xref: /dpdk/app/test-pmd/config.c (revision 0857b942113874c69dc3db5df11a828ee3cc9b6b)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright 2013-2014 6WIND S.A.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <stdarg.h>
65 #include <errno.h>
66 #include <stdio.h>
67 #include <string.h>
68 #include <stdarg.h>
69 #include <stdint.h>
70 #include <inttypes.h>
71 
72 #include <sys/queue.h>
73 
74 #include <rte_common.h>
75 #include <rte_byteorder.h>
76 #include <rte_debug.h>
77 #include <rte_log.h>
78 #include <rte_memory.h>
79 #include <rte_memcpy.h>
80 #include <rte_memzone.h>
81 #include <rte_launch.h>
82 #include <rte_eal.h>
83 #include <rte_per_lcore.h>
84 #include <rte_lcore.h>
85 #include <rte_atomic.h>
86 #include <rte_branch_prediction.h>
87 #include <rte_mempool.h>
88 #include <rte_mbuf.h>
89 #include <rte_interrupts.h>
90 #include <rte_pci.h>
91 #include <rte_ether.h>
92 #include <rte_ethdev.h>
93 #include <rte_string_fns.h>
94 #include <rte_cycles.h>
95 #include <rte_flow.h>
96 #include <rte_errno.h>
97 #ifdef RTE_LIBRTE_IXGBE_PMD
98 #include <rte_pmd_ixgbe.h>
99 #endif
100 
101 #include "testpmd.h"
102 
103 static char *flowtype_to_str(uint16_t flow_type);
104 
105 static const struct {
106 	enum tx_pkt_split split;
107 	const char *name;
108 } tx_split_name[] = {
109 	{
110 		.split = TX_PKT_SPLIT_OFF,
111 		.name = "off",
112 	},
113 	{
114 		.split = TX_PKT_SPLIT_ON,
115 		.name = "on",
116 	},
117 	{
118 		.split = TX_PKT_SPLIT_RND,
119 		.name = "rand",
120 	},
121 };
122 
123 struct rss_type_info {
124 	char str[32];
125 	uint64_t rss_type;
126 };
127 
128 static const struct rss_type_info rss_type_table[] = {
129 	{ "ipv4", ETH_RSS_IPV4 },
130 	{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
131 	{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
132 	{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
133 	{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
134 	{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
135 	{ "ipv6", ETH_RSS_IPV6 },
136 	{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
137 	{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
138 	{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
139 	{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
140 	{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
141 	{ "l2-payload", ETH_RSS_L2_PAYLOAD },
142 	{ "ipv6-ex", ETH_RSS_IPV6_EX },
143 	{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
144 	{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
145 	{ "port", ETH_RSS_PORT },
146 	{ "vxlan", ETH_RSS_VXLAN },
147 	{ "geneve", ETH_RSS_GENEVE },
148 	{ "nvgre", ETH_RSS_NVGRE },
149 
150 };
151 
152 static void
153 print_ethaddr(const char *name, struct ether_addr *eth_addr)
154 {
155 	char buf[ETHER_ADDR_FMT_SIZE];
156 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
157 	printf("%s%s", name, buf);
158 }
159 
160 void
161 nic_stats_display(portid_t port_id)
162 {
163 	static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
164 	static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
165 	static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
166 	uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
167 	uint64_t mpps_rx, mpps_tx;
168 	struct rte_eth_stats stats;
169 	struct rte_port *port = &ports[port_id];
170 	uint8_t i;
171 	portid_t pid;
172 
173 	static const char *nic_stats_border = "########################";
174 
175 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
176 		printf("Valid port range is [0");
177 		FOREACH_PORT(pid, ports)
178 			printf(", %d", pid);
179 		printf("]\n");
180 		return;
181 	}
182 	rte_eth_stats_get(port_id, &stats);
183 	printf("\n  %s NIC statistics for port %-2d %s\n",
184 	       nic_stats_border, port_id, nic_stats_border);
185 
186 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
187 		printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
188 		       "%-"PRIu64"\n",
189 		       stats.ipackets, stats.imissed, stats.ibytes);
190 		printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
191 		printf("  RX-nombuf:  %-10"PRIu64"\n",
192 		       stats.rx_nombuf);
193 		printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
194 		       "%-"PRIu64"\n",
195 		       stats.opackets, stats.oerrors, stats.obytes);
196 	}
197 	else {
198 		printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
199 		       "    RX-bytes: %10"PRIu64"\n",
200 		       stats.ipackets, stats.ierrors, stats.ibytes);
201 		printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
202 		printf("  RX-nombuf:               %10"PRIu64"\n",
203 		       stats.rx_nombuf);
204 		printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
205 		       "    TX-bytes: %10"PRIu64"\n",
206 		       stats.opackets, stats.oerrors, stats.obytes);
207 	}
208 
209 	if (port->rx_queue_stats_mapping_enabled) {
210 		printf("\n");
211 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
212 			printf("  Stats reg %2d RX-packets: %10"PRIu64
213 			       "    RX-errors: %10"PRIu64
214 			       "    RX-bytes: %10"PRIu64"\n",
215 			       i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
216 		}
217 	}
218 	if (port->tx_queue_stats_mapping_enabled) {
219 		printf("\n");
220 		for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
221 			printf("  Stats reg %2d TX-packets: %10"PRIu64
222 			       "                             TX-bytes: %10"PRIu64"\n",
223 			       i, stats.q_opackets[i], stats.q_obytes[i]);
224 		}
225 	}
226 
227 	diff_cycles = prev_cycles[port_id];
228 	prev_cycles[port_id] = rte_rdtsc();
229 	if (diff_cycles > 0)
230 		diff_cycles = prev_cycles[port_id] - diff_cycles;
231 
232 	diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id];
233 	diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id];
234 	prev_pkts_rx[port_id] = stats.ipackets;
235 	prev_pkts_tx[port_id] = stats.opackets;
236 	mpps_rx = diff_cycles > 0 ?
237 		diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
238 	mpps_tx = diff_cycles > 0 ?
239 		diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
240 	printf("\n  Throughput (since last show)\n");
241 	printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
242 			mpps_rx, mpps_tx);
243 
244 	printf("  %s############################%s\n",
245 	       nic_stats_border, nic_stats_border);
246 }
247 
248 void
249 nic_stats_clear(portid_t port_id)
250 {
251 	portid_t pid;
252 
253 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
254 		printf("Valid port range is [0");
255 		FOREACH_PORT(pid, ports)
256 			printf(", %d", pid);
257 		printf("]\n");
258 		return;
259 	}
260 	rte_eth_stats_reset(port_id);
261 	printf("\n  NIC statistics for port %d cleared\n", port_id);
262 }
263 
264 void
265 nic_xstats_display(portid_t port_id)
266 {
267 	struct rte_eth_xstat *xstats;
268 	int cnt_xstats, idx_xstat;
269 	struct rte_eth_xstat_name *xstats_names;
270 
271 	printf("###### NIC extended statistics for port %-2d\n", port_id);
272 	if (!rte_eth_dev_is_valid_port(port_id)) {
273 		printf("Error: Invalid port number %i\n", port_id);
274 		return;
275 	}
276 
277 	/* Get count */
278 	cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
279 	if (cnt_xstats  < 0) {
280 		printf("Error: Cannot get count of xstats\n");
281 		return;
282 	}
283 
284 	/* Get id-name lookup table */
285 	xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
286 	if (xstats_names == NULL) {
287 		printf("Cannot allocate memory for xstats lookup\n");
288 		return;
289 	}
290 	if (cnt_xstats != rte_eth_xstats_get_names(
291 			port_id, xstats_names, cnt_xstats)) {
292 		printf("Error: Cannot get xstats lookup\n");
293 		free(xstats_names);
294 		return;
295 	}
296 
297 	/* Get stats themselves */
298 	xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
299 	if (xstats == NULL) {
300 		printf("Cannot allocate memory for xstats\n");
301 		free(xstats_names);
302 		return;
303 	}
304 	if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
305 		printf("Error: Unable to get xstats\n");
306 		free(xstats_names);
307 		free(xstats);
308 		return;
309 	}
310 
311 	/* Display xstats */
312 	for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++)
313 		printf("%s: %"PRIu64"\n",
314 			xstats_names[idx_xstat].name,
315 			xstats[idx_xstat].value);
316 	free(xstats_names);
317 	free(xstats);
318 }
319 
320 void
321 nic_xstats_clear(portid_t port_id)
322 {
323 	rte_eth_xstats_reset(port_id);
324 }
325 
326 void
327 nic_stats_mapping_display(portid_t port_id)
328 {
329 	struct rte_port *port = &ports[port_id];
330 	uint16_t i;
331 	portid_t pid;
332 
333 	static const char *nic_stats_mapping_border = "########################";
334 
335 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
336 		printf("Valid port range is [0");
337 		FOREACH_PORT(pid, ports)
338 			printf(", %d", pid);
339 		printf("]\n");
340 		return;
341 	}
342 
343 	if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
344 		printf("Port id %d - either does not support queue statistic mapping or"
345 		       " no queue statistic mapping set\n", port_id);
346 		return;
347 	}
348 
349 	printf("\n  %s NIC statistics mapping for port %-2d %s\n",
350 	       nic_stats_mapping_border, port_id, nic_stats_mapping_border);
351 
352 	if (port->rx_queue_stats_mapping_enabled) {
353 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
354 			if (rx_queue_stats_mappings[i].port_id == port_id) {
355 				printf("  RX-queue %2d mapped to Stats Reg %2d\n",
356 				       rx_queue_stats_mappings[i].queue_id,
357 				       rx_queue_stats_mappings[i].stats_counter_id);
358 			}
359 		}
360 		printf("\n");
361 	}
362 
363 
364 	if (port->tx_queue_stats_mapping_enabled) {
365 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
366 			if (tx_queue_stats_mappings[i].port_id == port_id) {
367 				printf("  TX-queue %2d mapped to Stats Reg %2d\n",
368 				       tx_queue_stats_mappings[i].queue_id,
369 				       tx_queue_stats_mappings[i].stats_counter_id);
370 			}
371 		}
372 	}
373 
374 	printf("  %s####################################%s\n",
375 	       nic_stats_mapping_border, nic_stats_mapping_border);
376 }
377 
378 void
379 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
380 {
381 	struct rte_eth_rxq_info qinfo;
382 	int32_t rc;
383 	static const char *info_border = "*********************";
384 
385 	rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
386 	if (rc != 0) {
387 		printf("Failed to retrieve information for port: %hhu, "
388 			"RX queue: %hu\nerror desc: %s(%d)\n",
389 			port_id, queue_id, strerror(-rc), rc);
390 		return;
391 	}
392 
393 	printf("\n%s Infos for port %-2u, RX queue %-2u %s",
394 	       info_border, port_id, queue_id, info_border);
395 
396 	printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
397 	printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
398 	printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
399 	printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
400 	printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
401 	printf("\nRX drop packets: %s",
402 		(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
403 	printf("\nRX deferred start: %s",
404 		(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
405 	printf("\nRX scattered packets: %s",
406 		(qinfo.scattered_rx != 0) ? "on" : "off");
407 	printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
408 	printf("\n");
409 }
410 
411 void
412 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
413 {
414 	struct rte_eth_txq_info qinfo;
415 	int32_t rc;
416 	static const char *info_border = "*********************";
417 
418 	rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
419 	if (rc != 0) {
420 		printf("Failed to retrieve information for port: %hhu, "
421 			"TX queue: %hu\nerror desc: %s(%d)\n",
422 			port_id, queue_id, strerror(-rc), rc);
423 		return;
424 	}
425 
426 	printf("\n%s Infos for port %-2u, TX queue %-2u %s",
427 	       info_border, port_id, queue_id, info_border);
428 
429 	printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
430 	printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
431 	printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
432 	printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
433 	printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
434 	printf("\nTX flags: %#x", qinfo.conf.txq_flags);
435 	printf("\nTX deferred start: %s",
436 		(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
437 	printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
438 	printf("\n");
439 }
440 
441 void
442 port_infos_display(portid_t port_id)
443 {
444 	struct rte_port *port;
445 	struct ether_addr mac_addr;
