xref: /dpdk/app/test-pmd/config.c (revision 08dcd187068666c96e8a16604a1c96160ed310e9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_NET_IXGBE
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_NET_I40E
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_NET_BNXT
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <rte_hexdump.h>
53 
54 #include "testpmd.h"
55 
56 #define ETHDEV_FWVERS_LEN 32
57 
58 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
59 #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
60 #else
61 #define CLOCK_TYPE_ID CLOCK_MONOTONIC
62 #endif
63 
64 #define NS_PER_SEC 1E9
65 
66 static char *flowtype_to_str(uint16_t flow_type);
67 
68 static const struct {
69 	enum tx_pkt_split split;
70 	const char *name;
71 } tx_split_name[] = {
72 	{
73 		.split = TX_PKT_SPLIT_OFF,
74 		.name = "off",
75 	},
76 	{
77 		.split = TX_PKT_SPLIT_ON,
78 		.name = "on",
79 	},
80 	{
81 		.split = TX_PKT_SPLIT_RND,
82 		.name = "rand",
83 	},
84 };
85 
86 const struct rss_type_info rss_type_table[] = {
87 	{ "all", ETH_RSS_ETH | ETH_RSS_VLAN | ETH_RSS_IP | ETH_RSS_TCP |
88 		ETH_RSS_UDP | ETH_RSS_SCTP | ETH_RSS_L2_PAYLOAD |
89 		ETH_RSS_L2TPV3 | ETH_RSS_ESP | ETH_RSS_AH | ETH_RSS_PFCP |
90 		ETH_RSS_GTPU | ETH_RSS_ECPRI},
91 	{ "none", 0 },
92 	{ "eth", ETH_RSS_ETH },
93 	{ "l2-src-only", ETH_RSS_L2_SRC_ONLY },
94 	{ "l2-dst-only", ETH_RSS_L2_DST_ONLY },
95 	{ "vlan", ETH_RSS_VLAN },
96 	{ "s-vlan", ETH_RSS_S_VLAN },
97 	{ "c-vlan", ETH_RSS_C_VLAN },
98 	{ "ipv4", ETH_RSS_IPV4 },
99 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
100 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
101 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
102 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
103 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
104 	{ "ipv6", ETH_RSS_IPV6 },
105 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
106 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
107 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
108 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
109 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
110 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
111 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
112 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
113 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
114 	{ "port", ETH_RSS_PORT },
115 	{ "vxlan", ETH_RSS_VXLAN },
116 	{ "geneve", ETH_RSS_GENEVE },
117 	{ "nvgre", ETH_RSS_NVGRE },
118 	{ "ip", ETH_RSS_IP },
119 	{ "udp", ETH_RSS_UDP },
120 	{ "tcp", ETH_RSS_TCP },
121 	{ "sctp", ETH_RSS_SCTP },
122 	{ "tunnel", ETH_RSS_TUNNEL },
123 	{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
124 	{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
125 	{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
126 	{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
127 	{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
128 	{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
129 	{ "l3-src-only", ETH_RSS_L3_SRC_ONLY },
130 	{ "l3-dst-only", ETH_RSS_L3_DST_ONLY },
131 	{ "l4-src-only", ETH_RSS_L4_SRC_ONLY },
132 	{ "l4-dst-only", ETH_RSS_L4_DST_ONLY },
133 	{ "esp", ETH_RSS_ESP },
134 	{ "ah", ETH_RSS_AH },
135 	{ "l2tpv3", ETH_RSS_L2TPV3 },
136 	{ "pfcp", ETH_RSS_PFCP },
137 	{ "pppoe", ETH_RSS_PPPOE },
138 	{ "gtpu", ETH_RSS_GTPU },
139 	{ "ecpri", ETH_RSS_ECPRI },
140 	{ NULL, 0 },
141 };
142 
143 static const struct {
144 	enum rte_eth_fec_mode mode;
145 	const char *name;
146 } fec_mode_name[] = {
147 	{
148 		.mode = RTE_ETH_FEC_NOFEC,
149 		.name = "off",
150 	},
151 	{
152 		.mode = RTE_ETH_FEC_AUTO,
153 		.name = "auto",
154 	},
155 	{
156 		.mode = RTE_ETH_FEC_BASER,
157 		.name = "baser",
158 	},
159 	{
160 		.mode = RTE_ETH_FEC_RS,
161 		.name = "rs",
162 	},
163 };
164 
165 static void
166 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
167 {
168 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
169 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
170 	printf("%s%s", name, buf);
171 }
172 
173 void
174 nic_stats_display(portid_t port_id)
175 {
176 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
177 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
178 	static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
179 	static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
180 	static uint64_t prev_ns[RTE_MAX_ETHPORTS];
181 	struct timespec cur_time;
182 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
183 								diff_ns;
184 	uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
185 	struct rte_eth_stats stats;
186 
187 	static const char *nic_stats_border = "########################";
188 
189 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
190 		print_valid_ports();
191 		return;
192 	}
193 	rte_eth_stats_get(port_id, &stats);
194 	printf("\n  %s NIC statistics for port %-2d %s\n",
195 	       nic_stats_border, port_id, nic_stats_border);
196 
197 	printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
198 	       "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
199 	printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
200 	printf("  RX-nombuf:  %-10"PRIu64"\n", stats.rx_nombuf);
201 	printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
202 	       "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
203 
204 	diff_ns = 0;
205 	if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
206 		uint64_t ns;
207 
208 		ns = cur_time.tv_sec * NS_PER_SEC;
209 		ns += cur_time.tv_nsec;
210 
211 		if (prev_ns[port_id] != 0)
212 			diff_ns = ns - prev_ns[port_id];
213 		prev_ns[port_id] = ns;
214 	}
215 
216 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
217 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
218 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
219 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
220 	prev_pkts_rx[port_id] = stats.ipackets;
221 	prev_pkts_tx[port_id] = stats.opackets;
222 	mpps_rx = diff_ns > 0 ?
223 		(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
224 	mpps_tx = diff_ns > 0 ?
225 		(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
226 
227 	diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
228 		(stats.ibytes - prev_bytes_rx[port_id]) : 0;
229 	diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
230 		(stats.obytes - prev_bytes_tx[port_id]) : 0;
231 	prev_bytes_rx[port_id] = stats.ibytes;
232 	prev_bytes_tx[port_id] = stats.obytes;
233 	mbps_rx = diff_ns > 0 ?
234 		(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
235 	mbps_tx = diff_ns > 0 ?
236 		(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
237 
238 	printf("\n  Throughput (since last show)\n");
239 	printf("  Rx-pps: %12"PRIu64"          Rx-bps: %12"PRIu64"\n  Tx-pps: %12"
240 	       PRIu64"          Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
241 	       mpps_tx, mbps_tx * 8);
242 
243 	printf("  %s############################%s\n",
244 	       nic_stats_border, nic_stats_border);
245 }
246 
247 void
248 nic_stats_clear(portid_t port_id)
249 {
250 	int ret;
251 
252 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
253 		print_valid_ports();
254 		return;
255 	}
256 
257 	ret = rte_eth_stats_reset(port_id);
258 	if (ret != 0) {
259 		printf("%s: Error: failed to reset stats (port %u): %s",
260 		       __func__, port_id, strerror(-ret));
261 		return;
262 	}
263 
264 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
265 	if (ret != 0) {
266 		if (ret < 0)
267 			ret = -ret;
268 		printf("%s: Error: failed to get stats (port %u): %s",
269 		       __func__, port_id, strerror(ret));
270 		return;
271 	}
272 	printf("\n  NIC statistics for port %d cleared\n", port_id);
273 }
274 
275 void
276 nic_xstats_display(portid_t port_id)
277 {
278 	struct rte_eth_xstat *xstats;
279 	int cnt_xstats, idx_xstat;
280 	struct rte_eth_xstat_name *xstats_names;
281 
282 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
283 		print_valid_ports();
284 		return;
285 	}
286 	printf("###### NIC extended statistics for port %-2d\n", port_id);
287 	if (!rte_eth_dev_is_valid_port(port_id)) {
288 		printf("Error: Invalid port number %i\n", port_id);
289 		return;
290 	}
291 
292 	/* Get count */
293 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
294 	if (cnt_xstats  < 0) {
295 		printf("Error: Cannot get count of xstats\n");
296 		return;
297 	}
298 
299 	/* Get id-name lookup table */
300 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
301 	if (xstats_names == NULL) {
302 		printf("Cannot allocate memory for xstats lookup\n");
303 		return;
304 	}
305 	if (cnt_xstats != rte_eth_xstats_get_names(
306 			port_id, xstats_names, cnt_xstats)) {
307 		printf("Error: Cannot get xstats lookup\n");
308 		free(xstats_names);
309 		return;
310 	}
311 
312 	/* Get stats themselves */
313 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
314 	if (xstats == NULL) {
315 		printf("Cannot allocate memory for xstats\n");
316 		free(xstats_names);
317 		return;
318 	}
319 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
320 		printf("Error: Unable to get xstats\n");
321 		free(xstats_names);
322 		free(xstats);
323 		return;
324 	}
325 
326 	/* Display xstats */
327 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
328 		if (xstats_hide_zero && !xstats[idx_xstat].value)
329 			continue;
330 		printf("%s: %"PRIu64"\n",
331 			xstats_names[idx_xstat].name,
332 			xstats[idx_xstat].value);
333 	}
334 	free(xstats_names);
335 	free(xstats);
336 }
337 
338 void
339 nic_xstats_clear(portid_t port_id)
340 {
341 	int ret;
342 
343 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
344 		print_valid_ports();
345 		return;
346 	}
347 
348 	ret = rte_eth_xstats_reset(port_id);
349 	if (ret != 0) {
350 		printf("%s: Error: failed to reset xstats (port %u): %s",
351 		       __func__, port_id, strerror(-ret));
352 		return;
353 	}
354 
355 	ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
356 	if (ret != 0) {
357 		if (ret < 0)
358 			ret = -ret;
359 		printf("%s: Error: failed to get stats (port %u): %s",
360 		       __func__, port_id, strerror(ret));
361 		return;
362 	}
363 }
364 
365 void
366 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
367 {
368 	struct rte_eth_burst_mode mode;
369 	struct rte_eth_rxq_info qinfo;
370 	int32_t rc;
371 	static const char *info_border = "*********************";
372 
373 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
374 	if (rc != 0) {
375 		printf("Failed to retrieve information for port: %u, "
376 			"RX queue: %hu\nerror desc: %s(%d)\n",
377 			port_id, queue_id, strerror(-rc), rc);
378 		return;
379 	}
380 
381 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
382 	       info_border, port_id, queue_id, info_border);
383 
384 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
385 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
386 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
387 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
388 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
389 	printf("\nRX drop packets: %s",
390 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
391 	printf("\nRX deferred start: %s",
392 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
393 	printf("\nRX scattered packets: %s",
394 		(qinfo.scattered_rx != 0) ? "on" : "off");
395 	if (qinfo.rx_buf_size != 0)
396 		printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
397 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
398 
399 	if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
400 		printf("\nBurst mode: %s%s",
401 		       mode.info,
402 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
403 				" (per queue)" : "");
404 
405 	printf("\n");
406 }
407 
408 void
409 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
410 {
411 	struct rte_eth_burst_mode mode;
412 	struct rte_eth_txq_info qinfo;
413 	int32_t rc;
414 	static const char *info_border = "*********************";
415 
416 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
417 	if (rc != 0) {
418 		printf("Failed to retrieve information for port: %u, "
419 			"TX queue: %hu\nerror desc: %s(%d)\n",
420 			port_id, queue_id, strerror(-rc), rc);
421 		return;
422 	}
423 
424 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
425 	       info_border, port_id, queue_id, info_border);
426 
427 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
428 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
429 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
430 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
431 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
432 	printf("\nTX deferred start: %s",
433 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
434 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
435 
436 	if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
437 		printf("\nBurst mode: %s%s",
438 		       mode.info,
439 		       mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
440 				" (per queue)" : "");
441 
442 	printf("\n");
443 }
444 
445 static int bus_match_all(const struct rte_bus *bus, const void *data)
446 {
447 	RTE_SET_USED(bus);
448 	RTE_SET_USED(data);
449 	return 0;
450 }
451 
452 static void
453 device_infos_display_speeds(uint32_t speed_capa)
454 {
455 	printf("\n\tDevice speed capability:");
456 	if (speed_capa == ETH_LINK_SPEED_AUTONEG)
457 		printf(" Autonegotiate (all speeds)");
458 	if (speed_capa & ETH_LINK_SPEED_FIXED)
459 		printf(" Disable autonegotiate (fixed speed)  ");
460 	if (speed_capa & ETH_LINK_SPEED_10M_HD)
461 		printf(" 10 Mbps half-duplex  ");
462 	if (speed_capa & ETH_LINK_SPEED_10M)
463 		printf(" 10 Mbps full-duplex  ");
464 	if (speed_capa & ETH_LINK_SPEED_100M_HD)
465 		printf(" 100 Mbps half-duplex  ");
466 	if (speed_capa & ETH_LINK_SPEED_100M)
467 		printf(" 100 Mbps full-duplex  ");
468 	if (speed_capa & ETH_LINK_SPEED_1G)
469 		printf(" 1 Gbps  ");
470 	if (speed_capa & ETH_LINK_SPEED_2_5G)
471 		printf(" 2.5 Gbps  ");
472 	if (speed_capa & ETH_LINK_SPEED_5G)
473 		printf(" 5 Gbps  ");
474 	if (speed_capa & ETH_LINK_SPEED_10G)
475 		printf(" 10 Gbps  ");
476 	if (speed_capa & ETH_LINK_SPEED_20G)
477 		printf(" 20 Gbps  ");
478 	if (speed_capa & ETH_LINK_SPEED_25G)
479 		printf(" 25 Gbps  ");
480 	if (speed_capa & ETH_LINK_SPEED_40G)
481 		printf(" 40 Gbps  ");
482 	if (speed_capa & ETH_LINK_SPEED_50G)
483 		printf(" 50 Gbps  ");
484 	if (speed_capa & ETH_LINK_SPEED_56G)
485 		printf(" 56 Gbps  ");
486 	if (speed_capa & ETH_LINK_SPEED_100G)
487 		printf(" 100 Gbps  ");
488 	if (speed_capa & ETH_LINK_SPEED_200G)
489 		printf(" 200 Gbps  ");
490 }
491 
492 void
493 device_infos_display(const char *identifier)
494 {
495 	static const char *info_border = "*********************";
496 	struct rte_bus *start = NULL, *next;
497 	struct rte_dev_iterator dev_iter;
498 	char name[RTE_ETH_NAME_MAX_LEN];
499 	struct rte_ether_addr mac_addr;
500 	struct rte_device *dev;
501 	struct rte_devargs da;
502 	portid_t port_id;
503 	struct rte_eth_dev_info dev_info;
504 	char devstr[128];
505 
506 	memset(&da, 0, sizeof(da));
507 	if (!identifier)
508 		goto skip_parse;
509 
510 	if (rte_devargs_parsef(&da, "%s", identifier)) {
511 		printf("cannot parse identifier\n");
512 		if (da.args)
513 			free(da.args);
514 		return;
515 	}
516 
517 skip_parse:
518 	while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
519 
520 		start = next;
521 		if (identifier && da.bus != next)
522 			continue;
523 
524 		/* Skip buses that don't have iterate method */
525 		if (!next->dev_iterate)
526 			continue;
527 
528 		snprintf(devstr, sizeof(devstr), "bus=%s", next->name);
529 		RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
530 
531 			if (!dev->driver)
532 				continue;
533 			/* Check for matching device if identifier is present */
534 			if (identifier &&
535 			    strncmp(da.name, dev->name, strlen(dev->name)))
536 				continue;
537 			printf("\n%s Infos for device %s %s\n",
538 			       info_border, dev->name, info_border);
539 			printf("Bus name: %s", dev->bus->name);
540 			printf("\nDriver name: %s", dev->driver->name);
541 			printf("\nDevargs: %s",
542 			       dev->devargs ? dev->devargs->args : "");
543 			printf("\nConnect to socket: %d", dev->numa_node);
544 			printf("\n");
545 
546 			/* List ports with matching device name */
547 			RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
548 				printf("\n\tPort id: %-2d", port_id);
549 				if (eth_macaddr_get_print_err(port_id,
550 							      &mac_addr) == 0)
551 					print_ethaddr("\n\tMAC address: ",
552 						      &mac_addr);
553 				rte_eth_dev_get_name_by_port(port_id, name);
554 				printf("\n\tDevice name: %s", name);
555 				if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
556 					device_infos_display_speeds(dev_info.speed_capa);
557 				printf("\n");
558 			}
559 		}
560 	};
561 }
562 
563 void
564 port_infos_display(portid_t port_id)
565 {
566 	struct rte_port *port;
567 	struct rte_ether_addr mac_addr;
568 	struct rte_eth_link link;
569 	struct rte_eth_dev_info dev_info;
570 	int vlan_offload;
571 	struct rte_mempool * mp;
572 	static const char *info_border = "*********************";
573 	uint16_t mtu;
574 	char name[RTE_ETH_NAME_MAX_LEN];
575 	int ret;
576 	char fw_version[ETHDEV_FWVERS_LEN];
577 
578 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
579 		print_valid_ports();
580 		return;
581 	}
582 	port = &ports[port_id];
583 	ret = eth_link_get_nowait_print_err(port_id, &link);
584 	if (ret < 0)
585 		return;
586 
587 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
588 	if (ret != 0)
589 		return;
590 
591 	printf("\n%s Infos for port %-2d %s\n",
592 	       info_border, port_id, info_border);
593 	if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
594 		print_ethaddr("MAC address: ", &mac_addr);
595 	rte_eth_dev_get_name_by_port(port_id, name);
596 	printf("\nDevice name: %s", name);
597 	printf("\nDriver name: %s", dev_info.driver_name);
598 
599 	if (rte_eth_dev_fw_version_get(port_id, fw_version,
600 						ETHDEV_FWVERS_LEN) == 0)
601 		printf("\nFirmware-version: %s", fw_version);
602 	else
603 		printf("\nFirmware-version: %s", "not available");
604 
605 	if (dev_info.device->devargs && dev_info.device->devargs->args)
606 		printf("\nDevargs: %s", dev_info.device->devargs->args);
607 	printf("\nConnect to socket: %u", port->socket_id);
608 
609 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
610 		mp = mbuf_pool_find(port_numa[port_id], 0);
611 		if (mp)
612 			printf("\nmemory allocation on the socket: %d",
613 							port_numa[port_id]);
614 	} else
615 		printf("\nmemory allocation on the socket: %u",port->socket_id);
616 
617 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
618 	printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
619 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
620 	       ("full-duplex") : ("half-duplex"));
621 
622 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
623 		printf("MTU: %u\n", mtu);
624 
625 	printf("Promiscuous mode: %s\n",
626 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
627 	printf("Allmulticast mode: %s\n",
628 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
629 	printf("Maximum number of MAC addresses: %u\n",
630 	       (unsigned int)(port->dev_info.max_mac_addrs));
631 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
632 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
633 
634 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
635 	if (vlan_offload >= 0){
636 		printf("VLAN offload: \n");
637 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
638 			printf("  strip on, ");
639 		else
640 			printf("  strip off, ");
641 
642 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
643 			printf("filter on, ");
644 		else
645 			printf("filter off, ");
646 
647 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
648 			printf("extend on, ");
649 		else
650 			printf("extend off, ");
651 
652 		if (vlan_offload & ETH_QINQ_STRIP_OFFLOAD)
653 			printf("qinq strip on\n");
654 		else
655 			printf("qinq strip off\n");
656 	}
657 
658 	if (dev_info.hash_key_size > 0)
659 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
660 	if (dev_info.reta_size > 0)
661 		printf("Redirection table size: %u\n", dev_info.reta_size);
662 	if (!dev_info.flow_type_rss_offloads)
663 		printf("No RSS offload flow type is supported.\n");
664 	else {
665 		uint16_t i;
666 		char *p;
667 
668 		printf("Supported RSS offload flow types:\n");
669 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
670 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
671 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
672 				continue;
673 			p = flowtype_to_str(i);
674 			if (p)
675 				printf("  %s\n", p);
676 			else
677 				printf("  user defined %d\n", i);
678 		}
679 	}
680 
681 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
682 	printf("Maximum configurable length of RX packet: %u\n",
683 		dev_info.max_rx_pktlen);
684 	printf("Maximum configurable size of LRO aggregated packet: %u\n",
685 		dev_info.max_lro_pkt_size);
686 	if (dev_info.max_vfs)
687 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
688 	if (dev_info.max_vmdq_pools)
689 		printf("Maximum number of VMDq pools: %u\n",
690 			dev_info.max_vmdq_pools);
691 
692 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
693 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
694 	printf("Max possible number of RXDs per queue: %hu\n",
695 		dev_info.rx_desc_lim.nb_max);
696 	printf("Min possible number of RXDs per queue: %hu\n",
697 		dev_info.rx_desc_lim.nb_min);
