xref: /dpdk/app/test-pmd/config.c (revision 08aa6271c86a561b66c6dd91f9a54fa2f12bc859)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53 
54 #include "testpmd.h"
55 
56 static char *flowtype_to_str(uint16_t flow_type);
57 
58 static const struct {
59 	enum tx_pkt_split split;
60 	const char *name;
61 } tx_split_name[] = {
62 	{
63 		.split = TX_PKT_SPLIT_OFF,
64 		.name = "off",
65 	},
66 	{
67 		.split = TX_PKT_SPLIT_ON,
68 		.name = "on",
69 	},
70 	{
71 		.split = TX_PKT_SPLIT_RND,
72 		.name = "rand",
73 	},
74 };
75 
76 const struct rss_type_info rss_type_table[] = {
77 	{ "ipv4", ETH_RSS_IPV4 },
78 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83 	{ "ipv6", ETH_RSS_IPV6 },
84 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
90 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
91 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93 	{ "port", ETH_RSS_PORT },
94 	{ "vxlan", ETH_RSS_VXLAN },
95 	{ "geneve", ETH_RSS_GENEVE },
96 	{ "nvgre", ETH_RSS_NVGRE },
97 	{ "ip", ETH_RSS_IP },
98 	{ "udp", ETH_RSS_UDP },
99 	{ "tcp", ETH_RSS_TCP },
100 	{ "sctp", ETH_RSS_SCTP },
101 	{ "tunnel", ETH_RSS_TUNNEL },
102 	{ NULL, 0 },
103 };
104 
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108 	char buf[ETHER_ADDR_FMT_SIZE];
109 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110 	printf("%s%s", name, buf);
111 }
112 
113 void
114 nic_stats_display(portid_t port_id)
115 {
116 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120 	uint64_t mpps_rx, mpps_tx;
121 	struct rte_eth_stats stats;
122 	struct rte_port *port = &ports[port_id];
123 	uint8_t i;
124 
125 	static const char *nic_stats_border = "########################";
126 
127 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
128 		print_valid_ports();
129 		return;
130 	}
131 	rte_eth_stats_get(port_id, &stats);
132 	printf("\n  %s NIC statistics for port %-2d %s\n",
133 	       nic_stats_border, port_id, nic_stats_border);
134 
135 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
136 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
137 		       "%-"PRIu64"\n",
138 		       stats.ipackets, stats.imissed, stats.ibytes);
139 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
140 		printf("  RX-nombuf:  %-10"PRIu64"\n",
141 		       stats.rx_nombuf);
142 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
143 		       "%-"PRIu64"\n",
144 		       stats.opackets, stats.oerrors, stats.obytes);
145 	}
146 	else {
147 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
148 		       "    RX-bytes: %10"PRIu64"\n",
149 		       stats.ipackets, stats.ierrors, stats.ibytes);
150 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
151 		printf("  RX-nombuf:               %10"PRIu64"\n",
152 		       stats.rx_nombuf);
153 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
154 		       "    TX-bytes: %10"PRIu64"\n",
155 		       stats.opackets, stats.oerrors, stats.obytes);
156 	}
157 
158 	if (port->rx_queue_stats_mapping_enabled) {
159 		printf("\n");
160 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
161 			printf("  Stats reg %2d RX-packets: %10"PRIu64
162 			       "    RX-errors: %10"PRIu64
163 			       "    RX-bytes: %10"PRIu64"\n",
164 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
165 		}
166 	}
167 	if (port->tx_queue_stats_mapping_enabled) {
168 		printf("\n");
169 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
170 			printf("  Stats reg %2d TX-packets: %10"PRIu64
171 			       "                             TX-bytes: %10"PRIu64"\n",
172 			       i, stats.q_opackets[i], stats.q_obytes[i]);
173 		}
174 	}
175 
176 	diff_cycles = prev_cycles[port_id];
177 	prev_cycles[port_id] = rte_rdtsc();
178 	if (diff_cycles > 0)
179 		diff_cycles = prev_cycles[port_id] - diff_cycles;
180 
181 	diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
182 		(stats.ipackets - prev_pkts_rx[port_id]) : 0;
183 	diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
184 		(stats.opackets - prev_pkts_tx[port_id]) : 0;
185 	prev_pkts_rx[port_id] = stats.ipackets;
186 	prev_pkts_tx[port_id] = stats.opackets;
187 	mpps_rx = diff_cycles > 0 ?
188 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
189 	mpps_tx = diff_cycles > 0 ?
190 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
191 	printf("\n  Throughput (since last show)\n");
192 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
193 			mpps_rx, mpps_tx);
194 
195 	printf("  %s############################%s\n",
196 	       nic_stats_border, nic_stats_border);
197 }
198 
199 void
200 nic_stats_clear(portid_t port_id)
201 {
202 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
203 		print_valid_ports();
204 		return;
205 	}
206 	rte_eth_stats_reset(port_id);
207 	printf("\n  NIC statistics for port %d cleared\n", port_id);
208 }
209 
210 void
211 nic_xstats_display(portid_t port_id)
212 {
213 	struct rte_eth_xstat *xstats;
214 	int cnt_xstats, idx_xstat;
215 	struct rte_eth_xstat_name *xstats_names;
216 
217 	printf("###### NIC extended statistics for port %-2d\n", port_id);
218 	if (!rte_eth_dev_is_valid_port(port_id)) {
219 		printf("Error: Invalid port number %i\n", port_id);
220 		return;
221 	}
222 
223 	/* Get count */
224 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
225 	if (cnt_xstats  < 0) {
226 		printf("Error: Cannot get count of xstats\n");
227 		return;
228 	}
229 
230 	/* Get id-name lookup table */
231 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
232 	if (xstats_names == NULL) {
233 		printf("Cannot allocate memory for xstats lookup\n");
234 		return;
235 	}
236 	if (cnt_xstats != rte_eth_xstats_get_names(
237 			port_id, xstats_names, cnt_xstats)) {
238 		printf("Error: Cannot get xstats lookup\n");
239 		free(xstats_names);
240 		return;
241 	}
242 
243 	/* Get stats themselves */
244 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
245 	if (xstats == NULL) {
246 		printf("Cannot allocate memory for xstats\n");
247 		free(xstats_names);
248 		return;
249 	}
250 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
251 		printf("Error: Unable to get xstats\n");
252 		free(xstats_names);
253 		free(xstats);
254 		return;
255 	}
256 
257 	/* Display xstats */
258 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
259 		if (xstats_hide_zero && !xstats[idx_xstat].value)
260 			continue;
261 		printf("%s: %"PRIu64"\n",
262 			xstats_names[idx_xstat].name,
263 			xstats[idx_xstat].value);
264 	}
265 	free(xstats_names);
266 	free(xstats);
267 }
268 
269 void
270 nic_xstats_clear(portid_t port_id)
271 {
272 	rte_eth_xstats_reset(port_id);
273 }
274 
275 void
276 nic_stats_mapping_display(portid_t port_id)
277 {
278 	struct rte_port *port = &ports[port_id];
279 	uint16_t i;
280 
281 	static const char *nic_stats_mapping_border = "########################";
282 
283 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
284 		print_valid_ports();
285 		return;
286 	}
287 
288 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
289 		printf("Port id %d - either does not support queue statistic mapping or"
290 		       " no queue statistic mapping set\n", port_id);
291 		return;
292 	}
293 
294 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
295 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
296 
297 	if (port->rx_queue_stats_mapping_enabled) {
298 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
299 			if (rx_queue_stats_mappings[i].port_id == port_id) {
300 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
301 				       rx_queue_stats_mappings[i].queue_id,
302 				       rx_queue_stats_mappings[i].stats_counter_id);
303 			}
304 		}
305 		printf("\n");
306 	}
307 
308 
309 	if (port->tx_queue_stats_mapping_enabled) {
310 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
311 			if (tx_queue_stats_mappings[i].port_id == port_id) {
312 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
313 				       tx_queue_stats_mappings[i].queue_id,
314 				       tx_queue_stats_mappings[i].stats_counter_id);
315 			}
316 		}
317 	}
318 
319 	printf("  %s####################################%s\n",
320 	       nic_stats_mapping_border, nic_stats_mapping_border);
321 }
322 
323 void
324 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
325 {
326 	struct rte_eth_rxq_info qinfo;
327 	int32_t rc;
328 	static const char *info_border = "*********************";
329 
330 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
331 	if (rc != 0) {
332 		printf("Failed to retrieve information for port: %u, "
333 			"RX queue: %hu\nerror desc: %s(%d)\n",
334 			port_id, queue_id, strerror(-rc), rc);
335 		return;
336 	}
337 
338 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
339 	       info_border, port_id, queue_id, info_border);
340 
341 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
342 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
343 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
344 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
345 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
346 	printf("\nRX drop packets: %s",
347 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
348 	printf("\nRX deferred start: %s",
349 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
350 	printf("\nRX scattered packets: %s",
351 		(qinfo.scattered_rx != 0) ? "on" : "off");
352 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
353 	printf("\n");
354 }
355 
356 void
357 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
358 {
359 	struct rte_eth_txq_info qinfo;
360 	int32_t rc;
361 	static const char *info_border = "*********************";
362 
363 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
364 	if (rc != 0) {
365 		printf("Failed to retrieve information for port: %u, "
366 			"TX queue: %hu\nerror desc: %s(%d)\n",
367 			port_id, queue_id, strerror(-rc), rc);
368 		return;
369 	}
370 
371 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
372 	       info_border, port_id, queue_id, info_border);
373 
374 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
375 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
376 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
377 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
378 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
379 	printf("\nTX deferred start: %s",
380 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
381 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
382 	printf("\n");
383 }
384 
385 void
386 port_infos_display(portid_t port_id)
387 {
388 	struct rte_port *port;
389 	struct ether_addr mac_addr;
390 	struct rte_eth_link link;
391 	struct rte_eth_dev_info dev_info;
392 	int vlan_offload;
393 	struct rte_mempool * mp;
394 	static const char *info_border = "*********************";
395 	uint16_t mtu;
396 	char name[RTE_ETH_NAME_MAX_LEN];
397 
398 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
399 		print_valid_ports();
400 		return;
401 	}
402 	port = &ports[port_id];
403 	rte_eth_link_get_nowait(port_id, &link);
404 	memset(&dev_info, 0, sizeof(dev_info));
405 	rte_eth_dev_info_get(port_id, &dev_info);
406 	printf("\n%s Infos for port %-2d %s\n",
407 	       info_border, port_id, info_border);
408 	rte_eth_macaddr_get(port_id, &mac_addr);
409 	print_ethaddr("MAC address: ", &mac_addr);
410 	rte_eth_dev_get_name_by_port(port_id, name);
411 	printf("\nDevice name: %s", name);
412 	printf("\nDriver name: %s", dev_info.driver_name);
413 	printf("\nConnect to socket: %u", port->socket_id);
414 
415 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
416 		mp = mbuf_pool_find(port_numa[port_id]);
417 		if (mp)
418 			printf("\nmemory allocation on the socket: %d",
419 							port_numa[port_id]);
420 	} else
421 		printf("\nmemory allocation on the socket: %u",port->socket_id);
422 
423 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
424 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
425 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
426 	       ("full-duplex") : ("half-duplex"));
427 
428 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
429 		printf("MTU: %u\n", mtu);
430 
431 	printf("Promiscuous mode: %s\n",
432 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
433 	printf("Allmulticast mode: %s\n",
434 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
435 	printf("Maximum number of MAC addresses: %u\n",
436 	       (unsigned int)(port->dev_info.max_mac_addrs));
437 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
438 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
439 
440 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
441 	if (vlan_offload >= 0){
442 		printf("VLAN offload: \n");
443 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
444 			printf("  strip on \n");
445 		else
446 			printf("  strip off \n");
447 
448 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
449 			printf("  filter on \n");
450 		else
451 			printf("  filter off \n");
452 
453 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
454 			printf("  qinq(extend) on \n");
455 		else
456 			printf("  qinq(extend) off \n");
457 	}
458 
459 	if (dev_info.hash_key_size > 0)
460 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
461 	if (dev_info.reta_size > 0)
462 		printf("Redirection table size: %u\n", dev_info.reta_size);
463 	if (!dev_info.flow_type_rss_offloads)
464 		printf("No flow type is supported.\n");
465 	else {
466 		uint16_t i;
467 		char *p;
468 
469 		printf("Supported flow types:\n");
470 		for (i = RTE_ETH_FLOW_UNKNOWN + 1;
471 		     i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
472 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
473 				continue;
474 			p = flowtype_to_str(i);
475 			if (p)
476 				printf("  %s\n", p);
477 			else
478 				printf("  user defined %d\n", i);
479 		}
480 	}
481 
482 	printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
483 	printf("Maximum configurable length of RX packet: %u\n",
484 		dev_info.max_rx_pktlen);
485 	if (dev_info.max_vfs)
486 		printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
487 	if (dev_info.max_vmdq_pools)
488 		printf("Maximum number of VMDq pools: %u\n",
489 			dev_info.max_vmdq_pools);
490 
491 	printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
492 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
493 	printf("Max possible number of RXDs per queue: %hu\n",
494 		dev_info.rx_desc_lim.nb_max);
495 	printf("Min possible number of RXDs per queue: %hu\n",
