xref: /dpdk/app/test-pmd/config.c (revision 0a081a5fd26fbdae00a34541924d798b6dd4a63e)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   Copyright 2013-2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <string.h>
39 #include <stdint.h>
40 #include <inttypes.h>
41 
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #include <fcntl.h>
46 #include <unistd.h>
47 
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_debug.h>
51 #include <rte_log.h>
52 #include <rte_memory.h>
53 #include <rte_memcpy.h>
54 #include <rte_memzone.h>
55 #include <rte_launch.h>
56 #include <rte_eal.h>
57 #include <rte_per_lcore.h>
58 #include <rte_lcore.h>
59 #include <rte_atomic.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_mempool.h>
62 #include <rte_mbuf.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_string_fns.h>
68 #include <rte_cycles.h>
69 #include <rte_flow.h>
70 #include <rte_errno.h>
71 #ifdef RTE_LIBRTE_IXGBE_PMD
72 #include <rte_pmd_ixgbe.h>
73 #endif
74 #ifdef RTE_LIBRTE_I40E_PMD
75 #include <rte_pmd_i40e.h>
76 #endif
77 #ifdef RTE_LIBRTE_BNXT_PMD
78 #include <rte_pmd_bnxt.h>
79 #endif
80 #include <rte_gro.h>
81 
82 #include "testpmd.h"
83 
84 static char *flowtype_to_str(uint16_t flow_type);
85 
86 static const struct {
87 	enum tx_pkt_split split;
88 	const char *name;
89 } tx_split_name[] = {
90 	{
91 		.split = TX_PKT_SPLIT_OFF,
92 		.name = "off",
93 	},
94 	{
95 		.split = TX_PKT_SPLIT_ON,
96 		.name = "on",
97 	},
98 	{
99 		.split = TX_PKT_SPLIT_RND,
100 		.name = "rand",
101 	},
102 };
103 
104 struct rss_type_info {
105 	char str[32];
106 	uint64_t rss_type;
107 };
108 
109 static const struct rss_type_info rss_type_table[] = {
110 	{ "ipv4", ETH_RSS_IPV4 },
111 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
112 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
113 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
114 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
115 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
116 	{ "ipv6", ETH_RSS_IPV6 },
117 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
118 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
119 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
120 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
121 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
122 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
123 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
124 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
125 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
126 	{ "port", ETH_RSS_PORT },
127 	{ "vxlan", ETH_RSS_VXLAN },
128 	{ "geneve", ETH_RSS_GENEVE },
129 	{ "nvgre", ETH_RSS_NVGRE },
130 
131 };
132 
133 static void
134 print_ethaddr(const char *name, struct ether_addr *eth_addr)
135 {
136 	char buf[ETHER_ADDR_FMT_SIZE];
137 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
138 	printf("%s%s", name, buf);
139 }
140 
141 void
142 nic_stats_display(portid_t port_id)
143 {
144 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
145 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
146 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
147 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
148 	uint64_t mpps_rx, mpps_tx;
149 	struct rte_eth_stats stats;
150 	struct rte_port *port = &ports[port_id];
151 	uint8_t i;
152 	portid_t pid;
153 
154 	static const char *nic_stats_border = "########################";
155 
156 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
157 		printf("Valid port range is [0");
158 		RTE_ETH_FOREACH_DEV(pid)
159 			printf(", %d", pid);
160 		printf("]\n");
161 		return;
162 	}
163 	rte_eth_stats_get(port_id, &stats);
164 	printf("\n  %s NIC statistics for port %-2d %s\n",
165 	       nic_stats_border, port_id, nic_stats_border);
166 
167 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
168 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
169 		       "%-"PRIu64"\n",
170 		       stats.ipackets, stats.imissed, stats.ibytes);
171 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
172 		printf("  RX-nombuf:  %-10"PRIu64"\n",
173 		       stats.rx_nombuf);
174 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
175 		       "%-"PRIu64"\n",
176 		       stats.opackets, stats.oerrors, stats.obytes);
177 	}
178 	else {
179 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
180 		       "    RX-bytes: %10"PRIu64"\n",
181 		       stats.ipackets, stats.ierrors, stats.ibytes);
182 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
183 		printf("  RX-nombuf:               %10"PRIu64"\n",
184 		       stats.rx_nombuf);
185 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
186 		       "    TX-bytes: %10"PRIu64"\n",
187 		       stats.opackets, stats.oerrors, stats.obytes);
188 	}
189 
190 	if (port->rx_queue_stats_mapping_enabled) {
191 		printf("\n");
192 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
193 			printf("  Stats reg %2d RX-packets: %10"PRIu64
194 			       "    RX-errors: %10"PRIu64
195 			       "    RX-bytes: %10"PRIu64"\n",
196 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
197 		}
198 	}
199 	if (port->tx_queue_stats_mapping_enabled) {
200 		printf("\n");
201 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
202 			printf("  Stats reg %2d TX-packets: %10"PRIu64
203 			       "                             TX-bytes: %10"PRIu64"\n",
204 			       i, stats.q_opackets[i], stats.q_obytes[i]);
205 		}
206 	}
207 
208 	diff_cycles = prev_cycles[port_id];
209 	prev_cycles[port_id] = rte_rdtsc();
210 	if (diff_cycles > 0)
211 		diff_cycles = prev_cycles[port_id] - diff_cycles;
212 
213 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
214 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
215 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
216 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
217 	prev_pkts_rx[port_id] = stats.ipackets;
218 	prev_pkts_tx[port_id] = stats.opackets;
219 	mpps_rx = diff_cycles > 0 ?
220 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
221 	mpps_tx = diff_cycles > 0 ?
222 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
223 	printf("\n  Throughput (since last show)\n");
224 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
225 			mpps_rx, mpps_tx);
226 
227 	printf("  %s############################%s\n",
228 	       nic_stats_border, nic_stats_border);
229 }
230 
231 void
232 nic_stats_clear(portid_t port_id)
233 {
234 	portid_t pid;
235 
236 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
237 		printf("Valid port range is [0");
238 		RTE_ETH_FOREACH_DEV(pid)
239 			printf(", %d", pid);
240 		printf("]\n");
241 		return;
242 	}
243 	rte_eth_stats_reset(port_id);
244 	printf("\n  NIC statistics for port %d cleared\n", port_id);
245 }
246 
247 void
248 nic_xstats_display(portid_t port_id)
249 {
250 	struct rte_eth_xstat *xstats;
251 	int cnt_xstats, idx_xstat;
252 	struct rte_eth_xstat_name *xstats_names;
253 
254 	printf("###### NIC extended statistics for port %-2d\n", port_id);
255 	if (!rte_eth_dev_is_valid_port(port_id)) {
256 		printf("Error: Invalid port number %i\n", port_id);
257 		return;
258 	}
259 
260 	/* Get count */
261 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
262 	if (cnt_xstats  < 0) {
263 		printf("Error: Cannot get count of xstats\n");
264 		return;
265 	}
266 
267 	/* Get id-name lookup table */
268 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
269 	if (xstats_names == NULL) {
270 		printf("Cannot allocate memory for xstats lookup\n");
271 		return;
272 	}
273 	if (cnt_xstats != rte_eth_xstats_get_names(
274 			port_id, xstats_names, cnt_xstats)) {
275 		printf("Error: Cannot get xstats lookup\n");
276 		free(xstats_names);
277 		return;
278 	}
279 
280 	/* Get stats themselves */
281 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
282 	if (xstats == NULL) {
283 		printf("Cannot allocate memory for xstats\n");
284 		free(xstats_names);
285 		return;
286 	}
287 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
288 		printf("Error: Unable to get xstats\n");
289 		free(xstats_names);
290 		free(xstats);
291 		return;
292 	}
293 
294 	/* Display xstats */
295 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
296 		printf("%s: %"PRIu64"\n",
297 			xstats_names[idx_xstat].name,
298 			xstats[idx_xstat].value);
299 	free(xstats_names);
300 	free(xstats);
301 }
302 
303 void
304 nic_xstats_clear(portid_t port_id)
305 {
306 	rte_eth_xstats_reset(port_id);
307 }
308 
309 void
310 nic_stats_mapping_display(portid_t port_id)
311 {
312 	struct rte_port *port = &ports[port_id];
313 	uint16_t i;
314 	portid_t pid;
315 
316 	static const char *nic_stats_mapping_border = "########################";
317 
318 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
319 		printf("Valid port range is [0");
320 		RTE_ETH_FOREACH_DEV(pid)
321 			printf(", %d", pid);
322 		printf("]\n");
323 		return;
324 	}
325 
326 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
327 		printf("Port id %d - either does not support queue statistic mapping or"
328 		       " no queue statistic mapping set\n", port_id);
329 		return;
330 	}
331 
332 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
333 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
334 
335 	if (port->rx_queue_stats_mapping_enabled) {
336 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
337 			if (rx_queue_stats_mappings[i].port_id == port_id) {
338 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
339 				       rx_queue_stats_mappings[i].queue_id,
340 				       rx_queue_stats_mappings[i].stats_counter_id);
341 			}
342 		}
343 		printf("\n");
344 	}
345 
346 
347 	if (port->tx_queue_stats_mapping_enabled) {
348 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
349 			if (tx_queue_stats_mappings[i].port_id == port_id) {
350 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
351 				       tx_queue_stats_mappings[i].queue_id,
352 				       tx_queue_stats_mappings[i].stats_counter_id);
353 			}
354 		}
355 	}
356 
357 	printf("  %s####################################%s\n",
358 	       nic_stats_mapping_border, nic_stats_mapping_border);
359 }
360 
361 void
362 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
363 {
364 	struct rte_eth_rxq_info qinfo;
365 	int32_t rc;
366 	static const char *info_border = "*********************";
367 
368 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
369 	if (rc != 0) {
370 		printf("Failed to retrieve information for port: %u, "
371 			"RX queue: %hu\nerror desc: %s(%d)\n",
372 			port_id, queue_id, strerror(-rc), rc);
373 		return;
374 	}
375 
376 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
377 	       info_border, port_id, queue_id, info_border);
378 
379 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
380 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
381 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
382 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
383 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
384 	printf("\nRX drop packets: %s",
385 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
386 	printf("\nRX deferred start: %s",
387 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
388 	printf("\nRX scattered packets: %s",
389 		(qinfo.scattered_rx != 0) ? "on" : "off");
390 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
391 	printf("\n");
392 }
393 
394 void
395 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
396 {
397 	struct rte_eth_txq_info qinfo;
398 	int32_t rc;
399 	static const char *info_border = "*********************";
400 
401 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
402 	if (rc != 0) {
403 		printf("Failed to retrieve information for port: %u, "
404 			"TX queue: %hu\nerror desc: %s(%d)\n",
405 			port_id, queue_id, strerror(-rc), rc);
406 		return;
407 	}
408 
409 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
410 	       info_border, port_id, queue_id, info_border);
411 
412 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
413 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
414 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
415 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
416 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
417 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
418 	printf("\nTX deferred start: %s",
419 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
420 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
421 	printf("\n");
422 }
423 
424 void
425 port_infos_display(portid_t port_id)
426 {
427 	struct rte_port *port;
428 	struct ether_addr mac_addr;
429 	struct rte_eth_link link;
430 	struct rte_eth_dev_info dev_info;
431 	int vlan_offload;
432 	struct rte_mempool * mp;
433 	static const char *info_border = "*********************";
434 	portid_t pid;
