xref: /dpdk/app/test-pmd/cmdline_flow.c (revision c6dab2a873f65c5a4ea9735aa24d9539426adba4)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2016 6WIND S.A.
5  *   Copyright 2016 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stddef.h>
35 #include <stdint.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38 #include <errno.h>
39 #include <ctype.h>
40 #include <string.h>
41 #include <arpa/inet.h>
42 #include <sys/socket.h>
43 
44 #include <rte_common.h>
45 #include <rte_ethdev.h>
46 #include <rte_byteorder.h>
47 #include <cmdline_parse.h>
48 #include <cmdline_parse_etheraddr.h>
49 #include <rte_flow.h>
50 
51 #include "testpmd.h"
52 
53 /** Parser token indices. */
54 enum index {
55 	/* Special tokens. */
56 	ZERO = 0,
57 	END,
58 
59 	/* Common tokens. */
60 	INTEGER,
61 	UNSIGNED,
62 	PREFIX,
63 	BOOLEAN,
64 	STRING,
65 	MAC_ADDR,
66 	IPV4_ADDR,
67 	IPV6_ADDR,
68 	RULE_ID,
69 	PORT_ID,
70 	GROUP_ID,
71 	PRIORITY_LEVEL,
72 
73 	/* Top-level command. */
74 	FLOW,
75 
76 	/* Sub-level commands. */
77 	VALIDATE,
78 	CREATE,
79 	DESTROY,
80 	FLUSH,
81 	QUERY,
82 	LIST,
83 
84 	/* Destroy arguments. */
85 	DESTROY_RULE,
86 
87 	/* Query arguments. */
88 	QUERY_ACTION,
89 
90 	/* List arguments. */
91 	LIST_GROUP,
92 
93 	/* Validate/create arguments. */
94 	GROUP,
95 	PRIORITY,
96 	INGRESS,
97 	EGRESS,
98 
99 	/* Validate/create pattern. */
100 	PATTERN,
101 	ITEM_PARAM_IS,
102 	ITEM_PARAM_SPEC,
103 	ITEM_PARAM_LAST,
104 	ITEM_PARAM_MASK,
105 	ITEM_PARAM_PREFIX,
106 	ITEM_NEXT,
107 	ITEM_END,
108 	ITEM_VOID,
109 	ITEM_INVERT,
110 	ITEM_ANY,
111 	ITEM_ANY_NUM,
112 	ITEM_PF,
113 	ITEM_VF,
114 	ITEM_VF_ID,
115 	ITEM_PORT,
116 	ITEM_PORT_INDEX,
117 	ITEM_RAW,
118 	ITEM_RAW_RELATIVE,
119 	ITEM_RAW_SEARCH,
120 	ITEM_RAW_OFFSET,
121 	ITEM_RAW_LIMIT,
122 	ITEM_RAW_PATTERN,
123 	ITEM_ETH,
124 	ITEM_ETH_DST,
125 	ITEM_ETH_SRC,
126 	ITEM_ETH_TYPE,
127 	ITEM_VLAN,
128 	ITEM_VLAN_TPID,
129 	ITEM_VLAN_TCI,
130 	ITEM_VLAN_PCP,
131 	ITEM_VLAN_DEI,
132 	ITEM_VLAN_VID,
133 	ITEM_IPV4,
134 	ITEM_IPV4_TOS,
135 	ITEM_IPV4_TTL,
136 	ITEM_IPV4_PROTO,
137 	ITEM_IPV4_SRC,
138 	ITEM_IPV4_DST,
139 	ITEM_IPV6,
140 	ITEM_IPV6_TC,
141 	ITEM_IPV6_FLOW,
142 	ITEM_IPV6_PROTO,
143 	ITEM_IPV6_HOP,
144 	ITEM_IPV6_SRC,
145 	ITEM_IPV6_DST,
146 	ITEM_ICMP,
147 	ITEM_ICMP_TYPE,
148 	ITEM_ICMP_CODE,
149 	ITEM_UDP,
150 	ITEM_UDP_SRC,
151 	ITEM_UDP_DST,
152 	ITEM_TCP,
153 	ITEM_TCP_SRC,
154 	ITEM_TCP_DST,
155 	ITEM_SCTP,
156 	ITEM_SCTP_SRC,
157 	ITEM_SCTP_DST,
158 	ITEM_SCTP_TAG,
159 	ITEM_SCTP_CKSUM,
160 	ITEM_VXLAN,
161 	ITEM_VXLAN_VNI,
162 
163 	/* Validate/create actions. */
164 	ACTIONS,
165 	ACTION_NEXT,
166 	ACTION_END,
167 	ACTION_VOID,
168 	ACTION_PASSTHRU,
169 	ACTION_MARK,
170 	ACTION_MARK_ID,
171 	ACTION_FLAG,
172 	ACTION_QUEUE,
173 	ACTION_QUEUE_INDEX,
174 	ACTION_DROP,
175 	ACTION_COUNT,
176 	ACTION_DUP,
177 	ACTION_DUP_INDEX,
178 	ACTION_RSS,
179 	ACTION_RSS_QUEUES,
180 	ACTION_RSS_QUEUE,
181 	ACTION_PF,
182 	ACTION_VF,
183 	ACTION_VF_ORIGINAL,
184 	ACTION_VF_ID,
185 };
186 
187 /** Size of pattern[] field in struct rte_flow_item_raw. */
188 #define ITEM_RAW_PATTERN_SIZE 36
189 
190 /** Storage size for struct rte_flow_item_raw including pattern. */
191 #define ITEM_RAW_SIZE \
192 	(offsetof(struct rte_flow_item_raw, pattern) + ITEM_RAW_PATTERN_SIZE)
193 
194 /** Number of queue[] entries in struct rte_flow_action_rss. */
195 #define ACTION_RSS_NUM 32
196 
197 /** Storage size for struct rte_flow_action_rss including queues. */
198 #define ACTION_RSS_SIZE \
199 	(offsetof(struct rte_flow_action_rss, queue) + \
200 	 sizeof(*((struct rte_flow_action_rss *)0)->queue) * ACTION_RSS_NUM)
201 
202 /** Maximum number of subsequent tokens and arguments on the stack. */
203 #define CTX_STACK_SIZE 16
204 
205 /** Parser context. */
206 struct context {
207 	/** Stack of subsequent token lists to process. */
208 	const enum index *next[CTX_STACK_SIZE];
209 	/** Arguments for stacked tokens. */
210 	const void *args[CTX_STACK_SIZE];
211 	enum index curr; /**< Current token index. */
212 	enum index prev; /**< Index of the last token seen. */
213 	int next_num; /**< Number of entries in next[]. */
214 	int args_num; /**< Number of entries in args[]. */
215 	uint32_t reparse:1; /**< Start over from the beginning. */
216 	uint32_t eol:1; /**< EOL has been detected. */
217 	uint32_t last:1; /**< No more arguments. */
218 	uint16_t port; /**< Current port ID (for completions). */
219 	uint32_t objdata; /**< Object-specific data. */
220 	void *object; /**< Address of current object for relative offsets. */
221 	void *objmask; /**< Object a full mask must be written to. */
222 };
223 
224 /** Token argument. */
225 struct arg {
226 	uint32_t hton:1; /**< Use network byte ordering. */
227 	uint32_t sign:1; /**< Value is signed. */
228 	uint32_t offset; /**< Relative offset from ctx->object. */
229 	uint32_t size; /**< Field size. */
230 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
231 };
232 
233 /** Parser token definition. */
234 struct token {
235 	/** Type displayed during completion (defaults to "TOKEN"). */
236 	const char *type;
237 	/** Help displayed during completion (defaults to token name). */
238 	const char *help;
239 	/** Private data used by parser functions. */
240 	const void *priv;
241 	/**
242 	 * Lists of subsequent tokens to push on the stack. Each call to the
243 	 * parser consumes the last entry of that stack.
244 	 */
245 	const enum index *const *next;
246 	/** Arguments stack for subsequent tokens that need them. */
247 	const struct arg *const *args;
248 	/**
249 	 * Token-processing callback, returns -1 in case of error, the
250 	 * length of the matched string otherwise. If NULL, attempts to
251 	 * match the token name.
252 	 *
253 	 * If buf is not NULL, the result should be stored in it according
254 	 * to context. An error is returned if not large enough.
255 	 */
256 	int (*call)(struct context *ctx, const struct token *token,
257 		    const char *str, unsigned int len,
258 		    void *buf, unsigned int size);
259 	/**
260 	 * Callback that provides possible values for this token, used for
261 	 * completion. Returns -1 in case of error, the number of possible
262 	 * values otherwise. If NULL, the token name is used.
263 	 *
264 	 * If buf is not NULL, entry index ent is written to buf and the
265 	 * full length of the entry is returned (same behavior as
266 	 * snprintf()).
