1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <ctype.h> 7 #include <stdarg.h> 8 #include <errno.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <string.h> 12 #include <stdint.h> 13 #include <inttypes.h> 14 15 #include <sys/queue.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <fcntl.h> 19 #include <unistd.h> 20 21 #include <rte_common.h> 22 #include <rte_byteorder.h> 23 #include <rte_debug.h> 24 #include <rte_log.h> 25 #include <rte_memory.h> 26 #include <rte_memcpy.h> 27 #include <rte_memzone.h> 28 #include <rte_launch.h> 29 #include <rte_bus.h> 30 #include <rte_eal.h> 31 #include <rte_per_lcore.h> 32 #include <rte_lcore.h> 33 #include <rte_branch_prediction.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_interrupts.h> 37 #include <rte_ether.h> 38 #include <rte_ethdev.h> 39 #include <rte_string_fns.h> 40 #include <rte_cycles.h> 41 #include <rte_flow.h> 42 #include <rte_mtr.h> 43 #include <rte_errno.h> 44 #ifdef RTE_NET_IXGBE 45 #include <rte_pmd_ixgbe.h> 46 #endif 47 #ifdef RTE_NET_I40E 48 #include <rte_pmd_i40e.h> 49 #endif 50 #ifdef RTE_NET_BNXT 51 #include <rte_pmd_bnxt.h> 52 #endif 53 #ifdef RTE_LIB_GRO 54 #include <rte_gro.h> 55 #endif 56 #include <rte_hexdump.h> 57 58 #include "testpmd.h" 59 #include "cmdline_mtr.h" 60 61 #define ETHDEV_FWVERS_LEN 32 62 63 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */ 64 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW 65 #else 66 #define CLOCK_TYPE_ID CLOCK_MONOTONIC 67 #endif 68 69 #define NS_PER_SEC 1E9 70 71 static const struct { 72 enum tx_pkt_split split; 73 const char *name; 74 } tx_split_name[] = { 75 { 76 .split = TX_PKT_SPLIT_OFF, 77 .name = "off", 78 }, 79 { 80 .split = TX_PKT_SPLIT_ON, 81 .name = "on", 82 }, 83 { 84 .split = TX_PKT_SPLIT_RND, 85 .name = "rand", 86 }, 87 }; 88 89 const struct rss_type_info rss_type_table[] = { 90 /* Group types */ 91 { "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP | 92 RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD | 93 RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP | 94 RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS | RTE_ETH_RSS_L2TPV2}, 95 { "none", 0 }, 96 { "ip", RTE_ETH_RSS_IP }, 97 { "udp", RTE_ETH_RSS_UDP }, 98 { "tcp", RTE_ETH_RSS_TCP }, 99 { "sctp", RTE_ETH_RSS_SCTP }, 100 { "tunnel", RTE_ETH_RSS_TUNNEL }, 101 { "vlan", RTE_ETH_RSS_VLAN }, 102 103 /* Individual type */ 104 { "ipv4", RTE_ETH_RSS_IPV4 }, 105 { "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 }, 106 { "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP }, 107 { "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP }, 108 { "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP }, 109 { "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER }, 110 { "ipv6", RTE_ETH_RSS_IPV6 }, 111 { "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 }, 112 { "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP }, 113 { "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP }, 114 { "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP }, 115 { "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER }, 116 { "l2-payload", RTE_ETH_RSS_L2_PAYLOAD }, 117 { "ipv6-ex", RTE_ETH_RSS_IPV6_EX }, 118 { "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX }, 119 { "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX }, 120 { "port", RTE_ETH_RSS_PORT }, 121 { "vxlan", RTE_ETH_RSS_VXLAN }, 122 { "geneve", RTE_ETH_RSS_GENEVE }, 123 { "nvgre", RTE_ETH_RSS_NVGRE }, 124 { "gtpu", RTE_ETH_RSS_GTPU }, 125 { "eth", RTE_ETH_RSS_ETH }, 126 { "s-vlan", RTE_ETH_RSS_S_VLAN }, 127 { "c-vlan", RTE_ETH_RSS_C_VLAN }, 128 { "esp", RTE_ETH_RSS_ESP }, 129 { "ah", RTE_ETH_RSS_AH }, 130 { "l2tpv3", RTE_ETH_RSS_L2TPV3 }, 131 { "pfcp", RTE_ETH_RSS_PFCP }, 132 { "pppoe", RTE_ETH_RSS_PPPOE }, 133 { "ecpri", RTE_ETH_RSS_ECPRI }, 134 { "mpls", RTE_ETH_RSS_MPLS }, 135 { "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM }, 136 { "l4-chksum", RTE_ETH_RSS_L4_CHKSUM }, 137 { "l2tpv2", RTE_ETH_RSS_L2TPV2 }, 138 { "l3-pre96", RTE_ETH_RSS_L3_PRE96 }, 139 { "l3-pre64", RTE_ETH_RSS_L3_PRE64 }, 140 { "l3-pre56", RTE_ETH_RSS_L3_PRE56 }, 141 { "l3-pre48", RTE_ETH_RSS_L3_PRE48 }, 142 { "l3-pre40", RTE_ETH_RSS_L3_PRE40 }, 143 { "l3-pre32", RTE_ETH_RSS_L3_PRE32 }, 144 { "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY }, 145 { "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY }, 146 { "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY }, 147 { "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY }, 148 { "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY }, 149 { "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY }, 150 { NULL, 0}, 151 }; 152 153 static const struct { 154 enum rte_eth_fec_mode mode; 155 const char *name; 156 } fec_mode_name[] = { 157 { 158 .mode = RTE_ETH_FEC_NOFEC, 159 .name = "off", 160 }, 161 { 162 .mode = RTE_ETH_FEC_AUTO, 163 .name = "auto", 164 }, 165 { 166 .mode = RTE_ETH_FEC_BASER, 167 .name = "baser", 168 }, 169 { 170 .mode = RTE_ETH_FEC_RS, 171 .name = "rs", 172 }, 173 }; 174 175 static const struct { 176 char str[32]; 177 uint16_t ftype; 178 } flowtype_str_table[] = { 179 {"raw", RTE_ETH_FLOW_RAW}, 180 {"ipv4", RTE_ETH_FLOW_IPV4}, 181 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 182 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 183 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 184 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 185 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 186 {"ipv6", RTE_ETH_FLOW_IPV6}, 187 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 188 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 189 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 190 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 191 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 192 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 193 {"ipv6-ex", RTE_ETH_FLOW_IPV6_EX}, 194 {"ipv6-tcp-ex", RTE_ETH_FLOW_IPV6_TCP_EX}, 195 {"ipv6-udp-ex", RTE_ETH_FLOW_IPV6_UDP_EX}, 196 {"port", RTE_ETH_FLOW_PORT}, 197 {"vxlan", RTE_ETH_FLOW_VXLAN}, 198 {"geneve", RTE_ETH_FLOW_GENEVE}, 199 {"nvgre", RTE_ETH_FLOW_NVGRE}, 200 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, 201 {"gtpu", RTE_ETH_FLOW_GTPU}, 202 }; 203 204 static void 205 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 206 { 207 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 208 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 209 printf("%s%s", name, buf); 210 } 211 212 static void 213 nic_xstats_display_periodic(portid_t port_id) 214 { 215 struct xstat_display_info *xstats_info; 216 uint64_t *prev_values, *curr_values; 217 uint64_t diff_value, value_rate; 218 struct timespec cur_time; 219 uint64_t *ids_supp; 220 size_t ids_supp_sz; 221 uint64_t diff_ns; 222 unsigned int i; 223 int rc; 224 225 xstats_info = &ports[port_id].xstats_info; 226 227 ids_supp_sz = xstats_info->ids_supp_sz; 228 if (ids_supp_sz == 0) 229 return; 230 231 printf("\n"); 232 233 ids_supp = xstats_info->ids_supp; 234 prev_values = xstats_info->prev_values; 235 curr_values = xstats_info->curr_values; 236 237 rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values, 238 ids_supp_sz); 239 if (rc != (int)ids_supp_sz) { 240 fprintf(stderr, 241 "Failed to get values of %zu xstats for port %u - return code %d\n", 242 ids_supp_sz, port_id, rc); 243 return; 244 } 245 246 diff_ns = 0; 247 if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { 248 uint64_t ns; 249 250 ns = cur_time.tv_sec * NS_PER_SEC; 251 ns += cur_time.tv_nsec; 252 253 if (xstats_info->prev_ns != 0) 254 diff_ns = ns - xstats_info->prev_ns; 255 xstats_info->prev_ns = ns; 256 } 257 258 printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)"); 259 for (i = 0; i < ids_supp_sz; i++) { 260 diff_value = (curr_values[i] > prev_values[i]) ? 261 (curr_values[i] - prev_values[i]) : 0; 262 prev_values[i] = curr_values[i]; 263 value_rate = diff_ns > 0 ? 264 (double)diff_value / diff_ns * NS_PER_SEC : 0; 265 266 printf(" %-25s%12"PRIu64" %15"PRIu64"\n", 267 xstats_display[i].name, curr_values[i], value_rate); 268 } 269 } 270 271 void 272 nic_stats_display(portid_t port_id) 273 { 274 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 275 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 276 static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS]; 277 static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS]; 278 static uint64_t prev_ns[RTE_MAX_ETHPORTS]; 279 struct timespec cur_time; 280 uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx, 281 diff_ns; 282 uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx; 283 struct rte_eth_stats stats; 284 static const char *nic_stats_border = "########################"; 285 int ret; 286 287 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 288 print_valid_ports(); 289 return; 290 } 291 ret = rte_eth_stats_get(port_id, &stats); 292 if (ret != 0) { 293 fprintf(stderr, 294 "%s: Error: failed to get stats (port %u): %d", 295 __func__, port_id, ret); 296 return; 297 } 298 printf("\n %s NIC statistics for port %-2d %s\n", 299 nic_stats_border, port_id, nic_stats_border); 300 301 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 302 "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes); 303 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 304 printf(" RX-nombuf: %-10"PRIu64"\n", stats.rx_nombuf); 305 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 306 "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes); 307 308 diff_ns = 0; 309 if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { 310 uint64_t ns; 311 312 ns = cur_time.tv_sec * NS_PER_SEC; 313 ns += cur_time.tv_nsec; 314 315 if (prev_ns[port_id] != 0) 316 diff_ns = ns - prev_ns[port_id]; 317 prev_ns[port_id] = ns; 318 } 319 320 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 321 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 322 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 323 (stats.opackets - prev_pkts_tx[port_id]) : 0; 324 prev_pkts_rx[port_id] = stats.ipackets; 325 prev_pkts_tx[port_id] = stats.opackets; 326 mpps_rx = diff_ns > 0 ? 327 (double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0; 328 mpps_tx = diff_ns > 0 ? 329 (double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0; 330 331 diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ? 332 (stats.ibytes - prev_bytes_rx[port_id]) : 0; 333 diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ? 334 (stats.obytes - prev_bytes_tx[port_id]) : 0; 335 prev_bytes_rx[port_id] = stats.ibytes; 336 prev_bytes_tx[port_id] = stats.obytes; 337 mbps_rx = diff_ns > 0 ? 338 (double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0; 339 mbps_tx = diff_ns > 0 ? 340 (double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0; 341 342 printf("\n Throughput (since last show)\n"); 343 printf(" Rx-pps: %12"PRIu64" Rx-bps: %12"PRIu64"\n Tx-pps: %12" 344 PRIu64" Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8, 345 mpps_tx, mbps_tx * 8); 346 347 if (xstats_display_num > 0) 348 nic_xstats_display_periodic(port_id); 349 350 printf(" %s############################%s\n", 351 nic_stats_border, nic_stats_border); 352 } 353 354 void 355 nic_stats_clear(portid_t port_id) 356 { 357 int ret; 358 359 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 360 print_valid_ports(); 361 return; 362 } 363 364 ret = rte_eth_stats_reset(port_id); 365 if (ret != 0) { 366 fprintf(stderr, 367 "%s: Error: failed to reset stats (port %u): %s", 368 __func__, port_id, strerror(-ret)); 369 return; 370 } 371 372 ret = rte_eth_stats_get(port_id, &ports[port_id].stats); 373 if (ret != 0) { 374 if (ret < 0) 375 ret = -ret; 376 fprintf(stderr, 377 "%s: Error: failed to get stats (port %u): %s", 378 __func__, port_id, strerror(ret)); 379 return; 380 } 381 printf("\n NIC statistics for port %d cleared\n", port_id); 382 } 383 384 void 385 nic_xstats_display(portid_t port_id) 386 { 387 struct rte_eth_xstat *xstats; 388 int cnt_xstats, idx_xstat; 389 struct rte_eth_xstat_name *xstats_names; 390 391 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 392 print_valid_ports(); 393 return; 394 } 395 printf("###### NIC extended statistics for port %-2d\n", port_id); 396 if (!rte_eth_dev_is_valid_port(port_id)) { 397 fprintf(stderr, "Error: Invalid port number %i\n", port_id); 398 return; 399 } 400 401 /* Get count */ 402 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 403 if (cnt_xstats < 0) { 404 fprintf(stderr, "Error: Cannot get count of xstats\n"); 405 return; 406 } 407 408 /* Get id-name lookup table */ 409 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 410 if (xstats_names == NULL) { 411 fprintf(stderr, "Cannot allocate memory for xstats lookup\n"); 412 return; 413 } 414 if (cnt_xstats != rte_eth_xstats_get_names( 415 port_id, xstats_names, cnt_xstats)) { 416 fprintf(stderr, "Error: Cannot get xstats lookup\n"); 417 free(xstats_names); 418 return; 419 } 420 421 /* Get stats themselves */ 422 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 423 if (xstats == NULL) { 424 fprintf(stderr, "Cannot allocate memory for xstats\n"); 425 free(xstats_names); 426 return; 427 } 428 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 429 fprintf(stderr, "Error: Unable to get xstats\n"); 430 free(xstats_names); 431 free(xstats); 432 return; 433 } 434 435 /* Display xstats */ 436 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 437 if (xstats_hide_zero && !xstats[idx_xstat].value) 438 continue; 439 printf("%s: %"PRIu64"\n", 440 xstats_names[idx_xstat].name, 441 xstats[idx_xstat].value); 442 } 443 free(xstats_names); 444 free(xstats); 445 } 446 447 void 448 nic_xstats_clear(portid_t port_id) 449 { 450 int ret; 451 452 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 453 print_valid_ports(); 454 return; 455 } 456 457 ret = rte_eth_xstats_reset(port_id); 458 if (ret != 0) { 459 fprintf(stderr, 460 "%s: Error: failed to reset xstats (port %u): %s\n", 461 __func__, port_id, strerror(-ret)); 462 return; 463 } 464 465 ret = rte_eth_stats_get(port_id, &ports[port_id].stats); 466 if (ret != 0) { 467 if (ret < 0) 468 ret = -ret; 469 fprintf(stderr, "%s: Error: failed to get stats (port %u): %s", 470 __func__, port_id, strerror(ret)); 471 return; 472 } 473 } 474 475 static const char * 476 get_queue_state_name(uint8_t queue_state) 477 { 478 if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED) 479 return "stopped"; 480 else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED) 481 return "started"; 482 else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN) 483 return "hairpin"; 484 else 485 return "unknown"; 486 } 487 488 void 489 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 490 { 491 struct rte_eth_burst_mode mode; 492 struct rte_eth_rxq_info qinfo; 493 int32_t rc; 494 static const char *info_border = "*********************"; 495 496 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 497 if (rc != 0) { 498 fprintf(stderr, 499 "Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n", 500 port_id, queue_id, strerror(-rc), rc); 501 return; 502 } 503 504 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 505 info_border, port_id, queue_id, info_border); 506 507 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 508 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 509 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 510 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 511 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 512 printf("\nRX drop packets: %s", 513 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 514 printf("\nRX deferred start: %s", 515 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 516 printf("\nRX scattered packets: %s", 517 (qinfo.scattered_rx != 0) ? "on" : "off"); 518 printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state)); 519 if (qinfo.rx_buf_size != 0) 520 printf("\nRX buffer size: %hu", qinfo.rx_buf_size); 521 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 522 523 if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0) 524 printf("\nBurst mode: %s%s", 525 mode.info, 526 mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? 527 " (per queue)" : ""); 528 529 printf("\n"); 530 } 531 532 void 533 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 534 { 535 struct rte_eth_burst_mode mode; 536 struct rte_eth_txq_info qinfo; 537 int32_t rc; 538 static const char *info_border = "*********************"; 539 540 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 541 if (rc != 0) { 542 fprintf(stderr, 543 "Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n", 544 port_id, queue_id, strerror(-rc), rc); 545 return; 546 } 547 548 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 549 info_border, port_id, queue_id, info_border); 550 551 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 552 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 553 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 554 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 555 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 556 printf("\nTX deferred start: %s", 557 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 558 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 559 printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state)); 560 561 if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0) 562 printf("\nBurst mode: %s%s", 563 mode.info, 564 mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? 565 " (per queue)" : ""); 566 567 printf("\n"); 568 } 569 570 static int bus_match_all(const struct rte_bus *bus, const void *data) 571 { 572 RTE_SET_USED(bus); 573 RTE_SET_USED(data); 574 return 0; 575 } 576 577 static void 578 device_infos_display_speeds(uint32_t speed_capa) 579 { 580 printf("\n\tDevice speed capability:"); 581 if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG) 582 printf(" Autonegotiate (all speeds)"); 583 if (speed_capa & RTE_ETH_LINK_SPEED_FIXED) 584 printf(" Disable autonegotiate (fixed speed) "); 585 if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD) 586 printf(" 10 Mbps half-duplex "); 587 if (speed_capa & RTE_ETH_LINK_SPEED_10M) 588 printf(" 10 Mbps full-duplex "); 589 if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD) 590 printf(" 100 Mbps half-duplex "); 591 if (speed_capa & RTE_ETH_LINK_SPEED_100M) 592 printf(" 100 Mbps full-duplex "); 593 if (speed_capa & RTE_ETH_LINK_SPEED_1G) 594 printf(" 1 Gbps "); 595 if (speed_capa & RTE_ETH_LINK_SPEED_2_5G) 596 printf(" 2.5 Gbps "); 597 if (speed_capa & RTE_ETH_LINK_SPEED_5G) 598 printf(" 5 Gbps "); 599 if (speed_capa & RTE_ETH_LINK_SPEED_10G) 600 printf(" 10 Gbps "); 601 if (speed_capa & RTE_ETH_LINK_SPEED_20G) 602 printf(" 20 Gbps "); 603 if (speed_capa & RTE_ETH_LINK_SPEED_25G) 604 printf(" 25 Gbps "); 605 if (speed_capa & RTE_ETH_LINK_SPEED_40G) 606 printf(" 40 Gbps "); 607 if (speed_capa & RTE_ETH_LINK_SPEED_50G) 608 printf(" 50 Gbps "); 609 if (speed_capa & RTE_ETH_LINK_SPEED_56G) 610 printf(" 56 Gbps "); 611 if (speed_capa & RTE_ETH_LINK_SPEED_100G) 612 printf(" 100 Gbps "); 613 if (speed_capa & RTE_ETH_LINK_SPEED_200G) 614 printf(" 200 Gbps "); 615 } 616 617 void 618 device_infos_display(const char *identifier) 619 { 620 static const char *info_border = "*********************"; 621 struct rte_bus *start = NULL, *next; 622 struct rte_dev_iterator dev_iter; 623 char name[RTE_ETH_NAME_MAX_LEN]; 624 struct rte_ether_addr mac_addr; 625 struct rte_device *dev; 626 struct rte_devargs da; 627 portid_t port_id; 628 struct rte_eth_dev_info dev_info; 629 char devstr[128]; 630 631 memset(&da, 0, sizeof(da)); 632 if (!identifier) 633 goto skip_parse; 634 635 if (rte_devargs_parsef(&da, "%s", identifier)) { 636 fprintf(stderr, "cannot parse identifier\n"); 637 return; 638 } 639 640 skip_parse: 641 while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) { 642 643 start = next; 644 if (identifier && da.bus != next) 645 continue; 646 647 snprintf(devstr, sizeof(devstr), "bus=%s", rte_bus_name(next)); 648 RTE_DEV_FOREACH(dev, devstr, &dev_iter) { 649 650 if (rte_dev_driver(dev) == NULL) 651 continue; 652 /* Check for matching device if identifier is present */ 653 if (identifier && 654 strncmp(da.name, rte_dev_name(dev), strlen(rte_dev_name(dev)))) 655 continue; 656 printf("\n%s Infos for device %s %s\n", 657 info_border, rte_dev_name(dev), info_border); 658 printf("Bus name: %s", rte_bus_name(rte_dev_bus(dev))); 659 printf("\nBus information: %s", 660 rte_dev_bus_info(dev) ? rte_dev_bus_info(dev) : ""); 661 printf("\nDriver name: %s", rte_driver_name(rte_dev_driver(dev))); 662 printf("\nDevargs: %s", 663 rte_dev_devargs(dev) ? rte_dev_devargs(dev)->args : ""); 664 printf("\nConnect to socket: %d", rte_dev_numa_node(dev)); 665 printf("\n"); 666 667 /* List ports with matching device name */ 668 RTE_ETH_FOREACH_DEV_OF(port_id, dev) { 669 printf("\n\tPort id: %-2d", port_id); 670 if (eth_macaddr_get_print_err(port_id, 671 &mac_addr) == 0) 672 print_ethaddr("\n\tMAC address: ", 673 &mac_addr); 674 rte_eth_dev_get_name_by_port(port_id, name); 675 printf("\n\tDevice name: %s", name); 676 if (rte_eth_dev_info_get(port_id, &dev_info) == 0) 677 device_infos_display_speeds(dev_info.speed_capa); 678 printf("\n"); 679 } 680 } 681 }; 682 rte_devargs_reset(&da); 683 } 684 685 static void 686 print_dev_capabilities(uint64_t capabilities) 687 { 688 uint64_t single_capa; 689 int begin; 690 int end; 691 int bit; 692 693 if (capabilities == 0) 694 return; 695 696 begin = __builtin_ctzll(capabilities); 697 end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities); 698 699 single_capa = 1ULL << begin; 700 for (bit = begin; bit < end; bit++) { 701 if (capabilities & single_capa) 702 printf(" %s", 703 rte_eth_dev_capability_name(single_capa)); 704 single_capa <<= 1; 705 } 706 } 707 708 uint64_t 709 str_to_rsstypes(const char *str) 710 { 711 uint16_t i; 712 713 for (i = 0; rss_type_table[i].str != NULL; i++) { 714 if (strcmp(rss_type_table[i].str, str) == 0) 715 return rss_type_table[i].rss_type; 716 } 717 718 return 0; 719 } 720 721 const char * 722 rsstypes_to_str(uint64_t rss_type) 723 { 724 uint16_t i; 725 726 for (i = 0; rss_type_table[i].str != NULL; i++) { 727 if (rss_type_table[i].rss_type == rss_type) 728 return rss_type_table[i].str; 729 } 730 731 return NULL; 732 } 733 734 static void 735 rss_offload_types_display(uint64_t offload_types, uint16_t char_num_per_line) 736 { 737 uint16_t user_defined_str_len; 738 uint16_t total_len = 0; 739 uint16_t str_len = 0; 740 uint64_t rss_offload; 741 uint16_t i; 742 743 for (i = 0; i < sizeof(offload_types) * CHAR_BIT; i++) { 744 rss_offload = RTE_BIT64(i); 745 if ((offload_types & rss_offload) != 0) { 746 const char *p = rsstypes_to_str(rss_offload); 747 748 user_defined_str_len = 749 strlen("user-defined-") + (i / 10 + 1); 750 str_len = p ? strlen(p) : user_defined_str_len; 751 str_len += 2; /* add two spaces */ 752 if (total_len + str_len >= char_num_per_line) { 753 total_len = 0; 754 printf("\n"); 755 } 756 757 if (p) 758 printf(" %s", p); 759 else 760 printf(" user-defined-%u", i); 761 total_len += str_len; 762 } 763 } 764 printf("\n"); 765 } 766 767 void 768 port_infos_display(portid_t port_id) 769 { 770 struct rte_port *port; 771 struct rte_ether_addr mac_addr; 772 struct rte_eth_link link; 773 struct rte_eth_dev_info dev_info; 774 int vlan_offload; 775 struct rte_mempool * mp; 776 static const char *info_border = "*********************"; 777 uint16_t mtu; 778 char name[RTE_ETH_NAME_MAX_LEN]; 779 int ret; 780 char fw_version[ETHDEV_FWVERS_LEN]; 781 782 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 783 print_valid_ports(); 784 return; 785 } 786 port = &ports[port_id]; 787 ret = eth_link_get_nowait_print_err(port_id, &link); 788 if (ret < 0) 789 return; 790 791 ret = eth_dev_info_get_print_err(port_id, &dev_info); 792 if (ret != 0) 793 return; 794 795 printf("\n%s Infos for port %-2d %s\n", 796 info_border, port_id, info_border); 797 if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0) 798 print_ethaddr("MAC address: ", &mac_addr); 799 rte_eth_dev_get_name_by_port(port_id, name); 800 printf("\nDevice name: %s", name); 801 printf("\nDriver name: %s", dev_info.driver_name); 802 803 if (rte_eth_dev_fw_version_get(port_id, fw_version, 804 ETHDEV_FWVERS_LEN) == 0) 805 printf("\nFirmware-version: %s", fw_version); 806 else 807 printf("\nFirmware-version: %s", "not available"); 808 809 if (rte_dev_devargs(dev_info.device) && rte_dev_devargs(dev_info.device)->args) 810 printf("\nDevargs: %s", rte_dev_devargs(dev_info.device)->args); 811 printf("\nConnect to socket: %u", port->socket_id); 812 813 if (port_numa[port_id] != NUMA_NO_CONFIG) { 814 mp = mbuf_pool_find(port_numa[port_id], 0); 815 if (mp) 816 printf("\nmemory allocation on the socket: %d", 817 port_numa[port_id]); 818 } else 819 printf("\nmemory allocation on the socket: %u",port->socket_id); 820 821 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 822 printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed)); 823 printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ? 