1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 /* BSD LICENSE 34 * 35 * Copyright 2013-2014 6WIND S.A. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name of 6WIND S.A. nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <stdarg.h> 65 #include <errno.h> 66 #include <stdio.h> 67 #include <string.h> 68 #include <stdarg.h> 69 #include <stdint.h> 70 #include <inttypes.h> 71 72 #include <sys/queue.h> 73 74 #include <rte_common.h> 75 #include <rte_byteorder.h> 76 #include <rte_debug.h> 77 #include <rte_log.h> 78 #include <rte_memory.h> 79 #include <rte_memcpy.h> 80 #include <rte_memzone.h> 81 #include <rte_launch.h> 82 #include <rte_eal.h> 83 #include <rte_per_lcore.h> 84 #include <rte_lcore.h> 85 #include <rte_atomic.h> 86 #include <rte_branch_prediction.h> 87 #include <rte_mempool.h> 88 #include <rte_mbuf.h> 89 #include <rte_interrupts.h> 90 #include <rte_pci.h> 91 #include <rte_ether.h> 92 #include <rte_ethdev.h> 93 #include <rte_string_fns.h> 94 #include <rte_cycles.h> 95 #include <rte_flow.h> 96 #include <rte_errno.h> 97 #ifdef RTE_LIBRTE_IXGBE_PMD 98 #include <rte_pmd_ixgbe.h> 99 #endif 100 101 #include "testpmd.h" 102 103 static char *flowtype_to_str(uint16_t flow_type); 104 105 static const struct { 106 enum tx_pkt_split split; 107 const char *name; 108 } tx_split_name[] = { 109 { 110 .split = TX_PKT_SPLIT_OFF, 111 .name = "off", 112 }, 113 { 114 .split = TX_PKT_SPLIT_ON, 115 .name = "on", 116 }, 117 { 118 .split = TX_PKT_SPLIT_RND, 119 .name = "rand", 120 }, 121 }; 122 123 struct rss_type_info { 124 char str[32]; 125 uint64_t rss_type; 126 }; 127 128 static const struct rss_type_info rss_type_table[] = { 129 { "ipv4", ETH_RSS_IPV4 }, 130 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 131 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 132 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 133 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 134 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 135 { "ipv6", ETH_RSS_IPV6 }, 136 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 137 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 138 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 139 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 140 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 141 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 142 { "ipv6-ex", ETH_RSS_IPV6_EX }, 143 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 144 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 145 { "port", ETH_RSS_PORT }, 146 { "vxlan", ETH_RSS_VXLAN }, 147 { "geneve", ETH_RSS_GENEVE }, 148 { "nvgre", ETH_RSS_NVGRE }, 149 150 }; 151 152 static void 153 print_ethaddr(const char *name, struct ether_addr *eth_addr) 154 { 155 char buf[ETHER_ADDR_FMT_SIZE]; 156 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 157 printf("%s%s", name, buf); 158 } 159 160 void 161 nic_stats_display(portid_t port_id) 162 { 163 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 164 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 165 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 166 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 167 uint64_t mpps_rx, mpps_tx; 168 struct rte_eth_stats stats; 169 struct rte_port *port = &ports[port_id]; 170 uint8_t i; 171 portid_t pid; 172 173 static const char *nic_stats_border = "########################"; 174 175 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 176 printf("Valid port range is [0"); 177 FOREACH_PORT(pid, ports) 178 printf(", %d", pid); 179 printf("]\n"); 180 return; 181 } 182 rte_eth_stats_get(port_id, &stats); 183 printf("\n %s NIC statistics for port %-2d %s\n", 184 nic_stats_border, port_id, nic_stats_border); 185 186 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 187 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 188 "%-"PRIu64"\n", 189 stats.ipackets, stats.imissed, stats.ibytes); 190 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 191 printf(" RX-nombuf: %-10"PRIu64"\n", 192 stats.rx_nombuf); 193 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 194 "%-"PRIu64"\n", 195 stats.opackets, stats.oerrors, stats.obytes); 196 } 197 else { 198 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 199 " RX-bytes: %10"PRIu64"\n", 200 stats.ipackets, stats.ierrors, stats.ibytes); 201 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 202 printf(" RX-nombuf: %10"PRIu64"\n", 203 stats.rx_nombuf); 204 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 205 " TX-bytes: %10"PRIu64"\n", 206 stats.opackets, stats.oerrors, stats.obytes); 207 } 208 209 if (port->rx_queue_stats_mapping_enabled) { 210 printf("\n"); 211 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 212 printf(" Stats reg %2d RX-packets: %10"PRIu64 213 " RX-errors: %10"PRIu64 214 " RX-bytes: %10"PRIu64"\n", 215 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 216 } 217 } 218 if (port->tx_queue_stats_mapping_enabled) { 219 printf("\n"); 220 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 221 printf(" Stats reg %2d TX-packets: %10"PRIu64 222 " TX-bytes: %10"PRIu64"\n", 223 i, stats.q_opackets[i], stats.q_obytes[i]); 224 } 225 } 226 227 diff_cycles = prev_cycles[port_id]; 228 prev_cycles[port_id] = rte_rdtsc(); 229 if (diff_cycles > 0) 230 diff_cycles = prev_cycles[port_id] - diff_cycles; 231 232 diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id]; 233 diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id]; 234 prev_pkts_rx[port_id] = stats.ipackets; 235 prev_pkts_tx[port_id] = stats.opackets; 236 mpps_rx = diff_cycles > 0 ? 237 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 238 mpps_tx = diff_cycles > 0 ? 239 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 240 printf("\n Throughput (since last show)\n"); 241 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 242 mpps_rx, mpps_tx); 243 244 printf(" %s############################%s\n", 245 nic_stats_border, nic_stats_border); 246 } 247 248 void 249 nic_stats_clear(portid_t port_id) 250 { 251 portid_t pid; 252 253 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 254 printf("Valid port range is [0"); 255 FOREACH_PORT(pid, ports) 256 printf(", %d", pid); 257 printf("]\n"); 258 return; 259 } 260 rte_eth_stats_reset(port_id); 261 printf("\n NIC statistics for port %d cleared\n", port_id); 262 } 263 264 void 265 nic_xstats_display(portid_t port_id) 266 { 267 struct rte_eth_xstat *xstats; 268 int cnt_xstats, idx_xstat; 269 struct rte_eth_xstat_name *xstats_names; 270 271 printf("###### NIC extended statistics for port %-2d\n", port_id); 272 if (!rte_eth_dev_is_valid_port(port_id)) { 273 printf("Error: Invalid port number %i\n", port_id); 274 return; 275 } 276 277 /* Get count */ 278 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 279 if (cnt_xstats < 0) { 280 printf("Error: Cannot get count of xstats\n"); 281 return; 282 } 283 284 /* Get id-name lookup table */ 285 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 286 if (xstats_names == NULL) { 287 printf("Cannot allocate memory for xstats lookup\n"); 288 return; 289 } 290 if (cnt_xstats != rte_eth_xstats_get_names( 291 port_id, xstats_names, cnt_xstats)) { 292 printf("Error: Cannot get xstats lookup\n"); 293 free(xstats_names); 294 return; 295 } 296 297 /* Get stats themselves */ 298 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 299 if (xstats == NULL) { 300 printf("Cannot allocate memory for xstats\n"); 301 free(xstats_names); 302 return; 303 } 304 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 305 printf("Error: Unable to get xstats\n"); 306 free(xstats_names); 307 free(xstats); 308 return; 309 } 310 311 /* Display xstats */ 312 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) 313 printf("%s: %"PRIu64"\n", 314 xstats_names[idx_xstat].name, 315 xstats[idx_xstat].value); 316 free(xstats_names); 317 free(xstats); 318 } 319 320 void 321 nic_xstats_clear(portid_t port_id) 322 { 323 rte_eth_xstats_reset(port_id); 324 } 325 326 void 327 nic_stats_mapping_display(portid_t port_id) 328 { 329 struct rte_port *port = &ports[port_id]; 330 uint16_t i; 331 portid_t pid; 332 333 static const char *nic_stats_mapping_border = "########################"; 334 335 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 336 printf("Valid port range is [0"); 337 FOREACH_PORT(pid, ports) 338 printf(", %d", pid); 339 printf("]\n"); 340 return; 341 } 342 343 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 344 printf("Port id %d - either does not support queue statistic mapping or" 345 " no queue statistic mapping set\n", port_id); 346 return; 347 } 348 349 printf("\n %s NIC statistics mapping for port %-2d %s\n", 350 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 351 352 if (port->rx_queue_stats_mapping_enabled) { 353 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 354 if (rx_queue_stats_mappings[i].port_id == port_id) { 355 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 356 rx_queue_stats_mappings[i].queue_id, 357 rx_queue_stats_mappings[i].stats_counter_id); 358 } 359 } 360 printf("\n"); 361 } 362 363 364 if (port->tx_queue_stats_mapping_enabled) { 365 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 366 if (tx_queue_stats_mappings[i].port_id == port_id) { 367 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 368 tx_queue_stats_mappings[i].queue_id, 369 tx_queue_stats_mappings[i].stats_counter_id); 370 } 371 } 372 } 373 374 printf(" %s####################################%s\n", 375 nic_stats_mapping_border, nic_stats_mapping_border); 376 } 377 378 void 379 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 380 { 381 struct rte_eth_rxq_info qinfo; 382 int32_t rc; 383 static const char *info_border = "*********************"; 384 385 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 386 if (rc != 0) { 387 printf("Failed to retrieve information for port: %hhu, " 388 "RX queue: %hu\nerror desc: %s(%d)\n", 389 port_id, queue_id, strerror(-rc), rc); 390 return; 391 } 392 393 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 394 info_border, port_id, queue_id, info_border); 395 396 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 397 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 398 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 399 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 400 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 401 printf("\nRX drop packets: %s", 402 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 403 printf("\nRX deferred start: %s", 404 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 405 printf("\nRX scattered packets: %s", 406 (qinfo.scattered_rx != 0) ? "on" : "off"); 407 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 408 printf("\n"); 409 } 410 411 void 412 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 413 { 414 struct rte_eth_txq_info qinfo; 415 int32_t rc; 416 static const char *info_border = "*********************"; 417 418 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 419 if (rc != 0) { 420 printf("Failed to retrieve information for port: %hhu, " 421 "TX queue: %hu\nerror desc: %s(%d)\n", 422 port_id, queue_id, strerror(-rc), rc); 423 return; 424 } 425 426 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 427 info_border, port_id, queue_id, info_border); 428 429 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 430 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 431 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 432 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 433 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 434 printf("\nTX flags: %#x", qinfo.conf.txq_flags); 435 printf("\nTX deferred start: %s", 436 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 437 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 438 printf("\n"); 439 } 440 441 void 442 port_infos_display(portid_t port_id) 443 { 444 struct rte_port *port; 445 struct ether_addr mac_addr; 446 struct rte_eth_link link; 447 struct rte_eth_dev_info dev_info; 448 int