] = {
983 	MK_FLOW_ACTION(END, 0),
984 	MK_FLOW_ACTION(VOID, 0),
985 	MK_FLOW_ACTION(PASSTHRU, 0),
986 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
987 	MK_FLOW_ACTION(FLAG, 0),
988 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
989 	MK_FLOW_ACTION(DROP, 0),
990 	MK_FLOW_ACTION(COUNT, 0),
991 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
992 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
993 	MK_FLOW_ACTION(PF, 0),
994 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
995 };
996 
997 /** Compute storage space needed by action configuration. */
998 static void
999 flow_action_conf_size(const struct rte_flow_action *action,
1000 		      size_t *size, size_t *pad)
1001 {
1002 	if (!action->conf)
1003 		goto empty;
1004 	switch (action->type) {
1005 		union {
1006 			const struct rte_flow_action_rss *rss;
1007 		} conf;
1008 
1009 	case RTE_FLOW_ACTION_TYPE_RSS:
1010 		conf.rss = action->conf;
1011 		*size = offsetof(struct rte_flow_action_rss, queue) +
1012 			conf.rss->num * sizeof(*conf.rss->queue);
1013 		break;
1014 	default:
1015 empty:
1016 		*size = 0;
1017 		break;
1018 	}
1019 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1020 }
1021 
1022 /** Generate a port_flow entry from attributes/pattern/actions. */
1023 static struct port_flow *
1024 port_flow_new(const struct rte_flow_attr *attr,
1025 	      const struct rte_flow_item *pattern,
1026 	      const struct rte_flow_action *actions)
1027 {
1028 	const struct rte_flow_item *item;
1029 	const struct rte_flow_action *action;
1030 	struct port_flow *pf = NULL;
1031 	size_t tmp;
1032 	size_t pad;
1033 	size_t off1 = 0;
1034 	size_t off2 = 0;
1035 	int err = ENOTSUP;
1036 
1037 store:
1038 	item = pattern;
1039 	if (pf)
1040 		pf->pattern = (void *)&pf->data[off1];
1041 	do {
1042 		struct rte_flow_item *dst = NULL;
1043 
1044 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1045 		    !flow_item[item->type].name)
1046 			goto notsup;
1047 		if (pf)
1048 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1049 		off1 += sizeof(*item);
1050 		flow_item_spec_size(item, &tmp, &pad);
1051 		if (item->spec) {
1052 			if (pf)
1053 				dst->spec = memcpy(pf->data + off2,
1054 						   item->spec, tmp);
1055 			off2 += tmp + pad;
1056 		}
1057 		if (item->last) {
1058 			if (pf)
1059 				dst->last = memcpy(pf->data + off2,
1060 						   item->last, tmp);
1061 			off2 += tmp + pad;
1062 		}
1063 		if (item->mask) {
1064 			if (pf)
1065 				dst->mask = memcpy(pf->data + off2,
1066 						   item->mask, tmp);
1067 			off2 += tmp + pad;
1068 		}
1069 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1070 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1071 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1072 	action = actions;
1073 	if (pf)
1074 		pf->actions = (void *)&pf->data[off1];
1075 	do {
1076 		struct rte_flow_action *dst = NULL;
1077 
1078 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1079 		    !flow_action[action->type].name)
1080 			goto notsup;
1081 		if (pf)
1082 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1083 		off1 += sizeof(*action);
1084 		flow_action_conf_size(action, &tmp, &pad);
1085 		if (action->conf) {
1086 			if (pf)
1087 				dst->conf = memcpy(pf->data + off2,
1088 						   action->conf, tmp);
1089 			off2 += tmp + pad;
1090 		}
1091 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1092 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1093 	if (pf != NULL)
1094 		return pf;
1095 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1096 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1097 	pf = calloc(1, tmp + off1 + off2);
1098 	if (pf == NULL)
1099 		err = errno;
1100 	else {
1101 		*pf = (const struct port_flow){
1102 			.size = tmp + off1 + off2,
1103 			.attr = *attr,
1104 		};
1105 		tmp -= offsetof(struct port_flow, data);
1106 		off2 = tmp + off1;
1107 		off1 = tmp;
1108 		goto store;
1109 	}
1110 notsup:
1111 	rte_errno = err;
1112 	return NULL;
1113 }
1114 
1115 /** Print a message out of a flow error. */
1116 static int
1117 port_flow_complain(struct rte_flow_error *error)
1118 {
1119 	static const char *const errstrlist[] = {
1120 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1121 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1122 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1123 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1124 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1125 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1126 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1127 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1128 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1129 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1130 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1131 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1132 	};
1133 	const char *errstr;
1134 	char buf[32];
1135 	int err = rte_errno;
1136 
1137 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1138 	    !errstrlist[error->type])
1139 		errstr = "unknown type";
1140 	else
1141 		errstr = errstrlist[error->type];
1142 	printf("Caught error type %d (%s): %s%s\n",
1143 	       error->type, errstr,
1144 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1145 					error->cause), buf) : "",
1146 	       error->message ? error->message : "(no stated reason)");
1147 	return -err;
1148 }
1149 
1150 /** Validate flow rule. */
1151 int
1152 port_flow_validate(portid_t port_id,
1153 		   const struct rte_flow_attr *attr,
1154 		   const struct rte_flow_item *pattern,
1155 		   const struct rte_flow_action *actions)
1156 {
1157 	struct rte_flow_error error;
1158 
1159 	/* Poisoning to make sure PMDs update it in case of error. */
1160 	memset(&error, 0x11, sizeof(error));
1161 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1162 		return port_flow_complain(&error);
1163 	printf("Flow rule validated\n");
1164 	return 0;
1165 }
1166 
1167 /** Create flow rule. */
1168 int
1169 port_flow_create(portid_t port_id,
1170 		 const struct rte_flow_attr *attr,
1171 		 const struct rte_flow_item *pattern,
1172 		 const struct rte_flow_action *actions)
1173 {
1174 	struct rte_flow *flow;
1175 	struct rte_port *port;
1176 	struct port_flow *pf;
1177 	uint32_t id;
1178 	struct rte_flow_error error;
1179 
1180 	/* Poisoning to make sure PMDs update it in case of error. */
1181 	memset(&error, 0x22, sizeof(error));
1182 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1183 	if (!flow)
1184 		return port_flow_complain(&error);
1185 	port = &ports[port_id];
1186 	if (port->flow_list) {
1187 		if (port->flow_list->id == UINT32_MAX) {
1188 			printf("Highest rule ID is already assigned, delete"
1189 			       " it first");
1190 			rte_flow_destroy(port_id, flow, NULL);
1191 			return -ENOMEM;
1192 		}
1193 		id = port->flow_list->id + 1;
1194 	} else
1195 		id = 0;
1196 	pf = port_flow_new(attr, pattern, actions);
1197 	if (!pf) {
1198 		int err = rte_errno;
1199 
1200 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1201 		rte_flow_destroy(port_id, flow, NULL);
1202 		return -err;
1203 	}
1204 	pf->next = port->flow_list;
1205 	pf->id = id;
1206 	pf->flow = flow;
1207 	port->flow_list = pf;
1208 	printf("Flow rule #%u created\n", pf->id);
1209 	return 0;
1210 }
1211 
1212 /** Destroy a number of flow rules. */
1213 int
1214 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1215 {
1216 	struct rte_port *port;
1217 	struct port_flow **tmp;
1218 	uint32_t c = 0;
1219 	int ret = 0;
1220 
1221 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1222 	    port_id == (portid_t)RTE_PORT_ALL)
1223 		return -EINVAL;
1224 	port = &ports[port_id];
1225 	tmp = &port->flow_list;
1226 	while (*tmp) {
1227 		uint32_t i;
1228 
1229 		for (i = 0; i != n; ++i) {
1230 			struct rte_flow_error error;
1231 			struct port_flow *pf = *tmp;
1232 
1233 			if (rule[i] != pf->id)
1234 				continue;
1235 			/*
1236 			 * Poisoning to make sure PMDs update it in case
1237 			 * of error.