824 ("full-duplex") : ("half-duplex")); 825 printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ? 826 ("On") : ("Off")); 827 828 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 829 printf("MTU: %u\n", mtu); 830 831 printf("Promiscuous mode: %s\n", 832 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 833 printf("Allmulticast mode: %s\n", 834 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 835 printf("Maximum number of MAC addresses: %u\n", 836 (unsigned int)(port->dev_info.max_mac_addrs)); 837 printf("Maximum number of MAC addresses of hash filtering: %u\n", 838 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 839 840 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 841 if (vlan_offload >= 0){ 842 printf("VLAN offload: \n"); 843 if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD) 844 printf(" strip on, "); 845 else 846 printf(" strip off, "); 847 848 if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD) 849 printf("filter on, "); 850 else 851 printf("filter off, "); 852 853 if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD) 854 printf("extend on, "); 855 else 856 printf("extend off, "); 857 858 if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD) 859 printf("qinq strip on\n"); 860 else 861 printf("qinq strip off\n"); 862 } 863 864 if (dev_info.hash_key_size > 0) 865 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 866 if (dev_info.reta_size > 0) 867 printf("Redirection table size: %u\n", dev_info.reta_size); 868 if (!dev_info.flow_type_rss_offloads) 869 printf("No RSS offload flow type is supported.\n"); 870 else { 871 printf("Supported RSS offload flow types:\n"); 872 rss_offload_types_display(dev_info.flow_type_rss_offloads, 873 TESTPMD_RSS_TYPES_CHAR_NUM_PER_LINE); 874 } 875 876 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 877 printf("Maximum configurable length of RX packet: %u\n", 878 dev_info.max_rx_pktlen); 879 printf("Maximum configurable size of LRO aggregated packet: %u\n", 880 dev_info.max_lro_pkt_size); 881 if (dev_info.max_vfs) 882 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 883 if (dev_info.max_vmdq_pools) 884 printf("Maximum number of VMDq pools: %u\n", 885 dev_info.max_vmdq_pools); 886 887 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 888 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 889 printf("Max possible number of RXDs per queue: %hu\n", 890 dev_info.rx_desc_lim.nb_max); 891 printf("Min possible number of RXDs per queue: %hu\n", 892 dev_info.rx_desc_lim.nb_min); 893 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 894 895 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 896 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 897 printf("Max possible number of TXDs per queue: %hu\n", 898 dev_info.tx_desc_lim.nb_max); 899 printf("Min possible number of TXDs per queue: %hu\n", 900 dev_info.tx_desc_lim.nb_min); 901 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 902 printf("Max segment number per packet: %hu\n", 903 dev_info.tx_desc_lim.nb_seg_max); 904 printf("Max segment number per MTU/TSO: %hu\n", 905 dev_info.tx_desc_lim.nb_mtu_seg_max); 906 907 printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa); 908 print_dev_capabilities(dev_info.dev_capa); 909 printf(" )\n"); 910 /* Show switch info only if valid switch domain and port id is set */ 911 if (dev_info.switch_info.domain_id != 912 RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { 913 if (dev_info.switch_info.name) 914 printf("Switch name: %s\n", dev_info.switch_info.name); 915 916 printf("Switch domain Id: %u\n", 917 dev_info.switch_info.domain_id); 918 printf("Switch Port Id: %u\n", 919 dev_info.switch_info.port_id); 920 if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0) 921 printf("Switch Rx domain: %u\n", 922 dev_info.switch_info.rx_domain); 923 } 924 printf("Device error handling mode: "); 925 switch (dev_info.err_handle_mode) { 926 case RTE_ETH_ERROR_HANDLE_MODE_NONE: 927 printf("none\n"); 928 break; 929 case RTE_ETH_ERROR_HANDLE_MODE_PASSIVE: 930 printf("passive\n"); 931 break; 932 default: 933 printf("unknown\n"); 934 break; 935 } 936 } 937 938 void 939 port_summary_header_display(void) 940 { 941 uint16_t port_number; 942 943 port_number = rte_eth_dev_count_avail(); 944 printf("Number of available ports: %i\n", port_number); 945 printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", 946 "Driver", "Status", "Link"); 947 } 948 949 void 950 port_summary_display(portid_t port_id) 951 { 952 struct rte_ether_addr mac_addr; 953 struct rte_eth_link link; 954 struct rte_eth_dev_info dev_info; 955 char name[RTE_ETH_NAME_MAX_LEN]; 956 int ret; 957 958 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 959 print_valid_ports(); 960 return; 961 } 962 963 ret = eth_link_get_nowait_print_err(port_id, &link); 964 if (ret < 0) 965 return; 966 967 ret = eth_dev_info_get_print_err(port_id, &dev_info); 968 if (ret != 0) 969 return; 970 971 rte_eth_dev_get_name_by_port(port_id, name); 972 ret = eth_macaddr_get_print_err(port_id, &mac_addr); 973 if (ret != 0) 974 return; 975 976 printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n", 977 port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name, 978 dev_info.driver_name, (link.link_status) ? ("up") : ("down"), 979 rte_eth_link_speed_to_str(link.link_speed)); 980 } 981 982 void 983 port_eeprom_display(portid_t port_id) 984 { 985 struct rte_dev_eeprom_info einfo; 986 int ret; 987 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 988 print_valid_ports(); 989 return; 990 } 991 992 int len_eeprom = rte_eth_dev_get_eeprom_length(port_id); 993 if (len_eeprom < 0) { 994 switch (len_eeprom) { 995 case -ENODEV: 996 fprintf(stderr, "port index %d invalid\n", port_id); 997 break; 998 case -ENOTSUP: 999 fprintf(stderr, "operation not supported by device\n"); 1000 break; 1001 case -EIO: 1002 fprintf(stderr, "device is removed\n"); 1003 break; 1004 default: 1005 fprintf(stderr, "Unable to get EEPROM: %d\n", 1006 len_eeprom); 1007 break; 1008 } 1009 return; 1010 } 1011 1012 einfo.offset = 0; 1013 einfo.length = len_eeprom; 1014 einfo.data = calloc(1, len_eeprom); 1015 if (!einfo.data) { 1016 fprintf(stderr, 1017 "Allocation of port %u eeprom data failed\n", 1018 port_id); 1019 return; 1020 } 1021 1022 ret = rte_eth_dev_get_eeprom(port_id, &einfo); 1023 if (ret != 0) { 1024 switch (ret) { 1025 case -ENODEV: 1026 fprintf(stderr, "port index %d invalid\n", port_id); 1027 break; 1028 case -ENOTSUP: 1029 fprintf(stderr, "operation not supported by device\n"); 1030 break; 1031 case -EIO: 1032 fprintf(stderr, "device is removed\n"); 1033 break; 1034 default: 1035 fprintf(stderr, "Unable to get EEPROM: %d\n", ret); 1036 break; 1037 } 1038 free(einfo.data); 1039 return; 1040 } 1041 rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); 1042 printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom); 1043 free(einfo.data); 1044 } 1045 1046 void 1047 port_module_eeprom_display(portid_t port_id) 1048 { 1049 struct rte_eth_dev_module_info minfo; 1050 struct rte_dev_eeprom_info einfo; 1051 int ret; 1052 1053 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 1054 print_valid_ports(); 1055 return; 1056 } 1057 1058 1059 ret = rte_eth_dev_get_module_info(port_id, &minfo); 1060 if (ret != 0) { 1061 switch (ret) { 1062 case -ENODEV: 1063 fprintf(stderr, "port index %d invalid\n", port_id); 1064 break; 1065 case -ENOTSUP: 1066 fprintf(stderr, "operation not supported by device\n"); 1067 break; 1068 case -EIO: 1069 fprintf(stderr, "device is removed\n"); 1070 break; 1071 default: 1072 fprintf(stderr, "Unable to get module EEPROM: %d\n", 1073 ret); 1074 break; 1075 } 1076 return; 1077 } 1078 1079 einfo.offset = 0; 1080 einfo.length = minfo.eeprom_len; 1081 einfo.data = calloc(1, minfo.eeprom_len); 1082 if (!einfo.data) { 1083 fprintf(stderr, 1084 "Allocation of port %u eeprom data failed\n", 1085 port_id); 1086 return; 1087 } 1088 1089 ret = rte_eth_dev_get_module_eeprom(port_id, &einfo); 1090 if (ret != 0) { 1091 switch (ret) { 1092 case -ENODEV: 1093 fprintf(stderr, "port index %d invalid\n", port_id); 1094 break; 1095 case -ENOTSUP: 1096 fprintf(stderr, "operation not supported by device\n"); 1097 break; 1098 case -EIO: 1099 fprintf(stderr, "device is removed\n"); 1100 break; 1101 default: 1102 fprintf(stderr, "Unable to get module EEPROM: %d\n", 1103 ret); 1104 break; 1105 } 1106 free(einfo.data); 1107 return; 1108 } 1109 1110 rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); 1111 printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length); 1112 free(einfo.data); 1113 } 1114 1115 int 1116 port_id_is_invalid(portid_t port_id, enum print_warning warning) 1117 { 1118 uint16_t pid; 1119 1120 if (port_id == (portid_t)RTE_PORT_ALL) 1121 return 0; 1122 1123 RTE_ETH_FOREACH_DEV(pid) 1124 if (port_id == pid) 1125 return 0; 1126 1127 if (warning == ENABLED_WARN) 1128 fprintf(stderr, "Invalid port %d\n", port_id); 1129 1130 return 1; 1131 } 1132 1133 void print_valid_ports(void) 1134 { 1135 portid_t pid; 1136 1137 printf("The valid ports array is ["); 1138 RTE_ETH_FOREACH_DEV(pid) { 1139 printf(" %d", pid); 1140 } 1141 printf(" ]\n"); 1142 } 1143 1144 static int 1145 vlan_id_is_invalid(uint16_t vlan_id) 1146 { 1147 if (vlan_id < 4096) 1148 return 0; 1149 fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id); 1150 return 1; 1151 } 1152 1153 static uint32_t 1154 eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu) 1155 { 1156 uint32_t overhead_len; 1157 1158 if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu) 1159 overhead_len = max_rx_pktlen - max_mtu; 1160 else 1161 overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; 1162 1163 return overhead_len; 1164 } 1165 1166 static int 1167 eth_dev_validate_mtu(uint16_t port_id, uint16_t mtu) 1168 { 1169 struct rte_eth_dev_info dev_info; 1170 uint32_t overhead_len; 1171 uint32_t frame_size; 1172 int ret; 1173 1174 ret = rte_eth_dev_info_get(port_id, &dev_info); 1175 if (ret != 0) 1176 return ret; 1177 1178 if (mtu < dev_info.min_mtu) { 1179 fprintf(stderr, 1180 "MTU (%u) < device min MTU (%u) for port_id %u\n", 1181 mtu, dev_info.min_mtu, port_id); 1182 return -EINVAL; 1183 } 1184 if (mtu > dev_info.max_mtu) { 1185 fprintf(stderr, 1186 "MTU (%u) > device max MTU (%u) for port_id %u\n", 1187 mtu, dev_info.max_mtu, port_id); 1188 return -EINVAL; 1189 } 1190 1191 overhead_len = eth_dev_get_overhead_len(dev_info.max_rx_pktlen, 1192 dev_info.max_mtu); 1193 frame_size = mtu + overhead_len; 1194 if (frame_size > dev_info.max_rx_pktlen) { 1195 fprintf(stderr, 1196 "Frame size (%u) > device max frame size (%u) for port_id %u\n", 1197 frame_size, dev_info.max_rx_pktlen, port_id); 1198 return -EINVAL; 1199 } 1200 1201 return 0; 1202 } 1203 1204 void 1205 port_mtu_set(portid_t port_id, uint16_t mtu) 1206 { 1207 struct rte_port *port = &ports[port_id]; 1208 int diag; 1209 1210 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1211 return; 1212 1213 diag = eth_dev_validate_mtu(port_id, mtu); 1214 if (diag != 0) 1215 return; 1216 1217 if (port->need_reconfig == 0) { 1218 diag = rte_eth_dev_set_mtu(port_id, mtu); 1219 if (diag != 0) { 1220 fprintf(stderr, "Set MTU failed. diag=%d\n", diag); 1221 return; 1222 } 1223 } 1224 1225 port->dev_conf.rxmode.mtu = mtu; 1226 } 1227 1228 /* Generic flow management functions. */ 1229 1230 static struct port_flow_tunnel * 1231 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id) 1232 { 1233 struct port_flow_tunnel *flow_tunnel; 1234 1235 LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { 1236 if (flow_tunnel->id == port_tunnel_id) 1237 goto out; 1238 } 1239 flow_tunnel = NULL; 1240 1241 out: 1242 return flow_tunnel; 1243 } 1244 1245 const char * 1246 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel) 1247 { 1248 const char *type; 1249 switch (tunnel->type) { 1250 default: 1251 type = "unknown"; 1252 break; 1253 case RTE_FLOW_ITEM_TYPE_VXLAN: 1254 type = "vxlan"; 1255 break; 1256 case RTE_FLOW_ITEM_TYPE_GRE: 1257 type = "gre"; 1258 break; 1259 case RTE_FLOW_ITEM_TYPE_NVGRE: 1260 type = "nvgre"; 1261 break; 1262 case RTE_FLOW_ITEM_TYPE_GENEVE: 1263 type = "geneve"; 1264 break; 1265 } 1266 1267 return type; 1268 } 1269 1270 struct port_flow_tunnel * 1271 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun) 1272 { 1273 struct rte_port *port = &ports[port_id]; 1274 struct port_flow_tunnel *flow_tunnel; 1275 1276 LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { 1277 if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun))) 1278 goto out; 1279 } 1280 flow_tunnel = NULL; 1281 1282 out: 1283 return flow_tunnel; 1284 } 1285 1286 void port_flow_tunnel_list(portid_t port_id) 1287 { 1288 struct rte_port *port = &ports[port_id]; 1289 struct port_flow_tunnel *flt; 1290 1291 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1292 printf("port %u tunnel #%u type=%s", 1293 port_id, flt->id, port_flow_tunnel_type(&flt->tunnel)); 1294 if (flt->tunnel.tun_id) 1295 printf(" id=%" PRIu64, flt->tunnel.tun_id); 1296 printf("\n"); 1297 } 1298 } 1299 1300 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id) 1301 { 1302 struct rte_port *port = &ports[port_id]; 1303 struct port_flow_tunnel *flt; 1304 1305 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1306 if (flt->id == tunnel_id) 1307 break; 1308 } 1309 if (flt) { 1310 LIST_REMOVE(flt, chain); 1311 free(flt); 1312 printf("port %u: flow tunnel #%u destroyed\n", 1313 port_id, tunnel_id); 1314 } 1315 } 1316 1317 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops) 1318 { 1319 struct rte_port *port = &ports[port_id]; 1320 enum rte_flow_item_type type; 1321 struct port_flow_tunnel *flt; 1322 1323 if (!strcmp(ops->type, "vxlan")) 1324 type = RTE_FLOW_ITEM_TYPE_VXLAN; 1325 else if (!strcmp(ops->type, "gre")) 1326 type = RTE_FLOW_ITEM_TYPE_GRE; 1327 else if (!strcmp(ops->type, "nvgre")) 1328 type = RTE_FLOW_ITEM_TYPE_NVGRE; 1329 else if (!strcmp(ops->type, "geneve")) 1330 type = RTE_FLOW_ITEM_TYPE_GENEVE; 1331 else { 1332 fprintf(stderr, "cannot offload \"%s\" tunnel type\n", 1333 ops->type); 1334 return; 1335 } 1336 LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { 1337 if (flt->tunnel.type == type) 1338 break; 1339 } 1340 if (!flt) { 1341 flt = calloc(1, sizeof(*flt)); 1342 if (!flt) { 1343 fprintf(stderr, "failed to allocate port flt object\n"); 1344 return; 1345 } 1346 flt->tunnel.type = type; 1347 flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 : 1348 LIST_FIRST(&port->flow_tunnel_list)->id + 1; 1349 LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain); 1350 } 1351 printf("port %d: flow tunnel #%u type %s\n", 1352 port_id, flt->id, ops->type); 1353 } 1354 1355 /** Generate a port_flow entry from attributes/pattern/actions. */ 1356 static struct port_flow * 1357 port_flow_new(const struct rte_flow_attr *attr, 1358 const struct rte_flow_item *pattern, 1359 const struct rte_flow_action *actions, 1360 struct rte_flow_error *error) 1361 { 1362 const struct rte_flow_conv_rule rule = { 1363 .attr_ro = attr, 1364 .pattern_ro = pattern, 1365 .actions_ro = actions, 1366 }; 1367 struct port_flow *pf; 1368 int ret; 1369 1370 ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); 1371 if (ret < 0) 1372 return NULL; 1373 pf = calloc(1, offsetof(struct port_flow, rule) + ret); 1374 if (!pf) { 1375 rte_flow_error_set 1376 (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1377 "calloc() failed"); 1378 return NULL; 1379 } 1380 if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, 1381 error) >= 0) 1382 return pf; 1383 free(pf); 1384 return NULL; 1385 } 1386 1387 /** Print a message out of a flow error. */ 1388 static int 1389 port_flow_complain(struct rte_flow_error *error) 1390 { 1391 static const char *const errstrlist[] = { 1392 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1393 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1394 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1395 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1396 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1397 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1398 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1399 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", 1400 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1401 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1402 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", 1403 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", 1404 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", 1405 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1406 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1407 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", 1408 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1409 }; 1410 const char *errstr; 1411 char buf[32]; 1412 int err = rte_errno; 1413 1414 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1415 !errstrlist[error->type]) 1416 errstr = "unknown type"; 1417 else 1418 errstr = errstrlist[error->type]; 1419 fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n", 1420 __func__, error->type, errstr, 1421 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1422 error->cause), buf) : "", 1423 error->message ? error->message : "(no stated reason)", 1424 rte_strerror(err)); 1425 1426 switch (error->type) { 1427 case RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER: 1428 fprintf(stderr, "The status suggests the use of \"transfer\" " 1429 "as the possible cause of the failure. Make " 1430 "sure that the flow in question and its " 1431 "indirect components (if any) are managed " 1432 "via \"transfer\" proxy port. Use command " 1433 "\"show port (port_id) flow transfer proxy\" " 1434 "to figure out the proxy port ID\n"); 1435 break; 1436 default: 1437 break; 1438 } 1439 1440 return -err; 1441 } 1442 1443 static void 1444 rss_types_display(uint64_t rss_types, uint16_t char_num_per_line) 1445 { 1446 uint16_t total_len = 0; 1447 uint16_t str_len; 1448 uint16_t i; 1449 1450 if (rss_types == 0) 1451 return; 1452 1453 for (i = 0; rss_type_table[i].str; i++) { 1454 if (rss_type_table[i].rss_type == 0) 1455 continue; 1456 1457 if ((rss_types & rss_type_table[i].rss_type) == 1458 rss_type_table[i].rss_type) { 1459 /* Contain two spaces */ 1460 str_len = strlen(rss_type_table[i].str) + 2; 1461 if (total_len + str_len > char_num_per_line) { 1462 printf("\n"); 1463 total_len = 0; 1464 } 1465 printf(" %s", rss_type_table[i].str); 1466 total_len += str_len; 1467 } 1468 } 1469 printf("\n"); 1470 } 1471 1472 static void 1473 rss_config_display(struct rte_flow_action_rss *rss_conf) 1474 { 1475 uint8_t i; 1476 1477 if (rss_conf == NULL) { 1478 fprintf(stderr, "Invalid rule\n"); 1479 return; 1480 } 1481 1482 printf("RSS:\n" 1483 " queues:"); 1484 if (rss_conf->queue_num == 0) 1485 printf(" none"); 1486 for (i = 0; i < rss_conf->queue_num; i++) 1487 printf(" %d", rss_conf->queue[i]); 1488 printf("\n"); 1489 1490 printf(" function: "); 1491 switch (rss_conf->func) { 1492 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1493 printf("default\n"); 1494 break; 1495 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1496 printf("toeplitz\n"); 1497 break; 1498 case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR: 1499 printf("simple_xor\n"); 1500 break; 1501 case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ: 1502 printf("symmetric_toeplitz\n"); 1503 break; 1504 default: 1505 printf("Unknown function\n"); 1506 return; 1507 } 1508 1509 printf(" types:\n"); 1510 if (rss_conf->types == 0) { 1511 printf(" none\n"); 1512 return; 1513 } 1514 rss_types_display(rss_conf->types, TESTPMD_RSS_TYPES_CHAR_NUM_PER_LINE); 1515 } 1516 1517 static struct port_indirect_action * 1518 action_get_by_id(portid_t port_id, uint32_t id) 1519 { 1520 struct rte_port *port; 1521 struct port_indirect_action **ppia; 1522 struct port_indirect_action *pia = NULL; 1523 1524 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1525 port_id == (portid_t)RTE_PORT_ALL) 1526 return NULL; 1527 port = &ports[port_id]; 1528 ppia = &port->actions_list; 1529 while (*ppia) { 1530 if ((*ppia)->id == id) { 1531 pia = *ppia; 1532 break; 1533 } 1534 ppia = &(*ppia)->next; 1535 } 1536 if (!pia) 1537 fprintf(stderr, 1538 "Failed to find indirect action #%u on port %u\n", 1539 id, port_id); 1540 return pia; 1541 } 1542 1543 static int 1544 action_alloc(portid_t port_id, uint32_t id, 1545 struct port_indirect_action **action) 1546 { 1547 struct rte_port *port; 1548 struct port_indirect_action **ppia; 1549 struct port_indirect_action *pia = NULL; 1550 1551 *action = NULL; 1552 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1553 port_id == (portid_t)RTE_PORT_ALL) 1554 return -EINVAL; 1555 port = &ports[port_id]; 1556 if (id == UINT32_MAX) { 1557 /* taking first available ID */ 1558 if (port->actions_list) { 1559 if (port->actions_list->id == UINT32_MAX - 1) { 1560 fprintf(stderr, 1561 "Highest indirect action ID is already assigned, delete it first\n"); 1562 return -ENOMEM; 1563 } 1564 id = port->actions_list->id + 1; 1565 } else { 1566 id = 0; 1567 } 1568 } 1569 pia = calloc(1, sizeof(*pia)); 1570 if (!pia) { 1571 fprintf(stderr, 1572 "Allocation of port %u indirect action failed\n", 1573 port_id); 1574 return -ENOMEM; 1575 } 1576 ppia = &port->actions_list; 1577 while (*ppia && (*ppia)->id > id) 1578 ppia = &(*ppia)->next; 1579 if (*ppia && (*ppia)->id == id) { 1580 fprintf(stderr, 1581 "Indirect action #%u is already assigned, delete it first\n", 1582 id); 1583 free(pia); 1584 return -EINVAL; 1585 } 1586 pia->next = *ppia; 1587 pia->id = id; 1588 *ppia = pia; 1589 *action = pia; 1590 return 0; 1591 } 1592 1593 static int 1594 template_alloc(uint32_t id, struct port_template **template, 1595 struct port_template **list) 1596 { 1597 struct port_template *lst = *list; 1598 struct port_template **ppt; 1599 struct port_template *pt = NULL; 1600 1601 *template = NULL; 1602 if (id == UINT32_MAX) { 1603 /* taking first available ID */ 1604 if (lst) { 1605 if (lst->id == UINT32_MAX - 1) { 1606 printf("Highest template ID is already" 1607 " assigned, delete it first\n"); 1608 return -ENOMEM; 1609 } 1610 id = lst->id + 1; 1611 } else { 1612 id = 0; 1613 } 1614 } 1615 pt = calloc(1, sizeof(*pt)); 1616 if (!pt) { 1617 printf("Allocation of port template failed\n"); 1618 return -ENOMEM; 1619 } 1620 ppt = list; 1621 while (*ppt && (*ppt)->id > id) 1622 ppt = &(*ppt)->next; 1623 if (*ppt && (*ppt)->id == id) { 1624 printf("Template #%u is already assigned," 1625 " delete it first\n", id); 1626 free(pt); 1627 return -EINVAL; 1628 } 1629 pt->next = *ppt; 1630 pt->id = id; 1631 *ppt = pt; 1632 *template = pt; 1633 return 0; 1634 } 1635 1636 static int 1637 table_alloc(uint32_t id, struct port_table **table, 1638 struct port_table **list) 1639 { 1640 struct port_table *lst = *list; 1641 struct port_table **ppt; 1642 struct port_table *pt = NULL; 1643 1644 *table = NULL; 1645 if (id == UINT32_MAX) { 1646 /* taking first available ID */ 1647 if (lst) { 1648 if (lst->id == UINT32_MAX - 1) { 1649 printf("Highest table ID is already" 1650 " assigned, delete it first\n"); 1651 return -ENOMEM; 1652 } 1653 id = lst->id + 1; 1654 } else { 1655 id = 0; 1656 } 1657 } 1658 pt = calloc(1, sizeof(*pt)); 1659 if (!pt) { 1660 printf("Allocation of table failed\n"); 1661 return -ENOMEM; 1662 } 1663 ppt = list; 1664 while (*ppt && (*ppt)->id > id) 1665 ppt = &(*ppt)->next; 1666 if (*ppt && (*ppt)->id == id) { 1667 printf("Table #%u is already assigned," 1668 " delete it first\n", id); 1669 free(pt); 1670 return -EINVAL; 1671 } 1672 pt->next = *ppt; 1673 pt->id = id; 1674 *ppt = pt; 1675 *table = pt; 1676 return 0; 1677 } 1678 1679 /** Get info about flow management resources. */ 1680 int 1681 port_flow_get_info(portid_t port_id) 1682 { 1683 struct rte_flow_port_info port_info; 1684 struct rte_flow_queue_info queue_info; 1685 struct rte_flow_error error; 1686 1687 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1688 port_id == (portid_t)RTE_PORT_ALL) 1689 return -EINVAL; 1690 /* Poisoning to make sure PMDs update it in case of error. */ 1691 memset(&error, 0x99, sizeof(error)); 1692 memset(&port_info, 0, sizeof(port_info)); 1693 memset(&queue_info, 0, sizeof(queue_info)); 1694 if (rte_flow_info_get(port_id, &port_info, &queue_info, &error)) 1695 return port_flow_complain(&error); 1696 printf("Flow engine resources on port %u:\n" 1697 "Number of queues: %d\n" 1698 "Size of queues: %d\n" 1699 "Number of counters: %d\n" 1700 "Number of aging objects: %d\n" 1701 "Number of meter actions: %d\n", 1702 port_id, port_info.max_nb_queues, 1703 queue_info.max_size, 1704 port_info.max_nb_counters, 1705 port_info.max_nb_aging_objects, 1706 port_info.max_nb_meters); 1707 return 0; 1708 } 1709 1710 /** Configure flow management resources. */ 1711 int 1712 port_flow_configure(portid_t port_id, 1713 const struct rte_flow_port_attr *port_attr, 1714 uint16_t nb_queue, 1715 const struct rte_flow_queue_attr *queue_attr) 1716 { 1717 struct rte_port *port; 1718 struct rte_flow_error error; 1719 const struct rte_flow_queue_attr *attr_list[nb_queue]; 1720 int std_queue; 1721 1722 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1723 port_id == (portid_t)RTE_PORT_ALL) 1724 return -EINVAL; 1725 port = &ports[port_id]; 1726 port->queue_nb = nb_queue; 1727 port->queue_sz = queue_attr->size; 1728 for (std_queue = 0; std_queue < nb_queue; std_queue++) 1729 attr_list[std_queue] = queue_attr; 1730 /* Poisoning to make sure PMDs update it in case of error. */ 1731 memset(&error, 0x66, sizeof(error)); 1732 if (rte_flow_configure(port_id, port_attr, nb_queue, attr_list, &error)) 1733 return port_flow_complain(&error); 1734 printf("Configure flows on port %u: " 1735 "number of queues %d with %d elements\n", 1736 port_id, nb_queue, queue_attr->size); 1737 return 0; 1738 } 1739 1740 /** Create indirect action */ 1741 int 1742 port_action_handle_create(portid_t port_id, uint32_t id, 1743 const struct rte_flow_indir_action_conf *conf, 1744 const struct rte_flow_action *action) 1745 { 1746 struct port_indirect_action *pia; 1747 int ret; 1748 struct rte_flow_error error; 1749 1750 ret = action_alloc(port_id, id, &pia); 1751 if (ret) 1752 return ret; 1753 if (action->type == RTE_FLOW_ACTION_TYPE_AGE) { 1754 struct rte_flow_action_age *age = 1755 (struct rte_flow_action_age *)(uintptr_t)(action->conf); 1756 1757 pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION; 1758 age->context = &pia->age_type; 1759 } else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) { 1760 struct rte_flow_action_conntrack *ct = 1761 (struct rte_flow_action_conntrack *)(uintptr_t)(action->conf); 1762 1763 memcpy(ct, &conntrack_context, sizeof(*ct)); 1764 } 1765 /* Poisoning to make sure PMDs update it in case of error. */ 1766 memset(&error, 0x22, sizeof(error)); 1767 pia->handle = rte_flow_action_handle_create(port_id, conf, action, 1768 &error); 1769 if (!pia->handle) { 1770 uint32_t destroy_id = pia->id; 1771 port_action_handle_destroy(port_id, 1, &destroy_id); 1772 return port_flow_complain(&error); 1773 } 1774 pia->type = action->type; 1775 printf("Indirect action #%u created\n", pia->id); 1776 return 0; 1777 } 1778 1779 /** Destroy indirect action */ 1780 int 1781 port_action_handle_destroy(portid_t port_id, 1782 uint32_t n, 1783 const uint32_t *actions) 1784 { 1785 struct rte_port *port; 1786 struct port_indirect_action **tmp; 1787 uint32_t c = 0; 1788 int ret = 0; 1789 1790 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1791 port_id == (portid_t)RTE_PORT_ALL) 1792 return -EINVAL; 1793 port = &ports[port_id]; 1794 tmp = &port->actions_list; 1795 while (*tmp) { 1796 uint32_t i; 1797 1798 for (i = 0; i != n; ++i) { 1799 struct rte_flow_error error; 1800 struct port_indirect_action *pia = *tmp; 1801 1802 if (actions[i] != pia->id) 1803 continue; 1804 /* 1805 * Poisoning to make sure PMDs update it in case 1806 * of error. 1807 */ 1808 memset(&error, 0x33, sizeof(error)); 1809 1810 if (pia->handle && rte_flow_action_handle_destroy( 1811 port_id, pia->handle, &error)) { 1812 ret = port_flow_complain(&error); 1813 continue; 1814 } 1815 *tmp = pia->next; 1816 printf("Indirect action #%u destroyed\n", pia->id); 1817 free(pia); 1818 break; 1819 } 1820 if (i == n) 1821 tmp = &(*tmp)->next; 1822 ++c; 1823 } 1824 return ret; 1825 } 1826 1827 int 1828 port_action_handle_flush(portid_t port_id) 1829 { 1830 struct rte_port *port; 1831 struct port_indirect_action **tmp; 1832 int ret = 0; 1833 1834 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1835 port_id == (portid_t)RTE_PORT_ALL) 1836 return -EINVAL; 1837 port = &ports[port_id]; 1838 tmp = &port->actions_list; 1839 while (*tmp != NULL) { 1840 struct rte_flow_error error; 1841 struct port_indirect_action *pia = *tmp; 1842 1843 /* Poisoning to make sure PMDs update it in case of error. */ 1844 memset(&error, 0x44, sizeof(error)); 1845 if (pia->handle != NULL && 1846 rte_flow_action_handle_destroy 1847 (port_id, pia->handle, &error) != 0) { 1848 printf("Indirect action #%u not destroyed\n", pia->id); 1849 ret = port_flow_complain(&error); 1850 tmp = &pia->next; 1851 } else { 1852 *tmp = pia->next; 1853 free(pia); 1854 } 1855 } 1856 return ret; 1857 } 1858 1859 /** Get indirect action by port + id */ 1860 struct rte_flow_action_handle * 1861 port_action_handle_get_by_id(portid_t port_id, uint32_t id) 1862 { 1863 1864 struct port_indirect_action *pia = action_get_by_id(port_id, id); 1865 1866 return (pia) ? pia->handle : NULL; 1867 } 1868 1869 /** Update indirect action */ 1870 int 1871 port_action_handle_update(portid_t port_id, uint32_t id, 1872 const struct rte_flow_action *action) 1873 { 1874 struct rte_flow_error error; 1875 struct rte_flow_action_handle *action_handle; 1876 struct port_indirect_action *pia; 1877 const void *update; 1878 1879 action_handle = port_action_handle_get_by_id(port_id, id); 1880 if (!action_handle) 1881 return -EINVAL; 1882 pia = action_get_by_id(port_id, id); 1883 if (!pia) 1884 return -EINVAL; 1885 switch (pia->type) { 1886 case RTE_FLOW_ACTION_TYPE_CONNTRACK: 1887 update = action->conf; 1888 break; 1889 default: 1890 update = action; 1891 break; 1892 } 1893 if (rte_flow_action_handle_update(port_id, action_handle, update, 1894 &error)) { 1895 return port_flow_complain(&error); 1896 } 1897 printf("Indirect action #%u updated\n", id); 1898 return 0; 1899 } 1900 1901 static void 1902 port_action_handle_query_dump(uint32_t type, union port_action_query *query) 1903 { 1904 switch (type) { 1905 case RTE_FLOW_ACTION_TYPE_AGE: 1906 printf("Indirect AGE action:\n" 1907 " aged: %u\n" 1908 " sec_since_last_hit_valid: %u\n" 1909 " sec_since_last_hit: %" PRIu32 "\n", 1910 query->age.aged, 1911 query->age.sec_since_last_hit_valid, 1912 query->age.sec_since_last_hit); 1913 break; 1914 case RTE_FLOW_ACTION_TYPE_COUNT: 1915 printf("Indirect COUNT action:\n" 1916 " hits_set: %u\n" 1917 " bytes_set: %u\n" 1918 " hits: %" PRIu64 "\n" 1919 " bytes: %" PRIu64 "\n", 1920 query->count.hits_set, 1921 query->count.bytes_set, 1922 query->count.hits, 1923 query->count.bytes); 1924 break; 1925 case RTE_FLOW_ACTION_TYPE_CONNTRACK: 1926 printf("Conntrack Context:\n" 1927 " Peer: %u, Flow dir: %s, Enable: %u\n" 1928 " Live: %u, SACK: %u, CACK: %u\n" 1929 " Packet dir: %s, Liberal: %u, State: %u\n" 1930 " Factor: %u, Retrans: %u, TCP flags: %u\n" 1931 " Last Seq: %u, Last ACK: %u\n" 1932 " Last Win: %u, Last End: %u\n", 1933 query->ct.peer_port, 1934 query->ct.is_original_dir ? "Original" : "Reply", 1935 query->ct.enable, query->ct.live_connection, 1936 query->ct.selective_ack, query->ct.challenge_ack_passed, 1937 query->ct.last_direction ? "Original" : "Reply", 1938 query->ct.liberal_mode, query->ct.state, 1939 query->ct.max_ack_window, query->ct.retransmission_limit, 1940 query->ct.last_index, query->ct.last_seq, 1941 query->ct.last_ack, query->ct.last_window, 1942 query->ct.last_end); 1943 printf(" Original Dir:\n" 1944 " scale: %u, fin: %u, ack seen: %u\n" 1945 " unacked data: %u\n Sent end: %u," 1946 " Reply end: %u, Max win: %u, Max ACK: %u\n", 1947 query->ct.original_dir.scale, 1948 query->ct.original_dir.close_initiated, 1949 query->ct.original_dir.last_ack_seen, 1950 query->ct.original_dir.data_unacked, 1951 query->ct.original_dir.sent_end, 1952 query->ct.original_dir.reply_end, 1953 query->ct.original_dir.max_win, 1954 query->ct.original_dir.max_ack); 1955 printf(" Reply Dir:\n" 1956 " scale: %u, fin: %u, ack seen: %u\n" 1957 " unacked data: %u\n Sent end: %u," 1958 " Reply end: %u, Max win: %u, Max ACK: %u\n", 1959 query->ct.reply_dir.scale, 1960 query->ct.reply_dir.close_initiated, 1961 query->ct.reply_dir.last_ack_seen, 1962 query->ct.reply_dir.data_unacked, 1963 query->ct.reply_dir.sent_end, 1964 query->ct.reply_dir.reply_end, 1965 query->ct.reply_dir.max_win, 1966 query->ct.reply_dir.max_ack); 1967 break; 1968 default: 1969 fprintf(stderr, 1970 "Indirect action (type: %d) doesn't support query\n", 1971 type); 1972 break; 1973 } 1974 1975 } 1976 1977 int 1978 port_action_handle_query(portid_t port_id, uint32_t id) 1979 { 1980 struct rte_flow_error error; 1981 struct port_indirect_action *pia; 1982 union port_action_query query; 1983 1984 pia = action_get_by_id(port_id, id); 1985 if (!pia) 1986 return -EINVAL; 1987 switch (pia->type) { 1988 case RTE_FLOW_ACTION_TYPE_AGE: 1989 case RTE_FLOW_ACTION_TYPE_COUNT: 1990 break; 1991 default: 1992 fprintf(stderr, 1993 "Indirect action %u (type: %d) on port %u doesn't support query\n", 1994 id, pia->type, port_id); 1995 return -ENOTSUP; 1996 } 1997 /* Poisoning to make sure PMDs update it in case of error. */ 1998 memset(&error, 0x55, sizeof(error)); 1999 memset(&query, 0, sizeof(query)); 2000 if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error)) 2001 return port_flow_complain(&error); 2002 port_action_handle_query_dump(pia->type, &query); 2003 return 0; 2004 } 2005 2006 static struct port_flow_tunnel * 2007 port_flow_tunnel_offload_cmd_prep(portid_t port_id, 2008 const struct rte_flow_item *pattern, 2009 const struct rte_flow_action *actions, 2010 const struct tunnel_ops *tunnel_ops) 2011 { 2012 int ret; 2013 struct rte_port *port; 2014 struct port_flow_tunnel *pft; 2015 struct rte_flow_error error; 2016 2017 port = &ports[port_id]; 2018 pft = port_flow_locate_tunnel_id(port, tunnel_ops->id); 2019 if (!pft) { 2020 fprintf(stderr, "failed to locate port flow tunnel #%u\n", 2021 tunnel_ops->id); 2022 return NULL; 2023 } 2024 if (tunnel_ops->actions) { 2025 uint32_t num_actions; 2026 const struct rte_flow_action *aptr; 2027 2028 ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel, 2029 &pft->pmd_actions, 2030 &pft->num_pmd_actions, 2031 &error); 2032 if (ret) { 2033 port_flow_complain(&error); 2034 return NULL; 2035 } 2036 for (aptr = actions, num_actions = 1; 2037 aptr->type != RTE_FLOW_ACTION_TYPE_END; 2038 aptr++, num_actions++); 2039 pft->actions = malloc( 2040 (num_actions + pft->num_pmd_actions) * 2041 sizeof(actions[0])); 2042 if (!pft->actions) { 2043 rte_flow_tunnel_action_decap_release( 2044 port_id, pft->actions, 2045 pft->num_pmd_actions, &error); 2046 return NULL; 2047 } 2048 rte_memcpy(pft->actions, pft->pmd_actions, 2049 pft->num_pmd_actions * sizeof(actions[0])); 2050 rte_memcpy(pft->actions + pft->num_pmd_actions, actions, 2051 num_actions * sizeof(actions[0])); 2052 } 2053 if (tunnel_ops->items) { 2054 uint32_t num_items; 2055 const struct rte_flow_item *iptr; 2056 2057 ret = rte_flow_tunnel_match(port_id, &pft->tunnel, 2058 &pft->pmd_items, 2059 &pft->num_pmd_items, 2060 &error); 2061 if (ret) { 2062 port_flow_complain(&error); 2063 return NULL; 2064 } 2065 for (iptr = pattern, num_items = 1; 2066 iptr->type != RTE_FLOW_ITEM_TYPE_END; 2067 iptr++, num_items++); 2068 pft->items = malloc((num_items + pft->num_pmd_items) * 2069 sizeof(pattern[0])); 2070 if (!pft->items) { 2071 rte_flow_tunnel_item_release( 2072 port_id, pft->pmd_items, 2073 pft->num_pmd_items, &error); 2074 return NULL; 2075 } 2076 rte_memcpy(pft->items, pft->pmd_items, 2077 pft->num_pmd_items * sizeof(pattern[0])); 2078 rte_memcpy(pft->items + pft->num_pmd_items, pattern, 2079 num_items * sizeof(pattern[0])); 2080 } 2081 2082 return pft; 2083 } 2084 2085 static void 2086 port_flow_tunnel_offload_cmd_release(portid_t port_id, 2087 const struct tunnel_ops *tunnel_ops, 2088 struct port_flow_tunnel *pft) 2089 { 2090 struct rte_flow_error error; 2091 2092 if (tunnel_ops->actions) { 2093 free(pft->actions); 2094 rte_flow_tunnel_action_decap_release( 2095 port_id, pft->pmd_actions, 2096 pft->num_pmd_actions, &error); 2097 pft->actions = NULL; 2098 pft->pmd_actions = NULL; 2099 } 2100 if (tunnel_ops->items) { 2101 free(pft->items); 2102 rte_flow_tunnel_item_release(port_id, pft->pmd_items, 2103 pft->num_pmd_items, 2104 &error); 2105 pft->items = NULL; 2106 pft->pmd_items = NULL; 2107 } 2108 } 2109 2110 /** Add port meter policy */ 2111 int 2112 port_meter_policy_add(portid_t port_id, uint32_t policy_id, 2113 const struct rte_flow_action *actions) 2114 { 2115 struct rte_mtr_error error; 2116 const struct rte_flow_action *act = actions; 2117 const struct rte_flow_action *start; 2118 struct rte_mtr_meter_policy_params policy; 2119 uint32_t i = 0, act_n; 2120 int ret; 2121 2122 for (i = 0; i < RTE_COLORS; i++) { 2123 for (act_n = 0, start = act; 2124 act->type != RTE_FLOW_ACTION_TYPE_END; act++) 2125 act_n++; 2126 if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END) 2127 policy.actions[i] = start; 2128 else 2129 policy.actions[i] = NULL; 2130 act++; 2131 } 2132 ret = rte_mtr_meter_policy_add(port_id, 2133 policy_id, 2134 &policy, &error); 2135 if (ret) 2136 print_mtr_err_msg(&error); 2137 return ret; 2138 } 2139 2140 struct rte_flow_meter_profile * 2141 port_meter_profile_get_by_id(portid_t port_id, uint32_t id) 2142 { 2143 struct rte_mtr_error error; 2144 struct rte_flow_meter_profile *profile; 2145 2146 profile = rte_mtr_meter_profile_get(port_id, id, &error); 2147 if (!profile) 2148 print_mtr_err_msg(&error); 2149 return profile; 2150 } 2151 struct rte_flow_meter_policy * 2152 port_meter_policy_get_by_id(portid_t port_id, uint32_t id) 2153 { 2154 struct rte_mtr_error error; 2155 struct rte_flow_meter_policy *policy; 2156 2157 policy = rte_mtr_meter_policy_get(port_id, id, &error); 2158 if (!policy) 2159 print_mtr_err_msg(&error); 2160 return policy; 2161 } 2162 2163 /** Validate flow rule. */ 2164 int 2165 port_flow_validate(portid_t port_id, 2166 const struct rte_flow_attr *attr, 2167 const struct rte_flow_item *pattern, 2168 const struct rte_flow_action *actions, 2169 const struct tunnel_ops *tunnel_ops) 2170 { 2171 struct rte_flow_error error; 2172 struct port_flow_tunnel *pft = NULL; 2173 int ret; 2174 2175 /* Poisoning to make sure PMDs update it in case of error. */ 2176 memset(&error, 0x11, sizeof(error)); 2177 if (tunnel_ops->enabled) { 2178 pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, 2179 actions, tunnel_ops); 2180 if (!pft) 2181 return -ENOENT; 2182 if (pft->items) 2183 pattern = pft->items; 2184 if (pft->actions) 2185 actions = pft->actions; 2186 } 2187 ret = rte_flow_validate(port_id, attr, pattern, actions, &error); 2188 if (tunnel_ops->enabled) 2189 port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); 2190 if (ret) 2191 return port_flow_complain(&error); 2192 printf("Flow rule validated\n"); 2193 return 0; 2194 } 2195 2196 /** Return age action structure if exists, otherwise NULL. */ 2197 static struct rte_flow_action_age * 2198 age_action_get(const struct rte_flow_action *actions) 2199 { 2200 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 2201 switch (actions->type) { 2202 case RTE_FLOW_ACTION_TYPE_AGE: 2203 return (struct rte_flow_action_age *) 2204 (uintptr_t)actions->conf; 2205 default: 2206 break; 2207 } 2208 } 2209 return NULL; 2210 } 2211 2212 /** Create pattern template */ 2213 int 2214 port_flow_pattern_template_create(portid_t port_id, uint32_t id, 2215 const struct rte_flow_pattern_template_attr *attr, 2216 const struct rte_flow_item *pattern) 2217 { 2218 struct rte_port *port; 2219 struct port_template *pit; 2220 int ret; 2221 struct rte_flow_error error; 2222 2223 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2224 port_id == (portid_t)RTE_PORT_ALL) 2225 return -EINVAL; 2226 port = &ports[port_id]; 2227 ret = template_alloc(id, &pit, &port->pattern_templ_list); 2228 if (ret) 2229 return ret; 2230 /* Poisoning to make sure PMDs update it in case of error. */ 2231 memset(&error, 0x22, sizeof(error)); 2232 pit->template.pattern_template = rte_flow_pattern_template_create(port_id, 2233 attr, pattern, &error); 2234 if (!pit->template.pattern_template) { 2235 uint32_t destroy_id = pit->id; 2236 port_flow_pattern_template_destroy(port_id, 1, &destroy_id); 2237 return port_flow_complain(&error); 2238 } 2239 printf("Pattern template #%u created\n", pit->id); 2240 return 0; 2241 } 2242 2243 /** Destroy pattern template */ 2244 int 2245 port_flow_pattern_template_destroy(portid_t port_id, uint32_t n, 2246 const uint32_t *template) 2247 { 2248 struct rte_port *port; 2249 struct port_template **tmp; 2250 uint32_t c = 0; 2251 int ret = 0; 2252 2253 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2254 port_id == (portid_t)RTE_PORT_ALL) 2255 return -EINVAL; 2256 port = &ports[port_id]; 2257 tmp = &port->pattern_templ_list; 2258 while (*tmp) { 2259 uint32_t i; 2260 2261 for (i = 0; i != n; ++i) { 2262 struct rte_flow_error error; 2263 struct port_template *pit = *tmp; 2264 2265 if (template[i] != pit->id) 2266 continue; 2267 /* 2268 * Poisoning to make sure PMDs update it in case 2269 * of error. 2270 */ 2271 memset(&error, 0x33, sizeof(error)); 2272 2273 if (pit->template.pattern_template && 2274 rte_flow_pattern_template_destroy(port_id, 2275 pit->template.pattern_template, 2276 &error)) { 2277 ret = port_flow_complain(&error); 2278 continue; 2279 } 2280 *tmp = pit->next; 2281 printf("Pattern template #%u destroyed\n", pit->id); 2282 free(pit); 2283 break; 2284 } 2285 if (i == n) 2286 tmp = &(*tmp)->next; 2287 ++c; 2288 } 2289 return ret; 2290 } 2291 2292 /** Create actions template */ 2293 int 2294 port_flow_actions_template_create(portid_t port_id, uint32_t id, 2295 const struct rte_flow_actions_template_attr *attr, 2296 const struct rte_flow_action *actions, 2297 const struct rte_flow_action *masks) 2298 { 2299 struct rte_port *port; 2300 struct port_template *pat; 2301 int ret; 2302 struct rte_flow_error error; 2303 2304 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2305 port_id == (portid_t)RTE_PORT_ALL) 2306 return -EINVAL; 2307 port = &ports[port_id]; 2308 ret = template_alloc(id, &pat, &port->actions_templ_list); 2309 if (ret) 2310 return ret; 2311 /* Poisoning to make sure PMDs update it in case of error. */ 2312 memset(&error, 0x22, sizeof(error)); 2313 pat->template.actions_template = rte_flow_actions_template_create(port_id, 2314 attr, actions, masks, &error); 2315 if (!pat->template.actions_template) { 2316 uint32_t destroy_id = pat->id; 2317 port_flow_actions_template_destroy(port_id, 1, &destroy_id); 2318 return port_flow_complain(&error); 2319 } 2320 printf("Actions template #%u created\n", pat->id); 2321 return 0; 2322 } 2323 2324 /** Destroy actions template */ 2325 int 2326 port_flow_actions_template_destroy(portid_t port_id, uint32_t n, 2327 const uint32_t *template) 2328 { 2329 struct rte_port *port; 2330 struct port_template **tmp; 2331 uint32_t c = 0; 2332 int ret = 0; 2333 2334 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2335 port_id == (portid_t)RTE_PORT_ALL) 2336 return -EINVAL; 2337 port = &ports[port_id]; 2338 tmp = &port->actions_templ_list; 2339 while (*tmp) { 2340 uint32_t i; 2341 2342 for (i = 0; i != n; ++i) { 2343 struct rte_flow_error error; 2344 struct port_template *pat = *tmp; 2345 2346 if (template[i] != pat->id) 2347 continue; 2348 /* 2349 * Poisoning to make sure PMDs update it in case 2350 * of error. 