267 	 */
268 	int (*comp)(struct context *ctx, const struct token *token,
269 		    unsigned int ent, char *buf, unsigned int size);
270 	/** Mandatory token name, no default value. */
271 	const char *name;
272 };
273 
274 /** Static initializer for the next field. */
275 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
276 
277 /** Static initializer for a NEXT() entry. */
278 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
279 
280 /** Static initializer for the args field. */
281 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
282 
283 /** Static initializer for ARGS() to target a field. */
284 #define ARGS_ENTRY(s, f) \
285 	(&(const struct arg){ \
286 		.offset = offsetof(s, f), \
287 		.size = sizeof(((s *)0)->f), \
288 	})
289 
290 /** Static initializer for ARGS() to target a bit-field. */
291 #define ARGS_ENTRY_BF(s, f, b) \
292 	(&(const struct arg){ \
293 		.size = sizeof(s), \
294 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
295 	})
296 
297 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
298 #define ARGS_ENTRY_MASK(s, f, m) \
299 	(&(const struct arg){ \
300 		.offset = offsetof(s, f), \
301 		.size = sizeof(((s *)0)->f), \
302 		.mask = (const void *)(m), \
303 	})
304 
305 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
306 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
307 	(&(const struct arg){ \
308 		.hton = 1, \
309 		.offset = offsetof(s, f), \
310 		.size = sizeof(((s *)0)->f), \
311 		.mask = (const void *)(m), \
312 	})
313 
314 /** Static initializer for ARGS() to target a pointer. */
315 #define ARGS_ENTRY_PTR(s, f) \
316 	(&(const struct arg){ \
317 		.size = sizeof(*((s *)0)->f), \
318 	})
319 
320 /** Static initializer for ARGS() with arbitrary size. */
321 #define ARGS_ENTRY_USZ(s, f, sz) \
322 	(&(const struct arg){ \
323 		.offset = offsetof(s, f), \
324 		.size = (sz), \
325 	})
326 
327 /** Same as ARGS_ENTRY() using network byte ordering. */
328 #define ARGS_ENTRY_HTON(s, f) \
329 	(&(const struct arg){ \
330 		.hton = 1, \
331 		.offset = offsetof(s, f), \
332 		.size = sizeof(((s *)0)->f), \
333 	})
334 
335 /** Parser output buffer layout expected by cmd_flow_parsed(). */
336 struct buffer {
337 	enum index command; /**< Flow command. */
338 	uint16_t port; /**< Affected port ID. */
339 	union {
340 		struct {
341 			struct rte_flow_attr attr;
342 			struct rte_flow_item *pattern;
343 			struct rte_flow_action *actions;
344 			uint32_t pattern_n;
345 			uint32_t actions_n;
346 			uint8_t *data;
347 		} vc; /**< Validate/create arguments. */
348 		struct {
349 			uint32_t *rule;
350 			uint32_t rule_n;
351 		} destroy; /**< Destroy arguments. */
352 		struct {
353 			uint32_t rule;
354 			enum rte_flow_action_type action;
355 		} query; /**< Query arguments. */
356 		struct {
357 			uint32_t *group;
358 			uint32_t group_n;
359 		} list; /**< List arguments. */
360 	} args; /**< Command arguments. */
361 };
362 
363 /** Private data for pattern items. */
364 struct parse_item_priv {
365 	enum rte_flow_item_type type; /**< Item type. */
366 	uint32_t size; /**< Size of item specification structure. */
367 };
368 
369 #define PRIV_ITEM(t, s) \
370 	(&(const struct parse_item_priv){ \
371 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
372 		.size = s, \
373 	})
374 
375 /** Private data for actions. */
376 struct parse_action_priv {
377 	enum rte_flow_action_type type; /**< Action type. */
378 	uint32_t size; /**< Size of action configuration structure. */
379 };
380 
381 #define PRIV_ACTION(t, s) \
382 	(&(const struct parse_action_priv){ \
383 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
384 		.size = s, \
385 	})
386 
387 static const enum index next_vc_attr[] = {
388 	GROUP,
389 	PRIORITY,
390 	INGRESS,
391 	EGRESS,
392 	PATTERN,
393 	ZERO,
394 };
395 
396 static const enum index next_destroy_attr[] = {
397 	DESTROY_RULE,
398 	END,
399 	ZERO,
400 };
401 
402 static const enum index next_list_attr[] = {
403 	LIST_GROUP,
404 	END,
405 	ZERO,
406 };
407 
408 static const enum index item_param[] = {
409 	ITEM_PARAM_IS,
410 	ITEM_PARAM_SPEC,
411 	ITEM_PARAM_LAST,
412 	ITEM_PARAM_MASK,
413 	ITEM_PARAM_PREFIX,
414 	ZERO,
415 };
416 
417 static const enum index next_item[] = {
418 	ITEM_END,
419 	ITEM_VOID,
420 	ITEM_INVERT,
421 	ITEM_ANY,
422 	ITEM_PF,
423 	ITEM_VF,
424 	ITEM_PORT,
425 	ITEM_RAW,
426 	ITEM_ETH,
427 	ITEM_VLAN,
428 	ITEM_IPV4,
429 	ITEM_IPV6,
430 	ITEM_ICMP,
431 	ITEM_UDP,
432 	ITEM_TCP,
433 	ITEM_SCTP,
434 	ITEM_VXLAN,
435 	ZERO,
436 };
437 
438 static const enum index item_any[] = {
439 	ITEM_ANY_NUM,
440 	ITEM_NEXT,
441 	ZERO,
442 };
443 
444 static const enum index item_vf[] = {
445 	ITEM_VF_ID,
446 	ITEM_NEXT,
447 	ZERO,
448 };
449 
450 static const enum index item_port[] = {
451 	ITEM_PORT_INDEX,
452 	ITEM_NEXT,
453 	ZERO,
454 };
455 
456 static const enum index item_raw[] = {
457 	ITEM_RAW_RELATIVE,
458 	ITEM_RAW_SEARCH,
459 	ITEM_RAW_OFFSET,
460 	ITEM_RAW_LIMIT,
461 	ITEM_RAW_PATTERN,
462 	ITEM_NEXT,
463 	ZERO,
464 };
465 
466 static const enum index item_eth[] = {
467 	ITEM_ETH_DST,
468 	ITEM_ETH_SRC,
469 	ITEM_ETH_TYPE,
470 	ITEM_NEXT,
471 	ZERO,
472 };
473 
474 static const enum index item_vlan[] = {
475 	ITEM_VLAN_TPID,
476 	ITEM_VLAN_TCI,
477 	ITEM_VLAN_PCP,
478 	ITEM_VLAN_DEI,
479 	ITEM_VLAN_VID,
480 	ITEM_NEXT,
481 	ZERO,
482 };
483 
484 static const enum index item_ipv4[] = {
485 	ITEM_IPV4_TOS,
486 	ITEM_IPV4_TTL,
487 	ITEM_IPV4_PROTO,
488 	ITEM_IPV4_SRC,
489 	ITEM_IPV4_DST,
490 	ITEM_NEXT,
491 	ZERO,
492 };
493 
494 static const enum index item_ipv6[] = {
495 	ITEM_IPV6_TC,
496 	ITEM_IPV6_FLOW,
497 	ITEM_IPV6_PROTO,
498 	ITEM_IPV6_HOP,
499 	ITEM_IPV6_SRC,
500 	ITEM_IPV6_DST,
501 	ITEM_NEXT,
502 	ZERO,
503 };
504 
505 static const enum index item_icmp[] = {
506 	ITEM_ICMP_TYPE,
507 	ITEM_ICMP_CODE,
508 	ITEM_NEXT,
509 	ZERO,
510 };
511 
512 static const enum index item_udp[] = {
513 	ITEM_UDP_SRC,
514 	ITEM_UDP_DST,
515 	ITEM_NEXT,
516 	ZERO,
517 };
518 
519 static const enum index item_tcp[] = {
520 	ITEM_TCP_SRC,
521 	ITEM_TCP_DST,
522 	ITEM_NEXT,
523 	ZERO,
524 };
525 
526 static const enum index item_sctp[] = {
527 	ITEM_SCTP_SRC,
528 	ITEM_SCTP_DST,
529 	ITEM_SCTP_TAG,
530 	ITEM_SCTP_CKSUM,
531 	ITEM_NEXT,
532 	ZERO,
533 };
534 
535 static const enum index item_vxlan[] = {
536 	ITEM_VXLAN_VNI,
537 	ITEM_NEXT,
538 	ZERO,
539 };
540 
541 static const enum index next_action[] = {
542 	ACTION_END,
543 	ACTION_VOID,
544 	ACTION_PASSTHRU,
545 	ACTION_MARK,
546 	ACTION_FLAG,
547 	ACTION_QUEUE,
548 	ACTION_DROP,
549 	ACTION_COUNT,
550 	ACTION_DUP,
551 	ACTION_RSS,
552 	ACTION_PF,
553 	ACTION_VF,
554 	ZERO,
555 };
556 
557 static const enum index action_mark[] = {
558 	ACTION_MARK_ID,
559 	ACTION_NEXT,
560 	ZERO,
561 };
562 
563 static const enum index action_queue[] = {
564 	ACTION_QUEUE_INDEX,
565 	ACTION_NEXT,
566 	ZERO,
567 };
568 
569 static const enum index action_dup[] = {
570 	ACTION_DUP_INDEX,
571 	ACTION_NEXT,
572 	ZERO,
573 };
574 
575 static const enum index action_rss[] = {
576 	ACTION_RSS_QUEUES,
577 	ACTION_NEXT,
578 	ZERO,
579 };
580 
581 static const enum index action_vf[] = {
582 	ACTION_VF_ORIGINAL,
583 	ACTION_VF_ID,
584 	ACTION_NEXT,
585 	ZERO,
586 };
587 
588 static int parse_init(struct context *, const struct token *,
589 		      const char *, unsigned int,
590 		      void *, unsigned int);
591 static int parse_vc(struct context *, const struct token *,
592 		    const char *, unsigned int,
593 		    void *, unsigned int);
594 static int parse_vc_spec(struct context *, const struct token *,
595 			 const char *, unsigned int, void *, unsigned int);
596 static int parse_vc_conf(struct context *, const struct token *,
597 			 const char *, unsigned int, void *, unsigned int);
598 static int parse_vc_action_rss_queue(struct context *, const struct token *,
599 				     const char *, unsigned int, void *,
600 				     unsigned int);
601 static int parse_destroy(struct context *, const struct token *,
602 			 const char *, unsigned int,
603 			 void *, unsigned int);
604 static int parse_flush(struct context *, const struct token *,
605 		       const char *, unsigned int,
606 		       void *, unsigned int);
607 static int parse_query(struct context *, const struct token *,
608 		       const char *, unsigned int,
609 		       void *, unsigned int);
610 static int parse_action(struct context *, const struct token *,
611 			const char *, unsigned int,
612 			void *, unsigned int);
613 static int parse_list(struct context *, const struct token *,
614 		      const char *, unsigned int,
615 		      void *, unsigned int);
616 static int parse_int(struct context *, const struct token *,
617 		     const char *, unsigned int,
618 		     void *, unsigned int);
619 static int parse_prefix(struct context *, const struct token *,
620 			const char *, unsigned int,
621 			void *, unsigned int);
622 static int parse_boolean(struct context *, const struct token *,
623 			 const char *, unsigned int,
624 			 void *, unsigned int);
625 static int parse_string(struct context *, const struct token *,
626 			const char *, unsigned int,
627 			void *, unsigned int);
628 static int parse_mac_addr(struct context *, const struct token *,
629 			  const char *, unsigned int,
630 			  void *, unsigned int);
631 static int parse_ipv4_addr(struct context *, const struct token *,
632 			   const char *, unsigned int,
633 			   void *, unsigned int);
634 static int parse_ipv6_addr(struct context *, const struct token *,
635 			   const char *, unsigned int,
636 			   void *, unsigned int);
637 static int parse_port(struct context *, const struct token *,
638 		      const char *, unsigned int,
639 		      void *, unsigned int);
640 static int comp_none(struct context *, const struct token *,
641 		     unsigned int, char *, unsigned int);
642 static int comp_boolean(struct context *, const struct token *,
643 			unsigned int, char *, unsigned int);
644 static int comp_action(struct context *, const struct token *,
645 		       unsigned int, char *, unsigned int);
646 static int comp_port(struct context *, const struct token *,
647 		     unsigned int, char *, unsigned int);
648 static int comp_rule_id(struct context *, const struct token *,
649 			unsigned int, char *, unsigned int);
650 static int comp_vc_action_rss_queue(struct context *, const struct token *,
651 				    unsigned int, char *, unsigned int);
652 
653 /** Token definitions. */
654 static const struct token token_list[] = {
655 	/* Special tokens. */
656 	[ZERO] = {
657 		.name = "ZERO",
658 		.help = "null entry, abused as the entry point",
659 		.next = NEXT(NEXT_ENTRY(FLOW)),
660 	},
661 	[END] = {
662 		.name = "",
663 		.type = "RETURN",
664 		.help = "command may end here",
665 	},
666 	/* Common tokens. */
667 	[INTEGER] = {
668 		.name = "{int}",
669 		.type = "INTEGER",
670 		.help = "integer value",
671 		.call = parse_int,
672 		.comp = comp_none,
673 	},
674 	[UNSIGNED] = {
675 		.name = "{unsigned}",
676 		.type = "UNSIGNED",
677 		.help = "unsigned integer value",
678 		.call = parse_int,
679 		.comp = comp_none,
680 	},
681 	[PREFIX] = {
682 		.name = "{prefix}",
683 		.type = "PREFIX",
684 		.help = "prefix length for bit-mask",
685 		.call = parse_prefix,
686 		.comp = comp_none,
687 	},
688 	[BOOLEAN] = {
689 		.name = "{boolean}",