1238 			 */
1239 			memset(&error, 0x33, sizeof(error));
1240 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1241 				ret = port_flow_complain(&error);
1242 				continue;
1243 			}
1244 			printf("Flow rule #%u destroyed\n", pf->id);
1245 			*tmp = pf->next;
1246 			free(pf);
1247 			break;
1248 		}
1249 		if (i == n)
1250 			tmp = &(*tmp)->next;
1251 		++c;
1252 	}
1253 	return ret;
1254 }
1255 
1256 /** Remove all flow rules. */
1257 int
1258 port_flow_flush(portid_t port_id)
1259 {
1260 	struct rte_flow_error error;
1261 	struct rte_port *port;
1262 	int ret = 0;
1263 
1264 	/* Poisoning to make sure PMDs update it in case of error. */
1265 	memset(&error, 0x44, sizeof(error));
1266 	if (rte_flow_flush(port_id, &error)) {
1267 		ret = port_flow_complain(&error);
1268 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1269 		    port_id == (portid_t)RTE_PORT_ALL)
1270 			return ret;
1271 	}
1272 	port = &ports[port_id];
1273 	while (port->flow_list) {
1274 		struct port_flow *pf = port->flow_list->next;
1275 
1276 		free(port->flow_list);
1277 		port->flow_list = pf;
1278 	}
1279 	return ret;
1280 }
1281 
1282 /** Query a flow rule. */
1283 int
1284 port_flow_query(portid_t port_id, uint32_t rule,
1285 		enum rte_flow_action_type action)
1286 {
1287 	struct rte_flow_error error;
1288 	struct rte_port *port;
1289 	struct port_flow *pf;
1290 	const char *name;
1291 	union {
1292 		struct rte_flow_query_count count;
1293 	} query;
1294 
1295 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1296 	    port_id == (portid_t)RTE_PORT_ALL)
1297 		return -EINVAL;
1298 	port = &ports[port_id];
1299 	for (pf = port->flow_list; pf; pf = pf->next)
1300 		if (pf->id == rule)
1301 			break;
1302 	if (!pf) {
1303 		printf("Flow rule #%u not found\n", rule);
1304 		return -ENOENT;
1305 	}
1306 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1307 	    !flow_action[action].name)
1308 		name = "unknown";
1309 	else
1310 		name = flow_action[action].name;
1311 	switch (action) {
1312 	case RTE_FLOW_ACTION_TYPE_COUNT:
1313 		break;
1314 	default:
1315 		printf("Cannot query action type %d (%s)\n", action, name);
1316 		return -ENOTSUP;
1317 	}
1318 	/* Poisoning to make sure PMDs update it in case of error. */
1319 	memset(&error, 0x55, sizeof(error));
1320 	memset(&query, 0, sizeof(query));
1321 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1322 		return port_flow_complain(&error);
1323 	switch (action) {
1324 	case RTE_FLOW_ACTION_TYPE_COUNT:
1325 		printf("%s:\n"
1326 		       " hits_set: %u\n"
1327 		       " bytes_set: %u\n"
1328 		       " hits: %" PRIu64 "\n"
1329 		       " bytes: %" PRIu64 "\n",
1330 		       name,
1331 		       query.count.hits_set,
1332 		       query.count.bytes_set,
1333 		       query.count.hits,
1334 		       query.count.bytes);
1335 		break;
1336 	default:
1337 		printf("Cannot display result for action type %d (%s)\n",
1338 		       action, name);
1339 		break;
1340 	}
1341 	return 0;
1342 }
1343 
1344 /** List flow rules. */
1345 void
1346 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1347 {
1348 	struct rte_port *port;
1349 	struct port_flow *pf;
1350 	struct port_flow *list = NULL;
1351 	uint32_t i;
1352 
1353 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1354 	    port_id == (portid_t)RTE_PORT_ALL)
1355 		return;
1356 	port = &ports[port_id];
1357 	if (!port->flow_list)
1358 		return;
1359 	/* Sort flows by group, priority and ID. */
1360 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1361 		struct port_flow **tmp;
1362 
1363 		if (n) {
1364 			/* Filter out unwanted groups. */
1365 			for (i = 0; i != n; ++i)
1366 				if (pf->attr.group == group[i])
1367 					break;
1368 			if (i == n)
1369 				continue;
1370 		}
1371 		tmp = &list;
1372 		while (*tmp &&
1373 		       (pf->attr.group > (*tmp)->attr.group ||
1374 			(pf->attr.group == (*tmp)->attr.group &&
1375 			 pf->attr.priority > (*tmp)->attr.priority) ||
1376 			(pf->attr.group == (*tmp)->attr.group &&
1377 			 pf->attr.priority == (*tmp)->attr.priority &&
1378 			 pf->id > (*tmp)->id)))
1379 			tmp = &(*tmp)->tmp;
1380 		pf->tmp = *tmp;
1381 		*tmp = pf;
1382 	}
1383 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1384 	for (pf = list; pf != NULL; pf = pf->tmp) {
1385 		const struct rte_flow_item *item = pf->pattern;
1386 		const struct rte_flow_action *action = pf->actions;
1387 
1388 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1389 		       pf->id,
1390 		       pf->attr.group,
1391 		       pf->attr.priority,
1392 		       pf->attr.ingress ? 'i' : '-',
1393 		       pf->attr.egress ? 'e' : '-');
1394 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1395 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1396 				printf("%s ", flow_item[item->type].name);
1397 			++item;
1398 		}
1399 		printf("=>");
1400 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1401 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1402 				printf(" %s", flow_action[action->type].name);
1403 			++action;
1404 		}
1405 		printf("\n");
1406 	}
1407 }
1408 
1409 /*
1410  * RX/TX ring descriptors display functions.
1411  */
1412 int
1413 rx_queue_id_is_invalid(queueid_t rxq_id)
1414 {
1415 	if (rxq_id < nb_rxq)
1416 		return 0;
1417 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1418 	return 1;
1419 }
1420 
1421 int
1422 tx_queue_id_is_invalid(queueid_t txq_id)
1423 {
1424 	if (txq_id < nb_txq)
1425 		return 0;
1426 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1427 	return 1;
1428 }
1429 
1430 static int
1431 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1432 {
1433 	if (rxdesc_id < nb_rxd)
1434 		return 0;
1435 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1436 	       rxdesc_id, nb_rxd);
1437 	return 1;
1438 }
1439 
1440 static int
1441 tx_desc_id_is_invalid(uint16_t txdesc_id)
1442 {
1443 	if (txdesc_id < nb_txd)
1444 		return 0;
1445 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1446 	       txdesc_id, nb_txd);
1447 	return 1;
1448 }
1449 
1450 static const struct rte_memzone *
1451 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1452 {
1453 	char mz_name[RTE_MEMZONE_NAMESIZE];
1454 	const struct rte_memzone *mz;
1455 
1456 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1457 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1458 	mz = rte_memzone_lookup(mz_name);
1459 	if (mz == NULL)
1460 		printf("%s ring memory zoneof (port %d, queue %d) not"
1461 		       "found (zone name = %s\n",
1462 		       ring_name, port_id, q_id, mz_name);
1463 	return mz;
1464 }
1465 
1466 union igb_ring_dword {
1467 	uint64_t dword;
1468 	struct {
1469 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1470 		uint32_t lo;
1471 		uint32_t hi;
1472 #else
1473 		uint32_t hi;
1474 		uint32_t lo;
1475 #endif
1476 	} words;
1477 };
1478 
1479 struct igb_ring_desc_32_bytes {
1480 	union igb_ring_dword lo_dword;
1481 	union igb_ring_dword hi_dword;
1482 	union igb_ring_dword resv1;
1483 	union igb_ring_dword resv2;
1484 };
1485 
1486 struct igb_ring_desc_16_bytes {
1487 	union igb_ring_dword lo_dword;
1488 	union igb_ring_dword hi_dword;
1489 };
1490 
1491 static void
1492 ring_rxd_display_dword(union igb_ring_dword dword)
1493 {
1494 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1495 					(unsigned)dword.words.hi);
1496 }
1497 
1498 static void
1499 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1500 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1501 			   uint8_t port_id,
1502 #else
1503 			   __rte_unused uint8_t port_id,
1504 #endif
1505 			   uint16_t desc_id)
1506 {
1507 	struct igb_ring_desc_16_bytes *ring =
1508 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1509 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1510 	struct rte_eth_dev_info dev_info;
1511 
1512 	memset(&dev_info, 0, sizeof(dev_info));
1513 	rte_eth_dev_info_get(port_id, &dev_info);
1514 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1515 		/* 32 bytes RX descriptor, i40e only */
1516 		struct igb_ring_desc_32_bytes *ring =
1517 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1518 		ring[desc_id].lo_dword.dword =
1519 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1520 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1521 		ring[desc_id].hi_dword.dword =
1522 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1523 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1524 		ring[desc_id].resv1.dword =
1525 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1526 		ring_rxd_display_dword(ring[desc_id].resv1);
1527 		ring[desc_id].resv2.dword =