vlan_offload; 449 struct rte_mempool * mp; 450 static const char *info_border = "*********************"; 451 portid_t pid; 452 uint16_t mtu; 453 454 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 455 printf("Valid port range is [0"); 456 FOREACH_PORT(pid, ports) 457 printf(", %d", pid); 458 printf("]\n"); 459 return; 460 } 461 port = &ports[port_id]; 462 rte_eth_link_get_nowait(port_id, &link); 463 memset(&dev_info, 0, sizeof(dev_info)); 464 rte_eth_dev_info_get(port_id, &dev_info); 465 printf("\n%s Infos for port %-2d %s\n", 466 info_border, port_id, info_border); 467 rte_eth_macaddr_get(port_id, &mac_addr); 468 print_ethaddr("MAC address: ", &mac_addr); 469 printf("\nDriver name: %s", dev_info.driver_name); 470 printf("\nConnect to socket: %u", port->socket_id); 471 472 if (port_numa[port_id] != NUMA_NO_CONFIG) { 473 mp = mbuf_pool_find(port_numa[port_id]); 474 if (mp) 475 printf("\nmemory allocation on the socket: %d", 476 port_numa[port_id]); 477 } else 478 printf("\nmemory allocation on the socket: %u",port->socket_id); 479 480 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 481 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 482 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 483 ("full-duplex") : ("half-duplex")); 484 485 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 486 printf("MTU: %u\n", mtu); 487 488 printf("Promiscuous mode: %s\n", 489 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 490 printf("Allmulticast mode: %s\n", 491 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 492 printf("Maximum number of MAC addresses: %u\n", 493 (unsigned int)(port->dev_info.max_mac_addrs)); 494 printf("Maximum number of MAC addresses of hash filtering: %u\n", 495 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 496 497 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 498 if (vlan_offload >= 0){ 499 printf("VLAN offload: \n"); 500 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 501 printf(" strip on \n"); 502 else 503 printf(" strip off \n"); 504 505 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 506 printf(" filter on \n"); 507 else 508 printf(" filter off \n"); 509 510 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 511 printf(" qinq(extend) on \n"); 512 else 513 printf(" qinq(extend) off \n"); 514 } 515 516 if (dev_info.hash_key_size > 0) 517 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 518 if (dev_info.reta_size > 0) 519 printf("Redirection table size: %u\n", dev_info.reta_size); 520 if (!dev_info.flow_type_rss_offloads) 521 printf("No flow type is supported.\n"); 522 else { 523 uint16_t i; 524 char *p; 525 526 printf("Supported flow types:\n"); 527 for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX; 528 i++) { 529 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 530 continue; 531 p = flowtype_to_str(i); 532 printf(" %s\n", (p ? p : "unknown")); 533 } 534 } 535 536 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 537 printf("Max possible number of RXDs per queue: %hu\n", 538 dev_info.rx_desc_lim.nb_max); 539 printf("Min possible number of RXDs per queue: %hu\n", 540 dev_info.rx_desc_lim.nb_min); 541 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 542 543 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 544 printf("Max possible number of TXDs per queue: %hu\n", 545 dev_info.tx_desc_lim.nb_max); 546 printf("Min possible number of TXDs per queue: %hu\n", 547 dev_info.tx_desc_lim.nb_min); 548 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 549 } 550 551 void 552 port_offload_cap_display(portid_t port_id) 553 { 554 struct rte_eth_dev *dev; 555 struct rte_eth_dev_info dev_info; 556 static const char *info_border = "************"; 557 558 if (port_id_is_invalid(port_id, ENABLED_WARN)) 559 return; 560 561 dev = &rte_eth_devices[port_id]; 562 rte_eth_dev_info_get(port_id, &dev_info); 563 564 printf("\n%s Port %d supported offload features: %s\n", 565 info_border, port_id, info_border); 566 567 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 568 printf("VLAN stripped: "); 569 if (dev->data->dev_conf.rxmode.hw_vlan_strip) 570 printf("on\n"); 571 else 572 printf("off\n"); 573 } 574 575 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 576 printf("Double VLANs stripped: "); 577 if (dev->data->dev_conf.rxmode.hw_vlan_extend) 578 printf("on\n"); 579 else 580 printf("off\n"); 581 } 582 583 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 584 printf("RX IPv4 checksum: "); 585 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 586 printf("on\n"); 587 else 588 printf("off\n"); 589 } 590 591 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 592 printf("RX UDP checksum: "); 593 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 594 printf("on\n"); 595 else 596 printf("off\n"); 597 } 598 599 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 600 printf("RX TCP checksum: "); 601 if (dev->data->dev_conf.rxmode.hw_ip_checksum) 602 printf("on\n"); 603 else 604 printf("off\n"); 605 } 606 607 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 608 printf("RX Outer IPv4 checksum: on"); 609 610 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 611 printf("Large receive offload: "); 612 if (dev->data->dev_conf.rxmode.enable_lro) 613 printf("on\n"); 614 else 615 printf("off\n"); 616 } 617 618 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 619 printf("VLAN insert: "); 620 if (ports[port_id].tx_ol_flags & 621 TESTPMD_TX_OFFLOAD_INSERT_VLAN) 622 printf("on\n"); 623 else 624 printf("off\n"); 625 } 626 627 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 628 printf("Double VLANs insert: "); 629 if (ports[port_id].tx_ol_flags & 630 TESTPMD_TX_OFFLOAD_INSERT_QINQ) 631 printf("on\n"); 632 else 633 printf("off\n"); 634 } 635 636 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 637 printf("TX IPv4 checksum: "); 638 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 639 printf("on\n"); 640 else 641 printf("off\n"); 642 } 643 644 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 645 printf("TX UDP checksum: "); 646 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) 647 printf("on\n"); 648 else 649 printf("off\n"); 650 } 651 652 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 653 printf("TX TCP checksum: "); 654 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) 655 printf("on\n"); 656 else 657 printf("off\n"); 658 } 659 660 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 661 printf("TX SCTP checksum: "); 662 if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) 663 printf("on\n"); 664 else 665 printf("off\n"); 666 } 667 668 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 669 printf("TX Outer IPv4 checksum: "); 670 if (ports[port_id].tx_ol_flags & 671 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 672 printf("on\n"); 673 else 674 printf("off\n"); 675 } 676 677 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 678 printf("TX TCP segmentation: "); 679 if (ports[port_id].tso_segsz != 0) 680 printf("on\n"); 681 else 682 printf("off\n"); 683 } 684 685 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 686 printf("TX UDP segmentation: "); 687 if (ports[port_id].tso_segsz != 0) 688 printf("on\n"); 689 else 690 printf("off\n"); 691 } 692 693 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 694 printf("TSO for VXLAN tunnel packet: "); 695 if (ports[port_id].tunnel_tso_segsz) 696 printf("on\n"); 697 else 698 printf("off\n"); 699 } 700 701 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 702 printf("TSO for GRE tunnel packet: "); 703 if (ports[port_id].tunnel_tso_segsz) 704 printf("on\n"); 705 else 706 printf("off\n"); 707 } 708 709 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 710 printf("TSO for IPIP tunnel packet: "); 711 if (ports[port_id].tunnel_tso_segsz) 712 printf("on\n"); 713 else 714 printf("off\n"); 715 } 716 717 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 718 printf("TSO for GENEVE tunnel packet: "); 719 if (ports[port_id].tunnel_tso_segsz) 720 printf("on\n"); 721 else 722 printf("off\n"); 723 } 724 725 } 726 727 int 728 port_id_is_invalid(portid_t port_id, enum print_warning warning) 729 { 730 if (port_id == (portid_t)RTE_PORT_ALL) 731 return 0; 732 733 if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled) 734 return 0; 735 736 if (warning == ENABLED_WARN) 737 printf("Invalid port %d\n", port_id); 738 739 return 1; 740 } 741 742 static int 743 vlan_id_is_invalid(uint16_t vlan_id) 744 { 745 if (vlan_id < 4096) 746 return 0; 747 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 748 return 1; 749 } 750 751 static int 752 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 753 { 754 uint64_t pci_len; 755 756 if (reg_off & 0x3) { 757 printf("Port register offset 0x%X not aligned on a 4-byte " 758 "boundary\n", 759 (unsigned)reg_off); 760 return 1; 761 } 762 pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; 763 if (reg_off >= pci_len) { 764 printf("Port %d: register offset %u (0x%X) out of port PCI " 765 "resource (length=%"PRIu64")\n", 766 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 767 return 1; 768 } 769 return 0; 770 } 771 772 static int 773 reg_bit_pos_is_invalid(uint8_t bit_pos) 774 { 775 if (bit_pos <= 31) 776 return 0; 777 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 778 return 1; 779 } 780 781 #define display_port_and_reg_off(port_id, reg_off) \ 782 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 783 784 static inline void 785 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 786 { 787 display_port_and_reg_off(port_id, (unsigned)reg_off); 788 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 789 } 790 791 void 792 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 793 { 794 uint32_t reg_v; 795 796 797 if (port_id_is_invalid(port_id, ENABLED_WARN)) 798 return; 799 if (port_reg_off_is_invalid(port_id, reg_off)) 800 return; 801 if (reg_bit_pos_is_invalid(bit_x)) 802 return; 803 reg_v = port_id_pci_reg_read(port_id, reg_off); 804 display_port_and_reg_off(port_id, (unsigned)reg_off); 805 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 806 } 807 808 void 809 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 810 uint8_t bit1_pos, uint8_t bit2_pos) 811 { 812 uint32_t reg_v; 813 uint8_t l_bit; 814 uint8_t h_bit; 815 816 if (port_id_is_invalid(port_id, ENABLED_WARN)) 817 return; 818 if (port_reg_off_is_invalid(port_id, reg_off)) 819 return; 820 if (reg_bit_pos_is_invalid(bit1_pos)) 821 return; 822 if (reg_bit_pos_is_invalid(bit2_pos)) 823 return; 824 if (bit1_pos > bit2_pos) 825 l_bit = bit2_pos, h_bit = bit1_pos; 826 else 827 l_bit = bit1_pos, h_bit = bit2_pos; 828 829 reg_v = port_id_pci_reg_read(port_id, reg_off); 830 reg_v >>= l_bit; 831 if (h_bit < 31) 832 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 833 display_port_and_reg_off(port_id, (unsigned)reg_off); 834 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 835 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 836 } 837 838 void 839 port_reg_display(portid_t port_id, uint32_t reg_off) 840 { 841 uint32_t reg_v; 842 843 if (port_id_is_invalid(port_id, ENABLED_WARN)) 844 return; 845 if (port_reg_off_is_invalid(port_id, reg_off)) 846 return; 847 reg_v = port_id_pci_reg_read(port_id, reg_off); 848 display_port_reg_value(port_id, reg_off, reg_v); 849 } 850 851 void 852 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 853 uint8_t bit_v) 854 { 855 uint32_t reg_v; 856 857 if (port_id_is_invalid(port_id, ENABLED_WARN)) 858 return; 859 if (port_reg_off_is_invalid(port_id, reg_off)) 860 return; 861 if (reg_bit_pos_is_invalid(bit_pos)) 862 return; 863 if (bit_v > 1) { 864 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 865 return; 866 } 867 reg_v = port_id_pci_reg_read(port_id, reg_off); 868 if (bit_v == 0) 869 reg_v &= ~(1 << bit_pos); 870 else 871 reg_v |= (1 << bit_pos); 872 port_id_pci_reg_write(port_id, reg_off, reg_v); 873 display_port_reg_value(port_id, reg_off, reg_v); 874 } 875 876 void 877 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 