2351 */ 2352 memset(&error, 0x33, sizeof(error)); 2353 2354 if (pat->template.actions_template && 2355 rte_flow_actions_template_destroy(port_id, 2356 pat->template.actions_template, &error)) { 2357 ret = port_flow_complain(&error); 2358 continue; 2359 } 2360 *tmp = pat->next; 2361 printf("Actions template #%u destroyed\n", pat->id); 2362 free(pat); 2363 break; 2364 } 2365 if (i == n) 2366 tmp = &(*tmp)->next; 2367 ++c; 2368 } 2369 return ret; 2370 } 2371 2372 /** Create table */ 2373 int 2374 port_flow_template_table_create(portid_t port_id, uint32_t id, 2375 const struct rte_flow_template_table_attr *table_attr, 2376 uint32_t nb_pattern_templates, uint32_t *pattern_templates, 2377 uint32_t nb_actions_templates, uint32_t *actions_templates) 2378 { 2379 struct rte_port *port; 2380 struct port_table *pt; 2381 struct port_template *temp = NULL; 2382 int ret; 2383 uint32_t i; 2384 struct rte_flow_error error; 2385 struct rte_flow_pattern_template 2386 *flow_pattern_templates[nb_pattern_templates]; 2387 struct rte_flow_actions_template 2388 *flow_actions_templates[nb_actions_templates]; 2389 2390 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2391 port_id == (portid_t)RTE_PORT_ALL) 2392 return -EINVAL; 2393 port = &ports[port_id]; 2394 for (i = 0; i < nb_pattern_templates; ++i) { 2395 bool found = false; 2396 temp = port->pattern_templ_list; 2397 while (temp) { 2398 if (pattern_templates[i] == temp->id) { 2399 flow_pattern_templates[i] = 2400 temp->template.pattern_template; 2401 found = true; 2402 break; 2403 } 2404 temp = temp->next; 2405 } 2406 if (!found) { 2407 printf("Pattern template #%u is invalid\n", 2408 pattern_templates[i]); 2409 return -EINVAL; 2410 } 2411 } 2412 for (i = 0; i < nb_actions_templates; ++i) { 2413 bool found = false; 2414 temp = port->actions_templ_list; 2415 while (temp) { 2416 if (actions_templates[i] == temp->id) { 2417 flow_actions_templates[i] = 2418 temp->template.actions_template; 2419 found = true; 2420 break; 2421 } 2422 temp = temp->next; 2423 } 2424 if (!found) { 2425 printf("Actions template #%u is invalid\n", 2426 actions_templates[i]); 2427 return -EINVAL; 2428 } 2429 } 2430 ret = table_alloc(id, &pt, &port->table_list); 2431 if (ret) 2432 return ret; 2433 /* Poisoning to make sure PMDs update it in case of error. */ 2434 memset(&error, 0x22, sizeof(error)); 2435 pt->table = rte_flow_template_table_create(port_id, table_attr, 2436 flow_pattern_templates, nb_pattern_templates, 2437 flow_actions_templates, nb_actions_templates, 2438 &error); 2439 2440 if (!pt->table) { 2441 uint32_t destroy_id = pt->id; 2442 port_flow_template_table_destroy(port_id, 1, &destroy_id); 2443 return port_flow_complain(&error); 2444 } 2445 pt->nb_pattern_templates = nb_pattern_templates; 2446 pt->nb_actions_templates = nb_actions_templates; 2447 printf("Template table #%u created\n", pt->id); 2448 return 0; 2449 } 2450 2451 /** Destroy table */ 2452 int 2453 port_flow_template_table_destroy(portid_t port_id, 2454 uint32_t n, const uint32_t *table) 2455 { 2456 struct rte_port *port; 2457 struct port_table **tmp; 2458 uint32_t c = 0; 2459 int ret = 0; 2460 2461 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2462 port_id == (portid_t)RTE_PORT_ALL) 2463 return -EINVAL; 2464 port = &ports[port_id]; 2465 tmp = &port->table_list; 2466 while (*tmp) { 2467 uint32_t i; 2468 2469 for (i = 0; i != n; ++i) { 2470 struct rte_flow_error error; 2471 struct port_table *pt = *tmp; 2472 2473 if (table[i] != pt->id) 2474 continue; 2475 /* 2476 * Poisoning to make sure PMDs update it in case 2477 * of error. 2478 */ 2479 memset(&error, 0x33, sizeof(error)); 2480 2481 if (pt->table && 2482 rte_flow_template_table_destroy(port_id, 2483 pt->table, 2484 &error)) { 2485 ret = port_flow_complain(&error); 2486 continue; 2487 } 2488 *tmp = pt->next; 2489 printf("Template table #%u destroyed\n", pt->id); 2490 free(pt); 2491 break; 2492 } 2493 if (i == n) 2494 tmp = &(*tmp)->next; 2495 ++c; 2496 } 2497 return ret; 2498 } 2499 2500 /** Enqueue create flow rule operation. */ 2501 int 2502 port_queue_flow_create(portid_t port_id, queueid_t queue_id, 2503 bool postpone, uint32_t table_id, 2504 uint32_t pattern_idx, uint32_t actions_idx, 2505 const struct rte_flow_item *pattern, 2506 const struct rte_flow_action *actions) 2507 { 2508 struct rte_flow_op_attr op_attr = { .postpone = postpone }; 2509 struct rte_flow *flow; 2510 struct rte_port *port; 2511 struct port_flow *pf; 2512 struct port_table *pt; 2513 uint32_t id = 0; 2514 bool found; 2515 struct rte_flow_error error = { RTE_FLOW_ERROR_TYPE_NONE, NULL, NULL }; 2516 struct rte_flow_action_age *age = age_action_get(actions); 2517 struct queue_job *job; 2518 2519 port = &ports[port_id]; 2520 if (port->flow_list) { 2521 if (port->flow_list->id == UINT32_MAX) { 2522 printf("Highest rule ID is already assigned," 2523 " delete it first"); 2524 return -ENOMEM; 2525 } 2526 id = port->flow_list->id + 1; 2527 } 2528 2529 if (queue_id >= port->queue_nb) { 2530 printf("Queue #%u is invalid\n", queue_id); 2531 return -EINVAL; 2532 } 2533 2534 found = false; 2535 pt = port->table_list; 2536 while (pt) { 2537 if (table_id == pt->id) { 2538 found = true; 2539 break; 2540 } 2541 pt = pt->next; 2542 } 2543 if (!found) { 2544 printf("Table #%u is invalid\n", table_id); 2545 return -EINVAL; 2546 } 2547 2548 if (pattern_idx >= pt->nb_pattern_templates) { 2549 printf("Pattern template index #%u is invalid," 2550 " %u templates present in the table\n", 2551 pattern_idx, pt->nb_pattern_templates); 2552 return -EINVAL; 2553 } 2554 if (actions_idx >= pt->nb_actions_templates) { 2555 printf("Actions template index #%u is invalid," 2556 " %u templates present in the table\n", 2557 actions_idx, pt->nb_actions_templates); 2558 return -EINVAL; 2559 } 2560 2561 job = calloc(1, sizeof(*job)); 2562 if (!job) { 2563 printf("Queue flow create job allocate failed\n"); 2564 return -ENOMEM; 2565 } 2566 job->type = QUEUE_JOB_TYPE_FLOW_CREATE; 2567 2568 pf = port_flow_new(NULL, pattern, actions, &error); 2569 if (!pf) { 2570 free(job); 2571 return port_flow_complain(&error); 2572 } 2573 if (age) { 2574 pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW; 2575 age->context = &pf->age_type; 2576 } 2577 /* Poisoning to make sure PMDs update it in case of error. */ 2578 memset(&error, 0x11, sizeof(error)); 2579 flow = rte_flow_async_create(port_id, queue_id, &op_attr, pt->table, 2580 pattern, pattern_idx, actions, actions_idx, job, &error); 2581 if (!flow) { 2582 uint32_t flow_id = pf->id; 2583 port_queue_flow_destroy(port_id, queue_id, true, 1, &flow_id); 2584 free(job); 2585 return port_flow_complain(&error); 2586 } 2587 2588 pf->next = port->flow_list; 2589 pf->id = id; 2590 pf->flow = flow; 2591 job->pf = pf; 2592 port->flow_list = pf; 2593 printf("Flow rule #%u creation enqueued\n", pf->id); 2594 return 0; 2595 } 2596 2597 /** Enqueue number of destroy flow rules operations. */ 2598 int 2599 port_queue_flow_destroy(portid_t port_id, queueid_t queue_id, 2600 bool postpone, uint32_t n, const uint32_t *rule) 2601 { 2602 struct rte_flow_op_attr op_attr = { .postpone = postpone }; 2603 struct rte_port *port; 2604 struct port_flow **tmp; 2605 uint32_t c = 0; 2606 int ret = 0; 2607 struct queue_job *job; 2608 2609 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2610 port_id == (portid_t)RTE_PORT_ALL) 2611 return -EINVAL; 2612 port = &ports[port_id]; 2613 2614 if (queue_id >= port->queue_nb) { 2615 printf("Queue #%u is invalid\n", queue_id); 2616 return -EINVAL; 2617 } 2618 2619 tmp = &port->flow_list; 2620 while (*tmp) { 2621 uint32_t i; 2622 2623 for (i = 0; i != n; ++i) { 2624 struct rte_flow_error error; 2625 struct port_flow *pf = *tmp; 2626 2627 if (rule[i] != pf->id) 2628 continue; 2629 /* 2630 * Poisoning to make sure PMD 2631 * update it in case of error. 2632 */ 2633 memset(&error, 0x33, sizeof(error)); 2634 job = calloc(1, sizeof(*job)); 2635 if (!job) { 2636 printf("Queue flow destroy job allocate failed\n"); 2637 return -ENOMEM; 2638 } 2639 job->type = QUEUE_JOB_TYPE_FLOW_DESTROY; 2640 job->pf = pf; 2641 2642 if (rte_flow_async_destroy(port_id, queue_id, &op_attr, 2643 pf->flow, job, &error)) { 2644 free(job); 2645 ret = port_flow_complain(&error); 2646 continue; 2647 } 2648 printf("Flow rule #%u destruction enqueued\n", pf->id); 2649 *tmp = pf->next; 2650 break; 2651 } 2652 if (i == n) 2653 tmp = &(*tmp)->next; 2654 ++c; 2655 } 2656 return ret; 2657 } 2658 2659 /** Enqueue indirect action create operation. */ 2660 int 2661 port_queue_action_handle_create(portid_t port_id, uint32_t queue_id, 2662 bool postpone, uint32_t id, 2663 const struct rte_flow_indir_action_conf *conf, 2664 const struct rte_flow_action *action) 2665 { 2666 const struct rte_flow_op_attr attr = { .postpone = postpone}; 2667 struct rte_port *port; 2668 struct port_indirect_action *pia; 2669 int ret; 2670 struct rte_flow_error error; 2671 struct queue_job *job; 2672 2673 ret = action_alloc(port_id, id, &pia); 2674 if (ret) 2675 return ret; 2676 2677 port = &ports[port_id]; 2678 if (queue_id >= port->queue_nb) { 2679 printf("Queue #%u is invalid\n", queue_id); 2680 return -EINVAL; 2681 } 2682 job = calloc(1, sizeof(*job)); 2683 if (!job) { 2684 printf("Queue action create job allocate failed\n"); 2685 return -ENOMEM; 2686 } 2687 job->type = QUEUE_JOB_TYPE_ACTION_CREATE; 2688 job->pia = pia; 2689 2690 if (action->type == RTE_FLOW_ACTION_TYPE_AGE) { 2691 struct rte_flow_action_age *age = 2692 (struct rte_flow_action_age *)(uintptr_t)(action->conf); 2693 2694 pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION; 2695 age->context = &pia->age_type; 2696 } 2697 /* Poisoning to make sure PMDs update it in case of error. */ 2698 memset(&error, 0x88, sizeof(error)); 2699 pia->handle = rte_flow_async_action_handle_create(port_id, queue_id, 2700 &attr, conf, action, job, &error); 2701 if (!pia->handle) { 2702 uint32_t destroy_id = pia->id; 2703 port_queue_action_handle_destroy(port_id, queue_id, 2704 postpone, 1, &destroy_id); 2705 free(job); 2706 return port_flow_complain(&error); 2707 } 2708 pia->type = action->type; 2709 printf("Indirect action #%u creation queued\n", pia->id); 2710 return 0; 2711 } 2712 2713 /** Enqueue indirect action destroy operation. */ 2714 int 2715 port_queue_action_handle_destroy(portid_t port_id, 2716 uint32_t queue_id, bool postpone, 2717 uint32_t n, const uint32_t *actions) 2718 { 2719 const struct rte_flow_op_attr attr = { .postpone = postpone}; 2720 struct rte_port *port; 2721 struct port_indirect_action **tmp; 2722 uint32_t c = 0; 2723 int ret = 0; 2724 struct queue_job *job; 2725 2726 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2727 port_id == (portid_t)RTE_PORT_ALL) 2728 return -EINVAL; 2729 port = &ports[port_id]; 2730 2731 if (queue_id >= port->queue_nb) { 2732 printf("Queue #%u is invalid\n", queue_id); 2733 return -EINVAL; 2734 } 2735 2736 tmp = &port->actions_list; 2737 while (*tmp) { 2738 uint32_t i; 2739 2740 for (i = 0; i != n; ++i) { 2741 struct rte_flow_error error; 2742 struct port_indirect_action *pia = *tmp; 2743 2744 if (actions[i] != pia->id) 2745 continue; 2746 /* 2747 * Poisoning to make sure PMDs update it in case 2748 * of error. 2749 */ 2750 memset(&error, 0x99, sizeof(error)); 2751 job = calloc(1, sizeof(*job)); 2752 if (!job) { 2753 printf("Queue action destroy job allocate failed\n"); 2754 return -ENOMEM; 2755 } 2756 job->type = QUEUE_JOB_TYPE_ACTION_DESTROY; 2757 job->pia = pia; 2758 2759 if (pia->handle && 2760 rte_flow_async_action_handle_destroy(port_id, 2761 queue_id, &attr, pia->handle, job, &error)) { 2762 ret = port_flow_complain(&error); 2763 continue; 2764 } 2765 *tmp = pia->next; 2766 printf("Indirect action #%u destruction queued\n", 2767 pia->id); 2768 break; 2769 } 2770 if (i == n) 2771 tmp = &(*tmp)->next; 2772 ++c; 2773 } 2774 return ret; 2775 } 2776 2777 /** Enqueue indirect action update operation. */ 2778 int 2779 port_queue_action_handle_update(portid_t port_id, 2780 uint32_t queue_id, bool postpone, uint32_t id, 2781 const struct rte_flow_action *action) 2782 { 2783 const struct rte_flow_op_attr attr = { .postpone = postpone}; 2784 struct rte_port *port; 2785 struct rte_flow_error error; 2786 struct rte_flow_action_handle *action_handle; 2787 struct queue_job *job; 2788 struct port_indirect_action *pia; 2789 struct rte_flow_update_meter_mark mtr_update; 2790 const void *update; 2791 2792 action_handle = port_action_handle_get_by_id(port_id, id); 2793 if (!action_handle) 2794 return -EINVAL; 2795 2796 port = &ports[port_id]; 2797 if (queue_id >= port->queue_nb) { 2798 printf("Queue #%u is invalid\n", queue_id); 2799 return -EINVAL; 2800 } 2801 2802 job = calloc(1, sizeof(*job)); 2803 if (!job) { 2804 printf("Queue action update job allocate failed\n"); 2805 return -ENOMEM; 2806 } 2807 job->type = QUEUE_JOB_TYPE_ACTION_UPDATE; 2808 2809 pia = action_get_by_id(port_id, id); 2810 if (!pia) { 2811 free(job); 2812 return -EINVAL; 2813 } 2814 2815 if (pia->type == RTE_FLOW_ACTION_TYPE_METER_MARK) { 2816 rte_memcpy(&mtr_update.meter_mark, action->conf, 2817 sizeof(struct rte_flow_action_meter_mark)); 2818 mtr_update.profile_valid = 1; 2819 mtr_update.policy_valid = 1; 2820 mtr_update.color_mode_valid = 1; 2821 mtr_update.init_color_valid = 1; 2822 mtr_update.state_valid = 1; 2823 update = &mtr_update; 2824 } else { 2825 update = action; 2826 } 2827 2828 if (rte_flow_async_action_handle_update(port_id, queue_id, &attr, 2829 action_handle, update, job, &error)) { 2830 free(job); 2831 return port_flow_complain(&error); 2832 } 2833 printf("Indirect action #%u update queued\n", id); 2834 return 0; 2835 } 2836 2837 /** Enqueue indirect action query operation. */ 2838 int 2839 port_queue_action_handle_query(portid_t port_id, 2840 uint32_t queue_id, bool postpone, uint32_t id) 2841 { 2842 const struct rte_flow_op_attr attr = { .postpone = postpone}; 2843 struct rte_port *port; 2844 struct rte_flow_error error; 2845 struct rte_flow_action_handle *action_handle; 2846 struct port_indirect_action *pia; 2847 struct queue_job *job; 2848 2849 pia = action_get_by_id(port_id, id); 2850 action_handle = pia ? pia->handle : NULL; 2851 if (!action_handle) 2852 return -EINVAL; 2853 2854 port = &ports[port_id]; 2855 if (queue_id >= port->queue_nb) { 2856 printf("Queue #%u is invalid\n", queue_id); 2857 return -EINVAL; 2858 } 2859 2860 job = calloc(1, sizeof(*job)); 2861 if (!job) { 2862 printf("Queue action update job allocate failed\n"); 2863 return -ENOMEM; 2864 } 2865 job->type = QUEUE_JOB_TYPE_ACTION_QUERY; 2866 job->pia = pia; 2867 2868 if (rte_flow_async_action_handle_query(port_id, queue_id, &attr, 2869 action_handle, &job->query, job, &error)) { 2870 free(job); 2871 return port_flow_complain(&error); 2872 } 2873 printf("Indirect action #%u update queued\n", id); 2874 return 0; 2875 } 2876 2877 /** Push all the queue operations in the queue to the NIC. */ 2878 int 2879 port_queue_flow_push(portid_t port_id, queueid_t queue_id) 2880 { 2881 struct rte_port *port; 2882 struct rte_flow_error error; 2883 int ret = 0; 2884 2885 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2886 port_id == (portid_t)RTE_PORT_ALL) 2887 return -EINVAL; 2888 port = &ports[port_id]; 2889 2890 if (queue_id >= port->queue_nb) { 2891 printf("Queue #%u is invalid\n", queue_id); 2892 return -EINVAL; 2893 } 2894 2895 memset(&error, 0x55, sizeof(error)); 2896 ret = rte_flow_push(port_id, queue_id, &error); 2897 if (ret < 0) { 2898 printf("Failed to push operations in the queue\n"); 2899 return -EINVAL; 2900 } 2901 printf("Queue #%u operations pushed\n", queue_id); 2902 return ret; 2903 } 2904 2905 /** Pull queue operation results from the queue. */ 2906 int 2907 port_queue_flow_pull(portid_t port_id, queueid_t queue_id) 2908 { 2909 struct rte_port *port; 2910 struct rte_flow_op_result *res; 2911 struct rte_flow_error error; 2912 int ret = 0; 2913 int success = 0; 2914 int i; 2915 struct queue_job *job; 2916 2917 if (port_id_is_invalid(port_id, ENABLED_WARN) || 2918 port_id == (portid_t)RTE_PORT_ALL) 2919 return -EINVAL; 2920 port = &ports[port_id]; 2921 2922 if (queue_id >= port->queue_nb) { 2923 printf("Queue #%u is invalid\n", queue_id); 2924 return -EINVAL; 2925 } 2926 2927 res = calloc(port->queue_sz, sizeof(struct rte_flow_op_result)); 2928 if (!res) { 2929 printf("Failed to allocate memory for pulled results\n"); 2930 return -ENOMEM; 2931 } 2932 2933 memset(&error, 0x66, sizeof(error)); 2934 ret = rte_flow_pull(port_id, queue_id, res, 2935 port->queue_sz, &error); 2936 if (ret < 0) { 2937 printf("Failed to pull a operation results\n"); 2938 free(res); 2939 return -EINVAL; 2940 } 2941 2942 for (i = 0; i < ret; i++) { 2943 if (res[i].status == RTE_FLOW_OP_SUCCESS) 2944 success++; 2945 job = (struct queue_job *)res[i].user_data; 2946 if (job->type == QUEUE_JOB_TYPE_FLOW_DESTROY) 2947 free(job->pf); 2948 else if (job->type == QUEUE_JOB_TYPE_ACTION_DESTROY) 2949 free(job->pia); 2950 else if (job->type == QUEUE_JOB_TYPE_ACTION_QUERY) 2951 port_action_handle_query_dump(job->pia->type, &job->query); 2952 free(job); 2953 } 2954 printf("Queue #%u pulled %u operations (%u failed, %u succeeded)\n", 2955 queue_id, ret, ret - success, success); 2956 free(res); 2957 return ret; 2958 } 2959 2960 /** Create flow rule. */ 2961 int 2962 port_flow_create(portid_t port_id, 2963 const struct rte_flow_attr *attr, 2964 const struct rte_flow_item *pattern, 2965 const struct rte_flow_action *actions, 2966 const struct tunnel_ops *tunnel_ops) 2967 { 2968 struct rte_flow *flow; 2969 struct rte_port *port; 2970 struct port_flow *pf; 2971 uint32_t id = 0; 2972 struct rte_flow_error error; 2973 struct port_flow_tunnel *pft = NULL; 2974 struct rte_flow_action_age *age = age_action_get(actions); 2975 2976 port = &ports[port_id]; 2977 if (port->flow_list) { 2978 if (port->flow_list->id == UINT32_MAX) { 2979 fprintf(stderr, 2980 "Highest rule ID is already assigned, delete it first"); 2981 return -ENOMEM; 2982 } 2983 id = port->flow_list->id + 1; 2984 } 2985 if (tunnel_ops->enabled) { 2986 pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, 2987 actions, tunnel_ops); 2988 if (!pft) 2989 return -ENOENT; 2990 if (pft->items) 2991 pattern = pft->items; 2992 if (pft->actions) 2993 actions = pft->actions; 2994 } 2995 pf = port_flow_new(attr, pattern, actions, &error); 2996 if (!pf) 2997 return port_flow_complain(&error); 2998 if (age) { 2999 pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW; 3000 age->context = &pf->age_type; 3001 } 3002 /* Poisoning to make sure PMDs update it in case of error. */ 3003 memset(&error, 0x22, sizeof(error)); 3004 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 3005 if (!flow) { 3006 if (tunnel_ops->enabled) 3007 port_flow_tunnel_offload_cmd_release(port_id, 3008 tunnel_ops, pft); 3009 free(pf); 3010 return port_flow_complain(&error); 3011 } 3012 pf->next = port->flow_list; 3013 pf->id = id; 3014 pf->flow = flow; 3015 port->flow_list = pf; 3016 if (tunnel_ops->enabled) 3017 port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); 3018 printf("Flow rule #%u created\n", pf->id); 3019 return 0; 3020 } 3021 3022 /** Destroy a number of flow rules. */ 3023 int 3024 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 3025 { 3026 struct rte_port *port; 3027 struct port_flow **tmp; 3028 uint32_t c = 0; 3029 int ret = 0; 3030 3031 if (port_id_is_invalid(port_id, ENABLED_WARN) || 3032 port_id == (portid_t)RTE_PORT_ALL) 3033 return -EINVAL; 3034 port = &ports[port_id]; 3035 tmp = &port->flow_list; 3036 while (*tmp) { 3037 uint32_t i; 3038 3039 for (i = 0; i != n; ++i) { 3040 struct rte_flow_error error; 3041 struct port_flow *pf = *tmp; 3042 3043 if (rule[i] != pf->id) 3044 continue; 3045 /* 3046 * Poisoning to make sure PMDs update it in case 3047 * of error. 3048 */ 3049 memset(&error, 0x33, sizeof(error)); 3050 if (rte_flow_destroy(port_id, pf->flow, &error)) { 3051 ret = port_flow_complain(&error); 3052 continue; 3053 } 3054 printf("Flow rule #%u destroyed\n", pf->id); 3055 *tmp = pf->next; 3056 free(pf); 3057 break; 3058 } 3059 if (i == n) 3060 tmp = &(*tmp)->next; 3061 ++c; 3062 } 3063 return ret; 3064 } 3065 3066 /** Remove all flow rules. */ 3067 int 3068 port_flow_flush(portid_t port_id) 3069 { 3070 struct rte_flow_error error; 3071 struct rte_port *port; 3072 int ret = 0; 3073 3074 if (port_id_is_invalid(port_id, ENABLED_WARN) || 3075 port_id == (portid_t)RTE_PORT_ALL) 3076 return -EINVAL; 3077 3078 port = &ports[port_id]; 3079 3080 if (port->flow_list == NULL) 3081 return ret; 3082 3083 /* Poisoning to make sure PMDs update it in case of error. */ 3084 memset(&error, 0x44, sizeof(error)); 3085 if (rte_flow_flush(port_id, &error)) { 3086 port_flow_complain(&error); 3087 } 3088 3089 while (port->flow_list) { 3090 struct port_flow *pf = port->flow_list->next; 3091 3092 free(port->flow_list); 3093 port->flow_list = pf; 3094 } 3095 return ret; 3096 } 3097 3098 /** Dump flow rules. */ 3099 int 3100 port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id, 3101 const char *file_name) 3102 { 3103 int ret = 0; 3104 FILE *file = stdout; 3105 struct rte_flow_error error; 3106 struct rte_port *port; 3107 struct port_flow *pflow; 3108 struct rte_flow *tmpFlow = NULL; 3109 bool found = false; 3110 3111 if (port_id_is_invalid(port_id, ENABLED_WARN) || 3112 port_id == (portid_t)RTE_PORT_ALL) 3113 return -EINVAL; 3114 3115 if (!dump_all) { 3116 port = &ports[port_id]; 3117 pflow = port->flow_list; 3118 while (pflow) { 3119 if (rule_id != pflow->id) { 3120 pflow = pflow->next; 3121 } else { 3122 tmpFlow = pflow->flow; 3123 if (tmpFlow) 3124 found = true; 3125 break; 3126 } 3127 } 3128 if (found == false) { 3129 fprintf(stderr, "Failed to dump to flow %d\n", rule_id); 3130 return -EINVAL; 3131 } 3132 } 3133 3134 if (file_name && strlen(file_name)) { 3135 file = fopen(file_name, "w"); 3136 if (!file) { 3137 fprintf(stderr, "Failed to create file %s: %s\n", 3138 file_name, strerror(errno)); 3139 return -errno; 3140 } 3141 } 3142 3143 if (!dump_all) 3144 ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error); 3145 else 3146 ret = rte_flow_dev_dump(port_id, NULL, file, &error); 3147 if (ret) { 3148 port_flow_complain(&error); 3149 fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret)); 3150 } else 3151 printf("Flow dump finished\n"); 3152 if (file_name && strlen(file_name)) 3153 fclose(file); 3154 return ret; 3155 } 3156 3157 /** Query a flow rule. */ 3158 int 3159 port_flow_query(portid_t port_id, uint32_t rule, 3160 const struct rte_flow_action *action) 3161 { 3162 struct rte_flow_error error; 3163 struct rte_port *port; 3164 struct port_flow *pf; 3165 const char *name; 3166 union { 3167 struct rte_flow_query_count count; 3168 struct rte_flow_action_rss rss_conf; 3169 struct rte_flow_query_age age; 3170 } query; 3171 int ret; 3172 3173 if (port_id_is_invalid(port_id, ENABLED_WARN) || 3174 port_id == (portid_t)RTE_PORT_ALL) 3175 return -EINVAL; 3176 port = &ports[port_id]; 3177 for (pf = port->flow_list; pf; pf = pf->next) 3178 if (pf->id == rule) 3179 break; 3180 if (!pf) { 3181 fprintf(stderr, "Flow rule #%u not found\n", rule); 3182 return -ENOENT; 3183 } 3184 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 3185 &name, sizeof(name), 3186 (void *)(uintptr_t)action->type, &error); 3187 if (ret < 0) 3188 return port_flow_complain(&error); 3189 switch (action->type) { 3190 case RTE_FLOW_ACTION_TYPE_COUNT: 3191 case RTE_FLOW_ACTION_TYPE_RSS: 3192 case RTE_FLOW_ACTION_TYPE_AGE: 3193 break; 3194 default: 3195 fprintf(stderr, "Cannot query action type %d (%s)\n", 3196 action->type, name); 3197 return -ENOTSUP; 3198 } 3199 /* Poisoning to make sure PMDs update it in case of error. */ 3200 memset(&error, 0x55, sizeof(error)); 3201 memset(&query, 0, sizeof(query)); 3202 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 3203 return port_flow_complain(&error); 3204 switch (action->type) { 3205 case RTE_FLOW_ACTION_TYPE_COUNT: 3206 printf("%s:\n" 3207 " hits_set: %u\n" 3208 " bytes_set: %u\n" 3209 " hits: %" PRIu64 "\n" 3210 " bytes: %" PRIu64 "\n", 3211 name, 3212 query.count.hits_set, 3213 query.count.bytes_set, 3214 query.count.hits, 3215 query.count.bytes); 3216 break; 3217 case RTE_FLOW_ACTION_TYPE_RSS: 3218 rss_config_display(&query.rss_conf); 3219 break; 3220 case RTE_FLOW_ACTION_TYPE_AGE: 3221 printf("%s:\n" 3222 " aged: %u\n" 3223 " sec_since_last_hit_valid: %u\n" 3224 " sec_since_last_hit: %" PRIu32 "\n", 3225 name, 3226 query.age.aged, 3227 query.age.sec_since_last_hit_valid, 3228 query.age.sec_since_last_hit); 3229 break; 3230 default: 3231 fprintf(stderr, 3232 "Cannot display result for action type %d (%s)\n", 3233 action->type, name); 3234 break; 3235 } 3236 return 0; 3237 } 3238 3239 /** List simply and destroy all aged flows. */ 3240 void 3241 port_flow_aged(portid_t port_id, uint8_t destroy) 3242 { 3243 void **contexts; 3244 int nb_context, total = 0, idx; 3245 struct rte_flow_error error; 3246 enum age_action_context_type *type; 3247 union { 3248 struct port_flow *pf; 3249 struct port_indirect_action *pia; 3250 } ctx; 3251 3252 if (port_id_is_invalid(port_id, ENABLED_WARN) || 3253 port_id == (portid_t)RTE_PORT_ALL) 3254 return; 3255 total = rte_flow_get_aged_flows(port_id, NULL, 0, &error); 3256 printf("Port %u total aged flows: %d\n", port_id, total); 3257 if (total < 0) { 3258 port_flow_complain(&error); 3259 return; 3260 } 3261 if (total == 0) 3262 return; 3263 contexts = malloc(sizeof(void *) * total); 3264 if (contexts == NULL) { 3265 fprintf(stderr, "Cannot allocate contexts for aged flow\n"); 3266 return; 3267 } 3268 printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type"); 3269 nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error); 3270 if (nb_context != total) { 3271 fprintf(stderr, 3272 "Port:%d get aged flows count(%d) != total(%d)\n", 3273 port_id, nb_context, total); 3274 free(contexts); 3275 return; 3276 } 3277 total = 0; 3278 for (idx = 0; idx < nb_context; idx++) { 3279 if (!contexts[idx]) { 3280 fprintf(stderr, "Error: get Null context in port %u\n", 3281 port_id); 3282 continue; 3283 } 3284 type = (enum age_action_context_type *)contexts[idx]; 3285 switch (*type) { 3286 case ACTION_AGE_CONTEXT_TYPE_FLOW: 3287 ctx.pf = container_of(type, struct port_flow, age_type); 3288 printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 3289 "\t%c%c%c\t\n", 3290 "Flow", 3291 ctx.pf->id, 3292 ctx.pf->rule.attr->group, 3293 ctx.pf->rule.attr->priority, 3294 ctx.pf->rule.attr->ingress ? 