496 		dev_info.rx_desc_lim.nb_min);
497 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
498 
499 	printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
500 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
501 	printf("Max possible number of TXDs per queue: %hu\n",
502 		dev_info.tx_desc_lim.nb_max);
503 	printf("Min possible number of TXDs per queue: %hu\n",
504 		dev_info.tx_desc_lim.nb_min);
505 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
506 
507 	/* Show switch info only if valid switch domain and port id is set */
508 	if (dev_info.switch_info.domain_id !=
509 		RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
510 		if (dev_info.switch_info.name)
511 			printf("Switch name: %s\n", dev_info.switch_info.name);
512 
513 		printf("Switch domain Id: %u\n",
514 			dev_info.switch_info.domain_id);
515 		printf("Switch Port Id: %u\n",
516 			dev_info.switch_info.port_id);
517 	}
518 }
519 
520 void
521 port_offload_cap_display(portid_t port_id)
522 {
523 	struct rte_eth_dev_info dev_info;
524 	static const char *info_border = "************";
525 
526 	if (port_id_is_invalid(port_id, ENABLED_WARN))
527 		return;
528 
529 	rte_eth_dev_info_get(port_id, &dev_info);
530 
531 	printf("\n%s Port %d supported offload features: %s\n",
532 		info_border, port_id, info_border);
533 
534 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
535 		printf("VLAN stripped:                 ");
536 		if (ports[port_id].dev_conf.rxmode.offloads &
537 		    DEV_RX_OFFLOAD_VLAN_STRIP)
538 			printf("on\n");
539 		else
540 			printf("off\n");
541 	}
542 
543 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
544 		printf("Double VLANs stripped:         ");
545 		if (ports[port_id].dev_conf.rxmode.offloads &
546 		    DEV_RX_OFFLOAD_VLAN_EXTEND)
547 			printf("on\n");
548 		else
549 			printf("off\n");
550 	}
551 
552 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
553 		printf("RX IPv4 checksum:              ");
554 		if (ports[port_id].dev_conf.rxmode.offloads &
555 		    DEV_RX_OFFLOAD_IPV4_CKSUM)
556 			printf("on\n");
557 		else
558 			printf("off\n");
559 	}
560 
561 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
562 		printf("RX UDP checksum:               ");
563 		if (ports[port_id].dev_conf.rxmode.offloads &
564 		    DEV_RX_OFFLOAD_UDP_CKSUM)
565 			printf("on\n");
566 		else
567 			printf("off\n");
568 	}
569 
570 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
571 		printf("RX TCP checksum:               ");
572 		if (ports[port_id].dev_conf.rxmode.offloads &
573 		    DEV_RX_OFFLOAD_TCP_CKSUM)
574 			printf("on\n");
575 		else
576 			printf("off\n");
577 	}
578 
579 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
580 		printf("RX Outer IPv4 checksum:               ");
581 		if (ports[port_id].dev_conf.rxmode.offloads &
582 		    DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
583 			printf("on\n");
584 		else
585 			printf("off\n");
586 	}
587 
588 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
589 		printf("Large receive offload:         ");
590 		if (ports[port_id].dev_conf.rxmode.offloads &
591 		    DEV_RX_OFFLOAD_TCP_LRO)
592 			printf("on\n");
593 		else
594 			printf("off\n");
595 	}
596 
597 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
598 		printf("VLAN insert:                   ");
599 		if (ports[port_id].dev_conf.txmode.offloads &
600 		    DEV_TX_OFFLOAD_VLAN_INSERT)
601 			printf("on\n");
602 		else
603 			printf("off\n");
604 	}
605 
606 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
607 		printf("HW timestamp:                  ");
608 		if (ports[port_id].dev_conf.rxmode.offloads &
609 		    DEV_RX_OFFLOAD_TIMESTAMP)
610 			printf("on\n");
611 		else
612 			printf("off\n");
613 	}
614 
615 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
616 		printf("Double VLANs insert:           ");
617 		if (ports[port_id].dev_conf.txmode.offloads &
618 		    DEV_TX_OFFLOAD_QINQ_INSERT)
619 			printf("on\n");
620 		else
621 			printf("off\n");
622 	}
623 
624 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
625 		printf("TX IPv4 checksum:              ");
626 		if (ports[port_id].dev_conf.txmode.offloads &
627 		    DEV_TX_OFFLOAD_IPV4_CKSUM)
628 			printf("on\n");
629 		else
630 			printf("off\n");
631 	}
632 
633 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
634 		printf("TX UDP checksum:               ");
635 		if (ports[port_id].dev_conf.txmode.offloads &
636 		    DEV_TX_OFFLOAD_UDP_CKSUM)
637 			printf("on\n");
638 		else
639 			printf("off\n");
640 	}
641 
642 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
643 		printf("TX TCP checksum:               ");
644 		if (ports[port_id].dev_conf.txmode.offloads &
645 		    DEV_TX_OFFLOAD_TCP_CKSUM)
646 			printf("on\n");
647 		else
648 			printf("off\n");
649 	}
650 
651 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
652 		printf("TX SCTP checksum:              ");
653 		if (ports[port_id].dev_conf.txmode.offloads &
654 		    DEV_TX_OFFLOAD_SCTP_CKSUM)
655 			printf("on\n");
656 		else
657 			printf("off\n");
658 	}
659 
660 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
661 		printf("TX Outer IPv4 checksum:        ");
662 		if (ports[port_id].dev_conf.txmode.offloads &
663 		    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
664 			printf("on\n");
665 		else
666 			printf("off\n");
667 	}
668 
669 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
670 		printf("TX TCP segmentation:           ");
671 		if (ports[port_id].dev_conf.txmode.offloads &
672 		    DEV_TX_OFFLOAD_TCP_TSO)
673 			printf("on\n");
674 		else
675 			printf("off\n");
676 	}
677 
678 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
679 		printf("TX UDP segmentation:           ");
680 		if (ports[port_id].dev_conf.txmode.offloads &
681 		    DEV_TX_OFFLOAD_UDP_TSO)
682 			printf("on\n");
683 		else
684 			printf("off\n");
685 	}
686 
687 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
688 		printf("TSO for VXLAN tunnel packet:   ");
689 		if (ports[port_id].dev_conf.txmode.offloads &
690 		    DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
691 			printf("on\n");
692 		else
693 			printf("off\n");
694 	}
695 
696 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
697 		printf("TSO for GRE tunnel packet:     ");
698 		if (ports[port_id].dev_conf.txmode.offloads &
699 		    DEV_TX_OFFLOAD_GRE_TNL_TSO)
700 			printf("on\n");
701 		else
702 			printf("off\n");
703 	}
704 
705 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
706 		printf("TSO for IPIP tunnel packet:    ");
707 		if (ports[port_id].dev_conf.txmode.offloads &
708 		    DEV_TX_OFFLOAD_IPIP_TNL_TSO)
709 			printf("on\n");
710 		else
711 			printf("off\n");
712 	}
713 
714 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
715 		printf("TSO for GENEVE tunnel packet:  ");
716 		if (ports[port_id].dev_conf.txmode.offloads &
717 		    DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
718 			printf("on\n");
719 		else
720 			printf("off\n");
721 	}
722 
723 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
724 		printf("IP tunnel TSO:  ");
725 		if (ports[port_id].dev_conf.txmode.offloads &
726 		    DEV_TX_OFFLOAD_IP_TNL_TSO)
727 			printf("on\n");
728 		else
729 			printf("off\n");
730 	}
731 
732 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
733 		printf("UDP tunnel TSO:  ");
734 		if (ports[port_id].dev_conf.txmode.offloads &
735 		    DEV_TX_OFFLOAD_UDP_TNL_TSO)
736 			printf("on\n");
737 		else
738 			printf("off\n");
739 	}
740 }
741 
742 int
743 port_id_is_invalid(portid_t port_id, enum print_warning warning)
744 {
745 	uint16_t pid;
746 
747 	if (port_id == (portid_t)RTE_PORT_ALL)
748 		return 0;
749 
750 	RTE_ETH_FOREACH_DEV(pid)
751 		if (port_id == pid)
752 			return 0;
753 
754 	if (warning == ENABLED_WARN)
755 		printf("Invalid port %d\n", port_id);
756 
757 	return 1;
758 }
759 
760 void print_valid_ports(void)
761 {
762 	portid_t pid;
763 
764 	printf("The valid ports array is [");
765 	RTE_ETH_FOREACH_DEV(pid) {
766 		printf(" %d", pid);
767 	}
768 	printf(" ]\n");
769 }
770 
771 static int
772 vlan_id_is_invalid(uint16_t vlan_id)
773 {
774 	if (vlan_id < 4096)
775 		return 0;
776 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
777 	return 1;
778 }
779 
780 static int
781 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
782 {
783 	const struct rte_pci_device *pci_dev;
784 	const struct rte_bus *bus;
785 	uint64_t pci_len;
786 
787 	if (reg_off & 0x3) {
788 		printf("Port register offset 0x%X not aligned on a 4-byte "
789 		       "boundary\n",
790 		       (unsigned)reg_off);
791 		return 1;
792 	}
793 
794 	if (!ports[port_id].dev_info.device) {
795 		printf("Invalid device\n");
796 		return 0;
797 	}
798 
799 	bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
800 	if (bus && !strcmp(bus->name, "pci")) {
801 		pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
802 	} else {
803 		printf("Not a PCI device\n");
804 		return 1;
805 	}
806 
807 	pci_len = pci_dev->mem_resource[0].len;
808 	if (reg_off >= pci_len) {
809 		printf("Port %d: register offset %u (0x%X) out of port PCI "
810 		       "resource (length=%"PRIu64")\n",
811 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
812 		return 1;
813 	}
814 	return 0;
815 }
816 
817 static int
818 reg_bit_pos_is_invalid(uint8_t bit_pos)
819 {
820 	if (bit_pos <= 31)
821 		return 0;
822 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
823 	return 1;
824 }
825 
826 #define display_port_and_reg_off(port_id, reg_off) \
827 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
828 
829 static inline void
830 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
831 {
832 	display_port_and_reg_off(port_id, (unsigned)reg_off);
833 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
834 }
835 
836 void
837 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
838 {
839 	uint32_t reg_v;
840 
841 
842 	if (port_id_is_invalid(port_id, ENABLED_WARN))
843 		return;
844 	if (port_reg_off_is_invalid(port_id, reg_off))
845 		return;
846 	if (reg_bit_pos_is_invalid(bit_x))
847 		return;
848 	reg_v = port_id_pci_reg_read(port_id, reg_off);
849 	display_port_and_reg_off(port_id, (unsigned)reg_off);
850 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
851 }
852 
853 void
854 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
855 			   uint8_t bit1_pos, uint8_t bit2_pos)
856 {
857 	uint32_t reg_v;
858 	uint8_t  l_bit;
859 	uint8_t  h_bit;
860 
861 	if (port_id_is_invalid(port_id, ENABLED_WARN))
862 		return;
863 	if (port_reg_off_is_invalid(port_id, reg_off))
864 		return;
865 	if (reg_bit_pos_is_invalid(bit1_pos))
866 		return;
867 	if (reg_bit_pos_is_invalid(bit2_pos))
868 		return;
869 	if (bit1_pos > bit2_pos)
870 		l_bit = bit2_pos, h_bit = bit1_pos;
871 	else
872 		l_bit = bit1_pos, h_bit = bit2_pos;
873 
874 	reg_v = port_id_pci_reg_read(port_id, reg_off);
875 	reg_v >>= l_bit;
876 	if (h_bit < 31)
877 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
878 	display_port_and_reg_off(port_id, (unsigned)reg_off);
879 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
880 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
881 }
882 
883 void
884 port_reg_display(portid_t port_id, uint32_t reg_off)
885 {
886 	uint32_t reg_v;
887 
888 	if (port_id_is_invalid(port_id, ENABLED_WARN))
889 		return;
890 	if (port_reg_off_is_invalid(port_id, reg_off))
891 		return;
892 	reg_v = port_id_pci_reg_read(port_id, reg_off);
893 	display_port_reg_value(port_id, reg_off, reg_v);
894 }
895 
896 void
897 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
898 		 uint8_t bit_v)
899 {
900 	uint32_t reg_v;
901 
902 	if (port_id_is_invalid(port_id, ENABLED_WARN))
903 		return;
904 	if (port_reg_off_is_invalid(port_id, reg_off))
905 		return;
906 	if (reg_bit_pos_is_invalid(bit_pos))
907 		return;
908 	if (bit_v > 1) {
909 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
910 		return;
911 	}
912 	reg_v = port_id_pci_reg_read(port_id, reg_off);
913 	if (bit_v == 0)
914 		reg_v &= ~(1 << bit_pos);
915 	else
916 		reg_v |= (1 << bit_pos);
917 	port_id_pci_reg_write(port_id, reg_off, reg_v);
918 	display_port_reg_value(port_id, reg_off, reg_v);
919 }
920 
921 void
922 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
923 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
924 {
925 	uint32_t max_v;
926 	uint32_t reg_v;
927 	uint8_t  l_bit;
928 	uint8_t  h_bit;
929 
930 	if (port_id_is_invalid(port_id, ENABLED_WARN))
931 		return;
932 	if (port_reg_off_is_invalid(port_id, reg_off))
933 		return;
934 	if (reg_bit_pos_is_invalid(bit1_pos))
935 		return;
936 	if (reg_bit_pos_is_invalid(bit2_pos))
937 		return;
938 	if (bit1_pos > bit2_pos)
939 		l_bit = bit2_pos, h_bit = bit1_pos;
940 	else
941 		l_bit = bit1_pos, h_bit = bit2_pos;
942 
943 	if ((h_bit - l_bit) < 31)
944 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
945 	else
946 		max_v = 0xFFFFFFFF;
947 
948 	if (value > max_v) {
949 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
950 				(unsigned)value, (unsigned)value,
951 				(unsigned)max_v, (unsigned)max_v);
952 		return;
953 	}
954 	reg_v = port_id_pci_reg_read(port_id, reg_off);
955 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
956 	reg_v |= (value << l_bit); /* Set changed bits */
957 	port_id_pci_reg_write(port_id, reg_off, reg_v);
958 	display_port_reg_value(port_id, reg_off, reg_v);
959 }
960 
961 void
962 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
963 {
964 	if (port_id_is_invalid(port_id, ENABLED_WARN))
965 		return;
966 	if (port_reg_off_is_invalid(port_id, reg_off))
967 		return;
968 	port_id_pci_reg_write(port_id, reg_off, reg_v);
969 	display_port_reg_value(port_id, reg_off, reg_v);
970 }
971 
972 void
973 port_mtu_set(portid_t port_id, uint16_t mtu)
974 {
975 	int diag;
976 
977 	if (port_id_is_invalid(port_id, ENABLED_WARN))
978 		return;
979 	diag = rte_eth_dev_set_mtu(port_id, mtu);
980 	if (diag == 0)
981 		return;
982 	printf("Set MTU failed. diag=%d\n", diag);
983 }
984 
985 /* Generic flow management functions. */
986 
987 /** Generate flow_item[] entry. */
988 #define MK_FLOW_ITEM(t, s) \
989 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
990 		.name = # t, \
991 		.size = s, \
992 	}
993 
994 /** Information about known flow pattern items. */
995 static const struct {
996 	const char *name;
997 	size_t size;
998 } flow_item[] = {
999 	MK_FLOW_ITEM(END, 0),