698 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
699 
700 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
701 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
702 	printf("Max possible number of TXDs per queue: %hu\n",
703 		dev_info.tx_desc_lim.nb_max);
704 	printf("Min possible number of TXDs per queue: %hu\n",
705 		dev_info.tx_desc_lim.nb_min);
706 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
707 	printf("Max segment number per packet: %hu\n",
708 		dev_info.tx_desc_lim.nb_seg_max);
709 	printf("Max segment number per MTU/TSO: %hu\n",
710 		dev_info.tx_desc_lim.nb_mtu_seg_max);
711 
712 	/* Show switch info only if valid switch domain and port id is set */
713 	if (dev_info.switch_info.domain_id !=
714 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
715 		if (dev_info.switch_info.name)
716 			printf("Switch name: %s\n", dev_info.switch_info.name);
717 
718 		printf("Switch domain Id: %u\n",
719 			dev_info.switch_info.domain_id);
720 		printf("Switch Port Id: %u\n",
721 			dev_info.switch_info.port_id);
722 	}
723 }
724 
725 void
726 port_summary_header_display(void)
727 {
728 	uint16_t port_number;
729 
730 	port_number = rte_eth_dev_count_avail();
731 	printf("Number of available ports: %i\n", port_number);
732 	printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
733 			"Driver", "Status", "Link");
734 }
735 
736 void
737 port_summary_display(portid_t port_id)
738 {
739 	struct rte_ether_addr mac_addr;
740 	struct rte_eth_link link;
741 	struct rte_eth_dev_info dev_info;
742 	char name[RTE_ETH_NAME_MAX_LEN];
743 	int ret;
744 
745 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
746 		print_valid_ports();
747 		return;
748 	}
749 
750 	ret = eth_link_get_nowait_print_err(port_id, &link);
751 	if (ret < 0)
752 		return;
753 
754 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
755 	if (ret != 0)
756 		return;
757 
758 	rte_eth_dev_get_name_by_port(port_id, name);
759 	ret = eth_macaddr_get_print_err(port_id, &mac_addr);
760 	if (ret != 0)
761 		return;
762 
763 	printf("%-4d %02X:%02X:%02X:%02X:%02X:%02X %-12s %-14s %-8s %s\n",
764 		port_id, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1],
765 		mac_addr.addr_bytes[2], mac_addr.addr_bytes[3],
766 		mac_addr.addr_bytes[4], mac_addr.addr_bytes[5], name,
767 		dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
768 		rte_eth_link_speed_to_str(link.link_speed));
769 }
770 
771 void
772 port_eeprom_display(portid_t port_id)
773 {
774 	struct rte_dev_eeprom_info einfo;
775 	int ret;
776 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
777 		print_valid_ports();
778 		return;
779 	}
780 
781 	int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
782 	if (len_eeprom < 0) {
783 		switch (len_eeprom) {
784 		case -ENODEV:
785 			printf("port index %d invalid\n", port_id);
786 			break;
787 		case -ENOTSUP:
788 			printf("operation not supported by device\n");
789 			break;
790 		case -EIO:
791 			printf("device is removed\n");
792 			break;
793 		default:
794 			printf("Unable to get EEPROM: %d\n", len_eeprom);
795 			break;
796 		}
797 		return;
798 	}
799 
800 	char buf[len_eeprom];
801 	einfo.offset = 0;
802 	einfo.length = len_eeprom;
803 	einfo.data = buf;
804 
805 	ret = rte_eth_dev_get_eeprom(port_id, &einfo);
806 	if (ret != 0) {
807 		switch (ret) {
808 		case -ENODEV:
809 			printf("port index %d invalid\n", port_id);
810 			break;
811 		case -ENOTSUP:
812 			printf("operation not supported by device\n");
813 			break;
814 		case -EIO:
815 			printf("device is removed\n");
816 			break;
817 		default:
818 			printf("Unable to get EEPROM: %d\n", ret);
819 			break;
820 		}
821 		return;
822 	}
823 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
824 	printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
825 }
826 
827 void
828 port_module_eeprom_display(portid_t port_id)
829 {
830 	struct rte_eth_dev_module_info minfo;
831 	struct rte_dev_eeprom_info einfo;
832 	int ret;
833 
834 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
835 		print_valid_ports();
836 		return;
837 	}
838 
839 
840 	ret = rte_eth_dev_get_module_info(port_id, &minfo);
841 	if (ret != 0) {
842 		switch (ret) {
843 		case -ENODEV:
844 			printf("port index %d invalid\n", port_id);
845 			break;
846 		case -ENOTSUP:
847 			printf("operation not supported by device\n");
848 			break;
849 		case -EIO:
850 			printf("device is removed\n");
851 			break;
852 		default:
853 			printf("Unable to get module EEPROM: %d\n", ret);
854 			break;
855 		}
856 		return;
857 	}
858 
859 	char buf[minfo.eeprom_len];
860 	einfo.offset = 0;
861 	einfo.length = minfo.eeprom_len;
862 	einfo.data = buf;
863 
864 	ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
865 	if (ret != 0) {
866 		switch (ret) {
867 		case -ENODEV:
868 			printf("port index %d invalid\n", port_id);
869 			break;
870 		case -ENOTSUP:
871 			printf("operation not supported by device\n");
872 			break;
873 		case -EIO:
874 			printf("device is removed\n");
875 			break;
876 		default:
877 			printf("Unable to get module EEPROM: %d\n", ret);
878 			break;
879 		}
880 		return;
881 	}
882 
883 	rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
884 	printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
885 }
886 
887 void
888 port_offload_cap_display(portid_t port_id)
889 {
890 	struct rte_eth_dev_info dev_info;
891 	static const char *info_border = "************";
892 	int ret;
893 
894 	if (port_id_is_invalid(port_id, ENABLED_WARN))
895 		return;
896 
897 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
898 	if (ret != 0)
899 		return;
900 
901 	printf("\n%s Port %d supported offload features: %s\n",
902 		info_border, port_id, info_border);
903 
904 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
905 		printf("VLAN stripped:                 ");
906 		if (ports[port_id].dev_conf.rxmode.offloads &
907 		    DEV_RX_OFFLOAD_VLAN_STRIP)
908 			printf("on\n");
909 		else
910 			printf("off\n");
911 	}
912 
913 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
914 		printf("Double VLANs stripped:         ");
915 		if (ports[port_id].dev_conf.rxmode.offloads &
916 		    DEV_RX_OFFLOAD_QINQ_STRIP)
917 			printf("on\n");
918 		else
919 			printf("off\n");
920 	}
921 
922 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
923 		printf("RX IPv4 checksum:              ");
924 		if (ports[port_id].dev_conf.rxmode.offloads &
925 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
926 			printf("on\n");
927 		else
928 			printf("off\n");
929 	}
930 
931 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
932 		printf("RX UDP checksum:               ");
933 		if (ports[port_id].dev_conf.rxmode.offloads &
934 		    DEV_RX_OFFLOAD_UDP_CKSUM)
935 			printf("on\n");
936 		else
937 			printf("off\n");
938 	}
939 
940 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
941 		printf("RX TCP checksum:               ");
942 		if (ports[port_id].dev_conf.rxmode.offloads &
943 		    DEV_RX_OFFLOAD_TCP_CKSUM)
944 			printf("on\n");
945 		else
946 			printf("off\n");
947 	}
948 
949 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SCTP_CKSUM) {
950 		printf("RX SCTP checksum:              ");
951 		if (ports[port_id].dev_conf.rxmode.offloads &
952 		    DEV_RX_OFFLOAD_SCTP_CKSUM)
953 			printf("on\n");
954 		else
955 			printf("off\n");
956 	}
957 
958 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
959 		printf("RX Outer IPv4 checksum:        ");
960 		if (ports[port_id].dev_conf.rxmode.offloads &
961 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
962 			printf("on\n");
963 		else
964 			printf("off\n");
965 	}
966 
967 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) {
968 		printf("RX Outer UDP checksum:         ");
969 		if (ports[port_id].dev_conf.rxmode.offloads &
970 		    DEV_RX_OFFLOAD_OUTER_UDP_CKSUM)
971 			printf("on\n");
972 		else
973 			printf("off\n");
974 	}
975 
976 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
977 		printf("Large receive offload:         ");
978 		if (ports[port_id].dev_conf.rxmode.offloads &
979 		    DEV_RX_OFFLOAD_TCP_LRO)
980 			printf("on\n");
981 		else
982 			printf("off\n");
983 	}
984 
985 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
986 		printf("HW timestamp:                  ");
987 		if (ports[port_id].dev_conf.rxmode.offloads &
988 		    DEV_RX_OFFLOAD_TIMESTAMP)
989 			printf("on\n");
990 		else
991 			printf("off\n");
992 	}
993 
994 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) {
995 		printf("Rx Keep CRC:                   ");
996 		if (ports[port_id].dev_conf.rxmode.offloads &
997 		    DEV_RX_OFFLOAD_KEEP_CRC)
998 			printf("on\n");
999 		else
1000 			printf("off\n");
1001 	}
1002 
1003 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) {
1004 		printf("RX offload security:           ");
1005 		if (ports[port_id].dev_conf.rxmode.offloads &
1006 		    DEV_RX_OFFLOAD_SECURITY)
1007 			printf("on\n");
1008 		else
1009 			printf("off\n");
1010 	}
1011 
1012 	if (dev_info.rx_offload_capa & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
1013 		printf("RX offload buffer split:       ");
1014 		if (ports[port_id].dev_conf.rxmode.offloads &
1015 		    RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)
1016 			printf("on\n");
1017 		else
1018 			printf("off\n");
1019 	}
1020 
1021 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
1022 		printf("VLAN insert:                   ");
1023 		if (ports[port_id].dev_conf.txmode.offloads &
1024 		    DEV_TX_OFFLOAD_VLAN_INSERT)
1025 			printf("on\n");
1026 		else
1027 			printf("off\n");
1028 	}
1029 
1030 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
1031 		printf("Double VLANs insert:           ");
1032 		if (ports[port_id].dev_conf.txmode.offloads &
1033 		    DEV_TX_OFFLOAD_QINQ_INSERT)
1034 			printf("on\n");
1035 		else
1036 			printf("off\n");
1037 	}
1038 
1039 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
1040 		printf("TX IPv4 checksum:              ");
1041 		if (ports[port_id].dev_conf.txmode.offloads &
1042 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
1043 			printf("on\n");
1044 		else
1045 			printf("off\n");
1046 	}
1047 
1048 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
1049 		printf("TX UDP checksum:               ");
1050 		if (ports[port_id].dev_conf.txmode.offloads &
1051 		    DEV_TX_OFFLOAD_UDP_CKSUM)
1052 			printf("on\n");
1053 		else
1054 			printf("off\n");
1055 	}
1056 
1057 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
1058 		printf("TX TCP checksum:               ");
1059 		if (ports[port_id].dev_conf.txmode.offloads &
1060 		    DEV_TX_OFFLOAD_TCP_CKSUM)
1061 			printf("on\n");
1062 		else
1063 			printf("off\n");
1064 	}
1065 
1066 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
1067 		printf("TX SCTP checksum:              ");
1068 		if (ports[port_id].dev_conf.txmode.offloads &
1069 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
1070 			printf("on\n");
1071 		else
1072 			printf("off\n");
1073 	}
1074 
1075 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
1076 		printf("TX Outer IPv4 checksum:        ");
1077 		if (ports[port_id].dev_conf.txmode.offloads &
1078 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
1079 			printf("on\n");
1080 		else
1081 			printf("off\n");
1082 	}
1083 
1084 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
1085 		printf("TX TCP segmentation:           ");
1086 		if (ports[port_id].dev_conf.txmode.offloads &
1087 		    DEV_TX_OFFLOAD_TCP_TSO)
1088 			printf("on\n");
1089 		else
1090 			printf("off\n");
1091 	}
1092 
1093 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
1094 		printf("TX UDP segmentation:           ");
1095 		if (ports[port_id].dev_conf.txmode.offloads &
1096 		    DEV_TX_OFFLOAD_UDP_TSO)
1097 			printf("on\n");
1098 		else
1099 			printf("off\n");
1100 	}
1101 
1102 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
1103 		printf("TSO for VXLAN tunnel packet:   ");
1104 		if (ports[port_id].dev_conf.txmode.offloads &
1105 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
1106 			printf("on\n");
1107 		else
1108 			printf("off\n");
1109 	}
1110 
1111 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
1112 		printf("TSO for GRE tunnel packet:     ");
1113 		if (ports[port_id].dev_conf.txmode.offloads &
1114 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
1115 			printf("on\n");
1116 		else
1117 			printf("off\n");
1118 	}
1119 
1120 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
1121 		printf("TSO for IPIP tunnel packet:    ");
1122 		if (ports[port_id].dev_conf.txmode.offloads &
1123 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
1124 			printf("on\n");
1125 		else
1126 			printf("off\n");
1127 	}
1128 
1129 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
1130 		printf("TSO for GENEVE tunnel packet:  ");
1131 		if (ports[port_id].dev_conf.txmode.offloads &
1132 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
1133 			printf("on\n");
1134 		else
1135 			printf("off\n");
1136 	}
1137 
1138 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
1139 		printf("IP tunnel TSO:  ");
1140 		if (ports[port_id].dev_conf.txmode.offloads &
1141 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
1142 			printf("on\n");
1143 		else
1144 			printf("off\n");
1145 	}
1146 
1147 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
1148 		printf("UDP tunnel TSO:  ");
1149 		if (ports[port_id].dev_conf.txmode.offloads &
1150 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
1151 			printf("on\n");
1152 		else
1153 			printf("off\n");
1154 	}
1155 
1156 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
1157 		printf("TX Outer UDP checksum:         ");
1158 		if (ports[port_id].dev_conf.txmode.offloads &
1159 		    DEV_TX_OFFLOAD_OUTER_UDP_CKSUM)
1160 			printf("on\n");
1161 		else
1162 			printf("off\n");
1163 	}
1164 
1165 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SEND_ON_TIMESTAMP) {
1166 		printf("Tx scheduling on timestamp:    ");
1167 		if (ports[port_id].dev_conf.txmode.offloads &
1168 		    DEV_TX_OFFLOAD_SEND_ON_TIMESTAMP)
1169 			printf("on\n");
1170 		else
1171 			printf("off\n");
1172 	}
1173 
1174 }
1175 
1176 int
1177 port_id_is_invalid(portid_t port_id, enum print_warning warning)
1178 {
1179 	uint16_t pid;
1180 
1181 	if (port_id == (portid_t)RTE_PORT_ALL)
1182 		return 0;
1183 
1184 	RTE_ETH_FOREACH_DEV(pid)
1185 		if (port_id == pid)
1186 			return 0;
1187 
1188 	if (warning == ENABLED_WARN)
1189 		printf("Invalid port %d\n", port_id);
1190 
1191 	return 1;
1192 }
1193 
1194 void print_valid_ports(void)
1195 {
1196 	portid_t pid;
1197 
1198 	printf("The valid ports array is [");
1199 	RTE_ETH_FOREACH_DEV(pid) {
1200 		printf(" %d", pid);
1201 	}
1202 	printf(" ]\n");
1203 }
1204 
1205 static int
1206 vlan_id_is_invalid(uint16_t vlan_id)
1207 {
1208 	if (vlan_id < 4096)
1209 		return 0;
1210 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
1211 	return 1;
1212 }
1213 
1214 static int
1215 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
1216 {
1217 	const struct rte_pci_device *pci_dev;
1218 	const struct rte_bus *bus;
1219 	uint64_t pci_len;
1220 
1221 	if (reg_off & 0x3) {
1222 		printf("Port register offset 0x%X not aligned on a 4-byte "
1223 		       "boundary\n",
1224 		       (unsigned)reg_off);
1225 		return 1;
1226 	}
1227 
1228 	if (!ports[port_id].dev_info.device) {
1229 		printf("Invalid device\n");
1230 		return 0;
1231 	}
1232 
1233 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
1234 	if (bus && !strcmp(bus->name, "pci")) {
1235 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
1236 	} else {
1237 		printf("Not a PCI device\n");
1238 		return 1;
1239 	}
1240 
1241 	pci_len = pci_dev->mem_resource[0].len;
1242 	if (reg_off >= pci_len) {
1243 		printf("Port %d: register offset %u (0x%X) out of port PCI "
1244 		       "resource (length=%"PRIu64")\n",
1245 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
1246 		return 1;
1247 	}
1248 	return 0;
1249 }
1250 
1251 static int
1252 reg_bit_pos_is_invalid(uint8_t bit_pos)
1253 {
1254 	if (bit_pos <= 31)
1255 		return 0;
1256 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
1257 	return 1;
1258 }
1259 
1260 #define display_port_and_reg_off(port_id, reg_off) \
1261 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
1262 
1263 static inline void
1264 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1265 {
1266 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1267 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
1268 }
1269 
1270 void
1271 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
1272 {
1273 	uint32_t reg_v;
1274 
1275 
1276 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1277 		return;
1278 	if (port_reg_off_is_invalid(port_id, reg_off))
1279 		return;
1280 	if (reg_bit_pos_is_invalid(bit_x))
1281 		return;
1282 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1283 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1284 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
1285 }
1286 
1287 void
1288 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
1289 			   uint8_t bit1_pos, uint8_t bit2_pos)
1290 {
1291 	uint32_t reg_v;
1292 	uint8_t  l_bit;
1293 	uint8_t  h_bit;
1294 
1295 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1296 		return;
1297 	if (port_reg_off_is_invalid(port_id, reg_off))
1298 		return;
1299 	if (reg_bit_pos_is_invalid(bit1_pos))
1300 		return;
1301 	if (reg_bit_pos_is_invalid(bit2_pos))
1302 		return;
1303 	if (bit1_pos > bit2_pos)
1304 		l_bit = bit2_pos, h_bit = bit1_pos;
1305 	else
1306 		l_bit = bit1_pos, h_bit = bit2_pos;
1307 
1308 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1309 	reg_v >>= l_bit;
1310 	if (h_bit < 31)
1311 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
1312 	display_port_and_reg_off(port_id, (unsigned)reg_off);
1313 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
1314 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
1315 }
1316 
1317 void
1318 port_reg_display(portid_t port_id, uint32_t reg_off)
1319 {
1320 	uint32_t reg_v;
1321 
1322 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1323 		return;
1324 	if (port_reg_off_is_invalid(port_id, reg_off))
1325 		return;
1326 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1327 	display_port_reg_value(port_id, reg_off, reg_v);
1328 }
1329 
1330 void
1331 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
1332 		 uint8_t bit_v)
1333 {
1334 	uint32_t reg_v;
1335 
1336 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1337 		return;
1338 	if (port_reg_off_is_invalid(port_id, reg_off))
1339 		return;
1340 	if (reg_bit_pos_is_invalid(bit_pos))
1341 		return;
1342 	if (bit_v > 1) {
1343 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
1344 		return;
1345 	}
1346 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1347 	if (bit_v == 0)
1348 		reg_v &= ~(1 << bit_pos);
1349 	else
1350 		reg_v |= (1 << bit_pos);
1351 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1352 	display_port_reg_value(port_id, reg_off, reg_v);
1353 }
1354 
1355 void
1356 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
1357 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
1358 {
1359 	uint32_t max_v;
1360 	uint32_t reg_v;
1361 	uint8_t  l_bit;
1362 	uint8_t  h_bit;
1363 
1364 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1365 		return;
1366 	if (port_reg_off_is_invalid(port_id, reg_off))
1367 		return;
1368 	if (reg_bit_pos_is_invalid(bit1_pos))
1369 		return;
1370 	if (reg_bit_pos_is_invalid(bit2_pos))
1371 		return;
1372 	if (bit1_pos > bit2_pos)
1373 		l_bit = bit2_pos, h_bit = bit1_pos;
1374 	else
1375 		l_bit = bit1_pos, h_bit = bit2_pos;
1376 
1377 	if ((h_bit - l_bit) < 31)
1378 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
1379 	else
1380 		max_v = 0xFFFFFFFF;
1381 
1382 	if (value > max_v) {
1383 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
1384 				(unsigned)value, (unsigned)value,
1385 				(unsigned)max_v, (unsigned)max_v);
1386 		return;
1387 	}
1388 	reg_v = port_id_pci_reg_read(port_id, reg_off);
1389 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
1390 	reg_v |= (value << l_bit); /* Set changed bits */
1391 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1392 	display_port_reg_value(port_id, reg_off, reg_v);
1393 }
1394 
1395 void
1396 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
1397 {
1398 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1399 		return;
1400 	if (port_reg_off_is_invalid(port_id, reg_off))
1401 		return;
1402 	port_id_pci_reg_write(port_id, reg_off, reg_v);
1403 	display_port_reg_value(port_id, reg_off, reg_v);
1404 }
1405 
1406 void
1407 port_mtu_set(portid_t port_id, uint16_t mtu)
1408 {
1409 	int diag;
1410 	struct rte_port *rte_port = &ports[port_id];
1411 	struct rte_eth_dev_info dev_info;
1412 	uint16_t eth_overhead;
1413 	int ret;
1414 
1415 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1416 		return;
1417 
1418 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
1419 	if (ret != 0)
1420 		return;
1421 
1422 	if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) {
1423 		printf("Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n",
1424 			mtu, dev_info.min_mtu, dev_info.max_mtu);
1425 		return;
1426 	}
1427 	diag = rte_eth_dev_set_mtu(port_id, mtu);
1428 	if (diag)
1429 		printf("Set MTU failed. diag=%d\n", diag);
1430 	else if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1431 		/*
1432 		 * Ether overhead in driver is equal to the difference of
1433 		 * max_rx_pktlen and max_mtu in rte_eth_dev_info when the
1434 		 * device supports jumbo frame.