446 	struct rte_eth_link link;
447 	struct rte_eth_dev_info dev_info;
448 	int vlan_offload;
449 	struct rte_mempool * mp;
450 	static const char *info_border = "*********************";
451 	portid_t pid;
452 	uint16_t mtu;
453 
454 	if (port_id_is_invalid(port_id, ENABLED_WARN)) {
455 		printf("Valid port range is [0");
456 		FOREACH_PORT(pid, ports)
457 			printf(", %d", pid);
458 		printf("]\n");
459 		return;
460 	}
461 	port = &ports[port_id];
462 	rte_eth_link_get_nowait(port_id, &link);
463 	memset(&dev_info, 0, sizeof(dev_info));
464 	rte_eth_dev_info_get(port_id, &dev_info);
465 	printf("\n%s Infos for port %-2d %s\n",
466 	       info_border, port_id, info_border);
467 	rte_eth_macaddr_get(port_id, &mac_addr);
468 	print_ethaddr("MAC address: ", &mac_addr);
469 	printf("\nDriver name: %s", dev_info.driver_name);
470 	printf("\nConnect to socket: %u", port->socket_id);
471 
472 	if (port_numa[port_id] != NUMA_NO_CONFIG) {
473 		mp = mbuf_pool_find(port_numa[port_id]);
474 		if (mp)
475 			printf("\nmemory allocation on the socket: %d",
476 							port_numa[port_id]);
477 	} else
478 		printf("\nmemory allocation on the socket: %u",port->socket_id);
479 
480 	printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
481 	printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
482 	printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
483 	       ("full-duplex") : ("half-duplex"));
484 
485 	if (!rte_eth_dev_get_mtu(port_id, &mtu))
486 		printf("MTU: %u\n", mtu);
487 
488 	printf("Promiscuous mode: %s\n",
489 	       rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
490 	printf("Allmulticast mode: %s\n",
491 	       rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
492 	printf("Maximum number of MAC addresses: %u\n",
493 	       (unsigned int)(port->dev_info.max_mac_addrs));
494 	printf("Maximum number of MAC addresses of hash filtering: %u\n",
495 	       (unsigned int)(port->dev_info.max_hash_mac_addrs));
496 
497 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
498 	if (vlan_offload >= 0){
499 		printf("VLAN offload: \n");
500 		if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
501 			printf("  strip on \n");
502 		else
503 			printf("  strip off \n");
504 
505 		if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
506 			printf("  filter on \n");
507 		else
508 			printf("  filter off \n");
509 
510 		if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
511 			printf("  qinq(extend) on \n");
512 		else
513 			printf("  qinq(extend) off \n");
514 	}
515 
516 	if (dev_info.hash_key_size > 0)
517 		printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
518 	if (dev_info.reta_size > 0)
519 		printf("Redirection table size: %u\n", dev_info.reta_size);
520 	if (!dev_info.flow_type_rss_offloads)
521 		printf("No flow type is supported.\n");
522 	else {
523 		uint16_t i;
524 		char *p;
525 
526 		printf("Supported flow types:\n");
527 		for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX;
528 								i++) {
529 			if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
530 				continue;
531 			p = flowtype_to_str(i);
532 			printf("  %s\n", (p ? p : "unknown"));
533 		}
534 	}
535 
536 	printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
537 	printf("Max possible number of RXDs per queue: %hu\n",
538 		dev_info.rx_desc_lim.nb_max);
539 	printf("Min possible number of RXDs per queue: %hu\n",
540 		dev_info.rx_desc_lim.nb_min);
541 	printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
542 
543 	printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
544 	printf("Max possible number of TXDs per queue: %hu\n",
545 		dev_info.tx_desc_lim.nb_max);
546 	printf("Min possible number of TXDs per queue: %hu\n",
547 		dev_info.tx_desc_lim.nb_min);
548 	printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
549 }
550 
551 void
552 port_offload_cap_display(portid_t port_id)
553 {
554 	struct rte_eth_dev *dev;
555 	struct rte_eth_dev_info dev_info;
556 	static const char *info_border = "************";
557 
558 	if (port_id_is_invalid(port_id, ENABLED_WARN))
559 		return;
560 
561 	dev = &rte_eth_devices[port_id];
562 	rte_eth_dev_info_get(port_id, &dev_info);
563 
564 	printf("\n%s Port %d supported offload features: %s\n",
565 		info_border, port_id, info_border);
566 
567 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
568 		printf("VLAN stripped:                 ");
569 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
570 			printf("on\n");
571 		else
572 			printf("off\n");
573 	}
574 
575 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
576 		printf("Double VLANs stripped:         ");
577 		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
578 			printf("on\n");
579 		else
580 			printf("off\n");
581 	}
582 
583 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
584 		printf("RX IPv4 checksum:              ");
585 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
586 			printf("on\n");
587 		else
588 			printf("off\n");
589 	}
590 
591 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
592 		printf("RX UDP checksum:               ");
593 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
594 			printf("on\n");
595 		else
596 			printf("off\n");
597 	}
598 
599 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
600 		printf("RX TCP checksum:               ");
601 		if (dev->data->dev_conf.rxmode.hw_ip_checksum)
602 			printf("on\n");
603 		else
604 			printf("off\n");
605 	}
606 
607 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
608 		printf("RX Outer IPv4 checksum:        on");
609 
610 	if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
611 		printf("Large receive offload:         ");
612 		if (dev->data->dev_conf.rxmode.enable_lro)
613 			printf("on\n");
614 		else
615 			printf("off\n");
616 	}
617 
618 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
619 		printf("VLAN insert:                   ");
620 		if (ports[port_id].tx_ol_flags &
621 		    TESTPMD_TX_OFFLOAD_INSERT_VLAN)
622 			printf("on\n");
623 		else
624 			printf("off\n");
625 	}
626 
627 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
628 		printf("Double VLANs insert:           ");
629 		if (ports[port_id].tx_ol_flags &
630 		    TESTPMD_TX_OFFLOAD_INSERT_QINQ)
631 			printf("on\n");
632 		else
633 			printf("off\n");
634 	}
635 
636 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
637 		printf("TX IPv4 checksum:              ");
638 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
639 			printf("on\n");
640 		else
641 			printf("off\n");
642 	}
643 
644 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
645 		printf("TX UDP checksum:               ");
646 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
647 			printf("on\n");
648 		else
649 			printf("off\n");
650 	}
651 
652 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
653 		printf("TX TCP checksum:               ");
654 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
655 			printf("on\n");
656 		else
657 			printf("off\n");
658 	}
659 
660 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
661 		printf("TX SCTP checksum:              ");
662 		if (ports[port_id].tx_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM)
663 			printf("on\n");
664 		else
665 			printf("off\n");
666 	}
667 
668 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
669 		printf("TX Outer IPv4 checksum:        ");
670 		if (ports[port_id].tx_ol_flags &
671 		    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
672 			printf("on\n");
673 		else
674 			printf("off\n");
675 	}
676 
677 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
678 		printf("TX TCP segmentation:           ");
679 		if (ports[port_id].tso_segsz != 0)
680 			printf("on\n");
681 		else
682 			printf("off\n");
683 	}
684 
685 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
686 		printf("TX UDP segmentation:           ");
687 		if (ports[port_id].tso_segsz != 0)
688 			printf("on\n");
689 		else
690 			printf("off\n");
691 	}
692 
693 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
694 		printf("TSO for VXLAN tunnel packet:   ");
695 		if (ports[port_id].tunnel_tso_segsz)
696 			printf("on\n");
697 		else
698 			printf("off\n");
699 	}
700 
701 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
702 		printf("TSO for GRE tunnel packet:     ");
703 		if (ports[port_id].tunnel_tso_segsz)
704 			printf("on\n");
705 		else
706 			printf("off\n");
707 	}
708 
709 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
710 		printf("TSO for IPIP tunnel packet:    ");
711 		if (ports[port_id].tunnel_tso_segsz)
712 			printf("on\n");
713 		else
714 			printf("off\n");
715 	}
716 
717 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
718 		printf("TSO for GENEVE tunnel packet:  ");
719 		if (ports[port_id].tunnel_tso_segsz)
720 			printf("on\n");
721 		else
722 			printf("off\n");
723 	}
724 
725 }
726 
727 int
728 port_id_is_invalid(portid_t port_id, enum print_warning warning)
729 {
730 	if (port_id == (portid_t)RTE_PORT_ALL)
731 		return 0;
732 
733 	if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled)
734 		return 0;
735 
736 	if (warning == ENABLED_WARN)
737 		printf("Invalid port %d\n", port_id);
738 
739 	return 1;
740 }
741 
742 static int
743 vlan_id_is_invalid(uint16_t vlan_id)
744 {
745 	if (vlan_id < 4096)
746 		return 0;
747 	printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
748 	return 1;
749 }
750 
751 static int
752 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
753 {
754 	uint64_t pci_len;
755 
756 	if (reg_off & 0x3) {
757 		printf("Port register offset 0x%X not aligned on a 4-byte "
758 		       "boundary\n",
759 		       (unsigned)reg_off);
760 		return 1;
761 	}
762 	pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len;
763 	if (reg_off >= pci_len) {
764 		printf("Port %d: register offset %u (0x%X) out of port PCI "
765 		       "resource (length=%"PRIu64")\n",
766 		       port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
767 		return 1;
768 	}
769 	return 0;
770 }
771 
772 static int
773 reg_bit_pos_is_invalid(uint8_t bit_pos)
774 {
775 	if (bit_pos <= 31)
776 		return 0;
777 	printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
778 	return 1;
779 }
780 
781 #define display_port_and_reg_off(port_id, reg_off) \
782 	printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
783 
784 static inline void
785 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
786 {
787 	display_port_and_reg_off(port_id, (unsigned)reg_off);
788 	printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
789 }
790 
791 void
792 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
793 {
794 	uint32_t reg_v;
795 
796 
797 	if (port_id_is_invalid(port_id, ENABLED_WARN))
798 		return;
799 	if (port_reg_off_is_invalid(port_id, reg_off))
800 		return;
801 	if (reg_bit_pos_is_invalid(bit_x))
802 		return;
803 	reg_v = port_id_pci_reg_read(port_id, reg_off);
804 	display_port_and_reg_off(port_id, (unsigned)reg_off);
805 	printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
806 }
807 
808 void
809 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
810 			   uint8_t bit1_pos, uint8_t bit2_pos)
811 {
812 	uint32_t reg_v;
813 	uint8_t  l_bit;
814 	uint8_t  h_bit;
815 
816 	if (port_id_is_invalid(port_id, ENABLED_WARN))
817 		return;
818 	if (port_reg_off_is_invalid(port_id, reg_off))
819 		return;
820 	if (reg_bit_pos_is_invalid(bit1_pos))
821 		return;
822 	if (reg_bit_pos_is_invalid(bit2_pos))
823 		return;
824 	if (bit1_pos > bit2_pos)
825 		l_bit = bit2_pos, h_bit = bit1_pos;
826 	else
827 		l_bit = bit1_pos, h_bit = bit2_pos;
828 
829 	reg_v = port_id_pci_reg_read(port_id, reg_off);
830 	reg_v >>= l_bit;
831 	if (h_bit < 31)
832 		reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
833 	display_port_and_reg_off(port_id, (unsigned)reg_off);
834 	printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
835 	       ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
836 }
837 
838 void
839 port_reg_display(portid_t port_id, uint32_t reg_off)
840 {
841 	uint32_t reg_v;
842 
843 	if (port_id_is_invalid(port_id, ENABLED_WARN))
844 		return;
845 	if (port_reg_off_is_invalid(port_id, reg_off))
846 		return;
847 	reg_v = port_id_pci_reg_read(port_id, reg_off);
848 	display_port_reg_value(port_id, reg_off, reg_v);
849 }
850 
851 void
852 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
853 		 uint8_t bit_v)
854 {
855 	uint32_t reg_v;
856 
857 	if (port_id_is_invalid(port_id, ENABLED_WARN))
858 		return;
859 	if (port_reg_off_is_invalid(port_id, reg_off))
860 		return;
861 	if (reg_bit_pos_is_invalid(bit_pos))
862 		return;
863 	if (bit_v > 1) {