1000 	MK_FLOW_ITEM(VOID, 0),
1001 	MK_FLOW_ITEM(INVERT, 0),
1002 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1003 	MK_FLOW_ITEM(PF, 0),
1004 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1005 	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
1006 	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
1007 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
1008 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1009 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1010 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1011 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1012 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1013 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1014 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1015 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1016 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1017 	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1018 	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1019 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1020 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1021 	MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1022 	MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1023 	MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1024 	MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1025 	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1026 	MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1027 	MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
1028 	MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
1029 	MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1030 	MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
1031 	MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
1032 	MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
1033 	MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
1034 		     sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1035 	MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
1036 		     sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1037 };
1038 
1039 /** Pattern item specification types. */
1040 enum item_spec_type {
1041 	ITEM_SPEC,
1042 	ITEM_LAST,
1043 	ITEM_MASK,
1044 };
1045 
1046 /** Compute storage space needed by item specification and copy it. */
1047 static size_t
1048 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1049 		    enum item_spec_type type)
1050 {
1051 	size_t size = 0;
1052 	const void *item_spec =
1053 		type == ITEM_SPEC ? item->spec :
1054 		type == ITEM_LAST ? item->last :
1055 		type == ITEM_MASK ? item->mask :
1056 		NULL;
1057 
1058 	if (!item_spec)
1059 		goto empty;
1060 	switch (item->type) {
1061 		union {
1062 			const struct rte_flow_item_raw *raw;
1063 		} src;
1064 		union {
1065 			struct rte_flow_item_raw *raw;
1066 		} dst;
1067 		size_t off;
1068 
1069 	case RTE_FLOW_ITEM_TYPE_RAW:
1070 		src.raw = item_spec;
1071 		dst.raw = buf;
1072 		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1073 				     sizeof(*src.raw->pattern));
1074 		size = off + ((const struct rte_flow_item_raw *)item->spec)->
1075 			length * sizeof(*src.raw->pattern);
1076 		if (dst.raw) {
1077 			memcpy(dst.raw, src.raw, sizeof(*src.raw));
1078 			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1079 						  src.raw->pattern,
1080 						  size - off);
1081 		}
1082 		break;
1083 	default:
1084 		size = flow_item[item->type].size;
1085 		if (buf)
1086 			memcpy(buf, item_spec, size);
1087 		break;
1088 	}
1089 empty:
1090 	return RTE_ALIGN_CEIL(size, sizeof(double));
1091 }
1092 
1093 /** Generate flow_action[] entry. */
1094 #define MK_FLOW_ACTION(t, s) \
1095 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1096 		.name = # t, \
1097 		.size = s, \
1098 	}
1099 
1100 /** Information about known flow actions. */
1101 static const struct {
1102 	const char *name;
1103 	size_t size;
1104 } flow_action[] = {
1105 	MK_FLOW_ACTION(END, 0),
1106 	MK_FLOW_ACTION(VOID, 0),
1107 	MK_FLOW_ACTION(PASSTHRU, 0),
1108 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1109 	MK_FLOW_ACTION(FLAG, 0),
1110 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1111 	MK_FLOW_ACTION(DROP, 0),
1112 	MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
1113 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1114 	MK_FLOW_ACTION(PF, 0),
1115 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1116 	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1117 	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1118 	MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1119 	MK_FLOW_ACTION(OF_SET_MPLS_TTL,
1120 		       sizeof(struct rte_flow_action_of_set_mpls_ttl)),
1121 	MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
1122 	MK_FLOW_ACTION(OF_SET_NW_TTL,
1123 		       sizeof(struct rte_flow_action_of_set_nw_ttl)),
1124 	MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
1125 	MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
1126 	MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
1127 	MK_FLOW_ACTION(OF_POP_VLAN, 0),
1128 	MK_FLOW_ACTION(OF_PUSH_VLAN,
1129 		       sizeof(struct rte_flow_action_of_push_vlan)),
1130 	MK_FLOW_ACTION(OF_SET_VLAN_VID,
1131 		       sizeof(struct rte_flow_action_of_set_vlan_vid)),
1132 	MK_FLOW_ACTION(OF_SET_VLAN_PCP,
1133 		       sizeof(struct rte_flow_action_of_set_vlan_pcp)),
1134 	MK_FLOW_ACTION(OF_POP_MPLS,
1135 		       sizeof(struct rte_flow_action_of_pop_mpls)),
1136 	MK_FLOW_ACTION(OF_PUSH_MPLS,
1137 		       sizeof(struct rte_flow_action_of_push_mpls)),
1138 };
1139 
1140 /** Compute storage space needed by action configuration and copy it. */
1141 static size_t
1142 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1143 {
1144 	size_t size = 0;
1145 
1146 	if (!action->conf)
1147 		goto empty;
1148 	switch (action->type) {
1149 		union {
1150 			const struct rte_flow_action_rss *rss;
1151 		} src;
1152 		union {
1153 			struct rte_flow_action_rss *rss;
1154 		} dst;
1155 		size_t off;
1156 
1157 	case RTE_FLOW_ACTION_TYPE_RSS:
1158 		src.rss = action->conf;
1159 		dst.rss = buf;
1160 		off = 0;
1161 		if (dst.rss)
1162 			*dst.rss = (struct rte_flow_action_rss){
1163 				.func = src.rss->func,
1164 				.level = src.rss->level,
1165 				.types = src.rss->types,
1166 				.key_len = src.rss->key_len,
1167 				.queue_num = src.rss->queue_num,
1168 			};
1169 		off += sizeof(*src.rss);
1170 		if (src.rss->key_len) {
1171 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1172 			size = sizeof(*src.rss->key) * src.rss->key_len;
1173 			if (dst.rss)
1174 				dst.rss->key = memcpy
1175 					((void *)((uintptr_t)dst.rss + off),
1176 					 src.rss->key, size);
1177 			off += size;
1178 		}
1179 		if (src.rss->queue_num) {
1180 			off = RTE_ALIGN_CEIL(off, sizeof(double));
1181 			size = sizeof(*src.rss->queue) * src.rss->queue_num;
1182 			if (dst.rss)
1183 				dst.rss->queue = memcpy
1184 					((void *)((uintptr_t)dst.rss + off),
1185 					 src.rss->queue, size);
1186 			off += size;
1187 		}
1188 		size = off;
1189 		break;
1190 	default:
1191 		size = flow_action[action->type].size;
1192 		if (buf)
1193 			memcpy(buf, action->conf, size);
1194 		break;
1195 	}
1196 empty:
1197 	return RTE_ALIGN_CEIL(size, sizeof(double));
1198 }
1199 
1200 /** Generate a port_flow entry from attributes/pattern/actions. */
1201 static struct port_flow *
1202 port_flow_new(const struct rte_flow_attr *attr,
1203 	      const struct rte_flow_item *pattern,
1204 	      const struct rte_flow_action *actions)
1205 {
1206 	const struct rte_flow_item *item;
1207 	const struct rte_flow_action *action;
1208 	struct port_flow *pf = NULL;
1209 	size_t tmp;
1210 	size_t off1 = 0;
1211 	size_t off2 = 0;
1212 	int err = ENOTSUP;
1213 
1214 store:
1215 	item = pattern;
1216 	if (pf)
1217 		pf->pattern = (void *)&pf->data[off1];
1218 	do {
1219 		struct rte_flow_item *dst = NULL;
1220 
1221 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1222 		    !flow_item[item->type].name)
1223 			goto notsup;
1224 		if (pf)
1225 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1226 		off1 += sizeof(*item);
1227 		if (item->spec) {
1228 			if (pf)
1229 				dst->spec = pf->data + off2;
1230 			off2 += flow_item_spec_copy
1231 				(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1232 		}
1233 		if (item->last) {
1234 			if (pf)
1235 				dst->last = pf->data + off2;
1236 			off2 += flow_item_spec_copy
1237 				(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1238 		}
1239 		if (item->mask) {
1240 			if (pf)
1241 				dst->mask = pf->data + off2;
1242 			off2 += flow_item_spec_copy
1243 				(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1244 		}
1245 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1246 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1247 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1248 	action = actions;
1249 	if (pf)
1250 		pf->actions = (void *)&pf->data[off1];
1251 	do {
1252 		struct rte_flow_action *dst = NULL;
1253 
1254 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1255 		    !flow_action[action->type].name)
1256 			goto notsup;
1257 		if (pf)
1258 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1259 		off1 += sizeof(*action);
1260 		if (action->conf) {
1261 			if (pf)
1262 				dst->conf = pf->data + off2;
1263 			off2 += flow_action_conf_copy
1264 				(pf ? pf->data + off2 : NULL, action);
1265 		}
1266 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1267 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1268 	if (pf != NULL)
1269 		return pf;
1270 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1271 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1272 	pf = calloc(1, tmp + off1 + off2);
1273 	if (pf == NULL)
1274 		err = errno;
1275 	else {
1276 		*pf = (const struct port_flow){
1277 			.size = tmp + off1 + off2,
1278 			.attr = *attr,
1279 		};
1280 		tmp -= offsetof(struct port_flow, data);
1281 		off2 = tmp + off1;
1282 		off1 = tmp;
1283 		goto store;
1284 	}
1285 notsup:
1286 	rte_errno = err;
1287 	return NULL;
1288 }
1289 
1290 /** Print a message out of a flow error. */
1291 static int
1292 port_flow_complain(struct rte_flow_error *error)
1293 {
1294 	static const char *const errstrlist[] = {
1295 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1296 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1297 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1298 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1299 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1300 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1301 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1302 		[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1303 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1304 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1305 		[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1306 		[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1307 		[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1308 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1309 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1310 		[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1311 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1312 	};
1313 	const char *errstr;
1314 	char buf[32];
1315 	int err = rte_errno;
1316 
1317 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1318 	    !errstrlist[error->type])
1319 		errstr = "unknown type";
1320 	else
1321 		errstr = errstrlist[error->type];
1322 	printf("Caught error type %d (%s): %s%s\n",
1323 	       error->type, errstr,
1324 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1325 					error->cause), buf) : "",
1326 	       error->message ? error->message : "(no stated reason)");
1327 	return -err;
1328 }
1329 
1330 /** Validate flow rule. */
1331 int
1332 port_flow_validate(portid_t port_id,
1333 		   const struct rte_flow_attr *attr,
1334 		   const struct rte_flow_item *pattern,
1335 		   const struct rte_flow_action *actions)
1336 {
1337 	struct rte_flow_error error;
1338 
1339 	/* Poisoning to make sure PMDs update it in case of error. */
1340 	memset(&error, 0x11, sizeof(error));
1341 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1342 		return port_flow_complain(&error);
1343 	printf("Flow rule validated\n");
1344 	return 0;
1345 }
1346 
1347 /** Create flow rule. */
1348 int
1349 port_flow_create(portid_t port_id,
1350 		 const struct rte_flow_attr *attr,
1351 		 const struct rte_flow_item *pattern,
1352 		 const struct rte_flow_action *actions)
1353 {
1354 	struct rte_flow *flow;
1355 	struct rte_port *port;
1356 	struct port_flow *pf;
1357 	uint32_t id;
1358 	struct rte_flow_error error;
1359 
1360 	/* Poisoning to make sure PMDs update it in case of error. */
1361 	memset(&error, 0x22, sizeof(error));
1362 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1363 	if (!flow)
1364 		return port_flow_complain(&error);
1365 	port = &ports[port_id];
1366 	if (port->flow_list) {
1367 		if (port->flow_list->id == UINT32_MAX) {
1368 			printf("Highest rule ID is already assigned, delete"
1369 			       " it first");
1370 			rte_flow_destroy(port_id, flow, NULL);
1371 			return -ENOMEM;
1372 		}
1373 		id = port->flow_list->id + 1;
1374 	} else
1375 		id = 0;
1376 	pf = port_flow_new(attr, pattern, actions);
1377 	if (!pf) {
1378 		int err = rte_errno;
1379 
1380 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1381 		rte_flow_destroy(port_id, flow, NULL);
1382 		return -err;
1383 	}
1384 	pf->next = port->flow_list;
1385 	pf->id = id;
1386 	pf->flow = flow;
1387 	port->flow_list = pf;
1388 	printf("Flow rule #%u created\n", pf->id);
1389 	return 0;
1390 }
1391 
1392 /** Destroy a number of flow rules. */
1393 int
1394 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1395 {
1396 	struct rte_port *port;
1397 	struct port_flow **tmp;
1398 	uint32_t c = 0;
1399 	int ret = 0;
1400 
1401 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1402 	    port_id == (portid_t)RTE_PORT_ALL)
1403 		return -EINVAL;
1404 	port = &ports[port_id];
1405 	tmp = &port->flow_list;
1406 	while (*tmp) {
1407 		uint32_t i;
1408 
1409 		for (i = 0; i != n; ++i) {
1410 			struct rte_flow_error error;
1411 			struct port_flow *pf = *tmp;
1412 
1413 			if (rule[i] != pf->id)
1414 				continue;
1415 			/*
1416 			 * Poisoning to make sure PMDs update it in case
1417 			 * of error.