878 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 879 { 880 uint32_t max_v; 881 uint32_t reg_v; 882 uint8_t l_bit; 883 uint8_t h_bit; 884 885 if (port_id_is_invalid(port_id, ENABLED_WARN)) 886 return; 887 if (port_reg_off_is_invalid(port_id, reg_off)) 888 return; 889 if (reg_bit_pos_is_invalid(bit1_pos)) 890 return; 891 if (reg_bit_pos_is_invalid(bit2_pos)) 892 return; 893 if (bit1_pos > bit2_pos) 894 l_bit = bit2_pos, h_bit = bit1_pos; 895 else 896 l_bit = bit1_pos, h_bit = bit2_pos; 897 898 if ((h_bit - l_bit) < 31) 899 max_v = (1 << (h_bit - l_bit + 1)) - 1; 900 else 901 max_v = 0xFFFFFFFF; 902 903 if (value > max_v) { 904 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 905 (unsigned)value, (unsigned)value, 906 (unsigned)max_v, (unsigned)max_v); 907 return; 908 } 909 reg_v = port_id_pci_reg_read(port_id, reg_off); 910 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 911 reg_v |= (value << l_bit); /* Set changed bits */ 912 port_id_pci_reg_write(port_id, reg_off, reg_v); 913 display_port_reg_value(port_id, reg_off, reg_v); 914 } 915 916 void 917 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 918 { 919 if (port_id_is_invalid(port_id, ENABLED_WARN)) 920 return; 921 if (port_reg_off_is_invalid(port_id, reg_off)) 922 return; 923 port_id_pci_reg_write(port_id, reg_off, reg_v); 924 display_port_reg_value(port_id, reg_off, reg_v); 925 } 926 927 void 928 port_mtu_set(portid_t port_id, uint16_t mtu) 929 { 930 int diag; 931 932 if (port_id_is_invalid(port_id, ENABLED_WARN)) 933 return; 934 diag = rte_eth_dev_set_mtu(port_id, mtu); 935 if (diag == 0) 936 return; 937 printf("Set MTU failed. diag=%d\n", diag); 938 } 939 940 /* Generic flow management functions. */ 941 942 /** Generate flow_item[] entry. */ 943 #define MK_FLOW_ITEM(t, s) \ 944 [RTE_FLOW_ITEM_TYPE_ ## t] = { \ 945 .name = # t, \ 946 .size = s, \ 947 } 948 949 /** Information about known flow pattern items. */ 950 static const struct { 951 const char *name; 952 size_t size; 953 } flow_item[] = { 954 MK_FLOW_ITEM(END, 0), 955 MK_FLOW_ITEM(VOID, 0), 956 MK_FLOW_ITEM(INVERT, 0), 957 MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), 958 MK_FLOW_ITEM(PF, 0), 959 MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), 960 MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)), 961 MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */ 962 MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 963 MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 964 MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 965 MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 966 MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 967 MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 968 MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 969 MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 970 MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 971 MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 972 MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 973 }; 974 975 /** Compute storage space needed by item specification. */ 976 static void 977 flow_item_spec_size(const struct rte_flow_item *item, 978 size_t *size, size_t *pad) 979 { 980 if (!item->spec) 981 goto empty; 982 switch (item->type) { 983 union { 984 const struct rte_flow_item_raw *raw; 985 } spec; 986 987 case RTE_FLOW_ITEM_TYPE_RAW: 988 spec.raw = item->spec; 989 *size = offsetof(struct rte_flow_item_raw, pattern) + 990 spec.raw->length * sizeof(*spec.raw->pattern); 991 break; 992 default: 993 empty: 994 *size = 0; 995 break; 996 } 997 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 998 } 999 1000 /** Generate flow_action[] entry. */ 1001 #define MK_FLOW_ACTION(t, s) \ 1002 [RTE_FLOW_ACTION_TYPE_ ## t] = { \ 1003 .name = # t, \ 1004 .size = s, \ 1005 } 1006 1007 /** Information about known flow actions. */ 1008 static const struct { 1009 const char *name; 1010 size_t size; 1011 } flow_action[] = { 1012 MK_FLOW_ACTION(END, 0), 1013 MK_FLOW_ACTION(VOID, 0), 1014 MK_FLOW_ACTION(PASSTHRU, 0), 1015 MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1016 MK_FLOW_ACTION(FLAG, 0), 1017 MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), 1018 MK_FLOW_ACTION(DROP, 0), 1019 MK_FLOW_ACTION(COUNT, 0), 1020 MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)), 1021 MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */ 1022 MK_FLOW_ACTION(PF, 0), 1023 MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1024 }; 1025 1026 /** Compute storage space needed by action configuration. */ 1027 static void 1028 flow_action_conf_size(const struct rte_flow_action *action, 1029 size_t *size, size_t *pad) 1030 { 1031 if (!action->conf) 1032 goto empty; 1033 switch (action->type) { 1034 union { 1035 const struct rte_flow_action_rss *rss; 1036 } conf; 1037 1038 case RTE_FLOW_ACTION_TYPE_RSS: 1039 conf.rss = action->conf; 1040 *size = offsetof(struct rte_flow_action_rss, queue) + 1041 conf.rss->num * sizeof(*conf.rss->queue); 1042 break; 1043 default: 1044 empty: 1045 *size = 0; 1046 break; 1047 } 1048 *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size; 1049 } 1050 1051 /** Generate a port_flow entry from attributes/pattern/actions. */ 1052 static struct port_flow * 1053 port_flow_new(const struct rte_flow_attr *attr, 1054 const struct rte_flow_item *pattern, 1055 const struct rte_flow_action *actions) 1056 { 1057 const struct rte_flow_item *item; 1058 const struct rte_flow_action *action; 1059 struct port_flow *pf = NULL; 1060 size_t tmp; 1061 size_t pad; 1062 size_t off1 = 0; 1063 size_t off2 = 0; 1064 int err = ENOTSUP; 1065 1066 store: 1067 item = pattern; 1068 if (pf) 1069 pf->pattern = (void *)&pf->data[off1]; 1070 do { 1071 struct rte_flow_item *dst = NULL; 1072 1073 if ((unsigned int)item->type >= RTE_DIM(flow_item) || 1074 !flow_item[item->type].name) 1075 goto notsup; 1076 if (pf) 1077 dst = memcpy(pf->data + off1, item, sizeof(*item)); 1078 off1 += sizeof(*item); 1079 flow_item_spec_size(item, &tmp, &pad); 1080 if (item->spec) { 1081 if (pf) 1082 dst->spec = memcpy(pf->data + off2, 1083 item->spec, tmp); 1084 off2 += tmp + pad; 1085 } 1086 if (item->last) { 1087 if (pf) 1088 dst->last = memcpy(pf->data + off2, 1089 item->last, tmp); 1090 off2 += tmp + pad; 1091 } 1092 if (item->mask) { 1093 if (pf) 1094 dst->mask = memcpy(pf->data + off2, 1095 item->mask, tmp); 1096 off2 += tmp + pad; 1097 } 1098 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1099 } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END); 1100 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1101 action = actions; 1102 if (pf) 1103 pf->actions = (void *)&pf->data[off1]; 1104 do { 1105 struct rte_flow_action *dst = NULL; 1106 1107 if ((unsigned int)action->type >= RTE_DIM(flow_action) || 1108 !flow_action[action->type].name) 1109 goto notsup; 1110 if (pf) 1111 dst = memcpy(pf->data + off1, action, sizeof(*action)); 1112 off1 += sizeof(*action); 1113 flow_action_conf_size(action, &tmp, &pad); 1114 if (action->conf) { 1115 if (pf) 1116 dst->conf = memcpy(pf->data + off2, 1117 action->conf, tmp); 1118 off2 += tmp + pad; 1119 } 1120 off2 = RTE_ALIGN_CEIL(off2, sizeof(double)); 1121 } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END); 1122 if (pf != NULL) 1123 return pf; 1124 off1 = RTE_ALIGN_CEIL(off1, sizeof(double)); 1125 tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double)); 1126 pf = calloc(1, tmp + off1 + off2); 1127 if (pf == NULL) 1128 err = errno; 1129 else { 1130 *pf = (const struct port_flow){ 1131 .size = tmp + off1 + off2, 1132 .attr = *attr, 1133 }; 1134 tmp -= offsetof(struct port_flow, data); 1135 off2 = tmp + off1; 1136 off1 = tmp; 1137 goto store; 1138 } 1139 notsup: 1140 rte_errno = err; 1141 return NULL; 1142 } 1143 1144 /** Print a message out of a flow error. */ 1145 static int 1146 port_flow_complain(struct rte_flow_error *error) 1147 { 1148 static const char *const errstrlist[] = { 1149 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1150 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1151 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1152 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1153 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1154 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1155 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1156 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1157 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1158 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1159 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1160 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1161 }; 1162 const char *errstr; 1163 char buf[32]; 1164 int err = rte_errno; 1165 1166 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1167 !errstrlist[error->type]) 1168 errstr = "unknown type"; 1169 else 1170 errstr = errstrlist[error->type]; 1171 printf("Caught error type %d (%s): %s%s\n", 1172 error->type, errstr, 1173 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1174 error->cause), buf) : "", 1175 error->message ? error->message : "(no stated reason)"); 1176 return -err; 1177 } 1178 1179 /** Validate flow rule. */ 1180 int 1181 port_flow_validate(portid_t port_id, 1182 const struct rte_flow_attr *attr, 1183 const struct rte_flow_item *pattern, 1184 const struct rte_flow_action *actions) 1185 { 1186 struct rte_flow_error error; 1187 1188 /* Poisoning to make sure PMDs update it in case of error. */ 1189 memset(&error, 0x11, sizeof(error)); 1190 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1191 return port_flow_complain(&error); 1192 printf("Flow rule validated\n"); 1193 return 0; 1194 } 1195 1196 /** Create flow rule. */ 1197 int 1198 port_flow_create(portid_t port_id, 1199 const struct rte_flow_attr *attr, 1200 const struct rte_flow_item *pattern, 1201 const struct rte_flow_action *actions) 1202 { 1203 struct rte_flow *flow; 1204 struct rte_port *port; 1205 struct port_flow *pf; 1206 uint32_t id; 1207 struct rte_flow_error error; 1208 1209 /* Poisoning to make sure PMDs update it in case of error. */ 1210 memset(&error, 0x22, sizeof(error)); 1211 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1212 if (!flow) 1213 return port_flow_complain(&error); 1214 port = &ports[port_id]; 1215 if (port->flow_list) { 1216 if (port->flow_list->id == UINT32_MAX) { 1217 printf("Highest rule ID is already assigned, delete" 1218 " it first"); 1219 rte_flow_destroy(port_id, flow, NULL); 1220 return -ENOMEM; 1221 } 1222 id = port->flow_list->id + 1; 1223 } else 1224 id = 0; 1225 pf = port_flow_new(attr, pattern, actions); 1226 if (!pf) { 1227 int err = rte_errno; 1228 1229 printf("Cannot allocate flow: %s\n", rte_strerror(err)); 1230 rte_flow_destroy(port_id, flow, NULL); 1231 return -err; 1232 } 1233 pf->next = port->flow_list; 1234 pf->id = id; 1235 pf->flow = flow; 1236 port->flow_list = pf; 1237 printf("Flow rule #%u created\n", pf->id); 1238 return 0; 1239 } 1240 1241 /** Destroy a number of flow rules. */ 1242 int 1243 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1244 { 1245 struct rte_port *port; 1246 struct port_flow **tmp; 1247 uint32_t c = 0; 1248 int ret = 0; 1249 1250 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1251 port_id == (portid_t)RTE_PORT_ALL) 1252 return -EINVAL; 1253 port = &ports[port_id]; 1254 tmp = &port->flow_list; 1255 while (*tmp) { 1256 uint32_t i; 1257 1258 for (i = 0; i != n; ++i) { 1259 struct rte_flow_error error; 1260 struct port_flow *pf = *tmp; 1261 1262 if (rule[i] != pf->id) 1263 continue; 1264 /* 1265 * Poisoning to make sure PMDs update it in case 1266 * of error. 