864 		printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
865 		return;
866 	}
867 	reg_v = port_id_pci_reg_read(port_id, reg_off);
868 	if (bit_v == 0)
869 		reg_v &= ~(1 << bit_pos);
870 	else
871 		reg_v |= (1 << bit_pos);
872 	port_id_pci_reg_write(port_id, reg_off, reg_v);
873 	display_port_reg_value(port_id, reg_off, reg_v);
874 }
875 
876 void
877 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
878 		       uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
879 {
880 	uint32_t max_v;
881 	uint32_t reg_v;
882 	uint8_t  l_bit;
883 	uint8_t  h_bit;
884 
885 	if (port_id_is_invalid(port_id, ENABLED_WARN))
886 		return;
887 	if (port_reg_off_is_invalid(port_id, reg_off))
888 		return;
889 	if (reg_bit_pos_is_invalid(bit1_pos))
890 		return;
891 	if (reg_bit_pos_is_invalid(bit2_pos))
892 		return;
893 	if (bit1_pos > bit2_pos)
894 		l_bit = bit2_pos, h_bit = bit1_pos;
895 	else
896 		l_bit = bit1_pos, h_bit = bit2_pos;
897 
898 	if ((h_bit - l_bit) < 31)
899 		max_v = (1 << (h_bit - l_bit + 1)) - 1;
900 	else
901 		max_v = 0xFFFFFFFF;
902 
903 	if (value > max_v) {
904 		printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
905 				(unsigned)value, (unsigned)value,
906 				(unsigned)max_v, (unsigned)max_v);
907 		return;
908 	}
909 	reg_v = port_id_pci_reg_read(port_id, reg_off);
910 	reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
911 	reg_v |= (value << l_bit); /* Set changed bits */
912 	port_id_pci_reg_write(port_id, reg_off, reg_v);
913 	display_port_reg_value(port_id, reg_off, reg_v);
914 }
915 
916 void
917 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
918 {
919 	if (port_id_is_invalid(port_id, ENABLED_WARN))
920 		return;
921 	if (port_reg_off_is_invalid(port_id, reg_off))
922 		return;
923 	port_id_pci_reg_write(port_id, reg_off, reg_v);
924 	display_port_reg_value(port_id, reg_off, reg_v);
925 }
926 
927 void
928 port_mtu_set(portid_t port_id, uint16_t mtu)
929 {
930 	int diag;
931 
932 	if (port_id_is_invalid(port_id, ENABLED_WARN))
933 		return;
934 	diag = rte_eth_dev_set_mtu(port_id, mtu);
935 	if (diag == 0)
936 		return;
937 	printf("Set MTU failed. diag=%d\n", diag);
938 }
939 
940 /* Generic flow management functions. */
941 
942 /** Generate flow_item[] entry. */
943 #define MK_FLOW_ITEM(t, s) \
944 	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
945 		.name = # t, \
946 		.size = s, \
947 	}
948 
949 /** Information about known flow pattern items. */
950 static const struct {
951 	const char *name;
952 	size_t size;
953 } flow_item[] = {
954 	MK_FLOW_ITEM(END, 0),
955 	MK_FLOW_ITEM(VOID, 0),
956 	MK_FLOW_ITEM(INVERT, 0),
957 	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
958 	MK_FLOW_ITEM(PF, 0),
959 	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
960 	MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
961 	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
962 	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
963 	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
964 	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
965 	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
966 	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
967 	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
968 	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
969 	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
970 	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
971 	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
972 	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
973 };
974 
975 /** Compute storage space needed by item specification. */
976 static void
977 flow_item_spec_size(const struct rte_flow_item *item,
978 		    size_t *size, size_t *pad)
979 {
980 	if (!item->spec)
981 		goto empty;
982 	switch (item->type) {
983 		union {
984 			const struct rte_flow_item_raw *raw;
985 		} spec;
986 
987 	case RTE_FLOW_ITEM_TYPE_RAW:
988 		spec.raw = item->spec;
989 		*size = offsetof(struct rte_flow_item_raw, pattern) +
990 			spec.raw->length * sizeof(*spec.raw->pattern);
991 		break;
992 	default:
993 empty:
994 		*size = 0;
995 		break;
996 	}
997 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
998 }
999 
1000 /** Generate flow_action[] entry. */
1001 #define MK_FLOW_ACTION(t, s) \
1002 	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
1003 		.name = # t, \
1004 		.size = s, \
1005 	}
1006 
1007 /** Information about known flow actions. */
1008 static const struct {
1009 	const char *name;
1010 	size_t size;
1011 } flow_action[] = {
1012 	MK_FLOW_ACTION(END, 0),
1013 	MK_FLOW_ACTION(VOID, 0),
1014 	MK_FLOW_ACTION(PASSTHRU, 0),
1015 	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1016 	MK_FLOW_ACTION(FLAG, 0),
1017 	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1018 	MK_FLOW_ACTION(DROP, 0),
1019 	MK_FLOW_ACTION(COUNT, 0),
1020 	MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1021 	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1022 	MK_FLOW_ACTION(PF, 0),
1023 	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1024 };
1025 
1026 /** Compute storage space needed by action configuration. */
1027 static void
1028 flow_action_conf_size(const struct rte_flow_action *action,
1029 		      size_t *size, size_t *pad)
1030 {
1031 	if (!action->conf)
1032 		goto empty;
1033 	switch (action->type) {
1034 		union {
1035 			const struct rte_flow_action_rss *rss;
1036 		} conf;
1037 
1038 	case RTE_FLOW_ACTION_TYPE_RSS:
1039 		conf.rss = action->conf;
1040 		*size = offsetof(struct rte_flow_action_rss, queue) +
1041 			conf.rss->num * sizeof(*conf.rss->queue);
1042 		break;
1043 	default:
1044 empty:
1045 		*size = 0;
1046 		break;
1047 	}
1048 	*pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1049 }
1050 
1051 /** Generate a port_flow entry from attributes/pattern/actions. */
1052 static struct port_flow *
1053 port_flow_new(const struct rte_flow_attr *attr,
1054 	      const struct rte_flow_item *pattern,
1055 	      const struct rte_flow_action *actions)
1056 {
1057 	const struct rte_flow_item *item;
1058 	const struct rte_flow_action *action;
1059 	struct port_flow *pf = NULL;
1060 	size_t tmp;
1061 	size_t pad;
1062 	size_t off1 = 0;
1063 	size_t off2 = 0;
1064 	int err = ENOTSUP;
1065 
1066 store:
1067 	item = pattern;
1068 	if (pf)
1069 		pf->pattern = (void *)&pf->data[off1];
1070 	do {
1071 		struct rte_flow_item *dst = NULL;
1072 
1073 		if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1074 		    !flow_item[item->type].name)
1075 			goto notsup;
1076 		if (pf)
1077 			dst = memcpy(pf->data + off1, item, sizeof(*item));
1078 		off1 += sizeof(*item);
1079 		flow_item_spec_size(item, &tmp, &pad);
1080 		if (item->spec) {
1081 			if (pf)
1082 				dst->spec = memcpy(pf->data + off2,
1083 						   item->spec, tmp);
1084 			off2 += tmp + pad;
1085 		}
1086 		if (item->last) {
1087 			if (pf)
1088 				dst->last = memcpy(pf->data + off2,
1089 						   item->last, tmp);
1090 			off2 += tmp + pad;
1091 		}
1092 		if (item->mask) {
1093 			if (pf)
1094 				dst->mask = memcpy(pf->data + off2,
1095 						   item->mask, tmp);
1096 			off2 += tmp + pad;
1097 		}
1098 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1099 	} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1100 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1101 	action = actions;
1102 	if (pf)
1103 		pf->actions = (void *)&pf->data[off1];
1104 	do {
1105 		struct rte_flow_action *dst = NULL;
1106 
1107 		if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1108 		    !flow_action[action->type].name)
1109 			goto notsup;
1110 		if (pf)
1111 			dst = memcpy(pf->data + off1, action, sizeof(*action));
1112 		off1 += sizeof(*action);
1113 		flow_action_conf_size(action, &tmp, &pad);
1114 		if (action->conf) {
1115 			if (pf)
1116 				dst->conf = memcpy(pf->data + off2,
1117 						   action->conf, tmp);
1118 			off2 += tmp + pad;
1119 		}
1120 		off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1121 	} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1122 	if (pf != NULL)
1123 		return pf;
1124 	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1125 	tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1126 	pf = calloc(1, tmp + off1 + off2);
1127 	if (pf == NULL)
1128 		err = errno;
1129 	else {
1130 		*pf = (const struct port_flow){
1131 			.size = tmp + off1 + off2,
1132 			.attr = *attr,
1133 		};
1134 		tmp -= offsetof(struct port_flow, data);
1135 		off2 = tmp + off1;
1136 		off1 = tmp;
1137 		goto store;
1138 	}
1139 notsup:
1140 	rte_errno = err;
1141 	return NULL;
1142 }
1143 
1144 /** Print a message out of a flow error. */
1145 static int
1146 port_flow_complain(struct rte_flow_error *error)
1147 {
1148 	static const char *const errstrlist[] = {
1149 		[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1150 		[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1151 		[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1152 		[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1153 		[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1154 		[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1155 		[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1156 		[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1157 		[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1158 		[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1159 		[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1160 		[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1161 	};
1162 	const char *errstr;
1163 	char buf[32];
1164 	int err = rte_errno;
1165 
1166 	if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1167 	    !errstrlist[error->type])
1168 		errstr = "unknown type";
1169 	else
1170 		errstr = errstrlist[error->type];
1171 	printf("Caught error type %d (%s): %s%s\n",
1172 	       error->type, errstr,
1173 	       error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1174 					error->cause), buf) : "",
1175 	       error->message ? error->message : "(no stated reason)");
1176 	return -err;
1177 }
1178 
1179 /** Validate flow rule. */
1180 int
1181 port_flow_validate(portid_t port_id,
1182 		   const struct rte_flow_attr *attr,
1183 		   const struct rte_flow_item *pattern,
1184 		   const struct rte_flow_action *actions)
1185 {
1186 	struct rte_flow_error error;
1187 
1188 	/* Poisoning to make sure PMDs update it in case of error. */
1189 	memset(&error, 0x11, sizeof(error));
1190 	if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1191 		return port_flow_complain(&error);
1192 	printf("Flow rule validated\n");
1193 	return 0;
1194 }
1195 
1196 /** Create flow rule. */
1197 int
1198 port_flow_create(portid_t port_id,
1199 		 const struct rte_flow_attr *attr,
1200 		 const struct rte_flow_item *pattern,
1201 		 const struct rte_flow_action *actions)
1202 {
1203 	struct rte_flow *flow;
1204 	struct rte_port *port;
1205 	struct port_flow *pf;
1206 	uint32_t id;
1207 	struct rte_flow_error error;
1208 
1209 	/* Poisoning to make sure PMDs update it in case of error. */
1210 	memset(&error, 0x22, sizeof(error));
1211 	flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1212 	if (!flow)
1213 		return port_flow_complain(&error);
1214 	port = &ports[port_id];
1215 	if (port->flow_list) {
1216 		if (port->flow_list->id == UINT32_MAX) {
1217 			printf("Highest rule ID is already assigned, delete"
1218 			       " it first");
1219 			rte_flow_destroy(port_id, flow, NULL);
1220 			return -ENOMEM;
1221 		}
1222 		id = port->flow_list->id + 1;
1223 	} else
1224 		id = 0;
1225 	pf = port_flow_new(attr, pattern, actions);
1226 	if (!pf) {
1227 		int err = rte_errno;
1228 
1229 		printf("Cannot allocate flow: %s\n", rte_strerror(err));
1230 		rte_flow_destroy(port_id, flow, NULL);
1231 		return -err;
1232 	}
1233 	pf->next = port->flow_list;
1234 	pf->id = id;
1235 	pf->flow = flow;
1236 	port->flow_list = pf;
1237 	printf("Flow rule #%u created\n", pf->id);
1238 	return 0;
1239 }
1240 
1241 /** Destroy a number of flow rules. */
1242 int
1243 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1244 {
1245 	struct rte_port *port;
1246 	struct port_flow **tmp;
1247 	uint32_t c = 0;
1248 	int ret = 0;
1249 
1250 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1251 	    port_id == (portid_t)RTE_PORT_ALL)
1252 		return -EINVAL;
1253 	port = &ports[port_id];
1254 	tmp = &port->flow_list;
1255 	while (*tmp) {
1256 		uint32_t i;
1257 
1258 		for (i = 0; i != n; ++i) {
1259 			struct rte_flow_error error;
1260 			struct port_flow *pf = *tmp;
1261 
1262 			if (rule[i] != pf->id)
1263 				continue;
1264 			/*
1265 			 * Poisoning to make sure PMDs update it in case
1266 			 * of error.