1528 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1529 		ring_rxd_display_dword(ring[desc_id].resv2);
1530 
1531 		return;
1532 	}
1533 #endif
1534 	/* 16 bytes RX descriptor */
1535 	ring[desc_id].lo_dword.dword =
1536 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1537 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1538 	ring[desc_id].hi_dword.dword =
1539 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1540 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1541 }
1542 
1543 static void
1544 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1545 {
1546 	struct igb_ring_desc_16_bytes *ring;
1547 	struct igb_ring_desc_16_bytes txd;
1548 
1549 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1550 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1551 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1552 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1553 			(unsigned)txd.lo_dword.words.lo,
1554 			(unsigned)txd.lo_dword.words.hi,
1555 			(unsigned)txd.hi_dword.words.lo,
1556 			(unsigned)txd.hi_dword.words.hi);
1557 }
1558 
1559 void
1560 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1561 {
1562 	const struct rte_memzone *rx_mz;
1563 
1564 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1565 		return;
1566 	if (rx_queue_id_is_invalid(rxq_id))
1567 		return;
1568 	if (rx_desc_id_is_invalid(rxd_id))
1569 		return;
1570 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1571 	if (rx_mz == NULL)
1572 		return;
1573 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1574 }
1575 
1576 void
1577 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1578 {
1579 	const struct rte_memzone *tx_mz;
1580 
1581 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1582 		return;
1583 	if (tx_queue_id_is_invalid(txq_id))
1584 		return;
1585 	if (tx_desc_id_is_invalid(txd_id))
1586 		return;
1587 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1588 	if (tx_mz == NULL)
1589 		return;
1590 	ring_tx_descriptor_display(tx_mz, txd_id);
1591 }
1592 
1593 void
1594 fwd_lcores_config_display(void)
1595 {
1596 	lcoreid_t lc_id;
1597 
1598 	printf("List of forwarding lcores:");
1599 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1600 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1601 	printf("\n");
1602 }
1603 void
1604 rxtx_config_display(void)
1605 {
1606 	printf("  %s packet forwarding%s - CRC stripping %s - "
1607 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1608 	       retry_enabled == 0 ? "" : " with retry",
1609 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1610 	       nb_pkt_per_burst);
1611 
1612 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1613 		printf("  packet len=%u - nb packet segments=%d\n",
1614 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1615 
1616 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1617 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1618 
1619 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1620 	       nb_fwd_lcores, nb_fwd_ports);
1621 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1622 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1623 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1624 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1625 	       rx_conf->rx_thresh.wthresh);
1626 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1627 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1628 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1629 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1630 	       tx_conf->tx_thresh.wthresh);
1631 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1632 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1633 }
1634 
1635 void
1636 port_rss_reta_info(portid_t port_id,
1637 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1638 		   uint16_t nb_entries)
1639 {
1640 	uint16_t i, idx, shift;
1641 	int ret;
1642 
1643 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1644 		return;
1645 
1646 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1647 	if (ret != 0) {
1648 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1649 		return;
1650 	}
1651 
1652 	for (i = 0; i < nb_entries; i++) {
1653 		idx = i / RTE_RETA_GROUP_SIZE;
1654 		shift = i % RTE_RETA_GROUP_SIZE;
1655 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1656 			continue;
1657 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1658 					i, reta_conf[idx].reta[shift]);
1659 	}
1660 }
1661 
1662 /*
1663  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1664  * key of the port.
1665  */
1666 void
1667 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1668 {
1669 	struct rte_eth_rss_conf rss_conf;
1670 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1671 	uint64_t rss_hf;
1672 	uint8_t i;
1673 	int diag;
1674 	struct rte_eth_dev_info dev_info;
1675 	uint8_t hash_key_size;
1676 
1677 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1678 		return;
1679 
1680 	memset(&dev_info, 0, sizeof(dev_info));
1681 	rte_eth_dev_info_get(port_id, &dev_info);
1682 	if (dev_info.hash_key_size > 0 &&
1683 			dev_info.hash_key_size <= sizeof(rss_key))
1684 		hash_key_size = dev_info.hash_key_size;
1685 	else {
1686 		printf("dev_info did not provide a valid hash key size\n");
1687 		return;
1688 	}
1689 
1690 	rss_conf.rss_hf = 0;
1691 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1692 		if (!strcmp(rss_info, rss_type_table[i].str))
1693 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1694 	}
1695 
1696 	/* Get RSS hash key if asked to display it */
1697 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1698 	rss_conf.rss_key_len = hash_key_size;
1699 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1700 	if (diag != 0) {
1701 		switch (diag) {
1702 		case -ENODEV:
1703 			printf("port index %d invalid\n", port_id);
1704 			break;
1705 		case -ENOTSUP:
1706 			printf("operation not supported by device\n");
1707 			break;
1708 		default:
1709 			printf("operation failed - diag=%d\n", diag);
1710 			break;
1711 		}
1712 		return;
1713 	}
1714 	rss_hf = rss_conf.rss_hf;
1715 	if (rss_hf == 0) {
1716 		printf("RSS disabled\n");
1717 		return;
1718 	}
1719 	printf("RSS functions:\n ");
1720 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1721 		if (rss_hf & rss_type_table[i].rss_type)
1722 			printf("%s ", rss_type_table[i].str);
1723 	}
1724 	printf("\n");
1725 	if (!show_rss_key)
1726 		return;
1727 	printf("RSS key:\n");
1728 	for (i = 0; i < hash_key_size; i++)
1729 		printf("%02X", rss_key[i]);
1730 	printf("\n");
1731 }
1732 
1733 void
1734 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1735 			 uint hash_key_len)
1736 {
1737 	struct rte_eth_rss_conf rss_conf;
1738 	int diag;
1739 	unsigned int i;
1740 
1741 	rss_conf.rss_key = NULL;
1742 	rss_conf.rss_key_len = hash_key_len;
1743 	rss_conf.rss_hf = 0;
1744 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1745 		if (!strcmp(rss_type_table[i].str, rss_type))
1746 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1747 	}
1748 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1749 	if (diag == 0) {
1750 		rss_conf.rss_key = hash_key;
1751 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1752 	}
1753 	if (diag == 0)
1754 		return;
1755 
1756 	switch (diag) {
1757 	case -ENODEV:
1758 		printf("port index %d invalid\n", port_id);
1759 		break;
1760 	case -ENOTSUP:
1761 		printf("operation not supported by device\n");
1762 		break;
1763 	default:
1764 		printf("operation failed - diag=%d\n", diag);
1765 		break;
1766 	}
1767 }
1768 
1769 /*
1770  * Setup forwarding configuration for each logical core.
1771  */
1772 static void
1773 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1774 {
1775 	streamid_t nb_fs_per_lcore;
1776 	streamid_t nb_fs;
1777 	streamid_t sm_id;
1778 	lcoreid_t  nb_extra;
1779 	lcoreid_t  nb_fc;
1780 	lcoreid_t  nb_lc;
1781 	lcoreid_t  lc_id;
1782 
1783 	nb_fs = cfg->nb_fwd_streams;
1784 	nb_fc = cfg->nb_fwd_lcores;
1785 	if (nb_fs <= nb_fc) {
1786 		nb_fs_per_lcore = 1;
1787 		nb_extra = 0;
1788 	} else {
1789 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1790 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1791 	}
1792 
1793 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1794 	sm_id = 0;
1795 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1796 		fwd_lcores[lc_id]->stream_idx = sm_id;
1797 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1798 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1799 	}
1800 
1801 	/*
1802 	 * Assign extra remaining streams, if any.