1267 */ 1268 memset(&error, 0x33, sizeof(error)); 1269 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1270 ret = port_flow_complain(&error); 1271 continue; 1272 } 1273 printf("Flow rule #%u destroyed\n", pf->id); 1274 *tmp = pf->next; 1275 free(pf); 1276 break; 1277 } 1278 if (i == n) 1279 tmp = &(*tmp)->next; 1280 ++c; 1281 } 1282 return ret; 1283 } 1284 1285 /** Remove all flow rules. */ 1286 int 1287 port_flow_flush(portid_t port_id) 1288 { 1289 struct rte_flow_error error; 1290 struct rte_port *port; 1291 int ret = 0; 1292 1293 /* Poisoning to make sure PMDs update it in case of error. */ 1294 memset(&error, 0x44, sizeof(error)); 1295 if (rte_flow_flush(port_id, &error)) { 1296 ret = port_flow_complain(&error); 1297 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1298 port_id == (portid_t)RTE_PORT_ALL) 1299 return ret; 1300 } 1301 port = &ports[port_id]; 1302 while (port->flow_list) { 1303 struct port_flow *pf = port->flow_list->next; 1304 1305 free(port->flow_list); 1306 port->flow_list = pf; 1307 } 1308 return ret; 1309 } 1310 1311 /** Query a flow rule. */ 1312 int 1313 port_flow_query(portid_t port_id, uint32_t rule, 1314 enum rte_flow_action_type action) 1315 { 1316 struct rte_flow_error error; 1317 struct rte_port *port; 1318 struct port_flow *pf; 1319 const char *name; 1320 union { 1321 struct rte_flow_query_count count; 1322 } query; 1323 1324 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1325 port_id == (portid_t)RTE_PORT_ALL) 1326 return -EINVAL; 1327 port = &ports[port_id]; 1328 for (pf = port->flow_list; pf; pf = pf->next) 1329 if (pf->id == rule) 1330 break; 1331 if (!pf) { 1332 printf("Flow rule #%u not found\n", rule); 1333 return -ENOENT; 1334 } 1335 if ((unsigned int)action >= RTE_DIM(flow_action) || 1336 !flow_action[action].name) 1337 name = "unknown"; 1338 else 1339 name = flow_action[action].name; 1340 switch (action) { 1341 case RTE_FLOW_ACTION_TYPE_COUNT: 1342 break; 1343 default: 1344 printf("Cannot query action type %d (%s)\n", action, name); 1345 return -ENOTSUP; 1346 } 1347 /* Poisoning to make sure PMDs update it in case of error. */ 1348 memset(&error, 0x55, sizeof(error)); 1349 memset(&query, 0, sizeof(query)); 1350 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1351 return port_flow_complain(&error); 1352 switch (action) { 1353 case RTE_FLOW_ACTION_TYPE_COUNT: 1354 printf("%s:\n" 1355 " hits_set: %u\n" 1356 " bytes_set: %u\n" 1357 " hits: %" PRIu64 "\n" 1358 " bytes: %" PRIu64 "\n", 1359 name, 1360 query.count.hits_set, 1361 query.count.bytes_set, 1362 query.count.hits, 1363 query.count.bytes); 1364 break; 1365 default: 1366 printf("Cannot display result for action type %d (%s)\n", 1367 action, name); 1368 break; 1369 } 1370 return 0; 1371 } 1372 1373 /** List flow rules. */ 1374 void 1375 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1376 { 1377 struct rte_port *port; 1378 struct port_flow *pf; 1379 struct port_flow *list = NULL; 1380 uint32_t i; 1381 1382 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1383 port_id == (portid_t)RTE_PORT_ALL) 1384 return; 1385 port = &ports[port_id]; 1386 if (!port->flow_list) 1387 return; 1388 /* Sort flows by group, priority and ID. */ 1389 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1390 struct port_flow **tmp; 1391 1392 if (n) { 1393 /* Filter out unwanted groups. */ 1394 for (i = 0; i != n; ++i) 1395 if (pf->attr.group == group[i]) 1396 break; 1397 if (i == n) 1398 continue; 1399 } 1400 tmp = &list; 1401 while (*tmp && 1402 (pf->attr.group > (*tmp)->attr.group || 1403 (pf->attr.group == (*tmp)->attr.group && 1404 pf->attr.priority > (*tmp)->attr.priority) || 1405 (pf->attr.group == (*tmp)->attr.group && 1406 pf->attr.priority == (*tmp)->attr.priority && 1407 pf->id > (*tmp)->id))) 1408 tmp = &(*tmp)->tmp; 1409 pf->tmp = *tmp; 1410 *tmp = pf; 1411 } 1412 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1413 for (pf = list; pf != NULL; pf = pf->tmp) { 1414 const struct rte_flow_item *item = pf->pattern; 1415 const struct rte_flow_action *action = pf->actions; 1416 1417 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t", 1418 pf->id, 1419 pf->attr.group, 1420 pf->attr.priority, 1421 pf->attr.ingress ? 'i' : '-', 1422 pf->attr.egress ? 'e' : '-'); 1423 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1424 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1425 printf("%s ", flow_item[item->type].name); 1426 ++item; 1427 } 1428 printf("=>"); 1429 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1430 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1431 printf(" %s", flow_action[action->type].name); 1432 ++action; 1433 } 1434 printf("\n"); 1435 } 1436 } 1437 1438 /* 1439 * RX/TX ring descriptors display functions. 1440 */ 1441 int 1442 rx_queue_id_is_invalid(queueid_t rxq_id) 1443 { 1444 if (rxq_id < nb_rxq) 1445 return 0; 1446 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1447 return 1; 1448 } 1449 1450 int 1451 tx_queue_id_is_invalid(queueid_t txq_id) 1452 { 1453 if (txq_id < nb_txq) 1454 return 0; 1455 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1456 return 1; 1457 } 1458 1459 static int 1460 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1461 { 1462 if (rxdesc_id < nb_rxd) 1463 return 0; 1464 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1465 rxdesc_id, nb_rxd); 1466 return 1; 1467 } 1468 1469 static int 1470 tx_desc_id_is_invalid(uint16_t txdesc_id) 1471 { 1472 if (txdesc_id < nb_txd) 1473 return 0; 1474 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1475 txdesc_id, nb_txd); 1476 return 1; 1477 } 1478 1479 static const struct rte_memzone * 1480 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id) 1481 { 1482 char mz_name[RTE_MEMZONE_NAMESIZE]; 1483 const struct rte_memzone *mz; 1484 1485 snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", 1486 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); 1487 mz = rte_memzone_lookup(mz_name); 1488 if (mz == NULL) 1489 printf("%s ring memory zoneof (port %d, queue %d) not" 1490 "found (zone name = %s\n", 1491 ring_name, port_id, q_id, mz_name); 1492 return mz; 1493 } 1494 1495 union igb_ring_dword { 1496 uint64_t dword; 1497 struct { 1498 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1499 uint32_t lo; 1500 uint32_t hi; 1501 #else 1502 uint32_t hi; 1503 uint32_t lo; 1504 #endif 1505 } words; 1506 }; 1507 1508 struct igb_ring_desc_32_bytes { 1509 union igb_ring_dword lo_dword; 1510 union igb_ring_dword hi_dword; 1511 union igb_ring_dword resv1; 1512 union igb_ring_dword resv2; 1513 }; 1514 1515 struct igb_ring_desc_16_bytes { 1516 union igb_ring_dword lo_dword; 1517 union igb_ring_dword hi_dword; 1518 }; 1519 1520 static void 1521 ring_rxd_display_dword(union igb_ring_dword dword) 1522 { 1523 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1524 (unsigned)dword.words.hi); 1525 } 1526 1527 static void 1528 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1529 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1530 uint8_t port_id, 1531 #else 1532 __rte_unused uint8_t port_id, 1533 #endif 1534 uint16_t desc_id) 1535 { 1536 struct igb_ring_desc_16_bytes *ring = 1537 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1538 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1539 struct rte_eth_dev_info dev_info; 1540 1541 memset(&dev_info, 0, sizeof(dev_info)); 1542 rte_eth_dev_info_get(port_id, &dev_info); 1543 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1544 /* 32 bytes RX descriptor, i40e only */ 1545 struct igb_ring_desc_32_bytes *ring = 1546 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1547 ring[desc_id].lo_dword.dword = 1548 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1549 ring_rxd_display_dword(ring[desc_id].lo_dword); 1550 ring[desc_id].hi_dword.dword = 1551 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1552 ring_rxd_display_dword(ring[desc_id].hi_dword); 1553 ring[desc_id].resv1.dword = 1554 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1555 ring_rxd_display_dword(ring[desc_id].resv1); 1556 ring[desc_id].resv2.dword = 1557 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1558 ring_rxd_display_dword(ring[desc_id].resv2); 1559 1560 return; 1561 } 1562 #endif 1563 /* 16 bytes RX descriptor */ 1564 ring[desc_id].lo_dword.dword = 1565 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1566 ring_rxd_display_dword(ring[desc_id].lo_dword); 1567 ring[desc_id].hi_dword.dword = 1568 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1569 ring_rxd_display_dword(ring[desc_id].hi_dword); 1570 } 1571 1572 static void 1573 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1574 { 1575 struct igb_ring_desc_16_bytes *ring; 1576 struct igb_ring_desc_16_bytes txd; 1577 1578 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1579 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1580 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1581 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1582 (unsigned)txd.lo_dword.words.lo, 1583 (unsigned)txd.lo_dword.words.hi, 1584 (unsigned)txd.hi_dword.words.lo, 1585 (unsigned)txd.hi_dword.words.hi); 1586 } 1587 1588 void 1589 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1590 { 1591 const struct rte_memzone *rx_mz; 1592 1593 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1594 return; 1595 if (rx_queue_id_is_invalid(rxq_id)) 1596 return; 1597 if (rx_desc_id_is_invalid(rxd_id)) 1598 return; 1599 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1600 if (rx_mz == NULL) 1601 return; 1602 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1603 } 1604 1605 void 1606 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1607 { 1608 const struct rte_memzone *tx_mz; 1609 1610 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1611 return; 1612 if (tx_queue_id_is_invalid(txq_id)) 1613 return; 1614 if (tx_desc_id_is_invalid(txd_id)) 1615 return; 1616 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1617 if (tx_mz == NULL) 1618 return; 1619 ring_tx_descriptor_display(tx_mz, txd_id); 1620 } 1621 1622 void 1623 fwd_lcores_config_display(void) 1624 { 1625 lcoreid_t lc_id; 1626 1627 printf("List of forwarding lcores:"); 1628 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1629 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1630 printf("\n"); 1631 } 1632 void 1633 rxtx_config_display(void) 1634 { 1635 printf(" %s packet forwarding%s - CRC stripping %s - " 1636 "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, 1637 retry_enabled == 0 ? "" : " with retry", 1638 rx_mode.hw_strip_crc ? "enabled" : "disabled", 1639 nb_pkt_per_burst); 1640 1641 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1642 printf(" packet len=%u - nb packet segments=%d\n", 1643 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1644 1645 struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf; 1646 struct rte_eth_txconf *tx_conf = &ports[0].tx_conf; 1647 1648 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1649 nb_fwd_lcores, nb_fwd_ports); 1650 printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", 1651 nb_rxq, nb_rxd, rx_conf->rx_free_thresh); 1652 printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1653 rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh, 1654 rx_conf->rx_thresh.wthresh); 1655 printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", 1656 nb_txq, nb_txd, tx_conf->tx_free_thresh); 1657 printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", 1658 tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh, 1659 tx_conf->tx_thresh.wthresh); 1660 printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n", 1661 tx_conf->tx_rs_thresh, tx_conf->txq_flags); 1662 } 1663 1664 void 1665 port_rss_reta_info(portid_t port_id, 1666 struct rte_eth_rss_reta_entry64 *reta_conf, 1667 uint16_t nb_entries) 1668 { 1669 uint16_t i, idx, shift; 1670 int ret; 1671 1672 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1673 return; 1674 1675 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1676 if (ret != 0) { 1677 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1678 return; 1679 } 1680 1681 for (i = 0; i < nb_entries; i++) { 1682 idx = i / RTE_RETA_GROUP_SIZE; 1683 shift = i % RTE_RETA_GROUP_SIZE; 1684 if (!