690 		.type = "BOOLEAN",
691 		.help = "any boolean value",
692 		.call = parse_boolean,
693 		.comp = comp_boolean,
694 	},
695 	[STRING] = {
696 		.name = "{string}",
697 		.type = "STRING",
698 		.help = "fixed string",
699 		.call = parse_string,
700 		.comp = comp_none,
701 	},
702 	[MAC_ADDR] = {
703 		.name = "{MAC address}",
704 		.type = "MAC-48",
705 		.help = "standard MAC address notation",
706 		.call = parse_mac_addr,
707 		.comp = comp_none,
708 	},
709 	[IPV4_ADDR] = {
710 		.name = "{IPv4 address}",
711 		.type = "IPV4 ADDRESS",
712 		.help = "standard IPv4 address notation",
713 		.call = parse_ipv4_addr,
714 		.comp = comp_none,
715 	},
716 	[IPV6_ADDR] = {
717 		.name = "{IPv6 address}",
718 		.type = "IPV6 ADDRESS",
719 		.help = "standard IPv6 address notation",
720 		.call = parse_ipv6_addr,
721 		.comp = comp_none,
722 	},
723 	[RULE_ID] = {
724 		.name = "{rule id}",
725 		.type = "RULE ID",
726 		.help = "rule identifier",
727 		.call = parse_int,
728 		.comp = comp_rule_id,
729 	},
730 	[PORT_ID] = {
731 		.name = "{port_id}",
732 		.type = "PORT ID",
733 		.help = "port identifier",
734 		.call = parse_port,
735 		.comp = comp_port,
736 	},
737 	[GROUP_ID] = {
738 		.name = "{group_id}",
739 		.type = "GROUP ID",
740 		.help = "group identifier",
741 		.call = parse_int,
742 		.comp = comp_none,
743 	},
744 	[PRIORITY_LEVEL] = {
745 		.name = "{level}",
746 		.type = "PRIORITY",
747 		.help = "priority level",
748 		.call = parse_int,
749 		.comp = comp_none,
750 	},
751 	/* Top-level command. */
752 	[FLOW] = {
753 		.name = "flow",
754 		.type = "{command} {port_id} [{arg} [...]]",
755 		.help = "manage ingress/egress flow rules",
756 		.next = NEXT(NEXT_ENTRY
757 			     (VALIDATE,
758 			      CREATE,
759 			      DESTROY,
760 			      FLUSH,
761 			      LIST,
762 			      QUERY)),
763 		.call = parse_init,
764 	},
765 	/* Sub-level commands. */
766 	[VALIDATE] = {
767 		.name = "validate",
768 		.help = "check whether a flow rule can be created",
769 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
770 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
771 		.call = parse_vc,
772 	},
773 	[CREATE] = {
774 		.name = "create",
775 		.help = "create a flow rule",
776 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
777 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
778 		.call = parse_vc,
779 	},
780 	[DESTROY] = {
781 		.name = "destroy",
782 		.help = "destroy specific flow rules",
783 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
784 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
785 		.call = parse_destroy,
786 	},
787 	[FLUSH] = {
788 		.name = "flush",
789 		.help = "destroy all flow rules",
790 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
791 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
792 		.call = parse_flush,
793 	},
794 	[QUERY] = {
795 		.name = "query",
796 		.help = "query an existing flow rule",
797 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
798 			     NEXT_ENTRY(RULE_ID),
799 			     NEXT_ENTRY(PORT_ID)),
800 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
801 			     ARGS_ENTRY(struct buffer, args.query.rule),
802 			     ARGS_ENTRY(struct buffer, port)),
803 		.call = parse_query,
804 	},
805 	[LIST] = {
806 		.name = "list",
807 		.help = "list existing flow rules",
808 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
809 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
810 		.call = parse_list,
811 	},
812 	/* Destroy arguments. */
813 	[DESTROY_RULE] = {
814 		.name = "rule",
815 		.help = "specify a rule identifier",
816 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
817 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
818 		.call = parse_destroy,
819 	},
820 	/* Query arguments. */
821 	[QUERY_ACTION] = {
822 		.name = "{action}",
823 		.type = "ACTION",
824 		.help = "action to query, must be part of the rule",
825 		.call = parse_action,
826 		.comp = comp_action,
827 	},
828 	/* List arguments. */
829 	[LIST_GROUP] = {
830 		.name = "group",
831 		.help = "specify a group",
832 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
833 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
834 		.call = parse_list,
835 	},
836 	/* Validate/create attributes. */
837 	[GROUP] = {
838 		.name = "group",
839 		.help = "specify a group",
840 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
841 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
842 		.call = parse_vc,
843 	},
844 	[PRIORITY] = {
845 		.name = "priority",
846 		.help = "specify a priority level",
847 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
848 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
849 		.call = parse_vc,
850 	},
851 	[INGRESS] = {
852 		.name = "ingress",
853 		.help = "affect rule to ingress",
854 		.next = NEXT(next_vc_attr),
855 		.call = parse_vc,
856 	},
857 	[EGRESS] = {
858 		.name = "egress",
859 		.help = "affect rule to egress",
860 		.next = NEXT(next_vc_attr),
861 		.call = parse_vc,
862 	},
863 	/* Validate/create pattern. */
864 	[PATTERN] = {
865 		.name = "pattern",
866 		.help = "submit a list of pattern items",
867 		.next = NEXT(next_item),
868 		.call = parse_vc,
869 	},
870 	[ITEM_PARAM_IS] = {
871 		.name = "is",
872 		.help = "match value perfectly (with full bit-mask)",
873 		.call = parse_vc_spec,
874 	},
875 	[ITEM_PARAM_SPEC] = {
876 		.name = "spec",
877 		.help = "match value according to configured bit-mask",
878 		.call = parse_vc_spec,
879 	},
880 	[ITEM_PARAM_LAST] = {
881 		.name = "last",
882 		.help = "specify upper bound to establish a range",
883 		.call = parse_vc_spec,
884 	},
885 	[ITEM_PARAM_MASK] = {
886 		.name = "mask",
887 		.help = "specify bit-mask with relevant bits set to one",
888 		.call = parse_vc_spec,
889 	},
890 	[ITEM_PARAM_PREFIX] = {
891 		.name = "prefix",
892 		.help = "generate bit-mask from a prefix length",
893 		.call = parse_vc_spec,
894 	},
895 	[ITEM_NEXT] = {
896 		.name = "/",
897 		.help = "specify next pattern item",
898 		.next = NEXT(next_item),
899 	},
900 	[ITEM_END] = {
901 		.name = "end",
902 		.help = "end list of pattern items",
903 		.priv = PRIV_ITEM(END, 0),
904 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
905 		.call = parse_vc,
906 	},
907 	[ITEM_VOID] = {
908 		.name = "void",
909 		.help = "no-op pattern item",
910 		.priv = PRIV_ITEM(VOID, 0),
911 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
912 		.call = parse_vc,
913 	},
914 	[ITEM_INVERT] = {
915 		.name = "invert",
916 		.help = "perform actions when pattern does not match",
917 		.priv = PRIV_ITEM(INVERT, 0),
918 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
919 		.call = parse_vc,
920 	},
921 	[ITEM_ANY] = {
922 		.name = "any",
923 		.help = "match any protocol for the current layer",
924 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
925 		.next = NEXT(item_any),
926 		.call = parse_vc,
927 	},
928 	[ITEM_ANY_NUM] = {
929 		.name = "num",
930 		.help = "number of layers covered",
931 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
932 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
933 	},
934 	[ITEM_PF] = {
935 		.name = "pf",
936 		.help = "match packets addressed to the physical function",
937 		.priv = PRIV_ITEM(PF, 0),
938 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
939 		.call = parse_vc,
940 	},
941 	[ITEM_VF] = {
942 		.name = "vf",
943 		.help = "match packets addressed to a virtual function ID",
944 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
945 		.next = NEXT(item_vf),
946 		.call = parse_vc,
947 	},
948 	[ITEM_VF_ID] = {
949 		.name = "id",
950 		.help = "destination VF ID",
951 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
952 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
953 	},
954 	[ITEM_PORT] = {
955 		.name = "port",
956 		.help = "device-specific physical port index to use",
957 		.priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
958 		.next = NEXT(item_port),
959 		.call = parse_vc,
960 	},
961 	[ITEM_PORT_INDEX] = {
962 		.name = "index",
963 		.help = "physical port index",
964 		.next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
965 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
966 	},
967 	[ITEM_RAW] = {
968 		.name = "raw",
969 		.help = "match an arbitrary byte string",
970 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
971 		.next = NEXT(item_raw),
972 		.call = parse_vc,
973 	},
974 	[ITEM_RAW_RELATIVE] = {
975 		.name = "relative",
976 		.help = "look for pattern after the previous item",
977 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
978 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
979 					   relative, 1)),
980 	},
981 	[ITEM_RAW_SEARCH] = {
982 		.name = "search",
983 		.help = "search pattern from offset (see also limit)",
984 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
985 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
986 					   search, 1)),
987 	},
988 	[ITEM_RAW_OFFSET] = {
989 		.name = "offset",
990 		.help = "absolute or relative offset for pattern",
991 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
992 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
993 	},
994 	[ITEM_RAW_LIMIT] = {
995 		.name = "limit",
996 		.help = "search area limit for start of pattern",
997 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
998 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
999 	},
1000 	[ITEM_RAW_PATTERN] = {
1001 		.name = "pattern",
1002 		.help = "byte string to look for",
1003 		.next = NEXT(item_raw,
1004 			     NEXT_ENTRY(STRING),
1005 			     NEXT_ENTRY(ITEM_PARAM_IS,
1006 					ITEM_PARAM_SPEC,
1007 					ITEM_PARAM_MASK)),
1008 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, length),
1009 			     ARGS_ENTRY_USZ(struct rte_flow_item_raw,
1010 					    pattern,
1011 					    ITEM_RAW_PATTERN_SIZE)),
1012 	},
1013 	[ITEM_ETH] = {
1014 		.name = "eth",
1015 		.help = "match Ethernet header",
1016 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1017 		.next = NEXT(item_eth),
1018 		.call = parse_vc,
1019 	},
1020 	[ITEM_ETH_DST] = {
1021 		.name = "dst",
1022 		.help = "destination MAC",
1023 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1024 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_eth, dst)),
1025 	},
1026 	[ITEM_ETH_SRC] = {
1027 		.name = "src",
1028 		.help = "source MAC",
1029 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1030 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_eth, src)),
1031 	},
1032 	[ITEM_ETH_TYPE] = {
1033 		.name = "type",
1034 		.help = "EtherType",
1035 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1036 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1037 	},
1038 	[ITEM_VLAN] = {
1039 		.name = "vlan",
1040 		.help = "match 802.1Q/ad VLAN tag",
1041 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1042 		.next = NEXT(item_vlan),
1043 		.call = parse_vc,
1044 	},
1045 	[ITEM_VLAN_TPID] = {
1046 		.name = "tpid",
1047 		.help = "tag protocol identifier",
1048 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1049 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
1050 	},
1051 	[ITEM_VLAN_TCI] = {
1052 		.name = "tci",
1053 		.help = "tag control information",
1054 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1055 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1056 	},