1803 	 */
1804 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1805 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1806 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1807 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1808 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1809 	}
1810 }
1811 
1812 static void
1813 simple_fwd_config_setup(void)
1814 {
1815 	portid_t i;
1816 	portid_t j;
1817 	portid_t inc = 2;
1818 
1819 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1820 	    port_topology == PORT_TOPOLOGY_LOOP) {
1821 		inc = 1;
1822 	} else if (nb_fwd_ports % 2) {
1823 		printf("\nWarning! Cannot handle an odd number of ports "
1824 		       "with the current port topology. Configuration "
1825 		       "must be changed to have an even number of ports, "
1826 		       "or relaunch application with "
1827 		       "--port-topology=chained\n\n");
1828 	}
1829 
1830 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1831 	cur_fwd_config.nb_fwd_streams =
1832 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1833 
1834 	/* reinitialize forwarding streams */
1835 	init_fwd_streams();
1836 
1837 	/*
1838 	 * In the simple forwarding test, the number of forwarding cores
1839 	 * must be lower or equal to the number of forwarding ports.
1840 	 */
1841 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1842 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1843 		cur_fwd_config.nb_fwd_lcores =
1844 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1845 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1846 
1847 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1848 		if (port_topology != PORT_TOPOLOGY_LOOP)
1849 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1850 		else
1851 			j = i;
1852 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1853 		fwd_streams[i]->rx_queue  = 0;
1854 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1855 		fwd_streams[i]->tx_queue  = 0;
1856 		fwd_streams[i]->peer_addr = j;
1857 		fwd_streams[i]->retry_enabled = retry_enabled;
1858 
1859 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1860 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1861 			fwd_streams[j]->rx_queue  = 0;
1862 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1863 			fwd_streams[j]->tx_queue  = 0;
1864 			fwd_streams[j]->peer_addr = i;
1865 			fwd_streams[j]->retry_enabled = retry_enabled;
1866 		}
1867 	}
1868 }
1869 
1870 /**
1871  * For the RSS forwarding test all streams distributed over lcores. Each stream
1872  * being composed of a RX queue to poll on a RX port for input messages,
1873  * associated with a TX queue of a TX port where to send forwarded packets.
1874  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1875  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1876  * following rules:
1877  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1878  *    - TxQl = RxQj
1879  */
1880 static void
1881 rss_fwd_config_setup(void)
1882 {
1883 	portid_t   rxp;
1884 	portid_t   txp;
1885 	queueid_t  rxq;
1886 	queueid_t  nb_q;
1887 	streamid_t  sm_id;
1888 
1889 	nb_q = nb_rxq;
1890 	if (nb_q > nb_txq)
1891 		nb_q = nb_txq;
1892 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1893 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1894 	cur_fwd_config.nb_fwd_streams =
1895 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1896 
1897 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1898 		cur_fwd_config.nb_fwd_lcores =
1899 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1900 
1901 	/* reinitialize forwarding streams */
1902 	init_fwd_streams();
1903 
1904 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1905 	rxp = 0; rxq = 0;
1906 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1907 		struct fwd_stream *fs;
1908 
1909 		fs = fwd_streams[sm_id];
1910 
1911 		if ((rxp & 0x1) == 0)
1912 			txp = (portid_t) (rxp + 1);
1913 		else
1914 			txp = (portid_t) (rxp - 1);
1915 		/*
1916 		 * if we are in loopback, simply send stuff out through the
1917 		 * ingress port
1918 		 */
1919 		if (port_topology == PORT_TOPOLOGY_LOOP)
1920 			txp = rxp;
1921 
1922 		fs->rx_port = fwd_ports_ids[rxp];
1923 		fs->rx_queue = rxq;
1924 		fs->tx_port = fwd_ports_ids[txp];
1925 		fs->tx_queue = rxq;
1926 		fs->peer_addr = fs->tx_port;
1927 		fs->retry_enabled = retry_enabled;
1928 		rxq = (queueid_t) (rxq + 1);
1929 		if (rxq < nb_q)
1930 			continue;
1931 		/*
1932 		 * rxq == nb_q
1933 		 * Restart from RX queue 0 on next RX port
1934 		 */
1935 		rxq = 0;
1936 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1937 			rxp = (portid_t)
1938 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1939 		else
1940 			rxp = (portid_t) (rxp + 1);
1941 	}
1942 }
1943 
1944 /**
1945  * For the DCB forwarding test, each core is assigned on each traffic class.
1946  *
1947  * Each core is assigned a multi-stream, each stream being composed of
1948  * a RX queue to poll on a RX port for input messages, associated with
1949  * a TX queue of a TX port where to send forwarded packets. All RX and
1950  * TX queues are mapping to the same traffic class.
1951  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1952  * the same core
1953  */
1954 static void
1955 dcb_fwd_config_setup(void)
1956 {
1957 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1958 	portid_t txp, rxp = 0;
1959 	queueid_t txq, rxq = 0;
1960 	lcoreid_t  lc_id;
1961 	uint16_t nb_rx_queue, nb_tx_queue;
1962 	uint16_t i, j, k, sm_id = 0;
1963 	uint8_t tc = 0;
1964 
1965 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1966 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1967 	cur_fwd_config.nb_fwd_streams =
1968 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1969 
1970 	/* reinitialize forwarding streams */
1971 	init_fwd_streams();
1972 	sm_id = 0;
1973 	txp = 1;
1974 	/* get the dcb info on the first RX and TX ports */
1975 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
1976 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
1977 
1978 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
1979 		fwd_lcores[lc_id]->stream_nb = 0;
1980 		fwd_lcores[lc_id]->stream_idx = sm_id;
1981 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
1982 			/* if the nb_queue is zero, means this tc is
1983 			 * not enabled on the POOL
1984 			 */
1985 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
1986 				break;
1987 			k = fwd_lcores[lc_id]->stream_nb +
1988 				fwd_lcores[lc_id]->stream_idx;
1989 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
1990 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
1991 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
1992 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
1993 			for (j = 0; j < nb_rx_queue; j++) {
1994 				struct fwd_stream *fs;
1995 
1996 				fs = fwd_streams[k + j];
1997 				fs->rx_port = fwd_ports_ids[rxp];
1998 				fs->rx_queue = rxq + j;
1999 				fs->tx_port = fwd_ports_ids[txp];
2000 				fs->tx_queue = txq + j % nb_tx_queue;
2001 				fs->peer_addr = fs->tx_port;
2002 				fs->retry_enabled = retry_enabled;
2003 			}
2004 			fwd_lcores[lc_id]->stream_nb +=
2005 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2006 		}
2007 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2008 
2009 		tc++;
2010 		if (tc < rxp_dcb_info.nb_tcs)
2011 			continue;
2012 		/* Restart from TC 0 on next RX port */
2013 		tc = 0;
2014 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2015 			rxp = (portid_t)
2016 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2017 		else
2018 			rxp++;
2019 		if (rxp >= nb_fwd_ports)
2020 			return;
2021 		/* get the dcb information on next RX and TX ports */
2022 		if ((rxp & 0x1) == 0)
2023 			txp = (portid_t) (rxp + 1);
2024 		else
2025 			txp = (portid_t) (rxp - 1);
2026 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2027 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2028 	}
2029 }
2030 
2031 static void
2032 icmp_echo_config_setup(void)
2033 {
2034 	portid_t  rxp;
2035 	queueid_t rxq;
2036 	lcoreid_t lc_id;
2037 	uint16_t  sm_id;
2038 
2039 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2040 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2041 			(nb_txq * nb_fwd_ports);
2042 	else
2043 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2044 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2045 	cur_fwd_config.nb_fwd_streams =
2046 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2047 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2048 		cur_fwd_config.nb_fwd_lcores =
2049 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2050 	if (verbose_level > 0) {
2051 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2052 		       __FUNCTION__,
2053 		       cur_fwd_config.nb_fwd_lcores,
2054 		       cur_fwd_config.nb_fwd_ports,
2055 		       cur_fwd_config.nb_fwd_streams);
2056 	}
2057 