(reta_conf[idx].mask & (1ULL << shift))) 1685 continue; 1686 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1687 i, reta_conf[idx].reta[shift]); 1688 } 1689 } 1690 1691 /* 1692 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1693 * key of the port. 1694 */ 1695 void 1696 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) 1697 { 1698 struct rte_eth_rss_conf rss_conf; 1699 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1700 uint64_t rss_hf; 1701 uint8_t i; 1702 int diag; 1703 struct rte_eth_dev_info dev_info; 1704 uint8_t hash_key_size; 1705 1706 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1707 return; 1708 1709 memset(&dev_info, 0, sizeof(dev_info)); 1710 rte_eth_dev_info_get(port_id, &dev_info); 1711 if (dev_info.hash_key_size > 0 && 1712 dev_info.hash_key_size <= sizeof(rss_key)) 1713 hash_key_size = dev_info.hash_key_size; 1714 else { 1715 printf("dev_info did not provide a valid hash key size\n"); 1716 return; 1717 } 1718 1719 rss_conf.rss_hf = 0; 1720 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1721 if (!strcmp(rss_info, rss_type_table[i].str)) 1722 rss_conf.rss_hf = rss_type_table[i].rss_type; 1723 } 1724 1725 /* Get RSS hash key if asked to display it */ 1726 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1727 rss_conf.rss_key_len = hash_key_size; 1728 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1729 if (diag != 0) { 1730 switch (diag) { 1731 case -ENODEV: 1732 printf("port index %d invalid\n", port_id); 1733 break; 1734 case -ENOTSUP: 1735 printf("operation not supported by device\n"); 1736 break; 1737 default: 1738 printf("operation failed - diag=%d\n", diag); 1739 break; 1740 } 1741 return; 1742 } 1743 rss_hf = rss_conf.rss_hf; 1744 if (rss_hf == 0) { 1745 printf("RSS disabled\n"); 1746 return; 1747 } 1748 printf("RSS functions:\n "); 1749 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1750 if (rss_hf & rss_type_table[i].rss_type) 1751 printf("%s ", rss_type_table[i].str); 1752 } 1753 printf("\n"); 1754 if (!show_rss_key) 1755 return; 1756 printf("RSS key:\n"); 1757 for (i = 0; i < hash_key_size; i++) 1758 printf("%02X", rss_key[i]); 1759 printf("\n"); 1760 } 1761 1762 void 1763 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1764 uint hash_key_len) 1765 { 1766 struct rte_eth_rss_conf rss_conf; 1767 int diag; 1768 unsigned int i; 1769 1770 rss_conf.rss_key = NULL; 1771 rss_conf.rss_key_len = hash_key_len; 1772 rss_conf.rss_hf = 0; 1773 for (i = 0; i < RTE_DIM(rss_type_table); i++) { 1774 if (!strcmp(rss_type_table[i].str, rss_type)) 1775 rss_conf.rss_hf = rss_type_table[i].rss_type; 1776 } 1777 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1778 if (diag == 0) { 1779 rss_conf.rss_key = hash_key; 1780 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1781 } 1782 if (diag == 0) 1783 return; 1784 1785 switch (diag) { 1786 case -ENODEV: 1787 printf("port index %d invalid\n", port_id); 1788 break; 1789 case -ENOTSUP: 1790 printf("operation not supported by device\n"); 1791 break; 1792 default: 1793 printf("operation failed - diag=%d\n", diag); 1794 break; 1795 } 1796 } 1797 1798 /* 1799 * Setup forwarding configuration for each logical core. 1800 */ 1801 static void 1802 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1803 { 1804 streamid_t nb_fs_per_lcore; 1805 streamid_t nb_fs; 1806 streamid_t sm_id; 1807 lcoreid_t nb_extra; 1808 lcoreid_t nb_fc; 1809 lcoreid_t nb_lc; 1810 lcoreid_t lc_id; 1811 1812 nb_fs = cfg->nb_fwd_streams; 1813 nb_fc = cfg->nb_fwd_lcores; 1814 if (nb_fs <= nb_fc) { 1815 nb_fs_per_lcore = 1; 1816 nb_extra = 0; 1817 } else { 1818 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1819 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1820 } 1821 1822 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1823 sm_id = 0; 1824 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1825 fwd_lcores[lc_id]->stream_idx = sm_id; 1826 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1827 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1828 } 1829 1830 /* 1831 * Assign extra remaining streams, if any. 1832 */ 1833 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1834 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1835 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1836 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1837 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1838 } 1839 } 1840 1841 static void 1842 simple_fwd_config_setup(void) 1843 { 1844 portid_t i; 1845 portid_t j; 1846 portid_t inc = 2; 1847 1848 if (port_topology == PORT_TOPOLOGY_CHAINED || 1849 port_topology == PORT_TOPOLOGY_LOOP) { 1850 inc = 1; 1851 } else if (nb_fwd_ports % 2) { 1852 printf("\nWarning! Cannot handle an odd number of ports " 1853 "with the current port topology. Configuration " 1854 "must be changed to have an even number of ports, " 1855 "or relaunch application with " 1856 "--port-topology=chained\n\n"); 1857 } 1858 1859 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 1860 cur_fwd_config.nb_fwd_streams = 1861 (streamid_t) cur_fwd_config.nb_fwd_ports; 1862 1863 /* reinitialize forwarding streams */ 1864 init_fwd_streams(); 1865 1866 /* 1867 * In the simple forwarding test, the number of forwarding cores 1868 * must be lower or equal to the number of forwarding ports. 1869 */ 1870 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1871 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 1872 cur_fwd_config.nb_fwd_lcores = 1873 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 1874 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1875 1876 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { 1877 if (port_topology != PORT_TOPOLOGY_LOOP) 1878 j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); 1879 else 1880 j = i; 1881 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 1882 fwd_streams[i]->rx_queue = 0; 1883 fwd_streams[i]->tx_port = fwd_ports_ids[j]; 1884 fwd_streams[i]->tx_queue = 0; 1885 fwd_streams[i]->peer_addr = j; 1886 fwd_streams[i]->retry_enabled = retry_enabled; 1887 1888 if (port_topology == PORT_TOPOLOGY_PAIRED) { 1889 fwd_streams[j]->rx_port = fwd_ports_ids[j]; 1890 fwd_streams[j]->rx_queue = 0; 1891 fwd_streams[j]->tx_port = fwd_ports_ids[i]; 1892 fwd_streams[j]->tx_queue = 0; 1893 fwd_streams[j]->peer_addr = i; 1894 fwd_streams[j]->retry_enabled = retry_enabled; 1895 } 1896 } 1897 } 1898 1899 /** 1900 * For the RSS forwarding test all streams distributed over lcores. Each stream 1901 * being composed of a RX queue to poll on a RX port for input messages, 1902 * associated with a TX queue of a TX port where to send forwarded packets. 1903 * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" 1904 * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two 1905 * following rules: 1906 * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd 1907 * - TxQl = RxQj 1908 */ 1909 static void 1910 rss_fwd_config_setup(void) 1911 { 1912 portid_t rxp; 1913 portid_t txp; 1914 queueid_t rxq; 1915 queueid_t nb_q; 1916 streamid_t sm_id; 1917 1918 nb_q = nb_rxq; 1919 if (nb_q > nb_txq) 1920 nb_q = nb_txq; 1921 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1922 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1923 cur_fwd_config.nb_fwd_streams = 1924 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 1925 1926 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 1927 cur_fwd_config.nb_fwd_lcores = 1928 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 1929 1930 /* reinitialize forwarding streams */ 1931 init_fwd_streams(); 1932 1933 setup_fwd_config_of_each_lcore(&cur_fwd_config); 1934 rxp = 0; rxq = 0; 1935 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1936 struct fwd_stream *fs; 1937 1938 fs = fwd_streams[sm_id]; 1939 1940 if ((rxp & 0x1) == 0) 1941 txp = (portid_t) (rxp + 1); 1942 else 1943 txp = (portid_t) (rxp - 1); 1944 /* 1945 * if we are in loopback, simply send stuff out through the 1946 * ingress port 1947 */ 1948 if (port_topology == PORT_TOPOLOGY_LOOP) 1949 txp = rxp; 1950 1951 fs->rx_port = fwd_ports_ids[rxp]; 1952 fs->rx_queue = rxq; 1953 fs->tx_port = fwd_ports_ids[txp]; 1954 fs->tx_queue = rxq; 1955 fs->peer_addr = fs->tx_port; 1956 fs->retry_enabled = retry_enabled; 1957 rxq = (queueid_t) (rxq + 1); 1958 if (rxq < nb_q) 1959 continue; 1960 /* 1961 * rxq == nb_q 1962 * Restart from RX queue 0 on next RX port 1963 */ 1964 rxq = 0; 1965 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 1966 rxp = (portid_t) 1967 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 1968 else 1969 rxp = (portid_t) (rxp + 1); 1970 } 1971 } 1972 1973 /** 1974 * For the DCB forwarding test, each core is assigned on each traffic class. 1975 * 1976 * Each core is assigned a multi-stream, each stream being composed of 1977 * a RX queue to poll on a RX port for input messages, associated with 1978 * a TX queue of a TX port where to send forwarded packets. All RX and 1979 * TX queues are mapping to the same traffic class. 1980 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 1981 * the same core 1982 */ 1983 static void 1984 dcb_fwd_config_setup(void) 1985 { 1986 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 1987 portid_t txp, rxp = 0; 1988 queueid_t txq, rxq = 0; 1989 lcoreid_t lc_id; 1990 uint16_t nb_rx_queue, nb_tx_queue; 1991 uint16_t i, j, k, sm_id = 0; 1992 uint8_t tc = 0; 1993 1994 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 1995 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 1996 cur_fwd_config.nb_fwd_streams = 1997 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 1998 1999 /* reinitialize forwarding streams */ 2000 init_fwd_streams(); 2001 sm_id = 0; 2002 txp = 1; 2003 /* get the dcb info on the first RX and TX ports */ 2004 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2005 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2006 2007 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2008 fwd_lcores[lc_id]->stream_nb = 0; 2009 fwd_lcores[lc_id]->stream_idx = sm_id; 2010 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2011 /* if the nb_queue is zero, means this tc is 2012 * not enabled on the POOL 2013 */ 2014 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2015 break; 2016 k = fwd_lcores[lc_id]->stream_nb + 2017 fwd_lcores[lc_id]->stream_idx; 2018 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2019 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2020 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2021 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2022 for (j = 0; j < nb_rx_queue; j++) { 2023 struct fwd_stream *fs; 2024 2025 fs = fwd_streams[k + j]; 2026 fs->rx_port = fwd_ports_ids[rxp]; 2027 fs->rx_queue = rxq + j; 2028 fs->tx_port = fwd_ports_ids[txp]; 2029 fs->tx_queue = txq + j % nb_tx_queue; 2030 fs->peer_addr = fs->tx_port; 2031 fs->retry_enabled = retry_enabled; 2032 } 2033 fwd_lcores[lc_id]->stream_nb += 2034 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2035 } 2036 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2037 2038 tc++; 2039 if (tc < rxp_dcb_info.nb_tcs) 2040 continue; 2041 /* Restart from TC 0 on next RX port */ 2042 tc = 0; 2043 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2044 rxp = (portid_t) 2045 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2046 else 2047 rxp++; 2048 if (rxp >= nb_fwd_ports) 2049 return; 2050 /* get the dcb information on next RX and TX ports */ 2051 if ((rxp & 0x1) == 0) 2052 txp = (portid_t) (rxp + 1); 2053 else 2054 txp = (portid_t) (rxp - 1); 2055 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2056 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2057 } 2058 } 2059 2060 static void 2061 icmp_echo_config_setup(void) 2062 { 2063 portid_t rxp; 2064 queueid_t rxq; 2065 lcoreid_t lc_id; 2066 uint16_t sm_id; 2067 2068 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2069 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2070 (nb_txq * nb_fwd_ports); 2071 else 2072 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2073 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2074 cur_fwd_config.nb_fwd_streams = 2075 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2076 