435 	uint16_t mtu;
436 
437 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
438 		printf("Valid port range is [0");
439 		RTE_ETH_FOREACH_DEV(pid)
440 			printf(", %d", pid);
441 		printf("]\n");
442 		return;
443 	}
444 	port = &ports[port_id];
445 	rte_eth_link_get_nowait(port_id, &link);
446 	memset(&dev_info, 0, sizeof(dev_info));
447 	rte_eth_dev_info_get(port_id, &dev_info);
448 	printf("\n%s Infos for port %-2d %s\n",
449 	       info_border, port_id, info_border);
450 	rte_eth_macaddr_get(port_id, &mac_addr);
451 	print_ethaddr("MAC address: ", &mac_addr);
452 	printf("\nDriver name: %s", dev_info.driver_name);
453 	printf("\nConnect to socket: %u", port->socket_id);
454 
455 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
456 		mp = mbuf_pool_find(port_numa[port_id]);
457 		if (mp)
458 			printf("\nmemory allocation on the socket: %d",
459 							port_numa[port_id]);
460 	} else
461 		printf("\nmemory allocation on the socket: %u",port->socket_id);
462 
463 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
464 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
465 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
466 	       ("full-duplex") : ("half-duplex"));
467 
468 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
469 		printf("MTU: %u\n", mtu);
470 
471 	printf("Promiscuous mode: %s\n",
472 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
473 	printf("Allmulticast mode: %s\n",
474 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
475 	printf("Maximum number of MAC addresses: %u\n",
476 	       (unsigned int)(port->dev_info.max_mac_addrs));
477 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
478 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
479 
480 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
481 	if (vlan_offload >= 0){
482 		printf("VLAN offload: \n");
483 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
484 			printf("  strip on \n");
485 		else
486 			printf("  strip off \n");
487 
488 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
489 			printf("  filter on \n");
490 		else
491 			printf("  filter off \n");
492 
493 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
494 			printf("  qinq(extend) on \n");
495 		else
496 			printf("  qinq(extend) off \n");
497 	}
498 
499 	if (dev_info.hash_key_size > 0)
500 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
501 	if (dev_info.reta_size > 0)
502 		printf("Redirection table size: %u\n", dev_info.reta_size);
503 	if (!dev_info.flow_type_rss_offloads)
504 		printf("No flow type is supported.\n");
505 	else {
506 		uint16_t i;
507 		char *p;
508 
509 		printf("Supported flow types:\n");
510 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
511 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
512 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
513 				continue;
514 			p = flowtype_to_str(i);
515 			if (p)
516 				printf("  %s\n", p);
517 			else
518 				printf("  user defined %d\n", i);
519 		}
520 	}
521 
522 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
523 	printf("Max possible number of RXDs per queue: %hu\n",
524 		dev_info.rx_desc_lim.nb_max);
525 	printf("Min possible number of RXDs per queue: %hu\n",
526 		dev_info.rx_desc_lim.nb_min);
527 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
528 
529 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
530 	printf("Max possible number of TXDs per queue: %hu\n",
531 		dev_info.tx_desc_lim.nb_max);
532 	printf("Min possible number of TXDs per queue: %hu\n",
533 		dev_info.tx_desc_lim.nb_min);
534 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
535 }
536 
537 void
538 port_offload_cap_display(portid_t port_id)
539 {
540 	struct rte_eth_dev *dev;
541 	struct rte_eth_dev_info dev_info;
542 	static const char *info_border = "************";
543 
544 	if (port_id_is_invalid(port_id, ENABLED_WARN))
545 		return;
546 
547 	dev = &rte_eth_devices[port_id];
548 	rte_eth_dev_info_get(port_id, &dev_info);
549 
550 	printf("\n%s Port %d supported offload features: %s\n",
551 		info_border, port_id, info_border);
552 
553 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
554 		printf("VLAN stripped:                 ");
555 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
556 			printf("on\n");
557 		else
558 			printf("off\n");
559 	}
560 
561 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
562 		printf("Double VLANs stripped:         ");
563 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
564 			printf("on\n");
565 		else
566 			printf("off\n");
567 	}
568 
569 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
570 		printf("RX IPv4 checksum:              ");
571 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
572 			printf("on\n");
573 		else
574 			printf("off\n");
575 	}
576 
577 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
578 		printf("RX UDP checksum:               ");
579 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
580 			printf("on\n");
581 		else
582 			printf("off\n");
583 	}
584 
585 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
586 		printf("RX TCP checksum:               ");
587 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
588 			printf("on\n");
589 		else
590 			printf("off\n");
591 	}
592 
593 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
594 		printf("RX Outer IPv4 checksum:        on");
595 
596 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
597 		printf("Large receive offload:         ");
598 		if (dev->data->dev_conf.rxmode.enable_lro)
599 			printf("on\n");
600 		else
601 			printf("off\n");
602 	}
603 
604 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
605 		printf("VLAN insert:                   ");
606 		if (ports[port_id].tx_ol_flags &
607 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
608 			printf("on\n");
609 		else
610 			printf("off\n");
611 	}
612 
613 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
614 		printf("HW timestamp:                  ");
615 		if (dev->data->dev_conf.rxmode.hw_timestamp)
616 			printf("on\n");
617 		else
618 			printf("off\n");
619 	}
620 
621 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
622 		printf("Double VLANs insert:           ");
623 		if (ports[port_id].tx_ol_flags &
624 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
625 			printf("on\n");
626 		else
627 			printf("off\n");
628 	}
629 
630 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
631 		printf("TX IPv4 checksum:              ");
632 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
633 			printf("on\n");
634 		else
635 			printf("off\n");
636 	}
637 
638 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
639 		printf("TX UDP checksum:               ");
640 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
641 			printf("on\n");
642 		else
643 			printf("off\n");
644 	}
645 
646 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
647 		printf("TX TCP checksum:               ");
648 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
649 			printf("on\n");
650 		else
651 			printf("off\n");
652 	}
653 
654 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
655 		printf("TX SCTP checksum:              ");
656 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
657 			printf("on\n");
658 		else
659 			printf("off\n");
660 	}
661 
662 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663 		printf("TX Outer IPv4 checksum:        ");
664 		if (ports[port_id].tx_ol_flags &
665 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
666 			printf("on\n");
667 		else
668 			printf("off\n");
669 	}
670 
671 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672 		printf("TX TCP segmentation:           ");
673 		if (ports[port_id].tso_segsz != 0)
674 			printf("on\n");
675 		else
676 			printf("off\n");
677 	}
678 
679 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
680 		printf("TX UDP segmentation:           ");
681 		if (ports[port_id].tso_segsz != 0)
682 			printf("on\n");
683 		else
684 			printf("off\n");
685 	}
686 
687 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
688 		printf("TSO for VXLAN tunnel packet:   ");
689 		if (ports[port_id].tunnel_tso_segsz)
690 			printf("on\n");
691 		else
692 			printf("off\n");
693 	}
694 
695 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
696 		printf("TSO for GRE tunnel packet:     ");
697 		if (ports[port_id].tunnel_tso_segsz)
698 			printf("on\n");
699 		else
700 			printf("off\n");
701 	}
702 
703 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
704 		printf("TSO for IPIP tunnel packet:    ");
705 		if (ports[port_id].tunnel_tso_segsz)
706 			printf("on\n");
707 		else
708 			printf("off\n");
709 	}
710 
711 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
712 		printf("TSO for GENEVE tunnel packet:  ");
713 		if (ports[port_id].tunnel_tso_segsz)
714 			printf("on\n");
715 		else
716 			printf("off\n");
717 	}
718 
719 }
720 
721 int
722 port_id_is_invalid(portid_t port_id, enum print_warning warning)
723 {
724 	if (port_id == (portid_t)RTE_PORT_ALL)
725 		return 0;
726 
727 	if (rte_eth_dev_is_valid_port(port_id))
728 		return 0;
729 
730 	if (warning == ENABLED_WARN)
731 		printf("Invalid port %d\n", port_id);
732 
733 	return 1;
734 }
735 
736 static int
737 vlan_id_is_invalid(uint16_t vlan_id)
738 {
739 	if (vlan_id < 4096)
740 		return 0;
741 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
742 	return 1;
743 }
744 
745 static int
746 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
747 {
748 	uint64_t pci_len;
749 
750 	if (reg_off & 0x3) {
751 		printf("Port register offset 0x%X not aligned on a 4-byte "
752 		       "boundary\n",
753 		       (unsigned)reg_off);
754 		return 1;
755 	}
756 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
757 	if (reg_off >= pci_len) {
758 		printf("Port %d: register offset %u (0x%X) out of port PCI "
759 		       "resource (length=%"PRIu64")\n",
760 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
761 		return 1;
762 	}
763 	return 0;
764 }
765 
766 static int
767 reg_bit_pos_is_invalid(uint8_t bit_pos)
768 {
769 	if (bit_pos <= 31)
770 		return 0;
771 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
772 	return 1;
773 }
774 
775 #define display_port_and_reg_off(port_id, reg_off) \
776 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
777 
778 static inline void
779 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
780 {
781 	display_port_and_reg_off(port_id, (unsigned)reg_off);
782 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
783 }
784 
785 void
786 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
787 {
788 	uint32_t reg_v;
789 
790 
791 	if (port_id_is_invalid(port_id, ENABLED_WARN))
792 		return;
793 	if (port_reg_off_is_invalid(port_id, reg_off))
794 		return;
795 	if (reg_bit_pos_is_invalid(bit_x))
796 		return;
797 	reg_v = port_id_pci_reg_read(port_id, reg_off);
798 	display_port_and_reg_off(port_id, (unsigned)reg_off);
799 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
800 }
801 
802 void
803 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
804 			   uint8_t bit1_pos, uint8_t bit2_pos)
805 {
806 	uint32_t reg_v;
807 	uint8_t  l_bit;
808 	uint8_t  h_bit;
809 
810 	if (port_id_is_invalid(port_id, ENABLED_WARN))
811 		return;
812 	if (port_reg_off_is_invalid(port_id, reg_off))
813 		return;
814 	if (reg_bit_pos_is_invalid(bit1_pos))
815 		return;
816 	if (reg_bit_pos_is_invalid(bit2_pos))
817 		return;
818 	if (bit1_pos > bit2_pos)
819 		l_bit = bit2_pos, h_bit = bit1_pos;
820 	else
821 		l_bit = bit1_pos, h_bit = bit2_pos;
822 
823 	reg_v = port_id_pci_reg_read(port_id, reg_off);
824 	reg_v >>= l_bit;
825 	if (h_bit < 31)
826 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
827 	display_port_and_reg_off(port_id, (unsigned)reg_off);
828 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
829 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
830 }
831 
832 void
833 port_reg_display(portid_t port_id, uint32_t reg_off)
834 {
835 	uint32_t reg_v;
836 
837 	if (port_id_is_invalid(port_id, ENABLED_WARN))
838 		return;
839 	if (port_reg_off_is_invalid(port_id, reg_off))
840 		return;
841 	reg_v = port_id_pci_reg_read(port_id, reg_off);
842 	display_port_reg_value(port_id, reg_off, reg_v);
843 }
844 
845 void
846 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
847 		 uint8_t bit_v)
848 {
849 	uint32_t reg_v;
850 
851 	if (port_id_is_invalid(port_id, ENABLED_WARN))
852 		return;
853 	if (port_reg_off_is_invalid(port_id, reg_off))
854 		return;
855 	if (reg_bit_pos_is_invalid(bit_pos))
856 		return;
857 	if (bit_v > 1) {
858 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
859 		return;
860 	}
861 	reg_v = port_id_pci_reg_read(port_id, reg_off);
862 	if (bit_v == 0)
863 		reg_v &= ~(1 << bit_pos);