'i' : '-', 3295 ctx.pf->rule.attr->egress ? 'e' : '-', 3296 ctx.pf->rule.attr->transfer ? 't' : '-'); 3297 if (destroy && !port_flow_destroy(port_id, 1, 3298 &ctx.pf->id)) 3299 total++; 3300 break; 3301 case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION: 3302 ctx.pia = container_of(type, 3303 struct port_indirect_action, age_type); 3304 printf("%-20s\t%" PRIu32 "\n", "Indirect action", 3305 ctx.pia->id); 3306 break; 3307 default: 3308 fprintf(stderr, "Error: invalid context type %u\n", 3309 port_id); 3310 break; 3311 } 3312 } 3313 printf("\n%d flows destroyed\n", total); 3314 free(contexts); 3315 } 3316 3317 /** List flow rules. */ 3318 void 3319 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group) 3320 { 3321 struct rte_port *port; 3322 struct port_flow *pf; 3323 struct port_flow *list = NULL; 3324 uint32_t i; 3325 3326 if (port_id_is_invalid(port_id, ENABLED_WARN) || 3327 port_id == (portid_t)RTE_PORT_ALL) 3328 return; 3329 port = &ports[port_id]; 3330 if (!port->flow_list) 3331 return; 3332 /* Sort flows by group, priority and ID. */ 3333 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 3334 struct port_flow **tmp; 3335 const struct rte_flow_attr *curr = pf->rule.attr; 3336 3337 if (n) { 3338 /* Filter out unwanted groups. */ 3339 for (i = 0; i != n; ++i) 3340 if (curr->group == group[i]) 3341 break; 3342 if (i == n) 3343 continue; 3344 } 3345 for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { 3346 const struct rte_flow_attr *comp = (*tmp)->rule.attr; 3347 3348 if (curr->group > comp->group || 3349 (curr->group == comp->group && 3350 curr->priority > comp->priority) || 3351 (curr->group == comp->group && 3352 curr->priority == comp->priority && 3353 pf->id > (*tmp)->id)) 3354 continue; 3355 break; 3356 } 3357 pf->tmp = *tmp; 3358 *tmp = pf; 3359 } 3360 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 3361 for (pf = list; pf != NULL; pf = pf->tmp) { 3362 const struct rte_flow_item *item = pf->rule.pattern; 3363 const struct rte_flow_action *action = pf->rule.actions; 3364 const char *name; 3365 3366 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", 3367 pf->id, 3368 pf->rule.attr->group, 3369 pf->rule.attr->priority, 3370 pf->rule.attr->ingress ? 'i' : '-', 3371 pf->rule.attr->egress ? 'e' : '-', 3372 pf->rule.attr->transfer ? 't' : '-'); 3373 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 3374 if ((uint32_t)item->type > INT_MAX) 3375 name = "PMD_INTERNAL"; 3376 else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 3377 &name, sizeof(name), 3378 (void *)(uintptr_t)item->type, 3379 NULL) <= 0) 3380 name = "[UNKNOWN]"; 3381 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 3382 printf("%s ", name); 3383 ++item; 3384 } 3385 printf("=>"); 3386 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 3387 if ((uint32_t)action->type > INT_MAX) 3388 name = "PMD_INTERNAL"; 3389 else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 3390 &name, sizeof(name), 3391 (void *)(uintptr_t)action->type, 3392 NULL) <= 0) 3393 name = "[UNKNOWN]"; 3394 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 3395 printf(" %s", name); 3396 ++action; 3397 } 3398 printf("\n"); 3399 } 3400 } 3401 3402 /** Restrict ingress traffic to the defined flow rules. */ 3403 int 3404 port_flow_isolate(portid_t port_id, int set) 3405 { 3406 struct rte_flow_error error; 3407 3408 /* Poisoning to make sure PMDs update it in case of error. */ 3409 memset(&error, 0x66, sizeof(error)); 3410 if (rte_flow_isolate(port_id, set, &error)) 3411 return port_flow_complain(&error); 3412 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 3413 port_id, 3414 set ? "now restricted" : "not restricted anymore"); 3415 return 0; 3416 } 3417 3418 /* 3419 * RX/TX ring descriptors display functions. 3420 */ 3421 int 3422 rx_queue_id_is_invalid(queueid_t rxq_id) 3423 { 3424 if (rxq_id < nb_rxq) 3425 return 0; 3426 fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n", 3427 rxq_id, nb_rxq); 3428 return 1; 3429 } 3430 3431 int 3432 tx_queue_id_is_invalid(queueid_t txq_id) 3433 { 3434 if (txq_id < nb_txq) 3435 return 0; 3436 fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n", 3437 txq_id, nb_txq); 3438 return 1; 3439 } 3440 3441 static int 3442 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size) 3443 { 3444 struct rte_port *port = &ports[port_id]; 3445 struct rte_eth_rxq_info rx_qinfo; 3446 int ret; 3447 3448 ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo); 3449 if (ret == 0) { 3450 *ring_size = rx_qinfo.nb_desc; 3451 return ret; 3452 } 3453 3454 if (ret != -ENOTSUP) 3455 return ret; 3456 /* 3457 * If the rte_eth_rx_queue_info_get is not support for this PMD, 3458 * ring_size stored in testpmd will be used for validity verification. 3459 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc 3460 * being 0, it will use a default value provided by PMDs to setup this 3461 * rxq. If the default value is 0, it will use the 3462 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq. 3463 */ 3464 if (port->nb_rx_desc[rxq_id]) 3465 *ring_size = port->nb_rx_desc[rxq_id]; 3466 else if (port->dev_info.default_rxportconf.ring_size) 3467 *ring_size = port->dev_info.default_rxportconf.ring_size; 3468 else 3469 *ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE; 3470 return 0; 3471 } 3472 3473 static int 3474 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size) 3475 { 3476 struct rte_port *port = &ports[port_id]; 3477 struct rte_eth_txq_info tx_qinfo; 3478 int ret; 3479 3480 ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo); 3481 if (ret == 0) { 3482 *ring_size = tx_qinfo.nb_desc; 3483 return ret; 3484 } 3485 3486 if (ret != -ENOTSUP) 3487 return ret; 3488 /* 3489 * If the rte_eth_tx_queue_info_get is not support for this PMD, 3490 * ring_size stored in testpmd will be used for validity verification. 3491 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc 3492 * being 0, it will use a default value provided by PMDs to setup this 3493 * txq. If the default value is 0, it will use the 3494 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq. 3495 */ 3496 if (port->nb_tx_desc[txq_id]) 3497 *ring_size = port->nb_tx_desc[txq_id]; 3498 else if (port->dev_info.default_txportconf.ring_size) 3499 *ring_size = port->dev_info.default_txportconf.ring_size; 3500 else 3501 *ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE; 3502 return 0; 3503 } 3504 3505 static int 3506 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id) 3507 { 3508 uint16_t ring_size; 3509 int ret; 3510 3511 ret = get_rx_ring_size(port_id, rxq_id, &ring_size); 3512 if (ret) 3513 return 1; 3514 3515 if (rxdesc_id < ring_size) 3516 return 0; 3517 3518 fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n", 3519 rxdesc_id, ring_size); 3520 return 1; 3521 } 3522 3523 static int 3524 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id) 3525 { 3526 uint16_t ring_size; 3527 int ret; 3528 3529 ret = get_tx_ring_size(port_id, txq_id, &ring_size); 3530 if (ret) 3531 return 1; 3532 3533 if (txdesc_id < ring_size) 3534 return 0; 3535 3536 fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n", 3537 txdesc_id, ring_size); 3538 return 1; 3539 } 3540 3541 static const struct rte_memzone * 3542 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 3543 { 3544 char mz_name[RTE_MEMZONE_NAMESIZE]; 3545 const struct rte_memzone *mz; 3546 3547 snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", 3548 port_id, q_id, ring_name); 3549 mz = rte_memzone_lookup(mz_name); 3550 if (mz == NULL) 3551 fprintf(stderr, 3552 "%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n", 3553 ring_name, port_id, q_id, mz_name); 3554 return mz; 3555 } 3556 3557 union igb_ring_dword { 3558 uint64_t dword; 3559 struct { 3560 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 3561 uint32_t lo; 3562 uint32_t hi; 3563 #else 3564 uint32_t hi; 3565 uint32_t lo; 3566 #endif 3567 } words; 3568 }; 3569 3570 struct igb_ring_desc_32_bytes { 3571 union igb_ring_dword lo_dword; 3572 union igb_ring_dword hi_dword; 3573 union igb_ring_dword resv1; 3574 union igb_ring_dword resv2; 3575 }; 3576 3577 struct igb_ring_desc_16_bytes { 3578 union igb_ring_dword lo_dword; 3579 union igb_ring_dword hi_dword; 3580 }; 3581 3582 static void 3583 ring_rxd_display_dword(union igb_ring_dword dword) 3584 { 3585 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 3586 (unsigned)dword.words.hi); 3587 } 3588 3589 static void 3590 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 3591 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 3592 portid_t port_id, 3593 #else 3594 __rte_unused portid_t port_id, 3595 #endif 3596 uint16_t desc_id) 3597 { 3598 struct igb_ring_desc_16_bytes *ring = 3599 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 3600 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 3601 int ret; 3602 struct rte_eth_dev_info dev_info; 3603 3604 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3605 if (ret != 0) 3606 return; 3607 3608 if (strstr(dev_info.driver_name, "i40e") != NULL) { 3609 /* 32 bytes RX descriptor, i40e only */ 3610 struct igb_ring_desc_32_bytes *ring = 3611 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 3612 ring[desc_id].lo_dword.dword = 3613 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 3614 ring_rxd_display_dword(ring[desc_id].lo_dword); 3615 ring[desc_id].hi_dword.dword = 3616 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 3617 ring_rxd_display_dword(ring[desc_id].hi_dword); 3618 ring[desc_id].resv1.dword = 3619 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 3620 ring_rxd_display_dword(ring[desc_id].resv1); 3621 ring[desc_id].resv2.dword = 3622 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 3623 ring_rxd_display_dword(ring[desc_id].resv2); 3624 3625 return; 3626 } 3627 #endif 3628 /* 16 bytes RX descriptor */ 3629 ring[desc_id].lo_dword.dword = 3630 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 3631 ring_rxd_display_dword(ring[desc_id].lo_dword); 3632 ring[desc_id].hi_dword.dword = 3633 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 3634 ring_rxd_display_dword(ring[desc_id].hi_dword); 3635 } 3636 3637 static void 3638 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 3639 { 3640 struct igb_ring_desc_16_bytes *ring; 3641 struct igb_ring_desc_16_bytes txd; 3642 3643 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 3644 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 3645 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 3646 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 3647 (unsigned)txd.lo_dword.words.lo, 3648 (unsigned)txd.lo_dword.words.hi, 3649 (unsigned)txd.hi_dword.words.lo, 3650 (unsigned)txd.hi_dword.words.hi); 3651 } 3652 3653 void 3654 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 3655 { 3656 const struct rte_memzone *rx_mz; 3657 3658 if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id)) 3659 return; 3660 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 3661 if (rx_mz == NULL) 3662 return; 3663 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 3664 } 3665 3666 void 3667 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 3668 { 3669 const struct rte_memzone *tx_mz; 3670 3671 if (tx_desc_id_is_invalid(port_id, txq_id, txd_id)) 3672 return; 3673 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 3674 if (tx_mz == NULL) 3675 return; 3676 ring_tx_descriptor_display(tx_mz, txd_id); 3677 } 3678 3679 void 3680 fwd_lcores_config_display(void) 3681 { 3682 lcoreid_t lc_id; 3683 3684 printf("List of forwarding lcores:"); 3685 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 3686 printf(" %2u", fwd_lcores_cpuids[lc_id]); 3687 printf("\n"); 3688 } 3689 void 3690 rxtx_config_display(void) 3691 { 3692 portid_t pid; 3693 queueid_t qid; 3694 3695 printf(" %s packet forwarding%s packets/burst=%d\n", 3696 cur_fwd_eng->fwd_mode_name, 3697 retry_enabled == 0 ? "" : " with retry", 3698 nb_pkt_per_burst); 3699 3700 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 3701 printf(" packet len=%u - nb packet segments=%d\n", 3702 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 3703 3704 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 3705 nb_fwd_lcores, nb_fwd_ports); 3706 3707 RTE_ETH_FOREACH_DEV(pid) { 3708 struct rte_eth_rxconf *rx_conf = &ports[pid].rxq[0].conf; 3709 struct rte_eth_txconf *tx_conf = &ports[pid].txq[0].conf; 3710 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; 3711 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; 3712 struct rte_eth_rxq_info rx_qinfo; 3713 struct rte_eth_txq_info tx_qinfo; 3714 uint16_t rx_free_thresh_tmp; 3715 uint16_t tx_free_thresh_tmp; 3716 uint16_t tx_rs_thresh_tmp; 3717 uint16_t nb_rx_desc_tmp; 3718 uint16_t nb_tx_desc_tmp; 3719 uint64_t offloads_tmp; 3720 uint8_t pthresh_tmp; 3721 uint8_t hthresh_tmp; 3722 uint8_t wthresh_tmp; 3723 int32_t rc; 3724 3725 /* per port config */ 3726 printf(" port %d: RX queue number: %d Tx queue number: %d\n", 3727 (unsigned int)pid, nb_rxq, nb_txq); 3728 3729 printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", 3730 ports[pid].dev_conf.rxmode.offloads, 3731 ports[pid].dev_conf.txmode.offloads); 3732 3733 /* per rx queue config only for first queue to be less verbose */ 3734 for (qid = 0; qid < 1; qid++) { 3735 rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); 3736 if (rc) { 3737 nb_rx_desc_tmp = nb_rx_desc[qid]; 3738 rx_free_thresh_tmp = 3739 rx_conf[qid].rx_free_thresh; 3740 pthresh_tmp = rx_conf[qid].rx_thresh.pthresh; 3741 hthresh_tmp = rx_conf[qid].rx_thresh.hthresh; 3742 wthresh_tmp = rx_conf[qid].rx_thresh.wthresh; 3743 offloads_tmp = rx_conf[qid].offloads; 3744 } else { 3745 nb_rx_desc_tmp = rx_qinfo.nb_desc; 3746 rx_free_thresh_tmp = 3747 rx_qinfo.conf.rx_free_thresh; 3748 pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh; 3749 hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh; 3750 wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh; 3751 offloads_tmp = rx_qinfo.conf.offloads; 3752 } 3753 3754 printf(" RX queue: %d\n", qid); 3755 printf(" RX desc=%d - RX free threshold=%d\n", 3756 nb_rx_desc_tmp, rx_free_thresh_tmp); 3757 printf(" RX threshold registers: pthresh=%d hthresh=%d " 3758 " wthresh=%d\n", 3759 pthresh_tmp, hthresh_tmp, wthresh_tmp); 3760 printf(" RX Offloads=0x%"PRIx64, offloads_tmp); 3761 if (rx_conf->share_group > 0) 3762 printf(" share_group=%u share_qid=%u", 3763 rx_conf->share_group, 3764 rx_conf->share_qid); 3765 printf("\n"); 3766 } 3767 3768 /* per tx queue config only for first queue to be less verbose */ 3769 for (qid = 0; qid < 1; qid++) { 3770 rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); 3771 if (rc) { 3772 nb_tx_desc_tmp = nb_tx_desc[qid]; 3773 tx_free_thresh_tmp = 3774 tx_conf[qid].tx_free_thresh; 3775 pthresh_tmp = tx_conf[qid].tx_thresh.pthresh; 3776 hthresh_tmp = tx_conf[qid].tx_thresh.hthresh; 3777 wthresh_tmp = tx_conf[qid].tx_thresh.wthresh; 3778 offloads_tmp = tx_conf[qid].offloads; 3779 tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh; 3780 } else { 3781 nb_tx_desc_tmp = tx_qinfo.nb_desc; 3782 tx_free_thresh_tmp = 3783 tx_qinfo.conf.tx_free_thresh; 3784 pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh; 3785 hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh; 3786 wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh; 3787 offloads_tmp = tx_qinfo.conf.offloads; 3788 tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh; 3789 } 3790 3791 printf(" TX queue: %d\n", qid); 3792 printf(" TX desc=%d - TX free threshold=%d\n", 3793 nb_tx_desc_tmp, tx_free_thresh_tmp); 3794 printf(" TX threshold registers: pthresh=%d hthresh=%d " 3795 " wthresh=%d\n", 3796 pthresh_tmp, hthresh_tmp, wthresh_tmp); 3797 printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", 3798 offloads_tmp, tx_rs_thresh_tmp); 3799 } 3800 } 3801 } 3802 3803 void 3804 port_rss_reta_info(portid_t port_id, 3805 struct rte_eth_rss_reta_entry64 *reta_conf, 3806 uint16_t nb_entries) 3807 { 3808 uint16_t i, idx, shift; 3809 int ret; 3810 3811 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3812 return; 3813 3814 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 3815 if (ret != 0) { 3816 fprintf(stderr, 3817 "Failed to get RSS RETA info, return code = %d\n", 3818 ret); 3819 return; 3820 } 3821 3822 for (i = 0; i < nb_entries; i++) { 3823 idx = i / RTE_ETH_RETA_GROUP_SIZE; 3824 shift = i % RTE_ETH_RETA_GROUP_SIZE; 3825 if (!(reta_conf[idx].mask & (1ULL << shift))) 3826 continue; 3827 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 3828 i, reta_conf[idx].reta[shift]); 3829 } 3830 } 3831 3832 /* 3833 * Displays the RSS hash functions of a port, and, optionally, the RSS hash 3834 * key of the port. 3835 */ 3836 void 3837 port_rss_hash_conf_show(portid_t port_id, int show_rss_key) 3838 { 3839 struct rte_eth_rss_conf rss_conf = {0}; 3840 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 3841 uint64_t rss_hf; 3842 uint8_t i; 3843 int diag; 3844 struct rte_eth_dev_info dev_info; 3845 uint8_t hash_key_size; 3846 int ret; 3847 3848 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3849 return; 3850 3851 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3852 if (ret != 0) 3853 return; 3854 3855 if (dev_info.hash_key_size > 0 && 3856 dev_info.hash_key_size <= sizeof(rss_key)) 3857 hash_key_size = dev_info.hash_key_size; 3858 else { 3859 fprintf(stderr, 3860 "dev_info did not provide a valid hash key size\n"); 3861 return; 3862 } 3863 3864 /* Get RSS hash key if asked to display it */ 3865 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 3866 rss_conf.rss_key_len = hash_key_size; 3867 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 3868 if (diag != 0) { 3869 switch (diag) { 3870 case -ENODEV: 3871 fprintf(stderr, "port index %d invalid\n", port_id); 3872 break; 3873 case -ENOTSUP: 3874 fprintf(stderr, "operation not supported by device\n"); 3875 break; 3876 default: 3877 fprintf(stderr, "operation failed - diag=%d\n", diag); 3878 break; 3879 } 3880 return; 3881 } 3882 rss_hf = rss_conf.rss_hf; 3883 if (rss_hf == 0) { 3884 printf("RSS disabled\n"); 3885 return; 3886 } 3887 printf("RSS functions:\n"); 3888 rss_types_display(rss_hf, TESTPMD_RSS_TYPES_CHAR_NUM_PER_LINE); 3889 if (!show_rss_key) 3890 return; 3891 printf("RSS key:\n"); 3892 for (i = 0; i < hash_key_size; i++) 3893 printf("%02X", rss_key[i]); 3894 printf("\n"); 3895 } 3896 3897 void 3898 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 3899 uint8_t hash_key_len) 3900 { 3901 struct rte_eth_rss_conf rss_conf; 3902 int diag; 3903 3904 rss_conf.rss_key = NULL; 3905 rss_conf.rss_key_len = 0; 3906 rss_conf.rss_hf = str_to_rsstypes(rss_type); 3907 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 3908 if (diag == 0) { 3909 rss_conf.rss_key = hash_key; 3910 rss_conf.rss_key_len = hash_key_len; 3911 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 3912 } 3913 if (diag == 0) 3914 return; 3915 3916 switch (diag) { 3917 case -ENODEV: 3918 fprintf(stderr, "port index %d invalid\n", port_id); 3919 break; 3920 case -ENOTSUP: 3921 fprintf(stderr, "operation not supported by device\n"); 3922 break; 3923 default: 3924 fprintf(stderr, "operation failed - diag=%d\n", diag); 3925 break; 3926 } 3927 } 3928 3929 /* 3930 * Check whether a shared rxq scheduled on other lcores. 3931 */ 3932 static bool 3933 fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc, 3934 portid_t src_port, queueid_t src_rxq, 3935 uint32_t share_group, queueid_t share_rxq) 3936 { 3937 streamid_t sm_id; 3938 streamid_t nb_fs_per_lcore; 3939 lcoreid_t nb_fc; 3940 lcoreid_t lc_id; 3941 struct fwd_stream *fs; 3942 struct rte_port *port; 3943 struct rte_eth_dev_info *dev_info; 3944 struct rte_eth_rxconf *rxq_conf; 3945 3946 nb_fc = cur_fwd_config.nb_fwd_lcores; 3947 /* Check remaining cores. */ 3948 for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) { 3949 sm_id = fwd_lcores[lc_id]->stream_idx; 3950 nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb; 3951 for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore; 3952 sm_id++) { 3953 fs = fwd_streams[sm_id]; 3954 port = &ports[fs->rx_port]; 3955 dev_info = &port->dev_info; 3956 rxq_conf = &port->rxq[fs->rx_queue].conf; 3957 if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) 3958 == 0 || rxq_conf->share_group == 0) 3959 /* Not shared rxq. */ 3960 continue; 3961 if (domain_id != port->dev_info.switch_info.domain_id) 3962 continue; 3963 if (rxq_conf->share_group != share_group) 3964 continue; 3965 if (rxq_conf->share_qid != share_rxq) 3966 continue; 3967 printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n", 3968 share_group, share_rxq); 3969 printf(" lcore %hhu Port %hu queue %hu\n", 3970 src_lc, src_port, src_rxq); 3971 printf(" lcore %hhu Port %hu queue %hu\n", 3972 lc_id, fs->rx_port, fs->rx_queue); 3973 printf("Please use --nb-cores=%hu to limit number of forwarding cores\n", 3974 nb_rxq); 3975 return true; 3976 } 3977 } 3978 return false; 3979 } 3980 3981 /* 3982 * Check shared rxq configuration. 