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2077 cur_fwd_config.nb_fwd_lcores = 2078 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2079 if (verbose_level > 0) { 2080 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2081 __FUNCTION__, 2082 cur_fwd_config.nb_fwd_lcores, 2083 cur_fwd_config.nb_fwd_ports, 2084 cur_fwd_config.nb_fwd_streams); 2085 } 2086 2087 /* reinitialize forwarding streams */ 2088 init_fwd_streams(); 2089 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2090 rxp = 0; rxq = 0; 2091 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2092 if (verbose_level > 0) 2093 printf(" core=%d: \n", lc_id); 2094 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2095 struct fwd_stream *fs; 2096 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2097 fs->rx_port = fwd_ports_ids[rxp]; 2098 fs->rx_queue = rxq; 2099 fs->tx_port = fs->rx_port; 2100 fs->tx_queue = rxq; 2101 fs->peer_addr = fs->tx_port; 2102 fs->retry_enabled = retry_enabled; 2103 if (verbose_level > 0) 2104 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2105 sm_id, fs->rx_port, fs->rx_queue, 2106 fs->tx_queue); 2107 rxq = (queueid_t) (rxq + 1); 2108 if (rxq == nb_rxq) { 2109 rxq = 0; 2110 rxp = (portid_t) (rxp + 1); 2111 } 2112 } 2113 } 2114 } 2115 2116 void 2117 fwd_config_setup(void) 2118 { 2119 cur_fwd_config.fwd_eng = cur_fwd_eng; 2120 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2121 icmp_echo_config_setup(); 2122 return; 2123 } 2124 if ((nb_rxq > 1) && (nb_txq > 1)){ 2125 if (dcb_config) 2126 dcb_fwd_config_setup(); 2127 else 2128 rss_fwd_config_setup(); 2129 } 2130 else 2131 simple_fwd_config_setup(); 2132 } 2133 2134 void 2135 pkt_fwd_config_display(struct fwd_config *cfg) 2136 { 2137 struct fwd_stream *fs; 2138 lcoreid_t lc_id; 2139 streamid_t sm_id; 2140 2141 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2142 "NUMA support %s, MP over anonymous pages %s\n", 2143 cfg->fwd_eng->fwd_mode_name, 2144 retry_enabled == 0 ? "" : " with retry", 2145 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2146 numa_support == 1 ? "enabled" : "disabled", 2147 mp_anon != 0 ? "enabled" : "disabled"); 2148 2149 if (retry_enabled) 2150 printf("TX retry num: %u, delay between TX retries: %uus\n", 2151 burst_tx_retry_num, burst_tx_delay_time); 2152 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2153 printf("Logical Core %u (socket %u) forwards packets on " 2154 "%d streams:", 2155 fwd_lcores_cpuids[lc_id], 2156 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2157 fwd_lcores[lc_id]->stream_nb); 2158 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2159 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2160 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2161 "P=%d/Q=%d (socket %u) ", 2162 fs->rx_port, fs->rx_queue, 2163 ports[fs->rx_port].socket_id, 2164 fs->tx_port, fs->tx_queue, 2165 ports[fs->tx_port].socket_id); 2166 print_ethaddr("peer=", 2167 &peer_eth_addrs[fs->peer_addr]); 2168 } 2169 printf("\n"); 2170 } 2171 printf("\n"); 2172 } 2173 2174 int 2175 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2176 { 2177 unsigned int i; 2178 unsigned int lcore_cpuid; 2179 int record_now; 2180 2181 record_now = 0; 2182 again: 2183 for (i = 0; i < nb_lc; i++) { 2184 lcore_cpuid = lcorelist[i]; 2185 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2186 printf("lcore %u not enabled\n", lcore_cpuid); 2187 return -1; 2188 } 2189 if (lcore_cpuid == rte_get_master_lcore()) { 2190 printf("lcore %u cannot be masked on for running " 2191 "packet forwarding, which is the master lcore " 2192 "and reserved for command line parsing only\n", 2193 lcore_cpuid); 2194 return -1; 2195 } 2196 if (record_now) 2197 fwd_lcores_cpuids[i] = lcore_cpuid; 2198 } 2199 if (record_now == 0) { 2200 record_now = 1; 2201 goto again; 2202 } 2203 nb_cfg_lcores = (lcoreid_t) nb_lc; 2204 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2205 printf("previous number of forwarding cores %u - changed to " 2206 "number of configured cores %u\n", 2207 (unsigned int) nb_fwd_lcores, nb_lc); 2208 nb_fwd_lcores = (lcoreid_t) nb_lc; 2209 } 2210 2211 return 0; 2212 } 2213 2214 int 2215 set_fwd_lcores_mask(uint64_t lcoremask) 2216 { 2217 unsigned int lcorelist[64]; 2218 unsigned int nb_lc; 2219 unsigned int i; 2220 2221 if (lcoremask == 0) { 2222 printf("Invalid NULL mask of cores\n"); 2223 return -1; 2224 } 2225 nb_lc = 0; 2226 for (i = 0; i < 64; i++) { 2227 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2228 continue; 2229 lcorelist[nb_lc++] = i; 2230 } 2231 return set_fwd_lcores_list(lcorelist, nb_lc); 2232 } 2233 2234 void 2235 set_fwd_lcores_number(uint16_t nb_lc) 2236 { 2237 if (nb_lc > nb_cfg_lcores) { 2238 printf("nb fwd cores %u > %u (max. number of configured " 2239 "lcores) - ignored\n", 2240 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2241 return; 2242 } 2243 nb_fwd_lcores = (lcoreid_t) nb_lc; 2244 printf("Number of forwarding cores set to %u\n", 2245 (unsigned int) nb_fwd_lcores); 2246 } 2247 2248 void 2249 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2250 { 2251 unsigned int i; 2252 portid_t port_id; 2253 int record_now; 2254 2255 record_now = 0; 2256 again: 2257 for (i = 0; i < nb_pt; i++) { 2258 port_id = (portid_t) portlist[i]; 2259 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2260 return; 2261 if (record_now) 2262 fwd_ports_ids[i] = port_id; 2263 } 2264 if (record_now == 0) { 2265 record_now = 1; 2266 goto again; 2267 } 2268 nb_cfg_ports = (portid_t) nb_pt; 2269 if (nb_fwd_ports != (portid_t) nb_pt) { 2270 printf("previous number of forwarding ports %u - changed to " 2271 "number of configured ports %u\n", 2272 (unsigned int) nb_fwd_ports, nb_pt); 2273 nb_fwd_ports = (portid_t) nb_pt; 2274 } 2275 } 2276 2277 void 2278 set_fwd_ports_mask(uint64_t portmask) 2279 { 2280 unsigned int portlist[64]; 2281 unsigned int nb_pt; 2282 unsigned int i; 2283 2284 if (portmask == 0) { 2285 printf("Invalid NULL mask of ports\n"); 2286 return; 2287 } 2288 nb_pt = 0; 2289 for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) { 2290 if (! ((uint64_t)(1ULL << i) & portmask)) 2291 continue; 2292 portlist[nb_pt++] = i; 2293 } 2294 set_fwd_ports_list(portlist, nb_pt); 2295 } 2296 2297 void 2298 set_fwd_ports_number(uint16_t nb_pt) 2299 { 2300 if (nb_pt > nb_cfg_ports) { 2301 printf("nb fwd ports %u > %u (number of configured " 2302 "ports) - ignored\n", 2303 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2304 return; 2305 } 2306 nb_fwd_ports = (portid_t) nb_pt; 2307 printf("Number of forwarding ports set to %u\n", 2308 (unsigned int) nb_fwd_ports); 2309 } 2310 2311 int 2312 port_is_forwarding(portid_t port_id) 2313 { 2314 unsigned int i; 2315 2316 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2317 return -1; 2318 2319 for (i = 0; i < nb_fwd_ports; i++) { 2320 if (fwd_ports_ids[i] == port_id) 2321 return 1; 2322 } 2323 2324 return 0; 2325 } 2326 2327 void 2328 set_nb_pkt_per_burst(uint16_t nb) 2329 { 2330 if (nb > MAX_PKT_BURST) { 2331 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2332 " ignored\n", 2333 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2334 return; 2335 } 2336 nb_pkt_per_burst = nb; 2337 printf("Number of packets per burst set to %u\n", 2338 (unsigned int) nb_pkt_per_burst); 2339 } 2340 2341 static const char * 2342 tx_split_get_name(enum tx_pkt_split split) 2343 { 2344 uint32_t i; 2345 2346 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2347 if (tx_split_name[i].split == split) 2348 return tx_split_name[i].name; 2349 } 2350 return NULL; 2351 } 2352 2353 void 2354 set_tx_pkt_split(const char *name) 2355 { 2356 uint32_t i; 2357 2358 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2359 if (strcmp(tx_split_name[i].name, name) == 0) { 2360 tx_pkt_split = tx_split_name[i].split; 2361 return; 2362 } 2363 } 2364 printf("unknown value: \"%s\"\n", name); 2365 } 2366 2367 void 2368 show_tx_pkt_segments(void) 2369 { 2370 uint32_t i, n; 2371 const char *split; 2372 2373 n = tx_pkt_nb_segs; 2374 split = tx_split_get_name(tx_pkt_split); 2375 2376 printf("Number of segments: %u\n", n); 2377 printf("Segment sizes: "); 2378 for (i = 0; i != n - 1; i++) 2379 printf("%hu,", tx_pkt_seg_lengths[i]); 2380 printf("%hu\n", tx_pkt_seg_lengths[i]); 2381 printf("Split packet: %s\n", split); 2382 } 2383 2384 void 2385 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2386 { 2387 uint16_t tx_pkt_len; 2388 unsigned i; 2389 2390 if (nb_segs >= (unsigned) nb_txd) { 2391 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2392 nb_segs, (unsigned int) nb_txd); 2393 return; 2394 } 2395 2396 /* 2397 * Check that each segment length is greater or equal than 2398 * the mbuf data sise. 2399 * Check also that the total packet length is greater or equal than the 2400 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). 2401 */ 2402 tx_pkt_len = 0; 2403 for (i = 0; i < nb_segs; i++) { 2404 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2405 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2406 i, seg_lengths[i], (unsigned) mbuf_data_size); 2407 return; 2408 } 2409 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2410 } 2411 if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { 2412 printf("total packet length=%u < %d - give up\n", 2413 (unsigned) tx_pkt_len, 2414 (int)(sizeof(struct ether_hdr) + 20 + 8)); 2415 return; 2416 } 2417 2418 for (i = 0; i < nb_segs; i++) 2419 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2420 2421 tx_pkt_length = tx_pkt_len; 2422 tx_pkt_nb_segs = (uint8_t) nb_segs; 2423 } 2424 2425 char* 2426 list_pkt_forwarding_modes(void) 2427 { 2428 static char fwd_modes[128] = ""; 2429 const char *separator = "|"; 2430 struct fwd_engine *fwd_eng; 2431 unsigned i = 0; 2432 2433 if (strlen (fwd_modes) == 0) { 2434 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2435 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2436 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2437 strncat(fwd_modes, separator, 2438 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2439 } 2440 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2441 } 2442 2443 return fwd_modes; 2444 } 2445 2446 char* 2447 list_pkt_forwarding_retry_modes(void) 2448 { 2449 static char fwd_modes[128] = ""; 2450 const char *separator = "|"; 2451 struct fwd_engine *fwd_eng; 2452 unsigned i = 0; 2453 2454 if (strlen(fwd_modes) == 0) { 2455 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2456 if (fwd_eng == &rx_only_engine) 2457 continue; 2458 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2459 sizeof(fwd_modes) - 2460 strlen(fwd_modes) - 1); 2461 strncat(fwd_modes, separator, 2462 sizeof(fwd_modes) - 2463 strlen(fwd_modes) - 1); 2464 } 2465 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2466 } 2467 2468 return fwd_modes; 2469 } 2470 2471 void 2472 set_pkt_forwarding_mode(const char *fwd_mode_name) 2473 { 2474 struct fwd_engine *fwd_eng; 2475 unsigned i; 2476 2477 i = 0; 2478 while ((fwd_eng = fwd_engines[i]) != NULL) { 2479 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2480 printf("Set %s packet forwarding mode%s\n", 2481 fwd_mode_name, 2482 retry_enabled == 0 ? "" : " with retry"); 2483 cur_fwd_eng = fwd_eng; 2484 return; 2485 } 2486 i++; 2487 } 2488 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2489 } 2490 2491 void 2492 set_verbose_level(uint16_t vb_level) 2493 { 2494 printf("Change verbose level from %u to %u\n", 2495 (unsigned int) verbose_level, (unsigned int) vb_level); 2496 verbose_level = vb_level; 2497 } 2498 2499 void 2500 vlan_extend_set(portid_t port_id, int on) 2501 { 2502 int diag; 2503 int vlan_offload; 2504 2505 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2506 return; 2507 2508 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2509 2510 if (on) 2511 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2512 else 2513 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2514 2515 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2516 