xref: /dpdk/app/test-pmd/cmdline_flow.c (revision c5c507100ea58e24f812401c77c66cdb9bceee36)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <cmdline_parse_string.h>
23 #include <cmdline_parse_num.h>
24 #include <rte_flow.h>
25 #include <rte_hexdump.h>
26 #include <rte_vxlan.h>
27 #include <rte_gre.h>
28 #include <rte_mpls.h>
29 #include <rte_gtp.h>
30 #include <rte_geneve.h>
31 
32 #include "testpmd.h"
33 
34 /** Parser token indices. */
35 enum index {
36 	/* Special tokens. */
37 	ZERO = 0,
38 	END,
39 	START_SET,
40 	END_SET,
41 
42 	/* Common tokens. */
43 	INTEGER,
44 	UNSIGNED,
45 	PREFIX,
46 	BOOLEAN,
47 	STRING,
48 	HEX,
49 	FILE_PATH,
50 	MAC_ADDR,
51 	IPV4_ADDR,
52 	IPV6_ADDR,
53 	RULE_ID,
54 	PORT_ID,
55 	GROUP_ID,
56 	PRIORITY_LEVEL,
57 	INDIRECT_ACTION_ID,
58 	POLICY_ID,
59 
60 	/* TOP-level command. */
61 	ADD,
62 
63 	/* Top-level command. */
64 	SET,
65 	/* Sub-leve commands. */
66 	SET_RAW_ENCAP,
67 	SET_RAW_DECAP,
68 	SET_RAW_INDEX,
69 	SET_SAMPLE_ACTIONS,
70 	SET_SAMPLE_INDEX,
71 
72 	/* Top-level command. */
73 	FLOW,
74 	/* Sub-level commands. */
75 	INDIRECT_ACTION,
76 	VALIDATE,
77 	CREATE,
78 	DESTROY,
79 	FLUSH,
80 	DUMP,
81 	QUERY,
82 	LIST,
83 	AGED,
84 	ISOLATE,
85 	TUNNEL,
86 
87 	/* Tunnel arguments. */
88 	TUNNEL_CREATE,
89 	TUNNEL_CREATE_TYPE,
90 	TUNNEL_LIST,
91 	TUNNEL_DESTROY,
92 	TUNNEL_DESTROY_ID,
93 
94 	/* Destroy arguments. */
95 	DESTROY_RULE,
96 
97 	/* Query arguments. */
98 	QUERY_ACTION,
99 
100 	/* List arguments. */
101 	LIST_GROUP,
102 
103 	/* Destroy aged flow arguments. */
104 	AGED_DESTROY,
105 
106 	/* Validate/create arguments. */
107 	GROUP,
108 	PRIORITY,
109 	INGRESS,
110 	EGRESS,
111 	TRANSFER,
112 	TUNNEL_SET,
113 	TUNNEL_MATCH,
114 
115 	/* Dump arguments */
116 	DUMP_ALL,
117 	DUMP_ONE,
118 
119 	/* Indirect action arguments */
120 	INDIRECT_ACTION_CREATE,
121 	INDIRECT_ACTION_UPDATE,
122 	INDIRECT_ACTION_DESTROY,
123 	INDIRECT_ACTION_QUERY,
124 
125 	/* Indirect action create arguments */
126 	INDIRECT_ACTION_CREATE_ID,
127 	INDIRECT_ACTION_INGRESS,
128 	INDIRECT_ACTION_EGRESS,
129 	INDIRECT_ACTION_TRANSFER,
130 	INDIRECT_ACTION_SPEC,
131 
132 	/* Indirect action destroy arguments */
133 	INDIRECT_ACTION_DESTROY_ID,
134 
135 	/* Validate/create pattern. */
136 	PATTERN,
137 	ITEM_PARAM_IS,
138 	ITEM_PARAM_SPEC,
139 	ITEM_PARAM_LAST,
140 	ITEM_PARAM_MASK,
141 	ITEM_PARAM_PREFIX,
142 	ITEM_NEXT,
143 	ITEM_END,
144 	ITEM_VOID,