3983 * 3984 * Shared group must not being scheduled on different core. 3985 */ 3986 bool 3987 pkt_fwd_shared_rxq_check(void) 3988 { 3989 streamid_t sm_id; 3990 streamid_t nb_fs_per_lcore; 3991 lcoreid_t nb_fc; 3992 lcoreid_t lc_id; 3993 struct fwd_stream *fs; 3994 uint16_t domain_id; 3995 struct rte_port *port; 3996 struct rte_eth_dev_info *dev_info; 3997 struct rte_eth_rxconf *rxq_conf; 3998 3999 if (rxq_share == 0) 4000 return true; 4001 nb_fc = cur_fwd_config.nb_fwd_lcores; 4002 /* 4003 * Check streams on each core, make sure the same switch domain + 4004 * group + queue doesn't get scheduled on other cores. 4005 */ 4006 for (lc_id = 0; lc_id < nb_fc; lc_id++) { 4007 sm_id = fwd_lcores[lc_id]->stream_idx; 4008 nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb; 4009 for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore; 4010 sm_id++) { 4011 fs = fwd_streams[sm_id]; 4012 /* Update lcore info stream being scheduled. */ 4013 fs->lcore = fwd_lcores[lc_id]; 4014 port = &ports[fs->rx_port]; 4015 dev_info = &port->dev_info; 4016 rxq_conf = &port->rxq[fs->rx_queue].conf; 4017 if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) 4018 == 0 || rxq_conf->share_group == 0) 4019 /* Not shared rxq. */ 4020 continue; 4021 /* Check shared rxq not scheduled on remaining cores. */ 4022 domain_id = port->dev_info.switch_info.domain_id; 4023 if (fwd_stream_on_other_lcores(domain_id, lc_id, 4024 fs->rx_port, 4025 fs->rx_queue, 4026 rxq_conf->share_group, 4027 rxq_conf->share_qid)) 4028 return false; 4029 } 4030 } 4031 return true; 4032 } 4033 4034 /* 4035 * Setup forwarding configuration for each logical core. 4036 */ 4037 static void 4038 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 4039 { 4040 streamid_t nb_fs_per_lcore; 4041 streamid_t nb_fs; 4042 streamid_t sm_id; 4043 lcoreid_t nb_extra; 4044 lcoreid_t nb_fc; 4045 lcoreid_t nb_lc; 4046 lcoreid_t lc_id; 4047 4048 nb_fs = cfg->nb_fwd_streams; 4049 nb_fc = cfg->nb_fwd_lcores; 4050 if (nb_fs <= nb_fc) { 4051 nb_fs_per_lcore = 1; 4052 nb_extra = 0; 4053 } else { 4054 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 4055 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 4056 } 4057 4058 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 4059 sm_id = 0; 4060 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 4061 fwd_lcores[lc_id]->stream_idx = sm_id; 4062 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 4063 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 4064 } 4065 4066 /* 4067 * Assign extra remaining streams, if any. 4068 */ 4069 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 4070 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 4071 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 4072 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 4073 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 4074 } 4075 } 4076 4077 static portid_t 4078 fwd_topology_tx_port_get(portid_t rxp) 4079 { 4080 static int warning_once = 1; 4081 4082 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 4083 4084 switch (port_topology) { 4085 default: 4086 case PORT_TOPOLOGY_PAIRED: 4087 if ((rxp & 0x1) == 0) { 4088 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 4089 return rxp + 1; 4090 if (warning_once) { 4091 fprintf(stderr, 4092 "\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n"); 4093 warning_once = 0; 4094 } 4095 return rxp; 4096 } 4097 return rxp - 1; 4098 case PORT_TOPOLOGY_CHAINED: 4099 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 4100 case PORT_TOPOLOGY_LOOP: 4101 return rxp; 4102 } 4103 } 4104 4105 static void 4106 simple_fwd_config_setup(void) 4107 { 4108 portid_t i; 4109 4110 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 4111 cur_fwd_config.nb_fwd_streams = 4112 (streamid_t) cur_fwd_config.nb_fwd_ports; 4113 4114 /* reinitialize forwarding streams */ 4115 init_fwd_streams(); 4116 4117 /* 4118 * In the simple forwarding test, the number of forwarding cores 4119 * must be lower or equal to the number of forwarding ports. 4120 */ 4121 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 4122 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 4123 cur_fwd_config.nb_fwd_lcores = 4124 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 4125 setup_fwd_config_of_each_lcore(&cur_fwd_config); 4126 4127 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 4128 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 4129 fwd_streams[i]->rx_queue = 0; 4130 fwd_streams[i]->tx_port = 4131 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 4132 fwd_streams[i]->tx_queue = 0; 4133 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 4134 fwd_streams[i]->retry_enabled = retry_enabled; 4135 } 4136 } 4137 4138 /** 4139 * For the RSS forwarding test all streams distributed over lcores. Each stream 4140 * being composed of a RX queue to poll on a RX port for input messages, 4141 * associated with a TX queue of a TX port where to send forwarded packets. 4142 */ 4143 static void 4144 rss_fwd_config_setup(void) 4145 { 4146 portid_t rxp; 4147 portid_t txp; 4148 queueid_t rxq; 4149 queueid_t nb_q; 4150 streamid_t sm_id; 4151 int start; 4152 int end; 4153 4154 nb_q = nb_rxq; 4155 if (nb_q > nb_txq) 4156 nb_q = nb_txq; 4157 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 4158 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 4159 cur_fwd_config.nb_fwd_streams = 4160 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 4161 4162 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 4163 cur_fwd_config.nb_fwd_lcores = 4164 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 4165 4166 /* reinitialize forwarding streams */ 4167 init_fwd_streams(); 4168 4169 setup_fwd_config_of_each_lcore(&cur_fwd_config); 4170 4171 if (proc_id > 0 && nb_q % num_procs != 0) 4172 printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n"); 4173 4174 /** 4175 * In multi-process, All queues are allocated to different 4176 * processes based on num_procs and proc_id. For example: 4177 * if supports 4 queues(nb_q), 2 processes(num_procs), 4178 * the 0~1 queue for primary process. 4179 * the 2~3 queue for secondary process. 4180 */ 4181 start = proc_id * nb_q / num_procs; 4182 end = start + nb_q / num_procs; 4183 rxp = 0; 4184 rxq = start; 4185 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 4186 struct fwd_stream *fs; 4187 4188 fs = fwd_streams[sm_id]; 4189 txp = fwd_topology_tx_port_get(rxp); 4190 fs->rx_port = fwd_ports_ids[rxp]; 4191 fs->rx_queue = rxq; 4192 fs->tx_port = fwd_ports_ids[txp]; 4193 fs->tx_queue = rxq; 4194 fs->peer_addr = fs->tx_port; 4195 fs->retry_enabled = retry_enabled; 4196 rxp++; 4197 if (rxp < nb_fwd_ports) 4198 continue; 4199 rxp = 0; 4200 rxq++; 4201 if (rxq >= end) 4202 rxq = start; 4203 } 4204 } 4205 4206 static uint16_t 4207 get_fwd_port_total_tc_num(void) 4208 { 4209 struct rte_eth_dcb_info dcb_info; 4210 uint16_t total_tc_num = 0; 4211 unsigned int i; 4212 4213 for (i = 0; i < nb_fwd_ports; i++) { 4214 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info); 4215 total_tc_num += dcb_info.nb_tcs; 4216 } 4217 4218 return total_tc_num; 4219 } 4220 4221 /** 4222 * For the DCB forwarding test, each core is assigned on each traffic class. 4223 * 4224 * Each core is assigned a multi-stream, each stream being composed of 4225 * a RX queue to poll on a RX port for input messages, associated with 4226 * a TX queue of a TX port where to send forwarded packets. All RX and 4227 * TX queues are mapping to the same traffic class. 4228 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 4229 * the same core 4230 */ 4231 static void 4232 dcb_fwd_config_setup(void) 4233 { 4234 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 4235 portid_t txp, rxp = 0; 4236 queueid_t txq, rxq = 0; 4237 lcoreid_t lc_id; 4238 uint16_t nb_rx_queue, nb_tx_queue; 4239 uint16_t i, j, k, sm_id = 0; 4240 uint16_t total_tc_num; 4241 struct rte_port *port; 4242 uint8_t tc = 0; 4243 portid_t pid; 4244 int ret; 4245 4246 /* 4247 * The fwd_config_setup() is called when the port is RTE_PORT_STARTED 4248 * or RTE_PORT_STOPPED. 4249 * 4250 * Re-configure ports to get updated mapping between tc and queue in 4251 * case the queue number of the port is changed. Skip for started ports 4252 * since modifying queue number and calling dev_configure need to stop 4253 * ports first. 4254 */ 4255 for (pid = 0; pid < nb_fwd_ports; pid++) { 4256 if (port_is_started(pid) == 1) 4257 continue; 4258 4259 port = &ports[pid]; 4260 ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq, 4261 &port->dev_conf); 4262 if (ret < 0) { 4263 fprintf(stderr, 4264 "Failed to re-configure port %d, ret = %d.\n", 4265 pid, ret); 4266 return; 4267 } 4268 } 4269 4270 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 4271 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 4272 cur_fwd_config.nb_fwd_streams = 4273 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 4274 total_tc_num = get_fwd_port_total_tc_num(); 4275 if (cur_fwd_config.nb_fwd_lcores > total_tc_num) 4276 cur_fwd_config.nb_fwd_lcores = total_tc_num; 4277 4278 /* reinitialize forwarding streams */ 4279 init_fwd_streams(); 4280 sm_id = 0; 4281 txp = 1; 4282 /* get the dcb info on the first RX and TX ports */ 4283 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 4284 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 4285 4286 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 4287 fwd_lcores[lc_id]->stream_nb = 0; 4288 fwd_lcores[lc_id]->stream_idx = sm_id; 4289 for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) { 4290 /* if the nb_queue is zero, means this tc is 4291 * not enabled on the POOL 4292 */ 4293 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 4294 break; 4295 k = fwd_lcores[lc_id]->stream_nb + 4296 fwd_lcores[lc_id]->stream_idx; 4297 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 4298 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 4299 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 4300 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 4301 for (j = 0; j < nb_rx_queue; j++) { 4302 struct fwd_stream *fs; 4303 4304 fs = fwd_streams[k + j]; 4305 fs->rx_port = fwd_ports_ids[rxp]; 4306 fs->rx_queue = rxq + j; 4307 fs->tx_port = fwd_ports_ids[txp]; 4308 fs->tx_queue = txq + j % nb_tx_queue; 4309 fs->peer_addr = fs->tx_port; 4310 fs->retry_enabled = retry_enabled; 4311 } 4312 fwd_lcores[lc_id]->stream_nb += 4313 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 4314 } 4315 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 4316 4317 tc++; 4318 if (tc < rxp_dcb_info.nb_tcs) 4319 continue; 4320 /* Restart from TC 0 on next RX port */ 4321 tc = 0; 4322 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 4323 rxp = (portid_t) 4324 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 4325 else 4326 rxp++; 4327 if (rxp >= nb_fwd_ports) 4328 return; 4329 /* get the dcb information on next RX and TX ports */ 4330 if ((rxp & 0x1) == 0) 4331 txp = (portid_t) (rxp + 1); 4332 else 4333 txp = (portid_t) (rxp - 1); 4334 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 4335 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 4336 } 4337 } 4338 4339 static void 4340 icmp_echo_config_setup(void) 4341 { 4342 portid_t rxp; 4343 queueid_t rxq; 4344 lcoreid_t lc_id; 4345 uint16_t sm_id; 4346 4347 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 4348 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 4349 (nb_txq * nb_fwd_ports); 4350 else 4351 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 4352 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 4353 cur_fwd_config.nb_fwd_streams = 4354 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 4355 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 4356 cur_fwd_config.nb_fwd_lcores = 4357 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 4358 if (verbose_level > 0) { 4359 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 4360 __FUNCTION__, 4361 cur_fwd_config.nb_fwd_lcores, 4362 cur_fwd_config.nb_fwd_ports, 4363 cur_fwd_config.nb_fwd_streams); 4364 } 4365 4366 /* reinitialize forwarding streams */ 4367 init_fwd_streams(); 4368 setup_fwd_config_of_each_lcore(&cur_fwd_config); 4369 rxp = 0; rxq = 0; 4370 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 4371 if (verbose_level > 0) 4372 printf(" core=%d: \n", lc_id); 4373 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 4374 struct fwd_stream *fs; 4375 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 4376 fs->rx_port = fwd_ports_ids[rxp]; 4377 fs->rx_queue = rxq; 4378 fs->tx_port = fs->rx_port; 4379 fs->tx_queue = rxq; 4380 fs->peer_addr = fs->tx_port; 4381 fs->retry_enabled = retry_enabled; 4382 if (verbose_level > 0) 4383 printf(" stream=%d port=%d rxq=%d txq=%d\n", 4384 sm_id, fs->rx_port, fs->rx_queue, 4385 fs->tx_queue); 4386 rxq = (queueid_t) (rxq + 1); 4387 if (rxq == nb_rxq) { 4388 rxq = 0; 4389 rxp = (portid_t) (rxp + 1); 4390 } 4391 } 4392 } 4393 } 4394 4395 void 4396 fwd_config_setup(void) 4397 { 4398 struct rte_port *port; 4399 portid_t pt_id; 4400 unsigned int i; 4401 4402 cur_fwd_config.fwd_eng = cur_fwd_eng; 4403 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 4404 icmp_echo_config_setup(); 4405 return; 4406 } 4407 4408 if ((nb_rxq > 1) && (nb_txq > 1)){ 4409 if (dcb_config) { 4410 for (i = 0; i < nb_fwd_ports; i++) { 4411 pt_id = fwd_ports_ids[i]; 4412 port = &ports[pt_id]; 4413 if (!port->dcb_flag) { 4414 fprintf(stderr, 4415 "In DCB mode, all forwarding ports must be configured in this mode.\n"); 4416 return; 4417 } 4418 } 4419 if (nb_fwd_lcores == 1) { 4420 fprintf(stderr, 4421 "In DCB mode,the nb forwarding cores should be larger than 1.\n"); 4422 return; 4423 } 4424 4425 dcb_fwd_config_setup(); 4426 } else 4427 rss_fwd_config_setup(); 4428 } 4429 else 4430 simple_fwd_config_setup(); 4431 } 4432 4433 static const char * 4434 mp_alloc_to_str(uint8_t mode) 4435 { 4436 switch (mode) { 4437 case MP_ALLOC_NATIVE: 4438 return "native"; 4439 case MP_ALLOC_ANON: 4440 return "anon"; 4441 case MP_ALLOC_XMEM: 4442 return "xmem"; 4443 case MP_ALLOC_XMEM_HUGE: 4444 return "xmemhuge"; 4445 case MP_ALLOC_XBUF: 4446 return "xbuf"; 4447 default: 4448 return "invalid"; 4449 } 4450 } 4451 4452 void 4453 pkt_fwd_config_display(struct fwd_config *cfg) 4454 { 4455 struct fwd_stream *fs; 4456 lcoreid_t lc_id; 4457 streamid_t sm_id; 4458 4459 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 4460 "NUMA support %s, MP allocation mode: %s\n", 4461 cfg->fwd_eng->fwd_mode_name, 4462 retry_enabled == 0 ? "" : " with retry", 4463 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 4464 numa_support == 1 ? "enabled" : "disabled", 4465 mp_alloc_to_str(mp_alloc_type)); 4466 4467 if (retry_enabled) 4468 printf("TX retry num: %u, delay between TX retries: %uus\n", 4469 burst_tx_retry_num, burst_tx_delay_time); 4470 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 4471 printf("Logical Core %u (socket %u) forwards packets on " 4472 "%d streams:", 4473 fwd_lcores_cpuids[lc_id], 4474 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 4475 fwd_lcores[lc_id]->stream_nb); 4476 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 4477 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 4478 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 4479 "P=%d/Q=%d (socket %u) ", 4480 fs->rx_port, fs->rx_queue, 4481 ports[fs->rx_port].socket_id, 4482 fs->tx_port, fs->tx_queue, 4483 ports[fs->tx_port].socket_id); 4484 print_ethaddr("peer=", 4485 &peer_eth_addrs[fs->peer_addr]); 4486 } 4487 printf("\n"); 4488 } 4489 printf("\n"); 4490 } 4491 4492 void 4493 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 4494 { 4495 struct rte_ether_addr new_peer_addr; 4496 if (!rte_eth_dev_is_valid_port(port_id)) { 4497 fprintf(stderr, "Error: Invalid port number %i\n", port_id); 4498 return; 4499 } 4500 if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) { 4501 fprintf(stderr, "Error: Invalid ethernet address: %s\n", 4502 peer_addr); 4503 return; 4504 } 4505 peer_eth_addrs[port_id] = new_peer_addr; 4506 } 4507 4508 int 4509 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 4510 { 4511 unsigned int i; 4512 unsigned int lcore_cpuid; 4513 int record_now; 4514 4515 record_now = 0; 4516 again: 4517 for (i = 0; i < nb_lc; i++) { 4518 lcore_cpuid = lcorelist[i]; 4519 if (! rte_lcore_is_enabled(lcore_cpuid)) { 4520 fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid); 4521 return -1; 4522 } 4523 if (lcore_cpuid == rte_get_main_lcore()) { 4524 fprintf(stderr, 4525 "lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n", 4526 lcore_cpuid); 4527 return -1; 4528 } 4529 if (record_now) 4530 fwd_lcores_cpuids[i] = lcore_cpuid; 4531 } 4532 if (record_now == 0) { 4533 record_now = 1; 4534 goto again; 4535 } 4536 nb_cfg_lcores = (lcoreid_t) nb_lc; 4537 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 4538 printf("previous number of forwarding cores %u - changed to " 4539 "number of configured cores %u\n", 4540 (unsigned int) nb_fwd_lcores, nb_lc); 4541 nb_fwd_lcores = (lcoreid_t) nb_lc; 4542 } 4543 4544 return 0; 4545 } 4546 4547 int 4548 set_fwd_lcores_mask(uint64_t lcoremask) 4549 { 4550 unsigned int lcorelist[64]; 4551 unsigned int nb_lc; 4552 unsigned int i; 4553 4554 if (lcoremask == 0) { 4555 fprintf(stderr, "Invalid NULL mask of cores\n"); 4556 return -1; 4557 } 4558 nb_lc = 0; 4559 for (i = 0; i < 64; i++) { 4560 if (! ((uint64_t)(1ULL << i) & lcoremask)) 4561 continue; 4562 lcorelist[nb_lc++] = i; 4563 } 4564 return set_fwd_lcores_list(lcorelist, nb_lc); 4565 } 4566 4567 void 4568 set_fwd_lcores_number(uint16_t nb_lc) 4569 { 4570 if (test_done == 0) { 4571 fprintf(stderr, "Please stop forwarding first\n"); 4572 return; 4573 } 4574 if (nb_lc > nb_cfg_lcores) { 4575 fprintf(stderr, 4576 "nb fwd cores %u > %u (max. number of configured lcores) - ignored\n", 4577 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 4578 return; 4579 } 4580 nb_fwd_lcores = (lcoreid_t) nb_lc; 4581 printf("Number of forwarding cores set to %u\n", 4582 (unsigned int) nb_fwd_lcores); 4583 } 4584 4585 void 4586 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 4587 { 4588 unsigned int i; 4589 portid_t port_id; 4590 int record_now; 4591 4592 record_now = 0; 4593 again: 4594 for (i = 0; i < nb_pt; i++) { 4595 port_id = (portid_t) portlist[i]; 4596 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4597 return; 4598 if (record_now) 4599 fwd_ports_ids[i] = port_id; 4600 } 4601 if (record_now == 0) { 4602 record_now = 1; 4603 goto again; 4604 } 4605 nb_cfg_ports = (portid_t) nb_pt; 4606 if (nb_fwd_ports != (portid_t) nb_pt) { 4607 printf("previous number of forwarding ports %u - changed to " 4608 "number of configured ports %u\n", 4609 (unsigned int) nb_fwd_ports, nb_pt); 4610 nb_fwd_ports = (portid_t) nb_pt; 4611 } 4612 } 4613 4614 /** 4615 * Parse the user input and obtain the list of forwarding ports 4616 * 4617 * @param[in] list 4618 * String containing the user input. User can specify 4619 * in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6. 4620 * For example, if the user wants to use all the available 4621 * 4 ports in his system, then the input can be 0-3 or 0,1,2,3. 4622 * If the user wants to use only the ports 1,2 then the input 4623 * is 1,2. 4624 * valid characters are '-' and ',' 4625 * @param[out] values 4626 * This array will be filled with a list of port IDs 4627 * based on the user input 4628 * Note that duplicate entries are discarded and only the first 4629 * count entries in this array are port IDs and all the rest 4630 * will contain default values 4631 * @param[in] maxsize 4632 * This parameter denotes 2 things 4633 * 1) Number of elements in the values array 4634 * 2) Maximum value of each element in the values array 4635 * @return 4636 * On success, returns total count of parsed port IDs 4637 * On failure, returns 0 4638 */ 4639 static unsigned int 4640 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize) 4641 { 4642 unsigned int count = 0; 4643 char *end = NULL; 4644 int min, max; 4645 int value, i; 4646 unsigned int marked[maxsize]; 4647 4648 if (list == NULL || values == NULL) 4649 return 0; 4650 4651 for (i = 0; i < (int)maxsize; i++) 4652 marked[i] = 0; 4653 4654 min = INT_MAX; 4655 4656 do { 4657 /*Remove the blank spaces if any*/ 4658 while (isblank(*list)) 4659 list++; 4660 if (*list == '\0') 4661 break; 4662 errno = 0; 4663 value = strtol(list, &end, 10); 4664 if (errno || end == NULL) 4665 return 0; 4666 if (value < 0 || value >= (int)maxsize) 4667 return 0; 4668 while (isblank(*end)) 4669 end++; 4670 if (*end == '-' && min == INT_MAX) { 4671 min = value; 4672 } else if ((*end == ',') || (*end == '\0')) { 4673 max = value; 4674 if (min == INT_MAX) 4675 min = value; 4676 for (i = min; i <= max; i++) { 4677 if (count < maxsize) { 4678 if (marked[i]) 4679 continue; 4680 values[count] = i; 4681 marked[i] = 1; 4682 count++; 4683 } 4684 } 4685 min = INT_MAX; 4686 } else 4687 return 0; 4688 list = end + 1; 4689 } while (*end != '\0'); 4690 4691 return count; 4692 } 4693 4694 void 4695 parse_fwd_portlist(const char *portlist) 4696 { 4697 unsigned int portcount; 4698 unsigned int portindex[RTE_MAX_ETHPORTS]; 4699 unsigned int i, valid_port_count = 0; 4700 4701 portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS); 4702 if (!portcount) 4703 rte_exit(EXIT_FAILURE, "Invalid fwd port list\n"); 4704 4705 /* 4706 * Here we verify the validity of the ports 4707 * and thereby calculate the total number of 4708 * valid ports 4709 */ 4710 for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) { 4711 if (rte_eth_dev_is_valid_port(portindex[i])) { 4712 portindex[valid_port_count] = portindex[i]; 4713 valid_port_count++; 4714 } 4715 } 4716 4717 set_fwd_ports_list(portindex, valid_port_count); 4718 } 4719 4720 void 4721 set_fwd_ports_mask(uint64_t portmask) 4722 { 4723 unsigned int portlist[64]; 4724 unsigned int nb_pt; 4725 unsigned int i; 4726 4727 if (portmask == 0) { 4728 fprintf(stderr, "Invalid NULL mask of ports\n"); 4729 return; 4730 } 4731 nb_pt = 0; 4732 RTE_ETH_FOREACH_DEV(i) { 4733 if (! ((uint64_t)(1ULL << i) & portmask)) 4734 continue; 4735 portlist[nb_pt++] = i; 4736 } 4737 set_fwd_ports_list(portlist, nb_pt); 4738 } 4739 4740 void 4741 set_fwd_ports_number(uint16_t nb_pt) 4742 { 4743 if (nb_pt > nb_cfg_ports) { 4744 fprintf(stderr, 4745 "nb fwd ports %u > %u (number of configured ports) - ignored\n", 4746 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 4747 return; 4748 } 4749 nb_fwd_ports = (portid_t) nb_pt; 4750 printf("Number of forwarding ports set to %u\n", 4751 (unsigned int) nb_fwd_ports); 4752 } 4753 4754 int 4755 port_is_forwarding(portid_t port_id) 4756 { 4757 unsigned int i; 4758 4759 if (port_id_is_invalid(port_id, ENABLED_WARN)) 4760 return -1; 4761 4762 for (i = 0; i < nb_fwd_ports; i++) { 4763 if (fwd_ports_ids[i] == port_id) 4764 return 1; 4765 } 4766 4767 return 0; 4768 } 4769 4770 void 4771 set_nb_pkt_per_burst(uint16_t nb) 4772 { 4773 if (nb > MAX_PKT_BURST) { 4774 fprintf(stderr, 4775 "nb pkt per burst: %u > %u (maximum packet per burst) ignored\n", 4776 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 4777 return; 4778 } 4779 nb_pkt_per_burst = nb; 4780 printf("Number of packets per burst set to %u\n", 4781 (unsigned int) nb_pkt_per_burst); 4782 } 4783 4784 static const char * 4785 tx_split_get_name(enum tx_pkt_split split) 4786 { 4787 uint32_t i; 4788 4789 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 4790 if (tx_split_name[i].split == split) 4791 return tx_split_name[i].name; 4792 } 4793 return NULL; 4794 } 4795 4796 void 4797 set_tx_pkt_split(const char *name) 4798 { 4799 uint32_t i; 4800 4801 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 4802 if (strcmp(tx_split_name[i].name, name) == 0) { 4803 tx_pkt_split = tx_split_name[i].split; 4804 return; 4805 } 4806 } 4807 fprintf(stderr, "unknown value: \"%s\"\n", name); 4808 } 4809 4810 int 4811 parse_fec_mode(const char *name, uint32_t *fec_capa) 4812 { 4813 uint8_t i; 4814 4815 for (i = 0; i < RTE_DIM(fec_mode_name); i++) { 4816 if (strcmp(fec_mode_name[i].name, name) == 0) { 4817 *fec_capa = 4818 RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode); 4819 return 0; 4820 } 4821 } 4822 return -1; 4823 } 4824 4825 void 4826 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa) 4827 { 4828 unsigned int i, j; 4829 4830 printf("FEC capabilities:\n"); 4831 4832 for (i = 0; i < num; i++) { 4833 printf("%s : ", 4834 rte_eth_link_speed_to_str(speed_fec_capa[i].speed)); 4835 4836 for (j = 0; j < RTE_DIM(fec_mode_name); j++) { 4837 if (RTE_ETH_FEC_MODE_TO_CAPA(j) & 4838 speed_fec_capa[i].capa) 4839 printf("%s ", fec_mode_name[j].name); 4840 } 4841 printf("\n"); 4842 } 4843 } 4844 4845 void 4846 show_rx_pkt_offsets(void) 4847 { 4848 uint32_t i, n; 4849 4850 n = rx_pkt_nb_offs; 4851 printf("Number of offsets: %u\n", n); 4852 if (n) { 4853 printf("Segment offsets: "); 4854 for (i = 0; i != n - 1; i++) 4855 printf("%hu,", rx_pkt_seg_offsets[i]); 4856 printf("%hu\n", rx_pkt_seg_lengths[i]); 4857 } 4858 } 4859 4860 void 4861 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs) 4862 { 4863 unsigned int i; 4864 4865 if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) { 4866 printf("nb segments per RX packets=%u >= " 4867 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs); 4868 return; 4869 } 4870 4871 /* 4872 * No extra check here, the segment length will be checked by PMD 4873 * in the extended queue setup. 