1435 		 */
1436 		eth_overhead = dev_info.max_rx_pktlen - dev_info.max_mtu;
1437 		if (mtu > RTE_ETHER_MAX_LEN - eth_overhead) {
1438 			rte_port->dev_conf.rxmode.offloads |=
1439 						DEV_RX_OFFLOAD_JUMBO_FRAME;
1440 			rte_port->dev_conf.rxmode.max_rx_pkt_len =
1441 						mtu + eth_overhead;
1442 		} else
1443 			rte_port->dev_conf.rxmode.offloads &=
1444 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
1445 	}
1446 }
1447 
1448 /* Generic flow management functions. */
1449 
1450 static struct port_flow_tunnel *
1451 port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
1452 {
1453 	struct port_flow_tunnel *flow_tunnel;
1454 
1455 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1456 		if (flow_tunnel->id == port_tunnel_id)
1457 			goto out;
1458 	}
1459 	flow_tunnel = NULL;
1460 
1461 out:
1462 	return flow_tunnel;
1463 }
1464 
1465 const char *
1466 port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
1467 {
1468 	const char *type;
1469 	switch (tunnel->type) {
1470 	default:
1471 		type = "unknown";
1472 		break;
1473 	case RTE_FLOW_ITEM_TYPE_VXLAN:
1474 		type = "vxlan";
1475 		break;
1476 	}
1477 
1478 	return type;
1479 }
1480 
1481 struct port_flow_tunnel *
1482 port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
1483 {
1484 	struct rte_port *port = &ports[port_id];
1485 	struct port_flow_tunnel *flow_tunnel;
1486 
1487 	LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
1488 		if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
1489 			goto out;
1490 	}
1491 	flow_tunnel = NULL;
1492 
1493 out:
1494 	return flow_tunnel;
1495 }
1496 
1497 void port_flow_tunnel_list(portid_t port_id)
1498 {
1499 	struct rte_port *port = &ports[port_id];
1500 	struct port_flow_tunnel *flt;
1501 
1502 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1503 		printf("port %u tunnel #%u type=%s",
1504 			port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
1505 		if (flt->tunnel.tun_id)
1506 			printf(" id=%" PRIu64, flt->tunnel.tun_id);
1507 		printf("\n");
1508 	}
1509 }
1510 
1511 void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
1512 {
1513 	struct rte_port *port = &ports[port_id];
1514 	struct port_flow_tunnel *flt;
1515 
1516 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1517 		if (flt->id == tunnel_id)
1518 			break;
1519 	}
1520 	if (flt) {
1521 		LIST_REMOVE(flt, chain);
1522 		free(flt);
1523 		printf("port %u: flow tunnel #%u destroyed\n",
1524 			port_id, tunnel_id);
1525 	}
1526 }
1527 
1528 void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
1529 {
1530 	struct rte_port *port = &ports[port_id];
1531 	enum rte_flow_item_type	type;
1532 	struct port_flow_tunnel *flt;
1533 
1534 	if (!strcmp(ops->type, "vxlan"))
1535 		type = RTE_FLOW_ITEM_TYPE_VXLAN;
1536 	else {
1537 		printf("cannot offload \"%s\" tunnel type\n", ops->type);
1538 		return;
1539 	}
1540 	LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
1541 		if (flt->tunnel.type == type)
1542 			break;
1543 	}
1544 	if (!flt) {
1545 		flt = calloc(1, sizeof(*flt));
1546 		if (!flt) {
1547 			printf("failed to allocate port flt object\n");
1548 			return;
1549 		}
1550 		flt->tunnel.type = type;
1551 		flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
1552 				  LIST_FIRST(&port->flow_tunnel_list)->id + 1;
1553 		LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
1554 	}
1555 	printf("port %d: flow tunnel #%u type %s\n",
1556 		port_id, flt->id, ops->type);
1557 }
1558 
1559 /** Generate a port_flow entry from attributes/pattern/actions. */
1560 static struct port_flow *
1561 port_flow_new(const struct rte_flow_attr *attr,
1562 	      const struct rte_flow_item *pattern,
1563 	      const struct rte_flow_action *actions,
1564 	      struct rte_flow_error *error)
1565 {
1566 	const struct rte_flow_conv_rule rule = {
1567 		.attr_ro = attr,
1568 		.pattern_ro = pattern,
1569 		.actions_ro = actions,
1570 	};
1571 	struct port_flow *pf;
1572 	int ret;
1573 
1574 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
1575 	if (ret < 0)
1576 		return NULL;
1577 	pf = calloc(1, offsetof(struct port_flow, rule) + ret);
1578 	if (!pf) {
1579 		rte_flow_error_set
1580 			(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1581 			 "calloc() failed");
1582 		return NULL;
1583 	}
1584 	if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
1585 			  error) >= 0)
1586 		return pf;
1587 	free(pf);
1588 	return NULL;
1589 }
1590 
1591 /** Print a message out of a flow error. */
1592 static int
1593 port_flow_complain(struct rte_flow_error *error)
1594 {
1595 	static const char *const errstrlist[] = {
1596 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1597 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1598 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1599 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1600 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1601 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1602 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1603 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1604 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1605 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1606 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1607 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1608 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1609 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1610 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1611 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1612 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1613 	};
1614 	const char *errstr;
1615 	char buf[32];
1616 	int err = rte_errno;
1617 
1618 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1619 	    !errstrlist[error->type])
1620 		errstr = "unknown type";
1621 	else
1622 		errstr = errstrlist[error->type];
1623 	printf("%s(): Caught PMD error type %d (%s): %s%s: %s\n", __func__,
1624 	       error->type, errstr,
1625 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1626 					error->cause), buf) : "",
1627 	       error->message ? error->message : "(no stated reason)",
1628 	       rte_strerror(err));
1629 	return -err;
1630 }
1631 
1632 static void
1633 rss_config_display(struct rte_flow_action_rss *rss_conf)
1634 {
1635 	uint8_t i;
1636 
1637 	if (rss_conf == NULL) {
1638 		printf("Invalid rule\n");
1639 		return;
1640 	}
1641 
1642 	printf("RSS:\n"
1643 	       " queues:");
1644 	if (rss_conf->queue_num == 0)
1645 		printf(" none");
1646 	for (i = 0; i < rss_conf->queue_num; i++)
1647 		printf(" %d", rss_conf->queue[i]);
1648 	printf("\n");
1649 
1650 	printf(" function: ");
1651 	switch (rss_conf->func) {
1652 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1653 		printf("default\n");
1654 		break;
1655 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1656 		printf("toeplitz\n");
1657 		break;
1658 	case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
1659 		printf("simple_xor\n");
1660 		break;
1661 	case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
1662 		printf("symmetric_toeplitz\n");
1663 		break;
1664 	default:
1665 		printf("Unknown function\n");
1666 		return;
1667 	}
1668 
1669 	printf(" types:\n");
1670 	if (rss_conf->types == 0) {
1671 		printf("  none\n");
1672 		return;
1673 	}
1674 	for (i = 0; rss_type_table[i].str; i++) {
1675 		if ((rss_conf->types &
1676 		    rss_type_table[i].rss_type) ==
1677 		    rss_type_table[i].rss_type &&
1678 		    rss_type_table[i].rss_type != 0)
1679 			printf("  %s\n", rss_type_table[i].str);
1680 	}
1681 }
1682 
1683 static struct port_shared_action *
1684 action_get_by_id(portid_t port_id, uint32_t id)
1685 {
1686 	struct rte_port *port;
1687 	struct port_shared_action **ppsa;
1688 	struct port_shared_action *psa = NULL;
1689 
1690 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1691 	    port_id == (portid_t)RTE_PORT_ALL)
1692 		return NULL;
1693 	port = &ports[port_id];
1694 	ppsa = &port->actions_list;
1695 	while (*ppsa) {
1696 		if ((*ppsa)->id == id) {
1697 			psa = *ppsa;
1698 			break;
1699 		}
1700 		ppsa = &(*ppsa)->next;
1701 	}
1702 	if (!psa)
1703 		printf("Failed to find shared action #%u on port %u\n",
1704 		       id, port_id);
1705 	return psa;
1706 }
1707 
1708 static int
1709 action_alloc(portid_t port_id, uint32_t id,
1710 	     struct port_shared_action **action)
1711 {
1712 	struct rte_port *port;
1713 	struct port_shared_action **ppsa;
1714 	struct port_shared_action *psa = NULL;
1715 
1716 	*action = NULL;
1717 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1718 	    port_id == (portid_t)RTE_PORT_ALL)
1719 		return -EINVAL;
1720 	port = &ports[port_id];
1721 	if (id == UINT32_MAX) {
1722 		/* taking first available ID */
1723 		if (port->actions_list) {
1724 			if (port->actions_list->id == UINT32_MAX - 1) {
1725 				printf("Highest shared action ID is already"
1726 				" assigned, delete it first\n");
1727 				return -ENOMEM;
1728 			}
1729 			id = port->actions_list->id + 1;
1730 		} else {
1731 			id = 0;
1732 		}
1733 	}
1734 	psa = calloc(1, sizeof(*psa));
1735 	if (!psa) {
1736 		printf("Allocation of port %u shared action failed\n",
1737 		       port_id);
1738 		return -ENOMEM;
1739 	}
1740 	ppsa = &port->actions_list;
1741 	while (*ppsa && (*ppsa)->id > id)
1742 		ppsa = &(*ppsa)->next;
1743 	if (*ppsa && (*ppsa)->id == id) {
1744 		printf("Shared action #%u is already assigned,"
1745 			" delete it first\n", id);
1746 		free(psa);
1747 		return -EINVAL;
1748 	}
1749 	psa->next = *ppsa;
1750 	psa->id = id;
1751 	*ppsa = psa;
1752 	*action = psa;
1753 	return 0;
1754 }
1755 
1756 /** Create shared action */
1757 int
1758 port_shared_action_create(portid_t port_id, uint32_t id,
1759 			  const struct rte_flow_shared_action_conf *conf,
1760 			  const struct rte_flow_action *action)
1761 {
1762 	struct port_shared_action *psa;
1763 	int ret;
1764 	struct rte_flow_error error;
1765 
1766 	ret = action_alloc(port_id, id, &psa);
1767 	if (ret)
1768 		return ret;
1769 	if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
1770 		struct rte_flow_action_age *age =
1771 			(struct rte_flow_action_age *)(uintptr_t)(action->conf);
1772 
1773 		psa->age_type = ACTION_AGE_CONTEXT_TYPE_SHARED_ACTION;
1774 		age->context = &psa->age_type;
1775 	}
1776 	/* Poisoning to make sure PMDs update it in case of error. */
1777 	memset(&error, 0x22, sizeof(error));
1778 	psa->action = rte_flow_shared_action_create(port_id, conf, action,
1779 						    &error);
1780 	if (!psa->action) {
1781 		uint32_t destroy_id = psa->id;
1782 		port_shared_action_destroy(port_id, 1, &destroy_id);
1783 		return port_flow_complain(&error);
1784 	}
1785 	psa->type = action->type;
1786 	printf("Shared action #%u created\n", psa->id);
1787 	return 0;
1788 }
1789 
1790 /** Destroy shared action */
1791 int
1792 port_shared_action_destroy(portid_t port_id,
1793 			   uint32_t n,
1794 			   const uint32_t *actions)
1795 {
1796 	struct rte_port *port;
1797 	struct port_shared_action **tmp;
1798 	uint32_t c = 0;
1799 	int ret = 0;
1800 
1801 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1802 	    port_id == (portid_t)RTE_PORT_ALL)
1803 		return -EINVAL;
1804 	port = &ports[port_id];
1805 	tmp = &port->actions_list;
1806 	while (*tmp) {
1807 		uint32_t i;
1808 
1809 		for (i = 0; i != n; ++i) {
1810 			struct rte_flow_error error;
1811 			struct port_shared_action *psa = *tmp;
1812 
1813 			if (actions[i] != psa->id)
1814 				continue;
1815 			/*
1816 			 * Poisoning to make sure PMDs update it in case
1817 			 * of error.
1818 			 */
1819 			memset(&error, 0x33, sizeof(error));
1820 
1821 			if (psa->action && rte_flow_shared_action_destroy(
1822 					port_id, psa->action, &error)) {
1823 				ret = port_flow_complain(&error);
1824 				continue;
1825 			}
1826 			*tmp = psa->next;
1827 			printf("Shared action #%u destroyed\n", psa->id);
1828 			free(psa);
1829 			break;
1830 		}
1831 		if (i == n)
1832 			tmp = &(*tmp)->next;
1833 		++c;
1834 	}
1835 	return ret;
1836 }
1837 
1838 
1839 /** Get shared action by port + id */
1840 struct rte_flow_shared_action *
1841 port_shared_action_get_by_id(portid_t port_id, uint32_t id)
1842 {
1843 
1844 	struct port_shared_action *psa = action_get_by_id(port_id, id);
1845 
1846 	return (psa) ? psa->action : NULL;
1847 }
1848 
1849 /** Update shared action */
1850 int
1851 port_shared_action_update(portid_t port_id, uint32_t id,
1852 			  const struct rte_flow_action *action)
1853 {
1854 	struct rte_flow_error error;
1855 	struct rte_flow_shared_action *shared_action;
1856 
1857 	shared_action = port_shared_action_get_by_id(port_id, id);
1858 	if (!shared_action)
1859 		return -EINVAL;
1860 	if (rte_flow_shared_action_update(port_id, shared_action, action,
1861 					  &error)) {
1862 		return port_flow_complain(&error);
1863 	}
1864 	printf("Shared action #%u updated\n", id);
1865 	return 0;
1866 }
1867 
1868 int
1869 port_shared_action_query(portid_t port_id, uint32_t id)
1870 {
1871 	struct rte_flow_error error;
1872 	struct port_shared_action *psa;
1873 	uint64_t default_data;
1874 	void *data = NULL;
1875 	int ret = 0;
1876 
1877 	psa = action_get_by_id(port_id, id);
1878 	if (!psa)
1879 		return -EINVAL;
1880 	switch (psa->type) {
1881 	case RTE_FLOW_ACTION_TYPE_RSS:
1882 		data = &default_data;
1883 		break;
1884 	default:
1885 		printf("Shared action %u (type: %d) on port %u doesn't support"
1886 		       " query\n", id, psa->type, port_id);
1887 		return -1;
1888 	}
1889 	if (rte_flow_shared_action_query(port_id, psa->action, data, &error))
1890 		ret = port_flow_complain(&error);
1891 	switch (psa->type) {
1892 	case RTE_FLOW_ACTION_TYPE_RSS:
1893 		if (!ret)
1894 			printf("Shared RSS action:\n\trefs:%u\n",
1895 			       *((uint32_t *)data));
1896 		data = NULL;
1897 		break;
1898 	default:
1899 		printf("Shared action %u (type: %d) on port %u doesn't support"
1900 		       " query\n", id, psa->type, port_id);
1901 		ret = -1;
1902 	}
1903 	return ret;
1904 }
1905 static struct port_flow_tunnel *
1906 port_flow_tunnel_offload_cmd_prep(portid_t port_id,
1907 				  const struct rte_flow_item *pattern,
1908 				  const struct rte_flow_action *actions,
1909 				  const struct tunnel_ops *tunnel_ops)
1910 {
1911 	int ret;
1912 	struct rte_port *port;
1913 	struct port_flow_tunnel *pft;
1914 	struct rte_flow_error error;
1915 
1916 	port = &ports[port_id];
1917 	pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
1918 	if (!pft) {
1919 		printf("failed to locate port flow tunnel #%u\n",
1920 			tunnel_ops->id);
1921 		return NULL;
1922 	}
1923 	if (tunnel_ops->actions) {
1924 		uint32_t num_actions;
1925 		const struct rte_flow_action *aptr;
1926 
1927 		ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
1928 						&pft->pmd_actions,
1929 						&pft->num_pmd_actions,
1930 						&error);
1931 		if (ret) {
1932 			port_flow_complain(&error);
1933 			return NULL;
1934 		}
1935 		for (aptr = actions, num_actions = 1;
1936 		     aptr->type != RTE_FLOW_ACTION_TYPE_END;
1937 		     aptr++, num_actions++);
1938 		pft->actions = malloc(
1939 				(num_actions +  pft->num_pmd_actions) *
1940 				sizeof(actions[0]));
1941 		if (!pft->actions) {
1942 			rte_flow_tunnel_action_decap_release(
1943 					port_id, pft->actions,
1944 					pft->num_pmd_actions, &error);
1945 			return NULL;
1946 		}
1947 		rte_memcpy(pft->actions, pft->pmd_actions,
1948 			   pft->num_pmd_actions * sizeof(actions[0]));
1949 		rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
1950 			   num_actions * sizeof(actions[0]));
1951 	}
1952 	if (tunnel_ops->items) {
1953 		uint32_t num_items;
1954 		const struct rte_flow_item *iptr;
1955 
1956 		ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
1957 					    &pft->pmd_items,
1958 					    &pft->num_pmd_items,
1959 					    &error);
1960 		if (ret) {
1961 			port_flow_complain(&error);
1962 			return NULL;
1963 		}
1964 		for (iptr = pattern, num_items = 1;
1965 		     iptr->type != RTE_FLOW_ITEM_TYPE_END;
1966 		     iptr++, num_items++);
1967 		pft->items = malloc((num_items + pft->num_pmd_items) *
1968 				    sizeof(pattern[0]));
1969 		if (!pft->items) {
1970 			rte_flow_tunnel_item_release(
1971 					port_id, pft->pmd_items,
1972 					pft->num_pmd_items, &error);
1973 			return NULL;
1974 		}
1975 		rte_memcpy(pft->items, pft->pmd_items,
1976 			   pft->num_pmd_items * sizeof(pattern[0]));
1977 		rte_memcpy(pft->items + pft->num_pmd_items, pattern,
1978 			   num_items * sizeof(pattern[0]));
1979 	}
1980 
1981 	return pft;
1982 }
1983 
1984 static void
1985 port_flow_tunnel_offload_cmd_release(portid_t port_id,
1986 				     const struct tunnel_ops *tunnel_ops,
1987 				     struct port_flow_tunnel *pft)
1988 {
1989 	struct rte_flow_error error;
1990 
1991 	if (tunnel_ops->actions) {
1992 		free(pft->actions);
1993 		rte_flow_tunnel_action_decap_release(
1994 			port_id, pft->pmd_actions,
1995 			pft->num_pmd_actions, &error);
1996 		pft->actions = NULL;
1997 		pft->pmd_actions = NULL;
1998 	}
1999 	if (tunnel_ops->items) {
2000 		free(pft->items);
2001 		rte_flow_tunnel_item_release(port_id, pft->pmd_items,
2002 					     pft->num_pmd_items,
2003 					     &error);
2004 		pft->items = NULL;
2005 		pft->pmd_items = NULL;
2006 	}
2007 }
2008 
2009 /** Validate flow rule. */
2010 int
2011 port_flow_validate(portid_t port_id,
2012 		   const struct rte_flow_attr *attr,
2013 		   const struct rte_flow_item *pattern,
2014 		   const struct rte_flow_action *actions,
2015 		   const struct tunnel_ops *tunnel_ops)
2016 {
2017 	struct rte_flow_error error;
2018 	struct port_flow_tunnel *pft = NULL;
2019 
2020 	/* Poisoning to make sure PMDs update it in case of error. */
2021 	memset(&error, 0x11, sizeof(error));
2022 	if (tunnel_ops->enabled) {
2023 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
2024 							actions, tunnel_ops);
2025 		if (!pft)
2026 			return -ENOENT;
2027 		if (pft->items)
2028 			pattern = pft->items;
2029 		if (pft->actions)
2030 			actions = pft->actions;
2031 	}
2032 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
2033 		return port_flow_complain(&error);
2034 	if (tunnel_ops->enabled)
2035 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
2036 	printf("Flow rule validated\n");
2037 	return 0;
2038 }
2039 
2040 /** Return age action structure if exists, otherwise NULL. */
2041 static struct rte_flow_action_age *
2042 age_action_get(const struct rte_flow_action *actions)
2043 {
2044 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2045 		switch (actions->type) {
2046 		case RTE_FLOW_ACTION_TYPE_AGE:
2047 			return (struct rte_flow_action_age *)
2048 				(uintptr_t)actions->conf;
2049 		default:
2050 			break;
2051 		}
2052 	}
2053 	return NULL;
2054 }
2055 
2056 /** Create flow rule. */
2057 int
2058 port_flow_create(portid_t port_id,
2059 		 const struct rte_flow_attr *attr,
2060 		 const struct rte_flow_item *pattern,
2061 		 const struct rte_flow_action *actions,
2062 		 const struct tunnel_ops *tunnel_ops)
2063 {
2064 	struct rte_flow *flow;
2065 	struct rte_port *port;
2066 	struct port_flow *pf;
2067 	uint32_t id = 0;
2068 	struct rte_flow_error error;
2069 	struct port_flow_tunnel *pft = NULL;
2070 	struct rte_flow_action_age *age = age_action_get(actions);
2071 
2072 	port = &ports[port_id];
2073 	if (port->flow_list) {
2074 		if (port->flow_list->id == UINT32_MAX) {
2075 			printf("Highest rule ID is already assigned, delete"
2076 			       " it first");
2077 			return -ENOMEM;
2078 		}
2079 		id = port->flow_list->id + 1;
2080 	}
2081 	if (tunnel_ops->enabled) {
2082 		pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
2083 							actions, tunnel_ops);
2084 		if (!pft)
2085 			return -ENOENT;
2086 		if (pft->items)
2087 			pattern = pft->items;
2088 		if (pft->actions)
2089 			actions = pft->actions;
2090 	}
2091 	pf = port_flow_new(attr, pattern, actions, &error);
2092 	if (!pf)
2093 		return port_flow_complain(&error);
2094 	if (age) {
2095 		pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
2096 		age->context = &pf->age_type;
2097 	}
2098 	/* Poisoning to make sure PMDs update it in case of error. */
2099 	memset(&error, 0x22, sizeof(error));
2100 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
2101 	if (!flow) {
2102 		free(pf);
2103 		return port_flow_complain(&error);
2104 	}
2105 	pf->next = port->flow_list;
2106 	pf->id = id;
2107 	pf->flow = flow;
2108 	port->flow_list = pf;
2109 	if (tunnel_ops->enabled)
2110 		port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
2111 	printf("Flow rule #%u created\n", pf->id);
2112 	return 0;
2113 }
2114 
2115 /** Destroy a number of flow rules. */
2116 int
2117 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
2118 {
2119 	struct rte_port *port;
2120 	struct port_flow **tmp;
2121 	uint32_t c = 0;
2122 	int ret = 0;
2123 
2124 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2125 	    port_id == (portid_t)RTE_PORT_ALL)
2126 		return -EINVAL;
2127 	port = &ports[port_id];
2128 	tmp = &port->flow_list;
2129 	while (*tmp) {
2130 		uint32_t i;
2131 
2132 		for (i = 0; i != n; ++i) {
2133 			struct rte_flow_error error;
2134 			struct port_flow *pf = *tmp;
2135 
2136 			if (rule[i] != pf->id)
2137 				continue;
2138 			/*
2139 			 * Poisoning to make sure PMDs update it in case
2140 			 * of error.