864 	else
865 		reg_v |= (1 << bit_pos);
866 	port_id_pci_reg_write(port_id, reg_off, reg_v);
867 	display_port_reg_value(port_id, reg_off, reg_v);
868 }
869 
870 void
871 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
872 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
873 {
874 	uint32_t max_v;
875 	uint32_t reg_v;
876 	uint8_t  l_bit;
877 	uint8_t  h_bit;
878 
879 	if (port_id_is_invalid(port_id, ENABLED_WARN))
880 		return;
881 	if (port_reg_off_is_invalid(port_id, reg_off))
882 		return;
883 	if (reg_bit_pos_is_invalid(bit1_pos))
884 		return;
885 	if (reg_bit_pos_is_invalid(bit2_pos))
886 		return;
887 	if (bit1_pos > bit2_pos)
888 		l_bit = bit2_pos, h_bit = bit1_pos;
889 	else
890 		l_bit = bit1_pos, h_bit = bit2_pos;
891 
892 	if ((h_bit - l_bit) < 31)
893 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
894 	else
895 		max_v = 0xFFFFFFFF;
896 
897 	if (value > max_v) {
898 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
899 				(unsigned)value, (unsigned)value,
900 				(unsigned)max_v, (unsigned)max_v);
901 		return;
902 	}
903 	reg_v = port_id_pci_reg_read(port_id, reg_off);
904 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
905 	reg_v |= (value << l_bit); /* Set changed bits */
906 	port_id_pci_reg_write(port_id, reg_off, reg_v);
907 	display_port_reg_value(port_id, reg_off, reg_v);
908 }
909 
910 void
911 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
912 {
913 	if (port_id_is_invalid(port_id, ENABLED_WARN))
914 		return;
915 	if (port_reg_off_is_invalid(port_id, reg_off))
916 		return;
917 	port_id_pci_reg_write(port_id, reg_off, reg_v);
918 	display_port_reg_value(port_id, reg_off, reg_v);
919 }
920 
921 void
922 port_mtu_set(portid_t port_id, uint16_t mtu)
923 {
924 	int diag;
925 
926 	if (port_id_is_invalid(port_id, ENABLED_WARN))
927 		return;
928 	diag = rte_eth_dev_set_mtu(port_id, mtu);
929 	if (diag == 0)
930 		return;
931 	printf("Set MTU failed. diag=%d\n", diag);
932 }
933 
934 /* Generic flow management functions. */
935 
936 /** Generate flow_item[] entry. */
937 #define MK_FLOW_ITEM(t, s) \
938 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
939 		.name = # t, \
940 		.size = s, \
941 	}
942 
943 /** Information about known flow pattern items. */
944 static const struct {
945 	const char *name;
946 	size_t size;
947 } flow_item[] = {
948 	MK_FLOW_ITEM(END, 0),
949 	MK_FLOW_ITEM(VOID, 0),
950 	MK_FLOW_ITEM(INVERT, 0),
951 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
952 	MK_FLOW_ITEM(PF, 0),
953 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
954 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
955 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
956 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
957 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
958 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
959 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
960 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
961 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
962 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
963 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
964 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
965 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
966 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
967 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
968 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
969 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
970 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
971 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
972 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
973 };
974 
975 /** Compute storage space needed by item specification. */
976 static void
977 flow_item_spec_size(const struct rte_flow_item *item,
978 		    size_t *size, size_t *pad)
979 {
980 	if (!item->spec) {
981 		*size = 0;
982 		goto empty;
983 	}
984 	switch (item->type) {
985 		union {
986 			const struct rte_flow_item_raw *raw;
987 		} spec;
988 
989 	case RTE_FLOW_ITEM_TYPE_RAW:
990 		spec.raw = item->spec;
991 		*size = offsetof(struct rte_flow_item_raw, pattern) +
992 			spec.raw->length * sizeof(*spec.raw->pattern);
993 		break;
994 	default:
995 		*size = flow_item[item->type].size;
996 		break;
997 	}
998 empty:
999 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1000 }
1001 
1002 /** Generate flow_action[] entry. */
1003 #define MK_FLOW_ACTION(t, s) \
1004 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1005 		.name = # t, \
1006 		.size = s, \
1007 	}
1008 
1009 /** Information about known flow actions. */
1010 static const struct {
1011 	const char *name;
1012 	size_t size;
1013 } flow_action[] = {
1014 	MK_FLOW_ACTION(END, 0),
1015 	MK_FLOW_ACTION(VOID, 0),
1016 	MK_FLOW_ACTION(PASSTHRU, 0),
1017 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1018 	MK_FLOW_ACTION(FLAG, 0),
1019 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1020 	MK_FLOW_ACTION(DROP, 0),
1021 	MK_FLOW_ACTION(COUNT, 0),
1022 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1023 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1024 	MK_FLOW_ACTION(PF, 0),
1025 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1026 };
1027 
1028 /** Compute storage space needed by action configuration. */
1029 static void
1030 flow_action_conf_size(const struct rte_flow_action *action,
1031 		      size_t *size, size_t *pad)
1032 {
1033 	if (!action->conf) {
1034 		*size = 0;
1035 		goto empty;
1036 	}
1037 	switch (action->type) {
1038 		union {
1039 			const struct rte_flow_action_rss *rss;
1040 		} conf;
1041 
1042 	case RTE_FLOW_ACTION_TYPE_RSS:
1043 		conf.rss = action->conf;
1044 		*size = offsetof(struct rte_flow_action_rss, queue) +
1045 			conf.rss->num * sizeof(*conf.rss->queue);
1046 		break;
1047 	default:
1048 		*size = flow_action[action->type].size;
1049 		break;
1050 	}
1051 empty:
1052 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1053 }
1054 
1055 /** Generate a port_flow entry from attributes/pattern/actions. */
1056 static struct port_flow *
1057 port_flow_new(const struct rte_flow_attr *attr,
1058 	      const struct rte_flow_item *pattern,
1059 	      const struct rte_flow_action *actions)
1060 {
1061 	const struct rte_flow_item *item;
1062 	const struct rte_flow_action *action;
1063 	struct port_flow *pf = NULL;
1064 	size_t tmp;
1065 	size_t pad;
1066 	size_t off1 = 0;
1067 	size_t off2 = 0;
1068 	int err = ENOTSUP;
1069 
1070 store:
1071 	item = pattern;
1072 	if (pf)
1073 		pf->pattern = (void *)&pf->data[off1];
1074 	do {
1075 		struct rte_flow_item *dst = NULL;
1076 
1077 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1078 		    !flow_item[item->type].name)
1079 			goto notsup;
1080 		if (pf)
1081 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1082 		off1 += sizeof(*item);
1083 		flow_item_spec_size(item, &tmp, &pad);
1084 		if (item->spec) {
1085 			if (pf)
1086 				dst->spec = memcpy(pf->data + off2,
1087 						   item->spec, tmp);
1088 			off2 += tmp + pad;
1089 		}
1090 		if (item->last) {
1091 			if (pf)
1092 				dst->last = memcpy(pf->data + off2,
1093 						   item->last, tmp);
1094 			off2 += tmp + pad;
1095 		}
1096 		if (item->mask) {
1097 			if (pf)
1098 				dst->mask = memcpy(pf->data + off2,
1099 						   item->mask, tmp);
1100 			off2 += tmp + pad;
1101 		}
1102 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1103 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1104 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1105 	action = actions;
1106 	if (pf)
1107 		pf->actions = (void *)&pf->data[off1];
1108 	do {
1109 		struct rte_flow_action *dst = NULL;
1110 
1111 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1112 		    !flow_action[action->type].name)
1113 			goto notsup;
1114 		if (pf)
1115 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1116 		off1 += sizeof(*action);
1117 		flow_action_conf_size(action, &tmp, &pad);
1118 		if (action->conf) {
1119 			if (pf)
1120 				dst->conf = memcpy(pf->data + off2,
1121 						   action->conf, tmp);
1122 			off2 += tmp + pad;
1123 		}
1124 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1125 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1126 	if (pf != NULL)
1127 		return pf;
1128 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1129 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1130 	pf = calloc(1, tmp + off1 + off2);
1131 	if (pf == NULL)
1132 		err = errno;
1133 	else {
1134 		*pf = (const struct port_flow){
1135 			.size = tmp + off1 + off2,
1136 			.attr = *attr,
1137 		};
1138 		tmp -= offsetof(struct port_flow, data);
1139 		off2 = tmp + off1;
1140 		off1 = tmp;
1141 		goto store;
1142 	}
1143 notsup:
1144 	rte_errno = err;
1145 	return NULL;
1146 }
1147 
1148 /** Print a message out of a flow error. */
1149 static int
1150 port_flow_complain(struct rte_flow_error *error)
1151 {
1152 	static const char *const errstrlist[] = {
1153 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1154 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1155 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1156 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1157 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1158 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1159 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1160 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1161 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1162 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1163 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1164 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1165 	};
1166 	const char *errstr;
1167 	char buf[32];
1168 	int err = rte_errno;
1169 
1170 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1171 	    !errstrlist[error->type])
1172 		errstr = "unknown type";
1173 	else
1174 		errstr = errstrlist[error->type];
1175 	printf("Caught error type %d (%s): %s%s\n",
1176 	       error->type, errstr,
1177 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1178 					error->cause), buf) : "",
1179 	       error->message ? error->message : "(no stated reason)");
1180 	return -err;
1181 }
1182 
1183 /** Validate flow rule. */
1184 int
1185 port_flow_validate(portid_t port_id,
1186 		   const struct rte_flow_attr *attr,
1187 		   const struct rte_flow_item *pattern,
1188 		   const struct rte_flow_action *actions)
1189 {
1190 	struct rte_flow_error error;
1191 
1192 	/* Poisoning to make sure PMDs update it in case of error. */
1193 	memset(&error, 0x11, sizeof(error));
1194 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1195 		return port_flow_complain(&error);
1196 	printf("Flow rule validated\n");
1197 	return 0;
1198 }
1199 
1200 /** Create flow rule. */
1201 int
1202 port_flow_create(portid_t port_id,
1203 		 const struct rte_flow_attr *attr,
1204 		 const struct rte_flow_item *pattern,
1205 		 const struct rte_flow_action *actions)
1206 {
1207 	struct rte_flow *flow;
1208 	struct rte_port *port;
1209 	struct port_flow *pf;
1210 	uint32_t id;
1211 	struct rte_flow_error error;
1212 
1213 	/* Poisoning to make sure PMDs update it in case of error. */
1214 	memset(&error, 0x22, sizeof(error));
1215 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1216 	if (!flow)
1217 		return port_flow_complain(&error);
1218 	port = &ports[port_id];
1219 	if (port->flow_list) {
1220 		if (port->flow_list->id == UINT32_MAX) {
1221 			printf("Highest rule ID is already assigned, delete"
1222 			       " it first");
1223 			rte_flow_destroy(port_id, flow, NULL);
1224 			return -ENOMEM;
1225 		}
1226 		id = port->flow_list->id + 1;
1227 	} else
1228 		id = 0;
1229 	pf = port_flow_new(attr, pattern, actions);
1230 	if (!pf) {
1231 		int err = rte_errno;
1232 
1233 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1234 		rte_flow_destroy(port_id, flow, NULL);
1235 		return -err;
1236 	}
1237 	pf->next = port->flow_list;
1238 	pf->id = id;
1239 	pf->flow = flow;
1240 	port->flow_list = pf;
1241 	printf("Flow rule #%u created\n", pf->id);
1242 	return 0;
1243 }
1244 
1245 /** Destroy a number of flow rules. */
1246 int
1247 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1248 {
1249 	struct rte_port *port;
1250 	struct port_flow **tmp;
1251 	uint32_t c = 0;
1252 	int ret = 0;
1253 
1254 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1255 	    port_id == (portid_t)RTE_PORT_ALL)
1256 		return -EINVAL;
1257 	port = &ports[port_id];
1258 	tmp = &port->flow_list;
1259 	while (*tmp) {
1260 		uint32_t i;
1261 
1262 		for (i = 0; i != n; ++i) {
1263 			struct rte_flow_error error;
1264 			struct port_flow *pf = *tmp;
1265 
1266 			if (rule[i] != pf->id)
1267 				continue;
1268 			/*
1269 			 * Poisoning to make sure PMDs update it in case
1270 			 * of error.