1267 			 */
1268 			memset(&error, 0x33, sizeof(error));
1269 			if (rte_flow_destroy(port_id, pf->flow, &error)) {
1270 				ret = port_flow_complain(&error);
1271 				continue;
1272 			}
1273 			printf("Flow rule #%u destroyed\n", pf->id);
1274 			*tmp = pf->next;
1275 			free(pf);
1276 			break;
1277 		}
1278 		if (i == n)
1279 			tmp = &(*tmp)->next;
1280 		++c;
1281 	}
1282 	return ret;
1283 }
1284 
1285 /** Remove all flow rules. */
1286 int
1287 port_flow_flush(portid_t port_id)
1288 {
1289 	struct rte_flow_error error;
1290 	struct rte_port *port;
1291 	int ret = 0;
1292 
1293 	/* Poisoning to make sure PMDs update it in case of error. */
1294 	memset(&error, 0x44, sizeof(error));
1295 	if (rte_flow_flush(port_id, &error)) {
1296 		ret = port_flow_complain(&error);
1297 		if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1298 		    port_id == (portid_t)RTE_PORT_ALL)
1299 			return ret;
1300 	}
1301 	port = &ports[port_id];
1302 	while (port->flow_list) {
1303 		struct port_flow *pf = port->flow_list->next;
1304 
1305 		free(port->flow_list);
1306 		port->flow_list = pf;
1307 	}
1308 	return ret;
1309 }
1310 
1311 /** Query a flow rule. */
1312 int
1313 port_flow_query(portid_t port_id, uint32_t rule,
1314 		enum rte_flow_action_type action)
1315 {
1316 	struct rte_flow_error error;
1317 	struct rte_port *port;
1318 	struct port_flow *pf;
1319 	const char *name;
1320 	union {
1321 		struct rte_flow_query_count count;
1322 	} query;
1323 
1324 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1325 	    port_id == (portid_t)RTE_PORT_ALL)
1326 		return -EINVAL;
1327 	port = &ports[port_id];
1328 	for (pf = port->flow_list; pf; pf = pf->next)
1329 		if (pf->id == rule)
1330 			break;
1331 	if (!pf) {
1332 		printf("Flow rule #%u not found\n", rule);
1333 		return -ENOENT;
1334 	}
1335 	if ((unsigned int)action >= RTE_DIM(flow_action) ||
1336 	    !flow_action[action].name)
1337 		name = "unknown";
1338 	else
1339 		name = flow_action[action].name;
1340 	switch (action) {
1341 	case RTE_FLOW_ACTION_TYPE_COUNT:
1342 		break;
1343 	default:
1344 		printf("Cannot query action type %d (%s)\n", action, name);
1345 		return -ENOTSUP;
1346 	}
1347 	/* Poisoning to make sure PMDs update it in case of error. */
1348 	memset(&error, 0x55, sizeof(error));
1349 	memset(&query, 0, sizeof(query));
1350 	if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1351 		return port_flow_complain(&error);
1352 	switch (action) {
1353 	case RTE_FLOW_ACTION_TYPE_COUNT:
1354 		printf("%s:\n"
1355 		       " hits_set: %u\n"
1356 		       " bytes_set: %u\n"
1357 		       " hits: %" PRIu64 "\n"
1358 		       " bytes: %" PRIu64 "\n",
1359 		       name,
1360 		       query.count.hits_set,
1361 		       query.count.bytes_set,
1362 		       query.count.hits,
1363 		       query.count.bytes);
1364 		break;
1365 	default:
1366 		printf("Cannot display result for action type %d (%s)\n",
1367 		       action, name);
1368 		break;
1369 	}
1370 	return 0;
1371 }
1372 
1373 /** List flow rules. */
1374 void
1375 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1376 {
1377 	struct rte_port *port;
1378 	struct port_flow *pf;
1379 	struct port_flow *list = NULL;
1380 	uint32_t i;
1381 
1382 	if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1383 	    port_id == (portid_t)RTE_PORT_ALL)
1384 		return;
1385 	port = &ports[port_id];
1386 	if (!port->flow_list)
1387 		return;
1388 	/* Sort flows by group, priority and ID. */
1389 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1390 		struct port_flow **tmp;
1391 
1392 		if (n) {
1393 			/* Filter out unwanted groups. */
1394 			for (i = 0; i != n; ++i)
1395 				if (pf->attr.group == group[i])
1396 					break;
1397 			if (i == n)
1398 				continue;
1399 		}
1400 		tmp = &list;
1401 		while (*tmp &&
1402 		       (pf->attr.group > (*tmp)->attr.group ||
1403 			(pf->attr.group == (*tmp)->attr.group &&
1404 			 pf->attr.priority > (*tmp)->attr.priority) ||
1405 			(pf->attr.group == (*tmp)->attr.group &&
1406 			 pf->attr.priority == (*tmp)->attr.priority &&
1407 			 pf->id > (*tmp)->id)))
1408 			tmp = &(*tmp)->tmp;
1409 		pf->tmp = *tmp;
1410 		*tmp = pf;
1411 	}
1412 	printf("ID\tGroup\tPrio\tAttr\tRule\n");
1413 	for (pf = list; pf != NULL; pf = pf->tmp) {
1414 		const struct rte_flow_item *item = pf->pattern;
1415 		const struct rte_flow_action *action = pf->actions;
1416 
1417 		printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1418 		       pf->id,
1419 		       pf->attr.group,
1420 		       pf->attr.priority,
1421 		       pf->attr.ingress ? 'i' : '-',
1422 		       pf->attr.egress ? 'e' : '-');
1423 		while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1424 			if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1425 				printf("%s ", flow_item[item->type].name);
1426 			++item;
1427 		}
1428 		printf("=>");
1429 		while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1430 			if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1431 				printf(" %s", flow_action[action->type].name);
1432 			++action;
1433 		}
1434 		printf("\n");
1435 	}
1436 }
1437 
1438 /*
1439  * RX/TX ring descriptors display functions.
1440  */
1441 int
1442 rx_queue_id_is_invalid(queueid_t rxq_id)
1443 {
1444 	if (rxq_id < nb_rxq)
1445 		return 0;
1446 	printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1447 	return 1;
1448 }
1449 
1450 int
1451 tx_queue_id_is_invalid(queueid_t txq_id)
1452 {
1453 	if (txq_id < nb_txq)
1454 		return 0;
1455 	printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1456 	return 1;
1457 }
1458 
1459 static int
1460 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1461 {
1462 	if (rxdesc_id < nb_rxd)
1463 		return 0;
1464 	printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1465 	       rxdesc_id, nb_rxd);
1466 	return 1;
1467 }
1468 
1469 static int
1470 tx_desc_id_is_invalid(uint16_t txdesc_id)
1471 {
1472 	if (txdesc_id < nb_txd)
1473 		return 0;
1474 	printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1475 	       txdesc_id, nb_txd);
1476 	return 1;
1477 }
1478 
1479 static const struct rte_memzone *
1480 ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id)
1481 {
1482 	char mz_name[RTE_MEMZONE_NAMESIZE];
1483 	const struct rte_memzone *mz;
1484 
1485 	snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1486 		 ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1487 	mz = rte_memzone_lookup(mz_name);
1488 	if (mz == NULL)
1489 		printf("%s ring memory zoneof (port %d, queue %d) not"
1490 		       "found (zone name = %s\n",
1491 		       ring_name, port_id, q_id, mz_name);
1492 	return mz;
1493 }
1494 
1495 union igb_ring_dword {
1496 	uint64_t dword;
1497 	struct {
1498 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1499 		uint32_t lo;
1500 		uint32_t hi;
1501 #else
1502 		uint32_t hi;
1503 		uint32_t lo;
1504 #endif
1505 	} words;
1506 };
1507 
1508 struct igb_ring_desc_32_bytes {
1509 	union igb_ring_dword lo_dword;
1510 	union igb_ring_dword hi_dword;
1511 	union igb_ring_dword resv1;
1512 	union igb_ring_dword resv2;
1513 };
1514 
1515 struct igb_ring_desc_16_bytes {
1516 	union igb_ring_dword lo_dword;
1517 	union igb_ring_dword hi_dword;
1518 };
1519 
1520 static void
1521 ring_rxd_display_dword(union igb_ring_dword dword)
1522 {
1523 	printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1524 					(unsigned)dword.words.hi);
1525 }
1526 
1527 static void
1528 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1529 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1530 			   uint8_t port_id,
1531 #else
1532 			   __rte_unused uint8_t port_id,
1533 #endif
1534 			   uint16_t desc_id)
1535 {
1536 	struct igb_ring_desc_16_bytes *ring =
1537 		(struct igb_ring_desc_16_bytes *)ring_mz->addr;
1538 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1539 	struct rte_eth_dev_info dev_info;
1540 
1541 	memset(&dev_info, 0, sizeof(dev_info));
1542 	rte_eth_dev_info_get(port_id, &dev_info);
1543 	if (strstr(dev_info.driver_name, "i40e") != NULL) {
1544 		/* 32 bytes RX descriptor, i40e only */
1545 		struct igb_ring_desc_32_bytes *ring =
1546 			(struct igb_ring_desc_32_bytes *)ring_mz->addr;
1547 		ring[desc_id].lo_dword.dword =
1548 			rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1549 		ring_rxd_display_dword(ring[desc_id].lo_dword);
1550 		ring[desc_id].hi_dword.dword =
1551 			rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1552 		ring_rxd_display_dword(ring[desc_id].hi_dword);
1553 		ring[desc_id].resv1.dword =
1554 			rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1555 		ring_rxd_display_dword(ring[desc_id].resv1);
1556 		ring[desc_id].resv2.dword =
1557 			rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1558 		ring_rxd_display_dword(ring[desc_id].resv2);
1559 
1560 		return;
1561 	}
1562 #endif
1563 	/* 16 bytes RX descriptor */
1564 	ring[desc_id].lo_dword.dword =
1565 		rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1566 	ring_rxd_display_dword(ring[desc_id].lo_dword);
1567 	ring[desc_id].hi_dword.dword =
1568 		rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1569 	ring_rxd_display_dword(ring[desc_id].hi_dword);
1570 }
1571 
1572 static void
1573 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1574 {
1575 	struct igb_ring_desc_16_bytes *ring;
1576 	struct igb_ring_desc_16_bytes txd;
1577 
1578 	ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1579 	txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1580 	txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1581 	printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1582 			(unsigned)txd.lo_dword.words.lo,
1583 			(unsigned)txd.lo_dword.words.hi,
1584 			(unsigned)txd.hi_dword.words.lo,
1585 			(unsigned)txd.hi_dword.words.hi);
1586 }
1587 
1588 void
1589 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1590 {
1591 	const struct rte_memzone *rx_mz;
1592 
1593 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1594 		return;
1595 	if (rx_queue_id_is_invalid(rxq_id))
1596 		return;
1597 	if (rx_desc_id_is_invalid(rxd_id))
1598 		return;
1599 	rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1600 	if (rx_mz == NULL)
1601 		return;
1602 	ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1603 }
1604 
1605 void
1606 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1607 {
1608 	const struct rte_memzone *tx_mz;
1609 
1610 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1611 		return;
1612 	if (tx_queue_id_is_invalid(txq_id))
1613 		return;
1614 	if (tx_desc_id_is_invalid(txd_id))
1615 		return;
1616 	tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1617 	if (tx_mz == NULL)
1618 		return;
1619 	ring_tx_descriptor_display(tx_mz, txd_id);
1620 }
1621 
1622 void
1623 fwd_lcores_config_display(void)
1624 {
1625 	lcoreid_t lc_id;
1626 
1627 	printf("List of forwarding lcores:");
1628 	for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1629 		printf(" %2u", fwd_lcores_cpuids[lc_id]);
1630 	printf("\n");
1631 }
1632 void
1633 rxtx_config_display(void)
1634 {
1635 	printf("  %s packet forwarding%s - CRC stripping %s - "
1636 	       "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name,
1637 	       retry_enabled == 0 ? "" : " with retry",
1638 	       rx_mode.hw_strip_crc ? "enabled" : "disabled",
1639 	       nb_pkt_per_burst);
1640 
1641 	if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1642 		printf("  packet len=%u - nb packet segments=%d\n",
1643 				(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1644 
1645 	struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf;
1646 	struct rte_eth_txconf *tx_conf = &ports[0].tx_conf;
1647 
1648 	printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1649 	       nb_fwd_lcores, nb_fwd_ports);
1650 	printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1651 	       nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1652 	printf("  RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1653 	       rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh,
1654 	       rx_conf->rx_thresh.wthresh);
1655 	printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1656 	       nb_txq, nb_txd, tx_conf->tx_free_thresh);
1657 	printf("  TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n",
1658 	       tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh,
1659 	       tx_conf->tx_thresh.wthresh);
1660 	printf("  TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n",
1661 	       tx_conf->tx_rs_thresh, tx_conf->txq_flags);
1662 }
1663 
1664 void
1665 port_rss_reta_info(portid_t port_id,
1666 		   struct rte_eth_rss_reta_entry64 *reta_conf,
1667 		   uint16_t nb_entries)
1668 {
1669 	uint16_t i, idx, shift;
1670 	int ret;
1671 
1672 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1673 		return;
1674 
1675 	ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1676 	if (ret != 0) {
1677 		printf("Failed to get RSS RETA info, return code = %d\n", ret);
1678 		return;
1679 	}
1680 
1681 	for (i = 0; i < nb_entries; i++) {
1682 		idx = i / RTE_RETA_GROUP_SIZE;
1683 		shift = i % RTE_RETA_GROUP_SIZE;
1684 		if (!(reta_conf[idx].mask & (1ULL << shift)))
1685 			continue;
1686 		printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1687 					i, reta_conf[idx].reta[shift]);
1688 	}
1689 }
1690 
1691 /*
1692  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1693  * key of the port.