1418 			 */
1419 			memset(&error, 0x33, sizeof(error));
1420 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1421 				ret = port_flow_complain(&error);
1422 				continue;
1423 			}
1424 			printf("Flow rule #%u destroyed\n", pf->id);
1425 			*tmp = pf->next;
1426 			free(pf);
1427 			break;
1428 		}
1429 		if (i == n)
1430 			tmp = &(*tmp)->next;
1431 		++c;
1432 	}
1433 	return ret;
1434 }
1435 
1436 /** Remove all flow rules. */
1437 int
1438 port_flow_flush(portid_t port_id)
1439 {
1440 	struct rte_flow_error error;
1441 	struct rte_port *port;
1442 	int ret = 0;
1443 
1444 	/* Poisoning to make sure PMDs update it in case of error. */
1445 	memset(&error, 0x44, sizeof(error));
1446 	if (rte_flow_flush(port_id, &error)) {
1447 		ret = port_flow_complain(&error);
1448 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1449 		    port_id == (portid_t)RTE_PORT_ALL)
1450 			return ret;
1451 	}
1452 	port = &ports[port_id];
1453 	while (port->flow_list) {
1454 		struct port_flow *pf = port->flow_list->next;
1455 
1456 		free(port->flow_list);
1457 		port->flow_list = pf;
1458 	}
1459 	return ret;
1460 }
1461 
1462 /** Query a flow rule. */
1463 int
1464 port_flow_query(portid_t port_id, uint32_t rule,
1465 		const struct rte_flow_action *action)
1466 {
1467 	struct rte_flow_error error;
1468 	struct rte_port *port;
1469 	struct port_flow *pf;
1470 	const char *name;
1471 	union {
1472 		struct rte_flow_query_count count;
1473 	} query;
1474 
1475 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1476 	    port_id == (portid_t)RTE_PORT_ALL)
1477 		return -EINVAL;
1478 	port = &ports[port_id];
1479 	for (pf = port->flow_list; pf; pf = pf->next)
1480 		if (pf->id == rule)
1481 			break;
1482 	if (!pf) {
1483 		printf("Flow rule #%u not found\n", rule);
1484 		return -ENOENT;
1485 	}
1486 	if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1487 	    !flow_action[action->type].name)
1488 		name = "unknown";
1489 	else
1490 		name = flow_action[action->type].name;
1491 	switch (action->type) {
1492 	case RTE_FLOW_ACTION_TYPE_COUNT:
1493 		break;
1494 	default:
1495 		printf("Cannot query action type %d (%s)\n",
1496 			action->type, name);
1497 		return -ENOTSUP;
1498 	}
1499 	/* Poisoning to make sure PMDs update it in case of error. */
1500 	memset(&error, 0x55, sizeof(error));
1501 	memset(&query, 0, sizeof(query));
1502 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1503 		return port_flow_complain(&error);
1504 	switch (action->type) {
1505 	case RTE_FLOW_ACTION_TYPE_COUNT:
1506 		printf("%s:\n"
1507 		       " hits_set: %u\n"
1508 		       " bytes_set: %u\n"
1509 		       " hits: %" PRIu64 "\n"
1510 		       " bytes: %" PRIu64 "\n",
1511 		       name,
1512 		       query.count.hits_set,
1513 		       query.count.bytes_set,
1514 		       query.count.hits,
1515 		       query.count.bytes);
1516 		break;
1517 	default:
1518 		printf("Cannot display result for action type %d (%s)\n",
1519 		       action->type, name);
1520 		break;
1521 	}
1522 	return 0;
1523 }
1524 
1525 /** List flow rules. */
1526 void
1527 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1528 {
1529 	struct rte_port *port;
1530 	struct port_flow *pf;
1531 	struct port_flow *list = NULL;
1532 	uint32_t i;
1533 
1534 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1535 	    port_id == (portid_t)RTE_PORT_ALL)
1536 		return;
1537 	port = &ports[port_id];
1538 	if (!port->flow_list)
1539 		return;
1540 	/* Sort flows by group, priority and ID. */
1541 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1542 		struct port_flow **tmp;
1543 
1544 		if (n) {
1545 			/* Filter out unwanted groups. */
1546 			for (i = 0; i != n; ++i)
1547 				if (pf->attr.group == group[i])
1548 					break;
1549 			if (i == n)
1550 				continue;
1551 		}
1552 		tmp = &list;
1553 		while (*tmp &&
1554 		       (pf->attr.group > (*tmp)->attr.group ||
1555 			(pf->attr.group == (*tmp)->attr.group &&
1556 			 pf->attr.priority > (*tmp)->attr.priority) ||
1557 			(pf->attr.group == (*tmp)->attr.group &&
1558 			 pf->attr.priority == (*tmp)->attr.priority &&
1559 			 pf->id > (*tmp)->id)))
1560 			tmp = &(*tmp)->tmp;
1561 		pf->tmp = *tmp;
1562 		*tmp = pf;
1563 	}
1564 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1565 	for (pf = list; pf != NULL; pf = pf->tmp) {
1566 		const struct rte_flow_item *item = pf->pattern;
1567 		const struct rte_flow_action *action = pf->actions;
1568 
1569 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1570 		       pf->id,
1571 		       pf->attr.group,
1572 		       pf->attr.priority,
1573 		       pf->attr.ingress ? 'i' : '-',
1574 		       pf->attr.egress ? 'e' : '-',
1575 		       pf->attr.transfer ? 't' : '-');
1576 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1577 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1578 				printf("%s ", flow_item[item->type].name);
1579 			++item;
1580 		}
1581 		printf("=>");
1582 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1583 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1584 				printf(" %s", flow_action[action->type].name);
1585 			++action;
1586 		}
1587 		printf("\n");
1588 	}
1589 }
1590 
1591 /** Restrict ingress traffic to the defined flow rules. */
1592 int
1593 port_flow_isolate(portid_t port_id, int set)
1594 {
1595 	struct rte_flow_error error;
1596 
1597 	/* Poisoning to make sure PMDs update it in case of error. */
1598 	memset(&error, 0x66, sizeof(error));
1599 	if (rte_flow_isolate(port_id, set, &error))
1600 		return port_flow_complain(&error);
1601 	printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1602 	       port_id,
1603 	       set ? "now restricted" : "not restricted anymore");
1604 	return 0;
1605 }
1606 
1607 /*
1608  * RX/TX ring descriptors display functions.
1609  */
1610 int
1611 rx_queue_id_is_invalid(queueid_t rxq_id)
1612 {
1613 	if (rxq_id < nb_rxq)
1614 		return 0;
1615 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1616 	return 1;
1617 }
1618 
1619 int
1620 tx_queue_id_is_invalid(queueid_t txq_id)
1621 {
1622 	if (txq_id < nb_txq)
1623 		return 0;
1624 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1625 	return 1;
1626 }
1627 
1628 static int
1629 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1630 {
1631 	if (rxdesc_id < nb_rxd)
1632 		return 0;
1633 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1634 	       rxdesc_id, nb_rxd);
1635 	return 1;
1636 }
1637 
1638 static int
1639 tx_desc_id_is_invalid(uint16_t txdesc_id)
1640 {
1641 	if (txdesc_id < nb_txd)
1642 		return 0;
1643 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1644 	       txdesc_id, nb_txd);
1645 	return 1;
1646 }
1647 
1648 static const struct rte_memzone *
1649 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1650 {
1651 	char mz_name[RTE_MEMZONE_NAMESIZE];
1652 	const struct rte_memzone *mz;
1653 
1654 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1655 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1656 	mz = rte_memzone_lookup(mz_name);
1657 	if (mz == NULL)
1658 		printf("%s ring memory zoneof (port %d, queue %d) not"
1659 		       "found (zone name = %s\n",
1660 		       ring_name, port_id, q_id, mz_name);
1661 	return mz;
1662 }
1663 
1664 union igb_ring_dword {
1665 	uint64_t dword;
1666 	struct {
1667 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1668 		uint32_t lo;
1669 		uint32_t hi;
1670 #else
1671 		uint32_t hi;
1672 		uint32_t lo;
1673 #endif
1674 	} words;
1675 };
1676 
1677 struct igb_ring_desc_32_bytes {
1678 	union igb_ring_dword lo_dword;
1679 	union igb_ring_dword hi_dword;
1680 	union igb_ring_dword resv1;
1681 	union igb_ring_dword resv2;
1682 };
1683 
1684 struct igb_ring_desc_16_bytes {
1685 	union igb_ring_dword lo_dword;
1686 	union igb_ring_dword hi_dword;
1687 };
1688 
1689 static void
1690 ring_rxd_display_dword(union igb_ring_dword dword)
1691 {
1692 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1693 					(unsigned)dword.words.hi);
1694 }
1695 
1696 static void
1697 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1698 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1699 			   portid_t port_id,
1700 #else
1701 			   __rte_unused portid_t port_id,
1702 #endif
1703 			   uint16_t desc_id)
1704 {
1705 	struct igb_ring_desc_16_bytes *ring =
1706 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1707 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1708 	struct rte_eth_dev_info dev_info;
1709 
1710 	memset(&dev_info, 0, sizeof(dev_info));
1711 	rte_eth_dev_info_get(port_id, &dev_info);
1712 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1713 		/* 32 bytes RX descriptor, i40e only */
1714 		struct igb_ring_desc_32_bytes *ring =
1715 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1716 		ring[desc_id].lo_dword.dword =
1717 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1718 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1719 		ring[desc_id].hi_dword.dword =
1720 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1721 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1722 		ring[desc_id].resv1.dword =
1723 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1724 		ring_rxd_display_dword(ring[desc_id].resv1);
1725 		ring[desc_id].resv2.dword =
1726 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1727 		ring_rxd_display_dword(ring[desc_id].resv2);
1728 
1729 		return;
1730 	}
1731 #endif
1732 	/* 16 bytes RX descriptor */
1733 	ring[desc_id].lo_dword.dword =
1734 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1735 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1736 	ring[desc_id].hi_dword.dword =
1737 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1738 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1739 }
1740 
1741 static void
1742 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1743 {
1744 	struct igb_ring_desc_16_bytes *ring;
1745 	struct igb_ring_desc_16_bytes txd;
1746 
1747 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1748 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1749 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1750 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1751 			(unsigned)txd.lo_dword.words.lo,
1752 			(unsigned)txd.lo_dword.words.hi,
1753 			(unsigned)txd.hi_dword.words.lo,
1754 			(unsigned)txd.hi_dword.words.hi);
1755 }
1756 
1757 void
1758 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1759 {
1760 	const struct rte_memzone *rx_mz;
1761 
1762 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1763 		return;
1764 	if (rx_queue_id_is_invalid(rxq_id))
1765 		return;
1766 	if (rx_desc_id_is_invalid(rxd_id))
1767 		return;
1768 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1769 	if (rx_mz == NULL)
1770 		return;
1771 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1772 }
1773 
1774 void
1775 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1776 {
1777 	const struct rte_memzone *tx_mz;
1778 
1779 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1780 		return;
1781 	if (tx_queue_id_is_invalid(txq_id))
1782 		return;
1783 	if (tx_desc_id_is_invalid(txd_id))
1784 		return;
1785 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1786 	if (tx_mz == NULL)
1787 		return;
1788 	ring_tx_descriptor_display(tx_mz, txd_id);
1789 }
1790 
1791 void
1792 fwd_lcores_config_display(void)
1793 {
1794 	lcoreid_t lc_id;
1795 
1796 	printf("List of forwarding lcores:");
1797 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1798 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1799 	printf("\n");
1800 }
1801 void
1802 rxtx_config_display(void)
1803 {
1804 	portid_t pid;
1805 	queueid_t qid;
1806 
1807 	printf("  %s packet forwarding%s packets/burst=%d\n",
1808 	       cur_fwd_eng->fwd_mode_name,
1809 	       retry_enabled == 0 ? "" : " with retry",
1810 	       nb_pkt_per_burst);
1811 
1812 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1813 		printf("  packet len=%u - nb packet segments=%d\n",
1814 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1815 
1816 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1817 	       nb_fwd_lcores, nb_fwd_ports);
1818 
1819 	RTE_ETH_FOREACH_DEV(pid) {
1820 		struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1821 		struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1822 		uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1823 		uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1824 
1825 		/* per port config */
1826 		printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1827 				(unsigned int)pid, nb_rxq, nb_txq);
1828 
1829 		printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1830 				ports[pid].dev_conf.rxmode.offloads,
1831 				ports[pid].dev_conf.txmode.offloads);
1832 
1833 		/* per rx queue config only for first queue to be less verbose */
1834 		for (qid = 0; qid < 1; qid++) {
1835 			printf("    RX queue: %d\n", qid);
1836 			printf("      RX desc=%d - RX free threshold=%d\n",
1837 				nb_rx_desc[qid], rx_conf[qid].rx_free_thresh);
1838 			printf("      RX threshold registers: pthresh=%d hthresh=%d "
1839 				" wthresh=%d\n",
1840 				rx_conf[qid].rx_thresh.pthresh,
1841 				rx_conf[qid].rx_thresh.hthresh,
1842 				rx_conf[qid].rx_thresh.wthresh);
1843 			printf("      RX Offloads=0x%"PRIx64"\n",
1844 				rx_conf[qid].offloads);
1845 		}
1846 
1847 		/* per tx queue config only for first queue to be less verbose */
1848 		for (qid = 0; qid < 1; qid++) {
1849 			printf("    TX queue: %d\n", qid);
1850 			printf("      TX desc=%d - TX free threshold=%d\n",
1851 				nb_tx_desc[qid], tx_conf[qid].tx_free_thresh);
1852 			printf("      TX threshold registers: pthresh=%d hthresh=%d "
1853 				" wthresh=%d\n",
1854 				tx_conf[qid].tx_thresh.pthresh,
1855 				tx_conf[qid].tx_thresh.hthresh,
1856 				tx_conf[qid].tx_thresh.wthresh);
1857 			printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1858 				tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1859 		}
1860 	}
1861 }
1862 
1863 void
1864 port_rss_reta_info(portid_t port_id,
1865 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1866 		   uint16_t nb_entries)
1867 {
1868 	uint16_t i, idx, shift;
1869 	int ret;
1870 
1871 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1872 		return;
1873 
1874 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1875 	if (ret != 0) {
1876 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1877 		return;
1878 	}
1879 
1880 	for (i = 0; i < nb_entries; i++) {
1881 		idx = i / RTE_RETA_GROUP_SIZE;
1882 		shift = i % RTE_RETA_GROUP_SIZE;
1883 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1884 			continue;
1885 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1886 					i, reta_conf[idx].reta[shift]);
1887 	}
1888 }
1889 
1890 /*
1891  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1892  * key of the port.