1271 			 */
1272 			memset(&error, 0x33, sizeof(error));
1273 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1274 				ret = port_flow_complain(&error);
1275 				continue;
1276 			}
1277 			printf("Flow rule #%u destroyed\n", pf->id);
1278 			*tmp = pf->next;
1279 			free(pf);
1280 			break;
1281 		}
1282 		if (i == n)
1283 			tmp = &(*tmp)->next;
1284 		++c;
1285 	}
1286 	return ret;
1287 }
1288 
1289 /** Remove all flow rules. */
1290 int
1291 port_flow_flush(portid_t port_id)
1292 {
1293 	struct rte_flow_error error;
1294 	struct rte_port *port;
1295 	int ret = 0;
1296 
1297 	/* Poisoning to make sure PMDs update it in case of error. */
1298 	memset(&error, 0x44, sizeof(error));
1299 	if (rte_flow_flush(port_id, &error)) {
1300 		ret = port_flow_complain(&error);
1301 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1302 		    port_id == (portid_t)RTE_PORT_ALL)
1303 			return ret;
1304 	}
1305 	port = &ports[port_id];
1306 	while (port->flow_list) {
1307 		struct port_flow *pf = port->flow_list->next;
1308 
1309 		free(port->flow_list);
1310 		port->flow_list = pf;
1311 	}
1312 	return ret;
1313 }
1314 
1315 /** Query a flow rule. */
1316 int
1317 port_flow_query(portid_t port_id, uint32_t rule,
1318 		enum rte_flow_action_type action)
1319 {
1320 	struct rte_flow_error error;
1321 	struct rte_port *port;
1322 	struct port_flow *pf;
1323 	const char *name;
1324 	union {
1325 		struct rte_flow_query_count count;
1326 	} query;
1327 
1328 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1329 	    port_id == (portid_t)RTE_PORT_ALL)
1330 		return -EINVAL;
1331 	port = &ports[port_id];
1332 	for (pf = port->flow_list; pf; pf = pf->next)
1333 		if (pf->id == rule)
1334 			break;
1335 	if (!pf) {
1336 		printf("Flow rule #%u not found\n", rule);
1337 		return -ENOENT;
1338 	}
1339 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1340 	    !flow_action[action].name)
1341 		name = "unknown";
1342 	else
1343 		name = flow_action[action].name;
1344 	switch (action) {
1345 	case RTE_FLOW_ACTION_TYPE_COUNT:
1346 		break;
1347 	default:
1348 		printf("Cannot query action type %d (%s)\n", action, name);
1349 		return -ENOTSUP;
1350 	}
1351 	/* Poisoning to make sure PMDs update it in case of error. */
1352 	memset(&error, 0x55, sizeof(error));
1353 	memset(&query, 0, sizeof(query));
1354 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1355 		return port_flow_complain(&error);
1356 	switch (action) {
1357 	case RTE_FLOW_ACTION_TYPE_COUNT:
1358 		printf("%s:\n"
1359 		       " hits_set: %u\n"
1360 		       " bytes_set: %u\n"
1361 		       " hits: %" PRIu64 "\n"
1362 		       " bytes: %" PRIu64 "\n",
1363 		       name,
1364 		       query.count.hits_set,
1365 		       query.count.bytes_set,
1366 		       query.count.hits,
1367 		       query.count.bytes);
1368 		break;
1369 	default:
1370 		printf("Cannot display result for action type %d (%s)\n",
1371 		       action, name);
1372 		break;
1373 	}
1374 	return 0;
1375 }
1376 
1377 /** List flow rules. */
1378 void
1379 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1380 {
1381 	struct rte_port *port;
1382 	struct port_flow *pf;
1383 	struct port_flow *list = NULL;
1384 	uint32_t i;
1385 
1386 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1387 	    port_id == (portid_t)RTE_PORT_ALL)
1388 		return;
1389 	port = &ports[port_id];
1390 	if (!port->flow_list)
1391 		return;
1392 	/* Sort flows by group, priority and ID. */
1393 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1394 		struct port_flow **tmp;
1395 
1396 		if (n) {
1397 			/* Filter out unwanted groups. */
1398 			for (i = 0; i != n; ++i)
1399 				if (pf->attr.group == group[i])
1400 					break;
1401 			if (i == n)
1402 				continue;
1403 		}
1404 		tmp = &list;
1405 		while (*tmp &&
1406 		       (pf->attr.group > (*tmp)->attr.group ||
1407 			(pf->attr.group == (*tmp)->attr.group &&
1408 			 pf->attr.priority > (*tmp)->attr.priority) ||
1409 			(pf->attr.group == (*tmp)->attr.group &&
1410 			 pf->attr.priority == (*tmp)->attr.priority &&
1411 			 pf->id > (*tmp)->id)))
1412 			tmp = &(*tmp)->tmp;
1413 		pf->tmp = *tmp;
1414 		*tmp = pf;
1415 	}
1416 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1417 	for (pf = list; pf != NULL; pf = pf->tmp) {
1418 		const struct rte_flow_item *item = pf->pattern;
1419 		const struct rte_flow_action *action = pf->actions;
1420 
1421 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1422 		       pf->id,
1423 		       pf->attr.group,
1424 		       pf->attr.priority,
1425 		       pf->attr.ingress ? 'i' : '-',
1426 		       pf->attr.egress ? 'e' : '-');
1427 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1428 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1429 				printf("%s ", flow_item[item->type].name);
1430 			++item;
1431 		}
1432 		printf("=>");
1433 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1434 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1435 				printf(" %s", flow_action[action->type].name);
1436 			++action;
1437 		}
1438 		printf("\n");
1439 	}
1440 }
1441 
1442 /** Restrict ingress traffic to the defined flow rules. */
1443 int
1444 port_flow_isolate(portid_t port_id, int set)
1445 {
1446 	struct rte_flow_error error;
1447 
1448 	/* Poisoning to make sure PMDs update it in case of error. */
1449 	memset(&error, 0x66, sizeof(error));
1450 	if (rte_flow_isolate(port_id, set, &error))
1451 		return port_flow_complain(&error);
1452 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1453 	       port_id,
1454 	       set ? "now restricted" : "not restricted anymore");
1455 	return 0;
1456 }
1457 
1458 /*
1459  * RX/TX ring descriptors display functions.
1460  */
1461 int
1462 rx_queue_id_is_invalid(queueid_t rxq_id)
1463 {
1464 	if (rxq_id < nb_rxq)
1465 		return 0;
1466 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1467 	return 1;
1468 }
1469 
1470 int
1471 tx_queue_id_is_invalid(queueid_t txq_id)
1472 {
1473 	if (txq_id < nb_txq)
1474 		return 0;
1475 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1476 	return 1;
1477 }
1478 
1479 static int
1480 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1481 {
1482 	if (rxdesc_id < nb_rxd)
1483 		return 0;
1484 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1485 	       rxdesc_id, nb_rxd);
1486 	return 1;
1487 }
1488 
1489 static int
1490 tx_desc_id_is_invalid(uint16_t txdesc_id)
1491 {
1492 	if (txdesc_id < nb_txd)
1493 		return 0;
1494 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1495 	       txdesc_id, nb_txd);
1496 	return 1;
1497 }
1498 
1499 static const struct rte_memzone *
1500 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1501 {
1502 	char mz_name[RTE_MEMZONE_NAMESIZE];
1503 	const struct rte_memzone *mz;
1504 
1505 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1506 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1507 	mz = rte_memzone_lookup(mz_name);
1508 	if (mz == NULL)
1509 		printf("%s ring memory zoneof (port %d, queue %d) not"
1510 		       "found (zone name = %s\n",
1511 		       ring_name, port_id, q_id, mz_name);
1512 	return mz;
1513 }
1514 
1515 union igb_ring_dword {
1516 	uint64_t dword;
1517 	struct {
1518 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1519 		uint32_t lo;
1520 		uint32_t hi;
1521 #else
1522 		uint32_t hi;
1523 		uint32_t lo;
1524 #endif
1525 	} words;
1526 };
1527 
1528 struct igb_ring_desc_32_bytes {
1529 	union igb_ring_dword lo_dword;
1530 	union igb_ring_dword hi_dword;
1531 	union igb_ring_dword resv1;
1532 	union igb_ring_dword resv2;
1533 };
1534 
1535 struct igb_ring_desc_16_bytes {
1536 	union igb_ring_dword lo_dword;
1537 	union igb_ring_dword hi_dword;
1538 };
1539 
1540 static void
1541 ring_rxd_display_dword(union igb_ring_dword dword)
1542 {
1543 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1544 					(unsigned)dword.words.hi);
1545 }
1546 
1547 static void
1548 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1549 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1550 			   uint8_t port_id,
1551 #else
1552 			   __rte_unused uint8_t port_id,
1553 #endif
1554 			   uint16_t desc_id)
1555 {
1556 	struct igb_ring_desc_16_bytes *ring =
1557 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1558 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1559 	struct rte_eth_dev_info dev_info;
1560 
1561 	memset(&dev_info, 0, sizeof(dev_info));
1562 	rte_eth_dev_info_get(port_id, &dev_info);
1563 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1564 		/* 32 bytes RX descriptor, i40e only */
1565 		struct igb_ring_desc_32_bytes *ring =
1566 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1567 		ring[desc_id].lo_dword.dword =
1568 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1569 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1570 		ring[desc_id].hi_dword.dword =
1571 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1572 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1573 		ring[desc_id].resv1.dword =
1574 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1575 		ring_rxd_display_dword(ring[desc_id].resv1);
1576 		ring[desc_id].resv2.dword =
1577 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1578 		ring_rxd_display_dword(ring[desc_id].resv2);
1579 
1580 		return;
1581 	}
1582 #endif
1583 	/* 16 bytes RX descriptor */
1584 	ring[desc_id].lo_dword.dword =
1585 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1586 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1587 	ring[desc_id].hi_dword.dword =
1588 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1589 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1590 }
1591 
1592 static void
1593 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1594 {
1595 	struct igb_ring_desc_16_bytes *ring;
1596 	struct igb_ring_desc_16_bytes txd;
1597 
1598 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1599 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1600 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1601 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1602 			(unsigned)txd.lo_dword.words.lo,
1603 			(unsigned)txd.lo_dword.words.hi,
1604 			(unsigned)txd.hi_dword.words.lo,
1605 			(unsigned)txd.hi_dword.words.hi);
1606 }
1607 
1608 void
1609 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1610 {
1611 	const struct rte_memzone *rx_mz;
1612 
1613 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1614 		return;
1615 	if (rx_queue_id_is_invalid(rxq_id))
1616 		return;
1617 	if (rx_desc_id_is_invalid(rxd_id))
1618 		return;
1619 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1620 	if (rx_mz == NULL)
1621 		return;
1622 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1623 }
1624 
1625 void
1626 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1627 {
1628 	const struct rte_memzone *tx_mz;
1629 
1630 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1631 		return;
1632 	if (tx_queue_id_is_invalid(txq_id))
1633 		return;
1634 	if (tx_desc_id_is_invalid(txd_id))
1635 		return;
1636 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1637 	if (tx_mz == NULL)
1638 		return;
1639 	ring_tx_descriptor_display(tx_mz, txd_id);
1640 }
1641 
1642 void
1643 fwd_lcores_config_display(void)
1644 {
1645 	lcoreid_t lc_id;
1646 
1647 	printf("List of forwarding lcores:");
1648 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1649 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1650 	printf("\n");
1651 }
1652 void
1653 rxtx_config_display(void)
1654 {
1655 	printf("  %s packet forwarding%s - CRC stripping %s - "
1656 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1657 	       retry_enabled == 0 ? "" : " with retry",
1658 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1659 	       nb_pkt_per_burst);
1660 
1661 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1662 		printf("  packet len=%u - nb packet segments=%d\n",
1663 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1664 
1665 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1666 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1667 
1668 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1669 	       nb_fwd_lcores, nb_fwd_ports);
1670 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1671 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1672 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1673 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1674 	       rx_conf->rx_thresh.wthresh);
1675 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1676 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1677 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1678 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1679 	       tx_conf->tx_thresh.wthresh);
1680 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1681 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1682 }
1683 
1684 void
1685 port_rss_reta_info(portid_t port_id,
1686 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1687 		   uint16_t nb_entries)
1688 {
1689 	uint16_t i, idx, shift;
1690 	int ret;
1691 
1692 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1693 		return;
1694 
1695 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1696 	if (ret != 0) {
1697 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1698 		return;
1699 	}
1700 
1701 	for (i = 0; i < nb_entries; i++) {
1702 		idx = i / RTE_RETA_GROUP_SIZE;
1703 		shift = i % RTE_RETA_GROUP_SIZE;
1704 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1705 			continue;
1706 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1707 					i, reta_conf[idx].reta[shift]);
1708 	}
1709 }
1710 
1711 /*
1712  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1713  * key of the port.
1714  */
1715 void
1716 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1717 {
1718 	struct rte_eth_rss_conf rss_conf;
1719 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1720 	uint64_t rss_hf;
1721 	uint8_t i;
1722 	int diag;
1723 	struct rte_eth_dev_info dev_info;
1724 	uint8_t hash_key_size;
1725 
1726 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1727 		return;
1728 
1729 	memset(&dev_info, 0, sizeof(dev_info));
1730 	rte_eth_dev_info_get(port_id, &dev_info);
1731 	if (dev_info.hash_key_size > 0 &&
1732 			dev_info.hash_key_size <= sizeof(rss_key))
1733 		hash_key_size = dev_info.hash_key_size;
1734 	else {
1735 		printf("dev_info did not provide a valid hash key size\n");
1736 		return;
1737 	}
1738 
1739 	rss_conf.rss_hf = 0;
1740 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1741 		if (!strcmp(rss_info, rss_type_table[i].str))
1742 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1743 	}
1744 
1745 	/* Get RSS hash key if asked to display it */
1746 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1747 	rss_conf.rss_key_len = hash_key_size;
1748 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1749 	if (diag != 0) {
1750 		switch (diag) {
1751 		case -ENODEV:
1752 			printf("port index %d invalid\n", port_id);
1753 			break;
1754 		case -ENOTSUP:
1755 			printf("operation not supported by device\n");
1756 			break;
1757 		default:
1758 			printf("operation failed - diag=%d\n", diag);
1759 			break;
1760 		}
1761 		return;
1762 	}
1763 	rss_hf = rss_conf.rss_hf;
1764 	if (rss_hf == 0) {
1765 		printf("RSS disabled\n");
1766 		return;
1767 	}
1768 	printf("RSS functions:\n ");
1769 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1770 		if (rss_hf & rss_type_table[i].rss_type)
1771 			printf("%s ", rss_type_table[i].str);
1772 	}
1773 	printf("\n");
1774 	if (!show_rss_key)
1775 		return;
1776 	printf("RSS key:\n");
1777 	for (i = 0; i < hash_key_size; i++)
1778 		printf("%02X", rss_key[i]);
1779 	printf("\n");
1780 }
1781 
1782 void
1783 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1784 			 uint hash_key_len)
1785 {
1786 	struct rte_eth_rss_conf rss_conf;
1787 	int diag;
1788 	unsigned int i;
1789 
1790 	rss_conf.rss_key = NULL;
1791 	rss_conf.rss_key_len = hash_key_len;
1792 	rss_conf.rss_hf = 0;
1793 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1794 		if (!strcmp(rss_type_table[i].str, rss_type))
1795 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1796 	}
1797 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1798 	if (diag == 0) {
1799 		rss_conf.rss_key = hash_key;
1800 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1801 	}
1802 	if (diag == 0)
1803 		return;
1804 
1805 	switch (diag) {
1806 	case -ENODEV:
1807 		printf("port index %d invalid\n", port_id);
1808 		break;
1809 	case -ENOTSUP:
1810 		printf("operation not supported by device\n");
1811 		break;
1812 	default:
1813 		printf("operation failed - diag=%d\n", diag);
1814 		break;
1815 	}
1816 }
1817 
1818 /*
1819  * Setup forwarding configuration for each logical core.