2141 			 */
2142 			memset(&error, 0x33, sizeof(error));
2143 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
2144 				ret = port_flow_complain(&error);
2145 				continue;
2146 			}
2147 			printf("Flow rule #%u destroyed\n", pf->id);
2148 			*tmp = pf->next;
2149 			free(pf);
2150 			break;
2151 		}
2152 		if (i == n)
2153 			tmp = &(*tmp)->next;
2154 		++c;
2155 	}
2156 	return ret;
2157 }
2158 
2159 /** Remove all flow rules. */
2160 int
2161 port_flow_flush(portid_t port_id)
2162 {
2163 	struct rte_flow_error error;
2164 	struct rte_port *port;
2165 	int ret = 0;
2166 
2167 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2168 		port_id == (portid_t)RTE_PORT_ALL)
2169 		return -EINVAL;
2170 
2171 	port = &ports[port_id];
2172 
2173 	if (port->flow_list == NULL)
2174 		return ret;
2175 
2176 	/* Poisoning to make sure PMDs update it in case of error. */
2177 	memset(&error, 0x44, sizeof(error));
2178 	if (rte_flow_flush(port_id, &error)) {
2179 		port_flow_complain(&error);
2180 	}
2181 
2182 	while (port->flow_list) {
2183 		struct port_flow *pf = port->flow_list->next;
2184 
2185 		free(port->flow_list);
2186 		port->flow_list = pf;
2187 	}
2188 	return ret;
2189 }
2190 
2191 /** Dump all flow rules. */
2192 int
2193 port_flow_dump(portid_t port_id, const char *file_name)
2194 {
2195 	int ret = 0;
2196 	FILE *file = stdout;
2197 	struct rte_flow_error error;
2198 
2199 	if (file_name && strlen(file_name)) {
2200 		file = fopen(file_name, "w");
2201 		if (!file) {
2202 			printf("Failed to create file %s: %s\n", file_name,
2203 			       strerror(errno));
2204 			return -errno;
2205 		}
2206 	}
2207 	ret = rte_flow_dev_dump(port_id, file, &error);
2208 	if (ret) {
2209 		port_flow_complain(&error);
2210 		printf("Failed to dump flow: %s\n", strerror(-ret));
2211 	} else
2212 		printf("Flow dump finished\n");
2213 	if (file_name && strlen(file_name))
2214 		fclose(file);
2215 	return ret;
2216 }
2217 
2218 /** Query a flow rule. */
2219 int
2220 port_flow_query(portid_t port_id, uint32_t rule,
2221 		const struct rte_flow_action *action)
2222 {
2223 	struct rte_flow_error error;
2224 	struct rte_port *port;
2225 	struct port_flow *pf;
2226 	const char *name;
2227 	union {
2228 		struct rte_flow_query_count count;
2229 		struct rte_flow_action_rss rss_conf;
2230 		struct rte_flow_query_age age;
2231 	} query;
2232 	int ret;
2233 
2234 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2235 	    port_id == (portid_t)RTE_PORT_ALL)
2236 		return -EINVAL;
2237 	port = &ports[port_id];
2238 	for (pf = port->flow_list; pf; pf = pf->next)
2239 		if (pf->id == rule)
2240 			break;
2241 	if (!pf) {
2242 		printf("Flow rule #%u not found\n", rule);
2243 		return -ENOENT;
2244 	}
2245 	ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2246 			    &name, sizeof(name),
2247 			    (void *)(uintptr_t)action->type, &error);
2248 	if (ret < 0)
2249 		return port_flow_complain(&error);
2250 	switch (action->type) {
2251 	case RTE_FLOW_ACTION_TYPE_COUNT:
2252 	case RTE_FLOW_ACTION_TYPE_RSS:
2253 	case RTE_FLOW_ACTION_TYPE_AGE:
2254 		break;
2255 	default:
2256 		printf("Cannot query action type %d (%s)\n",
2257 			action->type, name);
2258 		return -ENOTSUP;
2259 	}
2260 	/* Poisoning to make sure PMDs update it in case of error. */
2261 	memset(&error, 0x55, sizeof(error));
2262 	memset(&query, 0, sizeof(query));
2263 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
2264 		return port_flow_complain(&error);
2265 	switch (action->type) {
2266 	case RTE_FLOW_ACTION_TYPE_COUNT:
2267 		printf("%s:\n"
2268 		       " hits_set: %u\n"
2269 		       " bytes_set: %u\n"
2270 		       " hits: %" PRIu64 "\n"
2271 		       " bytes: %" PRIu64 "\n",
2272 		       name,
2273 		       query.count.hits_set,
2274 		       query.count.bytes_set,
2275 		       query.count.hits,
2276 		       query.count.bytes);
2277 		break;
2278 	case RTE_FLOW_ACTION_TYPE_RSS:
2279 		rss_config_display(&query.rss_conf);
2280 		break;
2281 	case RTE_FLOW_ACTION_TYPE_AGE:
2282 		printf("%s:\n"
2283 		       " aged: %u\n"
2284 		       " sec_since_last_hit_valid: %u\n"
2285 		       " sec_since_last_hit: %" PRIu32 "\n",
2286 		       name,
2287 		       query.age.aged,
2288 		       query.age.sec_since_last_hit_valid,
2289 		       query.age.sec_since_last_hit);
2290 		break;
2291 	default:
2292 		printf("Cannot display result for action type %d (%s)\n",
2293 		       action->type, name);
2294 		break;
2295 	}
2296 	return 0;
2297 }
2298 
2299 /** List simply and destroy all aged flows. */
2300 void
2301 port_flow_aged(portid_t port_id, uint8_t destroy)
2302 {
2303 	void **contexts;
2304 	int nb_context, total = 0, idx;
2305 	struct rte_flow_error error;
2306 	enum age_action_context_type *type;
2307 	union {
2308 		struct port_flow *pf;
2309 		struct port_shared_action *psa;
2310 	} ctx;
2311 
2312 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2313 	    port_id == (portid_t)RTE_PORT_ALL)
2314 		return;
2315 	total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
2316 	printf("Port %u total aged flows: %d\n", port_id, total);
2317 	if (total < 0) {
2318 		port_flow_complain(&error);
2319 		return;
2320 	}
2321 	if (total == 0)
2322 		return;
2323 	contexts = malloc(sizeof(void *) * total);
2324 	if (contexts == NULL) {
2325 		printf("Cannot allocate contexts for aged flow\n");
2326 		return;
2327 	}
2328 	printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
2329 	nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
2330 	if (nb_context != total) {
2331 		printf("Port:%d get aged flows count(%d) != total(%d)\n",
2332 			port_id, nb_context, total);
2333 		free(contexts);
2334 		return;
2335 	}
2336 	total = 0;
2337 	for (idx = 0; idx < nb_context; idx++) {
2338 		if (!contexts[idx]) {
2339 			printf("Error: get Null context in port %u\n", port_id);
2340 			continue;
2341 		}
2342 		type = (enum age_action_context_type *)contexts[idx];
2343 		switch (*type) {
2344 		case ACTION_AGE_CONTEXT_TYPE_FLOW:
2345 			ctx.pf = container_of(type, struct port_flow, age_type);
2346 			printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
2347 								 "\t%c%c%c\t\n",
2348 			       "Flow",
2349 			       ctx.pf->id,
2350 			       ctx.pf->rule.attr->group,
2351 			       ctx.pf->rule.attr->priority,
2352 			       ctx.pf->rule.attr->ingress ? 'i' : '-',
2353 			       ctx.pf->rule.attr->egress ? 'e' : '-',
2354 			       ctx.pf->rule.attr->transfer ? 't' : '-');
2355 			if (destroy && !port_flow_destroy(port_id, 1,
2356 							  &ctx.pf->id))
2357 				total++;
2358 			break;
2359 		case ACTION_AGE_CONTEXT_TYPE_SHARED_ACTION:
2360 			ctx.psa = container_of(type, struct port_shared_action,
2361 					       age_type);
2362 			printf("%-20s\t%" PRIu32 "\n", "Shared action",
2363 			       ctx.psa->id);
2364 			break;
2365 		default:
2366 			printf("Error: invalid context type %u\n", port_id);
2367 			break;
2368 		}
2369 	}
2370 	printf("\n%d flows destroyed\n", total);
2371 	free(contexts);
2372 }
2373 
2374 /** List flow rules. */
2375 void
2376 port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
2377 {
2378 	struct rte_port *port;
2379 	struct port_flow *pf;
2380 	struct port_flow *list = NULL;
2381 	uint32_t i;
2382 
2383 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
2384 	    port_id == (portid_t)RTE_PORT_ALL)
2385 		return;
2386 	port = &ports[port_id];
2387 	if (!port->flow_list)
2388 		return;
2389 	/* Sort flows by group, priority and ID. */
2390 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2391 		struct port_flow **tmp;
2392 		const struct rte_flow_attr *curr = pf->rule.attr;
2393 
2394 		if (n) {
2395 			/* Filter out unwanted groups. */
2396 			for (i = 0; i != n; ++i)
2397 				if (curr->group == group[i])
2398 					break;
2399 			if (i == n)
2400 				continue;
2401 		}
2402 		for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
2403 			const struct rte_flow_attr *comp = (*tmp)->rule.attr;
2404 
2405 			if (curr->group > comp->group ||
2406 			    (curr->group == comp->group &&
2407 			     curr->priority > comp->priority) ||
2408 			    (curr->group == comp->group &&
2409 			     curr->priority == comp->priority &&
2410 			     pf->id > (*tmp)->id))
2411 				continue;
2412 			break;
2413 		}
2414 		pf->tmp = *tmp;
2415 		*tmp = pf;
2416 	}
2417 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
2418 	for (pf = list; pf != NULL; pf = pf->tmp) {
2419 		const struct rte_flow_item *item = pf->rule.pattern;
2420 		const struct rte_flow_action *action = pf->rule.actions;
2421 		const char *name;
2422 
2423 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
2424 		       pf->id,
2425 		       pf->rule.attr->group,
2426 		       pf->rule.attr->priority,
2427 		       pf->rule.attr->ingress ? 'i' : '-',
2428 		       pf->rule.attr->egress ? 'e' : '-',
2429 		       pf->rule.attr->transfer ? 't' : '-');
2430 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
2431 			if ((uint32_t)item->type > INT_MAX)
2432 				name = "PMD_INTERNAL";
2433 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
2434 					  &name, sizeof(name),
2435 					  (void *)(uintptr_t)item->type,
2436 					  NULL) <= 0)
2437 				name = "[UNKNOWN]";
2438 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
2439 				printf("%s ", name);
2440 			++item;
2441 		}
2442 		printf("=>");
2443 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
2444 			if ((uint32_t)action->type > INT_MAX)
2445 				name = "PMD_INTERNAL";
2446 			else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
2447 					  &name, sizeof(name),
2448 					  (void *)(uintptr_t)action->type,
2449 					  NULL) <= 0)
2450 				name = "[UNKNOWN]";
2451 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
2452 				printf(" %s", name);
2453 			++action;
2454 		}
2455 		printf("\n");
2456 	}
2457 }
2458 
2459 /** Restrict ingress traffic to the defined flow rules. */
2460 int
2461 port_flow_isolate(portid_t port_id, int set)
2462 {
2463 	struct rte_flow_error error;
2464 
2465 	/* Poisoning to make sure PMDs update it in case of error. */
2466 	memset(&error, 0x66, sizeof(error));
2467 	if (rte_flow_isolate(port_id, set, &error))
2468 		return port_flow_complain(&error);
2469 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
2470 	       port_id,
2471 	       set ? "now restricted" : "not restricted anymore");
2472 	return 0;
2473 }
2474 
2475 /*
2476  * RX/TX ring descriptors display functions.
2477  */
2478 int
2479 rx_queue_id_is_invalid(queueid_t rxq_id)
2480 {
2481 	if (rxq_id < nb_rxq)
2482 		return 0;
2483 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
2484 	return 1;
2485 }
2486 
2487 int
2488 tx_queue_id_is_invalid(queueid_t txq_id)
2489 {
2490 	if (txq_id < nb_txq)
2491 		return 0;
2492 	printf("Invalid TX queue %d (must be < nb_txq=%d)\n", txq_id, nb_txq);
2493 	return 1;
2494 }
2495 
2496 static int
2497 get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
2498 {
2499 	struct rte_port *port = &ports[port_id];
2500 	struct rte_eth_rxq_info rx_qinfo;
2501 	int ret;
2502 
2503 	ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
2504 	if (ret == 0) {
2505 		*ring_size = rx_qinfo.nb_desc;
2506 		return ret;
2507 	}
2508 
2509 	if (ret != -ENOTSUP)
2510 		return ret;
2511 	/*
2512 	 * If the rte_eth_rx_queue_info_get is not support for this PMD,
2513 	 * ring_size stored in testpmd will be used for validity verification.
2514 	 * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
2515 	 * being 0, it will use a default value provided by PMDs to setup this
2516 	 * rxq. If the default value is 0, it will use the
2517 	 * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
2518 	 */
2519 	if (port->nb_rx_desc[rxq_id])
2520 		*ring_size = port->nb_rx_desc[rxq_id];
2521 	else if (port->dev_info.default_rxportconf.ring_size)
2522 		*ring_size = port->dev_info.default_rxportconf.ring_size;
2523 	else
2524 		*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
2525 	return 0;
2526 }
2527 
2528 static int
2529 get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
2530 {
2531 	struct rte_port *port = &ports[port_id];
2532 	struct rte_eth_txq_info tx_qinfo;
2533 	int ret;
2534 
2535 	ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
2536 	if (ret == 0) {
2537 		*ring_size = tx_qinfo.nb_desc;
2538 		return ret;
2539 	}
2540 
2541 	if (ret != -ENOTSUP)
2542 		return ret;
2543 	/*
2544 	 * If the rte_eth_tx_queue_info_get is not support for this PMD,
2545 	 * ring_size stored in testpmd will be used for validity verification.