1893  */
1894 void
1895 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1896 {
1897 	struct rte_eth_rss_conf rss_conf;
1898 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1899 	uint64_t rss_hf;
1900 	uint8_t i;
1901 	int diag;
1902 	struct rte_eth_dev_info dev_info;
1903 	uint8_t hash_key_size;
1904 
1905 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1906 		return;
1907 
1908 	memset(&dev_info, 0, sizeof(dev_info));
1909 	rte_eth_dev_info_get(port_id, &dev_info);
1910 	if (dev_info.hash_key_size > 0 &&
1911 			dev_info.hash_key_size <= sizeof(rss_key))
1912 		hash_key_size = dev_info.hash_key_size;
1913 	else {
1914 		printf("dev_info did not provide a valid hash key size\n");
1915 		return;
1916 	}
1917 
1918 	rss_conf.rss_hf = 0;
1919 	for (i = 0; rss_type_table[i].str; i++) {
1920 		if (!strcmp(rss_info, rss_type_table[i].str))
1921 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1922 	}
1923 
1924 	/* Get RSS hash key if asked to display it */
1925 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1926 	rss_conf.rss_key_len = hash_key_size;
1927 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1928 	if (diag != 0) {
1929 		switch (diag) {
1930 		case -ENODEV:
1931 			printf("port index %d invalid\n", port_id);
1932 			break;
1933 		case -ENOTSUP:
1934 			printf("operation not supported by device\n");
1935 			break;
1936 		default:
1937 			printf("operation failed - diag=%d\n", diag);
1938 			break;
1939 		}
1940 		return;
1941 	}
1942 	rss_hf = rss_conf.rss_hf;
1943 	if (rss_hf == 0) {
1944 		printf("RSS disabled\n");
1945 		return;
1946 	}
1947 	printf("RSS functions:\n ");
1948 	for (i = 0; rss_type_table[i].str; i++) {
1949 		if (rss_hf & rss_type_table[i].rss_type)
1950 			printf("%s ", rss_type_table[i].str);
1951 	}
1952 	printf("\n");
1953 	if (!show_rss_key)
1954 		return;
1955 	printf("RSS key:\n");
1956 	for (i = 0; i < hash_key_size; i++)
1957 		printf("%02X", rss_key[i]);
1958 	printf("\n");
1959 }
1960 
1961 void
1962 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1963 			 uint hash_key_len)
1964 {
1965 	struct rte_eth_rss_conf rss_conf;
1966 	int diag;
1967 	unsigned int i;
1968 
1969 	rss_conf.rss_key = NULL;
1970 	rss_conf.rss_key_len = hash_key_len;
1971 	rss_conf.rss_hf = 0;
1972 	for (i = 0; rss_type_table[i].str; i++) {
1973 		if (!strcmp(rss_type_table[i].str, rss_type))
1974 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1975 	}
1976 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1977 	if (diag == 0) {
1978 		rss_conf.rss_key = hash_key;
1979 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1980 	}
1981 	if (diag == 0)
1982 		return;
1983 
1984 	switch (diag) {
1985 	case -ENODEV:
1986 		printf("port index %d invalid\n", port_id);
1987 		break;
1988 	case -ENOTSUP:
1989 		printf("operation not supported by device\n");
1990 		break;
1991 	default:
1992 		printf("operation failed - diag=%d\n", diag);
1993 		break;
1994 	}
1995 }
1996 
1997 /*
1998  * Setup forwarding configuration for each logical core.
1999  */
2000 static void
2001 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
2002 {
2003 	streamid_t nb_fs_per_lcore;
2004 	streamid_t nb_fs;
2005 	streamid_t sm_id;
2006 	lcoreid_t  nb_extra;
2007 	lcoreid_t  nb_fc;
2008 	lcoreid_t  nb_lc;
2009 	lcoreid_t  lc_id;
2010 
2011 	nb_fs = cfg->nb_fwd_streams;
2012 	nb_fc = cfg->nb_fwd_lcores;
2013 	if (nb_fs <= nb_fc) {
2014 		nb_fs_per_lcore = 1;
2015 		nb_extra = 0;
2016 	} else {
2017 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
2018 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
2019 	}
2020 
2021 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2022 	sm_id = 0;
2023 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2024 		fwd_lcores[lc_id]->stream_idx = sm_id;
2025 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2026 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2027 	}
2028 
2029 	/*
2030 	 * Assign extra remaining streams, if any.
2031 	 */
2032 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2033 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2034 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2035 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2036 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2037 	}
2038 }
2039 
2040 static portid_t
2041 fwd_topology_tx_port_get(portid_t rxp)
2042 {
2043 	static int warning_once = 1;
2044 
2045 	RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2046 
2047 	switch (port_topology) {
2048 	default:
2049 	case PORT_TOPOLOGY_PAIRED:
2050 		if ((rxp & 0x1) == 0) {
2051 			if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2052 				return rxp + 1;
2053 			if (warning_once) {
2054 				printf("\nWarning! port-topology=paired"
2055 				       " and odd forward ports number,"
2056 				       " the last port will pair with"
2057 				       " itself.\n\n");
2058 				warning_once = 0;
2059 			}
2060 			return rxp;
2061 		}
2062 		return rxp - 1;
2063 	case PORT_TOPOLOGY_CHAINED:
2064 		return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2065 	case PORT_TOPOLOGY_LOOP:
2066 		return rxp;
2067 	}
2068 }
2069 
2070 static void
2071 simple_fwd_config_setup(void)
2072 {
2073 	portid_t i;
2074 
2075 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2076 	cur_fwd_config.nb_fwd_streams =
2077 		(streamid_t) cur_fwd_config.nb_fwd_ports;
2078 
2079 	/* reinitialize forwarding streams */
2080 	init_fwd_streams();
2081 
2082 	/*
2083 	 * In the simple forwarding test, the number of forwarding cores
2084 	 * must be lower or equal to the number of forwarding ports.
2085 	 */
2086 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2087 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2088 		cur_fwd_config.nb_fwd_lcores =
2089 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
2090 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2091 
2092 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2093 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2094 		fwd_streams[i]->rx_queue  = 0;
2095 		fwd_streams[i]->tx_port   =
2096 				fwd_ports_ids[fwd_topology_tx_port_get(i)];
2097 		fwd_streams[i]->tx_queue  = 0;
2098 		fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2099 		fwd_streams[i]->retry_enabled = retry_enabled;
2100 	}
2101 }
2102 
2103 /**
2104  * For the RSS forwarding test all streams distributed over lcores. Each stream
2105  * being composed of a RX queue to poll on a RX port for input messages,
2106  * associated with a TX queue of a TX port where to send forwarded packets.
2107  */
2108 static void
2109 rss_fwd_config_setup(void)
2110 {
2111 	portid_t   rxp;
2112 	portid_t   txp;
2113 	queueid_t  rxq;
2114 	queueid_t  nb_q;
2115 	streamid_t  sm_id;
2116 
2117 	nb_q = nb_rxq;
2118 	if (nb_q > nb_txq)
2119 		nb_q = nb_txq;
2120 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2121 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2122 	cur_fwd_config.nb_fwd_streams =
2123 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2124 
2125 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2126 		cur_fwd_config.nb_fwd_lcores =
2127 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2128 
2129 	/* reinitialize forwarding streams */
2130 	init_fwd_streams();
2131 
2132 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2133 	rxp = 0; rxq = 0;
2134 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2135 		struct fwd_stream *fs;
2136 
2137 		fs = fwd_streams[sm_id];
2138 		txp = fwd_topology_tx_port_get(rxp);
2139 		fs->rx_port = fwd_ports_ids[rxp];
2140 		fs->rx_queue = rxq;
2141 		fs->tx_port = fwd_ports_ids[txp];
2142 		fs->tx_queue = rxq;
2143 		fs->peer_addr = fs->tx_port;
2144 		fs->retry_enabled = retry_enabled;
2145 		rxq = (queueid_t) (rxq + 1);
2146 		if (rxq < nb_q)
2147 			continue;
2148 		/*
2149 		 * rxq == nb_q
2150 		 * Restart from RX queue 0 on next RX port
2151 		 */
2152 		rxq = 0;
2153 		rxp++;
2154 	}
2155 }
2156 
2157 /**
2158  * For the DCB forwarding test, each core is assigned on each traffic class.
2159  *
2160  * Each core is assigned a multi-stream, each stream being composed of
2161  * a RX queue to poll on a RX port for input messages, associated with
2162  * a TX queue of a TX port where to send forwarded packets. All RX and
2163  * TX queues are mapping to the same traffic class.