1820  */
1821 static void
1822 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1823 {
1824 	streamid_t nb_fs_per_lcore;
1825 	streamid_t nb_fs;
1826 	streamid_t sm_id;
1827 	lcoreid_t  nb_extra;
1828 	lcoreid_t  nb_fc;
1829 	lcoreid_t  nb_lc;
1830 	lcoreid_t  lc_id;
1831 
1832 	nb_fs = cfg->nb_fwd_streams;
1833 	nb_fc = cfg->nb_fwd_lcores;
1834 	if (nb_fs <= nb_fc) {
1835 		nb_fs_per_lcore = 1;
1836 		nb_extra = 0;
1837 	} else {
1838 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1839 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1840 	}
1841 
1842 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1843 	sm_id = 0;
1844 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1845 		fwd_lcores[lc_id]->stream_idx = sm_id;
1846 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1847 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1848 	}
1849 
1850 	/*
1851 	 * Assign extra remaining streams, if any.
1852 	 */
1853 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1854 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1855 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1856 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1857 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1858 	}
1859 }
1860 
1861 static void
1862 simple_fwd_config_setup(void)
1863 {
1864 	portid_t i;
1865 	portid_t j;
1866 	portid_t inc = 2;
1867 
1868 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1869 	    port_topology == PORT_TOPOLOGY_LOOP) {
1870 		inc = 1;
1871 	} else if (nb_fwd_ports % 2) {
1872 		printf("\nWarning! Cannot handle an odd number of ports "
1873 		       "with the current port topology. Configuration "
1874 		       "must be changed to have an even number of ports, "
1875 		       "or relaunch application with "
1876 		       "--port-topology=chained\n\n");
1877 	}
1878 
1879 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1880 	cur_fwd_config.nb_fwd_streams =
1881 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1882 
1883 	/* reinitialize forwarding streams */
1884 	init_fwd_streams();
1885 
1886 	/*
1887 	 * In the simple forwarding test, the number of forwarding cores
1888 	 * must be lower or equal to the number of forwarding ports.
1889 	 */
1890 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1891 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1892 		cur_fwd_config.nb_fwd_lcores =
1893 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1894 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1895 
1896 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1897 		if (port_topology != PORT_TOPOLOGY_LOOP)
1898 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1899 		else
1900 			j = i;
1901 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1902 		fwd_streams[i]->rx_queue  = 0;
1903 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1904 		fwd_streams[i]->tx_queue  = 0;
1905 		fwd_streams[i]->peer_addr = j;
1906 		fwd_streams[i]->retry_enabled = retry_enabled;
1907 
1908 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1909 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1910 			fwd_streams[j]->rx_queue  = 0;
1911 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1912 			fwd_streams[j]->tx_queue  = 0;
1913 			fwd_streams[j]->peer_addr = i;
1914 			fwd_streams[j]->retry_enabled = retry_enabled;
1915 		}
1916 	}
1917 }
1918 
1919 /**
1920  * For the RSS forwarding test all streams distributed over lcores. Each stream
1921  * being composed of a RX queue to poll on a RX port for input messages,
1922  * associated with a TX queue of a TX port where to send forwarded packets.
1923  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1924  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1925  * following rules:
1926  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1927  *    - TxQl = RxQj
1928  */
1929 static void
1930 rss_fwd_config_setup(void)
1931 {
1932 	portid_t   rxp;
1933 	portid_t   txp;
1934 	queueid_t  rxq;
1935 	queueid_t  nb_q;
1936 	streamid_t  sm_id;
1937 
1938 	nb_q = nb_rxq;
1939 	if (nb_q > nb_txq)
1940 		nb_q = nb_txq;
1941 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1942 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1943 	cur_fwd_config.nb_fwd_streams =
1944 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1945 
1946 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1947 		cur_fwd_config.nb_fwd_lcores =
1948 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1949 
1950 	/* reinitialize forwarding streams */
1951 	init_fwd_streams();
1952 
1953 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1954 	rxp = 0; rxq = 0;
1955 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1956 		struct fwd_stream *fs;
1957 
1958 		fs = fwd_streams[sm_id];
1959 
1960 		if ((rxp & 0x1) == 0)
1961 			txp = (portid_t) (rxp + 1);
1962 		else
1963 			txp = (portid_t) (rxp - 1);
1964 		/*
1965 		 * if we are in loopback, simply send stuff out through the
1966 		 * ingress port
1967 		 */
1968 		if (port_topology == PORT_TOPOLOGY_LOOP)
1969 			txp = rxp;
1970 
1971 		fs->rx_port = fwd_ports_ids[rxp];
1972 		fs->rx_queue = rxq;
1973 		fs->tx_port = fwd_ports_ids[txp];
1974 		fs->tx_queue = rxq;
1975 		fs->peer_addr = fs->tx_port;
1976 		fs->retry_enabled = retry_enabled;
1977 		rxq = (queueid_t) (rxq + 1);
1978 		if (rxq < nb_q)
1979 			continue;
1980 		/*
1981 		 * rxq == nb_q
1982 		 * Restart from RX queue 0 on next RX port
1983 		 */
1984 		rxq = 0;
1985 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1986 			rxp = (portid_t)
1987 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1988 		else
1989 			rxp = (portid_t) (rxp + 1);
1990 	}
1991 }
1992 
1993 /**
1994  * For the DCB forwarding test, each core is assigned on each traffic class.
1995  *
1996  * Each core is assigned a multi-stream, each stream being composed of
1997  * a RX queue to poll on a RX port for input messages, associated with
1998  * a TX queue of a TX port where to send forwarded packets. All RX and
1999  * TX queues are mapping to the same traffic class.
2000  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2001  * the same core
2002  */
2003 static void
2004 dcb_fwd_config_setup(void)
2005 {
2006 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2007 	portid_t txp, rxp = 0;
2008 	queueid_t txq, rxq = 0;
2009 	lcoreid_t  lc_id;
2010 	uint16_t nb_rx_queue, nb_tx_queue;
2011 	uint16_t i, j, k, sm_id = 0;
2012 	uint8_t tc = 0;
2013 
2014 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2015 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2016 	cur_fwd_config.nb_fwd_streams =
2017 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2018 
2019 	/* reinitialize forwarding streams */
2020 	init_fwd_streams();
2021 	sm_id = 0;
2022 	txp = 1;
2023 	/* get the dcb info on the first RX and TX ports */
2024 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2025 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2026 
2027 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2028 		fwd_lcores[lc_id]->stream_nb = 0;
2029 		fwd_lcores[lc_id]->stream_idx = sm_id;
2030 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2031 			/* if the nb_queue is zero, means this tc is
2032 			 * not enabled on the POOL
2033 			 */
2034 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2035 				break;
2036 			k = fwd_lcores[lc_id]->stream_nb +
2037 				fwd_lcores[lc_id]->stream_idx;
2038 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2039 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2040 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2041 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2042 			for (j = 0; j < nb_rx_queue; j++) {
2043 				struct fwd_stream *fs;
2044 
2045 				fs = fwd_streams[k + j];
2046 				fs->rx_port = fwd_ports_ids[rxp];
2047 				fs->rx_queue = rxq + j;
2048 				fs->tx_port = fwd_ports_ids[txp];
2049 				fs->tx_queue = txq + j % nb_tx_queue;
2050 				fs->peer_addr = fs->tx_port;
2051 				fs->retry_enabled = retry_enabled;
2052 			}
2053 			fwd_lcores[lc_id]->stream_nb +=
2054 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2055 		}
2056 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2057 
2058 		tc++;
2059 		if (tc < rxp_dcb_info.nb_tcs)
2060 			continue;
2061 		/* Restart from TC 0 on next RX port */
2062 		tc = 0;
2063 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2064 			rxp = (portid_t)
2065 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2066 		else
2067 			rxp++;
2068 		if (rxp >= nb_fwd_ports)
2069 			return;
2070 		/* get the dcb information on next RX and TX ports */
2071 		if ((rxp & 0x1) == 0)
2072 			txp = (portid_t) (rxp + 1);
2073 		else
2074 			txp = (portid_t) (rxp - 1);
2075 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2076 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2077 	}
2078 }
2079 
2080 static void
2081 icmp_echo_config_setup(void)
2082 {
2083 	portid_t  rxp;
2084 	queueid_t rxq;
2085 	lcoreid_t lc_id;
2086 	uint16_t  sm_id;
2087 
2088 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2089 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2090 			(nb_txq * nb_fwd_ports);
2091 	else
2092 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2093 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2094 	cur_fwd_config.nb_fwd_streams =
2095 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2096 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2097 		cur_fwd_config.nb_fwd_lcores =
2098 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2099 	if (verbose_level > 0) {
2100 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2101 		       __FUNCTION__,
2102 		       cur_fwd_config.nb_fwd_lcores,
2103 		       cur_fwd_config.nb_fwd_ports,
2104 		       cur_fwd_config.nb_fwd_streams);
2105 	}
2106 
2107 	/* reinitialize forwarding streams */
2108 	init_fwd_streams();
2109 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2110 	rxp = 0; rxq = 0;
2111 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2112 		if (verbose_level > 0)
2113 			printf("  core=%d: \n", lc_id);
2114 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2115 			struct fwd_stream *fs;
2116 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2117 			fs->rx_port = fwd_ports_ids[rxp];
2118 			fs->rx_queue = rxq;
2119 			fs->tx_port = fs->rx_port;
2120 			fs->tx_queue = rxq;
2121 			fs->peer_addr = fs->tx_port;
2122 			fs->retry_enabled = retry_enabled;
2123 			if (verbose_level > 0)
2124 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2125 				       sm_id, fs->rx_port, fs->rx_queue,
2126 				       fs->tx_queue);
2127 			rxq = (queueid_t) (rxq + 1);
2128 			if (rxq == nb_rxq) {
2129 				rxq = 0;
2130 				rxp = (portid_t) (rxp + 1);
2131 			}
2132 		}
2133 	}
2134 }
2135 
2136 void
2137 fwd_config_setup(void)
2138 {
2139 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2140 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2141 		icmp_echo_config_setup();
2142 		return;
2143 	}
2144 	if ((nb_rxq > 1) && (nb_txq > 1)){
2145 		if (dcb_config)
2146 			dcb_fwd_config_setup();
2147 		else
2148 			rss_fwd_config_setup();
2149 	}
2150 	else
2151 		simple_fwd_config_setup();
2152 }
2153 
2154 void
2155 pkt_fwd_config_display(struct fwd_config *cfg)
2156 {
2157 	struct fwd_stream *fs;
2158 	lcoreid_t  lc_id;
2159 	streamid_t sm_id;
2160 
2161 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2162 		"NUMA support %s, MP over anonymous pages %s\n",
2163 		cfg->fwd_eng->fwd_mode_name,
2164 		retry_enabled == 0 ? "" : " with retry",
2165 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2166 		numa_support == 1 ? "enabled" : "disabled",
2167 		mp_anon != 0 ? "enabled" : "disabled");
2168 
2169 	if (retry_enabled)
2170 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2171 			burst_tx_retry_num, burst_tx_delay_time);
2172 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2173 		printf("Logical Core %u (socket %u) forwards packets on "
2174 		       "%d streams:",
2175 		       fwd_lcores_cpuids[lc_id],
2176 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2177 		       fwd_lcores[lc_id]->stream_nb);
2178 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2179 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2180 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2181 			       "P=%d/Q=%d (socket %u) ",
2182 			       fs->rx_port, fs->rx_queue,
2183 			       ports[fs->rx_port].socket_id,
2184 			       fs->tx_port, fs->tx_queue,
2185 			       ports[fs->tx_port].socket_id);
2186 			print_ethaddr("peer=",
2187 				      &peer_eth_addrs[fs->peer_addr]);
2188 		}
2189 		printf("\n");
2190 	}
2191 	printf("\n");
2192 }
2193 
2194 int
2195 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2196 {
2197 	unsigned int i;
2198 	unsigned int lcore_cpuid;
2199 	int record_now;
2200 
2201 	record_now = 0;
2202  again:
2203 	for (i = 0; i < nb_lc; i++) {
2204 		lcore_cpuid = lcorelist[i];
2205 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2206 			printf("lcore %u not enabled\n", lcore_cpuid);
2207 			return -1;
2208 		}
2209 		if (lcore_cpuid == rte_get_master_lcore()) {
2210 			printf("lcore %u cannot be masked on for running "
2211 			       "packet forwarding, which is the master lcore "
2212 			       "and reserved for command line parsing only\n",
2213 			       lcore_cpuid);
2214 			return -1;
2215 		}
2216 		if (record_now)
2217 			fwd_lcores_cpuids[i] = lcore_cpuid;
2218 	}
2219 	if (record_now == 0) {
2220 		record_now = 1;
2221 		goto again;
2222 	}
2223 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2224 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2225 		printf("previous number of forwarding cores %u - changed to "
2226 		       "number of configured cores %u\n",
2227 		       (unsigned int) nb_fwd_lcores, nb_lc);
2228 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 int
2235 set_fwd_lcores_mask(uint64_t lcoremask)
2236 {
2237 	unsigned int lcorelist[64];
2238 	unsigned int nb_lc;
2239 	unsigned int i;
2240 
2241 	if (lcoremask == 0) {
2242 		printf("Invalid NULL mask of cores\n");
2243 		return -1;
2244 	}
2245 	nb_lc = 0;
2246 	for (i = 0; i < 64; i++) {
2247 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2248 			continue;
2249 		lcorelist[nb_lc++] = i;
2250 	}
2251 	return set_fwd_lcores_list(lcorelist, nb_lc);
2252 }
2253 
2254 void
2255 set_fwd_lcores_number(uint16_t nb_lc)