2546 	 * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
2547 	 * being 0, it will use a default value provided by PMDs to setup this
2548 	 * txq. If the default value is 0, it will use the
2549 	 * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
2550 	 */
2551 	if (port->nb_tx_desc[txq_id])
2552 		*ring_size = port->nb_tx_desc[txq_id];
2553 	else if (port->dev_info.default_txportconf.ring_size)
2554 		*ring_size = port->dev_info.default_txportconf.ring_size;
2555 	else
2556 		*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
2557 	return 0;
2558 }
2559 
2560 static int
2561 rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
2562 {
2563 	uint16_t ring_size;
2564 	int ret;
2565 
2566 	ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
2567 	if (ret)
2568 		return 1;
2569 
2570 	if (rxdesc_id < ring_size)
2571 		return 0;
2572 
2573 	printf("Invalid RX descriptor %u (must be < ring_size=%u)\n",
2574 	       rxdesc_id, ring_size);
2575 	return 1;
2576 }
2577 
2578 static int
2579 tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
2580 {
2581 	uint16_t ring_size;
2582 	int ret;
2583 
2584 	ret = get_tx_ring_size(port_id, txq_id, &ring_size);
2585 	if (ret)
2586 		return 1;
2587 
2588 	if (txdesc_id < ring_size)
2589 		return 0;
2590 
2591 	printf("Invalid TX descriptor %u (must be < ring_size=%u)\n",
2592 	       txdesc_id, ring_size);
2593 	return 1;
2594 }
2595 
2596 static const struct rte_memzone *
2597 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
2598 {
2599 	char mz_name[RTE_MEMZONE_NAMESIZE];
2600 	const struct rte_memzone *mz;
2601 
2602 	snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
2603 			port_id, q_id, ring_name);
2604 	mz = rte_memzone_lookup(mz_name);
2605 	if (mz == NULL)
2606 		printf("%s ring memory zoneof (port %d, queue %d) not"
2607 		       "found (zone name = %s\n",
2608 		       ring_name, port_id, q_id, mz_name);
2609 	return mz;
2610 }
2611 
2612 union igb_ring_dword {
2613 	uint64_t dword;
2614 	struct {
2615 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
2616 		uint32_t lo;
2617 		uint32_t hi;
2618 #else
2619 		uint32_t hi;
2620 		uint32_t lo;
2621 #endif
2622 	} words;
2623 };
2624 
2625 struct igb_ring_desc_32_bytes {
2626 	union igb_ring_dword lo_dword;
2627 	union igb_ring_dword hi_dword;
2628 	union igb_ring_dword resv1;
2629 	union igb_ring_dword resv2;
2630 };
2631 
2632 struct igb_ring_desc_16_bytes {
2633 	union igb_ring_dword lo_dword;
2634 	union igb_ring_dword hi_dword;
2635 };
2636 
2637 static void
2638 ring_rxd_display_dword(union igb_ring_dword dword)
2639 {
2640 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
2641 					(unsigned)dword.words.hi);
2642 }
2643 
2644 static void
2645 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
2646 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2647 			   portid_t port_id,
2648 #else
2649 			   __rte_unused portid_t port_id,
2650 #endif
2651 			   uint16_t desc_id)
2652 {
2653 	struct igb_ring_desc_16_bytes *ring =
2654 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
2655 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2656 	int ret;
2657 	struct rte_eth_dev_info dev_info;
2658 
2659 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2660 	if (ret != 0)
2661 		return;
2662 
2663 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
2664 		/* 32 bytes RX descriptor, i40e only */
2665 		struct igb_ring_desc_32_bytes *ring =
2666 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
2667 		ring[desc_id].lo_dword.dword =
2668 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2669 		ring_rxd_display_dword(ring[desc_id].lo_dword);
2670 		ring[desc_id].hi_dword.dword =
2671 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2672 		ring_rxd_display_dword(ring[desc_id].hi_dword);
2673 		ring[desc_id].resv1.dword =
2674 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
2675 		ring_rxd_display_dword(ring[desc_id].resv1);
2676 		ring[desc_id].resv2.dword =
2677 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
2678 		ring_rxd_display_dword(ring[desc_id].resv2);
2679 
2680 		return;
2681 	}
2682 #endif
2683 	/* 16 bytes RX descriptor */
2684 	ring[desc_id].lo_dword.dword =
2685 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2686 	ring_rxd_display_dword(ring[desc_id].lo_dword);
2687 	ring[desc_id].hi_dword.dword =
2688 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2689 	ring_rxd_display_dword(ring[desc_id].hi_dword);
2690 }
2691 
2692 static void
2693 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
2694 {
2695 	struct igb_ring_desc_16_bytes *ring;
2696 	struct igb_ring_desc_16_bytes txd;
2697 
2698 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
2699 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
2700 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
2701 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
2702 			(unsigned)txd.lo_dword.words.lo,
2703 			(unsigned)txd.lo_dword.words.hi,
2704 			(unsigned)txd.hi_dword.words.lo,
2705 			(unsigned)txd.hi_dword.words.hi);
2706 }
2707 
2708 void
2709 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
2710 {
2711 	const struct rte_memzone *rx_mz;
2712 
2713 	if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
2714 		return;
2715 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
2716 	if (rx_mz == NULL)
2717 		return;
2718 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
2719 }
2720 
2721 void
2722 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
2723 {
2724 	const struct rte_memzone *tx_mz;
2725 
2726 	if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
2727 		return;
2728 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
2729 	if (tx_mz == NULL)
2730 		return;
2731 	ring_tx_descriptor_display(tx_mz, txd_id);
2732 }
2733 
2734 void
2735 fwd_lcores_config_display(void)
2736 {
2737 	lcoreid_t lc_id;
2738 
2739 	printf("List of forwarding lcores:");
2740 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
2741 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
2742 	printf("\n");
2743 }
2744 void
2745 rxtx_config_display(void)
2746 {
2747 	portid_t pid;
2748 	queueid_t qid;
2749 
2750 	printf("  %s packet forwarding%s packets/burst=%d\n",
2751 	       cur_fwd_eng->fwd_mode_name,
2752 	       retry_enabled == 0 ? "" : " with retry",
2753 	       nb_pkt_per_burst);
2754 
2755 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
2756 		printf("  packet len=%u - nb packet segments=%d\n",
2757 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
2758 
2759 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
2760 	       nb_fwd_lcores, nb_fwd_ports);
2761 
2762 	RTE_ETH_FOREACH_DEV(pid) {
2763 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
2764 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
2765 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
2766 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
2767 		struct rte_eth_rxq_info rx_qinfo;
2768 		struct rte_eth_txq_info tx_qinfo;
2769 		uint16_t rx_free_thresh_tmp;
2770 		uint16_t tx_free_thresh_tmp;
2771 		uint16_t tx_rs_thresh_tmp;
2772 		uint16_t nb_rx_desc_tmp;
2773 		uint16_t nb_tx_desc_tmp;
2774 		uint64_t offloads_tmp;
2775 		uint8_t pthresh_tmp;
2776 		uint8_t hthresh_tmp;
2777 		uint8_t wthresh_tmp;
2778 		int32_t rc;
2779 
2780 		/* per port config */
2781 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
2782 				(unsigned int)pid, nb_rxq, nb_txq);
2783 
2784 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
2785 				ports[pid].dev_conf.rxmode.offloads,
2786 				ports[pid].dev_conf.txmode.offloads);
2787 
2788 		/* per rx queue config only for first queue to be less verbose */
2789 		for (qid = 0; qid < 1; qid++) {
2790 			rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
2791 			if (rc) {
2792 				nb_rx_desc_tmp = nb_rx_desc[qid];
2793 				rx_free_thresh_tmp =
2794 					rx_conf[qid].rx_free_thresh;
2795 				pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
2796 				hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
2797 				wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
2798 				offloads_tmp = rx_conf[qid].offloads;
2799 			} else {
2800 				nb_rx_desc_tmp = rx_qinfo.nb_desc;
2801 				rx_free_thresh_tmp =
2802 						rx_qinfo.conf.rx_free_thresh;
2803 				pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
2804 				hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
2805 				wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
2806 				offloads_tmp = rx_qinfo.conf.offloads;
2807 			}
2808 
2809 			printf("    RX queue: %d\n", qid);
2810 			printf("      RX desc=%d - RX free threshold=%d\n",
2811 				nb_rx_desc_tmp, rx_free_thresh_tmp);
2812 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
2813 				" wthresh=%d\n",
2814 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2815 			printf("      RX Offloads=0x%"PRIx64"\n", offloads_tmp);
2816 		}
2817 
2818 		/* per tx queue config only for first queue to be less verbose */
2819 		for (qid = 0; qid < 1; qid++) {
2820 			rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
2821 			if (rc) {
2822 				nb_tx_desc_tmp = nb_tx_desc[qid];
2823 				tx_free_thresh_tmp =
2824 					tx_conf[qid].tx_free_thresh;
2825 				pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
2826 				hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
2827 				wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
2828 				offloads_tmp = tx_conf[qid].offloads;
2829 				tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
2830 			} else {
2831 				nb_tx_desc_tmp = tx_qinfo.nb_desc;
2832 				tx_free_thresh_tmp =
2833 						tx_qinfo.conf.tx_free_thresh;
2834 				pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
2835 				hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
2836 				wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
2837 				offloads_tmp = tx_qinfo.conf.offloads;
2838 				tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
2839 			}
2840 
2841 			printf("    TX queue: %d\n", qid);
2842 			printf("      TX desc=%d - TX free threshold=%d\n",
2843 				nb_tx_desc_tmp, tx_free_thresh_tmp);
2844 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
2845 				" wthresh=%d\n",
2846 				pthresh_tmp, hthresh_tmp, wthresh_tmp);
2847 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
2848 				offloads_tmp, tx_rs_thresh_tmp);
2849 		}
2850 	}
2851 }
2852 
2853 void
2854 port_rss_reta_info(portid_t port_id,
2855 		   struct rte_eth_rss_reta_entry64 *reta_conf,
2856 		   uint16_t nb_entries)
2857 {
2858 	uint16_t i, idx, shift;
2859 	int ret;
2860 
2861 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2862 		return;
2863 
2864 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
2865 	if (ret != 0) {
2866 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
2867 		return;
2868 	}
2869 
2870 	for (i = 0; i < nb_entries; i++) {
2871 		idx = i / RTE_RETA_GROUP_SIZE;
2872 		shift = i % RTE_RETA_GROUP_SIZE;
2873 		if (!(reta_conf[idx].mask & (1ULL << shift)))
2874 			continue;
2875 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
2876 					i, reta_conf[idx].reta[shift]);
2877 	}
2878 }
2879 
2880 /*
2881  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
2882  * key of the port.
2883  */
2884 void
2885 port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
2886 {
2887 	struct rte_eth_rss_conf rss_conf = {0};
2888 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
2889 	uint64_t rss_hf;
2890 	uint8_t i;
2891 	int diag;
2892 	struct rte_eth_dev_info dev_info;
2893 	uint8_t hash_key_size;
2894 	int ret;
2895 
2896 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2897 		return;
2898 
2899 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
2900 	if (ret != 0)
2901 		return;
2902 
2903 	if (dev_info.hash_key_size > 0 &&
2904 			dev_info.hash_key_size <= sizeof(rss_key))
2905 		hash_key_size = dev_info.hash_key_size;
2906 	else {
2907 		printf("dev_info did not provide a valid hash key size\n");
2908 		return;
2909 	}
2910 
2911 	/* Get RSS hash key if asked to display it */
2912 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
2913 	rss_conf.rss_key_len = hash_key_size;
2914 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2915 	if (diag != 0) {
2916 		switch (diag) {
2917 		case -ENODEV:
2918 			printf("port index %d invalid\n", port_id);
2919 			break;
2920 		case -ENOTSUP:
2921 			printf("operation not supported by device\n");
2922 			break;
2923 		default:
2924 			printf("operation failed - diag=%d\n", diag);
2925 			break;
2926 		}
2927 		return;
2928 	}
2929 	rss_hf = rss_conf.rss_hf;
2930 	if (rss_hf == 0) {
2931 		printf("RSS disabled\n");
2932 		return;
2933 	}
2934 	printf("RSS functions:\n ");
2935 	for (i = 0; rss_type_table[i].str; i++) {
2936 		if (rss_hf & rss_type_table[i].rss_type)
2937 			printf("%s ", rss_type_table[i].str);
2938 	}
2939 	printf("\n");
2940 	if (!show_rss_key)
2941 		return;
2942 	printf("RSS key:\n");
2943 	for (i = 0; i < hash_key_size; i++)
2944 		printf("%02X", rss_key[i]);
2945 	printf("\n");
2946 }
2947 
2948 void
2949 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
2950 			 uint hash_key_len)
2951 {
2952 	struct rte_eth_rss_conf rss_conf;
2953 	int diag;
2954 	unsigned int i;
2955 
2956 	rss_conf.rss_key = NULL;
2957 	rss_conf.rss_key_len = hash_key_len;
2958 	rss_conf.rss_hf = 0;
2959 	for (i = 0; rss_type_table[i].str; i++) {
2960 		if (!strcmp(rss_type_table[i].str, rss_type))
2961 			rss_conf.rss_hf = rss_type_table[i].rss_type;
2962 	}
2963 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
2964 	if (diag == 0) {
2965 		rss_conf.rss_key = hash_key;
2966 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
2967 	}
2968 	if (diag == 0)
2969 		return;
2970 
2971 	switch (diag) {
2972 	case -ENODEV:
2973 		printf("port index %d invalid\n", port_id);
2974 		break;
2975 	case -ENOTSUP:
2976 		printf("operation not supported by device\n");
2977 		break;
2978 	default:
2979 		printf("operation failed - diag=%d\n", diag);
2980 		break;
2981 	}
2982 }
2983 
2984 /*
2985  * Setup forwarding configuration for each logical core.
2986  */
2987 static void
2988 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2989 {
2990 	streamid_t nb_fs_per_lcore;
2991 	streamid_t nb_fs;
2992 	streamid_t sm_id;
2993 	lcoreid_t  nb_extra;
2994 	lcoreid_t  nb_fc;
2995 	lcoreid_t  nb_lc;
2996 	lcoreid_t  lc_id;
2997 
2998 	nb_fs = cfg->nb_fwd_streams;
2999 	nb_fc = cfg->nb_fwd_lcores;
3000 	if (nb_fs <= nb_fc) {
3001 		nb_fs_per_lcore = 1;
3002 		nb_extra = 0;
3003 	} else {
3004 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
3005 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
3006 	}
3007 
3008 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
3009 	sm_id = 0;
3010 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
3011 		fwd_lcores[lc_id]->stream_idx = sm_id;
3012 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
3013 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3014 	}
3015 
3016 	/*
3017 	 * Assign extra remaining streams, if any.
3018 	 */
3019 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
3020 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
3021 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
3022 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
3023 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
3024 	}
3025 }
3026 
3027 static portid_t
3028 fwd_topology_tx_port_get(portid_t rxp)
3029 {
3030 	static int warning_once = 1;
3031 
3032 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
3033 
3034 	switch (port_topology) {
3035 	default:
3036 	case PORT_TOPOLOGY_PAIRED:
3037 		if ((rxp & 0x1) == 0) {
3038 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
3039 				return rxp + 1;
3040 			if (warning_once) {
3041 				printf("\nWarning! port-topology=paired"
3042 				       " and odd forward ports number,"
3043 				       " the last port will pair with"
3044 				       " itself.\n\n");
3045 				warning_once = 0;
3046 			}
3047 			return rxp;
3048 		}
3049 		return rxp - 1;
3050 	case PORT_TOPOLOGY_CHAINED:
3051 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
3052 	case PORT_TOPOLOGY_LOOP:
3053 		return rxp;
3054 	}
3055 }
3056 
3057 static void
3058 simple_fwd_config_setup(void)
3059 {
3060 	portid_t i;
3061 
3062 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
3063 	cur_fwd_config.nb_fwd_streams =
3064 		(streamid_t) cur_fwd_config.nb_fwd_ports;
3065 
3066 	/* reinitialize forwarding streams */
3067 	init_fwd_streams();
3068 
3069 	/*
3070 	 * In the simple forwarding test, the number of forwarding cores
3071 	 * must be lower or equal to the number of forwarding ports.
3072 	 */
3073 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3074 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
3075 		cur_fwd_config.nb_fwd_lcores =
3076 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
3077 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3078 
3079 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
3080 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
3081 		fwd_streams[i]->rx_queue  = 0;
3082 		fwd_streams[i]->tx_port   =
3083 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
3084 		fwd_streams[i]->tx_queue  = 0;
3085 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
3086 		fwd_streams[i]->retry_enabled = retry_enabled;
3087 	}
3088 }
3089 
3090 /**
3091  * For the RSS forwarding test all streams distributed over lcores. Each stream
3092  * being composed of a RX queue to poll on a RX port for input messages,
3093  * associated with a TX queue of a TX port where to send forwarded packets.
3094  */
3095 static void
3096 rss_fwd_config_setup(void)
3097 {
3098 	portid_t   rxp;
3099 	portid_t   txp;
3100 	queueid_t  rxq;
3101 	queueid_t  nb_q;
3102 	streamid_t  sm_id;
3103 
3104 	nb_q = nb_rxq;
3105 	if (nb_q > nb_txq)
3106 		nb_q = nb_txq;
3107 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3108 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3109 	cur_fwd_config.nb_fwd_streams =
3110 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
3111 
3112 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3113 		cur_fwd_config.nb_fwd_lcores =
3114 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3115 
3116 	/* reinitialize forwarding streams */
3117 	init_fwd_streams();
3118 
3119 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3120 	rxp = 0; rxq = 0;
3121 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
3122 		struct fwd_stream *fs;
3123 
3124 		fs = fwd_streams[sm_id];
3125 		txp = fwd_topology_tx_port_get(rxp);
3126 		fs->rx_port = fwd_ports_ids[rxp];
3127 		fs->rx_queue = rxq;
3128 		fs->tx_port = fwd_ports_ids[txp];
3129 		fs->tx_queue = rxq;
3130 		fs->peer_addr = fs->tx_port;
3131 		fs->retry_enabled = retry_enabled;
3132 		rxp++;
3133 		if (rxp < nb_fwd_ports)
3134 			continue;
3135 		rxp = 0;
3136 		rxq++;
3137 	}
3138 }
3139 
3140 /**
3141  * For the DCB forwarding test, each core is assigned on each traffic class.
3142  *
3143  * Each core is assigned a multi-stream, each stream being composed of
3144  * a RX queue to poll on a RX port for input messages, associated with
3145  * a TX queue of a TX port where to send forwarded packets. All RX and
3146  * TX queues are mapping to the same traffic class.