2058 	/* reinitialize forwarding streams */
2059 	init_fwd_streams();
2060 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2061 	rxp = 0; rxq = 0;
2062 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2063 		if (verbose_level > 0)
2064 			printf("  core=%d: \n", lc_id);
2065 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2066 			struct fwd_stream *fs;
2067 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2068 			fs->rx_port = fwd_ports_ids[rxp];
2069 			fs->rx_queue = rxq;
2070 			fs->tx_port = fs->rx_port;
2071 			fs->tx_queue = rxq;
2072 			fs->peer_addr = fs->tx_port;
2073 			fs->retry_enabled = retry_enabled;
2074 			if (verbose_level > 0)
2075 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2076 				       sm_id, fs->rx_port, fs->rx_queue,
2077 				       fs->tx_queue);
2078 			rxq = (queueid_t) (rxq + 1);
2079 			if (rxq == nb_rxq) {
2080 				rxq = 0;
2081 				rxp = (portid_t) (rxp + 1);
2082 			}
2083 		}
2084 	}
2085 }
2086 
2087 void
2088 fwd_config_setup(void)
2089 {
2090 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2091 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2092 		icmp_echo_config_setup();
2093 		return;
2094 	}
2095 	if ((nb_rxq > 1) && (nb_txq > 1)){
2096 		if (dcb_config)
2097 			dcb_fwd_config_setup();
2098 		else
2099 			rss_fwd_config_setup();
2100 	}
2101 	else
2102 		simple_fwd_config_setup();
2103 }
2104 
2105 void
2106 pkt_fwd_config_display(struct fwd_config *cfg)
2107 {
2108 	struct fwd_stream *fs;
2109 	lcoreid_t  lc_id;
2110 	streamid_t sm_id;
2111 
2112 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2113 		"NUMA support %s, MP over anonymous pages %s\n",
2114 		cfg->fwd_eng->fwd_mode_name,
2115 		retry_enabled == 0 ? "" : " with retry",
2116 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2117 		numa_support == 1 ? "enabled" : "disabled",
2118 		mp_anon != 0 ? "enabled" : "disabled");
2119 
2120 	if (retry_enabled)
2121 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2122 			burst_tx_retry_num, burst_tx_delay_time);
2123 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2124 		printf("Logical Core %u (socket %u) forwards packets on "
2125 		       "%d streams:",
2126 		       fwd_lcores_cpuids[lc_id],
2127 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2128 		       fwd_lcores[lc_id]->stream_nb);
2129 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2130 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2131 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2132 			       "P=%d/Q=%d (socket %u) ",
2133 			       fs->rx_port, fs->rx_queue,
2134 			       ports[fs->rx_port].socket_id,
2135 			       fs->tx_port, fs->tx_queue,
2136 			       ports[fs->tx_port].socket_id);
2137 			print_ethaddr("peer=",
2138 				      &peer_eth_addrs[fs->peer_addr]);
2139 		}
2140 		printf("\n");
2141 	}
2142 	printf("\n");
2143 }
2144 
2145 int
2146 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2147 {
2148 	unsigned int i;
2149 	unsigned int lcore_cpuid;
2150 	int record_now;
2151 
2152 	record_now = 0;
2153  again:
2154 	for (i = 0; i < nb_lc; i++) {
2155 		lcore_cpuid = lcorelist[i];
2156 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2157 			printf("lcore %u not enabled\n", lcore_cpuid);
2158 			return -1;
2159 		}
2160 		if (lcore_cpuid == rte_get_master_lcore()) {
2161 			printf("lcore %u cannot be masked on for running "
2162 			       "packet forwarding, which is the master lcore "
2163 			       "and reserved for command line parsing only\n",
2164 			       lcore_cpuid);
2165 			return -1;
2166 		}
2167 		if (record_now)
2168 			fwd_lcores_cpuids[i] = lcore_cpuid;
2169 	}
2170 	if (record_now == 0) {
2171 		record_now = 1;
2172 		goto again;
2173 	}
2174 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2175 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2176 		printf("previous number of forwarding cores %u - changed to "
2177 		       "number of configured cores %u\n",
2178 		       (unsigned int) nb_fwd_lcores, nb_lc);
2179 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 int
2186 set_fwd_lcores_mask(uint64_t lcoremask)
2187 {
2188 	unsigned int lcorelist[64];
2189 	unsigned int nb_lc;
2190 	unsigned int i;
2191 
2192 	if (lcoremask == 0) {
2193 		printf("Invalid NULL mask of cores\n");
2194 		return -1;
2195 	}
2196 	nb_lc = 0;
2197 	for (i = 0; i < 64; i++) {
2198 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2199 			continue;
2200 		lcorelist[nb_lc++] = i;
2201 	}
2202 	return set_fwd_lcores_list(lcorelist, nb_lc);
2203 }
2204 
2205 void
2206 set_fwd_lcores_number(uint16_t nb_lc)
2207 {
2208 	if (nb_lc > nb_cfg_lcores) {
2209 		printf("nb fwd cores %u > %u (max. number of configured "
2210 		       "lcores) - ignored\n",
2211 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2212 		return;
2213 	}
2214 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2215 	printf("Number of forwarding cores set to %u\n",
2216 	       (unsigned int) nb_fwd_lcores);
2217 }
2218 
2219 void
2220 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2221 {
2222 	unsigned int i;
2223 	portid_t port_id;
2224 	int record_now;
2225 
2226 	record_now = 0;
2227  again:
2228 	for (i = 0; i < nb_pt; i++) {
2229 		port_id = (portid_t) portlist[i];
2230 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2231 			return;
2232 		if (record_now)
2233 			fwd_ports_ids[i] = port_id;
2234 	}
2235 	if (record_now == 0) {
2236 		record_now = 1;
2237 		goto again;
2238 	}
2239 	nb_cfg_ports = (portid_t) nb_pt;
2240 	if (nb_fwd_ports != (portid_t) nb_pt) {
2241 		printf("previous number of forwarding ports %u - changed to "
2242 		       "number of configured ports %u\n",
2243 		       (unsigned int) nb_fwd_ports, nb_pt);
2244 		nb_fwd_ports = (portid_t) nb_pt;
2245 	}
2246 }
2247 
2248 void
2249 set_fwd_ports_mask(uint64_t portmask)
2250 {
2251 	unsigned int portlist[64];
2252 	unsigned int nb_pt;
2253 	unsigned int i;
2254 
2255 	if (portmask == 0) {
2256 		printf("Invalid NULL mask of ports\n");
2257 		return;
2258 	}
2259 	nb_pt = 0;
2260 	RTE_ETH_FOREACH_DEV(i) {
2261 		if (! ((uint64_t)(1ULL << i) & portmask))
2262 			continue;
2263 		portlist[nb_pt++] = i;
2264 	}
2265 	set_fwd_ports_list(portlist, nb_pt);
2266 }
2267 
2268 void
2269 set_fwd_ports_number(uint16_t nb_pt)
2270 {
2271 	if (nb_pt > nb_cfg_ports) {
2272 		printf("nb fwd ports %u > %u (number of configured "
2273 		       "ports) - ignored\n",
2274 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2275 		return;
2276 	}
2277 	nb_fwd_ports = (portid_t) nb_pt;
2278 	printf("Number of forwarding ports set to %u\n",
2279 	       (unsigned int) nb_fwd_ports);
2280 }
2281 
2282 int
2283 port_is_forwarding(portid_t port_id)
2284 {
2285 	unsigned int i;
2286 
2287 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2288 		return -1;
2289 
2290 	for (i = 0; i < nb_fwd_ports; i++) {
2291 		if (fwd_ports_ids[i] == port_id)
2292 			return 1;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 void
2299 set_nb_pkt_per_burst(uint16_t nb)
2300 {
2301 	if (nb > MAX_PKT_BURST) {
2302 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2303 		       " ignored\n",
2304 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2305 		return;
2306 	}
2307 	nb_pkt_per_burst = nb;
2308 	printf("Number of packets per burst set to %u\n",
2309 	       (unsigned int) nb_pkt_per_burst);
2310 }
2311 
2312 static const char *
2313 tx_split_get_name(enum tx_pkt_split split)
2314 {
2315 	uint32_t i;
2316 
2317 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2318 		if (tx_split_name[i].split == split)
2319 			return tx_split_name[i].name;
2320 	}
2321 	return NULL;
2322 }
2323 
2324 void
2325 set_tx_pkt_split(const char *name)
2326 {
2327 	uint32_t i;
2328 
2329 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2330 		if (strcmp(tx_split_name[i].name, name) == 0) {
2331 			tx_pkt_split = tx_split_name[i].split;
2332 			return;
2333 		}
2334 	}
2335 	printf("unknown value: \"%s\"\n", name);
2336 }
2337 
2338 void
2339 show_tx_pkt_segments(void)
2340 {
2341 	uint32_t i, n;
2342 	const char *split;
2343 
2344 	n = tx_pkt_nb_segs;
2345 	split = tx_split_get_name(tx_pkt_split);
2346 
2347 	printf("Number of segments: %u\n", n);
2348 	printf("Segment sizes: ");
2349 	for (i = 0; i != n - 1; i++)
2350 		printf("%hu,", tx_pkt_seg_lengths[i]);
2351 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2352 	printf("Split packet: %s\n", split);
2353 }
2354 
2355 void
2356 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2357 {
2358 	uint16_t tx_pkt_len;
2359 	unsigned i;
2360 
2361 	if (nb_segs >= (unsigned) nb_txd) {
2362 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2363 		       nb_segs, (unsigned int) nb_txd);
2364 		return;
2365 	}
2366 
2367 	/*
2368 	 * Check that each segment length is greater or equal than
2369 	 * the mbuf data sise.