2164  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2165  * the same core
2166  */
2167 static void
2168 dcb_fwd_config_setup(void)
2169 {
2170 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2171 	portid_t txp, rxp = 0;
2172 	queueid_t txq, rxq = 0;
2173 	lcoreid_t  lc_id;
2174 	uint16_t nb_rx_queue, nb_tx_queue;
2175 	uint16_t i, j, k, sm_id = 0;
2176 	uint8_t tc = 0;
2177 
2178 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2179 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2180 	cur_fwd_config.nb_fwd_streams =
2181 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2182 
2183 	/* reinitialize forwarding streams */
2184 	init_fwd_streams();
2185 	sm_id = 0;
2186 	txp = 1;
2187 	/* get the dcb info on the first RX and TX ports */
2188 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2189 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2190 
2191 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2192 		fwd_lcores[lc_id]->stream_nb = 0;
2193 		fwd_lcores[lc_id]->stream_idx = sm_id;
2194 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2195 			/* if the nb_queue is zero, means this tc is
2196 			 * not enabled on the POOL
2197 			 */
2198 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2199 				break;
2200 			k = fwd_lcores[lc_id]->stream_nb +
2201 				fwd_lcores[lc_id]->stream_idx;
2202 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2203 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2204 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2205 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2206 			for (j = 0; j < nb_rx_queue; j++) {
2207 				struct fwd_stream *fs;
2208 
2209 				fs = fwd_streams[k + j];
2210 				fs->rx_port = fwd_ports_ids[rxp];
2211 				fs->rx_queue = rxq + j;
2212 				fs->tx_port = fwd_ports_ids[txp];
2213 				fs->tx_queue = txq + j % nb_tx_queue;
2214 				fs->peer_addr = fs->tx_port;
2215 				fs->retry_enabled = retry_enabled;
2216 			}
2217 			fwd_lcores[lc_id]->stream_nb +=
2218 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2219 		}
2220 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2221 
2222 		tc++;
2223 		if (tc < rxp_dcb_info.nb_tcs)
2224 			continue;
2225 		/* Restart from TC 0 on next RX port */
2226 		tc = 0;
2227 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2228 			rxp = (portid_t)
2229 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2230 		else
2231 			rxp++;
2232 		if (rxp >= nb_fwd_ports)
2233 			return;
2234 		/* get the dcb information on next RX and TX ports */
2235 		if ((rxp & 0x1) == 0)
2236 			txp = (portid_t) (rxp + 1);
2237 		else
2238 			txp = (portid_t) (rxp - 1);
2239 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2240 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2241 	}
2242 }
2243 
2244 static void
2245 icmp_echo_config_setup(void)
2246 {
2247 	portid_t  rxp;
2248 	queueid_t rxq;
2249 	lcoreid_t lc_id;
2250 	uint16_t  sm_id;
2251 
2252 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2253 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2254 			(nb_txq * nb_fwd_ports);
2255 	else
2256 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2257 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2258 	cur_fwd_config.nb_fwd_streams =
2259 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2260 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2261 		cur_fwd_config.nb_fwd_lcores =
2262 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2263 	if (verbose_level > 0) {
2264 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2265 		       __FUNCTION__,
2266 		       cur_fwd_config.nb_fwd_lcores,
2267 		       cur_fwd_config.nb_fwd_ports,
2268 		       cur_fwd_config.nb_fwd_streams);
2269 	}
2270 
2271 	/* reinitialize forwarding streams */
2272 	init_fwd_streams();
2273 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2274 	rxp = 0; rxq = 0;
2275 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2276 		if (verbose_level > 0)
2277 			printf("  core=%d: \n", lc_id);
2278 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2279 			struct fwd_stream *fs;
2280 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2281 			fs->rx_port = fwd_ports_ids[rxp];
2282 			fs->rx_queue = rxq;
2283 			fs->tx_port = fs->rx_port;
2284 			fs->tx_queue = rxq;
2285 			fs->peer_addr = fs->tx_port;
2286 			fs->retry_enabled = retry_enabled;
2287 			if (verbose_level > 0)
2288 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2289 				       sm_id, fs->rx_port, fs->rx_queue,
2290 				       fs->tx_queue);
2291 			rxq = (queueid_t) (rxq + 1);
2292 			if (rxq == nb_rxq) {
2293 				rxq = 0;
2294 				rxp = (portid_t) (rxp + 1);
2295 			}
2296 		}
2297 	}
2298 }
2299 
2300 void
2301 fwd_config_setup(void)
2302 {
2303 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2304 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2305 		icmp_echo_config_setup();
2306 		return;
2307 	}
2308 	if ((nb_rxq > 1) && (nb_txq > 1)){
2309 		if (dcb_config)
2310 			dcb_fwd_config_setup();
2311 		else
2312 			rss_fwd_config_setup();
2313 	}
2314 	else
2315 		simple_fwd_config_setup();
2316 }
2317 
2318 void
2319 pkt_fwd_config_display(struct fwd_config *cfg)
2320 {
2321 	struct fwd_stream *fs;
2322 	lcoreid_t  lc_id;
2323 	streamid_t sm_id;
2324 
2325 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2326 		"NUMA support %s, MP over anonymous pages %s\n",
2327 		cfg->fwd_eng->fwd_mode_name,
2328 		retry_enabled == 0 ? "" : " with retry",
2329 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2330 		numa_support == 1 ? "enabled" : "disabled",
2331 		mp_anon != 0 ? "enabled" : "disabled");
2332 
2333 	if (retry_enabled)
2334 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2335 			burst_tx_retry_num, burst_tx_delay_time);
2336 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2337 		printf("Logical Core %u (socket %u) forwards packets on "
2338 		       "%d streams:",
2339 		       fwd_lcores_cpuids[lc_id],
2340 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2341 		       fwd_lcores[lc_id]->stream_nb);
2342 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2343 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2344 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2345 			       "P=%d/Q=%d (socket %u) ",
2346 			       fs->rx_port, fs->rx_queue,
2347 			       ports[fs->rx_port].socket_id,
2348 			       fs->tx_port, fs->tx_queue,
2349 			       ports[fs->tx_port].socket_id);
2350 			print_ethaddr("peer=",
2351 				      &peer_eth_addrs[fs->peer_addr]);
2352 		}
2353 		printf("\n");
2354 	}
2355 	printf("\n");
2356 }
2357 
2358 void
2359 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2360 {
2361 	uint8_t c, new_peer_addr[6];
2362 	if (!rte_eth_dev_is_valid_port(port_id)) {
2363 		printf("Error: Invalid port number %i\n", port_id);
2364 		return;
2365 	}
2366 	if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2367 					sizeof(new_peer_addr)) < 0) {
2368 		printf("Error: Invalid ethernet address: %s\n", peer_addr);
2369 		return;
2370 	}
2371 	for (c = 0; c < 6; c++)
2372 		peer_eth_addrs[port_id].addr_bytes[c] =
2373 			new_peer_addr[c];
2374 }
2375 
2376 int
2377 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2378 {
2379 	unsigned int i;
2380 	unsigned int lcore_cpuid;
2381 	int record_now;
2382 
2383 	record_now = 0;
2384  again:
2385 	for (i = 0; i < nb_lc; i++) {
2386 		lcore_cpuid = lcorelist[i];
2387 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2388 			printf("lcore %u not enabled\n", lcore_cpuid);
2389 			return -1;
2390 		}
2391 		if (lcore_cpuid == rte_get_master_lcore()) {
2392 			printf("lcore %u cannot be masked on for running "
2393 			       "packet forwarding, which is the master lcore "
2394 			       "and reserved for command line parsing only\n",
2395 			       lcore_cpuid);
2396 			return -1;
2397 		}
2398 		if (record_now)
2399 			fwd_lcores_cpuids[i] = lcore_cpuid;
2400 	}
2401 	if (record_now == 0) {
2402 		record_now = 1;
2403 		goto again;
2404 	}
2405 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2406 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2407 		printf("previous number of forwarding cores %u - changed to "
2408 		       "number of configured cores %u\n",
2409 		       (unsigned int) nb_fwd_lcores, nb_lc);
2410 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 int
2417 set_fwd_lcores_mask(uint64_t lcoremask)
2418 {
2419 	unsigned int lcorelist[64];
2420 	unsigned int nb_lc;
2421 	unsigned int i;
2422 
2423 	if (lcoremask == 0) {
2424 		printf("Invalid NULL mask of cores\n");
2425 		return -1;
2426 	}
2427 	nb_lc = 0;
2428 	for (i = 0; i < 64; i++) {
2429 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2430 			continue;
2431 		lcorelist[nb_lc++] = i;
2432 	}
2433 	return set_fwd_lcores_list(lcorelist, nb_lc);
2434 }
2435 
2436 void
2437 set_fwd_lcores_number(uint16_t nb_lc)
2438 {
2439 	if (nb_lc > nb_cfg_lcores) {
2440 		printf("nb fwd cores %u > %u (max. number of configured "
2441 		       "lcores) - ignored\n",
2442 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2443 		return;
2444 	}
2445 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2446 	printf("Number of forwarding cores set to %u\n",
2447 	       (unsigned int) nb_fwd_lcores);
2448 }
2449 
2450 void
2451 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2452 {
2453 	unsigned int i;
2454 	portid_t port_id;
2455 	int record_now;
2456 
2457 	record_now = 0;
2458  again:
2459 	for (i = 0; i < nb_pt; i++) {
2460 		port_id = (portid_t) portlist[i];
2461 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2462 			return;
2463 		if (record_now)
2464 			fwd_ports_ids[i] = port_id;
2465 	}
2466 	if (record_now == 0) {
2467 		record_now = 1;
2468 		goto again;
2469 	}
2470 	nb_cfg_ports = (portid_t) nb_pt;
2471 	if (nb_fwd_ports != (portid_t) nb_pt) {
2472 		printf("previous number of forwarding ports %u - changed to "
2473 		       "number of configured ports %u\n",
2474 		       (unsigned int) nb_fwd_ports, nb_pt);
2475 		nb_fwd_ports = (portid_t) nb_pt;
2476 	}
2477 }
2478 
2479 void
2480 set_fwd_ports_mask(uint64_t portmask)
2481 {
2482 	unsigned int portlist[64];
2483 	unsigned int nb_pt;
2484 	unsigned int i;
2485 
2486 	if (portmask == 0) {
2487 		printf("Invalid NULL mask of ports\n");
2488 		return;
2489 	}
2490 	nb_pt = 0;
2491 	RTE_ETH_FOREACH_DEV(i) {
2492 		if (! ((uint64_t)(1ULL << i) & portmask))
2493 			continue;
2494 		portlist[nb_pt++] = i;
2495 	}
2496 	set_fwd_ports_list(portlist, nb_pt);
2497 }
2498 
2499 void
2500 set_fwd_ports_number(uint16_t nb_pt)
2501 {
2502 	if (nb_pt > nb_cfg_ports) {
2503 		printf("nb fwd ports %u > %u (number of configured "
2504 		       "ports) - ignored\n",
2505 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2506 		return;
2507 	}
2508 	nb_fwd_ports = (portid_t) nb_pt;
2509 	printf("Number of forwarding ports set to %u\n",
2510 	       (unsigned int) nb_fwd_ports);
2511 }
2512 
2513 int
2514 port_is_forwarding(portid_t port_id)
2515 {
2516 	unsigned int i;
2517 
2518 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2519 		return -1;
2520 
2521 	for (i = 0; i < nb_fwd_ports; i++) {
2522 		if (fwd_ports_ids[i] == port_id)
2523 			return 1;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 void
2530 set_nb_pkt_per_burst(uint16_t nb)
2531 {
2532 	if (nb > MAX_PKT_BURST) {
2533 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2534 		       " ignored\n",
2535 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2536 		return;
2537 	}
2538 	nb_pkt_per_burst = nb;
2539 	printf("Number of packets per burst set to %u\n",
2540 	       (unsigned int) nb_pkt_per_burst);
2541 }
2542 
2543 static const char *
2544 tx_split_get_name(enum tx_pkt_split split)
2545 {
2546 	uint32_t i;
2547 
2548 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2549 		if (tx_split_name[i].split == split)
2550 			return tx_split_name[i].name;
2551 	}
2552 	return NULL;
2553 }
2554 
2555 void
2556 set_tx_pkt_split(const char *name)
2557 {
2558 	uint32_t i;
2559 
2560 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2561 		if (strcmp(tx_split_name[i].name, name) == 0) {
2562 			tx_pkt_split = tx_split_name[i].split;
2563 			return;
2564 		}
2565 	}
2566 	printf("unknown value: \"%s\"\n", name);
2567 }
2568 
2569 void
2570 show_tx_pkt_segments(void)
2571 {
2572 	uint32_t i, n;
2573 	const char *split;
2574 
2575 	n = tx_pkt_nb_segs;
2576 	split = tx_split_get_name(tx_pkt_split);
2577 
2578 	printf("Number of segments: %u\n", n);
2579 	printf("Segment sizes: ");
2580 	for (i = 0; i != n - 1; i++)
2581 		printf("%hu,", tx_pkt_seg_lengths[i]);
2582 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2583 	printf("Split packet: %s\n", split);
2584 }
2585 
2586 void
2587 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2588 {
2589 	uint16_t tx_pkt_len;
2590 	unsigned i;
2591 
2592 	if (nb_segs >= (unsigned) nb_txd) {
2593 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2594 		       nb_segs, (unsigned int) nb_txd);
2595 		return;
2596 	}
2597 
2598 	/*
2599 	 * Check that each segment length is greater or equal than
2600 	 * the mbuf data sise.
2601 	 * Check also that the total packet length is greater or equal than the
2602 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2603 	 */
2604 	tx_pkt_len = 0;
2605 	for (i = 0; i < nb_segs; i++) {
2606 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2607 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2608 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2609 			return;
2610 		}
2611 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2612 	}
2613 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2614 		printf("total packet length=%u < %d - give up\n",
2615 				(unsigned) tx_pkt_len,
2616 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2617 		return;
2618 	}
2619 
2620 	for (i = 0; i < nb_segs; i++)
2621 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2622 
2623 	tx_pkt_length  = tx_pkt_len;
2624 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2625 }
2626 
2627 void
2628 setup_gro(const char *onoff, portid_t port_id)
2629 {
2630 	if (!rte_eth_dev_is_valid_port(port_id)) {
2631 		printf("invalid port id %u\n", port_id);
2632 		return;
2633 	}
2634 	if (test_done == 0) {
2635 		printf("Before enable/disable GRO,"
2636 				" please stop forwarding first\n");
2637 		return;
2638 	}
2639 	if (strcmp(onoff, "on") == 0) {
2640 		if (gro_ports[port_id].enable != 0) {
2641 			printf("Port %u has enabled GRO. Please"
2642 					" disable GRO first\n", port_id);
2643 			return;
2644 		}
2645 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2646 			gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2647 			gro_ports[port_id].param.max_flow_num =
2648 				GRO_DEFAULT_FLOW_NUM;
2649 			gro_ports[port_id].param.max_item_per_flow =
2650 				GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2651 		}
2652 		gro_ports[port_id].enable = 1;
2653 	} else {
2654 		if (gro_ports[port_id].enable == 0) {
2655 			printf("Port %u has disabled GRO\n", port_id);
2656 			return;
2657 		}
2658 		gro_ports[port_id].enable = 0;
2659 	}
2660 }
2661 
2662 void
2663 setup_gro_flush_cycles(uint8_t cycles)
2664 {
2665 	if (test_done == 0) {
2666 		printf("Before change flush interval for GRO,"
2667 				" please stop forwarding first.\n");
2668 		return;
2669 	}
2670 
2671 	if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2672 			GRO_DEFAULT_FLUSH_CYCLES) {
2673 		printf("The flushing cycle be in the range"
2674 				" of 1 to %u. Revert to the default"
2675 				" value %u.\n",
2676 				GRO_MAX_FLUSH_CYCLES,
2677 				GRO_DEFAULT_FLUSH_CYCLES);
2678 		cycles = GRO_DEFAULT_FLUSH_CYCLES;
2679 	}
2680 
2681 	gro_flush_cycles = cycles;
2682 }
2683 
2684 void
2685 show_gro(portid_t port_id)
2686 {
2687 	struct rte_gro_param *param;
2688 	uint32_t max_pkts_num;
2689 
2690 	param = &gro_ports[port_id].param;
2691 
2692 	if (!rte_eth_dev_is_valid_port(port_id)) {
2693 		printf("Invalid port id %u.\n", port_id);
2694 		return;
2695 	}
2696 	if (gro_ports[port_id].enable) {
2697 		printf("GRO type: TCP/IPv4\n");
2698 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2699 			max_pkts_num = param->max_flow_num *
2700 				param->max_item_per_flow;
2701 		} else
2702 			max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2703 		printf("Max number of packets to perform GRO: %u\n",
2704 				max_pkts_num);
2705 		printf("Flushing cycles: %u\n", gro_flush_cycles);
2706 	} else
2707 		printf("Port %u doesn't enable GRO.\n", port_id);
2708 }
2709 
2710 void
2711 setup_gso(const char *mode, portid_t port_id)
2712 {
2713 	if (!rte_eth_dev_is_valid_port(port_id)) {
2714 		printf("invalid port id %u\n", port_id);
2715 		return;
2716 	}
2717 	if (strcmp(mode, "on") == 0) {
2718 		if (test_done == 0) {
2719 			printf("before enabling GSO,"
2720 					" please stop forwarding first\n");
2721 			return;
2722 		}
2723 		gso_ports[port_id].enable = 1;
2724 	} else if (strcmp(mode, "off") == 0) {
2725 		if (test_done == 0) {
2726 			printf("before disabling GSO,"
2727 					" please stop forwarding first\n");
2728 			return;
2729 		}
2730 		gso_ports[port_id].enable = 0;
2731 	}
2732 }
2733 
2734 char*
2735 list_pkt_forwarding_modes(void)
2736 {
2737 	static char fwd_modes[128] = "";
2738 	const char *separator = "|";
2739 	struct fwd_engine *fwd_eng;
2740 	unsigned i = 0;
2741 
2742 	if (strlen (fwd_modes) == 0) {
2743 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2744 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2745 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2746 			strncat(fwd_modes, separator,
2747 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2748 		}
2749 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2750 	}
2751 
2752 	return fwd_modes;
2753 }
2754 
2755 char*
2756 list_pkt_forwarding_retry_modes(void)
2757 {
2758 	static char fwd_modes[128] = "";
2759 	const char *separator = "|";
2760 	struct fwd_engine *fwd_eng;
2761 	unsigned i = 0;
2762 
2763 	if (strlen(fwd_modes) == 0) {
2764 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2765 			if (fwd_eng == &rx_only_engine)
2766 				continue;
2767 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2768 					sizeof(fwd_modes) -
2769 					strlen(fwd_modes) - 1);
2770 			strncat(fwd_modes, separator,
2771 					sizeof(fwd_modes) -
2772 					strlen(fwd_modes) - 1);
2773 		}
2774 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2775 	}
2776 
2777 	return fwd_modes;
2778 }
2779 
2780 void
2781 set_pkt_forwarding_mode(const char *fwd_mode_name)
2782 {
2783 	struct fwd_engine *fwd_eng;
2784 	unsigned i;
2785 
2786 	i = 0;
2787 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2788 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2789 			printf("Set %s packet forwarding mode%s\n",
2790 			       fwd_mode_name,
2791 			       retry_enabled == 0 ? "" : " with retry");
2792 			cur_fwd_eng = fwd_eng;
2793 			return;
2794 		}
2795 		i++;
2796 	}
2797 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2798 }
2799 
2800 void
2801 set_verbose_level(uint16_t vb_level)
2802 {
2803 	printf("Change verbose level from %u to %u\n",
2804 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2805 	verbose_level = vb_level;
2806 }
2807 
2808 void
2809 vlan_extend_set(portid_t port_id, int on)
2810 {
2811 	int diag;
2812 	int vlan_offload;
2813 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2814 
2815 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2816 		return;
2817 