3147  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
3148  * the same core
3149  */
3150 static void
3151 dcb_fwd_config_setup(void)
3152 {
3153 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
3154 	portid_t txp, rxp = 0;
3155 	queueid_t txq, rxq = 0;
3156 	lcoreid_t  lc_id;
3157 	uint16_t nb_rx_queue, nb_tx_queue;
3158 	uint16_t i, j, k, sm_id = 0;
3159 	uint8_t tc = 0;
3160 
3161 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3162 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3163 	cur_fwd_config.nb_fwd_streams =
3164 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3165 
3166 	/* reinitialize forwarding streams */
3167 	init_fwd_streams();
3168 	sm_id = 0;
3169 	txp = 1;
3170 	/* get the dcb info on the first RX and TX ports */
3171 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3172 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3173 
3174 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3175 		fwd_lcores[lc_id]->stream_nb = 0;
3176 		fwd_lcores[lc_id]->stream_idx = sm_id;
3177 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
3178 			/* if the nb_queue is zero, means this tc is
3179 			 * not enabled on the POOL
3180 			 */
3181 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
3182 				break;
3183 			k = fwd_lcores[lc_id]->stream_nb +
3184 				fwd_lcores[lc_id]->stream_idx;
3185 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
3186 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
3187 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3188 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
3189 			for (j = 0; j < nb_rx_queue; j++) {
3190 				struct fwd_stream *fs;
3191 
3192 				fs = fwd_streams[k + j];
3193 				fs->rx_port = fwd_ports_ids[rxp];
3194 				fs->rx_queue = rxq + j;
3195 				fs->tx_port = fwd_ports_ids[txp];
3196 				fs->tx_queue = txq + j % nb_tx_queue;
3197 				fs->peer_addr = fs->tx_port;
3198 				fs->retry_enabled = retry_enabled;
3199 			}
3200 			fwd_lcores[lc_id]->stream_nb +=
3201 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
3202 		}
3203 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
3204 
3205 		tc++;
3206 		if (tc < rxp_dcb_info.nb_tcs)
3207 			continue;
3208 		/* Restart from TC 0 on next RX port */
3209 		tc = 0;
3210 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
3211 			rxp = (portid_t)
3212 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
3213 		else
3214 			rxp++;
3215 		if (rxp >= nb_fwd_ports)
3216 			return;
3217 		/* get the dcb information on next RX and TX ports */
3218 		if ((rxp & 0x1) == 0)
3219 			txp = (portid_t) (rxp + 1);
3220 		else
3221 			txp = (portid_t) (rxp - 1);
3222 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
3223 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
3224 	}
3225 }
3226 
3227 static void
3228 icmp_echo_config_setup(void)
3229 {
3230 	portid_t  rxp;
3231 	queueid_t rxq;
3232 	lcoreid_t lc_id;
3233 	uint16_t  sm_id;
3234 
3235 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
3236 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
3237 			(nb_txq * nb_fwd_ports);
3238 	else
3239 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
3240 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
3241 	cur_fwd_config.nb_fwd_streams =
3242 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
3243 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
3244 		cur_fwd_config.nb_fwd_lcores =
3245 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
3246 	if (verbose_level > 0) {
3247 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
3248 		       __FUNCTION__,
3249 		       cur_fwd_config.nb_fwd_lcores,
3250 		       cur_fwd_config.nb_fwd_ports,
3251 		       cur_fwd_config.nb_fwd_streams);
3252 	}
3253 
3254 	/* reinitialize forwarding streams */
3255 	init_fwd_streams();
3256 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
3257 	rxp = 0; rxq = 0;
3258 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
3259 		if (verbose_level > 0)
3260 			printf("  core=%d: \n", lc_id);
3261 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3262 			struct fwd_stream *fs;
3263 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3264 			fs->rx_port = fwd_ports_ids[rxp];
3265 			fs->rx_queue = rxq;
3266 			fs->tx_port = fs->rx_port;
3267 			fs->tx_queue = rxq;
3268 			fs->peer_addr = fs->tx_port;
3269 			fs->retry_enabled = retry_enabled;
3270 			if (verbose_level > 0)
3271 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
3272 				       sm_id, fs->rx_port, fs->rx_queue,
3273 				       fs->tx_queue);
3274 			rxq = (queueid_t) (rxq + 1);
3275 			if (rxq == nb_rxq) {
3276 				rxq = 0;
3277 				rxp = (portid_t) (rxp + 1);
3278 			}
3279 		}
3280 	}
3281 }
3282 
3283 void
3284 fwd_config_setup(void)
3285 {
3286 	cur_fwd_config.fwd_eng = cur_fwd_eng;
3287 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
3288 		icmp_echo_config_setup();
3289 		return;
3290 	}
3291 
3292 	if ((nb_rxq > 1) && (nb_txq > 1)){
3293 		if (dcb_config)
3294 			dcb_fwd_config_setup();
3295 		else
3296 			rss_fwd_config_setup();
3297 	}
3298 	else
3299 		simple_fwd_config_setup();
3300 }
3301 
3302 static const char *
3303 mp_alloc_to_str(uint8_t mode)
3304 {
3305 	switch (mode) {
3306 	case MP_ALLOC_NATIVE:
3307 		return "native";
3308 	case MP_ALLOC_ANON:
3309 		return "anon";
3310 	case MP_ALLOC_XMEM:
3311 		return "xmem";
3312 	case MP_ALLOC_XMEM_HUGE:
3313 		return "xmemhuge";
3314 	case MP_ALLOC_XBUF:
3315 		return "xbuf";
3316 	default:
3317 		return "invalid";
3318 	}
3319 }
3320 
3321 void
3322 pkt_fwd_config_display(struct fwd_config *cfg)
3323 {
3324 	struct fwd_stream *fs;
3325 	lcoreid_t  lc_id;
3326 	streamid_t sm_id;
3327 
3328 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
3329 		"NUMA support %s, MP allocation mode: %s\n",
3330 		cfg->fwd_eng->fwd_mode_name,
3331 		retry_enabled == 0 ? "" : " with retry",
3332 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
3333 		numa_support == 1 ? "enabled" : "disabled",
3334 		mp_alloc_to_str(mp_alloc_type));
3335 
3336 	if (retry_enabled)
3337 		printf("TX retry num: %u, delay between TX retries: %uus\n",
3338 			burst_tx_retry_num, burst_tx_delay_time);
3339 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
3340 		printf("Logical Core %u (socket %u) forwards packets on "
3341 		       "%d streams:",
3342 		       fwd_lcores_cpuids[lc_id],
3343 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
3344 		       fwd_lcores[lc_id]->stream_nb);
3345 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
3346 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
3347 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
3348 			       "P=%d/Q=%d (socket %u) ",
3349 			       fs->rx_port, fs->rx_queue,
3350 			       ports[fs->rx_port].socket_id,
3351 			       fs->tx_port, fs->tx_queue,
3352 			       ports[fs->tx_port].socket_id);
3353 			print_ethaddr("peer=",
3354 				      &peer_eth_addrs[fs->peer_addr]);
3355 		}
3356 		printf("\n");
3357 	}
3358 	printf("\n");
3359 }
3360 
3361 void
3362 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
3363 {
3364 	struct rte_ether_addr new_peer_addr;
3365 	if (!rte_eth_dev_is_valid_port(port_id)) {
3366 		printf("Error: Invalid port number %i\n", port_id);
3367 		return;
3368 	}
3369 	if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
3370 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
3371 		return;
3372 	}
3373 	peer_eth_addrs[port_id] = new_peer_addr;
3374 }
3375 
3376 int
3377 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
3378 {
3379 	unsigned int i;
3380 	unsigned int lcore_cpuid;
3381 	int record_now;
3382 
3383 	record_now = 0;
3384  again:
3385 	for (i = 0; i < nb_lc; i++) {
3386 		lcore_cpuid = lcorelist[i];
3387 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
3388 			printf("lcore %u not enabled\n", lcore_cpuid);
3389 			return -1;
3390 		}
3391 		if (lcore_cpuid == rte_get_main_lcore()) {
3392 			printf("lcore %u cannot be masked on for running "
3393 			       "packet forwarding, which is the main lcore "
3394 			       "and reserved for command line parsing only\n",
3395 			       lcore_cpuid);
3396 			return -1;
3397 		}
3398 		if (record_now)
3399 			fwd_lcores_cpuids[i] = lcore_cpuid;
3400 	}
3401 	if (record_now == 0) {
3402 		record_now = 1;
3403 		goto again;
3404 	}
3405 	nb_cfg_lcores = (lcoreid_t) nb_lc;
3406 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
3407 		printf("previous number of forwarding cores %u - changed to "
3408 		       "number of configured cores %u\n",
3409 		       (unsigned int) nb_fwd_lcores, nb_lc);
3410 		nb_fwd_lcores = (lcoreid_t) nb_lc;
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 int
3417 set_fwd_lcores_mask(uint64_t lcoremask)
3418 {
3419 	unsigned int lcorelist[64];
3420 	unsigned int nb_lc;
3421 	unsigned int i;
3422 
3423 	if (lcoremask == 0) {
3424 		printf("Invalid NULL mask of cores\n");
3425 		return -1;
3426 	}
3427 	nb_lc = 0;
3428 	for (i = 0; i < 64; i++) {
3429 		if (! ((uint64_t)(1ULL << i) & lcoremask))
3430 			continue;
3431 		lcorelist[nb_lc++] = i;
3432 	}
3433 	return set_fwd_lcores_list(lcorelist, nb_lc);
3434 }
3435 
3436 void
3437 set_fwd_lcores_number(uint16_t nb_lc)
3438 {
3439 	if (test_done == 0) {
3440 		printf("Please stop forwarding first\n");
3441 		return;
3442 	}
3443 	if (nb_lc > nb_cfg_lcores) {
3444 		printf("nb fwd cores %u > %u (max. number of configured "
3445 		       "lcores) - ignored\n",
3446 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
3447 		return;
3448 	}
3449 	nb_fwd_lcores = (lcoreid_t) nb_lc;
3450 	printf("Number of forwarding cores set to %u\n",
3451 	       (unsigned int) nb_fwd_lcores);
3452 }
3453 
3454 void
3455 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
3456 {
3457 	unsigned int i;
3458 	portid_t port_id;
3459 	int record_now;
3460 
3461 	record_now = 0;
3462  again:
3463 	for (i = 0; i < nb_pt; i++) {
3464 		port_id = (portid_t) portlist[i];
3465 		if (port_id_is_invalid(port_id, ENABLED_WARN))
3466 			return;
3467 		if (record_now)
3468 			fwd_ports_ids[i] = port_id;
3469 	}
3470 	if (record_now == 0) {
3471 		record_now = 1;
3472 		goto again;
3473 	}
3474 	nb_cfg_ports = (portid_t) nb_pt;
3475 	if (nb_fwd_ports != (portid_t) nb_pt) {
3476 		printf("previous number of forwarding ports %u - changed to "
3477 		       "number of configured ports %u\n",
3478 		       (unsigned int) nb_fwd_ports, nb_pt);
3479 		nb_fwd_ports = (portid_t) nb_pt;
3480 	}
3481 }
3482 
3483 /**
3484  * Parse the user input and obtain the list of forwarding ports
3485  *
3486  * @param[in] list
3487  *   String containing the user input. User can specify
3488  *   in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
3489  *   For example, if the user wants to use all the available
3490  *   4 ports in his system, then the input can be 0-3 or 0,1,2,3.
3491  *   If the user wants to use only the ports 1,2 then the input
3492  *   is 1,2.
3493  *   valid characters are '-' and ','
3494  * @param[out] values
3495  *   This array will be filled with a list of port IDs
3496  *   based on the user input
3497  *   Note that duplicate entries are discarded and only the first
3498  *   count entries in this array are port IDs and all the rest
3499  *   will contain default values
3500  * @param[in] maxsize
3501  *   This parameter denotes 2 things
3502  *   1) Number of elements in the values array
3503  *   2) Maximum value of each element in the values array
3504  * @return
3505  *   On success, returns total count of parsed port IDs
3506  *   On failure, returns 0
3507  */
3508 static unsigned int
3509 parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
3510 {
3511 	unsigned int count = 0;
3512 	char *end = NULL;
3513 	int min, max;
3514 	int value, i;
3515 	unsigned int marked[maxsize];
3516 
3517 	if (list == NULL || values == NULL)
3518 		return 0;
3519 
3520 	for (i = 0; i < (int)maxsize; i++)
3521 		marked[i] = 0;
3522 
3523 	min = INT_MAX;
3524 
3525 	do {
3526 		/*Remove the blank spaces if any*/
3527 		while (isblank(*list))
3528 			list++;
3529 		if (*list == '\0')
3530 			break;
3531 		errno = 0;
3532 		value = strtol(list, &end, 10);
3533 		if (errno || end == NULL)
3534 			return 0;
3535 		if (value < 0 || value >= (int)maxsize)
3536 			return 0;
3537 		while (isblank(*end))
3538 			end++;
3539 		if (*end == '-' && min == INT_MAX) {
3540 			min = value;
3541 		} else if ((*end == ',') || (*end == '\0')) {
3542 			max = value;
3543 			if (min == INT_MAX)
3544 				min = value;
3545 			for (i = min; i <= max; i++) {
3546 				if (count < maxsize) {
3547 					if (marked[i])
3548 						continue;
3549 					values[count] = i;
3550 					marked[i] = 1;
3551 					count++;
3552 				}
3553 			}
3554 			min = INT_MAX;
3555 		} else
3556 			return 0;
3557 		list = end + 1;
3558 	} while (*end != '\0');
3559 
3560 	return count;
3561 }
3562 
3563 void
3564 parse_fwd_portlist(const char *portlist)
3565 {
3566 	unsigned int portcount;
3567 	unsigned int portindex[RTE_MAX_ETHPORTS];
3568 	unsigned int i, valid_port_count = 0;
3569 
3570 	portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
3571 	if (!portcount)
3572 		rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
3573 
3574 	/*
3575 	 * Here we verify the validity of the ports
3576 	 * and thereby calculate the total number of
3577 	 * valid ports
3578 	 */
3579 	for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
3580 		if (rte_eth_dev_is_valid_port(portindex[i])) {
3581 			portindex[valid_port_count] = portindex[i];
3582 			valid_port_count++;
3583 		}
3584 	}
3585 
3586 	set_fwd_ports_list(portindex, valid_port_count);
3587 }
3588 
3589 void
3590 set_fwd_ports_mask(uint64_t portmask)
3591 {
3592 	unsigned int portlist[64];
3593 	unsigned int nb_pt;
3594 	unsigned int i;
3595 
3596 	if (portmask == 0) {
3597 		printf("Invalid NULL mask of ports\n");
3598 		return;
3599 	}
3600 	nb_pt = 0;
3601 	RTE_ETH_FOREACH_DEV(i) {
3602 		if (! ((uint64_t)(1ULL << i) & portmask))
3603 			continue;
3604 		portlist[nb_pt++] = i;
3605 	}
3606 	set_fwd_ports_list(portlist, nb_pt);
3607 }
3608 
3609 void
3610 set_fwd_ports_number(uint16_t nb_pt)
3611 {
3612 	if (nb_pt > nb_cfg_ports) {
3613 		printf("nb fwd ports %u > %u (number of configured "
3614 		       "ports) - ignored\n",
3615 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
3616 		return;
3617 	}
3618 	nb_fwd_ports = (portid_t) nb_pt;
3619 	printf("Number of forwarding ports set to %u\n",
3620 	       (unsigned int) nb_fwd_ports);
3621 }
3622 
3623 int
3624 port_is_forwarding(portid_t port_id)
3625 {
3626 	unsigned int i;
3627 
3628 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3629 		return -1;
3630 
3631 	for (i = 0; i < nb_fwd_ports; i++) {
3632 		if (fwd_ports_ids[i] == port_id)
3633 			return 1;
3634 	}
3635 
3636 	return 0;
3637 }
3638 
3639 void
3640 set_nb_pkt_per_burst(uint16_t nb)
3641 {
3642 	if (nb > MAX_PKT_BURST) {
3643 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
3644 		       " ignored\n",
3645 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
3646 		return;
3647 	}
3648 	nb_pkt_per_burst = nb;
3649 	printf("Number of packets per burst set to %u\n",
3650 	       (unsigned int) nb_pkt_per_burst);
3651 }
3652 
3653 static const char *
3654 tx_split_get_name(enum tx_pkt_split split)
3655 {
3656 	uint32_t i;
3657 
3658 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3659 		if (tx_split_name[i].split == split)
3660 			return tx_split_name[i].name;
3661 	}
3662 	return NULL;
3663 }
3664 
3665 void
3666 set_tx_pkt_split(const char *name)
3667 {
3668 	uint32_t i;
3669 
3670 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
3671 		if (strcmp(tx_split_name[i].name, name) == 0) {
3672 			tx_pkt_split = tx_split_name[i].split;
3673 			return;
3674 		}
3675 	}
3676 	printf("unknown value: \"%s\"\n", name);
3677 }
3678 
3679 int
3680 parse_fec_mode(const char *name, uint32_t *mode)
3681 {
3682 	uint8_t i;
3683 
3684 	for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
3685 		if (strcmp(fec_mode_name[i].name, name) == 0) {
3686 			*mode = RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
3687 			return 0;
3688 		}
3689 	}
3690 	return -1;
3691 }
3692 
3693 void
3694 show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
3695 {
3696 	unsigned int i, j;
3697 
3698 	printf("FEC capabilities:\n");
3699 
3700 	for (i = 0; i < num; i++) {
3701 		printf("%s : ",
3702 			rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
3703 
3704 		for (j = RTE_ETH_FEC_AUTO; j < RTE_DIM(fec_mode_name); j++) {
3705 			if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
3706 						speed_fec_capa[i].capa)
3707 				printf("%s ", fec_mode_name[j].name);
3708 		}
3709 		printf("\n");
3710 	}
3711 }
3712 
3713 void
3714 show_rx_pkt_offsets(void)
3715 {
3716 	uint32_t i, n;
3717 
3718 	n = rx_pkt_nb_offs;
3719 	printf("Number of offsets: %u\n", n);
3720 	if (n) {
3721 		printf("Segment offsets: ");
3722 		for (i = 0; i != n - 1; i++)
3723 			printf("%hu,", rx_pkt_seg_offsets[i]);
3724 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3725 	}
3726 }
3727 
3728 void
3729 set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
3730 {
3731 	unsigned int i;
3732 
3733 	if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
3734 		printf("nb segments per RX packets=%u >= "
3735 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
3736 		return;
3737 	}
3738 
3739 	/*
3740 	 * No extra check here, the segment length will be checked by PMD
3741 	 * in the extended queue setup.
3742 	 */
3743 	for (i = 0; i < nb_offs; i++) {
3744 		if (seg_offsets[i] >= UINT16_MAX) {
3745 			printf("offset[%u]=%u > UINT16_MAX - give up\n",
3746 			       i, seg_offsets[i]);
3747 			return;
3748 		}
3749 	}
3750 
3751 	for (i = 0; i < nb_offs; i++)
3752 		rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
3753 
3754 	rx_pkt_nb_offs = (uint8_t) nb_offs;
3755 }
3756 
3757 void
3758 show_rx_pkt_segments(void)
3759 {
3760 	uint32_t i, n;
3761 
3762 	n = rx_pkt_nb_segs;
3763 	printf("Number of segments: %u\n", n);
3764 	if (n) {
3765 		printf("Segment sizes: ");
3766 		for (i = 0; i != n - 1; i++)
3767 			printf("%hu,", rx_pkt_seg_lengths[i]);
3768 		printf("%hu\n", rx_pkt_seg_lengths[i]);
3769 	}
3770 }
3771 
3772 void
3773 set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3774 {
3775 	unsigned int i;
3776 
3777 	if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
3778 		printf("nb segments per RX packets=%u >= "
3779 		       "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
3780 		return;
3781 	}
3782 
3783 	/*
3784 	 * No extra check here, the segment length will be checked by PMD
3785 	 * in the extended queue setup.
3786 	 */
3787 	for (i = 0; i < nb_segs; i++) {
3788 		if (seg_lengths[i] >= UINT16_MAX) {
3789 			printf("length[%u]=%u > UINT16_MAX - give up\n",
3790 			       i, seg_lengths[i]);
3791 			return;
3792 		}
3793 	}
3794 
3795 	for (i = 0; i < nb_segs; i++)
3796 		rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3797 
3798 	rx_pkt_nb_segs = (uint8_t) nb_segs;
3799 }
3800 
3801 void
3802 show_tx_pkt_segments(void)
3803 {
3804 	uint32_t i, n;
3805 	const char *split;
3806 
3807 	n = tx_pkt_nb_segs;
3808 	split = tx_split_get_name(tx_pkt_split);
3809 
3810 	printf("Number of segments: %u\n", n);
3811 	printf("Segment sizes: ");
3812 	for (i = 0; i != n - 1; i++)
3813 		printf("%hu,", tx_pkt_seg_lengths[i]);
3814 	printf("%hu\n", tx_pkt_seg_lengths[i]);
3815 	printf("Split packet: %s\n", split);
3816 }
3817 
3818 static bool
3819 nb_segs_is_invalid(unsigned int nb_segs)
3820 {
3821 	uint16_t ring_size;
3822 	uint16_t queue_id;
3823 	uint16_t port_id;
3824 	int ret;
3825 
3826 	RTE_ETH_FOREACH_DEV(port_id) {
3827 		for (queue_id = 0; queue_id < nb_txq; queue_id++) {
3828 			ret = get_tx_ring_size(port_id, queue_id, &ring_size);
3829 
3830 			if (ret)
3831 				return true;
3832 
3833 			if (ring_size < nb_segs) {
3834 				printf("nb segments per TX packets=%u >= "
3835 				       "TX queue(%u) ring_size=%u - ignored\n",
3836 				       nb_segs, queue_id, ring_size);
3837 				return true;
3838 			}
3839 		}
3840 	}
3841 
3842 	return false;
3843 }
3844 
3845 void
3846 set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
3847 {
3848 	uint16_t tx_pkt_len;
3849 	unsigned int i;
3850 
3851 	if (nb_segs_is_invalid(nb_segs))
3852 		return;
3853 
3854 	/*
3855 	 * Check that each segment length is greater or equal than
3856 	 * the mbuf data sise.