2370 	 * Check also that the total packet length is greater or equal than the
2371 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2372 	 */
2373 	tx_pkt_len = 0;
2374 	for (i = 0; i < nb_segs; i++) {
2375 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2376 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2377 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2378 			return;
2379 		}
2380 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2381 	}
2382 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2383 		printf("total packet length=%u < %d - give up\n",
2384 				(unsigned) tx_pkt_len,
2385 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2386 		return;
2387 	}
2388 
2389 	for (i = 0; i < nb_segs; i++)
2390 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2391 
2392 	tx_pkt_length  = tx_pkt_len;
2393 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2394 }
2395 
2396 char*
2397 list_pkt_forwarding_modes(void)
2398 {
2399 	static char fwd_modes[128] = "";
2400 	const char *separator = "|";
2401 	struct fwd_engine *fwd_eng;
2402 	unsigned i = 0;
2403 
2404 	if (strlen (fwd_modes) == 0) {
2405 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2406 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2407 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2408 			strncat(fwd_modes, separator,
2409 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2410 		}
2411 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2412 	}
2413 
2414 	return fwd_modes;
2415 }
2416 
2417 char*
2418 list_pkt_forwarding_retry_modes(void)
2419 {
2420 	static char fwd_modes[128] = "";
2421 	const char *separator = "|";
2422 	struct fwd_engine *fwd_eng;
2423 	unsigned i = 0;
2424 
2425 	if (strlen(fwd_modes) == 0) {
2426 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2427 			if (fwd_eng == &rx_only_engine)
2428 				continue;
2429 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2430 					sizeof(fwd_modes) -
2431 					strlen(fwd_modes) - 1);
2432 			strncat(fwd_modes, separator,
2433 					sizeof(fwd_modes) -
2434 					strlen(fwd_modes) - 1);
2435 		}
2436 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2437 	}
2438 
2439 	return fwd_modes;
2440 }
2441 
2442 void
2443 set_pkt_forwarding_mode(const char *fwd_mode_name)
2444 {
2445 	struct fwd_engine *fwd_eng;
2446 	unsigned i;
2447 
2448 	i = 0;
2449 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2450 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2451 			printf("Set %s packet forwarding mode%s\n",
2452 			       fwd_mode_name,
2453 			       retry_enabled == 0 ? "" : " with retry");
2454 			cur_fwd_eng = fwd_eng;
2455 			return;
2456 		}
2457 		i++;
2458 	}
2459 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2460 }
2461 
2462 void
2463 set_verbose_level(uint16_t vb_level)
2464 {
2465 	printf("Change verbose level from %u to %u\n",
2466 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2467 	verbose_level = vb_level;
2468 }
2469 
2470 void
2471 vlan_extend_set(portid_t port_id, int on)
2472 {
2473 	int diag;
2474 	int vlan_offload;
2475 
2476 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2477 		return;
2478 
2479 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2480 
2481 	if (on)
2482 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2483 	else
2484 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2485 
2486 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2487 	if (diag < 0)
2488 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2489 	       "diag=%d\n", port_id, on, diag);
2490 }
2491 
2492 void
2493 rx_vlan_strip_set(portid_t port_id, int on)
2494 {
2495 	int diag;
2496 	int vlan_offload;
2497 
2498 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2499 		return;
2500 
2501 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2502 
2503 	if (on)
2504 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2505 	else
2506 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2507 
2508 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2509 	if (diag < 0)
2510 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2511 	       "diag=%d\n", port_id, on, diag);
2512 }
2513 
2514 void
2515 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2516 {
2517 	int diag;
2518 
2519 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2520 		return;
2521 
2522 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2523 	if (diag < 0)
2524 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2525 	       "diag=%d\n", port_id, queue_id, on, diag);
2526 }
2527 
2528 void
2529 rx_vlan_filter_set(portid_t port_id, int on)
2530 {
2531 	int diag;
2532 	int vlan_offload;
2533 
2534 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2535 		return;
2536 
2537 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2538 
2539 	if (on)
2540 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2541 	else
2542 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2543 
2544 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2545 	if (diag < 0)
2546 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2547 	       "diag=%d\n", port_id, on, diag);
2548 }
2549 
2550 int
2551 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2552 {
2553 	int diag;
2554 
2555 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2556 		return 1;
2557 	if (vlan_id_is_invalid(vlan_id))
2558 		return 1;
2559 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2560 	if (diag == 0)
2561 		return 0;
2562 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2563 	       "diag=%d\n",
2564 	       port_id, vlan_id, on, diag);
2565 	return -1;
2566 }
2567 
2568 void
2569 rx_vlan_all_filter_set(portid_t port_id, int on)
2570 {
2571 	uint16_t vlan_id;
2572 
2573 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2574 		return;
2575 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2576 		if (rx_vft_set(port_id, vlan_id, on))
2577 			break;
2578 	}
2579 }
2580 
2581 void
2582 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2583 {
2584 	int diag;
2585 
2586 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2587 		return;
2588 
2589 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2590 	if (diag == 0)
2591 		return;
2592 
2593 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2594 	       "diag=%d\n",
2595 	       port_id, vlan_type, tp_id, diag);
2596 }
2597 
2598 void
2599 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2600 {
2601 	int vlan_offload;
2602 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2603 		return;
2604 	if (vlan_id_is_invalid(vlan_id))
2605 		return;
2606 
2607 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2608 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2609 		printf("Error, as QinQ has been enabled.\n");
2610 		return;
2611 	}
2612 
2613 	tx_vlan_reset(port_id);
2614 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2615 	ports[port_id].tx_vlan_id = vlan_id;
2616 }
2617 
2618 void
2619 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2620 {
2621 	int vlan_offload;
2622 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2623 		return;
2624 	if (vlan_id_is_invalid(vlan_id))
2625 		return;
2626 	if (vlan_id_is_invalid(vlan_id_outer))
2627 		return;
2628 
2629 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2630 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2631 		printf("Error, as QinQ hasn't been enabled.\n");
2632 		return;
2633 	}
2634 
2635 	tx_vlan_reset(port_id);
2636 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2637 	ports[port_id].tx_vlan_id = vlan_id;
2638 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2639 }
2640 
2641 void
2642 tx_vlan_reset(portid_t port_id)
2643 {
2644 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2645 		return;
2646 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2647 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2648 	ports[port_id].tx_vlan_id = 0;
2649 	ports[port_id].tx_vlan_id_outer = 0;
2650 }
2651 
2652 void
2653 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2654 {
2655 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2656 		return;
2657 
2658 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2659 }
2660 
2661 void
2662 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2663 {
2664 	uint16_t i;
2665 	uint8_t existing_mapping_found = 0;
2666 
2667 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2668 		return;
2669 
2670 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2671 		return;
2672 
2673 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2674 		printf("map_value not in required range 0..%d\n",
2675 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2676 		return;
2677 	}
2678 
2679 	if (!is_rx) { /*then tx*/
2680 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2681 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2682 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2683 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2684 				existing_mapping_found = 1;
2685 				break;
2686 			}
2687 		}
2688 		if (!existing_mapping_found) { /* A new additional mapping... */
2689 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2690 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2691 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2692 			nb_tx_queue_stats_mappings++;
2693 		}
2694 	}
2695 	else { /*rx*/
2696 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2697 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2698 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2699 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2700 				existing_mapping_found = 1;
2701 				break;
2702 			}
2703 		}
2704 		if (!existing_mapping_found) { /* A new additional mapping... */
2705 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2706 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2707 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2708 			nb_rx_queue_stats_mappings++;
2709 		}
2710 	}
2711 }
2712 
2713 static inline void
2714 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2715 {
2716 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2717 
2718 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2719 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2720 			" tunnel_id: 0x%08x",
2721 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2722 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2723 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2724 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2725 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2726 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2727 