if (diag < 0) 2517 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2518 "diag=%d\n", port_id, on, diag); 2519 } 2520 2521 void 2522 rx_vlan_strip_set(portid_t port_id, int on) 2523 { 2524 int diag; 2525 int vlan_offload; 2526 2527 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2528 return; 2529 2530 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2531 2532 if (on) 2533 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2534 else 2535 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2536 2537 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2538 if (diag < 0) 2539 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2540 "diag=%d\n", port_id, on, diag); 2541 } 2542 2543 void 2544 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2545 { 2546 int diag; 2547 2548 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2549 return; 2550 2551 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2552 if (diag < 0) 2553 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 2554 "diag=%d\n", port_id, queue_id, on, diag); 2555 } 2556 2557 void 2558 rx_vlan_filter_set(portid_t port_id, int on) 2559 { 2560 int diag; 2561 int vlan_offload; 2562 2563 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2564 return; 2565 2566 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2567 2568 if (on) 2569 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 2570 else 2571 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 2572 2573 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2574 if (diag < 0) 2575 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 2576 "diag=%d\n", port_id, on, diag); 2577 } 2578 2579 int 2580 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 2581 { 2582 int diag; 2583 2584 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2585 return 1; 2586 if (vlan_id_is_invalid(vlan_id)) 2587 return 1; 2588 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 2589 if (diag == 0) 2590 return 0; 2591 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 2592 "diag=%d\n", 2593 port_id, vlan_id, on, diag); 2594 return -1; 2595 } 2596 2597 void 2598 rx_vlan_all_filter_set(portid_t port_id, int on) 2599 { 2600 uint16_t vlan_id; 2601 2602 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2603 return; 2604 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 2605 if (rx_vft_set(port_id, vlan_id, on)) 2606 break; 2607 } 2608 } 2609 2610 void 2611 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 2612 { 2613 int diag; 2614 2615 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2616 return; 2617 2618 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 2619 if (diag == 0) 2620 return; 2621 2622 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 2623 "diag=%d\n", 2624 port_id, vlan_type, tp_id, diag); 2625 } 2626 2627 void 2628 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 2629 { 2630 int vlan_offload; 2631 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2632 return; 2633 if (vlan_id_is_invalid(vlan_id)) 2634 return; 2635 2636 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2637 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { 2638 printf("Error, as QinQ has been enabled.\n"); 2639 return; 2640 } 2641 2642 tx_vlan_reset(port_id); 2643 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN; 2644 ports[port_id].tx_vlan_id = vlan_id; 2645 } 2646 2647 void 2648 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 2649 { 2650 int vlan_offload; 2651 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2652 return; 2653 if (vlan_id_is_invalid(vlan_id)) 2654 return; 2655 if (vlan_id_is_invalid(vlan_id_outer)) 2656 return; 2657 2658 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2659 if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { 2660 printf("Error, as QinQ hasn't been enabled.\n"); 2661 return; 2662 } 2663 2664 tx_vlan_reset(port_id); 2665 ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ; 2666 ports[port_id].tx_vlan_id = vlan_id; 2667 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 2668 } 2669 2670 void 2671 tx_vlan_reset(portid_t port_id) 2672 { 2673 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2674 return; 2675 ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN | 2676 TESTPMD_TX_OFFLOAD_INSERT_QINQ); 2677 ports[port_id].tx_vlan_id = 0; 2678 ports[port_id].tx_vlan_id_outer = 0; 2679 } 2680 2681 void 2682 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 2683 { 2684 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2685 return; 2686 2687 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 2688 } 2689 2690 void 2691 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 2692 { 2693 uint16_t i; 2694 uint8_t existing_mapping_found = 0; 2695 2696 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2697 return; 2698 2699 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 2700 return; 2701 2702 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 2703 printf("map_value not in required range 0..%d\n", 2704 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 2705 return; 2706 } 2707 2708 if (!is_rx) { /*then tx*/ 2709 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 2710 if ((tx_queue_stats_mappings[i].port_id == port_id) && 2711 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 2712 tx_queue_stats_mappings[i].stats_counter_id = map_value; 2713 existing_mapping_found = 1; 2714 break; 2715 } 2716 } 2717 if (!existing_mapping_found) { /* A new additional mapping... */ 2718 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 2719 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 2720 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 2721 nb_tx_queue_stats_mappings++; 2722 } 2723 } 2724 else { /*rx*/ 2725 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 2726 if ((rx_queue_stats_mappings[i].port_id == port_id) && 2727 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 2728 rx_queue_stats_mappings[i].stats_counter_id = map_value; 2729 existing_mapping_found = 1; 2730 break; 2731 } 2732 } 2733 if (!existing_mapping_found) { /* A new additional mapping... */ 2734 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 2735 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 2736 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 2737 nb_rx_queue_stats_mappings++; 2738 } 2739 } 2740 } 2741 2742 static inline void 2743 print_fdir_mask(struct rte_eth_fdir_masks *mask) 2744 { 2745 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 2746 2747 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2748 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 2749 " tunnel_id: 0x%08x", 2750 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 2751 rte_be_to_cpu_32(mask->tunnel_id_mask)); 2752 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2753 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 2754 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 2755 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 2756 2757 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 2758 rte_be_to_cpu_16(mask->src_port_mask), 2759 rte_be_to_cpu_16(mask->dst_port_mask)); 2760 2761 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2762 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 2763 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 2764 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 2765 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 2766 2767 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 2768 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 2769 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 2770 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 2771 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 2772 } 2773 2774 printf("\n"); 2775 } 2776 2777 static inline void 2778 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2779 { 2780 struct rte_eth_flex_payload_cfg *cfg; 2781 uint32_t i, j; 2782 2783 for (i = 0; i < flex_conf->nb_payloads; i++) { 2784 cfg = &flex_conf->flex_set[i]; 2785 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 2786 printf("\n RAW: "); 2787 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 2788 printf("\n L2_PAYLOAD: "); 2789 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 2790 printf("\n L3_PAYLOAD: "); 2791 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 2792 printf("\n L4_PAYLOAD: "); 2793 else 2794 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 2795 for (j = 0; j < num; j++) 2796 printf(" %-5u", cfg->src_offset[j]); 2797 } 2798 printf("\n"); 2799 } 2800 2801 static char * 2802 flowtype_to_str(uint16_t flow_type) 2803 { 2804 struct flow_type_info { 2805 char str[32]; 2806 uint16_t ftype; 2807 }; 2808 2809 uint8_t i; 2810 static struct flow_type_info flowtype_str_table[] = { 2811 {"raw", RTE_ETH_FLOW_RAW}, 2812 {"ipv4", RTE_ETH_FLOW_IPV4}, 2813 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 2814 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 2815 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 2816 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 2817 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 2818 {"ipv6", RTE_ETH_FLOW_IPV6}, 2819 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 2820 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 2821 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 2822 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 2823 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 2824 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 2825 {"port", RTE_ETH_FLOW_PORT}, 2826 {"vxlan", RTE_ETH_FLOW_VXLAN}, 2827 {"geneve", RTE_ETH_FLOW_GENEVE}, 2828 {"nvgre", RTE_ETH_FLOW_NVGRE}, 2829 }; 2830 2831 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 2832 if (flowtype_str_table[i].ftype == flow_type) 2833 return flowtype_str_table[i].str; 2834 } 2835 2836 return NULL; 2837 } 2838 2839 static inline void 2840 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 2841 { 2842 struct rte_eth_fdir_flex_mask *mask; 2843 uint32_t i, j; 2844 char *p; 2845 2846 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 2847 mask = &flex_conf->flex_mask[i]; 2848 p = flowtype_to_str(mask->flow_type); 2849 printf("\n %s:\t", p ? p : "unknown"); 2850 for (j = 0; j < num; j++) 2851 printf(" %02x", mask->mask[j]); 2852 } 2853 printf("\n"); 2854 } 2855 2856 static inline void 2857 print_fdir_flow_type(uint32_t flow_types_mask) 2858 { 2859 int i; 2860 char *p; 2861 2862 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 2863 if (!