3857 	 * Check also that the total packet length is greater or equal than the
3858 	 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
3859 	 * 20 + 8).
3860 	 */
3861 	tx_pkt_len = 0;
3862 	for (i = 0; i < nb_segs; i++) {
3863 		if (seg_lengths[i] > mbuf_data_size[0]) {
3864 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
3865 			       i, seg_lengths[i], mbuf_data_size[0]);
3866 			return;
3867 		}
3868 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
3869 	}
3870 	if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
3871 		printf("total packet length=%u < %d - give up\n",
3872 				(unsigned) tx_pkt_len,
3873 				(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
3874 		return;
3875 	}
3876 
3877 	for (i = 0; i < nb_segs; i++)
3878 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
3879 
3880 	tx_pkt_length  = tx_pkt_len;
3881 	tx_pkt_nb_segs = (uint8_t) nb_segs;
3882 }
3883 
3884 void
3885 show_tx_pkt_times(void)
3886 {
3887 	printf("Interburst gap: %u\n", tx_pkt_times_inter);
3888 	printf("Intraburst gap: %u\n", tx_pkt_times_intra);
3889 }
3890 
3891 void
3892 set_tx_pkt_times(unsigned int *tx_times)
3893 {
3894 	tx_pkt_times_inter = tx_times[0];
3895 	tx_pkt_times_intra = tx_times[1];
3896 }
3897 
3898 void
3899 setup_gro(const char *onoff, portid_t port_id)
3900 {
3901 	if (!rte_eth_dev_is_valid_port(port_id)) {
3902 		printf("invalid port id %u\n", port_id);
3903 		return;
3904 	}
3905 	if (test_done == 0) {
3906 		printf("Before enable/disable GRO,"
3907 				" please stop forwarding first\n");
3908 		return;
3909 	}
3910 	if (strcmp(onoff, "on") == 0) {
3911 		if (gro_ports[port_id].enable != 0) {
3912 			printf("Port %u has enabled GRO. Please"
3913 					" disable GRO first\n", port_id);
3914 			return;
3915 		}
3916 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
3917 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
3918 			gro_ports[port_id].param.max_flow_num =
3919 				GRO_DEFAULT_FLOW_NUM;
3920 			gro_ports[port_id].param.max_item_per_flow =
3921 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
3922 		}
3923 		gro_ports[port_id].enable = 1;
3924 	} else {
3925 		if (gro_ports[port_id].enable == 0) {
3926 			printf("Port %u has disabled GRO\n", port_id);
3927 			return;
3928 		}
3929 		gro_ports[port_id].enable = 0;
3930 	}
3931 }
3932 
3933 void
3934 setup_gro_flush_cycles(uint8_t cycles)
3935 {
3936 	if (test_done == 0) {
3937 		printf("Before change flush interval for GRO,"
3938 				" please stop forwarding first.\n");
3939 		return;
3940 	}
3941 
3942 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
3943 			GRO_DEFAULT_FLUSH_CYCLES) {
3944 		printf("The flushing cycle be in the range"
3945 				" of 1 to %u. Revert to the default"
3946 				" value %u.\n",
3947 				GRO_MAX_FLUSH_CYCLES,
3948 				GRO_DEFAULT_FLUSH_CYCLES);
3949 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
3950 	}
3951 
3952 	gro_flush_cycles = cycles;
3953 }
3954 
3955 void
3956 show_gro(portid_t port_id)
3957 {
3958 	struct rte_gro_param *param;
3959 	uint32_t max_pkts_num;
3960 
3961 	param = &gro_ports[port_id].param;
3962 
3963 	if (!rte_eth_dev_is_valid_port(port_id)) {
3964 		printf("Invalid port id %u.\n", port_id);
3965 		return;
3966 	}
3967 	if (gro_ports[port_id].enable) {
3968 		printf("GRO type: TCP/IPv4\n");
3969 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
3970 			max_pkts_num = param->max_flow_num *
3971 				param->max_item_per_flow;
3972 		} else
3973 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
3974 		printf("Max number of packets to perform GRO: %u\n",
3975 				max_pkts_num);
3976 		printf("Flushing cycles: %u\n", gro_flush_cycles);
3977 	} else
3978 		printf("Port %u doesn't enable GRO.\n", port_id);
3979 }
3980 
3981 void
3982 setup_gso(const char *mode, portid_t port_id)
3983 {
3984 	if (!rte_eth_dev_is_valid_port(port_id)) {
3985 		printf("invalid port id %u\n", port_id);
3986 		return;
3987 	}
3988 	if (strcmp(mode, "on") == 0) {
3989 		if (test_done == 0) {
3990 			printf("before enabling GSO,"
3991 					" please stop forwarding first\n");
3992 			return;
3993 		}
3994 		gso_ports[port_id].enable = 1;
3995 	} else if (strcmp(mode, "off") == 0) {
3996 		if (test_done == 0) {
3997 			printf("before disabling GSO,"
3998 					" please stop forwarding first\n");
3999 			return;
4000 		}
4001 		gso_ports[port_id].enable = 0;
4002 	}
4003 }
4004 
4005 char*
4006 list_pkt_forwarding_modes(void)
4007 {
4008 	static char fwd_modes[128] = "";
4009 	const char *separator = "|";
4010 	struct fwd_engine *fwd_eng;
4011 	unsigned i = 0;
4012 
4013 	if (strlen (fwd_modes) == 0) {
4014 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4015 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4016 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4017 			strncat(fwd_modes, separator,
4018 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
4019 		}
4020 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4021 	}
4022 
4023 	return fwd_modes;
4024 }
4025 
4026 char*
4027 list_pkt_forwarding_retry_modes(void)
4028 {
4029 	static char fwd_modes[128] = "";
4030 	const char *separator = "|";
4031 	struct fwd_engine *fwd_eng;
4032 	unsigned i = 0;
4033 
4034 	if (strlen(fwd_modes) == 0) {
4035 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
4036 			if (fwd_eng == &rx_only_engine)
4037 				continue;
4038 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
4039 					sizeof(fwd_modes) -
4040 					strlen(fwd_modes) - 1);
4041 			strncat(fwd_modes, separator,
4042 					sizeof(fwd_modes) -
4043 					strlen(fwd_modes) - 1);
4044 		}
4045 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
4046 	}
4047 
4048 	return fwd_modes;
4049 }
4050 
4051 void
4052 set_pkt_forwarding_mode(const char *fwd_mode_name)
4053 {
4054 	struct fwd_engine *fwd_eng;
4055 	unsigned i;
4056 
4057 	i = 0;
4058 	while ((fwd_eng = fwd_engines[i]) != NULL) {
4059 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
4060 			printf("Set %s packet forwarding mode%s\n",
4061 			       fwd_mode_name,
4062 			       retry_enabled == 0 ? "" : " with retry");
4063 			cur_fwd_eng = fwd_eng;
4064 			return;
4065 		}
4066 		i++;
4067 	}
4068 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
4069 }
4070 
4071 void
4072 add_rx_dump_callbacks(portid_t portid)
4073 {
4074 	struct rte_eth_dev_info dev_info;
4075 	uint16_t queue;
4076 	int ret;
4077 
4078 	if (port_id_is_invalid(portid, ENABLED_WARN))
4079 		return;
4080 
4081 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4082 	if (ret != 0)
4083 		return;
4084 
4085 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4086 		if (!ports[portid].rx_dump_cb[queue])
4087 			ports[portid].rx_dump_cb[queue] =
4088 				rte_eth_add_rx_callback(portid, queue,
4089 					dump_rx_pkts, NULL);
4090 }
4091 
4092 void
4093 add_tx_dump_callbacks(portid_t portid)
4094 {
4095 	struct rte_eth_dev_info dev_info;
4096 	uint16_t queue;
4097 	int ret;
4098 
4099 	if (port_id_is_invalid(portid, ENABLED_WARN))
4100 		return;
4101 
4102 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4103 	if (ret != 0)
4104 		return;
4105 
4106 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4107 		if (!ports[portid].tx_dump_cb[queue])
4108 			ports[portid].tx_dump_cb[queue] =
4109 				rte_eth_add_tx_callback(portid, queue,
4110 							dump_tx_pkts, NULL);
4111 }
4112 
4113 void
4114 remove_rx_dump_callbacks(portid_t portid)
4115 {
4116 	struct rte_eth_dev_info dev_info;
4117 	uint16_t queue;
4118 	int ret;
4119 
4120 	if (port_id_is_invalid(portid, ENABLED_WARN))
4121 		return;
4122 
4123 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4124 	if (ret != 0)
4125 		return;
4126 
4127 	for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
4128 		if (ports[portid].rx_dump_cb[queue]) {
4129 			rte_eth_remove_rx_callback(portid, queue,
4130 				ports[portid].rx_dump_cb[queue]);
4131 			ports[portid].rx_dump_cb[queue] = NULL;
4132 		}
4133 }
4134 
4135 void
4136 remove_tx_dump_callbacks(portid_t portid)
4137 {
4138 	struct rte_eth_dev_info dev_info;
4139 	uint16_t queue;
4140 	int ret;
4141 
4142 	if (port_id_is_invalid(portid, ENABLED_WARN))
4143 		return;
4144 
4145 	ret = eth_dev_info_get_print_err(portid, &dev_info);
4146 	if (ret != 0)
4147 		return;
4148 
4149 	for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
4150 		if (ports[portid].tx_dump_cb[queue]) {
4151 			rte_eth_remove_tx_callback(portid, queue,
4152 				ports[portid].tx_dump_cb[queue]);
4153 			ports[portid].tx_dump_cb[queue] = NULL;
4154 		}
4155 }
4156 
4157 void
4158 configure_rxtx_dump_callbacks(uint16_t verbose)
4159 {
4160 	portid_t portid;
4161 
4162 #ifndef RTE_ETHDEV_RXTX_CALLBACKS
4163 		TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
4164 		return;
4165 #endif
4166 
4167 	RTE_ETH_FOREACH_DEV(portid)
4168 	{
4169 		if (verbose == 1 || verbose > 2)
4170 			add_rx_dump_callbacks(portid);
4171 		else
4172 			remove_rx_dump_callbacks(portid);
4173 		if (verbose >= 2)
4174 			add_tx_dump_callbacks(portid);
4175 		else
4176 			remove_tx_dump_callbacks(portid);
4177 	}
4178 }
4179 
4180 void
4181 set_verbose_level(uint16_t vb_level)
4182 {
4183 	printf("Change verbose level from %u to %u\n",
4184 	       (unsigned int) verbose_level, (unsigned int) vb_level);
4185 	verbose_level = vb_level;
4186 	configure_rxtx_dump_callbacks(verbose_level);
4187 }
4188 
4189 void
4190 vlan_extend_set(portid_t port_id, int on)
4191 {
4192 	int diag;
4193 	int vlan_offload;
4194 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4195 
4196 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4197 		return;
4198 
4199 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4200 
4201 	if (on) {
4202 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
4203 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
4204 	} else {
4205 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
4206 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
4207 	}
4208 
4209 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4210 	if (diag < 0) {
4211 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
4212 	       "diag=%d\n", port_id, on, diag);
4213 		return;
4214 	}
4215 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4216 }
4217 
4218 void
4219 rx_vlan_strip_set(portid_t port_id, int on)
4220 {
4221 	int diag;
4222 	int vlan_offload;
4223 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4224 
4225 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4226 		return;
4227 
4228 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4229 
4230 	if (on) {
4231 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
4232 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
4233 	} else {
4234 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
4235 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4236 	}
4237 
4238 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4239 	if (diag < 0) {
4240 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
4241 	       "diag=%d\n", port_id, on, diag);
4242 		return;
4243 	}
4244 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4245 }
4246 
4247 void
4248 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
4249 {
4250 	int diag;
4251 
4252 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4253 		return;
4254 
4255 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
4256 	if (diag < 0)
4257 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
4258 	       "diag=%d\n", port_id, queue_id, on, diag);
4259 }
4260 
4261 void
4262 rx_vlan_filter_set(portid_t port_id, int on)
4263 {
4264 	int diag;
4265 	int vlan_offload;
4266 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4267 
4268 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4269 		return;
4270 
4271 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4272 
4273 	if (on) {
4274 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
4275 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
4276 	} else {
4277 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
4278 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
4279 	}
4280 
4281 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4282 	if (diag < 0) {
4283 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
4284 	       "diag=%d\n", port_id, on, diag);
4285 		return;
4286 	}
4287 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4288 }
4289 
4290 void
4291 rx_vlan_qinq_strip_set(portid_t port_id, int on)
4292 {
4293 	int diag;
4294 	int vlan_offload;
4295 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
4296 
4297 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4298 		return;
4299 
4300 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
4301 
4302 	if (on) {
4303 		vlan_offload |= ETH_QINQ_STRIP_OFFLOAD;
4304 		port_rx_offloads |= DEV_RX_OFFLOAD_QINQ_STRIP;
4305 	} else {
4306 		vlan_offload &= ~ETH_QINQ_STRIP_OFFLOAD;
4307 		port_rx_offloads &= ~DEV_RX_OFFLOAD_QINQ_STRIP;
4308 	}
4309 
4310 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
4311 	if (diag < 0) {
4312 		printf("%s(port_pi=%d, on=%d) failed "
4313 	       "diag=%d\n", __func__, port_id, on, diag);
4314 		return;
4315 	}
4316 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
4317 }
4318 
4319 int
4320 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
4321 {
4322 	int diag;
4323 
4324 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4325 		return 1;
4326 	if (vlan_id_is_invalid(vlan_id))
4327 		return 1;
4328 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
4329 	if (diag == 0)
4330 		return 0;
4331 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
4332 	       "diag=%d\n",
4333 	       port_id, vlan_id, on, diag);
4334 	return -1;
4335 }
4336 
4337 void
4338 rx_vlan_all_filter_set(portid_t port_id, int on)
4339 {
4340 	uint16_t vlan_id;
4341 
4342 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4343 		return;
4344 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
4345 		if (rx_vft_set(port_id, vlan_id, on))
4346 			break;
4347 	}
4348 }
4349 
4350 void
4351 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
4352 {
4353 	int diag;
4354 
4355 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4356 		return;
4357 
4358 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
4359 	if (diag == 0)
4360 		return;
4361 
4362 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
4363 	       "diag=%d\n",
4364 	       port_id, vlan_type, tp_id, diag);
4365 }
4366 
4367 void
4368 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
4369 {
4370 	struct rte_eth_dev_info dev_info;
4371 	int ret;
4372 
4373 	if (vlan_id_is_invalid(vlan_id))
4374 		return;
4375 
4376 	if (ports[port_id].dev_conf.txmode.offloads &
4377 	    DEV_TX_OFFLOAD_QINQ_INSERT) {
4378 		printf("Error, as QinQ has been enabled.\n");
4379 		return;
4380 	}
4381 
4382 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4383 	if (ret != 0)
4384 		return;
4385 
4386 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
4387 		printf("Error: vlan insert is not supported by port %d\n",
4388 			port_id);
4389 		return;
4390 	}
4391 
4392 	tx_vlan_reset(port_id);
4393 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
4394 	ports[port_id].tx_vlan_id = vlan_id;
4395 }
4396 
4397 void
4398 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
4399 {
4400 	struct rte_eth_dev_info dev_info;
4401 	int ret;
4402 
4403 	if (vlan_id_is_invalid(vlan_id))
4404 		return;
4405 	if (vlan_id_is_invalid(vlan_id_outer))
4406 		return;
4407 
4408 	ret = eth_dev_info_get_print_err(port_id, &dev_info);
4409 	if (ret != 0)
4410 		return;
4411 
4412 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
4413 		printf("Error: qinq insert not supported by port %d\n",
4414 			port_id);
4415 		return;
4416 	}
4417 
4418 	tx_vlan_reset(port_id);
4419 	ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT |
4420 						    DEV_TX_OFFLOAD_QINQ_INSERT);
4421 	ports[port_id].tx_vlan_id = vlan_id;
4422 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
4423 }
4424 
4425 void
4426 tx_vlan_reset(portid_t port_id)
4427 {
4428 	ports[port_id].dev_conf.txmode.offloads &=
4429 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
4430 				  DEV_TX_OFFLOAD_QINQ_INSERT);
4431 	ports[port_id].tx_vlan_id = 0;
4432 	ports[port_id].tx_vlan_id_outer = 0;
4433 }
4434 
4435 void
4436 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
4437 {
4438 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4439 		return;
4440 
4441 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
4442 }
4443 
4444 void
4445 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
4446 {
4447 	int ret;
4448 
4449 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4450 		return;
4451 
4452 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
4453 		return;
4454 
4455 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
4456 		printf("map_value not in required range 0..%d\n",
4457 		       RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
4458 		return;
4459 	}
4460 
4461 	if (!is_rx) { /* tx */
4462 		ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
4463 							     map_value);
4464 		if (ret) {
4465 			printf("failed to set tx queue stats mapping.\n");
4466 			return;
4467 		}
4468 	} else { /* rx */
4469 		ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
4470 							     map_value);
4471 		if (ret) {
4472 			printf("failed to set rx queue stats mapping.\n");
4473 			return;
4474 		}
4475 	}
4476 }
4477 
4478 void
4479 set_xstats_hide_zero(uint8_t on_off)
4480 {
4481 	xstats_hide_zero = on_off;
4482 }
4483 
4484 void
4485 set_record_core_cycles(uint8_t on_off)
4486 {
4487 	record_core_cycles = on_off;
4488 }
4489 
4490 void
4491 set_record_burst_stats(uint8_t on_off)
4492 {
4493 	record_burst_stats = on_off;
4494 }
4495 
4496 static inline void
4497 print_fdir_mask(struct rte_eth_fdir_masks *mask)
4498 {
4499 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
4500 
4501 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4502 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
4503 			" tunnel_id: 0x%08x",
4504 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
4505 			rte_be_to_cpu_32(mask->tunnel_id_mask));
4506 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
4507 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
4508 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
4509 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
4510 
4511 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
4512 			rte_be_to_cpu_16(mask->src_port_mask),
4513 			rte_be_to_cpu_16(mask->dst_port_mask));
4514 
4515 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4516 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
4517 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
4518 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
4519 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
4520 
4521 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
4522 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
4523 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
4524 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
4525 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
4526 	}
4527 
4528 	printf("\n");
4529 }
4530 
4531 static inline void
4532 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4533 {
4534 	struct rte_eth_flex_payload_cfg *cfg;
4535 	uint32_t i, j;
4536 
4537 	for (i = 0; i < flex_conf->nb_payloads; i++) {
4538 		cfg = &flex_conf->flex_set[i];
4539 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
4540 			printf("\n    RAW:  ");
4541 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
4542 			printf("\n    L2_PAYLOAD:  ");
4543 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
4544 			printf("\n    L3_PAYLOAD:  ");
4545 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
4546 			printf("\n    L4_PAYLOAD:  ");
4547 		else
4548 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
4549 		for (j = 0; j < num; j++)
4550 			printf("  %-5u", cfg->src_offset[j]);
4551 	}
4552 	printf("\n");
4553 }
4554 
4555 static char *
4556 flowtype_to_str(uint16_t flow_type)
4557 {
4558 	struct flow_type_info {
4559 		char str[32];
4560 		uint16_t ftype;
4561 	};
4562 
4563 	uint8_t i;
4564 	static struct flow_type_info flowtype_str_table[] = {
4565 		{"raw", RTE_ETH_FLOW_RAW},
4566 		{"ipv4", RTE_ETH_FLOW_IPV4},
4567 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
4568 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