1057 	[ITEM_VLAN_PCP] = {
1058 		.name = "pcp",
1059 		.help = "priority code point",
1060 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1061 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1062 						  tci, "\xe0\x00")),
1063 	},
1064 	[ITEM_VLAN_DEI] = {
1065 		.name = "dei",
1066 		.help = "drop eligible indicator",
1067 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1068 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1069 						  tci, "\x10\x00")),
1070 	},
1071 	[ITEM_VLAN_VID] = {
1072 		.name = "vid",
1073 		.help = "VLAN identifier",
1074 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1075 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1076 						  tci, "\x0f\xff")),
1077 	},
1078 	[ITEM_IPV4] = {
1079 		.name = "ipv4",
1080 		.help = "match IPv4 header",
1081 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1082 		.next = NEXT(item_ipv4),
1083 		.call = parse_vc,
1084 	},
1085 	[ITEM_IPV4_TOS] = {
1086 		.name = "tos",
1087 		.help = "type of service",
1088 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1089 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1090 					     hdr.type_of_service)),
1091 	},
1092 	[ITEM_IPV4_TTL] = {
1093 		.name = "ttl",
1094 		.help = "time to live",
1095 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1096 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1097 					     hdr.time_to_live)),
1098 	},
1099 	[ITEM_IPV4_PROTO] = {
1100 		.name = "proto",
1101 		.help = "next protocol ID",
1102 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1103 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1104 					     hdr.next_proto_id)),
1105 	},
1106 	[ITEM_IPV4_SRC] = {
1107 		.name = "src",
1108 		.help = "source address",
1109 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1110 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1111 					     hdr.src_addr)),
1112 	},
1113 	[ITEM_IPV4_DST] = {
1114 		.name = "dst",
1115 		.help = "destination address",
1116 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1117 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1118 					     hdr.dst_addr)),
1119 	},
1120 	[ITEM_IPV6] = {
1121 		.name = "ipv6",
1122 		.help = "match IPv6 header",
1123 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1124 		.next = NEXT(item_ipv6),
1125 		.call = parse_vc,
1126 	},
1127 	[ITEM_IPV6_TC] = {
1128 		.name = "tc",
1129 		.help = "traffic class",
1130 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1131 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1132 						  hdr.vtc_flow,
1133 						  "\x0f\xf0\x00\x00")),
1134 	},
1135 	[ITEM_IPV6_FLOW] = {
1136 		.name = "flow",
1137 		.help = "flow label",
1138 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1139 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1140 						  hdr.vtc_flow,
1141 						  "\x00\x0f\xff\xff")),
1142 	},
1143 	[ITEM_IPV6_PROTO] = {
1144 		.name = "proto",
1145 		.help = "protocol (next header)",
1146 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1147 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1148 					     hdr.proto)),
1149 	},
1150 	[ITEM_IPV6_HOP] = {
1151 		.name = "hop",
1152 		.help = "hop limit",
1153 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1154 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1155 					     hdr.hop_limits)),
1156 	},
1157 	[ITEM_IPV6_SRC] = {
1158 		.name = "src",
1159 		.help = "source address",
1160 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1161 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1162 					     hdr.src_addr)),
1163 	},
1164 	[ITEM_IPV6_DST] = {
1165 		.name = "dst",
1166 		.help = "destination address",
1167 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1168 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1169 					     hdr.dst_addr)),
1170 	},
1171 	[ITEM_ICMP] = {
1172 		.name = "icmp",
1173 		.help = "match ICMP header",
1174 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1175 		.next = NEXT(item_icmp),
1176 		.call = parse_vc,
1177 	},
1178 	[ITEM_ICMP_TYPE] = {
1179 		.name = "type",
1180 		.help = "ICMP packet type",
1181 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1182 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1183 					     hdr.icmp_type)),
1184 	},
1185 	[ITEM_ICMP_CODE] = {
1186 		.name = "code",
1187 		.help = "ICMP packet code",
1188 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1189 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1190 					     hdr.icmp_code)),
1191 	},
1192 	[ITEM_UDP] = {
1193 		.name = "udp",
1194 		.help = "match UDP header",
1195 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1196 		.next = NEXT(item_udp),
1197 		.call = parse_vc,
1198 	},
1199 	[ITEM_UDP_SRC] = {
1200 		.name = "src",
1201 		.help = "UDP source port",
1202 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1203 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1204 					     hdr.src_port)),
1205 	},
1206 	[ITEM_UDP_DST] = {
1207 		.name = "dst",
1208 		.help = "UDP destination port",
1209 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1210 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1211 					     hdr.dst_port)),
1212 	},
1213 	[ITEM_TCP] = {
1214 		.name = "tcp",
1215 		.help = "match TCP header",
1216 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1217 		.next = NEXT(item_tcp),
1218 		.call = parse_vc,
1219 	},
1220 	[ITEM_TCP_SRC] = {
1221 		.name = "src",
1222 		.help = "TCP source port",
1223 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1224 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1225 					     hdr.src_port)),
1226 	},
1227 	[ITEM_TCP_DST] = {
1228 		.name = "dst",
1229 		.help = "TCP destination port",
1230 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1231 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1232 					     hdr.dst_port)),
1233 	},
1234 	[ITEM_SCTP] = {
1235 		.name = "sctp",
1236 		.help = "match SCTP header",
1237 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1238 		.next = NEXT(item_sctp),
1239 		.call = parse_vc,
1240 	},
1241 	[ITEM_SCTP_SRC] = {
1242 		.name = "src",
1243 		.help = "SCTP source port",
1244 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1245 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1246 					     hdr.src_port)),
1247 	},
1248 	[ITEM_SCTP_DST] = {
1249 		.name = "dst",
1250 		.help = "SCTP destination port",
1251 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1252 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1253 					     hdr.dst_port)),
1254 	},
1255 	[ITEM_SCTP_TAG] = {
1256 		.name = "tag",
1257 		.help = "validation tag",
1258 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1259 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1260 					     hdr.tag)),
1261 	},
1262 	[ITEM_SCTP_CKSUM] = {
1263 		.name = "cksum",
1264 		.help = "checksum",
1265 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1266 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1267 					     hdr.cksum)),
1268 	},
1269 	[ITEM_VXLAN] = {
1270 		.name = "vxlan",
1271 		.help = "match VXLAN header",
1272 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1273 		.next = NEXT(item_vxlan),
1274 		.call = parse_vc,
1275 	},
1276 	[ITEM_VXLAN_VNI] = {
1277 		.name = "vni",
1278 		.help = "VXLAN identifier",
1279 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1280 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1281 	},
1282 	/* Validate/create actions. */
1283 	[ACTIONS] = {
1284 		.name = "actions",
1285 		.help = "submit a list of associated actions",
1286 		.next = NEXT(next_action),
1287 		.call = parse_vc,
1288 	},
1289 	[ACTION_NEXT] = {
1290 		.name = "/",
1291 		.help = "specify next action",
1292 		.next = NEXT(next_action),
1293 	},
1294 	[ACTION_END] = {
1295 		.name = "end",
1296 		.help = "end list of actions",
1297 		.priv = PRIV_ACTION(END, 0),
1298 		.call = parse_vc,
1299 	},
1300 	[ACTION_VOID] = {
1301 		.name = "void",
1302 		.help = "no-op action",
1303 		.priv = PRIV_ACTION(VOID, 0),
1304 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1305 		.call = parse_vc,
1306 	},
1307 	[ACTION_PASSTHRU] = {
1308 		.name = "passthru",
1309 		.help = "let subsequent rule process matched packets",
1310 		.priv = PRIV_ACTION(PASSTHRU, 0),
1311 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1312 		.call = parse_vc,
1313 	},
1314 	[ACTION_MARK] = {
1315 		.name = "mark",
1316 		.help = "attach 32 bit value to packets",
1317 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1318 		.next = NEXT(action_mark),
1319 		.call = parse_vc,
1320 	},
1321 	[ACTION_MARK_ID] = {
1322 		.name = "id",
1323 		.help = "32 bit value to return with packets",
1324 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1325 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1326 		.call = parse_vc_conf,
1327 	},
1328 	[ACTION_FLAG] = {
1329 		.name = "flag",
1330 		.help = "flag packets",
1331 		.priv = PRIV_ACTION(FLAG, 0),
1332 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1333 		.call = parse_vc,
1334 	},
1335 	[ACTION_QUEUE] = {
1336 		.name = "queue",
1337 		.help = "assign packets to a given queue index",
1338 		.priv = PRIV_ACTION(QUEUE,
1339 				    sizeof(struct rte_flow_action_queue)),
1340 		.next = NEXT(action_queue),
1341 		.call = parse_vc,
1342 	},
1343 	[ACTION_QUEUE_INDEX] = {
1344 		.name = "index",
1345 		.help = "queue index to use",
1346 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1347 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1348 		.call = parse_vc_conf,
1349 	},
1350 	[ACTION_DROP] = {
1351 		.name = "drop",
1352 		.help = "drop packets (note: passthru has priority)",
1353 		.priv = PRIV_ACTION(DROP, 0),
1354 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1355 		.call = parse_vc,
1356 	},
1357 	[ACTION_COUNT] = {
1358 		.name = "count",
1359 		.help = "enable counters for this rule",
1360 		.priv = PRIV_ACTION(COUNT, 0),
1361 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1362 		.call = parse_vc,
1363 	},
1364 	[ACTION_DUP] = {
1365 		.name = "dup",
1366 		.help = "duplicate packets to a given queue index",
1367 		.priv = PRIV_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1368 		.next = NEXT(action_dup),
1369 		.call = parse_vc,
1370 	},
1371 	[ACTION_DUP_INDEX] = {
1372 		.name = "index",
1373 		.help = "queue index to duplicate packets to",
1374 		.next = NEXT(action_dup, NEXT_ENTRY(UNSIGNED)),
1375 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_dup, index)),
1376 		.call = parse_vc_conf,
1377 	},
1378 	[ACTION_RSS] = {
1379 		.name = "rss",
1380 		.help = "spread packets among several queues",
1381 		.priv = PRIV_ACTION(RSS, ACTION_RSS_SIZE),
1382 		.next = NEXT(action_rss),
1383 		.call = parse_vc,
1384 	},
1385 	[ACTION_RSS_QUEUES] = {
1386 		.name = "queues",
1387 		.help = "queue indices to use",
1388 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1389 		.call = parse_vc_conf,
1390 	},
1391 	[ACTION_RSS_QUEUE] = {
1392 		.name = "{queue}",
1393 		.help = "queue index",
1394 		.call = parse_vc_action_rss_queue,
1395 		.comp = comp_vc_action_rss_queue,
1396 	},
1397 	[ACTION_PF] = {
1398 		.name = "pf",
1399 		.help = "redirect packets to physical device function",
1400 		.priv = PRIV_ACTION(PF, 0),