4874 */ 4875 for (i = 0; i < nb_offs; i++) { 4876 if (seg_offsets[i] >= UINT16_MAX) { 4877 printf("offset[%u]=%u > UINT16_MAX - give up\n", 4878 i, seg_offsets[i]); 4879 return; 4880 } 4881 } 4882 4883 for (i = 0; i < nb_offs; i++) 4884 rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i]; 4885 4886 rx_pkt_nb_offs = (uint8_t) nb_offs; 4887 } 4888 4889 void 4890 show_rx_pkt_segments(void) 4891 { 4892 uint32_t i, n; 4893 4894 n = rx_pkt_nb_segs; 4895 printf("Number of segments: %u\n", n); 4896 if (n) { 4897 printf("Segment sizes: "); 4898 for (i = 0; i != n - 1; i++) 4899 printf("%hu,", rx_pkt_seg_lengths[i]); 4900 printf("%hu\n", rx_pkt_seg_lengths[i]); 4901 } 4902 } 4903 4904 static const char *get_ptype_str(uint32_t ptype) 4905 { 4906 if ((ptype & (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP)) == 4907 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP)) 4908 return "ipv4-tcp"; 4909 else if ((ptype & (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP)) == 4910 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP)) 4911 return "ipv4-udp"; 4912 else if ((ptype & (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP)) == 4913 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP)) 4914 return "ipv4-sctp"; 4915 else if ((ptype & (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP)) == 4916 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP)) 4917 return "ipv6-tcp"; 4918 else if ((ptype & (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP)) == 4919 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP)) 4920 return "ipv6-udp"; 4921 else if ((ptype & (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP)) == 4922 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP)) 4923 return "ipv6-sctp"; 4924 else if ((ptype & RTE_PTYPE_L4_TCP) == RTE_PTYPE_L4_TCP) 4925 return "tcp"; 4926 else if ((ptype & RTE_PTYPE_L4_UDP) == RTE_PTYPE_L4_UDP) 4927 return "udp"; 4928 else if ((ptype & RTE_PTYPE_L4_SCTP) == RTE_PTYPE_L4_SCTP) 4929 return "sctp"; 4930 else if ((ptype & RTE_PTYPE_L3_IPV4_EXT_UNKNOWN) == RTE_PTYPE_L3_IPV4_EXT_UNKNOWN) 4931 return "ipv4"; 4932 else if ((ptype & RTE_PTYPE_L3_IPV6_EXT_UNKNOWN) == RTE_PTYPE_L3_IPV6_EXT_UNKNOWN) 4933 return "ipv6"; 4934 else if ((ptype & RTE_PTYPE_L2_ETHER) == RTE_PTYPE_L2_ETHER) 4935 return "eth"; 4936 4937 else if ((ptype & (RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP)) == 4938 (RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP)) 4939 return "inner-ipv4-tcp"; 4940 else if ((ptype & (RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP)) == 4941 (RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP)) 4942 return "inner-ipv4-udp"; 4943 else if ((ptype & (RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP)) == 4944 (RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP)) 4945 return "inner-ipv4-sctp"; 4946 else if ((ptype & (RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP)) == 4947 (RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP)) 4948 return "inner-ipv6-tcp"; 4949 else if ((ptype & (RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP)) == 4950 (RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP)) 4951 return "inner-ipv6-udp"; 4952 else if ((ptype & (RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP)) == 4953 (RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP)) 4954 return "inner-ipv6-sctp"; 4955 else if ((ptype & RTE_PTYPE_INNER_L4_TCP) == RTE_PTYPE_INNER_L4_TCP) 4956 return "inner-tcp"; 4957 else if ((ptype & RTE_PTYPE_INNER_L4_UDP) == RTE_PTYPE_INNER_L4_UDP) 4958 return "inner-udp"; 4959 else if ((ptype & RTE_PTYPE_INNER_L4_SCTP) == RTE_PTYPE_INNER_L4_SCTP) 4960 return "inner-sctp"; 4961 else if ((ptype & RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN) == 4962 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN) 4963 return "inner-ipv4"; 4964 else if ((ptype & RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN) == 4965 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN) 4966 return "inner-ipv6"; 4967 else if ((ptype & RTE_PTYPE_INNER_L2_ETHER) == RTE_PTYPE_INNER_L2_ETHER) 4968 return "inner-eth"; 4969 else if ((ptype & RTE_PTYPE_TUNNEL_GRENAT) == RTE_PTYPE_TUNNEL_GRENAT) 4970 return "grenat"; 4971 else 4972 return "unsupported"; 4973 } 4974 4975 void 4976 show_rx_pkt_hdrs(void) 4977 { 4978 uint32_t i, n; 4979 4980 n = rx_pkt_nb_segs; 4981 printf("Number of segments: %u\n", n); 4982 if (n) { 4983 printf("Packet segs: "); 4984 for (i = 0; i < n - 1; i++) 4985 printf("%s, ", get_ptype_str(rx_pkt_hdr_protos[i])); 4986 printf("payload\n"); 4987 } 4988 } 4989 4990 void 4991 set_rx_pkt_hdrs(unsigned int *seg_hdrs, unsigned int nb_segs) 4992 { 4993 unsigned int i; 4994 4995 if (nb_segs + 1 > MAX_SEGS_BUFFER_SPLIT) { 4996 printf("nb segments per RX packets=%u > " 4997 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs + 1); 4998 return; 4999 } 5000 5001 memset(rx_pkt_hdr_protos, 0, sizeof(rx_pkt_hdr_protos)); 5002 5003 for (i = 0; i < nb_segs; i++) 5004 rx_pkt_hdr_protos[i] = (uint32_t)seg_hdrs[i]; 5005 /* 5006 * We calculate the number of hdrs, but payload is not included, 5007 * so rx_pkt_nb_segs would increase 1. 5008 */ 5009 rx_pkt_nb_segs = nb_segs + 1; 5010 } 5011 5012 void 5013 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) 5014 { 5015 unsigned int i; 5016 5017 if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) { 5018 printf("nb segments per RX packets=%u >= " 5019 "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs); 5020 return; 5021 } 5022 5023 /* 5024 * No extra check here, the segment length will be checked by PMD 5025 * in the extended queue setup. 5026 */ 5027 for (i = 0; i < nb_segs; i++) { 5028 if (seg_lengths[i] >= UINT16_MAX) { 5029 printf("length[%u]=%u > UINT16_MAX - give up\n", 5030 i, seg_lengths[i]); 5031 return; 5032 } 5033 } 5034 5035 for (i = 0; i < nb_segs; i++) 5036 rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 5037 5038 rx_pkt_nb_segs = (uint8_t) nb_segs; 5039 } 5040 5041 void 5042 show_tx_pkt_segments(void) 5043 { 5044 uint32_t i, n; 5045 const char *split; 5046 5047 n = tx_pkt_nb_segs; 5048 split = tx_split_get_name(tx_pkt_split); 5049 5050 printf("Number of segments: %u\n", n); 5051 printf("Segment sizes: "); 5052 for (i = 0; i != n - 1; i++) 5053 printf("%hu,", tx_pkt_seg_lengths[i]); 5054 printf("%hu\n", tx_pkt_seg_lengths[i]); 5055 printf("Split packet: %s\n", split); 5056 } 5057 5058 static bool 5059 nb_segs_is_invalid(unsigned int nb_segs) 5060 { 5061 uint16_t ring_size; 5062 uint16_t queue_id; 5063 uint16_t port_id; 5064 int ret; 5065 5066 RTE_ETH_FOREACH_DEV(port_id) { 5067 for (queue_id = 0; queue_id < nb_txq; queue_id++) { 5068 ret = get_tx_ring_size(port_id, queue_id, &ring_size); 5069 if (ret) { 5070 /* Port may not be initialized yet, can't say 5071 * the port is invalid in this stage. 5072 */ 5073 continue; 5074 } 5075 if (ring_size < nb_segs) { 5076 printf("nb segments per TX packets=%u >= TX " 5077 "queue(%u) ring_size=%u - txpkts ignored\n", 5078 nb_segs, queue_id, ring_size); 5079 return true; 5080 } 5081 } 5082 } 5083 5084 return false; 5085 } 5086 5087 void 5088 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) 5089 { 5090 uint16_t tx_pkt_len; 5091 unsigned int i; 5092 5093 /* 5094 * For single segment settings failed check is ignored. 5095 * It is a very basic capability to send the single segment 5096 * packets, suppose it is always supported. 5097 */ 5098 if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) { 5099 fprintf(stderr, 5100 "Tx segment size(%u) is not supported - txpkts ignored\n", 5101 nb_segs); 5102 return; 5103 } 5104 5105 if (nb_segs > RTE_MAX_SEGS_PER_PKT) { 5106 fprintf(stderr, 5107 "Tx segment size(%u) is bigger than max number of segment(%u)\n", 5108 nb_segs, RTE_MAX_SEGS_PER_PKT); 5109 return; 5110 } 5111 5112 /* 5113 * Check that each segment length is greater or equal than 5114 * the mbuf data size. 5115 * Check also that the total packet length is greater or equal than the 5116 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + 5117 * 20 + 8). 5118 */ 5119 tx_pkt_len = 0; 5120 for (i = 0; i < nb_segs; i++) { 5121 if (seg_lengths[i] > mbuf_data_size[0]) { 5122 fprintf(stderr, 5123 "length[%u]=%u > mbuf_data_size=%u - give up\n", 5124 i, seg_lengths[i], mbuf_data_size[0]); 5125 return; 5126 } 5127 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 5128 } 5129 if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { 5130 fprintf(stderr, "total packet length=%u < %d - give up\n", 5131 (unsigned) tx_pkt_len, 5132 (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); 5133 return; 5134 } 5135 5136 for (i = 0; i < nb_segs; i++) 5137 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 5138 5139 tx_pkt_length = tx_pkt_len; 5140 tx_pkt_nb_segs = (uint8_t) nb_segs; 5141 } 5142 5143 void 5144 show_tx_pkt_times(void) 5145 { 5146 printf("Interburst gap: %u\n", tx_pkt_times_inter); 5147 printf("Intraburst gap: %u\n", tx_pkt_times_intra); 5148 } 5149 5150 void 5151 set_tx_pkt_times(unsigned int *tx_times) 5152 { 5153 tx_pkt_times_inter = tx_times[0]; 5154 tx_pkt_times_intra = tx_times[1]; 5155 } 5156 5157 #ifdef RTE_LIB_GRO 5158 void 5159 setup_gro(const char *onoff, portid_t port_id) 5160 { 5161 if (!rte_eth_dev_is_valid_port(port_id)) { 5162 fprintf(stderr, "invalid port id %u\n", port_id); 5163 return; 5164 } 5165 if (test_done == 0) { 5166 fprintf(stderr, 5167 "Before enable/disable GRO, please stop forwarding first\n"); 5168 return; 5169 } 5170 if (strcmp(onoff, "on") == 0) { 5171 if (gro_ports[port_id].enable != 0) { 5172 fprintf(stderr, 5173 "Port %u has enabled GRO. Please disable GRO first\n", 5174 port_id); 5175 return; 5176 } 5177 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 5178 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 5179 gro_ports[port_id].param.max_flow_num = 5180 GRO_DEFAULT_FLOW_NUM; 5181 gro_ports[port_id].param.max_item_per_flow = 5182 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 5183 } 5184 gro_ports[port_id].enable = 1; 5185 } else { 5186 if (gro_ports[port_id].enable == 0) { 5187 fprintf(stderr, "Port %u has disabled GRO\n", port_id); 5188 return; 5189 } 5190 gro_ports[port_id].enable = 0; 5191 } 5192 } 5193 5194 void 5195 setup_gro_flush_cycles(uint8_t cycles) 5196 { 5197 if (test_done == 0) { 5198 fprintf(stderr, 5199 "Before change flush interval for GRO, please stop forwarding first.\n"); 5200 return; 5201 } 5202 5203 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 5204 GRO_DEFAULT_FLUSH_CYCLES) { 5205 fprintf(stderr, 5206 "The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n", 5207 GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES); 5208 cycles = GRO_DEFAULT_FLUSH_CYCLES; 5209 } 5210 5211 gro_flush_cycles = cycles; 5212 } 5213 5214 void 5215 show_gro(portid_t port_id) 5216 { 5217 struct rte_gro_param *param; 5218 uint32_t max_pkts_num; 5219 5220 param = &gro_ports[port_id].param; 5221 5222 if (!rte_eth_dev_is_valid_port(port_id)) { 5223 fprintf(stderr, "Invalid port id %u.\n", port_id); 5224 return; 5225 } 5226 if (gro_ports[port_id].enable) { 5227 printf("GRO type: TCP/IPv4\n"); 5228 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 5229 max_pkts_num = param->max_flow_num * 5230 param->max_item_per_flow; 5231 } else 5232 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 5233 printf("Max number of packets to perform GRO: %u\n", 5234 max_pkts_num); 5235 printf("Flushing cycles: %u\n", gro_flush_cycles); 5236 } else 5237 printf("Port %u doesn't enable GRO.\n", port_id); 5238 } 5239 #endif /* RTE_LIB_GRO */ 5240 5241 #ifdef RTE_LIB_GSO 5242 void 5243 setup_gso(const char *mode, portid_t port_id) 5244 { 5245 if (!rte_eth_dev_is_valid_port(port_id)) { 5246 fprintf(stderr, "invalid port id %u\n", port_id); 5247 return; 5248 } 5249 if (strcmp(mode, "on") == 0) { 5250 if (test_done == 0) { 5251 fprintf(stderr, 5252 "before enabling GSO, please stop forwarding first\n"); 5253 return; 5254 } 5255 gso_ports[port_id].enable = 1; 5256 } else if (strcmp(mode, "off") == 0) { 5257 if (test_done == 0) { 5258 fprintf(stderr, 5259 "before disabling GSO, please stop forwarding first\n"); 5260 return; 5261 } 5262 gso_ports[port_id].enable = 0; 5263 } 5264 } 5265 #endif /* RTE_LIB_GSO */ 5266 5267 char* 5268 list_pkt_forwarding_modes(void) 5269 { 5270 static char fwd_modes[128] = ""; 5271 const char *separator = "|"; 5272 struct fwd_engine *fwd_eng; 5273 unsigned i = 0; 5274 5275 if (strlen (fwd_modes) == 0) { 5276 while ((fwd_eng = fwd_engines[i++]) != NULL) { 5277 strncat(fwd_modes, fwd_eng->fwd_mode_name, 5278 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 5279 strncat(fwd_modes, separator, 5280 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 5281 } 5282 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 5283 } 5284 5285 return fwd_modes; 5286 } 5287 5288 char* 5289 list_pkt_forwarding_retry_modes(void) 5290 { 5291 static char fwd_modes[128] = ""; 5292 const char *separator = "|"; 5293 struct fwd_engine *fwd_eng; 5294 unsigned i = 0; 5295 5296 if (strlen(fwd_modes) == 0) { 5297 while ((fwd_eng = fwd_engines[i++]) != NULL) { 5298 if (fwd_eng == &rx_only_engine) 5299 continue; 5300 strncat(fwd_modes, fwd_eng->fwd_mode_name, 5301 sizeof(fwd_modes) - 5302 strlen(fwd_modes) - 1); 5303 strncat(fwd_modes, separator, 5304 sizeof(fwd_modes) - 5305 strlen(fwd_modes) - 1); 5306 } 5307 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 5308 } 5309 5310 return fwd_modes; 5311 } 5312 5313 void 5314 set_pkt_forwarding_mode(const char *fwd_mode_name) 5315 { 5316 struct fwd_engine *fwd_eng; 5317 unsigned i; 5318 5319 i = 0; 5320 while ((fwd_eng = fwd_engines[i]) != NULL) { 5321 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 5322 printf("Set %s packet forwarding mode%s\n", 5323 fwd_mode_name, 5324 retry_enabled == 0 ? "" : " with retry"); 5325 cur_fwd_eng = fwd_eng; 5326 return; 5327 } 5328 i++; 5329 } 5330 fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name); 5331 } 5332 5333 void 5334 add_rx_dump_callbacks(portid_t portid) 5335 { 5336 struct rte_eth_dev_info dev_info; 5337 uint16_t queue; 5338 int ret; 5339 5340 if (port_id_is_invalid(portid, ENABLED_WARN)) 5341 return; 5342 5343 ret = eth_dev_info_get_print_err(portid, &dev_info); 5344 if (ret != 0) 5345 return; 5346 5347 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 5348 if (!ports[portid].rx_dump_cb[queue]) 5349 ports[portid].rx_dump_cb[queue] = 5350 rte_eth_add_rx_callback(portid, queue, 5351 dump_rx_pkts, NULL); 5352 } 5353 5354 void 5355 add_tx_dump_callbacks(portid_t portid) 5356 { 5357 struct rte_eth_dev_info dev_info; 5358 uint16_t queue; 5359 int ret; 5360 5361 if (port_id_is_invalid(portid, ENABLED_WARN)) 5362 return; 5363 5364 ret = eth_dev_info_get_print_err(portid, &dev_info); 5365 if (ret != 0) 5366 return; 5367 5368 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 5369 if (!ports[portid].tx_dump_cb[queue]) 5370 ports[portid].tx_dump_cb[queue] = 5371 rte_eth_add_tx_callback(portid, queue, 5372 dump_tx_pkts, NULL); 5373 } 5374 5375 void 5376 remove_rx_dump_callbacks(portid_t portid) 5377 { 5378 struct rte_eth_dev_info dev_info; 5379 uint16_t queue; 5380 int ret; 5381 5382 if (port_id_is_invalid(portid, ENABLED_WARN)) 5383 return; 5384 5385 ret = eth_dev_info_get_print_err(portid, &dev_info); 5386 if (ret != 0) 5387 return; 5388 5389 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 5390 if (ports[portid].rx_dump_cb[queue]) { 5391 rte_eth_remove_rx_callback(portid, queue, 5392 ports[portid].rx_dump_cb[queue]); 5393 ports[portid].rx_dump_cb[queue] = NULL; 5394 } 5395 } 5396 5397 void 5398 remove_tx_dump_callbacks(portid_t portid) 5399 { 5400 struct rte_eth_dev_info dev_info; 5401 uint16_t queue; 5402 int ret; 5403 5404 if (port_id_is_invalid(portid, ENABLED_WARN)) 5405 return; 5406 5407 ret = eth_dev_info_get_print_err(portid, &dev_info); 5408 if (ret != 0) 5409 return; 5410 5411 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 5412 if (ports[portid].tx_dump_cb[queue]) { 5413 rte_eth_remove_tx_callback(portid, queue, 5414 ports[portid].tx_dump_cb[queue]); 5415 ports[portid].tx_dump_cb[queue] = NULL; 5416 } 5417 } 5418 5419 void 5420 configure_rxtx_dump_callbacks(uint16_t verbose) 5421 { 5422 portid_t portid; 5423 5424 #ifndef RTE_ETHDEV_RXTX_CALLBACKS 5425 TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); 5426 return; 5427 #endif 5428 5429 RTE_ETH_FOREACH_DEV(portid) 5430 { 5431 if (verbose == 1 || verbose > 2) 5432 add_rx_dump_callbacks(portid); 5433 else 5434 remove_rx_dump_callbacks(portid); 5435 if (verbose >= 2) 5436 add_tx_dump_callbacks(portid); 5437 else 5438 remove_tx_dump_callbacks(portid); 5439 } 5440 } 5441 5442 void 5443 set_verbose_level(uint16_t vb_level) 5444 { 5445 printf("Change verbose level from %u to %u\n", 5446 (unsigned int) verbose_level, (unsigned int) vb_level); 5447 verbose_level = vb_level; 5448 configure_rxtx_dump_callbacks(verbose_level); 5449 } 5450 5451 void 5452 vlan_extend_set(portid_t port_id, int on) 5453 { 5454 int diag; 5455 int vlan_offload; 5456 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 5457 5458 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5459 return; 5460 5461 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 5462 5463 if (on) { 5464 vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD; 5465 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND; 5466 } else { 5467 vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD; 5468 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND; 5469 } 5470 5471 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 5472 if (diag < 0) { 5473 fprintf(stderr, 5474 "rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n", 5475 port_id, on, diag); 5476 return; 5477 } 5478 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 5479 } 5480 5481 void 5482 rx_vlan_strip_set(portid_t port_id, int on) 5483 { 5484 int diag; 5485 int vlan_offload; 5486 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 5487 5488 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5489 return; 5490 5491 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 5492 5493 if (on) { 5494 vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD; 5495 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP; 5496 } else { 5497 vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD; 5498 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP; 5499 } 5500 5501 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 5502 if (diag < 0) { 5503 fprintf(stderr, 5504 "%s(port_pi=%d, on=%d) failed diag=%d\n", 5505 __func__, port_id, on, diag); 5506 return; 5507 } 5508 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 5509 } 5510 5511 void 5512 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 5513 { 5514 int diag; 5515 5516 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5517 return; 5518 5519 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 5520 if (diag < 0) 5521 fprintf(stderr, 5522 "%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n", 5523 __func__, port_id, queue_id, on, diag); 5524 } 5525 5526 void 5527 rx_vlan_filter_set(portid_t port_id, int on) 5528 { 5529 int diag; 5530 int vlan_offload; 5531 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 5532 5533 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5534 return; 5535 5536 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 5537 5538 if (on) { 5539 vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD; 5540 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER; 5541 } else { 5542 vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD; 5543 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER; 5544 } 5545 5546 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 5547 if (diag < 0) { 5548 fprintf(stderr, 5549 "%s(port_pi=%d, on=%d) failed diag=%d\n", 5550 __func__, port_id, on, diag); 5551 return; 5552 } 5553 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 5554 } 5555 5556 void 5557 rx_vlan_qinq_strip_set(portid_t port_id, int on) 5558 { 5559 int diag; 5560 int vlan_offload; 5561 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 5562 5563 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5564 return; 5565 5566 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 5567 5568 if (on) { 5569 vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD; 5570 port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP; 5571 } else { 5572 vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD; 5573 port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP; 5574 } 5575 5576 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 5577 if (diag < 0) { 5578 fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n", 5579 __func__, port_id, on, diag); 5580 return; 5581 } 5582 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 5583 } 5584 5585 int 5586 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 5587 { 5588 int diag; 5589 5590 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5591 return 1; 5592 if (vlan_id_is_invalid(vlan_id)) 5593 return 1; 5594 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 5595 if (diag == 0) 5596 return 0; 5597 fprintf(stderr, 5598 "rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n", 5599 port_id, vlan_id, on, diag); 5600 return -1; 5601 } 5602 5603 void 5604 rx_vlan_all_filter_set(portid_t port_id, int on) 5605 { 5606 uint16_t vlan_id; 5607 5608 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5609 return; 5610 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 5611 if (rx_vft_set(port_id, vlan_id, on)) 5612 break; 5613 } 5614 } 5615 5616 void 5617 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 5618 { 5619 int diag; 5620 5621 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5622 return; 5623 5624 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 5625 if (diag == 0) 5626 return; 5627 5628 fprintf(stderr, 5629 "tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n", 5630 port_id, vlan_type, tp_id, diag); 5631 } 5632 5633 void 5634 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 5635 { 5636 struct rte_eth_dev_info dev_info; 5637 int ret; 5638 5639 if (vlan_id_is_invalid(vlan_id)) 5640 return; 5641 5642 if (ports[port_id].dev_conf.txmode.offloads & 5643 RTE_ETH_TX_OFFLOAD_QINQ_INSERT) { 5644 fprintf(stderr, "Error, as QinQ has been enabled.