1694  */
1695 void
1696 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1697 {
1698 	struct rte_eth_rss_conf rss_conf;
1699 	uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1700 	uint64_t rss_hf;
1701 	uint8_t i;
1702 	int diag;
1703 	struct rte_eth_dev_info dev_info;
1704 	uint8_t hash_key_size;
1705 
1706 	if (port_id_is_invalid(port_id, ENABLED_WARN))
1707 		return;
1708 
1709 	memset(&dev_info, 0, sizeof(dev_info));
1710 	rte_eth_dev_info_get(port_id, &dev_info);
1711 	if (dev_info.hash_key_size > 0 &&
1712 			dev_info.hash_key_size <= sizeof(rss_key))
1713 		hash_key_size = dev_info.hash_key_size;
1714 	else {
1715 		printf("dev_info did not provide a valid hash key size\n");
1716 		return;
1717 	}
1718 
1719 	rss_conf.rss_hf = 0;
1720 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1721 		if (!strcmp(rss_info, rss_type_table[i].str))
1722 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1723 	}
1724 
1725 	/* Get RSS hash key if asked to display it */
1726 	rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1727 	rss_conf.rss_key_len = hash_key_size;
1728 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1729 	if (diag != 0) {
1730 		switch (diag) {
1731 		case -ENODEV:
1732 			printf("port index %d invalid\n", port_id);
1733 			break;
1734 		case -ENOTSUP:
1735 			printf("operation not supported by device\n");
1736 			break;
1737 		default:
1738 			printf("operation failed - diag=%d\n", diag);
1739 			break;
1740 		}
1741 		return;
1742 	}
1743 	rss_hf = rss_conf.rss_hf;
1744 	if (rss_hf == 0) {
1745 		printf("RSS disabled\n");
1746 		return;
1747 	}
1748 	printf("RSS functions:\n ");
1749 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1750 		if (rss_hf & rss_type_table[i].rss_type)
1751 			printf("%s ", rss_type_table[i].str);
1752 	}
1753 	printf("\n");
1754 	if (!show_rss_key)
1755 		return;
1756 	printf("RSS key:\n");
1757 	for (i = 0; i < hash_key_size; i++)
1758 		printf("%02X", rss_key[i]);
1759 	printf("\n");
1760 }
1761 
1762 void
1763 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1764 			 uint hash_key_len)
1765 {
1766 	struct rte_eth_rss_conf rss_conf;
1767 	int diag;
1768 	unsigned int i;
1769 
1770 	rss_conf.rss_key = NULL;
1771 	rss_conf.rss_key_len = hash_key_len;
1772 	rss_conf.rss_hf = 0;
1773 	for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1774 		if (!strcmp(rss_type_table[i].str, rss_type))
1775 			rss_conf.rss_hf = rss_type_table[i].rss_type;
1776 	}
1777 	diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1778 	if (diag == 0) {
1779 		rss_conf.rss_key = hash_key;
1780 		diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1781 	}
1782 	if (diag == 0)
1783 		return;
1784 
1785 	switch (diag) {
1786 	case -ENODEV:
1787 		printf("port index %d invalid\n", port_id);
1788 		break;
1789 	case -ENOTSUP:
1790 		printf("operation not supported by device\n");
1791 		break;
1792 	default:
1793 		printf("operation failed - diag=%d\n", diag);
1794 		break;
1795 	}
1796 }
1797 
1798 /*
1799  * Setup forwarding configuration for each logical core.
1800  */
1801 static void
1802 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1803 {
1804 	streamid_t nb_fs_per_lcore;
1805 	streamid_t nb_fs;
1806 	streamid_t sm_id;
1807 	lcoreid_t  nb_extra;
1808 	lcoreid_t  nb_fc;
1809 	lcoreid_t  nb_lc;
1810 	lcoreid_t  lc_id;
1811 
1812 	nb_fs = cfg->nb_fwd_streams;
1813 	nb_fc = cfg->nb_fwd_lcores;
1814 	if (nb_fs <= nb_fc) {
1815 		nb_fs_per_lcore = 1;
1816 		nb_extra = 0;
1817 	} else {
1818 		nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1819 		nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1820 	}
1821 
1822 	nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1823 	sm_id = 0;
1824 	for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1825 		fwd_lcores[lc_id]->stream_idx = sm_id;
1826 		fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1827 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1828 	}
1829 
1830 	/*
1831 	 * Assign extra remaining streams, if any.
1832 	 */
1833 	nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1834 	for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1835 		fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1836 		fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1837 		sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1838 	}
1839 }
1840 
1841 static void
1842 simple_fwd_config_setup(void)
1843 {
1844 	portid_t i;
1845 	portid_t j;
1846 	portid_t inc = 2;
1847 
1848 	if (port_topology == PORT_TOPOLOGY_CHAINED ||
1849 	    port_topology == PORT_TOPOLOGY_LOOP) {
1850 		inc = 1;
1851 	} else if (nb_fwd_ports % 2) {
1852 		printf("\nWarning! Cannot handle an odd number of ports "
1853 		       "with the current port topology. Configuration "
1854 		       "must be changed to have an even number of ports, "
1855 		       "or relaunch application with "
1856 		       "--port-topology=chained\n\n");
1857 	}
1858 
1859 	cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1860 	cur_fwd_config.nb_fwd_streams =
1861 		(streamid_t) cur_fwd_config.nb_fwd_ports;
1862 
1863 	/* reinitialize forwarding streams */
1864 	init_fwd_streams();
1865 
1866 	/*
1867 	 * In the simple forwarding test, the number of forwarding cores
1868 	 * must be lower or equal to the number of forwarding ports.
1869 	 */
1870 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1871 	if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1872 		cur_fwd_config.nb_fwd_lcores =
1873 			(lcoreid_t) cur_fwd_config.nb_fwd_ports;
1874 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1875 
1876 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) {
1877 		if (port_topology != PORT_TOPOLOGY_LOOP)
1878 			j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports);
1879 		else
1880 			j = i;
1881 		fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1882 		fwd_streams[i]->rx_queue  = 0;
1883 		fwd_streams[i]->tx_port   = fwd_ports_ids[j];
1884 		fwd_streams[i]->tx_queue  = 0;
1885 		fwd_streams[i]->peer_addr = j;
1886 		fwd_streams[i]->retry_enabled = retry_enabled;
1887 
1888 		if (port_topology == PORT_TOPOLOGY_PAIRED) {
1889 			fwd_streams[j]->rx_port   = fwd_ports_ids[j];
1890 			fwd_streams[j]->rx_queue  = 0;
1891 			fwd_streams[j]->tx_port   = fwd_ports_ids[i];
1892 			fwd_streams[j]->tx_queue  = 0;
1893 			fwd_streams[j]->peer_addr = i;
1894 			fwd_streams[j]->retry_enabled = retry_enabled;
1895 		}
1896 	}
1897 }
1898 
1899 /**
1900  * For the RSS forwarding test all streams distributed over lcores. Each stream
1901  * being composed of a RX queue to poll on a RX port for input messages,
1902  * associated with a TX queue of a TX port where to send forwarded packets.
1903  * All packets received on the RX queue of index "RxQj" of the RX port "RxPi"
1904  * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two
1905  * following rules:
1906  *    - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd
1907  *    - TxQl = RxQj
1908  */
1909 static void
1910 rss_fwd_config_setup(void)
1911 {
1912 	portid_t   rxp;
1913 	portid_t   txp;
1914 	queueid_t  rxq;
1915 	queueid_t  nb_q;
1916 	streamid_t  sm_id;
1917 
1918 	nb_q = nb_rxq;
1919 	if (nb_q > nb_txq)
1920 		nb_q = nb_txq;
1921 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1922 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1923 	cur_fwd_config.nb_fwd_streams =
1924 		(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1925 
1926 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1927 		cur_fwd_config.nb_fwd_lcores =
1928 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
1929 
1930 	/* reinitialize forwarding streams */
1931 	init_fwd_streams();
1932 
1933 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
1934 	rxp = 0; rxq = 0;
1935 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1936 		struct fwd_stream *fs;
1937 
1938 		fs = fwd_streams[sm_id];
1939 
1940 		if ((rxp & 0x1) == 0)
1941 			txp = (portid_t) (rxp + 1);
1942 		else
1943 			txp = (portid_t) (rxp - 1);
1944 		/*
1945 		 * if we are in loopback, simply send stuff out through the
1946 		 * ingress port
1947 		 */
1948 		if (port_topology == PORT_TOPOLOGY_LOOP)
1949 			txp = rxp;
1950 
1951 		fs->rx_port = fwd_ports_ids[rxp];
1952 		fs->rx_queue = rxq;
1953 		fs->tx_port = fwd_ports_ids[txp];
1954 		fs->tx_queue = rxq;
1955 		fs->peer_addr = fs->tx_port;
1956 		fs->retry_enabled = retry_enabled;
1957 		rxq = (queueid_t) (rxq + 1);
1958 		if (rxq < nb_q)
1959 			continue;
1960 		/*
1961 		 * rxq == nb_q
1962 		 * Restart from RX queue 0 on next RX port
1963 		 */
1964 		rxq = 0;
1965 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
1966 			rxp = (portid_t)
1967 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
1968 		else
1969 			rxp = (portid_t) (rxp + 1);
1970 	}
1971 }
1972 
1973 /**
1974  * For the DCB forwarding test, each core is assigned on each traffic class.
1975  *
1976  * Each core is assigned a multi-stream, each stream being composed of
1977  * a RX queue to poll on a RX port for input messages, associated with
1978  * a TX queue of a TX port where to send forwarded packets. All RX and
1979  * TX queues are mapping to the same traffic class.