1401 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1402 		.call = parse_vc,
1403 	},
1404 	[ACTION_VF] = {
1405 		.name = "vf",
1406 		.help = "redirect packets to virtual device function",
1407 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1408 		.next = NEXT(action_vf),
1409 		.call = parse_vc,
1410 	},
1411 	[ACTION_VF_ORIGINAL] = {
1412 		.name = "original",
1413 		.help = "use original VF ID if possible",
1414 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
1415 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
1416 					   original, 1)),
1417 		.call = parse_vc_conf,
1418 	},
1419 	[ACTION_VF_ID] = {
1420 		.name = "id",
1421 		.help = "VF ID to redirect packets to",
1422 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
1423 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
1424 		.call = parse_vc_conf,
1425 	},
1426 };
1427 
1428 /** Remove and return last entry from argument stack. */
1429 static const struct arg *
1430 pop_args(struct context *ctx)
1431 {
1432 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
1433 }
1434 
1435 /** Add entry on top of the argument stack. */
1436 static int
1437 push_args(struct context *ctx, const struct arg *arg)
1438 {
1439 	if (ctx->args_num == CTX_STACK_SIZE)
1440 		return -1;
1441 	ctx->args[ctx->args_num++] = arg;
1442 	return 0;
1443 }
1444 
1445 /** Spread value into buffer according to bit-mask. */
1446 static size_t
1447 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
1448 {
1449 	uint32_t i = arg->size;
1450 	uint32_t end = 0;
1451 	int sub = 1;
1452 	int add = 0;
1453 	size_t len = 0;
1454 
1455 	if (!arg->mask)
1456 		return 0;
1457 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1458 	if (!arg->hton) {
1459 		i = 0;
1460 		end = arg->size;
1461 		sub = 0;
1462 		add = 1;
1463 	}
1464 #endif
1465 	while (i != end) {
1466 		unsigned int shift = 0;
1467 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
1468 
1469 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
1470 			if (!(arg->mask[i] & (1 << shift)))
1471 				continue;
1472 			++len;
1473 			if (!dst)
1474 				continue;
1475 			*buf &= ~(1 << shift);
1476 			*buf |= (val & 1) << shift;
1477 			val >>= 1;
1478 		}
1479 		i += add;
1480 	}
1481 	return len;
1482 }
1483 
1484 /**
1485  * Parse a prefix length and generate a bit-mask.
1486  *
1487  * Last argument (ctx->args) is retrieved to determine mask size, storage
1488  * location and whether the result must use network byte ordering.
1489  */
1490 static int
1491 parse_prefix(struct context *ctx, const struct token *token,
1492 	     const char *str, unsigned int len,
1493 	     void *buf, unsigned int size)
1494 {
1495 	const struct arg *arg = pop_args(ctx);
1496 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
1497 	char *end;
1498 	uintmax_t u;
1499 	unsigned int bytes;
1500 	unsigned int extra;
1501 
1502 	(void)token;
1503 	/* Argument is expected. */
1504 	if (!arg)
1505 		return -1;
1506 	errno = 0;
1507 	u = strtoumax(str, &end, 0);
1508 	if (errno || (size_t)(end - str) != len)
1509 		goto error;
1510 	if (arg->mask) {
1511 		uintmax_t v = 0;
1512 
1513 		extra = arg_entry_bf_fill(NULL, 0, arg);
1514 		if (u > extra)
1515 			goto error;
1516 		if (!ctx->object)
1517 			return len;
1518 		extra -= u;
1519 		while (u--)
1520 			(v <<= 1, v |= 1);
1521 		v <<= extra;
1522 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
1523 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
1524 			goto error;
1525 		return len;
1526 	}
1527 	bytes = u / 8;
1528 	extra = u % 8;
1529 	size = arg->size;
1530 	if (bytes > size || bytes + !!extra > size)
1531 		goto error;
1532 	if (!ctx->object)
1533 		return len;
1534 	buf = (uint8_t *)ctx->object + arg->offset;
1535 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1536 	if (!arg->hton) {
1537 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
1538 		memset(buf, 0x00, size - bytes);
1539 		if (extra)
1540 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
1541 	} else
1542 #endif
1543 	{
1544 		memset(buf, 0xff, bytes);
1545 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
1546 		if (extra)
1547 			((uint8_t *)buf)[bytes] = conv[extra];
1548 	}
1549 	if (ctx->objmask)
1550 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
1551 	return len;
1552 error:
1553 	push_args(ctx, arg);
1554 	return -1;
1555 }
1556 
1557 /** Default parsing function for token name matching. */
1558 static int
1559 parse_default(struct context *ctx, const struct token *token,
1560 	      const char *str, unsigned int len,
1561 	      void *buf, unsigned int size)
1562 {
1563 	(void)ctx;
1564 	(void)buf;
1565 	(void)size;
1566 	if (strncmp(str, token->name, len))
1567 		return -1;
1568 	return len;
1569 }
1570 
1571 /** Parse flow command, initialize output buffer for subsequent tokens. */
1572 static int
1573 parse_init(struct context *ctx, const struct token *token,
1574 	   const char *str, unsigned int len,
1575 	   void *buf, unsigned int size)
1576 {
1577 	struct buffer *out = buf;
1578 
1579 	/* Token name must match. */
1580 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1581 		return -1;
1582 	/* Nothing else to do if there is no buffer. */
1583 	if (!out)
1584 		return len;
1585 	/* Make sure buffer is large enough. */
1586 	if (size < sizeof(*out))
1587 		return -1;
1588 	/* Initialize buffer. */
1589 	memset(out, 0x00, sizeof(*out));
1590 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
1591 	ctx->objdata = 0;
1592 	ctx->object = out;
1593 	ctx->objmask = NULL;
1594 	return len;
1595 }
1596 
1597 /** Parse tokens for validate/create commands. */
1598 static int
1599 parse_vc(struct context *ctx, const struct token *token,
1600 	 const char *str, unsigned int len,
1601 	 void *buf, unsigned int size)
1602 {
1603 	struct buffer *out = buf;
1604 	uint8_t *data;
1605 	uint32_t data_size;
1606 
1607 	/* Token name must match. */
1608 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1609 		return -1;
1610 	/* Nothing else to do if there is no buffer. */
1611 	if (!out)
1612 		return len;
1613 	if (!out->command) {
1614 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
1615 			return -1;
1616 		if (sizeof(*out) > size)
1617 			return -1;
1618 		out->command = ctx->curr;
1619 		ctx->objdata = 0;
1620 		ctx->object = out;
1621 		ctx->objmask = NULL;
1622 		out->args.vc.data = (uint8_t *)out + size;
1623 		return len;
1624 	}
1625 	ctx->objdata = 0;
1626 	ctx->object = &out->args.vc.attr;
1627 	ctx->objmask = NULL;
1628 	switch (ctx->curr) {
1629 	case GROUP:
1630 	case PRIORITY:
1631 		return len;
1632 	case INGRESS:
1633 		out->args.vc.attr.ingress = 1;
1634 		return len;
1635 	case EGRESS:
1636 		out->args.vc.attr.egress = 1;
1637 		return len;
1638 	case PATTERN:
1639 		out->args.vc.pattern =
1640 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1641 					       sizeof(double));
1642 		ctx->object = out->args.vc.pattern;
1643 		ctx->objmask = NULL;
1644 		return len;
1645 	case ACTIONS:
1646 		out->args.vc.actions =
1647 			(void *)RTE_ALIGN_CEIL((uintptr_t)
1648 					       (out->args.vc.pattern +
1649 						out->args.vc.pattern_n),
1650 					       sizeof(double));
1651 		ctx->object = out->args.vc.actions;
1652 		ctx->objmask = NULL;
1653 		return len;
1654 	default:
1655 		if (!token->priv)
1656 			return -1;
1657 		break;
1658 	}
1659 	if (!out->args.vc.actions) {
1660 		const struct parse_item_priv *priv = token->priv;
1661 		struct rte_flow_item *item =
1662 			out->args.vc.pattern + out->args.vc.pattern_n;
1663 
1664 		data_size = priv->size * 3; /* spec, last, mask */
1665 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1666 					       (out->args.vc.data - data_size),
1667 					       sizeof(double));
1668 		if ((uint8_t *)item + sizeof(*item) > data)
1669 			return -1;
1670 		*item = (struct rte_flow_item){
1671 			.type = priv->type,
1672 		};
1673 		++out->args.vc.pattern_n;
1674 		ctx->object = item;
1675 		ctx->objmask = NULL;
1676 	} else {
1677 		const struct parse_action_priv *priv = token->priv;
1678 		struct rte_flow_action *action =
1679 			out->args.vc.actions + out->args.vc.actions_n;
1680 
1681 		data_size = priv->size; /* configuration */
1682 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1683 					       (out->args.vc.data - data_size),
1684 					       sizeof(double));
1685 		if ((uint8_t *)action + sizeof(*action) > data)
1686 			return -1;
1687 		*action = (struct rte_flow_action){
1688 			.type = priv->type,
1689 		};
1690 		++out->args.vc.actions_n;
1691 		ctx->object = action;
1692 		ctx->objmask = NULL;
1693 	}
1694 	memset(data, 0, data_size);
1695 	out->args.vc.data = data;
1696 	ctx->objdata = data_size;
1697 	return len;
1698 }
1699 
1700 /** Parse pattern item parameter type. */
1701 static int
1702 parse_vc_spec(struct context *ctx, const struct token *token,
1703 	      const char *str, unsigned int len,
1704 	      void *buf, unsigned int size)
1705 {
1706 	struct buffer *out = buf;
1707 	struct rte_flow_item *item;
1708 	uint32_t data_size;
1709 	int index;
1710 	int objmask = 0;
1711 
1712 	(void)size;
1713 	/* Token name must match. */
1714 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1715 		return -1;
1716 	/* Parse parameter types. */
1717 	switch (ctx->curr) {
1718 	case ITEM_PARAM_IS:
1719 		index = 0;
1720 		objmask = 1;
1721 		break;
1722 	case ITEM_PARAM_SPEC:
1723 		index = 0;
1724 		break;
1725 	case ITEM_PARAM_LAST:
1726 		index = 1;
1727 		break;
1728 	case ITEM_PARAM_PREFIX:
1729 		/* Modify next token to expect a prefix. */
1730 		if (ctx->next_num < 2)
1731 			return -1;
1732 		ctx->next[ctx->next_num - 2] = NEXT_ENTRY(PREFIX);
1733 		/* Fall through. */
1734 	case ITEM_PARAM_MASK:
1735 		index = 2;
1736 		break;
1737 	default:
1738 		return -1;
1739 	}
1740 	/* Nothing else to do if there is no buffer. */
1741 	if (!out)
1742 		return len;
1743 	if (!out->args.vc.pattern_n)
1744 		return -1;
1745 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
1746 	data_size = ctx->objdata / 3; /* spec, last, mask */
1747 	/* Point to selected object. */
1748 	ctx->object = out->args.vc.data + (data_size * index);
1749 	if (objmask) {
1750 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
1751 		item->mask = ctx->objmask;
1752 	} else
1753 		ctx->objmask = NULL;
1754 	/* Update relevant item pointer. */
1755 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
1756 		ctx->object;
1757 	return len;
1758 }
1759 
1760 /** Parse action configuration field. */
1761 static int
1762 parse_vc_conf(struct context *ctx, const struct token *token,
1763 	      const char *str, unsigned int len,
1764 	      void *buf, unsigned int size)
1765 {
1766 	struct buffer *out = buf;
1767 	struct rte_flow_action *action;
1768 
1769 	(void)size;
1770 	/* Token name must match. */
1771 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1772 		return -1;
1773 	/* Nothing else to do if there is no buffer. */
1774 	if (!out)
1775 		return len;
1776 	if (!out->args.vc.actions_n)
1777 		return -1;
1778 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
1779 	/* Point to selected object. */
1780 	ctx->object = out->args.vc.data;
1781 	ctx->objmask = NULL;
1782 	/* Update configuration pointer. */
1783 	action->conf = ctx->object;
1784 	return len;
1785 }
1786 
1787 /**
1788  * Parse queue field for RSS action.