(flow_types_mask & (1 << i))) 2864 continue; 2865 p = flowtype_to_str(i); 2866 if (p) 2867 printf(" %s", p); 2868 else 2869 printf(" unknown"); 2870 } 2871 printf("\n"); 2872 } 2873 2874 void 2875 fdir_get_infos(portid_t port_id) 2876 { 2877 struct rte_eth_fdir_stats fdir_stat; 2878 struct rte_eth_fdir_info fdir_info; 2879 int ret; 2880 2881 static const char *fdir_stats_border = "########################"; 2882 2883 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2884 return; 2885 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 2886 if (ret < 0) { 2887 printf("\n FDIR is not supported on port %-2d\n", 2888 port_id); 2889 return; 2890 } 2891 2892 memset(&fdir_info, 0, sizeof(fdir_info)); 2893 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2894 RTE_ETH_FILTER_INFO, &fdir_info); 2895 memset(&fdir_stat, 0, sizeof(fdir_stat)); 2896 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 2897 RTE_ETH_FILTER_STATS, &fdir_stat); 2898 printf("\n %s FDIR infos for port %-2d %s\n", 2899 fdir_stats_border, port_id, fdir_stats_border); 2900 printf(" MODE: "); 2901 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 2902 printf(" PERFECT\n"); 2903 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 2904 printf(" PERFECT-MAC-VLAN\n"); 2905 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 2906 printf(" PERFECT-TUNNEL\n"); 2907 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 2908 printf(" SIGNATURE\n"); 2909 else 2910 printf(" DISABLE\n"); 2911 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 2912 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 2913 printf(" SUPPORTED FLOW TYPE: "); 2914 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 2915 } 2916 printf(" FLEX PAYLOAD INFO:\n"); 2917 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 2918 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 2919 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 2920 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 2921 fdir_info.flex_payload_unit, 2922 fdir_info.max_flex_payload_segment_num, 2923 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 2924 printf(" MASK: "); 2925 print_fdir_mask(&fdir_info.mask); 2926 if (fdir_info.flex_conf.nb_payloads > 0) { 2927 printf(" FLEX PAYLOAD SRC OFFSET:"); 2928 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2929 } 2930 if (fdir_info.flex_conf.nb_flexmasks > 0) { 2931 printf(" FLEX MASK CFG:"); 2932 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 2933 } 2934 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 2935 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 2936 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 2937 fdir_info.guarant_spc, fdir_info.best_spc); 2938 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 2939 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 2940 " add: %-10"PRIu64" remove: %"PRIu64"\n" 2941 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 2942 fdir_stat.collision, fdir_stat.free, 2943 fdir_stat.maxhash, fdir_stat.maxlen, 2944 fdir_stat.add, fdir_stat.remove, 2945 fdir_stat.f_add, fdir_stat.f_remove); 2946 printf(" %s############################%s\n", 2947 fdir_stats_border, fdir_stats_border); 2948 } 2949 2950 void 2951 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 2952 { 2953 struct rte_port *port; 2954 struct rte_eth_fdir_flex_conf *flex_conf; 2955 int i, idx = 0; 2956 2957 port = &ports[port_id]; 2958 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2959 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 2960 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 2961 idx = i; 2962 break; 2963 } 2964 } 2965 if (i >= RTE_ETH_FLOW_MAX) { 2966 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 2967 idx = flex_conf->nb_flexmasks; 2968 flex_conf->nb_flexmasks++; 2969 } else { 2970 printf("The flex mask table is full. Can not set flex" 2971 " mask for flow_type(%u).", cfg->flow_type); 2972 return; 2973 } 2974 } 2975 (void)rte_memcpy(&flex_conf->flex_mask[idx], 2976 cfg, 2977 sizeof(struct rte_eth_fdir_flex_mask)); 2978 } 2979 2980 void 2981 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 2982 { 2983 struct rte_port *port; 2984 struct rte_eth_fdir_flex_conf *flex_conf; 2985 int i, idx = 0; 2986 2987 port = &ports[port_id]; 2988 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 2989 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 2990 if (cfg->type == flex_conf->flex_set[i].type) { 2991 idx = i; 2992 break; 2993 } 2994 } 2995 if (i >= RTE_ETH_PAYLOAD_MAX) { 2996 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 2997 idx = flex_conf->nb_payloads; 2998 flex_conf->nb_payloads++; 2999 } else { 3000 printf("The flex payload table is full. Can not set" 3001 " flex payload for type(%u).", cfg->type); 3002 return; 3003 } 3004 } 3005 (void)rte_memcpy(&flex_conf->flex_set[idx], 3006 cfg, 3007 sizeof(struct rte_eth_flex_payload_cfg)); 3008 3009 } 3010 3011 #ifdef RTE_LIBRTE_IXGBE_PMD 3012 void 3013 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3014 { 3015 int diag; 3016 3017 if (is_rx) 3018 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3019 else 3020 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3021 3022 if (diag == 0) 3023 return; 3024 if(is_rx) 3025 printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed " 3026 "diag=%d\n", port_id, diag); 3027 else 3028 printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed " 3029 "diag=%d\n", port_id, diag); 3030 3031 } 3032 #endif 3033 3034 int 3035 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3036 { 3037 int diag; 3038 struct rte_eth_link link; 3039 3040 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3041 return 1; 3042 rte_eth_link_get_nowait(port_id, &link); 3043 if (rate > link.link_speed) { 3044 printf("Invalid rate value:%u bigger than link speed: %u\n", 3045 rate, link.link_speed); 3046 return 1; 3047 } 3048 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3049 if (diag == 0) 3050 return diag; 3051 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3052 port_id, diag); 3053 return diag; 3054 } 3055 3056 #ifdef RTE_LIBRTE_IXGBE_PMD 3057 int 3058 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3059 { 3060 int diag; 3061 3062 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk); 3063 if (diag == 0) 3064 return diag; 3065 printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n", 3066 port_id, diag); 3067 return diag; 3068 } 3069 #endif 3070 3071 /* 3072 * Functions to manage the set of filtered Multicast MAC addresses. 3073 * 3074 * A pool of filtered multicast MAC addresses is associated with each port. 3075 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3076 * The address of the pool and the number of valid multicast MAC addresses 3077 * recorded in the pool are stored in the fields "mc_addr_pool" and 3078 * "mc_addr_nb" of the "rte_port" data structure. 3079 * 3080 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3081 * to be supplied a contiguous array of multicast MAC addresses. 3082 * To comply with this constraint, the set of multicast addresses recorded 3083 * into the pool are systematically compacted at the beginning of the pool. 3084 * Hence, when a multicast address is removed from the pool, all following 3085 * addresses, if any, are copied back to keep the set contiguous. 3086 */ 3087 #define MCAST_POOL_INC 32 3088 3089 static int 3090 mcast_addr_pool_extend(struct rte_port *port) 3091 { 3092 struct ether_addr *mc_pool; 3093 size_t mc_pool_size; 3094 3095 /* 3096 * If a free entry is available at the end of the pool, just 3097 * increment the number of recorded multicast addresses. 3098 */ 3099 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3100 port->mc_addr_nb++; 3101 return 0; 3102 } 3103 3104 /* 3105 * [re]allocate a pool with MCAST_POOL_INC more entries. 3106 * The previous test guarantees that port->mc_addr_nb is a multiple 3107 * of MCAST_POOL_INC. 3108 */ 3109 mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + 3110 MCAST_POOL_INC); 3111 mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, 3112 mc_pool_size); 3113 if (mc_pool == NULL) { 3114 printf("allocation of pool of %u multicast addresses failed\n", 3115 port->mc_addr_nb + MCAST_POOL_INC); 3116 return -ENOMEM; 3117 } 3118 3119 port->mc_addr_pool = mc_pool; 3120 port->mc_addr_nb++; 3121 return 0; 3122 3123 } 3124 3125 static void 3126 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3127 { 3128 port->mc_addr_nb--; 3129 if (addr_idx == port->mc_addr_nb) { 3130 /* No need to recompact the set of multicast addressses. */ 3131 if (port->mc_addr_nb == 0) { 3132 /* free the pool of multicast addresses. */ 3133 free(port->mc_addr_pool); 3134 port->mc_addr_pool = NULL; 3135 } 3136 return; 3137 } 3138 memmove(&port->mc_addr_pool[addr_idx], 3139 &port->mc_addr_pool[addr_idx + 1], 3140 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); 3141 } 3142 3143 static void 3144 eth_port_multicast_addr_list_set(uint8_t port_id) 3145 { 3146 struct rte_port *port; 3147 int diag; 3148 3149 port = &ports[port_id]; 3150 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3151 port->mc_addr_nb); 3152 if (diag == 0) 3153 return; 3154 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3155 port->mc_addr_nb, port_id, -diag); 3156 } 3157 3158 void 3159 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr) 3160 { 3161 struct rte_port *port; 3162 uint32_t i; 3163 3164 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3165 return; 3166 3167 port = &ports[port_id]; 3168 3169 /* 3170 * Check that the added multicast MAC address is not already recorded 3171 * in the pool of multicast addresses. 3172 */ 3173 for (i = 0; i < port->mc_addr_nb; i++) { 3174 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3175 printf("multicast address already filtered by port\n"); 3176 return; 3177 } 3178 } 3179 3180 if (mcast_addr_pool_extend(port) != 0) 3181 return; 3182 ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3183 eth_port_multicast_addr_list_set(port_id); 3184 } 3185 3186 void 3187 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr) 3188 { 3189 struct rte_port *port; 3190 uint32_t i; 3191 3192 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3193 return; 3194 3195 port = &ports[port_id]; 3196 3197 /* 3198 * Search the pool of multicast MAC addresses for the removed address. 3199 */ 3200 for (i = 0; i < port->mc_addr_nb; i++) { 3201 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3202 break; 3203 } 3204 if (i == port->mc_addr_nb) { 3205 printf("multicast address not filtered by port %d\n", port_id); 3206 return; 3207 } 3208 3209 mcast_addr_pool_remove(port, i); 3210 eth_port_multicast_addr_list_set(port_id); 3211 } 3212 3213 void 3214 port_dcb_info_display(uint8_t port_id) 3215 { 3216 struct rte_eth_dcb_info dcb_info; 3217 uint16_t i; 3218 int ret; 3219 static const char *border = "================"; 3220 3221 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3222 return; 3223 3224 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3225 if (ret) { 3226 printf("\n Failed to get dcb infos on port %-2d\n", 3227 port_id); 3228 return; 3229 } 3230 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3231 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3232 printf("\n TC : "); 3233 for (i = 0; i < dcb_info.nb_tcs; i++) 3234 printf("\t%4d", i); 3235 printf("\n Priority : "); 3236 for (i = 0; i < dcb_info.nb_tcs; i++) 3237 printf("\t%4d", dcb_info.prio_tc[i]); 3238 printf("\n BW percent :"); 3239 for (i = 0; i < dcb_info.nb_tcs; i++) 3240 printf("\t%4d%%", dcb_info.tc_bws[i]); 3241 printf("\n RXQ base : "); 3242 for (i = 0; i < dcb_info.nb_tcs; i++) 3243 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3244 printf("\n RXQ number :"); 3245 for (i = 0; i < dcb_info.nb_tcs; i++) 3246 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3247 printf("\n TXQ base : "); 3248 for (i = 0; i < dcb_info.nb_tcs; i++) 3249 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3250 printf("\n TXQ number :"); 3251 for (i = 0; i < dcb_info.nb_tcs; i++) 3252 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3253 printf("\n"); 3254 } 3255 3256 uint8_t * 3257 open_ddp_package_file(const char *file_path, uint32_t *size) 3258 { 3259 FILE *fh = fopen(file_path, "rb"); 3260 uint32_t pkg_size; 3261 uint8_t *buf = NULL; 3262 int ret = 0; 3263 3264 if (size) 3265 *size = 0; 3266 3267 if (fh == NULL) { 3268 printf("%s: Failed to open %s\n", __func__, file_path); 3269 return buf; 3270 } 3271 3272 ret = fseek(fh, 0, SEEK_END); 3273 if (ret < 0) { 3274 fclose(fh); 3275 printf("%s: File operations failed\n", __func__); 3276 return buf; 3277 } 3278 3279 pkg_size = ftell(fh); 3280 3281 buf = (uint8_t *)malloc(pkg_size); 3282 if (!buf) { 3283 fclose(fh); 3284 printf("%s: Failed to malloc memory\n", __func__); 3285 return buf; 3286 } 3287 3288 ret = fseek(fh, 0, SEEK_SET); 3289 if (ret < 0) { 3290 fclose(fh); 3291 printf("%s: File seek operation failed\n", __func__); 3292 close_ddp_package_file(buf); 3293 return NULL; 3294 } 3295 3296 ret = fread(buf, 1, pkg_size, fh); 3297 if (ret < 0) { 3298 fclose(fh); 3299 printf("%s: File read operation failed\n", __func__); 3300 close_ddp_package_file(buf); 3301 return NULL; 3302 } 3303 3304 if (size) 3305 *size = pkg_size; 3306 3307 fclose(fh); 3308 3309 return buf; 3310 } 3311 3312 int 3313 close_ddp_package_file(uint8_t *buf) 3314 { 3315 if (buf) { 3316 free((void *)buf); 3317 return 0; 3318 } 3319 3320 return -1; 3321 } 3322