1980  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
1981  * the same core
1982  */
1983 static void
1984 dcb_fwd_config_setup(void)
1985 {
1986 	struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
1987 	portid_t txp, rxp = 0;
1988 	queueid_t txq, rxq = 0;
1989 	lcoreid_t  lc_id;
1990 	uint16_t nb_rx_queue, nb_tx_queue;
1991 	uint16_t i, j, k, sm_id = 0;
1992 	uint8_t tc = 0;
1993 
1994 	cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1995 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1996 	cur_fwd_config.nb_fwd_streams =
1997 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
1998 
1999 	/* reinitialize forwarding streams */
2000 	init_fwd_streams();
2001 	sm_id = 0;
2002 	txp = 1;
2003 	/* get the dcb info on the first RX and TX ports */
2004 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2005 	(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2006 
2007 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2008 		fwd_lcores[lc_id]->stream_nb = 0;
2009 		fwd_lcores[lc_id]->stream_idx = sm_id;
2010 		for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2011 			/* if the nb_queue is zero, means this tc is
2012 			 * not enabled on the POOL
2013 			 */
2014 			if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2015 				break;
2016 			k = fwd_lcores[lc_id]->stream_nb +
2017 				fwd_lcores[lc_id]->stream_idx;
2018 			rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2019 			txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2020 			nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2021 			nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2022 			for (j = 0; j < nb_rx_queue; j++) {
2023 				struct fwd_stream *fs;
2024 
2025 				fs = fwd_streams[k + j];
2026 				fs->rx_port = fwd_ports_ids[rxp];
2027 				fs->rx_queue = rxq + j;
2028 				fs->tx_port = fwd_ports_ids[txp];
2029 				fs->tx_queue = txq + j % nb_tx_queue;
2030 				fs->peer_addr = fs->tx_port;
2031 				fs->retry_enabled = retry_enabled;
2032 			}
2033 			fwd_lcores[lc_id]->stream_nb +=
2034 				rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2035 		}
2036 		sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2037 
2038 		tc++;
2039 		if (tc < rxp_dcb_info.nb_tcs)
2040 			continue;
2041 		/* Restart from TC 0 on next RX port */
2042 		tc = 0;
2043 		if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2044 			rxp = (portid_t)
2045 				(rxp + ((nb_ports >> 1) / nb_fwd_ports));
2046 		else
2047 			rxp++;
2048 		if (rxp >= nb_fwd_ports)
2049 			return;
2050 		/* get the dcb information on next RX and TX ports */
2051 		if ((rxp & 0x1) == 0)
2052 			txp = (portid_t) (rxp + 1);
2053 		else
2054 			txp = (portid_t) (rxp - 1);
2055 		rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2056 		rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2057 	}
2058 }
2059 
2060 static void
2061 icmp_echo_config_setup(void)
2062 {
2063 	portid_t  rxp;
2064 	queueid_t rxq;
2065 	lcoreid_t lc_id;
2066 	uint16_t  sm_id;
2067 
2068 	if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2069 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2070 			(nb_txq * nb_fwd_ports);
2071 	else
2072 		cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2073 	cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2074 	cur_fwd_config.nb_fwd_streams =
2075 		(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2076 	if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2077 		cur_fwd_config.nb_fwd_lcores =
2078 			(lcoreid_t)cur_fwd_config.nb_fwd_streams;
2079 	if (verbose_level > 0) {
2080 		printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2081 		       __FUNCTION__,
2082 		       cur_fwd_config.nb_fwd_lcores,
2083 		       cur_fwd_config.nb_fwd_ports,
2084 		       cur_fwd_config.nb_fwd_streams);
2085 	}
2086 
2087 	/* reinitialize forwarding streams */
2088 	init_fwd_streams();
2089 	setup_fwd_config_of_each_lcore(&cur_fwd_config);
2090 	rxp = 0; rxq = 0;
2091 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2092 		if (verbose_level > 0)
2093 			printf("  core=%d: \n", lc_id);
2094 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2095 			struct fwd_stream *fs;
2096 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2097 			fs->rx_port = fwd_ports_ids[rxp];
2098 			fs->rx_queue = rxq;
2099 			fs->tx_port = fs->rx_port;
2100 			fs->tx_queue = rxq;
2101 			fs->peer_addr = fs->tx_port;
2102 			fs->retry_enabled = retry_enabled;
2103 			if (verbose_level > 0)
2104 				printf("  stream=%d port=%d rxq=%d txq=%d\n",
2105 				       sm_id, fs->rx_port, fs->rx_queue,
2106 				       fs->tx_queue);
2107 			rxq = (queueid_t) (rxq + 1);
2108 			if (rxq == nb_rxq) {
2109 				rxq = 0;
2110 				rxp = (portid_t) (rxp + 1);
2111 			}
2112 		}
2113 	}
2114 }
2115 
2116 void
2117 fwd_config_setup(void)
2118 {
2119 	cur_fwd_config.fwd_eng = cur_fwd_eng;
2120 	if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2121 		icmp_echo_config_setup();
2122 		return;
2123 	}
2124 	if ((nb_rxq > 1) && (nb_txq > 1)){
2125 		if (dcb_config)
2126 			dcb_fwd_config_setup();
2127 		else
2128 			rss_fwd_config_setup();
2129 	}
2130 	else
2131 		simple_fwd_config_setup();
2132 }
2133 
2134 void
2135 pkt_fwd_config_display(struct fwd_config *cfg)
2136 {
2137 	struct fwd_stream *fs;
2138 	lcoreid_t  lc_id;
2139 	streamid_t sm_id;
2140 
2141 	printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2142 		"NUMA support %s, MP over anonymous pages %s\n",
2143 		cfg->fwd_eng->fwd_mode_name,
2144 		retry_enabled == 0 ? "" : " with retry",
2145 		cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2146 		numa_support == 1 ? "enabled" : "disabled",
2147 		mp_anon != 0 ? "enabled" : "disabled");
2148 
2149 	if (retry_enabled)
2150 		printf("TX retry num: %u, delay between TX retries: %uus\n",
2151 			burst_tx_retry_num, burst_tx_delay_time);
2152 	for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2153 		printf("Logical Core %u (socket %u) forwards packets on "
2154 		       "%d streams:",
2155 		       fwd_lcores_cpuids[lc_id],
2156 		       rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2157 		       fwd_lcores[lc_id]->stream_nb);
2158 		for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2159 			fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2160 			printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2161 			       "P=%d/Q=%d (socket %u) ",
2162 			       fs->rx_port, fs->rx_queue,
2163 			       ports[fs->rx_port].socket_id,
2164 			       fs->tx_port, fs->tx_queue,
2165 			       ports[fs->tx_port].socket_id);
2166 			print_ethaddr("peer=",
2167 				      &peer_eth_addrs[fs->peer_addr]);
2168 		}
2169 		printf("\n");
2170 	}
2171 	printf("\n");
2172 }
2173 
2174 int
2175 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2176 {
2177 	unsigned int i;
2178 	unsigned int lcore_cpuid;
2179 	int record_now;
2180 
2181 	record_now = 0;
2182  again:
2183 	for (i = 0; i < nb_lc; i++) {
2184 		lcore_cpuid = lcorelist[i];
2185 		if (! rte_lcore_is_enabled(lcore_cpuid)) {
2186 			printf("lcore %u not enabled\n", lcore_cpuid);
2187 			return -1;
2188 		}
2189 		if (lcore_cpuid == rte_get_master_lcore()) {
2190 			printf("lcore %u cannot be masked on for running "
2191 			       "packet forwarding, which is the master lcore "
2192 			       "and reserved for command line parsing only\n",
2193 			       lcore_cpuid);
2194 			return -1;
2195 		}
2196 		if (record_now)
2197 			fwd_lcores_cpuids[i] = lcore_cpuid;
2198 	}
2199 	if (record_now == 0) {
2200 		record_now = 1;
2201 		goto again;
2202 	}
2203 	nb_cfg_lcores = (lcoreid_t) nb_lc;
2204 	if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2205 		printf("previous number of forwarding cores %u - changed to "
2206 		       "number of configured cores %u\n",
2207 		       (unsigned int) nb_fwd_lcores, nb_lc);
2208 		nb_fwd_lcores = (lcoreid_t) nb_lc;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 int
2215 set_fwd_lcores_mask(uint64_t lcoremask)
2216 {
2217 	unsigned int lcorelist[64];
2218 	unsigned int nb_lc;
2219 	unsigned int i;
2220 
2221 	if (lcoremask == 0) {
2222 		printf("Invalid NULL mask of cores\n");
2223 		return -1;
2224 	}
2225 	nb_lc = 0;
2226 	for (i = 0; i < 64; i++) {
2227 		if (! ((uint64_t)(1ULL << i) & lcoremask))
2228 			continue;
2229 		lcorelist[nb_lc++] = i;
2230 	}
2231 	return set_fwd_lcores_list(lcorelist, nb_lc);
2232 }
2233 
2234 void
2235 set_fwd_lcores_number(uint16_t nb_lc)
2236 {
2237 	if (nb_lc > nb_cfg_lcores) {
2238 		printf("nb fwd cores %u > %u (max. number of configured "
2239 		       "lcores) - ignored\n",
2240 		       (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2241 		return;
2242 	}
2243 	nb_fwd_lcores = (lcoreid_t) nb_lc;
2244 	printf("Number of forwarding cores set to %u\n",
2245 	       (unsigned int) nb_fwd_lcores);
2246 }
2247 
2248 void
2249 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2250 {
2251 	unsigned int i;
2252 	portid_t port_id;
2253 	int record_now;
2254 
2255 	record_now = 0;
2256  again:
2257 	for (i = 0; i < nb_pt; i++) {
2258 		port_id = (portid_t) portlist[i];
2259 		if (port_id_is_invalid(port_id, ENABLED_WARN))
2260 			return;
2261 		if (record_now)
2262 			fwd_ports_ids[i] = port_id;
2263 	}
2264 	if (record_now == 0) {
2265 		record_now = 1;
2266 		goto again;
2267 	}
2268 	nb_cfg_ports = (portid_t) nb_pt;
2269 	if (nb_fwd_ports != (portid_t) nb_pt) {
2270 		printf("previous number of forwarding ports %u - changed to "
2271 		       "number of configured ports %u\n",
2272 		       (unsigned int) nb_fwd_ports, nb_pt);
2273 		nb_fwd_ports = (portid_t) nb_pt;
2274 	}
2275 }
2276 
2277 void
2278 set_fwd_ports_mask(uint64_t portmask)
2279 {
2280 	unsigned int portlist[64];
2281 	unsigned int nb_pt;
2282 	unsigned int i;
2283 
2284 	if (portmask == 0) {
2285 		printf("Invalid NULL mask of ports\n");
2286 		return;
2287 	}
2288 	nb_pt = 0;
2289 	for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) {
2290 		if (! ((uint64_t)(1ULL << i) & portmask))
2291 			continue;
2292 		portlist[nb_pt++] = i;
2293 	}
2294 	set_fwd_ports_list(portlist, nb_pt);
2295 }
2296 
2297 void
2298 set_fwd_ports_number(uint16_t nb_pt)
2299 {
2300 	if (nb_pt > nb_cfg_ports) {
2301 		printf("nb fwd ports %u > %u (number of configured "
2302 		       "ports) - ignored\n",
2303 		       (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2304 		return;
2305 	}
2306 	nb_fwd_ports = (portid_t) nb_pt;
2307 	printf("Number of forwarding ports set to %u\n",
2308 	       (unsigned int) nb_fwd_ports);
2309 }
2310 
2311 int
2312 port_is_forwarding(portid_t port_id)
2313 {
2314 	unsigned int i;
2315 
2316 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2317 		return -1;
2318 
2319 	for (i = 0; i < nb_fwd_ports; i++) {
2320 		if (fwd_ports_ids[i] == port_id)
2321 			return 1;
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 void
2328 set_nb_pkt_per_burst(uint16_t nb)
2329 {
2330 	if (nb > MAX_PKT_BURST) {
2331 		printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2332 		       " ignored\n",
2333 		       (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2334 		return;
2335 	}
2336 	nb_pkt_per_burst = nb;
2337 	printf("Number of packets per burst set to %u\n",
2338 	       (unsigned int) nb_pkt_per_burst);
2339 }
2340 
2341 static const char *
2342 tx_split_get_name(enum tx_pkt_split split)
2343 {
2344 	uint32_t i;
2345 
2346 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2347 		if (tx_split_name[i].split == split)
2348 			return tx_split_name[i].name;
2349 	}
2350 	return NULL;
2351 }
2352 
2353 void
2354 set_tx_pkt_split(const char *name)
2355 {
2356 	uint32_t i;
2357 
2358 	for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2359 		if (strcmp(tx_split_name[i].name, name) == 0) {
2360 			tx_pkt_split = tx_split_name[i].split;
2361 			return;
2362 		}
2363 	}
2364 	printf("unknown value: \"%s\"\n", name);
2365 }
2366 
2367 void
2368 show_tx_pkt_segments(void)
2369 {
2370 	uint32_t i, n;
2371 	const char *split;
2372 
2373 	n = tx_pkt_nb_segs;
2374 	split = tx_split_get_name(tx_pkt_split);
2375 
2376 	printf("Number of segments: %u\n", n);
2377 	printf("Segment sizes: ");
2378 	for (i = 0; i != n - 1; i++)
2379 		printf("%hu,", tx_pkt_seg_lengths[i]);
2380 	printf("%hu\n", tx_pkt_seg_lengths[i]);
2381 	printf("Split packet: %s\n", split);
2382 }
2383 
2384 void
2385 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2386 {
2387 	uint16_t tx_pkt_len;
2388 	unsigned i;
2389 
2390 	if (nb_segs >= (unsigned) nb_txd) {
2391 		printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2392 		       nb_segs, (unsigned int) nb_txd);
2393 		return;
2394 	}
2395 
2396 	/*
2397 	 * Check that each segment length is greater or equal than
2398 	 * the mbuf data sise.