2256 {
2257 	if (nb_lc > nb_cfg_lcores) {
2258 		printf("nb fwd cores %u > %u (max. number of configured "
2259 		       "lcores) - ignored\n",
2260 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2261 		return;
2262 	}
2263 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2264 	printf("Number of forwarding cores set to %u\n",
2265 	       (unsigned int) nb_fwd_lcores);
2266 }
2267 
2268 void
2269 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2270 {
2271 	unsigned int i;
2272 	portid_t port_id;
2273 	int record_now;
2274 
2275 	record_now = 0;
2276  again:
2277 	for (i = 0; i < nb_pt; i++) {
2278 		port_id = (portid_t) portlist[i];
2279 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2280 			return;
2281 		if (record_now)
2282 			fwd_ports_ids[i] = port_id;
2283 	}
2284 	if (record_now == 0) {
2285 		record_now = 1;
2286 		goto again;
2287 	}
2288 	nb_cfg_ports = (portid_t) nb_pt;
2289 	if (nb_fwd_ports != (portid_t) nb_pt) {
2290 		printf("previous number of forwarding ports %u - changed to "
2291 		       "number of configured ports %u\n",
2292 		       (unsigned int) nb_fwd_ports, nb_pt);
2293 		nb_fwd_ports = (portid_t) nb_pt;
2294 	}
2295 }
2296 
2297 void
2298 set_fwd_ports_mask(uint64_t portmask)
2299 {
2300 	unsigned int portlist[64];
2301 	unsigned int nb_pt;
2302 	unsigned int i;
2303 
2304 	if (portmask == 0) {
2305 		printf("Invalid NULL mask of ports\n");
2306 		return;
2307 	}
2308 	nb_pt = 0;
2309 	RTE_ETH_FOREACH_DEV(i) {
2310 		if (! ((uint64_t)(1ULL << i) & portmask))
2311 			continue;
2312 		portlist[nb_pt++] = i;
2313 	}
2314 	set_fwd_ports_list(portlist, nb_pt);
2315 }
2316 
2317 void
2318 set_fwd_ports_number(uint16_t nb_pt)
2319 {
2320 	if (nb_pt > nb_cfg_ports) {
2321 		printf("nb fwd ports %u > %u (number of configured "
2322 		       "ports) - ignored\n",
2323 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2324 		return;
2325 	}
2326 	nb_fwd_ports = (portid_t) nb_pt;
2327 	printf("Number of forwarding ports set to %u\n",
2328 	       (unsigned int) nb_fwd_ports);
2329 }
2330 
2331 int
2332 port_is_forwarding(portid_t port_id)
2333 {
2334 	unsigned int i;
2335 
2336 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2337 		return -1;
2338 
2339 	for (i = 0; i < nb_fwd_ports; i++) {
2340 		if (fwd_ports_ids[i] == port_id)
2341 			return 1;
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 void
2348 set_nb_pkt_per_burst(uint16_t nb)
2349 {
2350 	if (nb > MAX_PKT_BURST) {
2351 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2352 		       " ignored\n",
2353 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2354 		return;
2355 	}
2356 	nb_pkt_per_burst = nb;
2357 	printf("Number of packets per burst set to %u\n",
2358 	       (unsigned int) nb_pkt_per_burst);
2359 }
2360 
2361 static const char *
2362 tx_split_get_name(enum tx_pkt_split split)
2363 {
2364 	uint32_t i;
2365 
2366 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2367 		if (tx_split_name[i].split == split)
2368 			return tx_split_name[i].name;
2369 	}
2370 	return NULL;
2371 }
2372 
2373 void
2374 set_tx_pkt_split(const char *name)
2375 {
2376 	uint32_t i;
2377 
2378 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2379 		if (strcmp(tx_split_name[i].name, name) == 0) {
2380 			tx_pkt_split = tx_split_name[i].split;
2381 			return;
2382 		}
2383 	}
2384 	printf("unknown value: \"%s\"\n", name);
2385 }
2386 
2387 void
2388 show_tx_pkt_segments(void)
2389 {
2390 	uint32_t i, n;
2391 	const char *split;
2392 
2393 	n = tx_pkt_nb_segs;
2394 	split = tx_split_get_name(tx_pkt_split);
2395 
2396 	printf("Number of segments: %u\n", n);
2397 	printf("Segment sizes: ");
2398 	for (i = 0; i != n - 1; i++)
2399 		printf("%hu,", tx_pkt_seg_lengths[i]);
2400 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2401 	printf("Split packet: %s\n", split);
2402 }
2403 
2404 void
2405 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2406 {
2407 	uint16_t tx_pkt_len;
2408 	unsigned i;
2409 
2410 	if (nb_segs >= (unsigned) nb_txd) {
2411 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2412 		       nb_segs, (unsigned int) nb_txd);
2413 		return;
2414 	}
2415 
2416 	/*
2417 	 * Check that each segment length is greater or equal than
2418 	 * the mbuf data sise.
2419 	 * Check also that the total packet length is greater or equal than the
2420 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2421 	 */
2422 	tx_pkt_len = 0;
2423 	for (i = 0; i < nb_segs; i++) {
2424 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2425 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2426 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2427 			return;
2428 		}
2429 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2430 	}
2431 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2432 		printf("total packet length=%u < %d - give up\n",
2433 				(unsigned) tx_pkt_len,
2434 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2435 		return;
2436 	}
2437 
2438 	for (i = 0; i < nb_segs; i++)
2439 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2440 
2441 	tx_pkt_length  = tx_pkt_len;
2442 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2443 }
2444 
2445 void
2446 setup_gro(const char *onoff, portid_t port_id)
2447 {
2448 	if (!rte_eth_dev_is_valid_port(port_id)) {
2449 		printf("invalid port id %u\n", port_id);
2450 		return;
2451 	}
2452 	if (test_done == 0) {
2453 		printf("Before enable/disable GRO,"
2454 				" please stop forwarding first\n");
2455 		return;
2456 	}
2457 	if (strcmp(onoff, "on") == 0) {
2458 		if (gro_ports[port_id].enable != 0) {
2459 			printf("Port %u has enabled GRO. Please"
2460 					" disable GRO first\n", port_id);
2461 			return;
2462 		}
2463 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2464 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2465 			gro_ports[port_id].param.max_flow_num =
2466 				GRO_DEFAULT_FLOW_NUM;
2467 			gro_ports[port_id].param.max_item_per_flow =
2468 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2469 		}
2470 		gro_ports[port_id].enable = 1;
2471 	} else {
2472 		if (gro_ports[port_id].enable == 0) {
2473 			printf("Port %u has disabled GRO\n", port_id);
2474 			return;
2475 		}
2476 		gro_ports[port_id].enable = 0;
2477 	}
2478 }
2479 
2480 void
2481 setup_gro_flush_cycles(uint8_t cycles)
2482 {
2483 	if (test_done == 0) {
2484 		printf("Before change flush interval for GRO,"
2485 				" please stop forwarding first.\n");
2486 		return;
2487 	}
2488 
2489 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2490 			GRO_DEFAULT_FLUSH_CYCLES) {
2491 		printf("The flushing cycle be in the range"
2492 				" of 1 to %u. Revert to the default"
2493 				" value %u.\n",
2494 				GRO_MAX_FLUSH_CYCLES,
2495 				GRO_DEFAULT_FLUSH_CYCLES);
2496 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2497 	}
2498 
2499 	gro_flush_cycles = cycles;
2500 }
2501 
2502 void
2503 show_gro(portid_t port_id)
2504 {
2505 	struct rte_gro_param *param;
2506 	uint32_t max_pkts_num;
2507 
2508 	param = &gro_ports[port_id].param;
2509 
2510 	if (!rte_eth_dev_is_valid_port(port_id)) {
2511 		printf("Invalid port id %u.\n", port_id);
2512 		return;
2513 	}
2514 	if (gro_ports[port_id].enable) {
2515 		printf("GRO type: TCP/IPv4\n");
2516 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2517 			max_pkts_num = param->max_flow_num *
2518 				param->max_item_per_flow;
2519 		} else
2520 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2521 		printf("Max number of packets to perform GRO: %u\n",
2522 				max_pkts_num);
2523 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2524 	} else
2525 		printf("Port %u doesn't enable GRO.\n", port_id);
2526 }
2527 
2528 void
2529 setup_gso(const char *mode, portid_t port_id)
2530 {
2531 	if (!rte_eth_dev_is_valid_port(port_id)) {
2532 		printf("invalid port id %u\n", port_id);
2533 		return;
2534 	}
2535 	if (strcmp(mode, "on") == 0) {
2536 		if (test_done == 0) {
2537 			printf("before enabling GSO,"
2538 					" please stop forwarding first\n");
2539 			return;
2540 		}
2541 		gso_ports[port_id].enable = 1;
2542 	} else if (strcmp(mode, "off") == 0) {
2543 		if (test_done == 0) {
2544 			printf("before disabling GSO,"
2545 					" please stop forwarding first\n");
2546 			return;
2547 		}
2548 		gso_ports[port_id].enable = 0;
2549 	}
2550 }
2551 
2552 char*
2553 list_pkt_forwarding_modes(void)
2554 {
2555 	static char fwd_modes[128] = "";
2556 	const char *separator = "|";
2557 	struct fwd_engine *fwd_eng;
2558 	unsigned i = 0;
2559 
2560 	if (strlen (fwd_modes) == 0) {
2561 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2562 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2563 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2564 			strncat(fwd_modes, separator,
2565 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2566 		}
2567 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2568 	}
2569 
2570 	return fwd_modes;
2571 }
2572 
2573 char*
2574 list_pkt_forwarding_retry_modes(void)
2575 {
2576 	static char fwd_modes[128] = "";
2577 	const char *separator = "|";
2578 	struct fwd_engine *fwd_eng;
2579 	unsigned i = 0;
2580 
2581 	if (strlen(fwd_modes) == 0) {
2582 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2583 			if (fwd_eng == &rx_only_engine)
2584 				continue;
2585 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2586 					sizeof(fwd_modes) -
2587 					strlen(fwd_modes) - 1);
2588 			strncat(fwd_modes, separator,
2589 					sizeof(fwd_modes) -
2590 					strlen(fwd_modes) - 1);
2591 		}
2592 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2593 	}
2594 
2595 	return fwd_modes;
2596 }
2597 
2598 void
2599 set_pkt_forwarding_mode(const char *fwd_mode_name)
2600 {
2601 	struct fwd_engine *fwd_eng;
2602 	unsigned i;
2603 
2604 	i = 0;
2605 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2606 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2607 			printf("Set %s packet forwarding mode%s\n",
2608 			       fwd_mode_name,
2609 			       retry_enabled == 0 ? "" : " with retry");
2610 			cur_fwd_eng = fwd_eng;
2611 			return;
2612 		}
2613 		i++;
2614 	}
2615 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2616 }
2617 
2618 void
2619 set_verbose_level(uint16_t vb_level)
2620 {
2621 	printf("Change verbose level from %u to %u\n",
2622 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2623 	verbose_level = vb_level;
2624 }
2625 
2626 void
2627 vlan_extend_set(portid_t port_id, int on)
2628 {
2629 	int diag;
2630 	int vlan_offload;
2631 
2632 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2633 		return;
2634 
2635 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2636 
2637 	if (on)
2638 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2639 	else
2640 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2641 
2642 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2643 	if (diag < 0)
2644 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2645 	       "diag=%d\n", port_id, on, diag);
2646 }
2647 
2648 void
2649 rx_vlan_strip_set(portid_t port_id, int on)
2650 {
2651 	int diag;
2652 	int vlan_offload;
2653 
2654 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2655 		return;
2656 
2657 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2658 
2659 	if (on)
2660 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2661 	else
2662 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2663 
2664 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2665 	if (diag < 0)
2666 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2667 	       "diag=%d\n", port_id, on, diag);
2668 }
2669 
2670 void
2671 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2672 {
2673 	int diag;
2674 
2675 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2676 		return;
2677 
2678 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2679 	if (diag < 0)
2680 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2681 	       "diag=%d\n", port_id, queue_id, on, diag);
2682 }
2683 
2684 void
2685 rx_vlan_filter_set(portid_t port_id, int on)
2686 {
2687 	int diag;
2688 	int vlan_offload;
2689 
2690 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2691 		return;
2692 
2693 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2694 
2695 	if (on)
2696 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2697 	else
2698 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2699 
2700 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2701 	if (diag < 0)
2702 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2703 	       "diag=%d\n", port_id, on, diag);
2704 }
2705 
2706 int
2707 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2708 {
2709 	int diag;
2710 
2711 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2712 		return 1;
2713 	if (vlan_id_is_invalid(vlan_id))
2714 		return 1;
2715 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2716 	if (diag == 0)
2717 		return 0;
2718 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2719 	       "diag=%d\n",
2720 	       port_id, vlan_id, on, diag);
2721 	return -1;
2722 }
2723 
2724 void
2725 rx_vlan_all_filter_set(portid_t port_id, int on)
2726 {
2727 	uint16_t vlan_id;
2728 
2729 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2730 		return;
2731 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2732 		if (rx_vft_set(port_id, vlan_id, on))
2733 			break;
2734 	}
2735 }
2736 
2737 void
2738 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2739 {
2740 	int diag;
2741 
2742 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2743 		return;
2744 
2745 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2746 	if (diag == 0)
2747 		return;
2748 
2749 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2750 	       "diag=%d\n",
2751 	       port_id, vlan_type, tp_id, diag);
2752 }
2753 
2754 void
2755 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2756 {
2757 	int vlan_offload;
2758 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2759 		return;
2760 	if (vlan_id_is_invalid(vlan_id))
2761 		return;
2762 
2763 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2764 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2765 		printf("Error, as QinQ has been enabled.\n");
2766 		return;
2767 	}
2768 
2769 	tx_vlan_reset(port_id);
2770 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2771 	ports[port_id].tx_vlan_id = vlan_id;
2772 }
2773 
2774 void