1789  *
1790  * Valid tokens are queue indices and the "end" token.
1791  */
1792 static int
1793 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
1794 			  const char *str, unsigned int len,
1795 			  void *buf, unsigned int size)
1796 {
1797 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
1798 	int ret;
1799 	int i;
1800 
1801 	(void)token;
1802 	(void)buf;
1803 	(void)size;
1804 	if (ctx->curr != ACTION_RSS_QUEUE)
1805 		return -1;
1806 	i = ctx->objdata >> 16;
1807 	if (!strncmp(str, "end", len)) {
1808 		ctx->objdata &= 0xffff;
1809 		return len;
1810 	}
1811 	if (i >= ACTION_RSS_NUM)
1812 		return -1;
1813 	if (push_args(ctx, ARGS_ENTRY(struct rte_flow_action_rss, queue[i])))
1814 		return -1;
1815 	ret = parse_int(ctx, token, str, len, NULL, 0);
1816 	if (ret < 0) {
1817 		pop_args(ctx);
1818 		return -1;
1819 	}
1820 	++i;
1821 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
1822 	/* Repeat token. */
1823 	if (ctx->next_num == RTE_DIM(ctx->next))
1824 		return -1;
1825 	ctx->next[ctx->next_num++] = next;
1826 	if (!ctx->object)
1827 		return len;
1828 	((struct rte_flow_action_rss *)ctx->object)->num = i;
1829 	return len;
1830 }
1831 
1832 /** Parse tokens for destroy command. */
1833 static int
1834 parse_destroy(struct context *ctx, const struct token *token,
1835 	      const char *str, unsigned int len,
1836 	      void *buf, unsigned int size)
1837 {
1838 	struct buffer *out = buf;
1839 
1840 	/* Token name must match. */
1841 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1842 		return -1;
1843 	/* Nothing else to do if there is no buffer. */
1844 	if (!out)
1845 		return len;
1846 	if (!out->command) {
1847 		if (ctx->curr != DESTROY)
1848 			return -1;
1849 		if (sizeof(*out) > size)
1850 			return -1;
1851 		out->command = ctx->curr;
1852 		ctx->objdata = 0;
1853 		ctx->object = out;
1854 		ctx->objmask = NULL;
1855 		out->args.destroy.rule =
1856 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1857 					       sizeof(double));
1858 		return len;
1859 	}
1860 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
1861 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
1862 		return -1;
1863 	ctx->objdata = 0;
1864 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
1865 	ctx->objmask = NULL;
1866 	return len;
1867 }
1868 
1869 /** Parse tokens for flush command. */
1870 static int
1871 parse_flush(struct context *ctx, const struct token *token,
1872 	    const char *str, unsigned int len,
1873 	    void *buf, unsigned int size)
1874 {
1875 	struct buffer *out = buf;
1876 
1877 	/* Token name must match. */
1878 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1879 		return -1;
1880 	/* Nothing else to do if there is no buffer. */
1881 	if (!out)
1882 		return len;
1883 	if (!out->command) {
1884 		if (ctx->curr != FLUSH)
1885 			return -1;
1886 		if (sizeof(*out) > size)
1887 			return -1;
1888 		out->command = ctx->curr;
1889 		ctx->objdata = 0;
1890 		ctx->object = out;
1891 		ctx->objmask = NULL;
1892 	}
1893 	return len;
1894 }
1895 
1896 /** Parse tokens for query command. */
1897 static int
1898 parse_query(struct context *ctx, const struct token *token,
1899 	    const char *str, unsigned int len,
1900 	    void *buf, unsigned int size)
1901 {
1902 	struct buffer *out = buf;
1903 
1904 	/* Token name must match. */
1905 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1906 		return -1;
1907 	/* Nothing else to do if there is no buffer. */
1908 	if (!out)
1909 		return len;
1910 	if (!out->command) {
1911 		if (ctx->curr != QUERY)
1912 			return -1;
1913 		if (sizeof(*out) > size)
1914 			return -1;
1915 		out->command = ctx->curr;
1916 		ctx->objdata = 0;
1917 		ctx->object = out;
1918 		ctx->objmask = NULL;
1919 	}
1920 	return len;
1921 }
1922 
1923 /** Parse action names. */
1924 static int
1925 parse_action(struct context *ctx, const struct token *token,
1926 	     const char *str, unsigned int len,
1927 	     void *buf, unsigned int size)
1928 {
1929 	struct buffer *out = buf;
1930 	const struct arg *arg = pop_args(ctx);
1931 	unsigned int i;
1932 
1933 	(void)size;
1934 	/* Argument is expected. */
1935 	if (!arg)
1936 		return -1;
1937 	/* Parse action name. */
1938 	for (i = 0; next_action[i]; ++i) {
1939 		const struct parse_action_priv *priv;
1940 
1941 		token = &token_list[next_action[i]];
1942 		if (strncmp(token->name, str, len))
1943 			continue;
1944 		priv = token->priv;
1945 		if (!priv)
1946 			goto error;
1947 		if (out)
1948 			memcpy((uint8_t *)ctx->object + arg->offset,
1949 			       &priv->type,
1950 			       arg->size);
1951 		return len;
1952 	}
1953 error:
1954 	push_args(ctx, arg);
1955 	return -1;
1956 }
1957 
1958 /** Parse tokens for list command. */
1959 static int
1960 parse_list(struct context *ctx, const struct token *token,
1961 	   const char *str, unsigned int len,
1962 	   void *buf, unsigned int size)
1963 {
1964 	struct buffer *out = buf;
1965 
1966 	/* Token name must match. */
1967 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1968 		return -1;
1969 	/* Nothing else to do if there is no buffer. */
1970 	if (!out)
1971 		return len;
1972 	if (!out->command) {
1973 		if (ctx->curr != LIST)
1974 			return -1;
1975 		if (sizeof(*out) > size)
1976 			return -1;
1977 		out->command = ctx->curr;
1978 		ctx->objdata = 0;
1979 		ctx->object = out;
1980 		ctx->objmask = NULL;
1981 		out->args.list.group =
1982 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1983 					       sizeof(double));
1984 		return len;
1985 	}
1986 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
1987 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
1988 		return -1;
1989 	ctx->objdata = 0;
1990 	ctx->object = out->args.list.group + out->args.list.group_n++;
1991 	ctx->objmask = NULL;
1992 	return len;
1993 }
1994 
1995 /**
1996  * Parse signed/unsigned integers 8 to 64-bit long.
1997  *
1998  * Last argument (ctx->args) is retrieved to determine integer type and
1999  * storage location.
2000  */
2001 static int
2002 parse_int(struct context *ctx, const struct token *token,
2003 	  const char *str, unsigned int len,
2004 	  void *buf, unsigned int size)
2005 {
2006 	const struct arg *arg = pop_args(ctx);
2007 	uintmax_t u;
2008 	char *end;
2009 
2010 	(void)token;
2011 	/* Argument is expected. */
2012 	if (!arg)
2013 		return -1;
2014 	errno = 0;
2015 	u = arg->sign ?
2016 		(uintmax_t)strtoimax(str, &end, 0) :
2017 		strtoumax(str, &end, 0);
2018 	if (errno || (size_t)(end - str) != len)
2019 		goto error;
2020 	if (!ctx->object)
2021 		return len;
2022 	if (arg->mask) {
2023 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2024 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2025 			goto error;
2026 		return len;
2027 	}
2028 	buf = (uint8_t *)ctx->object + arg->offset;
2029 	size = arg->size;
2030 objmask:
2031 	switch (size) {
2032 	case sizeof(uint8_t):
2033 		*(uint8_t *)buf = u;
2034 		break;
2035 	case sizeof(uint16_t):
2036 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2037 		break;
2038 	case sizeof(uint8_t [3]):
2039 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2040 		if (!arg->hton) {
2041 			((uint8_t *)buf)[0] = u;
2042 			((uint8_t *)buf)[1] = u >> 8;
2043 			((uint8_t *)buf)[2] = u >> 16;
2044 			break;
2045 		}
2046 #endif
2047 		((uint8_t *)buf)[0] = u >> 16;
2048 		((uint8_t *)buf)[1] = u >> 8;
2049 		((uint8_t *)buf)[2] = u;
2050 		break;
2051 	case sizeof(uint32_t):
2052 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2053 		break;
2054 	case sizeof(uint64_t):
2055 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2056 		break;
2057 	default:
2058 		goto error;
2059 	}
2060 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2061 		u = -1;
2062 		buf = (uint8_t *)ctx->objmask + arg->offset;
2063 		goto objmask;
2064 	}
2065 	return len;
2066 error:
2067 	push_args(ctx, arg);
2068 	return -1;
2069 }
2070 
2071 /**
2072  * Parse a string.