2399 	 * Check also that the total packet length is greater or equal than the
2400 	 * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2401 	 */
2402 	tx_pkt_len = 0;
2403 	for (i = 0; i < nb_segs; i++) {
2404 		if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2405 			printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2406 			       i, seg_lengths[i], (unsigned) mbuf_data_size);
2407 			return;
2408 		}
2409 		tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2410 	}
2411 	if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2412 		printf("total packet length=%u < %d - give up\n",
2413 				(unsigned) tx_pkt_len,
2414 				(int)(sizeof(struct ether_hdr) + 20 + 8));
2415 		return;
2416 	}
2417 
2418 	for (i = 0; i < nb_segs; i++)
2419 		tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2420 
2421 	tx_pkt_length  = tx_pkt_len;
2422 	tx_pkt_nb_segs = (uint8_t) nb_segs;
2423 }
2424 
2425 char*
2426 list_pkt_forwarding_modes(void)
2427 {
2428 	static char fwd_modes[128] = "";
2429 	const char *separator = "|";
2430 	struct fwd_engine *fwd_eng;
2431 	unsigned i = 0;
2432 
2433 	if (strlen (fwd_modes) == 0) {
2434 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2435 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2436 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2437 			strncat(fwd_modes, separator,
2438 					sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2439 		}
2440 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2441 	}
2442 
2443 	return fwd_modes;
2444 }
2445 
2446 char*
2447 list_pkt_forwarding_retry_modes(void)
2448 {
2449 	static char fwd_modes[128] = "";
2450 	const char *separator = "|";
2451 	struct fwd_engine *fwd_eng;
2452 	unsigned i = 0;
2453 
2454 	if (strlen(fwd_modes) == 0) {
2455 		while ((fwd_eng = fwd_engines[i++]) != NULL) {
2456 			if (fwd_eng == &rx_only_engine)
2457 				continue;
2458 			strncat(fwd_modes, fwd_eng->fwd_mode_name,
2459 					sizeof(fwd_modes) -
2460 					strlen(fwd_modes) - 1);
2461 			strncat(fwd_modes, separator,
2462 					sizeof(fwd_modes) -
2463 					strlen(fwd_modes) - 1);
2464 		}
2465 		fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2466 	}
2467 
2468 	return fwd_modes;
2469 }
2470 
2471 void
2472 set_pkt_forwarding_mode(const char *fwd_mode_name)
2473 {
2474 	struct fwd_engine *fwd_eng;
2475 	unsigned i;
2476 
2477 	i = 0;
2478 	while ((fwd_eng = fwd_engines[i]) != NULL) {
2479 		if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2480 			printf("Set %s packet forwarding mode%s\n",
2481 			       fwd_mode_name,
2482 			       retry_enabled == 0 ? "" : " with retry");
2483 			cur_fwd_eng = fwd_eng;
2484 			return;
2485 		}
2486 		i++;
2487 	}
2488 	printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2489 }
2490 
2491 void
2492 set_verbose_level(uint16_t vb_level)
2493 {
2494 	printf("Change verbose level from %u to %u\n",
2495 	       (unsigned int) verbose_level, (unsigned int) vb_level);
2496 	verbose_level = vb_level;
2497 }
2498 
2499 void
2500 vlan_extend_set(portid_t port_id, int on)
2501 {
2502 	int diag;
2503 	int vlan_offload;
2504 
2505 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2506 		return;
2507 
2508 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2509 
2510 	if (on)
2511 		vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2512 	else
2513 		vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2514 
2515 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2516 	if (diag < 0)
2517 		printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2518 	       "diag=%d\n", port_id, on, diag);
2519 }
2520 
2521 void
2522 rx_vlan_strip_set(portid_t port_id, int on)
2523 {
2524 	int diag;
2525 	int vlan_offload;
2526 
2527 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2528 		return;
2529 
2530 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2531 
2532 	if (on)
2533 		vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2534 	else
2535 		vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2536 
2537 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2538 	if (diag < 0)
2539 		printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2540 	       "diag=%d\n", port_id, on, diag);
2541 }
2542 
2543 void
2544 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2545 {
2546 	int diag;
2547 
2548 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2549 		return;
2550 
2551 	diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2552 	if (diag < 0)
2553 		printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2554 	       "diag=%d\n", port_id, queue_id, on, diag);
2555 }
2556 
2557 void
2558 rx_vlan_filter_set(portid_t port_id, int on)
2559 {
2560 	int diag;
2561 	int vlan_offload;
2562 
2563 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2564 		return;
2565 
2566 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2567 
2568 	if (on)
2569 		vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2570 	else
2571 		vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2572 
2573 	diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2574 	if (diag < 0)
2575 		printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2576 	       "diag=%d\n", port_id, on, diag);
2577 }
2578 
2579 int
2580 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2581 {
2582 	int diag;
2583 
2584 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2585 		return 1;
2586 	if (vlan_id_is_invalid(vlan_id))
2587 		return 1;
2588 	diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2589 	if (diag == 0)
2590 		return 0;
2591 	printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2592 	       "diag=%d\n",
2593 	       port_id, vlan_id, on, diag);
2594 	return -1;
2595 }
2596 
2597 void
2598 rx_vlan_all_filter_set(portid_t port_id, int on)
2599 {
2600 	uint16_t vlan_id;
2601 
2602 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2603 		return;
2604 	for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2605 		if (rx_vft_set(port_id, vlan_id, on))
2606 			break;
2607 	}
2608 }
2609 
2610 void
2611 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2612 {
2613 	int diag;
2614 
2615 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2616 		return;
2617 
2618 	diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2619 	if (diag == 0)
2620 		return;
2621 
2622 	printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2623 	       "diag=%d\n",
2624 	       port_id, vlan_type, tp_id, diag);
2625 }
2626 
2627 void
2628 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2629 {
2630 	int vlan_offload;
2631 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2632 		return;
2633 	if (vlan_id_is_invalid(vlan_id))
2634 		return;
2635 
2636 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2637 	if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2638 		printf("Error, as QinQ has been enabled.\n");
2639 		return;
2640 	}
2641 
2642 	tx_vlan_reset(port_id);
2643 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN;
2644 	ports[port_id].tx_vlan_id = vlan_id;
2645 }
2646 
2647 void
2648 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2649 {
2650 	int vlan_offload;
2651 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2652 		return;
2653 	if (vlan_id_is_invalid(vlan_id))
2654 		return;
2655 	if (vlan_id_is_invalid(vlan_id_outer))
2656 		return;
2657 
2658 	vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2659 	if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2660 		printf("Error, as QinQ hasn't been enabled.\n");
2661 		return;
2662 	}
2663 
2664 	tx_vlan_reset(port_id);
2665 	ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ;
2666 	ports[port_id].tx_vlan_id = vlan_id;
2667 	ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2668 }
2669 
2670 void
2671 tx_vlan_reset(portid_t port_id)
2672 {
2673 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2674 		return;
2675 	ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN |
2676 				TESTPMD_TX_OFFLOAD_INSERT_QINQ);
2677 	ports[port_id].tx_vlan_id = 0;
2678 	ports[port_id].tx_vlan_id_outer = 0;
2679 }
2680 
2681 void
2682 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2683 {
2684 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2685 		return;
2686 
2687 	rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2688 }
2689 
2690 void
2691 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2692 {
2693 	uint16_t i;
2694 	uint8_t existing_mapping_found = 0;
2695 
2696 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2697 		return;
2698 
2699 	if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2700 		return;
2701 
2702 	if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2703 		printf("map_value not in required range 0..%d\n",
2704 				RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2705 		return;
2706 	}
2707 
2708 	if (!is_rx) { /*then tx*/
2709 		for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2710 			if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2711 			    (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2712 				tx_queue_stats_mappings[i].stats_counter_id = map_value;
2713 				existing_mapping_found = 1;
2714 				break;
2715 			}
2716 		}
2717 		if (!existing_mapping_found) { /* A new additional mapping... */
2718 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2719 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2720 			tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2721 			nb_tx_queue_stats_mappings++;
2722 		}
2723 	}
2724 	else { /*rx*/
2725 		for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2726 			if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2727 			    (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2728 				rx_queue_stats_mappings[i].stats_counter_id = map_value;
2729 				existing_mapping_found = 1;
2730 				break;
2731 			}
2732 		}
2733 		if (!existing_mapping_found) { /* A new additional mapping... */
2734 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2735 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2736 			rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2737 			nb_rx_queue_stats_mappings++;
2738 		}
2739 	}
2740 }
2741 
2742 static inline void
2743 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2744 {
2745 	printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2746 
2747 	if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2748 		printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2749 			" tunnel_id: 0x%08x",
2750 			mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2751 			rte_be_to_cpu_32(mask->tunnel_id_mask));
2752 	else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2753 		printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2754 			rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2755 			rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2756 
2757 		printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2758 			rte_be_to_cpu_16(mask->src_port_mask),
2759 			rte_be_to_cpu_16(mask->dst_port_mask));
2760 
2761 		printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2762 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2763 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2764 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2765 			rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2766 
2767 		printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2768 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2769 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2770 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2771 			rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2772 	}
2773 
2774 	printf("\n");
2775 }
2776 
2777 static inline void
2778 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2779 {
2780 	struct rte_eth_flex_payload_cfg *cfg;
2781 	uint32_t i, j;
2782 
2783 	for (i = 0; i < flex_conf->nb_payloads; i++) {
2784 		cfg = &flex_conf->flex_set[i];
2785 		if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2786 			printf("\n    RAW:  ");
2787 		else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2788 			printf("\n    L2_PAYLOAD:  ");
2789 		else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2790 			printf("\n    L3_PAYLOAD:  ");
2791 		else if (cfg->type == RTE_ETH_L4_PAYLOAD)
2792 			printf("\n    L4_PAYLOAD:  ");
2793 		else
2794 			printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
2795 		for (j = 0; j < num; j++)
2796 			printf("  %-5u", cfg->src_offset[j]);
2797 	}
2798 	printf("\n");
2799 }
2800 
2801 static char *
2802 flowtype_to_str(uint16_t flow_type)
2803 {
2804 	struct flow_type_info {
2805 		char str[32];
2806 		uint16_t ftype;
2807 	};
2808 
2809 	uint8_t i;
2810 	static struct flow_type_info flowtype_str_table[] = {
2811 		{"raw", RTE_ETH_FLOW_RAW},
2812 		{"ipv4", RTE_ETH_FLOW_IPV4},
2813 		{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
2814 		{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
2815 		{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
2816 		{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
2817 		{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
2818 		{"ipv6", RTE_ETH_FLOW_IPV6},
2819 		{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
2820 		{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
2821 		{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
2822 		{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
2823 		{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
2824 		{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
2825 		{"port", RTE_ETH_FLOW_PORT},
2826 		{"vxlan", RTE_ETH_FLOW_VXLAN},
2827 		{"geneve", RTE_ETH_FLOW_GENEVE},
2828 		{"nvgre", RTE_ETH_FLOW_NVGRE},
2829 	};
2830 
2831 	for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
2832 		if (flowtype_str_table[i].ftype == flow_type)
2833 			return flowtype_str_table[i].str;
2834 	}
2835 
2836 	return NULL;
2837 }
2838 
2839 static inline void
2840 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2841 {
2842 	struct rte_eth_fdir_flex_mask *mask;
2843 	uint32_t i, j;
2844 	char *p;
2845 
2846 	for (i = 0; i < flex_conf->nb_flexmasks; i++) {
2847 		mask = &flex_conf->flex_mask[i];
2848 		p = flowtype_to_str(mask->flow_type);
2849 		printf("\n    %s:\t", p ? p : "unknown");
2850 		for (j = 0; j < num; j++)
2851 			printf(" %02x", mask->mask[j]);
2852 	}
2853 	printf("\n");
2854 }
2855 
2856 static inline void
2857 print_fdir_flow_type(uint32_t flow_types_mask)