2775 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2776 {
2777 	int vlan_offload;
2778 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2779 		return;
2780 	if (vlan_id_is_invalid(vlan_id))
2781 		return;
2782 	if (vlan_id_is_invalid(vlan_id_outer))
2783 		return;
2784 
2785 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2786 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2787 		printf("Error, as QinQ hasn't been enabled.\n");
2788 		return;
2789 	}
2790 
2791 	tx_vlan_reset(port_id);
2792 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2793 	ports[port_id].tx_vlan_id = vlan_id;
2794 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2795 }
2796 
2797 void
2798 tx_vlan_reset(portid_t port_id)
2799 {
2800 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2801 		return;
2802 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2803 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2804 	ports[port_id].tx_vlan_id = 0;
2805 	ports[port_id].tx_vlan_id_outer = 0;
2806 }
2807 
2808 void
2809 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2810 {
2811 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2812 		return;
2813 
2814 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2815 }
2816 
2817 void
2818 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2819 {
2820 	uint16_t i;
2821 	uint8_t existing_mapping_found = 0;
2822 
2823 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2824 		return;
2825 
2826 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2827 		return;
2828 
2829 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2830 		printf("map_value not in required range 0..%d\n",
2831 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2832 		return;
2833 	}
2834 
2835 	if (!is_rx) { /*then tx*/
2836 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2837 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2838 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2839 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2840 				existing_mapping_found = 1;
2841 				break;
2842 			}
2843 		}
2844 		if (!existing_mapping_found) { /* A new additional mapping... */
2845 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2846 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2847 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2848 			nb_tx_queue_stats_mappings++;
2849 		}
2850 	}
2851 	else { /*rx*/
2852 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2853 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2854 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2855 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2856 				existing_mapping_found = 1;
2857 				break;
2858 			}
2859 		}
2860 		if (!existing_mapping_found) { /* A new additional mapping... */
2861 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2862 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2863 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2864 			nb_rx_queue_stats_mappings++;
2865 		}
2866 	}
2867 }
2868 
2869 static inline void
2870 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2871 {
2872 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2873 
2874 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2875 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2876 			" tunnel_id: 0x%08x",
2877 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2878 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2879 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2880 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2881 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2882 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2883 
2884 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2885 			rte_be_to_cpu_16(mask->src_port_mask),
2886 			rte_be_to_cpu_16(mask->dst_port_mask));
2887 
2888 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2889 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2890 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2891 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2892 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2893 
2894 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2895 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2896 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2897 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2898 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2899 	}
2900 
2901 	printf("\n");
2902 }
2903 
2904 static inline void
2905 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2906 {
2907 	struct rte_eth_flex_payload_cfg *cfg;
2908 	uint32_t i, j;
2909 
2910 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2911 		cfg = &flex_conf->flex_set[i];
2912 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2913 			printf("\n    RAW:  ");
2914 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2915 			printf("\n    L2_PAYLOAD:  ");
2916 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2917 			printf("\n    L3_PAYLOAD:  ");
2918 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2919 			printf("\n    L4_PAYLOAD:  ");
2920 		else
2921 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2922 		for (j = 0; j < num; j++)
2923 			printf("  %-5u", cfg->src_offset[j]);
2924 	}
2925 	printf("\n");
2926 }
2927 
2928 static char *
2929 flowtype_to_str(uint16_t flow_type)
2930 {
2931 	struct flow_type_info {
2932 		char str[32];
2933 		uint16_t ftype;
2934 	};
2935 
2936 	uint8_t i;
2937 	static struct flow_type_info flowtype_str_table[] = {
2938 		{"raw", RTE_ETH_FLOW_RAW},
2939 		{"ipv4", RTE_ETH_FLOW_IPV4},
2940 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2941 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2942 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2943 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2944 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2945 		{"ipv6", RTE_ETH_FLOW_IPV6},
2946 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2947 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2948 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2949 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2950 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2951 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2952 		{"port", RTE_ETH_FLOW_PORT},
2953 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2954 		{"geneve", RTE_ETH_FLOW_GENEVE},
2955 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2956 	};
2957 
2958 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2959 		if (flowtype_str_table[i].ftype == flow_type)
2960 			return flowtype_str_table[i].str;
2961 	}
2962 
2963 	return NULL;
2964 }
2965 
2966 static inline void
2967 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2968 {
2969 	struct rte_eth_fdir_flex_mask *mask;
2970 	uint32_t i, j;
2971 	char *p;
2972 
2973 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2974 		mask = &flex_conf->flex_mask[i];
2975 		p = flowtype_to_str(mask->flow_type);
2976 		printf("\n    %s:\t", p ? p : "unknown");
2977 		for (j = 0; j < num; j++)
2978 			printf(" %02x", mask->mask[j]);
2979 	}
2980 	printf("\n");
2981 }
2982 
2983 static inline void
2984 print_fdir_flow_type(uint32_t flow_types_mask)
2985 {
2986 	int i;
2987 	char *p;
2988 
2989 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2990 		if (!(flow_types_mask & (1 << i)))
2991 			continue;
2992 		p = flowtype_to_str(i);
2993 		if (p)
2994 			printf(" %s", p);
2995 		else
2996 			printf(" unknown");
2997 	}
2998 	printf("\n");
2999 }
3000 
3001 void
3002 fdir_get_infos(portid_t port_id)
3003 {
3004 	struct rte_eth_fdir_stats fdir_stat;
3005 	struct rte_eth_fdir_info fdir_info;
3006 	int ret;
3007 
3008 	static const char *fdir_stats_border = "########################";
3009 
3010 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3011 		return;
3012 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3013 	if (ret < 0) {
3014 		printf("\n FDIR is not supported on port %-2d\n",
3015 			port_id);
3016 		return;
3017 	}
3018 
3019 	memset(&fdir_info, 0, sizeof(fdir_info));
3020 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3021 			       RTE_ETH_FILTER_INFO, &fdir_info);
3022 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3023 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3024 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3025 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3026 	       fdir_stats_border, port_id, fdir_stats_border);
3027 	printf("  MODE: ");
3028 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3029 		printf("  PERFECT\n");
3030 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3031 		printf("  PERFECT-MAC-VLAN\n");
3032 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3033 		printf("  PERFECT-TUNNEL\n");
3034 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3035 		printf("  SIGNATURE\n");
3036 	else
3037 		printf("  DISABLE\n");
3038 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3039 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3040 		printf("  SUPPORTED FLOW TYPE: ");
3041 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3042 	}
3043 	printf("  FLEX PAYLOAD INFO:\n");
3044 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3045 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3046 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3047 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3048 		fdir_info.flex_payload_unit,
3049 		fdir_info.max_flex_payload_segment_num,
3050 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3051 	printf("  MASK: ");
3052 	print_fdir_mask(&fdir_info.mask);
3053 	if (fdir_info.flex_conf.nb_payloads > 0) {
3054 		printf("  FLEX PAYLOAD SRC OFFSET:");
3055 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3056 	}
3057 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3058 		printf("  FLEX MASK CFG:");
3059 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3060 	}
3061 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3062 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3063 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3064 	       fdir_info.guarant_spc, fdir_info.best_spc);
3065 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3066 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3067 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3068 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3069 	       fdir_stat.collision, fdir_stat.free,
3070 	       fdir_stat.maxhash, fdir_stat.maxlen,
3071 	       fdir_stat.add, fdir_stat.remove,
3072 	       fdir_stat.f_add, fdir_stat.f_remove);
3073 	printf("  %s############################%s\n",
3074 	       fdir_stats_border, fdir_stats_border);
3075 }
3076 
3077 void
3078 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3079 {
3080 	struct rte_port *port;
3081 	struct rte_eth_fdir_flex_conf *flex_conf;
3082 	int i, idx = 0;
3083 
3084 	port = &ports[port_id];
3085 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3086 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3087 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3088 			idx = i;
3089 			break;
3090 		}
3091 	}
3092 	if (i >= RTE_ETH_FLOW_MAX) {
3093 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3094 			idx = flex_conf->nb_flexmasks;
3095 			flex_conf->nb_flexmasks++;
3096 		} else {
3097 			printf("The flex mask table is full. Can not set flex"
3098 				" mask for flow_type(%u).", cfg->flow_type);
3099 			return;
3100 		}
3101 	}
3102 	rte_memcpy(&flex_conf->flex_mask[idx],
3103 			 cfg,
3104 			 sizeof(struct rte_eth_fdir_flex_mask));
3105 }
3106 
3107 void
3108 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3109 {
3110 	struct rte_port *port;
3111 	struct rte_eth_fdir_flex_conf *flex_conf;
3112 	int i, idx = 0;
3113 
3114 	port = &ports[port_id];
3115 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3116 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3117 		if (cfg->type == flex_conf->flex_set[i].type) {
3118 			idx = i;
3119 			break;
3120 		}
3121 	}
3122 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3123 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3124 			idx = flex_conf->nb_payloads;
3125 			flex_conf->nb_payloads++;
3126 		} else {
3127 			printf("The flex payload table is full. Can not set"
3128 				" flex payload for type(%u).", cfg->type);
3129 			return;
3130 		}
3131 	}
3132 	rte_memcpy(&flex_conf->flex_set[idx],
3133 			 cfg,
3134 			 sizeof(struct rte_eth_flex_payload_cfg));
3135 
3136 }
3137 
3138 void
3139 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3140 {
3141 #ifdef RTE_LIBRTE_IXGBE_PMD
3142 	int diag;
3143 
3144 	if (is_rx)
3145 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3146 	else
3147 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3148 
3149 	if (diag == 0)
3150 		return;
3151 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3152 			is_rx ? "rx" : "tx", port_id, diag);
3153 	return;
3154 #endif
3155 	printf("VF %s setting not supported for port %d\n",
3156 			is_rx ? "Rx" : "Tx", port_id);
3157 	RTE_SET_USED(vf);
3158 	RTE_SET_USED(on);
3159 }
3160 
3161 int
3162 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3163 {
3164 	int diag;
3165 	struct rte_eth_link link;
3166 
3167 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3168 		return 1;
3169 	rte_eth_link_get_nowait(port_id, &link);
3170 	if (rate > link.link_speed) {
3171 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3172 			rate, link.link_speed);
3173 		return 1;
3174 	}
3175 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3176 	if (diag == 0)
3177 		return diag;
3178 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3179 		port_id, diag);
3180 	return diag;
3181 }
3182 
3183 int
3184 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3185 {
3186 	int diag = -ENOTSUP;
3187 
3188 #ifdef RTE_LIBRTE_IXGBE_PMD
3189 	if (diag == -ENOTSUP)
3190 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3191 						       q_msk);
3192 #endif
3193 #ifdef RTE_LIBRTE_BNXT_PMD
3194 	if (diag == -ENOTSUP)
3195 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3196 #endif
3197 	if (diag == 0)
3198 		return diag;
3199 
3200 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3201 		port_id, diag);
3202 	return diag;
3203 }
3204 
3205 /*
3206  * Functions to manage the set of filtered Multicast MAC addresses.