2073  *
2074  * Two arguments (ctx->args) are retrieved from the stack to store data and
2075  * its length (in that order).
2076  */
2077 static int
2078 parse_string(struct context *ctx, const struct token *token,
2079 	     const char *str, unsigned int len,
2080 	     void *buf, unsigned int size)
2081 {
2082 	const struct arg *arg_data = pop_args(ctx);
2083 	const struct arg *arg_len = pop_args(ctx);
2084 	char tmp[16]; /* Ought to be enough. */
2085 	int ret;
2086 
2087 	/* Arguments are expected. */
2088 	if (!arg_data)
2089 		return -1;
2090 	if (!arg_len) {
2091 		push_args(ctx, arg_data);
2092 		return -1;
2093 	}
2094 	size = arg_data->size;
2095 	/* Bit-mask fill is not supported. */
2096 	if (arg_data->mask || size < len)
2097 		goto error;
2098 	if (!ctx->object)
2099 		return len;
2100 	/* Let parse_int() fill length information first. */
2101 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
2102 	if (ret < 0)
2103 		goto error;
2104 	push_args(ctx, arg_len);
2105 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2106 	if (ret < 0) {
2107 		pop_args(ctx);
2108 		goto error;
2109 	}
2110 	buf = (uint8_t *)ctx->object + arg_data->offset;
2111 	/* Output buffer is not necessarily NUL-terminated. */
2112 	memcpy(buf, str, len);
2113 	memset((uint8_t *)buf + len, 0x55, size - len);
2114 	if (ctx->objmask)
2115 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2116 	return len;
2117 error:
2118 	push_args(ctx, arg_len);
2119 	push_args(ctx, arg_data);
2120 	return -1;
2121 }
2122 
2123 /**
2124  * Parse a MAC address.
2125  *
2126  * Last argument (ctx->args) is retrieved to determine storage size and
2127  * location.
2128  */
2129 static int
2130 parse_mac_addr(struct context *ctx, const struct token *token,
2131 	       const char *str, unsigned int len,
2132 	       void *buf, unsigned int size)
2133 {
2134 	const struct arg *arg = pop_args(ctx);
2135 	struct ether_addr tmp;
2136 	int ret;
2137 
2138 	(void)token;
2139 	/* Argument is expected. */
2140 	if (!arg)
2141 		return -1;
2142 	size = arg->size;
2143 	/* Bit-mask fill is not supported. */
2144 	if (arg->mask || size != sizeof(tmp))
2145 		goto error;
2146 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
2147 	if (ret < 0 || (unsigned int)ret != len)
2148 		goto error;
2149 	if (!ctx->object)
2150 		return len;
2151 	buf = (uint8_t *)ctx->object + arg->offset;
2152 	memcpy(buf, &tmp, size);
2153 	if (ctx->objmask)
2154 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2155 	return len;
2156 error:
2157 	push_args(ctx, arg);
2158 	return -1;
2159 }
2160 
2161 /**
2162  * Parse an IPv4 address.
2163  *
2164  * Last argument (ctx->args) is retrieved to determine storage size and
2165  * location.
2166  */
2167 static int
2168 parse_ipv4_addr(struct context *ctx, const struct token *token,
2169 		const char *str, unsigned int len,
2170 		void *buf, unsigned int size)
2171 {
2172 	const struct arg *arg = pop_args(ctx);
2173 	char str2[len + 1];
2174 	struct in_addr tmp;
2175 	int ret;
2176 
2177 	/* Argument is expected. */
2178 	if (!arg)
2179 		return -1;
2180 	size = arg->size;
2181 	/* Bit-mask fill is not supported. */
2182 	if (arg->mask || size != sizeof(tmp))
2183 		goto error;
2184 	/* Only network endian is supported. */
2185 	if (!arg->hton)
2186 		goto error;
2187 	memcpy(str2, str, len);
2188 	str2[len] = '\0';
2189 	ret = inet_pton(AF_INET, str2, &tmp);
2190 	if (ret != 1) {
2191 		/* Attempt integer parsing. */
2192 		push_args(ctx, arg);
2193 		return parse_int(ctx, token, str, len, buf, size);
2194 	}
2195 	if (!ctx->object)
2196 		return len;
2197 	buf = (uint8_t *)ctx->object + arg->offset;
2198 	memcpy(buf, &tmp, size);
2199 	if (ctx->objmask)
2200 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2201 	return len;
2202 error:
2203 	push_args(ctx, arg);
2204 	return -1;
2205 }
2206 
2207 /**
2208  * Parse an IPv6 address.
2209  *
2210  * Last argument (ctx->args) is retrieved to determine storage size and
2211  * location.
2212  */
2213 static int
2214 parse_ipv6_addr(struct context *ctx, const struct token *token,
2215 		const char *str, unsigned int len,
2216 		void *buf, unsigned int size)
2217 {
2218 	const struct arg *arg = pop_args(ctx);
2219 	char str2[len + 1];
2220 	struct in6_addr tmp;
2221 	int ret;
2222 
2223 	(void)token;
2224 	/* Argument is expected. */
2225 	if (!arg)
2226 		return -1;
2227 	size = arg->size;
2228 	/* Bit-mask fill is not supported. */
2229 	if (arg->mask || size != sizeof(tmp))
2230 		goto error;
2231 	/* Only network endian is supported. */
2232 	if (!arg->hton)
2233 		goto error;
2234 	memcpy(str2, str, len);
2235 	str2[len] = '\0';
2236 	ret = inet_pton(AF_INET6, str2, &tmp);
2237 	if (ret != 1)
2238 		goto error;
2239 	if (!ctx->object)
2240 		return len;
2241 	buf = (uint8_t *)ctx->object + arg->offset;
2242 	memcpy(buf, &tmp, size);
2243 	if (ctx->objmask)
2244 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2245 	return len;
2246 error:
2247 	push_args(ctx, arg);
2248 	return -1;
2249 }
2250 
2251 /** Boolean values (even indices stand for false). */
2252 static const char *const boolean_name[] = {
2253 	"0", "1",
2254 	"false", "true",
2255 	"no", "yes",
2256 	"N", "Y",
2257 	NULL,
2258 };
2259 
2260 /**
2261  * Parse a boolean value.
2262  *
2263  * Last argument (ctx->args) is retrieved to determine storage size and
2264  * location.
2265  */
2266 static int
2267 parse_boolean(struct context *ctx, const struct token *token,
2268 	      const char *str, unsigned int len,
2269 	      void *buf, unsigned int size)
2270 {
2271 	const struct arg *arg = pop_args(ctx);
2272 	unsigned int i;
2273 	int ret;
2274 
2275 	/* Argument is expected. */
2276 	if (!arg)
2277 		return -1;
2278 	for (i = 0; boolean_name[i]; ++i)
2279 		if (!strncmp(str, boolean_name[i], len))
2280 			break;
2281 	/* Process token as integer. */
2282 	if (boolean_name[i])
2283 		str = i & 1 ? "1" : "0";
2284 	push_args(ctx, arg);
2285 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
2286 	return ret > 0 ? (int)len : ret;
2287 }
2288 
2289 /** Parse port and update context. */
2290 static int
2291 parse_port(struct context *ctx, const struct token *token,
2292 	   const char *str, unsigned int len,
2293 	   void *buf, unsigned int size)
2294 {
2295 	struct buffer *out = &(struct buffer){ .port = 0 };
2296 	int ret;
2297 
2298 	if (buf)
2299 		out = buf;
2300 	else {
2301 		ctx->objdata = 0;
2302 		ctx->object = out;
2303 		ctx->objmask = NULL;
2304 		size = sizeof(*out);
2305 	}
2306 	ret = parse_int(ctx, token, str, len, out, size);
2307 	if (ret >= 0)
2308 		ctx->port = out->port;
2309 	if (!buf)
2310 		ctx->object = NULL;
2311 	return ret;
2312 }
2313 
2314 /** No completion. */
2315 static int
2316 comp_none(struct context *ctx, const struct token *token,
2317 	  unsigned int ent, char *buf, unsigned int size)
2318 {
2319 	(void)ctx;
2320 	(void)token;
2321 	(void)ent;
2322 	(void)buf;
2323 	(void)size;
2324 	return 0;
2325 }
2326 
2327 /** Complete boolean values. */
2328 static int
2329 comp_boolean(struct context *ctx, const struct token *token,
2330 	     unsigned int ent, char *buf, unsigned int size)
2331 {
2332 	unsigned int i;
2333 
2334 	(void)ctx;
2335 	(void)token;
2336 	for (i = 0; boolean_name[i]; ++i)
2337 		if (buf && i == ent)
2338 			return snprintf(buf, size, "%s", boolean_name[i]);
2339 	if (buf)
2340 		return -1;
2341 	return i;
2342 }
2343 
2344 /** Complete action names. */
2345 static int
2346 comp_action(struct context *ctx, const struct token *token,
2347 	    unsigned int ent, char *buf, unsigned int size)
2348 {
2349 	unsigned int i;
2350 
2351 	(void)ctx;
2352 	(void)token;
2353 	for (i = 0; next_action[i]; ++i)
2354 		if (buf && i == ent)
2355 			return snprintf(buf, size, "%s",
2356 					token_list[next_action[i]].name);
2357 	if (buf)
2358 		return -1;
2359 	return i;
2360 }
2361 
2362 /** Complete available ports. */
2363 static int
2364 comp_port(struct context *ctx, const struct token *token,
2365 	  unsigned int ent, char *buf, unsigned int size)
2366 {
2367 	unsigned int i = 0;
2368 	portid_t p;
2369 
2370 	(void)ctx;
2371 	(void)token;
2372 	FOREACH_PORT(p, ports) {
2373 		if (buf && i == ent)
2374 			return snprintf(buf, size, "%u", p);
2375 		++i;
2376 	}
2377 	if (buf)
2378 		return -1;
2379 	return i;
2380 }
2381 
2382 /** Complete available rule IDs. */
2383 static int
2384 comp_rule_id(struct context *ctx, const struct token *token,
2385 	     unsigned int ent, char *buf, unsigned int size)
2386 {
2387 	unsigned int i = 0;
2388 	struct rte_port *port;
2389 	struct port_flow *pf;
2390 
2391 	(void)token;
2392 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
2393 	    ctx->port == (uint16_t)RTE_PORT_ALL)
2394 		return -1;
2395 	port = &ports[ctx->port];
2396 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2397 		if (buf && i == ent)
2398 			return snprintf(buf, size, "%u", pf->id);
2399 		++i;
2400 	}
2401 	if (buf)
2402 		return -1;
2403 	return i;
2404 }
2405 