\n"); 5645 return; 5646 } 5647 5648 ret = eth_dev_info_get_print_err(port_id, &dev_info); 5649 if (ret != 0) 5650 return; 5651 5652 if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) { 5653 fprintf(stderr, 5654 "Error: vlan insert is not supported by port %d\n", 5655 port_id); 5656 return; 5657 } 5658 5659 tx_vlan_reset(port_id); 5660 ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT; 5661 ports[port_id].tx_vlan_id = vlan_id; 5662 } 5663 5664 void 5665 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 5666 { 5667 struct rte_eth_dev_info dev_info; 5668 int ret; 5669 5670 if (vlan_id_is_invalid(vlan_id)) 5671 return; 5672 if (vlan_id_is_invalid(vlan_id_outer)) 5673 return; 5674 5675 ret = eth_dev_info_get_print_err(port_id, &dev_info); 5676 if (ret != 0) 5677 return; 5678 5679 if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) { 5680 fprintf(stderr, 5681 "Error: qinq insert not supported by port %d\n", 5682 port_id); 5683 return; 5684 } 5685 5686 tx_vlan_reset(port_id); 5687 ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT | 5688 RTE_ETH_TX_OFFLOAD_QINQ_INSERT); 5689 ports[port_id].tx_vlan_id = vlan_id; 5690 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 5691 } 5692 5693 void 5694 tx_vlan_reset(portid_t port_id) 5695 { 5696 ports[port_id].dev_conf.txmode.offloads &= 5697 ~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT | 5698 RTE_ETH_TX_OFFLOAD_QINQ_INSERT); 5699 ports[port_id].tx_vlan_id = 0; 5700 ports[port_id].tx_vlan_id_outer = 0; 5701 } 5702 5703 void 5704 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 5705 { 5706 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5707 return; 5708 5709 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 5710 } 5711 5712 void 5713 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 5714 { 5715 int ret; 5716 5717 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5718 return; 5719 5720 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 5721 return; 5722 5723 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 5724 fprintf(stderr, "map_value not in required range 0..%d\n", 5725 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 5726 return; 5727 } 5728 5729 if (!is_rx) { /* tx */ 5730 ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id, 5731 map_value); 5732 if (ret) { 5733 fprintf(stderr, 5734 "failed to set tx queue stats mapping.\n"); 5735 return; 5736 } 5737 } else { /* rx */ 5738 ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id, 5739 map_value); 5740 if (ret) { 5741 fprintf(stderr, 5742 "failed to set rx queue stats mapping.\n"); 5743 return; 5744 } 5745 } 5746 } 5747 5748 void 5749 set_xstats_hide_zero(uint8_t on_off) 5750 { 5751 xstats_hide_zero = on_off; 5752 } 5753 5754 void 5755 set_record_core_cycles(uint8_t on_off) 5756 { 5757 record_core_cycles = on_off; 5758 } 5759 5760 void 5761 set_record_burst_stats(uint8_t on_off) 5762 { 5763 record_burst_stats = on_off; 5764 } 5765 5766 uint16_t 5767 str_to_flowtype(const char *string) 5768 { 5769 uint8_t i; 5770 5771 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 5772 if (!strcmp(flowtype_str_table[i].str, string)) 5773 return flowtype_str_table[i].ftype; 5774 } 5775 5776 if (isdigit(string[0])) { 5777 int val = atoi(string); 5778 if (val > 0 && val < 64) 5779 return (uint16_t)val; 5780 } 5781 5782 return RTE_ETH_FLOW_UNKNOWN; 5783 } 5784 5785 const char* 5786 flowtype_to_str(uint16_t flow_type) 5787 { 5788 uint8_t i; 5789 5790 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 5791 if (flowtype_str_table[i].ftype == flow_type) 5792 return flowtype_str_table[i].str; 5793 } 5794 5795 return NULL; 5796 } 5797 5798 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE) 5799 5800 static inline void 5801 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 5802 { 5803 struct rte_eth_flex_payload_cfg *cfg; 5804 uint32_t i, j; 5805 5806 for (i = 0; i < flex_conf->nb_payloads; i++) { 5807 cfg = &flex_conf->flex_set[i]; 5808 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 5809 printf("\n RAW: "); 5810 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 5811 printf("\n L2_PAYLOAD: "); 5812 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 5813 printf("\n L3_PAYLOAD: "); 5814 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 5815 printf("\n L4_PAYLOAD: "); 5816 else 5817 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 5818 for (j = 0; j < num; j++) 5819 printf(" %-5u", cfg->src_offset[j]); 5820 } 5821 printf("\n"); 5822 } 5823 5824 static inline void 5825 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 5826 { 5827 struct rte_eth_fdir_flex_mask *mask; 5828 uint32_t i, j; 5829 const char *p; 5830 5831 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 5832 mask = &flex_conf->flex_mask[i]; 5833 p = flowtype_to_str(mask->flow_type); 5834 printf("\n %s:\t", p ? p : "unknown"); 5835 for (j = 0; j < num; j++) 5836 printf(" %02x", mask->mask[j]); 5837 } 5838 printf("\n"); 5839 } 5840 5841 static inline void 5842 print_fdir_flow_type(uint32_t flow_types_mask) 5843 { 5844 int i; 5845 const char *p; 5846 5847 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 5848 if (!(flow_types_mask & (1 << i))) 5849 continue; 5850 p = flowtype_to_str(i); 5851 if (p) 5852 printf(" %s", p); 5853 else 5854 printf(" unknown"); 5855 } 5856 printf("\n"); 5857 } 5858 5859 static int 5860 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info, 5861 struct rte_eth_fdir_stats *fdir_stat) 5862 { 5863 int ret = -ENOTSUP; 5864 5865 #ifdef RTE_NET_I40E 5866 if (ret == -ENOTSUP) { 5867 ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info); 5868 if (!ret) 5869 ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat); 5870 } 5871 #endif 5872 #ifdef RTE_NET_IXGBE 5873 if (ret == -ENOTSUP) { 5874 ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info); 5875 if (!ret) 5876 ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat); 5877 } 5878 #endif 5879 switch (ret) { 5880 case 0: 5881 break; 5882 case -ENOTSUP: 5883 fprintf(stderr, "\n FDIR is not supported on port %-2d\n", 5884 port_id); 5885 break; 5886 default: 5887 fprintf(stderr, "programming error: (%s)\n", strerror(-ret)); 5888 break; 5889 } 5890 return ret; 5891 } 5892 5893 void 5894 fdir_get_infos(portid_t port_id) 5895 { 5896 struct rte_eth_fdir_stats fdir_stat; 5897 struct rte_eth_fdir_info fdir_info; 5898 5899 static const char *fdir_stats_border = "########################"; 5900 5901 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5902 return; 5903 5904 memset(&fdir_info, 0, sizeof(fdir_info)); 5905 memset(&fdir_stat, 0, sizeof(fdir_stat)); 5906 if (get_fdir_info(port_id, &fdir_info, &fdir_stat)) 5907 return; 5908 5909 printf("\n %s FDIR infos for port %-2d %s\n", 5910 fdir_stats_border, port_id, fdir_stats_border); 5911 printf(" MODE: "); 5912 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 5913 printf(" PERFECT\n"); 5914 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 5915 printf(" PERFECT-MAC-VLAN\n"); 5916 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 5917 printf(" PERFECT-TUNNEL\n"); 5918 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 5919 printf(" SIGNATURE\n"); 5920 else 5921 printf(" DISABLE\n"); 5922 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 5923 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 5924 printf(" SUPPORTED FLOW TYPE: "); 5925 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 5926 } 5927 printf(" FLEX PAYLOAD INFO:\n"); 5928 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 5929 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 5930 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 5931 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 5932 fdir_info.flex_payload_unit, 5933 fdir_info.max_flex_payload_segment_num, 5934 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 5935 if (fdir_info.flex_conf.nb_payloads > 0) { 5936 printf(" FLEX PAYLOAD SRC OFFSET:"); 5937 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 5938 } 5939 if (fdir_info.flex_conf.nb_flexmasks > 0) { 5940 printf(" FLEX MASK CFG:"); 5941 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 5942 } 5943 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 5944 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 5945 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 5946 fdir_info.guarant_spc, fdir_info.best_spc); 5947 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 5948 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 5949 " add: %-10"PRIu64" remove: %"PRIu64"\n" 5950 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 5951 fdir_stat.collision, fdir_stat.free, 5952 fdir_stat.maxhash, fdir_stat.maxlen, 5953 fdir_stat.add, fdir_stat.remove, 5954 fdir_stat.f_add, fdir_stat.f_remove); 5955 printf(" %s############################%s\n", 5956 fdir_stats_border, fdir_stats_border); 5957 } 5958 5959 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */ 5960 5961 void 5962 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 5963 { 5964 #ifdef RTE_NET_IXGBE 5965 int diag; 5966 5967 if (is_rx) 5968 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 5969 else 5970 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 5971 5972 if (diag == 0) 5973 return; 5974 fprintf(stderr, 5975 "rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 5976 is_rx ? "rx" : "tx", port_id, diag); 5977 return; 5978 #endif 5979 fprintf(stderr, "VF %s setting not supported for port %d\n", 5980 is_rx ? "Rx" : "Tx", port_id); 5981 RTE_SET_USED(vf); 5982 RTE_SET_USED(on); 5983 } 5984 5985 int 5986 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint32_t rate) 5987 { 5988 int diag; 5989 struct rte_eth_link link; 5990 int ret; 5991 5992 if (port_id_is_invalid(port_id, ENABLED_WARN)) 5993 return 1; 5994 ret = eth_link_get_nowait_print_err(port_id, &link); 5995 if (ret < 0) 5996 return 1; 5997 if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN && 5998 rate > link.link_speed) { 5999 fprintf(stderr, 6000 "Invalid rate value:%u bigger than link speed: %u\n", 6001 rate, link.link_speed); 6002 return 1; 6003 } 6004 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 6005 if (diag == 0) 6006 return diag; 6007 fprintf(stderr, 6008 "rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 6009 port_id, diag); 6010 return diag; 6011 } 6012 6013 int 6014 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint32_t rate, uint64_t q_msk) 6015 { 6016 int diag = -ENOTSUP; 6017 6018 RTE_SET_USED(vf); 6019 RTE_SET_USED(rate); 6020 RTE_SET_USED(q_msk); 6021 6022 #ifdef RTE_NET_IXGBE 6023 if (diag == -ENOTSUP) 6024 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 6025 q_msk); 6026 #endif 6027 #ifdef RTE_NET_BNXT 6028 if (diag == -ENOTSUP) 6029 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 6030 #endif 6031 if (diag == 0) 6032 return diag; 6033 6034 fprintf(stderr, 6035 "%s for port_id=%d failed diag=%d\n", 6036 __func__, port_id, diag); 6037 return diag; 6038 } 6039 6040 int 6041 set_rxq_avail_thresh(portid_t port_id, uint16_t queue_id, uint8_t avail_thresh) 6042 { 6043 if (port_id_is_invalid(port_id, ENABLED_WARN)) 6044 return -EINVAL; 6045 6046 return rte_eth_rx_avail_thresh_set(port_id, queue_id, avail_thresh); 6047 } 6048 6049 /* 6050 * Functions to manage the set of filtered Multicast MAC addresses. 6051 * 6052 * A pool of filtered multicast MAC addresses is associated with each port. 6053 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 6054 * The address of the pool and the number of valid multicast MAC addresses 6055 * recorded in the pool are stored in the fields "mc_addr_pool" and 6056 * "mc_addr_nb" of the "rte_port" data structure. 6057 * 6058 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 6059 * to be supplied a contiguous array of multicast MAC addresses. 6060 * To comply with this constraint, the set of multicast addresses recorded 6061 * into the pool are systematically compacted at the beginning of the pool. 6062 * Hence, when a multicast address is removed from the pool, all following 6063 * addresses, if any, are copied back to keep the set contiguous. 6064 */ 6065 #define MCAST_POOL_INC 32 6066 6067 static int 6068 mcast_addr_pool_extend(struct rte_port *port) 6069 { 6070 struct rte_ether_addr *mc_pool; 6071 size_t mc_pool_size; 6072 6073 /* 6074 * If a free entry is available at the end of the pool, just 6075 * increment the number of recorded multicast addresses. 6076 */ 6077 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 6078 port->mc_addr_nb++; 6079 return 0; 6080 } 6081 6082 /* 6083 * [re]allocate a pool with MCAST_POOL_INC more entries. 6084 * The previous test guarantees that port->mc_addr_nb is a multiple 6085 * of MCAST_POOL_INC. 6086 */ 6087 mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + 6088 MCAST_POOL_INC); 6089 mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, 6090 mc_pool_size); 6091 if (mc_pool == NULL) { 6092 fprintf(stderr, 6093 "allocation of pool of %u multicast addresses failed\n", 6094 port->mc_addr_nb + MCAST_POOL_INC); 6095 return -ENOMEM; 6096 } 6097 6098 port->mc_addr_pool = mc_pool; 6099 port->mc_addr_nb++; 6100 return 0; 6101 6102 } 6103 6104 static void 6105 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr) 6106 { 6107 if (mcast_addr_pool_extend(port) != 0) 6108 return; 6109 rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]); 6110 } 6111 6112 static void 6113 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 6114 { 6115 port->mc_addr_nb--; 6116 if (addr_idx == port->mc_addr_nb) { 6117 /* No need to recompact the set of multicast addresses. */ 6118 if (port->mc_addr_nb == 0) { 6119 /* free the pool of multicast addresses. */ 6120 free(port->mc_addr_pool); 6121 port->mc_addr_pool = NULL; 6122 } 6123 return; 6124 } 6125 memmove(&port->mc_addr_pool[addr_idx], 6126 &port->mc_addr_pool[addr_idx + 1], 6127 sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); 6128 } 6129 6130 int 6131 mcast_addr_pool_destroy(portid_t port_id) 6132 { 6133 struct rte_port *port; 6134 6135 if (port_id_is_invalid(port_id, ENABLED_WARN) || 6136 port_id == (portid_t)RTE_PORT_ALL) 6137 return -EINVAL; 6138 port = &ports[port_id]; 6139 6140 if (port->mc_addr_nb != 0) { 6141 /* free the pool of multicast addresses. */ 6142 free(port->mc_addr_pool); 6143 port->mc_addr_pool = NULL; 6144 port->mc_addr_nb = 0; 6145 } 6146 return 0; 6147 } 6148 6149 static int 6150 eth_port_multicast_addr_list_set(portid_t port_id) 6151 { 6152 struct rte_port *port; 6153 int diag; 6154 6155 port = &ports[port_id]; 6156 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 6157 port->mc_addr_nb); 6158 if (diag < 0) 6159 fprintf(stderr, 6160 "rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 6161 port_id, port->mc_addr_nb, diag); 6162 6163 return diag; 6164 } 6165 6166 void 6167 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) 6168 { 6169 struct rte_port *port; 6170 uint32_t i; 6171 6172 if (port_id_is_invalid(port_id, ENABLED_WARN)) 6173 return; 6174 6175 port = &ports[port_id]; 6176 6177 /* 6178 * Check that the added multicast MAC address is not already recorded 6179 * in the pool of multicast addresses. 6180 */ 6181 for (i = 0; i < port->mc_addr_nb; i++) { 6182 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 6183 fprintf(stderr, 6184 "multicast address already filtered by port\n"); 6185 return; 6186 } 6187 } 6188 6189 mcast_addr_pool_append(port, mc_addr); 6190 if (eth_port_multicast_addr_list_set(port_id) < 0) 6191 /* Rollback on failure, remove the address from the pool */ 6192 mcast_addr_pool_remove(port, i); 6193 } 6194 6195 void 6196 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) 6197 { 6198 struct rte_port *port; 6199 uint32_t i; 6200 6201 if (port_id_is_invalid(port_id, ENABLED_WARN)) 6202 return; 6203 6204 port = &ports[port_id]; 6205 6206 /* 6207 * Search the pool of multicast MAC addresses for the removed address. 6208 */ 6209 for (i = 0; i < port->mc_addr_nb; i++) { 6210 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 6211 break; 6212 } 6213 if (i == port->mc_addr_nb) { 6214 fprintf(stderr, "multicast address not filtered by port %d\n", 6215 port_id); 6216 return; 6217 } 6218 6219 mcast_addr_pool_remove(port, i); 6220 if (eth_port_multicast_addr_list_set(port_id) < 0) 6221 /* Rollback on failure, add the address back into the pool */ 6222 mcast_addr_pool_append(port, mc_addr); 6223 } 6224 6225 void 6226 port_dcb_info_display(portid_t port_id) 6227 { 6228 struct rte_eth_dcb_info dcb_info; 6229 uint16_t i; 6230 int ret; 6231 static const char *border = "================"; 6232 6233 if (port_id_is_invalid(port_id, ENABLED_WARN)) 6234 return; 6235 6236 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 6237 if (ret) { 6238 fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n", 6239 port_id); 6240 return; 6241 } 6242 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 6243 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 6244 printf("\n TC : "); 6245 for (i = 0; i < dcb_info.nb_tcs; i++) 6246 printf("\t%4d", i); 6247 printf("\n Priority : "); 6248 for (i = 0; i < dcb_info.nb_tcs; i++) 6249 printf("\t%4d", dcb_info.prio_tc[i]); 6250 printf("\n BW percent :"); 6251 for (i = 0; i < dcb_info.nb_tcs; i++) 6252 printf("\t%4d%%", dcb_info.tc_bws[i]); 6253 printf("\n RXQ base : "); 6254 for (i = 0; i < dcb_info.nb_tcs; i++) 6255 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 6256 printf("\n RXQ number :"); 6257 for (i = 0; i < dcb_info.nb_tcs; i++) 6258 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 6259 printf("\n TXQ base : "); 6260 for (i = 0; i < dcb_info.nb_tcs; i++) 6261 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 6262 printf("\n TXQ number :"); 6263 for (i = 0; i < dcb_info.nb_tcs; i++) 6264 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 6265 printf("\n"); 6266 } 6267 6268 uint8_t * 6269 open_file(const char *file_path, uint32_t *size) 6270 { 6271 int fd = open(file_path, O_RDONLY); 6272 off_t pkg_size; 6273 uint8_t *buf = NULL; 6274 int ret = 0; 6275 struct stat st_buf; 6276 6277 if (size) 6278 *size = 0; 6279 6280 if (fd == -1) { 6281 fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); 6282 return buf; 6283 } 6284 6285 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 6286 close(fd); 6287 fprintf(stderr, "%s: File operations failed\n", __func__); 6288 return buf; 6289 } 6290 6291 pkg_size = st_buf.st_size; 6292 if (pkg_size < 0) { 6293 close(fd); 6294 fprintf(stderr, "%s: File operations failed\n", __func__); 6295 return buf; 6296 } 6297 6298 buf = (uint8_t *)malloc(pkg_size); 6299 if (!buf) { 6300 close(fd); 6301 fprintf(stderr, "%s: Failed to malloc memory\n", __func__); 6302 return buf; 6303 } 6304 6305 ret = read(fd, buf, pkg_size); 6306 if (ret < 0) { 6307 close(fd); 6308 fprintf(stderr, "%s: File read operation failed\n", __func__); 6309 close_file(buf); 6310 return NULL; 6311 } 6312 6313 if (size) 6314 *size = pkg_size; 6315 6316 close(fd); 6317 6318 return buf; 6319 } 6320 6321 int 6322 save_file(const char *file_path, uint8_t *buf, uint32_t size) 6323 { 6324 FILE *fh = fopen(file_path, "wb"); 6325 6326 if (fh == NULL) { 6327 fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); 6328 return -1; 6329 } 6330 6331 if (fwrite(buf, 1, size, fh) != size) { 6332 fclose(fh); 6333 fprintf(stderr, "%s: File write operation failed\n", __func__); 6334 return -1; 6335 } 6336 6337 fclose(fh); 6338 6339 return 0; 6340 } 6341 6342 int 6343 close_file(uint8_t *buf) 6344 { 6345 if (buf) { 6346 free((void *)buf); 6347 return 0; 6348 } 6349 6350 return -1; 6351 } 6352 6353 void 6354 show_macs(portid_t port_id) 6355 { 6356 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 6357 struct rte_eth_dev_info dev_info; 6358 int32_t i, rc, num_macs = 0; 6359 6360 if (eth_dev_info_get_print_err(port_id, &dev_info)) 6361 return; 6362 6363 struct rte_ether_addr addr[dev_info.max_mac_addrs]; 6364 rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs); 6365 if (rc < 0) 6366 return; 6367 6368 for (i = 0; i < rc; i++) { 6369 6370 /* skip zero address */ 6371 if (rte_is_zero_ether_addr(&addr[i])) 6372 continue; 6373 6374 num_macs++; 6375 } 6376 6377 printf("Number of MAC address added: %d\n", num_macs); 6378 6379 for (i = 0; i < rc; i++) { 6380 6381 /* skip zero address */ 6382 if (rte_is_zero_ether_addr(&addr[i])) 6383 continue; 6384 6385 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]); 6386 printf(" %s\n", buf); 6387 } 6388 } 6389 6390 void 6391 show_mcast_macs(portid_t port_id) 6392 { 6393 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 6394 struct rte_ether_addr *addr; 6395 struct rte_port *port; 6396 uint32_t i; 6397 6398 port = &ports[port_id]; 6399 6400 printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb); 6401 6402 for (i = 0; i < port->mc_addr_nb; i++) { 6403 addr = &port->mc_addr_pool[i]; 6404 6405 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr); 6406 printf(" %s\n", buf); 6407 } 6408 } 6409