3207  *
3208  * A pool of filtered multicast MAC addresses is associated with each port.
3209  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3210  * The address of the pool and the number of valid multicast MAC addresses
3211  * recorded in the pool are stored in the fields "mc_addr_pool" and
3212  * "mc_addr_nb" of the "rte_port" data structure.
3213  *
3214  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3215  * to be supplied a contiguous array of multicast MAC addresses.
3216  * To comply with this constraint, the set of multicast addresses recorded
3217  * into the pool are systematically compacted at the beginning of the pool.
3218  * Hence, when a multicast address is removed from the pool, all following
3219  * addresses, if any, are copied back to keep the set contiguous.
3220  */
3221 #define MCAST_POOL_INC 32
3222 
3223 static int
3224 mcast_addr_pool_extend(struct rte_port *port)
3225 {
3226 	struct ether_addr *mc_pool;
3227 	size_t mc_pool_size;
3228 
3229 	/*
3230 	 * If a free entry is available at the end of the pool, just
3231 	 * increment the number of recorded multicast addresses.
3232 	 */
3233 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3234 		port->mc_addr_nb++;
3235 		return 0;
3236 	}
3237 
3238 	/*
3239 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3240 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3241 	 * of MCAST_POOL_INC.
3242 	 */
3243 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3244 						    MCAST_POOL_INC);
3245 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3246 						mc_pool_size);
3247 	if (mc_pool == NULL) {
3248 		printf("allocation of pool of %u multicast addresses failed\n",
3249 		       port->mc_addr_nb + MCAST_POOL_INC);
3250 		return -ENOMEM;
3251 	}
3252 
3253 	port->mc_addr_pool = mc_pool;
3254 	port->mc_addr_nb++;
3255 	return 0;
3256 
3257 }
3258 
3259 static void
3260 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3261 {
3262 	port->mc_addr_nb--;
3263 	if (addr_idx == port->mc_addr_nb) {
3264 		/* No need to recompact the set of multicast addressses. */
3265 		if (port->mc_addr_nb == 0) {
3266 			/* free the pool of multicast addresses. */
3267 			free(port->mc_addr_pool);
3268 			port->mc_addr_pool = NULL;
3269 		}
3270 		return;
3271 	}
3272 	memmove(&port->mc_addr_pool[addr_idx],
3273 		&port->mc_addr_pool[addr_idx + 1],
3274 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3275 }
3276 
3277 static void
3278 eth_port_multicast_addr_list_set(uint8_t port_id)
3279 {
3280 	struct rte_port *port;
3281 	int diag;
3282 
3283 	port = &ports[port_id];
3284 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3285 					    port->mc_addr_nb);
3286 	if (diag == 0)
3287 		return;
3288 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3289 	       port->mc_addr_nb, port_id, -diag);
3290 }
3291 
3292 void
3293 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3294 {
3295 	struct rte_port *port;
3296 	uint32_t i;
3297 
3298 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3299 		return;
3300 
3301 	port = &ports[port_id];
3302 
3303 	/*
3304 	 * Check that the added multicast MAC address is not already recorded
3305 	 * in the pool of multicast addresses.
3306 	 */
3307 	for (i = 0; i < port->mc_addr_nb; i++) {
3308 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3309 			printf("multicast address already filtered by port\n");
3310 			return;
3311 		}
3312 	}
3313 
3314 	if (mcast_addr_pool_extend(port) != 0)
3315 		return;
3316 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3317 	eth_port_multicast_addr_list_set(port_id);
3318 }
3319 
3320 void
3321 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3322 {
3323 	struct rte_port *port;
3324 	uint32_t i;
3325 
3326 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3327 		return;
3328 
3329 	port = &ports[port_id];
3330 
3331 	/*
3332 	 * Search the pool of multicast MAC addresses for the removed address.
3333 	 */
3334 	for (i = 0; i < port->mc_addr_nb; i++) {
3335 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3336 			break;
3337 	}
3338 	if (i == port->mc_addr_nb) {
3339 		printf("multicast address not filtered by port %d\n", port_id);
3340 		return;
3341 	}
3342 
3343 	mcast_addr_pool_remove(port, i);
3344 	eth_port_multicast_addr_list_set(port_id);
3345 }
3346 
3347 void
3348 port_dcb_info_display(uint8_t port_id)
3349 {
3350 	struct rte_eth_dcb_info dcb_info;
3351 	uint16_t i;
3352 	int ret;
3353 	static const char *border = "================";
3354 
3355 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3356 		return;
3357 
3358 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3359 	if (ret) {
3360 		printf("\n Failed to get dcb infos on port %-2d\n",
3361 			port_id);
3362 		return;
3363 	}
3364 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3365 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3366 	printf("\n  TC :        ");
3367 	for (i = 0; i < dcb_info.nb_tcs; i++)
3368 		printf("\t%4d", i);
3369 	printf("\n  Priority :  ");
3370 	for (i = 0; i < dcb_info.nb_tcs; i++)
3371 		printf("\t%4d", dcb_info.prio_tc[i]);
3372 	printf("\n  BW percent :");
3373 	for (i = 0; i < dcb_info.nb_tcs; i++)
3374 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3375 	printf("\n  RXQ base :  ");
3376 	for (i = 0; i < dcb_info.nb_tcs; i++)
3377 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3378 	printf("\n  RXQ number :");
3379 	for (i = 0; i < dcb_info.nb_tcs; i++)
3380 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3381 	printf("\n  TXQ base :  ");
3382 	for (i = 0; i < dcb_info.nb_tcs; i++)
3383 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3384 	printf("\n  TXQ number :");
3385 	for (i = 0; i < dcb_info.nb_tcs; i++)
3386 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3387 	printf("\n");
3388 }
3389 
3390 uint8_t *
3391 open_ddp_package_file(const char *file_path, uint32_t *size)
3392 {
3393 	int fd = open(file_path, O_RDONLY);
3394 	off_t pkg_size;
3395 	uint8_t *buf = NULL;
3396 	int ret = 0;
3397 	struct stat st_buf;
3398 
3399 	if (size)
3400 		*size = 0;
3401 
3402 	if (fd == -1) {
3403 		printf("%s: Failed to open %s\n", __func__, file_path);
3404 		return buf;
3405 	}
3406 
3407 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3408 		close(fd);
3409 		printf("%s: File operations failed\n", __func__);
3410 		return buf;
3411 	}
3412 
3413 	pkg_size = st_buf.st_size;
3414 	if (pkg_size < 0) {
3415 		close(fd);
3416 		printf("%s: File operations failed\n", __func__);
3417 		return buf;
3418 	}
3419 
3420 	buf = (uint8_t *)malloc(pkg_size);
3421 	if (!buf) {
3422 		close(fd);
3423 		printf("%s: Failed to malloc memory\n",	__func__);
3424 		return buf;
3425 	}
3426 
3427 	ret = read(fd, buf, pkg_size);
3428 	if (ret < 0) {
3429 		close(fd);
3430 		printf("%s: File read operation failed\n", __func__);
3431 		close_ddp_package_file(buf);
3432 		return NULL;
3433 	}
3434 
3435 	if (size)
3436 		*size = pkg_size;
3437 
3438 	close(fd);
3439 
3440 	return buf;
3441 }
3442 
3443 int
3444 save_ddp_package_file(const char *file_path, uint8_t *buf, uint32_t size)
3445 {
3446 	FILE *fh = fopen(file_path, "wb");
3447 
3448 	if (fh == NULL) {
3449 		printf("%s: Failed to open %s\n", __func__, file_path);
3450 		return -1;
3451 	}
3452 
3453 	if (fwrite(buf, 1, size, fh) != size) {
3454 		fclose(fh);
3455 		printf("%s: File write operation failed\n", __func__);
3456 		return -1;
3457 	}
3458 
3459 	fclose(fh);
3460 
3461 	return 0;
3462 }
3463 
3464 int
3465 close_ddp_package_file(uint8_t *buf)
3466 {
3467 	if (buf) {
3468 		free((void *)buf);
3469 		return 0;
3470 	}
3471 
3472 	return -1;
3473 }
3474 
3475 void
3476 port_queue_region_info_display(portid_t port_id, void *buf)
3477 {
3478 #ifdef RTE_LIBRTE_I40E_PMD
3479 	uint16_t i, j;
3480 	struct rte_pmd_i40e_queue_regions *info =
3481 		(struct rte_pmd_i40e_queue_regions *)buf;
3482 	static const char *queue_region_info_stats_border = "-------";
3483 
3484 	if (!info->queue_region_number)
3485 		printf("there is no region has been set before");
3486 
3487 	printf("\n	%s All queue region info for port=%2d %s",
3488 			queue_region_info_stats_border, port_id,
3489 			queue_region_info_stats_border);
3490 	printf("\n	queue_region_number: %-14u \n",
3491 			info->queue_region_number);
3492 
3493 	for (i = 0; i < info->queue_region_number; i++) {
3494 		printf("\n	region_id: %-14u queue_number: %-14u "
3495 			"queue_start_index: %-14u \n",
3496 			info->region[i].region_id,
3497 			info->region[i].queue_num,
3498 			info->region[i].queue_start_index);
3499 
3500 		printf("  user_priority_num is	%-14u :",
3501 					info->region[i].user_priority_num);
3502 		for (j = 0; j < info->region[i].user_priority_num; j++)
3503 			printf(" %-14u ", info->region[i].user_priority[j]);
3504 
3505 		printf("\n	flowtype_num is  %-14u :",
3506 				info->region[i].flowtype_num);
3507 		for (j = 0; j < info->region[i].flowtype_num; j++)
3508 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3509 	}
3510 #else
3511 	RTE_SET_USED(port_id);
3512 	RTE_SET_USED(buf);
3513 #endif
3514 
3515 	printf("\n\n");
3516 }
3517