2728 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2729 			rte_be_to_cpu_16(mask->src_port_mask),
2730 			rte_be_to_cpu_16(mask->dst_port_mask));
2731 
2732 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2733 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2734 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2735 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2736 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2737 
2738 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2739 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2740 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2741 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2742 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2743 	}
2744 
2745 	printf("\n");
2746 }
2747 
2748 static inline void
2749 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2750 {
2751 	struct rte_eth_flex_payload_cfg *cfg;
2752 	uint32_t i, j;
2753 
2754 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2755 		cfg = &flex_conf->flex_set[i];
2756 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2757 			printf("\n    RAW:  ");
2758 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2759 			printf("\n    L2_PAYLOAD:  ");
2760 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2761 			printf("\n    L3_PAYLOAD:  ");
2762 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2763 			printf("\n    L4_PAYLOAD:  ");
2764 		else
2765 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2766 		for (j = 0; j < num; j++)
2767 			printf("  %-5u", cfg->src_offset[j]);
2768 	}
2769 	printf("\n");
2770 }
2771 
2772 static char *
2773 flowtype_to_str(uint16_t flow_type)
2774 {
2775 	struct flow_type_info {
2776 		char str[32];
2777 		uint16_t ftype;
2778 	};
2779 
2780 	uint8_t i;
2781 	static struct flow_type_info flowtype_str_table[] = {
2782 		{"raw", RTE_ETH_FLOW_RAW},
2783 		{"ipv4", RTE_ETH_FLOW_IPV4},
2784 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2785 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2786 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2787 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2788 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2789 		{"ipv6", RTE_ETH_FLOW_IPV6},
2790 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2791 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2792 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2793 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2794 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2795 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2796 		{"port", RTE_ETH_FLOW_PORT},
2797 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2798 		{"geneve", RTE_ETH_FLOW_GENEVE},
2799 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2800 	};
2801 
2802 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2803 		if (flowtype_str_table[i].ftype == flow_type)
2804 			return flowtype_str_table[i].str;
2805 	}
2806 
2807 	return NULL;
2808 }
2809 
2810 static inline void
2811 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2812 {
2813 	struct rte_eth_fdir_flex_mask *mask;
2814 	uint32_t i, j;
2815 	char *p;
2816 
2817 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2818 		mask = &flex_conf->flex_mask[i];
2819 		p = flowtype_to_str(mask->flow_type);
2820 		printf("\n    %s:\t", p ? p : "unknown");
2821 		for (j = 0; j < num; j++)
2822 			printf(" %02x", mask->mask[j]);
2823 	}
2824 	printf("\n");
2825 }
2826 
2827 static inline void
2828 print_fdir_flow_type(uint32_t flow_types_mask)
2829 {
2830 	int i;
2831 	char *p;
2832 
2833 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2834 		if (!(flow_types_mask & (1 << i)))
2835 			continue;
2836 		p = flowtype_to_str(i);
2837 		if (p)
2838 			printf(" %s", p);
2839 		else
2840 			printf(" unknown");
2841 	}
2842 	printf("\n");
2843 }
2844 
2845 void
2846 fdir_get_infos(portid_t port_id)
2847 {
2848 	struct rte_eth_fdir_stats fdir_stat;
2849 	struct rte_eth_fdir_info fdir_info;
2850 	int ret;
2851 
2852 	static const char *fdir_stats_border = "########################";
2853 
2854 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2855 		return;
2856 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2857 	if (ret < 0) {
2858 		printf("\n FDIR is not supported on port %-2d\n",
2859 			port_id);
2860 		return;
2861 	}
2862 
2863 	memset(&fdir_info, 0, sizeof(fdir_info));
2864 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2865 			       RTE_ETH_FILTER_INFO, &fdir_info);
2866 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2867 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2868 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2869 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2870 	       fdir_stats_border, port_id, fdir_stats_border);
2871 	printf("  MODE: ");
2872 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2873 		printf("  PERFECT\n");
2874 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2875 		printf("  PERFECT-MAC-VLAN\n");
2876 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2877 		printf("  PERFECT-TUNNEL\n");
2878 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2879 		printf("  SIGNATURE\n");
2880 	else
2881 		printf("  DISABLE\n");
2882 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2883 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2884 		printf("  SUPPORTED FLOW TYPE: ");
2885 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2886 	}
2887 	printf("  FLEX PAYLOAD INFO:\n");
2888 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2889 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2890 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2891 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2892 		fdir_info.flex_payload_unit,
2893 		fdir_info.max_flex_payload_segment_num,
2894 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2895 	printf("  MASK: ");
2896 	print_fdir_mask(&fdir_info.mask);
2897 	if (fdir_info.flex_conf.nb_payloads > 0) {
2898 		printf("  FLEX PAYLOAD SRC OFFSET:");
2899 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2900 	}
2901 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2902 		printf("  FLEX MASK CFG:");
2903 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2904 	}
2905 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2906 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2907 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2908 	       fdir_info.guarant_spc, fdir_info.best_spc);
2909 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2910 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2911 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2912 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2913 	       fdir_stat.collision, fdir_stat.free,
2914 	       fdir_stat.maxhash, fdir_stat.maxlen,
2915 	       fdir_stat.add, fdir_stat.remove,
2916 	       fdir_stat.f_add, fdir_stat.f_remove);
2917 	printf("  %s############################%s\n",
2918 	       fdir_stats_border, fdir_stats_border);
2919 }
2920 
2921 void
2922 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2923 {
2924 	struct rte_port *port;
2925 	struct rte_eth_fdir_flex_conf *flex_conf;
2926 	int i, idx = 0;
2927 
2928 	port = &ports[port_id];
2929 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2930 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2931 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2932 			idx = i;
2933 			break;
2934 		}
2935 	}
2936 	if (i >= RTE_ETH_FLOW_MAX) {
2937 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2938 			idx = flex_conf->nb_flexmasks;
2939 			flex_conf->nb_flexmasks++;
2940 		} else {
2941 			printf("The flex mask table is full. Can not set flex"
2942 				" mask for flow_type(%u).", cfg->flow_type);
2943 			return;
2944 		}
2945 	}
2946 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2947 			 cfg,
2948 			 sizeof(struct rte_eth_fdir_flex_mask));
2949 }
2950 
2951 void
2952 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2953 {
2954 	struct rte_port *port;
2955 	struct rte_eth_fdir_flex_conf *flex_conf;
2956 	int i, idx = 0;
2957 
2958 	port = &ports[port_id];
2959 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2960 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2961 		if (cfg->type == flex_conf->flex_set[i].type) {
2962 			idx = i;
2963 			break;
2964 		}
2965 	}
2966 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2967 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2968 			idx = flex_conf->nb_payloads;
2969 			flex_conf->nb_payloads++;
2970 		} else {
2971 			printf("The flex payload table is full. Can not set"
2972 				" flex payload for type(%u).", cfg->type);
2973 			return;
2974 		}
2975 	}
2976 	(void)rte_memcpy(&flex_conf->flex_set[idx],
2977 			 cfg,
2978 			 sizeof(struct rte_eth_flex_payload_cfg));
2979 
2980 }
2981 
2982 #ifdef RTE_LIBRTE_IXGBE_PMD
2983 void
2984 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
2985 {
2986 	int diag;
2987 
2988 	if (is_rx)
2989 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
2990 	else
2991 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
2992 
2993 	if (diag == 0)
2994 		return;
2995 	if(is_rx)
2996 		printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed "
2997 	       		"diag=%d\n", port_id, diag);
2998 	else
2999 		printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed "
3000 	       		"diag=%d\n", port_id, diag);
3001 
3002 }
3003 #endif
3004 
3005 int
3006 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3007 {
3008 	int diag;
3009 	struct rte_eth_link link;
3010 
3011 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3012 		return 1;
3013 	rte_eth_link_get_nowait(port_id, &link);
3014 	if (rate > link.link_speed) {
3015 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3016 			rate, link.link_speed);
3017 		return 1;
3018 	}
3019 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3020 	if (diag == 0)
3021 		return diag;
3022 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3023 		port_id, diag);
3024 	return diag;
3025 }
3026 
3027 #ifdef RTE_LIBRTE_IXGBE_PMD
3028 int
3029 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3030 {
3031 	int diag;
3032 
3033 	diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk);
3034 	if (diag == 0)
3035 		return diag;
3036 	printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n",
3037 		port_id, diag);
3038 	return diag;
3039 }
3040 #endif
3041 
3042 /*
3043  * Functions to manage the set of filtered Multicast MAC addresses.