2818 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2819 
2820 	if (on) {
2821 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2822 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2823 	} else {
2824 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2825 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2826 	}
2827 
2828 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2829 	if (diag < 0)
2830 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2831 	       "diag=%d\n", port_id, on, diag);
2832 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2833 }
2834 
2835 void
2836 rx_vlan_strip_set(portid_t port_id, int on)
2837 {
2838 	int diag;
2839 	int vlan_offload;
2840 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2841 
2842 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2843 		return;
2844 
2845 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2846 
2847 	if (on) {
2848 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2849 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2850 	} else {
2851 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2852 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2853 	}
2854 
2855 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2856 	if (diag < 0)
2857 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2858 	       "diag=%d\n", port_id, on, diag);
2859 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2860 }
2861 
2862 void
2863 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2864 {
2865 	int diag;
2866 
2867 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2868 		return;
2869 
2870 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2871 	if (diag < 0)
2872 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2873 	       "diag=%d\n", port_id, queue_id, on, diag);
2874 }
2875 
2876 void
2877 rx_vlan_filter_set(portid_t port_id, int on)
2878 {
2879 	int diag;
2880 	int vlan_offload;
2881 	uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2882 
2883 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2884 		return;
2885 
2886 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2887 
2888 	if (on) {
2889 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2890 		port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2891 	} else {
2892 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2893 		port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2894 	}
2895 
2896 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2897 	if (diag < 0)
2898 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2899 	       "diag=%d\n", port_id, on, diag);
2900 	ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2901 }
2902 
2903 int
2904 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2905 {
2906 	int diag;
2907 
2908 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2909 		return 1;
2910 	if (vlan_id_is_invalid(vlan_id))
2911 		return 1;
2912 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2913 	if (diag == 0)
2914 		return 0;
2915 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2916 	       "diag=%d\n",
2917 	       port_id, vlan_id, on, diag);
2918 	return -1;
2919 }
2920 
2921 void
2922 rx_vlan_all_filter_set(portid_t port_id, int on)
2923 {
2924 	uint16_t vlan_id;
2925 
2926 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2927 		return;
2928 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2929 		if (rx_vft_set(port_id, vlan_id, on))
2930 			break;
2931 	}
2932 }
2933 
2934 void
2935 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2936 {
2937 	int diag;
2938 
2939 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2940 		return;
2941 
2942 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2943 	if (diag == 0)
2944 		return;
2945 
2946 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2947 	       "diag=%d\n",
2948 	       port_id, vlan_type, tp_id, diag);
2949 }
2950 
2951 void
2952 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2953 {
2954 	int vlan_offload;
2955 	struct rte_eth_dev_info dev_info;
2956 
2957 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2958 		return;
2959 	if (vlan_id_is_invalid(vlan_id))
2960 		return;
2961 
2962 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2963 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2964 		printf("Error, as QinQ has been enabled.\n");
2965 		return;
2966 	}
2967 	rte_eth_dev_info_get(port_id, &dev_info);
2968 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2969 		printf("Error: vlan insert is not supported by port %d\n",
2970 			port_id);
2971 		return;
2972 	}
2973 
2974 	tx_vlan_reset(port_id);
2975 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2976 	ports[port_id].tx_vlan_id = vlan_id;
2977 }
2978 
2979 void
2980 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2981 {
2982 	int vlan_offload;
2983 	struct rte_eth_dev_info dev_info;
2984 
2985 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2986 		return;
2987 	if (vlan_id_is_invalid(vlan_id))
2988 		return;
2989 	if (vlan_id_is_invalid(vlan_id_outer))
2990 		return;
2991 
2992 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2993 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2994 		printf("Error, as QinQ hasn't been enabled.\n");
2995 		return;
2996 	}
2997 	rte_eth_dev_info_get(port_id, &dev_info);
2998 	if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2999 		printf("Error: qinq insert not supported by port %d\n",
3000 			port_id);
3001 		return;
3002 	}
3003 
3004 	tx_vlan_reset(port_id);
3005 	ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
3006 	ports[port_id].tx_vlan_id = vlan_id;
3007 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
3008 }
3009 
3010 void
3011 tx_vlan_reset(portid_t port_id)
3012 {
3013 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3014 		return;
3015 	ports[port_id].dev_conf.txmode.offloads &=
3016 				~(DEV_TX_OFFLOAD_VLAN_INSERT |
3017 				  DEV_TX_OFFLOAD_QINQ_INSERT);
3018 	ports[port_id].tx_vlan_id = 0;
3019 	ports[port_id].tx_vlan_id_outer = 0;
3020 }
3021 
3022 void
3023 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
3024 {
3025 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3026 		return;
3027 
3028 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
3029 }
3030 
3031 void
3032 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
3033 {
3034 	uint16_t i;
3035 	uint8_t existing_mapping_found = 0;
3036 
3037 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3038 		return;
3039 
3040 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3041 		return;
3042 
3043 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3044 		printf("map_value not in required range 0..%d\n",
3045 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3046 		return;
3047 	}
3048 
3049 	if (!is_rx) { /*then tx*/
3050 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3051 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3052 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3053 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
3054 				existing_mapping_found = 1;
3055 				break;
3056 			}
3057 		}
3058 		if (!existing_mapping_found) { /* A new additional mapping... */
3059 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3060 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3061 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3062 			nb_tx_queue_stats_mappings++;
3063 		}
3064 	}
3065 	else { /*rx*/
3066 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3067 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3068 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3069 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
3070 				existing_mapping_found = 1;
3071 				break;
3072 			}
3073 		}
3074 		if (!existing_mapping_found) { /* A new additional mapping... */
3075 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3076 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3077 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3078 			nb_rx_queue_stats_mappings++;
3079 		}
3080 	}
3081 }
3082 
3083 void
3084 set_xstats_hide_zero(uint8_t on_off)
3085 {
3086 	xstats_hide_zero = on_off;
3087 }
3088 
3089 static inline void
3090 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3091 {
3092 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3093 
3094 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3095 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3096 			" tunnel_id: 0x%08x",
3097 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3098 			rte_be_to_cpu_32(mask->tunnel_id_mask));
3099 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3100 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3101 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3102 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3103 
3104 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3105 			rte_be_to_cpu_16(mask->src_port_mask),
3106 			rte_be_to_cpu_16(mask->dst_port_mask));
3107 
3108 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3109 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3110 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3111 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3112 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3113 
3114 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3115 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3116 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3117 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3118 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3119 	}
3120 
3121 	printf("\n");
3122 }
3123 
3124 static inline void
3125 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3126 {
3127 	struct rte_eth_flex_payload_cfg *cfg;
3128 	uint32_t i, j;
3129 
3130 	for (i = 0; i < flex_conf->nb_payloads; i++) {
3131 		cfg = &flex_conf->flex_set[i];
3132 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3133 			printf("\n    RAW:  ");
3134 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3135 			printf("\n    L2_PAYLOAD:  ");
3136 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3137 			printf("\n    L3_PAYLOAD:  ");
3138 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3139 			printf("\n    L4_PAYLOAD:  ");
3140 		else
3141 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3142 		for (j = 0; j < num; j++)
3143 			printf("  %-5u", cfg->src_offset[j]);
3144 	}
3145 	printf("\n");
3146 }
3147 
3148 static char *
3149 flowtype_to_str(uint16_t flow_type)
3150 {
3151 	struct flow_type_info {
3152 		char str[32];
3153 		uint16_t ftype;
3154 	};
3155 
3156 	uint8_t i;
3157 	static struct flow_type_info flowtype_str_table[] = {
3158 		{"raw", RTE_ETH_FLOW_RAW},
3159 		{"ipv4", RTE_ETH_FLOW_IPV4},
3160 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3161 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3162 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3163 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3164 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3165 		{"ipv6", RTE_ETH_FLOW_IPV6},
3166 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3167 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3168 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3169 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3170 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3171 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3172 		{"port", RTE_ETH_FLOW_PORT},
3173 		{"vxlan", RTE_ETH_FLOW_VXLAN},
3174 		{"geneve", RTE_ETH_FLOW_GENEVE},
3175 		{"nvgre", RTE_ETH_FLOW_NVGRE},
3176 		{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3177 	};
3178 
3179 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3180 		if (flowtype_str_table[i].ftype == flow_type)
3181 			return flowtype_str_table[i].str;
3182 	}
3183 
3184 	return NULL;
3185 }
3186 
3187 static inline void
3188 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3189 {
3190 	struct rte_eth_fdir_flex_mask *mask;
3191 	uint32_t i, j;
3192 	char *p;
3193 
3194 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3195 		mask = &flex_conf->flex_mask[i];
3196 		p = flowtype_to_str(mask->flow_type);
3197 		printf("\n    %s:\t", p ? p : "unknown");
3198 		for (j = 0; j < num; j++)
3199 			printf(" %02x", mask->mask[j]);
3200 	}
3201 	printf("\n");
3202 }
3203 
3204 static inline void
3205 print_fdir_flow_type(uint32_t flow_types_mask)
3206 {
3207 	int i;
3208 	char *p;
3209 
3210 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3211 		if (!(flow_types_mask & (1 << i)))
3212 			continue;
3213 		p = flowtype_to_str(i);
3214 		if (p)
3215 			printf(" %s", p);
3216 		else
3217 			printf(" unknown");
3218 	}
3219 	printf("\n");
3220 }
3221 
3222 void
3223 fdir_get_infos(portid_t port_id)
3224 {
3225 	struct rte_eth_fdir_stats fdir_stat;
3226 	struct rte_eth_fdir_info fdir_info;
3227 	int ret;
3228 
3229 	static const char *fdir_stats_border = "########################";
3230 
3231 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3232 		return;
3233 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3234 	if (ret < 0) {
3235 		printf("\n FDIR is not supported on port %-2d\n",
3236 			port_id);
3237 		return;
3238 	}
3239 
3240 	memset(&fdir_info, 0, sizeof(fdir_info));
3241 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3242 			       RTE_ETH_FILTER_INFO, &fdir_info);
3243 	memset(&fdir_stat, 0, sizeof(fdir_stat));
3244 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3245 			       RTE_ETH_FILTER_STATS, &fdir_stat);
3246 	printf("\n  %s FDIR infos for port %-2d     %s\n",
3247 	       fdir_stats_border, port_id, fdir_stats_border);
3248 	printf("  MODE: ");
3249 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3250 		printf("  PERFECT\n");
3251 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3252 		printf("  PERFECT-MAC-VLAN\n");
3253 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3254 		printf("  PERFECT-TUNNEL\n");
3255 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3256 		printf("  SIGNATURE\n");
3257 	else
3258 		printf("  DISABLE\n");
3259 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3260 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3261 		printf("  SUPPORTED FLOW TYPE: ");
3262 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3263 	}
3264 	printf("  FLEX PAYLOAD INFO:\n");
3265 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3266 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3267 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3268 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3269 		fdir_info.flex_payload_unit,
3270 		fdir_info.max_flex_payload_segment_num,
3271 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3272 	printf("  MASK: ");
3273 	print_fdir_mask(&fdir_info.mask);
3274 	if (fdir_info.flex_conf.nb_payloads > 0) {
3275 		printf("  FLEX PAYLOAD SRC OFFSET:");
3276 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3277 	}
3278 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
3279 		printf("  FLEX MASK CFG:");
3280 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3281 	}
3282 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3283 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3284 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3285 	       fdir_info.guarant_spc, fdir_info.best_spc);
3286 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3287 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3288 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
3289 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3290 	       fdir_stat.collision, fdir_stat.free,
3291 	       fdir_stat.maxhash, fdir_stat.maxlen,
3292 	       fdir_stat.add, fdir_stat.remove,
3293 	       fdir_stat.f_add, fdir_stat.f_remove);
3294 	printf("  %s############################%s\n",
3295 	       fdir_stats_border, fdir_stats_border);
3296 }
3297 
3298 void
3299 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3300 {
3301 	struct rte_port *port;
3302 	struct rte_eth_fdir_flex_conf *flex_conf;
3303 	int i, idx = 0;
3304 
3305 	port = &ports[port_id];
3306 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3307 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3308 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3309 			idx = i;
3310 			break;
3311 		}
3312 	}
3313 	if (i >= RTE_ETH_FLOW_MAX) {
3314 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3315 			idx = flex_conf->nb_flexmasks;
3316 			flex_conf->nb_flexmasks++;
3317 		} else {
3318 			printf("The flex mask table is full. Can not set flex"
3319 				" mask for flow_type(%u).", cfg->flow_type);
3320 			return;
3321 		}
3322 	}
3323 	rte_memcpy(&flex_conf->flex_mask[idx],
3324 			 cfg,
3325 			 sizeof(struct rte_eth_fdir_flex_mask));
3326 }
3327 
3328 void
3329 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3330 {
3331 	struct rte_port *port;
3332 	struct rte_eth_fdir_flex_conf *flex_conf;
3333 	int i, idx = 0;
3334 
3335 	port = &ports[port_id];
3336 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3337 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3338 		if (cfg->type == flex_conf->flex_set[i].type) {
3339 			idx = i;
3340 			break;
3341 		}
3342 	}
3343 	if (i >= RTE_ETH_PAYLOAD_MAX) {
3344 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3345 			idx = flex_conf->nb_payloads;
3346 			flex_conf->nb_payloads++;
3347 		} else {
3348 			printf("The flex payload table is full. Can not set"
3349 				" flex payload for type(%u).", cfg->type);
3350 			return;
3351 		}
3352 	}
3353 	rte_memcpy(&flex_conf->flex_set[idx],
3354 			 cfg,
3355 			 sizeof(struct rte_eth_flex_payload_cfg));
3356 
3357 }
3358 
3359 void
3360 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3361 {
3362 #ifdef RTE_LIBRTE_IXGBE_PMD
3363 	int diag;
3364 
3365 	if (is_rx)
3366 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3367 	else
3368 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3369 
3370 	if (diag == 0)
3371 		return;
3372 	printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3373 			is_rx ? "rx" : "tx", port_id, diag);
3374 	return;
3375 #endif
3376 	printf("VF %s setting not supported for port %d\n",
3377 			is_rx ? "Rx" : "Tx", port_id);
3378 	RTE_SET_USED(vf);
3379 	RTE_SET_USED(on);
3380 }
3381 
3382 int
3383 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3384 {
3385 	int diag;
3386 	struct rte_eth_link link;
3387 
3388 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3389 		return 1;
3390 	rte_eth_link_get_nowait(port_id, &link);
3391 	if (rate > link.link_speed) {
3392 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3393 			rate, link.link_speed);
3394 		return 1;
3395 	}
3396 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3397 	if (diag == 0)
3398 		return diag;
3399 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3400 		port_id, diag);
3401 	return diag;
3402 }
3403 
3404 int
3405 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3406 {
3407 	int diag = -ENOTSUP;
3408 
3409 	RTE_SET_USED(vf);
3410 	RTE_SET_USED(rate);
3411 	RTE_SET_USED(q_msk);
3412 
3413 #ifdef RTE_LIBRTE_IXGBE_PMD
3414 	if (diag == -ENOTSUP)
3415 		diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3416 						       q_msk);
3417 #endif
3418 #ifdef RTE_LIBRTE_BNXT_PMD
3419 	if (diag == -ENOTSUP)
3420 		diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3421 #endif
3422 	if (diag == 0)
3423 		return diag;
3424 
3425 	printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3426 		port_id, diag);
3427 	return diag;
3428 }
3429 
3430 /*
3431  * Functions to manage the set of filtered Multicast MAC addresses.