4569 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
4570 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
4571 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
4572 		{"ipv6", RTE_ETH_FLOW_IPV6},
4573 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
4574 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
4575 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
4576 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
4577 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
4578 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
4579 		{"port", RTE_ETH_FLOW_PORT},
4580 		{"vxlan", RTE_ETH_FLOW_VXLAN},
4581 		{"geneve", RTE_ETH_FLOW_GENEVE},
4582 		{"nvgre", RTE_ETH_FLOW_NVGRE},
4583 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
4584 	};
4585 
4586 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
4587 		if (flowtype_str_table[i].ftype == flow_type)
4588 			return flowtype_str_table[i].str;
4589 	}
4590 
4591 	return NULL;
4592 }
4593 
4594 #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
4595 
4596 static inline void
4597 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
4598 {
4599 	struct rte_eth_fdir_flex_mask *mask;
4600 	uint32_t i, j;
4601 	char *p;
4602 
4603 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
4604 		mask = &flex_conf->flex_mask[i];
4605 		p = flowtype_to_str(mask->flow_type);
4606 		printf("\n    %s:\t", p ? p : "unknown");
4607 		for (j = 0; j < num; j++)
4608 			printf(" %02x", mask->mask[j]);
4609 	}
4610 	printf("\n");
4611 }
4612 
4613 static inline void
4614 print_fdir_flow_type(uint32_t flow_types_mask)
4615 {
4616 	int i;
4617 	char *p;
4618 
4619 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
4620 		if (!(flow_types_mask & (1 << i)))
4621 			continue;
4622 		p = flowtype_to_str(i);
4623 		if (p)
4624 			printf(" %s", p);
4625 		else
4626 			printf(" unknown");
4627 	}
4628 	printf("\n");
4629 }
4630 
4631 static int
4632 get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
4633 		    struct rte_eth_fdir_stats *fdir_stat)
4634 {
4635 	int ret = -ENOTSUP;
4636 
4637 #ifdef RTE_NET_I40E
4638 	if (ret == -ENOTSUP) {
4639 		ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
4640 		if (!ret)
4641 			ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
4642 	}
4643 #endif
4644 #ifdef RTE_NET_IXGBE
4645 	if (ret == -ENOTSUP) {
4646 		ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
4647 		if (!ret)
4648 			ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
4649 	}
4650 #endif
4651 	switch (ret) {
4652 	case 0:
4653 		break;
4654 	case -ENOTSUP:
4655 		printf("\n FDIR is not supported on port %-2d\n",
4656 			port_id);
4657 		break;
4658 	default:
4659 		printf("programming error: (%s)\n", strerror(-ret));
4660 		break;
4661 	}
4662 	return ret;
4663 }
4664 
4665 void
4666 fdir_get_infos(portid_t port_id)
4667 {
4668 	struct rte_eth_fdir_stats fdir_stat;
4669 	struct rte_eth_fdir_info fdir_info;
4670 
4671 	static const char *fdir_stats_border = "########################";
4672 
4673 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4674 		return;
4675 
4676 	memset(&fdir_info, 0, sizeof(fdir_info));
4677 	memset(&fdir_stat, 0, sizeof(fdir_stat));
4678 	if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
4679 		return;
4680 
4681 	printf("\n  %s FDIR infos for port %-2d     %s\n",
4682 	       fdir_stats_border, port_id, fdir_stats_border);
4683 	printf("  MODE: ");
4684 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
4685 		printf("  PERFECT\n");
4686 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
4687 		printf("  PERFECT-MAC-VLAN\n");
4688 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
4689 		printf("  PERFECT-TUNNEL\n");
4690 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
4691 		printf("  SIGNATURE\n");
4692 	else
4693 		printf("  DISABLE\n");
4694 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
4695 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
4696 		printf("  SUPPORTED FLOW TYPE: ");
4697 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
4698 	}
4699 	printf("  FLEX PAYLOAD INFO:\n");
4700 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
4701 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
4702 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
4703 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
4704 		fdir_info.flex_payload_unit,
4705 		fdir_info.max_flex_payload_segment_num,
4706 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
4707 	printf("  MASK: ");
4708 	print_fdir_mask(&fdir_info.mask);
4709 	if (fdir_info.flex_conf.nb_payloads > 0) {
4710 		printf("  FLEX PAYLOAD SRC OFFSET:");
4711 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4712 	}
4713 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
4714 		printf("  FLEX MASK CFG:");
4715 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
4716 	}
4717 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
4718 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
4719 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
4720 	       fdir_info.guarant_spc, fdir_info.best_spc);
4721 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
4722 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
4723 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
4724 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
4725 	       fdir_stat.collision, fdir_stat.free,
4726 	       fdir_stat.maxhash, fdir_stat.maxlen,
4727 	       fdir_stat.add, fdir_stat.remove,
4728 	       fdir_stat.f_add, fdir_stat.f_remove);
4729 	printf("  %s############################%s\n",
4730 	       fdir_stats_border, fdir_stats_border);
4731 }
4732 
4733 #endif /* RTE_NET_I40E || RTE_NET_IXGBE */
4734 
4735 void
4736 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
4737 {
4738 	struct rte_port *port;
4739 	struct rte_eth_fdir_flex_conf *flex_conf;
4740 	int i, idx = 0;
4741 
4742 	port = &ports[port_id];
4743 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4744 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
4745 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
4746 			idx = i;
4747 			break;
4748 		}
4749 	}
4750 	if (i >= RTE_ETH_FLOW_MAX) {
4751 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
4752 			idx = flex_conf->nb_flexmasks;
4753 			flex_conf->nb_flexmasks++;
4754 		} else {
4755 			printf("The flex mask table is full. Can not set flex"
4756 				" mask for flow_type(%u).", cfg->flow_type);
4757 			return;
4758 		}
4759 	}
4760 	rte_memcpy(&flex_conf->flex_mask[idx],
4761 			 cfg,
4762 			 sizeof(struct rte_eth_fdir_flex_mask));
4763 }
4764 
4765 void
4766 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
4767 {
4768 	struct rte_port *port;
4769 	struct rte_eth_fdir_flex_conf *flex_conf;
4770 	int i, idx = 0;
4771 
4772 	port = &ports[port_id];
4773 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
4774 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
4775 		if (cfg->type == flex_conf->flex_set[i].type) {
4776 			idx = i;
4777 			break;
4778 		}
4779 	}
4780 	if (i >= RTE_ETH_PAYLOAD_MAX) {
4781 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
4782 			idx = flex_conf->nb_payloads;
4783 			flex_conf->nb_payloads++;
4784 		} else {
4785 			printf("The flex payload table is full. Can not set"
4786 				" flex payload for type(%u).", cfg->type);
4787 			return;
4788 		}
4789 	}
4790 	rte_memcpy(&flex_conf->flex_set[idx],
4791 			 cfg,
4792 			 sizeof(struct rte_eth_flex_payload_cfg));
4793 
4794 }
4795 
4796 void
4797 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
4798 {
4799 #ifdef RTE_NET_IXGBE
4800 	int diag;
4801 
4802 	if (is_rx)
4803 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
4804 	else
4805 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
4806 
4807 	if (diag == 0)
4808 		return;
4809 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
4810 			is_rx ? "rx" : "tx", port_id, diag);
4811 	return;
4812 #endif
4813 	printf("VF %s setting not supported for port %d\n",
4814 			is_rx ? "Rx" : "Tx", port_id);
4815 	RTE_SET_USED(vf);
4816 	RTE_SET_USED(on);
4817 }
4818 
4819 int
4820 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
4821 {
4822 	int diag;
4823 	struct rte_eth_link link;
4824 	int ret;
4825 
4826 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4827 		return 1;
4828 	ret = eth_link_get_nowait_print_err(port_id, &link);
4829 	if (ret < 0)
4830 		return 1;
4831 	if (link.link_speed != ETH_SPEED_NUM_UNKNOWN &&
4832 	    rate > link.link_speed) {
4833 		printf("Invalid rate value:%u bigger than link speed: %u\n",
4834 			rate, link.link_speed);
4835 		return 1;
4836 	}
4837 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
4838 	if (diag == 0)
4839 		return diag;
4840 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
4841 		port_id, diag);
4842 	return diag;
4843 }
4844 
4845 int
4846 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
4847 {
4848 	int diag = -ENOTSUP;
4849 
4850 	RTE_SET_USED(vf);
4851 	RTE_SET_USED(rate);
4852 	RTE_SET_USED(q_msk);
4853 
4854 #ifdef RTE_NET_IXGBE
4855 	if (diag == -ENOTSUP)
4856 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
4857 						       q_msk);
4858 #endif
4859 #ifdef RTE_NET_BNXT
4860 	if (diag == -ENOTSUP)
4861 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
4862 #endif
4863 	if (diag == 0)
4864 		return diag;
4865 
4866 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
4867 		port_id, diag);
4868 	return diag;
4869 }
4870 
4871 /*
4872  * Functions to manage the set of filtered Multicast MAC addresses.
4873  *
4874  * A pool of filtered multicast MAC addresses is associated with each port.
4875  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
4876  * The address of the pool and the number of valid multicast MAC addresses
4877  * recorded in the pool are stored in the fields "mc_addr_pool" and
4878  * "mc_addr_nb" of the "rte_port" data structure.
4879  *
4880  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
4881  * to be supplied a contiguous array of multicast MAC addresses.
4882  * To comply with this constraint, the set of multicast addresses recorded
4883  * into the pool are systematically compacted at the beginning of the pool.
4884  * Hence, when a multicast address is removed from the pool, all following
4885  * addresses, if any, are copied back to keep the set contiguous.
4886  */
4887 #define MCAST_POOL_INC 32
4888 
4889 static int
4890 mcast_addr_pool_extend(struct rte_port *port)
4891 {
4892 	struct rte_ether_addr *mc_pool;
4893 	size_t mc_pool_size;
4894 
4895 	/*
4896 	 * If a free entry is available at the end of the pool, just
4897 	 * increment the number of recorded multicast addresses.
4898 	 */
4899 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
4900 		port->mc_addr_nb++;
4901 		return 0;
4902 	}
4903 
4904 	/*
4905 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
4906 	 * The previous test guarantees that port->mc_addr_nb is a multiple
4907 	 * of MCAST_POOL_INC.
4908 	 */
4909 	mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
4910 						    MCAST_POOL_INC);
4911 	mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
4912 						mc_pool_size);
4913 	if (mc_pool == NULL) {
4914 		printf("allocation of pool of %u multicast addresses failed\n",
4915 		       port->mc_addr_nb + MCAST_POOL_INC);
4916 		return -ENOMEM;
4917 	}
4918 
4919 	port->mc_addr_pool = mc_pool;
4920 	port->mc_addr_nb++;
4921 	return 0;
4922 
4923 }
4924 
4925 static void
4926 mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
4927 {
4928 	if (mcast_addr_pool_extend(port) != 0)
4929 		return;
4930 	rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
4931 }
4932 
4933 static void
4934 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
4935 {
4936 	port->mc_addr_nb--;
4937 	if (addr_idx == port->mc_addr_nb) {
4938 		/* No need to recompact the set of multicast addressses. */
4939 		if (port->mc_addr_nb == 0) {
4940 			/* free the pool of multicast addresses. */
4941 			free(port->mc_addr_pool);
4942 			port->mc_addr_pool = NULL;
4943 		}
4944 		return;
4945 	}
4946 	memmove(&port->mc_addr_pool[addr_idx],
4947 		&port->mc_addr_pool[addr_idx + 1],
4948 		sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
4949 }
4950 
4951 static int
4952 eth_port_multicast_addr_list_set(portid_t port_id)
4953 {
4954 	struct rte_port *port;
4955 	int diag;
4956 
4957 	port = &ports[port_id];
4958 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
4959 					    port->mc_addr_nb);
4960 	if (diag < 0)
4961 		printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
4962 			port_id, port->mc_addr_nb, diag);
4963 
4964 	return diag;
4965 }
4966 
4967 void
4968 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
4969 {
4970 	struct rte_port *port;
4971 	uint32_t i;
4972 
4973 	if (port_id_is_invalid(port_id, ENABLED_WARN))
4974 		return;
4975 
4976 	port = &ports[port_id];
4977 
4978 	/*
4979 	 * Check that the added multicast MAC address is not already recorded
4980 	 * in the pool of multicast addresses.
4981 	 */
4982 	for (i = 0; i < port->mc_addr_nb; i++) {
4983 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
4984 			printf("multicast address already filtered by port\n");
4985 			return;
4986 		}
4987 	}
4988 
4989 	mcast_addr_pool_append(port, mc_addr);
4990 	if (eth_port_multicast_addr_list_set(port_id) < 0)
4991 		/* Rollback on failure, remove the address from the pool */
4992 		mcast_addr_pool_remove(port, i);
4993 }
4994 
4995 void
4996 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
4997 {
4998 	struct rte_port *port;
4999 	uint32_t i;
5000 
5001 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5002 		return;
5003 
5004 	port = &ports[port_id];
5005 
5006 	/*
5007 	 * Search the pool of multicast MAC addresses for the removed address.
5008 	 */
5009 	for (i = 0; i < port->mc_addr_nb; i++) {
5010 		if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
5011 			break;
5012 	}
5013 	if (i == port->mc_addr_nb) {
5014 		printf("multicast address not filtered by port %d\n", port_id);
5015 		return;
5016 	}
5017 
5018 	mcast_addr_pool_remove(port, i);
5019 	if (eth_port_multicast_addr_list_set(port_id) < 0)
5020 		/* Rollback on failure, add the address back into the pool */
5021 		mcast_addr_pool_append(port, mc_addr);
5022 }
5023 
5024 void
5025 port_dcb_info_display(portid_t port_id)
5026 {
5027 	struct rte_eth_dcb_info dcb_info;
5028 	uint16_t i;
5029 	int ret;
5030 	static const char *border = "================";
5031 
5032 	if (port_id_is_invalid(port_id, ENABLED_WARN))
5033 		return;
5034 
5035 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
5036 	if (ret) {
5037 		printf("\n Failed to get dcb infos on port %-2d\n",
5038 			port_id);
5039 		return;
5040 	}
5041 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
5042 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
5043 	printf("\n  TC :        ");
5044 	for (i = 0; i < dcb_info.nb_tcs; i++)
5045 		printf("\t%4d", i);
5046 	printf("\n  Priority :  ");
5047 	for (i = 0; i < dcb_info.nb_tcs; i++)
5048 		printf("\t%4d", dcb_info.prio_tc[i]);
5049 	printf("\n  BW percent :");
5050 	for (i = 0; i < dcb_info.nb_tcs; i++)
5051 		printf("\t%4d%%", dcb_info.tc_bws[i]);
5052 	printf("\n  RXQ base :  ");
5053 	for (i = 0; i < dcb_info.nb_tcs; i++)
5054 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
5055 	printf("\n  RXQ number :");
5056 	for (i = 0; i < dcb_info.nb_tcs; i++)
5057 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
5058 	printf("\n  TXQ base :  ");
5059 	for (i = 0; i < dcb_info.nb_tcs; i++)
5060 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
5061 	printf("\n  TXQ number :");
5062 	for (i = 0; i < dcb_info.nb_tcs; i++)
5063 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
5064 	printf("\n");
5065 }
5066 
5067 uint8_t *
5068 open_file(const char *file_path, uint32_t *size)
5069 {
5070 	int fd = open(file_path, O_RDONLY);
5071 	off_t pkg_size;
5072 	uint8_t *buf = NULL;
5073 	int ret = 0;
5074 	struct stat st_buf;
5075 
5076 	if (size)
5077 		*size = 0;
5078 
5079 	if (fd == -1) {
5080 		printf("%s: Failed to open %s\n", __func__, file_path);
5081 		return buf;
5082 	}
5083 
5084 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
5085 		close(fd);
5086 		printf("%s: File operations failed\n", __func__);
5087 		return buf;
5088 	}
5089 
5090 	pkg_size = st_buf.st_size;
5091 	if (pkg_size < 0) {
5092 		close(fd);
5093 		printf("%s: File operations failed\n", __func__);
5094 		return buf;
5095 	}
5096 
5097 	buf = (uint8_t *)malloc(pkg_size);
5098 	if (!buf) {
5099 		close(fd);
5100 		printf("%s: Failed to malloc memory\n",	__func__);
5101 		return buf;
5102 	}
5103 
5104 	ret = read(fd, buf, pkg_size);
5105 	if (ret < 0) {
5106 		close(fd);
5107 		printf("%s: File read operation failed\n", __func__);
5108 		close_file(buf);
5109 		return NULL;
5110 	}
5111 
5112 	if (size)
5113 		*size = pkg_size;
5114 
5115 	close(fd);
5116 
5117 	return buf;
5118 }
5119 
5120 int
5121 save_file(const char *file_path, uint8_t *buf, uint32_t size)
5122 {
5123 	FILE *fh = fopen(file_path, "wb");
5124 
5125 	if (fh == NULL) {
5126 		printf("%s: Failed to open %s\n", __func__, file_path);
5127 		return -1;
5128 	}
5129 
5130 	if (fwrite(buf, 1, size, fh) != size) {
5131 		fclose(fh);
5132 		printf("%s: File write operation failed\n", __func__);
5133 		return -1;
5134 	}
5135 
5136 	fclose(fh);
5137 
5138 	return 0;
5139 }
5140 
5141 int
5142 close_file(uint8_t *buf)
5143 {
5144 	if (buf) {
5145 		free((void *)buf);
5146 		return 0;
5147 	}
5148 
5149 	return -1;
5150 }
5151 
5152 void
5153 port_queue_region_info_display(portid_t port_id, void *buf)
5154 {
5155 #ifdef RTE_NET_I40E
5156 	uint16_t i, j;
5157 	struct rte_pmd_i40e_queue_regions *info =
5158 		(struct rte_pmd_i40e_queue_regions *)buf;
5159 	static const char *queue_region_info_stats_border = "-------";
5160 
5161 	if (!info->queue_region_number)
5162 		printf("there is no region has been set before");
5163 
5164 	printf("\n	%s All queue region info for port=%2d %s",
5165 			queue_region_info_stats_border, port_id,
5166 			queue_region_info_stats_border);
5167 	printf("\n	queue_region_number: %-14u \n",
5168 			info->queue_region_number);
5169 
5170 	for (i = 0; i < info->queue_region_number; i++) {
5171 		printf("\n	region_id: %-14u queue_number: %-14u "
5172 			"queue_start_index: %-14u \n",
5173 			info->region[i].region_id,
5174 			info->region[i].queue_num,
5175 			info->region[i].queue_start_index);
5176 
5177 		printf("  user_priority_num is	%-14u :",
5178 					info->region[i].user_priority_num);
5179 		for (j = 0; j < info->region[i].user_priority_num; j++)
5180 			printf(" %-14u ", info->region[i].user_priority[j]);
5181 
5182 		printf("\n	flowtype_num is  %-14u :",
5183 				info->region[i].flowtype_num);
5184 		for (j = 0; j < info->region[i].flowtype_num; j++)
5185 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
5186 	}
5187 #else
5188 	RTE_SET_USED(port_id);
5189 	RTE_SET_USED(buf);
5190 #endif
5191 
5192 	printf("\n\n");
5193 }
5194 
5195 void
5196 show_macs(portid_t port_id)
5197 {
5198 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5199 	struct rte_eth_dev_info dev_info;
5200 	struct rte_ether_addr *addr;
5201 	uint32_t i, num_macs = 0;
5202 	struct rte_eth_dev *dev;
5203 
5204 	dev = &rte_eth_devices[port_id];
5205 
5206 	rte_eth_dev_info_get(port_id, &dev_info);
5207 
5208 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
5209 		addr = &dev->data->mac_addrs[i];
5210 
5211 		/* skip zero address */
5212 		if (rte_is_zero_ether_addr(addr))
5213 			continue;
5214 
5215 		num_macs++;
5216 	}
5217 
5218 	printf("Number of MAC address added: %d\n", num_macs);
5219 
5220 	for (i = 0; i < dev_info.max_mac_addrs; i++) {
5221 		addr = &dev->data->mac_addrs[i];
5222 
5223 		/* skip zero address */
5224 		if (rte_is_zero_ether_addr(addr))
5225 			continue;
5226 
5227 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5228 		printf("  %s\n", buf);
5229 	}
5230 }
5231 
5232 void
5233 show_mcast_macs(portid_t port_id)
5234 {
5235 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
5236 	struct rte_ether_addr *addr;
5237 	struct rte_port *port;
5238 	uint32_t i;
5239 
5240 	port = &ports[port_id];
5241 
5242 	printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
5243 
5244 	for (i = 0; i < port->mc_addr_nb; i++) {
5245 		addr = &port->mc_addr_pool[i];
5246 
5247 		rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
5248 		printf("  %s\n", buf);
5249 	}
5250 }
5251