3044  *
3045  * A pool of filtered multicast MAC addresses is associated with each port.
3046  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3047  * The address of the pool and the number of valid multicast MAC addresses
3048  * recorded in the pool are stored in the fields "mc_addr_pool" and
3049  * "mc_addr_nb" of the "rte_port" data structure.
3050  *
3051  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3052  * to be supplied a contiguous array of multicast MAC addresses.
3053  * To comply with this constraint, the set of multicast addresses recorded
3054  * into the pool are systematically compacted at the beginning of the pool.
3055  * Hence, when a multicast address is removed from the pool, all following
3056  * addresses, if any, are copied back to keep the set contiguous.
3057  */
3058 #define MCAST_POOL_INC 32
3059 
3060 static int
3061 mcast_addr_pool_extend(struct rte_port *port)
3062 {
3063 	struct ether_addr *mc_pool;
3064 	size_t mc_pool_size;
3065 
3066 	/*
3067 	 * If a free entry is available at the end of the pool, just
3068 	 * increment the number of recorded multicast addresses.
3069 	 */
3070 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3071 		port->mc_addr_nb++;
3072 		return 0;
3073 	}
3074 
3075 	/*
3076 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3077 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3078 	 * of MCAST_POOL_INC.
3079 	 */
3080 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3081 						    MCAST_POOL_INC);
3082 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3083 						mc_pool_size);
3084 	if (mc_pool == NULL) {
3085 		printf("allocation of pool of %u multicast addresses failed\n",
3086 		       port->mc_addr_nb + MCAST_POOL_INC);
3087 		return -ENOMEM;
3088 	}
3089 
3090 	port->mc_addr_pool = mc_pool;
3091 	port->mc_addr_nb++;
3092 	return 0;
3093 
3094 }
3095 
3096 static void
3097 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3098 {
3099 	port->mc_addr_nb--;
3100 	if (addr_idx == port->mc_addr_nb) {
3101 		/* No need to recompact the set of multicast addressses. */
3102 		if (port->mc_addr_nb == 0) {
3103 			/* free the pool of multicast addresses. */
3104 			free(port->mc_addr_pool);
3105 			port->mc_addr_pool = NULL;
3106 		}
3107 		return;
3108 	}
3109 	memmove(&port->mc_addr_pool[addr_idx],
3110 		&port->mc_addr_pool[addr_idx + 1],
3111 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3112 }
3113 
3114 static void
3115 eth_port_multicast_addr_list_set(uint8_t port_id)
3116 {
3117 	struct rte_port *port;
3118 	int diag;
3119 
3120 	port = &ports[port_id];
3121 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3122 					    port->mc_addr_nb);
3123 	if (diag == 0)
3124 		return;
3125 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3126 	       port->mc_addr_nb, port_id, -diag);
3127 }
3128 
3129 void
3130 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3131 {
3132 	struct rte_port *port;
3133 	uint32_t i;
3134 
3135 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3136 		return;
3137 
3138 	port = &ports[port_id];
3139 
3140 	/*
3141 	 * Check that the added multicast MAC address is not already recorded
3142 	 * in the pool of multicast addresses.
3143 	 */
3144 	for (i = 0; i < port->mc_addr_nb; i++) {
3145 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3146 			printf("multicast address already filtered by port\n");
3147 			return;
3148 		}
3149 	}
3150 
3151 	if (mcast_addr_pool_extend(port) != 0)
3152 		return;
3153 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3154 	eth_port_multicast_addr_list_set(port_id);
3155 }
3156 
3157 void
3158 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3159 {
3160 	struct rte_port *port;
3161 	uint32_t i;
3162 
3163 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3164 		return;
3165 
3166 	port = &ports[port_id];
3167 
3168 	/*
3169 	 * Search the pool of multicast MAC addresses for the removed address.
3170 	 */
3171 	for (i = 0; i < port->mc_addr_nb; i++) {
3172 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3173 			break;
3174 	}
3175 	if (i == port->mc_addr_nb) {
3176 		printf("multicast address not filtered by port %d\n", port_id);
3177 		return;
3178 	}
3179 
3180 	mcast_addr_pool_remove(port, i);
3181 	eth_port_multicast_addr_list_set(port_id);
3182 }
3183 
3184 void
3185 port_dcb_info_display(uint8_t port_id)
3186 {
3187 	struct rte_eth_dcb_info dcb_info;
3188 	uint16_t i;
3189 	int ret;
3190 	static const char *border = "================";
3191 
3192 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3193 		return;
3194 
3195 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3196 	if (ret) {
3197 		printf("\n Failed to get dcb infos on port %-2d\n",
3198 			port_id);
3199 		return;
3200 	}
3201 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3202 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3203 	printf("\n  TC :        ");
3204 	for (i = 0; i < dcb_info.nb_tcs; i++)
3205 		printf("\t%4d", i);
3206 	printf("\n  Priority :  ");
3207 	for (i = 0; i < dcb_info.nb_tcs; i++)
3208 		printf("\t%4d", dcb_info.prio_tc[i]);
3209 	printf("\n  BW percent :");
3210 	for (i = 0; i < dcb_info.nb_tcs; i++)
3211 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3212 	printf("\n  RXQ base :  ");
3213 	for (i = 0; i < dcb_info.nb_tcs; i++)
3214 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3215 	printf("\n  RXQ number :");
3216 	for (i = 0; i < dcb_info.nb_tcs; i++)
3217 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3218 	printf("\n  TXQ base :  ");
3219 	for (i = 0; i < dcb_info.nb_tcs; i++)
3220 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3221 	printf("\n  TXQ number :");
3222 	for (i = 0; i < dcb_info.nb_tcs; i++)
3223 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3224 	printf("\n");
3225 }
3226 
3227 uint8_t *
3228 open_ddp_package_file(const char *file_path, uint32_t *size)
3229 {
3230 	FILE *fh = fopen(file_path, "rb");
3231 	uint32_t pkg_size;
3232 	uint8_t *buf = NULL;
3233 	int ret = 0;
3234 
3235 	if (size)
3236 		*size = 0;
3237 
3238 	if (fh == NULL) {
3239 		printf("%s: Failed to open %s\n", __func__, file_path);
3240 		return buf;
3241 	}
3242 
3243 	ret = fseek(fh, 0, SEEK_END);
3244 	if (ret < 0) {
3245 		fclose(fh);
3246 		printf("%s: File operations failed\n", __func__);
3247 		return buf;
3248 	}
3249 
3250 	pkg_size = ftell(fh);
3251 
3252 	buf = (uint8_t *)malloc(pkg_size);
3253 	if (!buf) {
3254 		fclose(fh);
3255 		printf("%s: Failed to malloc memory\n",	__func__);
3256 		return buf;
3257 	}
3258 
3259 	ret = fseek(fh, 0, SEEK_SET);
3260 	if (ret < 0) {
3261 		fclose(fh);
3262 		printf("%s: File seek operation failed\n", __func__);
3263 		close_ddp_package_file(buf);
3264 		return NULL;
3265 	}
3266 
3267 	ret = fread(buf, 1, pkg_size, fh);
3268 	if (ret < 0) {
3269 		fclose(fh);
3270 		printf("%s: File read operation failed\n", __func__);
3271 		close_ddp_package_file(buf);
3272 		return NULL;
3273 	}
3274 
3275 	if (size)
3276 		*size = pkg_size;
3277 
3278 	fclose(fh);
3279 
3280 	return buf;
3281 }
3282 
3283 int
3284 close_ddp_package_file(uint8_t *buf)
3285 {
3286 	if (buf) {
3287 		free((void *)buf);
3288 		return 0;
3289 	}
3290 
3291 	return -1;
3292 }
3293