3432  *
3433  * A pool of filtered multicast MAC addresses is associated with each port.
3434  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3435  * The address of the pool and the number of valid multicast MAC addresses
3436  * recorded in the pool are stored in the fields "mc_addr_pool" and
3437  * "mc_addr_nb" of the "rte_port" data structure.
3438  *
3439  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3440  * to be supplied a contiguous array of multicast MAC addresses.
3441  * To comply with this constraint, the set of multicast addresses recorded
3442  * into the pool are systematically compacted at the beginning of the pool.
3443  * Hence, when a multicast address is removed from the pool, all following
3444  * addresses, if any, are copied back to keep the set contiguous.
3445  */
3446 #define MCAST_POOL_INC 32
3447 
3448 static int
3449 mcast_addr_pool_extend(struct rte_port *port)
3450 {
3451 	struct ether_addr *mc_pool;
3452 	size_t mc_pool_size;
3453 
3454 	/*
3455 	 * If a free entry is available at the end of the pool, just
3456 	 * increment the number of recorded multicast addresses.
3457 	 */
3458 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3459 		port->mc_addr_nb++;
3460 		return 0;
3461 	}
3462 
3463 	/*
3464 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3465 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3466 	 * of MCAST_POOL_INC.
3467 	 */
3468 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3469 						    MCAST_POOL_INC);
3470 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3471 						mc_pool_size);
3472 	if (mc_pool == NULL) {
3473 		printf("allocation of pool of %u multicast addresses failed\n",
3474 		       port->mc_addr_nb + MCAST_POOL_INC);
3475 		return -ENOMEM;
3476 	}
3477 
3478 	port->mc_addr_pool = mc_pool;
3479 	port->mc_addr_nb++;
3480 	return 0;
3481 
3482 }
3483 
3484 static void
3485 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3486 {
3487 	port->mc_addr_nb--;
3488 	if (addr_idx == port->mc_addr_nb) {
3489 		/* No need to recompact the set of multicast addressses. */
3490 		if (port->mc_addr_nb == 0) {
3491 			/* free the pool of multicast addresses. */
3492 			free(port->mc_addr_pool);
3493 			port->mc_addr_pool = NULL;
3494 		}
3495 		return;
3496 	}
3497 	memmove(&port->mc_addr_pool[addr_idx],
3498 		&port->mc_addr_pool[addr_idx + 1],
3499 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3500 }
3501 
3502 static void
3503 eth_port_multicast_addr_list_set(portid_t port_id)
3504 {
3505 	struct rte_port *port;
3506 	int diag;
3507 
3508 	port = &ports[port_id];
3509 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3510 					    port->mc_addr_nb);
3511 	if (diag == 0)
3512 		return;
3513 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3514 	       port->mc_addr_nb, port_id, -diag);
3515 }
3516 
3517 void
3518 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3519 {
3520 	struct rte_port *port;
3521 	uint32_t i;
3522 
3523 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3524 		return;
3525 
3526 	port = &ports[port_id];
3527 
3528 	/*
3529 	 * Check that the added multicast MAC address is not already recorded
3530 	 * in the pool of multicast addresses.
3531 	 */
3532 	for (i = 0; i < port->mc_addr_nb; i++) {
3533 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3534 			printf("multicast address already filtered by port\n");
3535 			return;
3536 		}
3537 	}
3538 
3539 	if (mcast_addr_pool_extend(port) != 0)
3540 		return;
3541 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3542 	eth_port_multicast_addr_list_set(port_id);
3543 }
3544 
3545 void
3546 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3547 {
3548 	struct rte_port *port;
3549 	uint32_t i;
3550 
3551 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3552 		return;
3553 
3554 	port = &ports[port_id];
3555 
3556 	/*
3557 	 * Search the pool of multicast MAC addresses for the removed address.
3558 	 */
3559 	for (i = 0; i < port->mc_addr_nb; i++) {
3560 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3561 			break;
3562 	}
3563 	if (i == port->mc_addr_nb) {
3564 		printf("multicast address not filtered by port %d\n", port_id);
3565 		return;
3566 	}
3567 
3568 	mcast_addr_pool_remove(port, i);
3569 	eth_port_multicast_addr_list_set(port_id);
3570 }
3571 
3572 void
3573 port_dcb_info_display(portid_t port_id)
3574 {
3575 	struct rte_eth_dcb_info dcb_info;
3576 	uint16_t i;
3577 	int ret;
3578 	static const char *border = "================";
3579 
3580 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3581 		return;
3582 
3583 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3584 	if (ret) {
3585 		printf("\n Failed to get dcb infos on port %-2d\n",
3586 			port_id);
3587 		return;
3588 	}
3589 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3590 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3591 	printf("\n  TC :        ");
3592 	for (i = 0; i < dcb_info.nb_tcs; i++)
3593 		printf("\t%4d", i);
3594 	printf("\n  Priority :  ");
3595 	for (i = 0; i < dcb_info.nb_tcs; i++)
3596 		printf("\t%4d", dcb_info.prio_tc[i]);
3597 	printf("\n  BW percent :");
3598 	for (i = 0; i < dcb_info.nb_tcs; i++)
3599 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3600 	printf("\n  RXQ base :  ");
3601 	for (i = 0; i < dcb_info.nb_tcs; i++)
3602 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3603 	printf("\n  RXQ number :");
3604 	for (i = 0; i < dcb_info.nb_tcs; i++)
3605 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3606 	printf("\n  TXQ base :  ");
3607 	for (i = 0; i < dcb_info.nb_tcs; i++)
3608 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3609 	printf("\n  TXQ number :");
3610 	for (i = 0; i < dcb_info.nb_tcs; i++)
3611 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3612 	printf("\n");
3613 }
3614 
3615 uint8_t *
3616 open_file(const char *file_path, uint32_t *size)
3617 {
3618 	int fd = open(file_path, O_RDONLY);
3619 	off_t pkg_size;
3620 	uint8_t *buf = NULL;
3621 	int ret = 0;
3622 	struct stat st_buf;
3623 
3624 	if (size)
3625 		*size = 0;
3626 
3627 	if (fd == -1) {
3628 		printf("%s: Failed to open %s\n", __func__, file_path);
3629 		return buf;
3630 	}
3631 
3632 	if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3633 		close(fd);
3634 		printf("%s: File operations failed\n", __func__);
3635 		return buf;
3636 	}
3637 
3638 	pkg_size = st_buf.st_size;
3639 	if (pkg_size < 0) {
3640 		close(fd);
3641 		printf("%s: File operations failed\n", __func__);
3642 		return buf;
3643 	}
3644 
3645 	buf = (uint8_t *)malloc(pkg_size);
3646 	if (!buf) {
3647 		close(fd);
3648 		printf("%s: Failed to malloc memory\n",	__func__);
3649 		return buf;
3650 	}
3651 
3652 	ret = read(fd, buf, pkg_size);
3653 	if (ret < 0) {
3654 		close(fd);
3655 		printf("%s: File read operation failed\n", __func__);
3656 		close_file(buf);
3657 		return NULL;
3658 	}
3659 
3660 	if (size)
3661 		*size = pkg_size;
3662 
3663 	close(fd);
3664 
3665 	return buf;
3666 }
3667 
3668 int
3669 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3670 {
3671 	FILE *fh = fopen(file_path, "wb");
3672 
3673 	if (fh == NULL) {
3674 		printf("%s: Failed to open %s\n", __func__, file_path);
3675 		return -1;
3676 	}
3677 
3678 	if (fwrite(buf, 1, size, fh) != size) {
3679 		fclose(fh);
3680 		printf("%s: File write operation failed\n", __func__);
3681 		return -1;
3682 	}
3683 
3684 	fclose(fh);
3685 
3686 	return 0;
3687 }
3688 
3689 int
3690 close_file(uint8_t *buf)
3691 {
3692 	if (buf) {
3693 		free((void *)buf);
3694 		return 0;
3695 	}
3696 
3697 	return -1;
3698 }
3699 
3700 void
3701 port_queue_region_info_display(portid_t port_id, void *buf)
3702 {
3703 #ifdef RTE_LIBRTE_I40E_PMD
3704 	uint16_t i, j;
3705 	struct rte_pmd_i40e_queue_regions *info =
3706 		(struct rte_pmd_i40e_queue_regions *)buf;
3707 	static const char *queue_region_info_stats_border = "-------";
3708 
3709 	if (!info->queue_region_number)
3710 		printf("there is no region has been set before");
3711 
3712 	printf("\n	%s All queue region info for port=%2d %s",
3713 			queue_region_info_stats_border, port_id,
3714 			queue_region_info_stats_border);
3715 	printf("\n	queue_region_number: %-14u \n",
3716 			info->queue_region_number);
3717 
3718 	for (i = 0; i < info->queue_region_number; i++) {
3719 		printf("\n	region_id: %-14u queue_number: %-14u "
3720 			"queue_start_index: %-14u \n",
3721 			info->region[i].region_id,
3722 			info->region[i].queue_num,
3723 			info->region[i].queue_start_index);
3724 
3725 		printf("  user_priority_num is	%-14u :",
3726 					info->region[i].user_priority_num);
3727 		for (j = 0; j < info->region[i].user_priority_num; j++)
3728 			printf(" %-14u ", info->region[i].user_priority[j]);
3729 
3730 		printf("\n	flowtype_num is  %-14u :",
3731 				info->region[i].flowtype_num);
3732 		for (j = 0; j < info->region[i].flowtype_num; j++)
3733 			printf(" %-14u ", info->region[i].hw_flowtype[j]);
3734 	}
3735 #else
3736 	RTE_SET_USED(port_id);
3737 	RTE_SET_USED(buf);
3738 #endif
3739 
3740 	printf("\n\n");
3741 }
3742