2858 {
2859 	int i;
2860 	char *p;
2861 
2862 	for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
2863 		if (!(flow_types_mask & (1 << i)))
2864 			continue;
2865 		p = flowtype_to_str(i);
2866 		if (p)
2867 			printf(" %s", p);
2868 		else
2869 			printf(" unknown");
2870 	}
2871 	printf("\n");
2872 }
2873 
2874 void
2875 fdir_get_infos(portid_t port_id)
2876 {
2877 	struct rte_eth_fdir_stats fdir_stat;
2878 	struct rte_eth_fdir_info fdir_info;
2879 	int ret;
2880 
2881 	static const char *fdir_stats_border = "########################";
2882 
2883 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2884 		return;
2885 	ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
2886 	if (ret < 0) {
2887 		printf("\n FDIR is not supported on port %-2d\n",
2888 			port_id);
2889 		return;
2890 	}
2891 
2892 	memset(&fdir_info, 0, sizeof(fdir_info));
2893 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2894 			       RTE_ETH_FILTER_INFO, &fdir_info);
2895 	memset(&fdir_stat, 0, sizeof(fdir_stat));
2896 	rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
2897 			       RTE_ETH_FILTER_STATS, &fdir_stat);
2898 	printf("\n  %s FDIR infos for port %-2d     %s\n",
2899 	       fdir_stats_border, port_id, fdir_stats_border);
2900 	printf("  MODE: ");
2901 	if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
2902 		printf("  PERFECT\n");
2903 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
2904 		printf("  PERFECT-MAC-VLAN\n");
2905 	else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2906 		printf("  PERFECT-TUNNEL\n");
2907 	else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
2908 		printf("  SIGNATURE\n");
2909 	else
2910 		printf("  DISABLE\n");
2911 	if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
2912 		&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
2913 		printf("  SUPPORTED FLOW TYPE: ");
2914 		print_fdir_flow_type(fdir_info.flow_types_mask[0]);
2915 	}
2916 	printf("  FLEX PAYLOAD INFO:\n");
2917 	printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
2918 	       "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
2919 	       "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
2920 		fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
2921 		fdir_info.flex_payload_unit,
2922 		fdir_info.max_flex_payload_segment_num,
2923 		fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
2924 	printf("  MASK: ");
2925 	print_fdir_mask(&fdir_info.mask);
2926 	if (fdir_info.flex_conf.nb_payloads > 0) {
2927 		printf("  FLEX PAYLOAD SRC OFFSET:");
2928 		print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2929 	}
2930 	if (fdir_info.flex_conf.nb_flexmasks > 0) {
2931 		printf("  FLEX MASK CFG:");
2932 		print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
2933 	}
2934 	printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
2935 	       fdir_stat.guarant_cnt, fdir_stat.best_cnt);
2936 	printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
2937 	       fdir_info.guarant_spc, fdir_info.best_spc);
2938 	printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
2939 	       "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
2940 	       "  add:	         %-10"PRIu64"  remove:        %"PRIu64"\n"
2941 	       "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
2942 	       fdir_stat.collision, fdir_stat.free,
2943 	       fdir_stat.maxhash, fdir_stat.maxlen,
2944 	       fdir_stat.add, fdir_stat.remove,
2945 	       fdir_stat.f_add, fdir_stat.f_remove);
2946 	printf("  %s############################%s\n",
2947 	       fdir_stats_border, fdir_stats_border);
2948 }
2949 
2950 void
2951 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
2952 {
2953 	struct rte_port *port;
2954 	struct rte_eth_fdir_flex_conf *flex_conf;
2955 	int i, idx = 0;
2956 
2957 	port = &ports[port_id];
2958 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2959 	for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
2960 		if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
2961 			idx = i;
2962 			break;
2963 		}
2964 	}
2965 	if (i >= RTE_ETH_FLOW_MAX) {
2966 		if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
2967 			idx = flex_conf->nb_flexmasks;
2968 			flex_conf->nb_flexmasks++;
2969 		} else {
2970 			printf("The flex mask table is full. Can not set flex"
2971 				" mask for flow_type(%u).", cfg->flow_type);
2972 			return;
2973 		}
2974 	}
2975 	(void)rte_memcpy(&flex_conf->flex_mask[idx],
2976 			 cfg,
2977 			 sizeof(struct rte_eth_fdir_flex_mask));
2978 }
2979 
2980 void
2981 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
2982 {
2983 	struct rte_port *port;
2984 	struct rte_eth_fdir_flex_conf *flex_conf;
2985 	int i, idx = 0;
2986 
2987 	port = &ports[port_id];
2988 	flex_conf = &port->dev_conf.fdir_conf.flex_conf;
2989 	for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
2990 		if (cfg->type == flex_conf->flex_set[i].type) {
2991 			idx = i;
2992 			break;
2993 		}
2994 	}
2995 	if (i >= RTE_ETH_PAYLOAD_MAX) {
2996 		if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
2997 			idx = flex_conf->nb_payloads;
2998 			flex_conf->nb_payloads++;
2999 		} else {
3000 			printf("The flex payload table is full. Can not set"
3001 				" flex payload for type(%u).", cfg->type);
3002 			return;
3003 		}
3004 	}
3005 	(void)rte_memcpy(&flex_conf->flex_set[idx],
3006 			 cfg,
3007 			 sizeof(struct rte_eth_flex_payload_cfg));
3008 
3009 }
3010 
3011 #ifdef RTE_LIBRTE_IXGBE_PMD
3012 void
3013 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3014 {
3015 	int diag;
3016 
3017 	if (is_rx)
3018 		diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3019 	else
3020 		diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3021 
3022 	if (diag == 0)
3023 		return;
3024 	if(is_rx)
3025 		printf("rte_pmd_ixgbe_set_vf_rx for port_id=%d failed "
3026 	       		"diag=%d\n", port_id, diag);
3027 	else
3028 		printf("rte_pmd_ixgbe_set_vf_tx for port_id=%d failed "
3029 	       		"diag=%d\n", port_id, diag);
3030 
3031 }
3032 #endif
3033 
3034 int
3035 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3036 {
3037 	int diag;
3038 	struct rte_eth_link link;
3039 
3040 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3041 		return 1;
3042 	rte_eth_link_get_nowait(port_id, &link);
3043 	if (rate > link.link_speed) {
3044 		printf("Invalid rate value:%u bigger than link speed: %u\n",
3045 			rate, link.link_speed);
3046 		return 1;
3047 	}
3048 	diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3049 	if (diag == 0)
3050 		return diag;
3051 	printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3052 		port_id, diag);
3053 	return diag;
3054 }
3055 
3056 #ifdef RTE_LIBRTE_IXGBE_PMD
3057 int
3058 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3059 {
3060 	int diag;
3061 
3062 	diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk);
3063 	if (diag == 0)
3064 		return diag;
3065 	printf("rte_pmd_ixgbe_set_vf_rate_limit for port_id=%d failed diag=%d\n",
3066 		port_id, diag);
3067 	return diag;
3068 }
3069 #endif
3070 
3071 /*
3072  * Functions to manage the set of filtered Multicast MAC addresses.
3073  *
3074  * A pool of filtered multicast MAC addresses is associated with each port.
3075  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3076  * The address of the pool and the number of valid multicast MAC addresses
3077  * recorded in the pool are stored in the fields "mc_addr_pool" and
3078  * "mc_addr_nb" of the "rte_port" data structure.
3079  *
3080  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3081  * to be supplied a contiguous array of multicast MAC addresses.
3082  * To comply with this constraint, the set of multicast addresses recorded
3083  * into the pool are systematically compacted at the beginning of the pool.
3084  * Hence, when a multicast address is removed from the pool, all following
3085  * addresses, if any, are copied back to keep the set contiguous.
3086  */
3087 #define MCAST_POOL_INC 32
3088 
3089 static int
3090 mcast_addr_pool_extend(struct rte_port *port)
3091 {
3092 	struct ether_addr *mc_pool;
3093 	size_t mc_pool_size;
3094 
3095 	/*
3096 	 * If a free entry is available at the end of the pool, just
3097 	 * increment the number of recorded multicast addresses.
3098 	 */
3099 	if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3100 		port->mc_addr_nb++;
3101 		return 0;
3102 	}
3103 
3104 	/*
3105 	 * [re]allocate a pool with MCAST_POOL_INC more entries.
3106 	 * The previous test guarantees that port->mc_addr_nb is a multiple
3107 	 * of MCAST_POOL_INC.
3108 	 */
3109 	mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3110 						    MCAST_POOL_INC);
3111 	mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3112 						mc_pool_size);
3113 	if (mc_pool == NULL) {
3114 		printf("allocation of pool of %u multicast addresses failed\n",
3115 		       port->mc_addr_nb + MCAST_POOL_INC);
3116 		return -ENOMEM;
3117 	}
3118 
3119 	port->mc_addr_pool = mc_pool;
3120 	port->mc_addr_nb++;
3121 	return 0;
3122 
3123 }
3124 
3125 static void
3126 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3127 {
3128 	port->mc_addr_nb--;
3129 	if (addr_idx == port->mc_addr_nb) {
3130 		/* No need to recompact the set of multicast addressses. */
3131 		if (port->mc_addr_nb == 0) {
3132 			/* free the pool of multicast addresses. */
3133 			free(port->mc_addr_pool);
3134 			port->mc_addr_pool = NULL;
3135 		}
3136 		return;
3137 	}
3138 	memmove(&port->mc_addr_pool[addr_idx],
3139 		&port->mc_addr_pool[addr_idx + 1],
3140 		sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3141 }
3142 
3143 static void
3144 eth_port_multicast_addr_list_set(uint8_t port_id)
3145 {
3146 	struct rte_port *port;
3147 	int diag;
3148 
3149 	port = &ports[port_id];
3150 	diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3151 					    port->mc_addr_nb);
3152 	if (diag == 0)
3153 		return;
3154 	printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3155 	       port->mc_addr_nb, port_id, -diag);
3156 }
3157 
3158 void
3159 mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr)
3160 {
3161 	struct rte_port *port;
3162 	uint32_t i;
3163 
3164 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3165 		return;
3166 
3167 	port = &ports[port_id];
3168 
3169 	/*
3170 	 * Check that the added multicast MAC address is not already recorded
3171 	 * in the pool of multicast addresses.
3172 	 */
3173 	for (i = 0; i < port->mc_addr_nb; i++) {
3174 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3175 			printf("multicast address already filtered by port\n");
3176 			return;
3177 		}
3178 	}
3179 
3180 	if (mcast_addr_pool_extend(port) != 0)
3181 		return;
3182 	ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3183 	eth_port_multicast_addr_list_set(port_id);
3184 }
3185 
3186 void
3187 mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr)
3188 {
3189 	struct rte_port *port;
3190 	uint32_t i;
3191 
3192 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3193 		return;
3194 
3195 	port = &ports[port_id];
3196 
3197 	/*
3198 	 * Search the pool of multicast MAC addresses for the removed address.
3199 	 */
3200 	for (i = 0; i < port->mc_addr_nb; i++) {
3201 		if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3202 			break;
3203 	}
3204 	if (i == port->mc_addr_nb) {
3205 		printf("multicast address not filtered by port %d\n", port_id);
3206 		return;
3207 	}
3208 
3209 	mcast_addr_pool_remove(port, i);
3210 	eth_port_multicast_addr_list_set(port_id);
3211 }
3212 
3213 void
3214 port_dcb_info_display(uint8_t port_id)
3215 {
3216 	struct rte_eth_dcb_info dcb_info;
3217 	uint16_t i;
3218 	int ret;
3219 	static const char *border = "================";
3220 
3221 	if (port_id_is_invalid(port_id, ENABLED_WARN))
3222 		return;
3223 
3224 	ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3225 	if (ret) {
3226 		printf("\n Failed to get dcb infos on port %-2d\n",
3227 			port_id);
3228 		return;
3229 	}
3230 	printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3231 	printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3232 	printf("\n  TC :        ");
3233 	for (i = 0; i < dcb_info.nb_tcs; i++)
3234 		printf("\t%4d", i);
3235 	printf("\n  Priority :  ");
3236 	for (i = 0; i < dcb_info.nb_tcs; i++)
3237 		printf("\t%4d", dcb_info.prio_tc[i]);
3238 	printf("\n  BW percent :");
3239 	for (i = 0; i < dcb_info.nb_tcs; i++)
3240 		printf("\t%4d%%", dcb_info.tc_bws[i]);
3241 	printf("\n  RXQ base :  ");
3242 	for (i = 0; i < dcb_info.nb_tcs; i++)
3243 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3244 	printf("\n  RXQ number :");
3245 	for (i = 0; i < dcb_info.nb_tcs; i++)
3246 		printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3247 	printf("\n  TXQ base :  ");
3248 	for (i = 0; i < dcb_info.nb_tcs; i++)
3249 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3250 	printf("\n  TXQ number :");
3251 	for (i = 0; i < dcb_info.nb_tcs; i++)
3252 		printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3253 	printf("\n");
3254 }
3255 
3256 uint8_t *
3257 open_ddp_package_file(const char *file_path, uint32_t *size)
3258 {
3259 	FILE *fh = fopen(file_path, "rb");
3260 	uint32_t pkg_size;
3261 	uint8_t *buf = NULL;
3262 	int ret = 0;
3263 
3264 	if (size)
3265 		*size = 0;
3266 
3267 	if (fh == NULL) {
3268 		printf("%s: Failed to open %s\n", __func__, file_path);
3269 		return buf;
3270 	}
3271 
3272 	ret = fseek(fh, 0, SEEK_END);
3273 	if (ret < 0) {
3274 		fclose(fh);
3275 		printf("%s: File operations failed\n", __func__);
3276 		return buf;
3277 	}
3278 
3279 	pkg_size = ftell(fh);
3280 
3281 	buf = (uint8_t *)malloc(pkg_size);
3282 	if (!buf) {
3283 		fclose(fh);
3284 		printf("%s: Failed to malloc memory\n",	__func__);
3285 		return buf;
3286 	}
3287 
3288 	ret = fseek(fh, 0, SEEK_SET);
3289 	if (ret < 0) {
3290 		fclose(fh);
3291 		printf("%s: File seek operation failed\n", __func__);
3292 		close_ddp_package_file(buf);
3293 		return NULL;
3294 	}
3295 
3296 	ret = fread(buf, 1, pkg_size, fh);
3297 	if (ret < 0) {
3298 		fclose(fh);
3299 		printf("%s: File read operation failed\n", __func__);
3300 		close_ddp_package_file(buf);
3301 		return NULL;
3302 	}
3303 
3304 	if (size)
3305 		*size = pkg_size;
3306 
3307 	fclose(fh);
3308 
3309 	return buf;
3310 }
3311 
3312 int
3313 close_ddp_package_file(uint8_t *buf)
3314 {
3315 	if (buf) {
3316 		free((void *)buf);
3317 		return 0;
3318 	}
3319 
3320 	return -1;
3321 }
3322