2406 /** Complete queue field for RSS action. */
2407 static int
2408 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
2409 			 unsigned int ent, char *buf, unsigned int size)
2410 {
2411 	static const char *const str[] = { "", "end", NULL };
2412 	unsigned int i;
2413 
2414 	(void)ctx;
2415 	(void)token;
2416 	for (i = 0; str[i] != NULL; ++i)
2417 		if (buf && i == ent)
2418 			return snprintf(buf, size, "%s", str[i]);
2419 	if (buf)
2420 		return -1;
2421 	return i;
2422 }
2423 
2424 /** Internal context. */
2425 static struct context cmd_flow_context;
2426 
2427 /** Global parser instance (cmdline API). */
2428 cmdline_parse_inst_t cmd_flow;
2429 
2430 /** Initialize context. */
2431 static void
2432 cmd_flow_context_init(struct context *ctx)
2433 {
2434 	/* A full memset() is not necessary. */
2435 	ctx->curr = ZERO;
2436 	ctx->prev = ZERO;
2437 	ctx->next_num = 0;
2438 	ctx->args_num = 0;
2439 	ctx->reparse = 0;
2440 	ctx->eol = 0;
2441 	ctx->last = 0;
2442 	ctx->port = 0;
2443 	ctx->objdata = 0;
2444 	ctx->object = NULL;
2445 	ctx->objmask = NULL;
2446 }
2447 
2448 /** Parse a token (cmdline API). */
2449 static int
2450 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
2451 	       unsigned int size)
2452 {
2453 	struct context *ctx = &cmd_flow_context;
2454 	const struct token *token;
2455 	const enum index *list;
2456 	int len;
2457 	int i;
2458 
2459 	(void)hdr;
2460 	/* Restart as requested. */
2461 	if (ctx->reparse)
2462 		cmd_flow_context_init(ctx);
2463 	token = &token_list[ctx->curr];
2464 	/* Check argument length. */
2465 	ctx->eol = 0;
2466 	ctx->last = 1;
2467 	for (len = 0; src[len]; ++len)
2468 		if (src[len] == '#' || isspace(src[len]))
2469 			break;
2470 	if (!len)
2471 		return -1;
2472 	/* Last argument and EOL detection. */
2473 	for (i = len; src[i]; ++i)
2474 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
2475 			break;
2476 		else if (!isspace(src[i])) {
2477 			ctx->last = 0;
2478 			break;
2479 		}
2480 	for (; src[i]; ++i)
2481 		if (src[i] == '\r' || src[i] == '\n') {
2482 			ctx->eol = 1;
2483 			break;
2484 		}
2485 	/* Initialize context if necessary. */
2486 	if (!ctx->next_num) {
2487 		if (!token->next)
2488 			return 0;
2489 		ctx->next[ctx->next_num++] = token->next[0];
2490 	}
2491 	/* Process argument through candidates. */
2492 	ctx->prev = ctx->curr;
2493 	list = ctx->next[ctx->next_num - 1];
2494 	for (i = 0; list[i]; ++i) {
2495 		const struct token *next = &token_list[list[i]];
2496 		int tmp;
2497 
2498 		ctx->curr = list[i];
2499 		if (next->call)
2500 			tmp = next->call(ctx, next, src, len, result, size);
2501 		else
2502 			tmp = parse_default(ctx, next, src, len, result, size);
2503 		if (tmp == -1 || tmp != len)
2504 			continue;
2505 		token = next;
2506 		break;
2507 	}
2508 	if (!list[i])
2509 		return -1;
2510 	--ctx->next_num;
2511 	/* Push subsequent tokens if any. */
2512 	if (token->next)
2513 		for (i = 0; token->next[i]; ++i) {
2514 			if (ctx->next_num == RTE_DIM(ctx->next))
2515 				return -1;
2516 			ctx->next[ctx->next_num++] = token->next[i];
2517 		}
2518 	/* Push arguments if any. */
2519 	if (token->args)
2520 		for (i = 0; token->args[i]; ++i) {
2521 			if (ctx->args_num == RTE_DIM(ctx->args))
2522 				return -1;
2523 			ctx->args[ctx->args_num++] = token->args[i];
2524 		}
2525 	return len;
2526 }
2527 
2528 /** Return number of completion entries (cmdline API). */
2529 static int
2530 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
2531 {
2532 	struct context *ctx = &cmd_flow_context;
2533 	const struct token *token = &token_list[ctx->curr];
2534 	const enum index *list;
2535 	int i;
2536 
2537 	(void)hdr;
2538 	/* Tell cmd_flow_parse() that context must be reinitialized. */
2539 	ctx->reparse = 1;
2540 	/* Count number of tokens in current list. */
2541 	if (ctx->next_num)
2542 		list = ctx->next[ctx->next_num - 1];
2543 	else
2544 		list = token->next[0];
2545 	for (i = 0; list[i]; ++i)
2546 		;
2547 	if (!i)
2548 		return 0;
2549 	/*
2550 	 * If there is a single token, use its completion callback, otherwise
2551 	 * return the number of entries.
2552 	 */
2553 	token = &token_list[list[0]];
2554 	if (i == 1 && token->comp) {
2555 		/* Save index for cmd_flow_get_help(). */
2556 		ctx->prev = list[0];
2557 		return token->comp(ctx, token, 0, NULL, 0);
2558 	}
2559 	return i;
2560 }
2561 
2562 /** Return a completion entry (cmdline API). */
2563 static int
2564 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
2565 			  char *dst, unsigned int size)
2566 {
2567 	struct context *ctx = &cmd_flow_context;
2568 	const struct token *token = &token_list[ctx->curr];
2569 	const enum index *list;
2570 	int i;
2571 
2572 	(void)hdr;
2573 	/* Tell cmd_flow_parse() that context must be reinitialized. */
2574 	ctx->reparse = 1;
2575 	/* Count number of tokens in current list. */
2576 	if (ctx->next_num)
2577 		list = ctx->next[ctx->next_num - 1];
2578 	else
2579 		list = token->next[0];
2580 	for (i = 0; list[i]; ++i)
2581 		;
2582 	if (!i)
2583 		return -1;
2584 	/* If there is a single token, use its completion callback. */
2585 	token = &token_list[list[0]];
2586 	if (i == 1 && token->comp) {
2587 		/* Save index for cmd_flow_get_help(). */
2588 		ctx->prev = list[0];
2589 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
2590 	}
2591 	/* Otherwise make sure the index is valid and use defaults. */
2592 	if (index >= i)
2593 		return -1;
2594 	token = &token_list[list[index]];
2595 	snprintf(dst, size, "%s", token->name);
2596 	/* Save index for cmd_flow_get_help(). */
2597 	ctx->prev = list[index];
2598 	return 0;
2599 }
2600 
2601 /** Populate help strings for current token (cmdline API). */
2602 static int
2603 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
2604 {
2605 	struct context *ctx = &cmd_flow_context;
2606 	const struct token *token = &token_list[ctx->prev];
2607 
2608 	(void)hdr;
2609 	/* Tell cmd_flow_parse() that context must be reinitialized. */
2610 	ctx->reparse = 1;
2611 	if (!size)
2612 		return -1;
2613 	/* Set token type and update global help with details. */
2614 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
2615 	if (token->help)
2616 		cmd_flow.help_str = token->help;
2617 	else
2618 		cmd_flow.help_str = token->name;
2619 	return 0;
2620 }
2621 
2622 /** Token definition template (cmdline API). */
2623 static struct cmdline_token_hdr cmd_flow_token_hdr = {
2624 	.ops = &(struct cmdline_token_ops){
2625 		.parse = cmd_flow_parse,
2626 		.complete_get_nb = cmd_flow_complete_get_nb,
2627 		.complete_get_elt = cmd_flow_complete_get_elt,
2628 		.get_help = cmd_flow_get_help,
2629 	},
2630 	.offset = 0,
2631 };
2632 
2633 /** Populate the next dynamic token. */
2634 static void
2635 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
2636 	     cmdline_parse_token_hdr_t *(*hdrs)[])
2637 {
2638 	struct context *ctx = &cmd_flow_context;
2639 
2640 	/* Always reinitialize context before requesting the first token. */
2641 	if (!(hdr - *hdrs))
2642 		cmd_flow_context_init(ctx);
2643 	/* Return NULL when no more tokens are expected. */
2644 	if (!ctx->next_num && ctx->curr) {
2645 		*hdr = NULL;
2646 		return;
2647 	}
2648 	/* Determine if command should end here. */
2649 	if (ctx->eol && ctx->last && ctx->next_num) {
2650 		const enum index *list = ctx->next[ctx->next_num - 1];
2651 		int i;
2652 
2653 		for (i = 0; list[i]; ++i) {
2654 			if (list[i] != END)
2655 				continue;
2656 			*hdr = NULL;
2657 			return;
2658 		}
2659 	}
2660 	*hdr = &cmd_flow_token_hdr;
2661 }
2662 
2663 /** Dispatch parsed buffer to function calls. */
2664 static void
2665 cmd_flow_parsed(const struct buffer *in)
2666 {
2667 	switch (in->command) {
2668 	case VALIDATE:
2669 		port_flow_validate(in->port, &in->args.vc.attr,
2670 				   in->args.vc.pattern, in->args.vc.actions);
2671 		break;
2672 	case CREATE:
2673 		port_flow_create(in->port, &in->args.vc.attr,
2674 				 in->args.vc.pattern, in->args.vc.actions);
2675 		break;
2676 	case DESTROY:
2677 		port_flow_destroy(in->port, in->args.destroy.rule_n,
2678 				  in->args.destroy.rule);
2679 		break;
2680 	case FLUSH:
2681 		port_flow_flush(in->port);
2682 		break;
2683 	case QUERY:
2684 		port_flow_query(in->port, in->args.query.rule,
2685 				in->args.query.action);
2686 		break;
2687 	case LIST:
2688 		port_flow_list(in->port, in->args.list.group_n,
2689 			       in->args.list.group);
2690 		break;
2691 	default:
2692 		break;
2693 	}
2694 }
2695 
2696 /** Token generator and output processing callback (cmdline API). */
2697 static void
2698 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
2699 {
2700 	if (cl == NULL)
2701 		cmd_flow_tok(arg0, arg2);
2702 	else
2703 		cmd_flow_parsed(arg0);
2704 }
2705 
2706 /** Global parser instance (cmdline API). */
2707 cmdline_parse_inst_t cmd_flow = {
2708 	.f = cmd_flow_cb,
2709 	.data = NULL, /**< Unused. */
2710 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
2711 	.tokens = {
2712 		NULL,
2713 	}, /**< Tokens are returned by cmd_flow_tok(). */
2714 };
2715