145 	ITEM_INVERT,
146 	ITEM_ANY,
147 	ITEM_ANY_NUM,
148 	ITEM_PF,
149 	ITEM_VF,
150 	ITEM_VF_ID,
151 	ITEM_PHY_PORT,
152 	ITEM_PHY_PORT_INDEX,
153 	ITEM_PORT_ID,
154 	ITEM_PORT_ID_ID,
155 	ITEM_MARK,
156 	ITEM_MARK_ID,
157 	ITEM_RAW,
158 	ITEM_RAW_RELATIVE,
159 	ITEM_RAW_SEARCH,
160 	ITEM_RAW_OFFSET,
161 	ITEM_RAW_LIMIT,
162 	ITEM_RAW_PATTERN,
163 	ITEM_ETH,
164 	ITEM_ETH_DST,
165 	ITEM_ETH_SRC,
166 	ITEM_ETH_TYPE,
167 	ITEM_ETH_HAS_VLAN,
168 	ITEM_VLAN,
169 	ITEM_VLAN_TCI,
170 	ITEM_VLAN_PCP,
171 	ITEM_VLAN_DEI,
172 	ITEM_VLAN_VID,
173 	ITEM_VLAN_INNER_TYPE,
174 	ITEM_VLAN_HAS_MORE_VLAN,
175 	ITEM_IPV4,
176 	ITEM_IPV4_TOS,
177 	ITEM_IPV4_ID,
178 	ITEM_IPV4_FRAGMENT_OFFSET,
179 	ITEM_IPV4_TTL,
180 	ITEM_IPV4_PROTO,
181 	ITEM_IPV4_SRC,
182 	ITEM_IPV4_DST,
183 	ITEM_IPV6,
184 	ITEM_IPV6_TC,
185 	ITEM_IPV6_FLOW,
186 	ITEM_IPV6_PROTO,
187 	ITEM_IPV6_HOP,
188 	ITEM_IPV6_SRC,
189 	ITEM_IPV6_DST,
190 	ITEM_IPV6_HAS_FRAG_EXT,
191 	ITEM_ICMP,
192 	ITEM_ICMP_TYPE,
193 	ITEM_ICMP_CODE,
194 	ITEM_ICMP_IDENT,
195 	ITEM_ICMP_SEQ,
196 	ITEM_UDP,
197 	ITEM_UDP_SRC,
198 	ITEM_UDP_DST,
199 	ITEM_TCP,
200 	ITEM_TCP_SRC,
201 	ITEM_TCP_DST,
202 	ITEM_TCP_FLAGS,
203 	ITEM_SCTP,
204 	ITEM_SCTP_SRC,
205 	ITEM_SCTP_DST,
206 	ITEM_SCTP_TAG,
207 	ITEM_SCTP_CKSUM,
208 	ITEM_VXLAN,
209 	ITEM_VXLAN_VNI,
210 	ITEM_E_TAG,
211 	ITEM_E_TAG_GRP_ECID_B,
212 	ITEM_NVGRE,
213 	ITEM_NVGRE_TNI,
214 	ITEM_MPLS,
215 	ITEM_MPLS_LABEL,
216 	ITEM_MPLS_TC,
217 	ITEM_MPLS_S,
218 	ITEM_GRE,
219 	ITEM_GRE_PROTO,
220 	ITEM_GRE_C_RSVD0_VER,
221 	ITEM_GRE_C_BIT,
222 	ITEM_GRE_K_BIT,
223 	ITEM_GRE_S_BIT,
224 	ITEM_FUZZY,
225 	ITEM_FUZZY_THRESH,
226 	ITEM_GTP,
227 	ITEM_GTP_FLAGS,
228 	ITEM_GTP_MSG_TYPE,
229 	ITEM_GTP_TEID,
230 	ITEM_GTPC,
231 	ITEM_GTPU,
232 	ITEM_GENEVE,
233 	ITEM_GENEVE_VNI,
234 	ITEM_GENEVE_PROTO,
235 	ITEM_GENEVE_OPTLEN,
236 	ITEM_VXLAN_GPE,
237 	ITEM_VXLAN_GPE_VNI,
238 	ITEM_ARP_ETH_IPV4,
239 	ITEM_ARP_ETH_IPV4_SHA,
240 	ITEM_ARP_ETH_IPV4_SPA,
241 	ITEM_ARP_ETH_IPV4_THA,
242 	ITEM_ARP_ETH_IPV4_TPA,
243 	ITEM_IPV6_EXT,
244 	ITEM_IPV6_EXT_NEXT_HDR,
245 	ITEM_IPV6_FRAG_EXT,
246 	ITEM_IPV6_FRAG_EXT_NEXT_HDR,
247 	ITEM_IPV6_FRAG_EXT_FRAG_DATA,
248 	ITEM_IPV6_FRAG_EXT_ID,
249 	ITEM_ICMP6,
250 	ITEM_ICMP6_TYPE,
251 	ITEM_ICMP6_CODE,
252 	ITEM_ICMP6_ND_NS,
253 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
254 	ITEM_ICMP6_ND_NA,
255 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
256 	ITEM_ICMP6_ND_OPT,
257 	ITEM_ICMP6_ND_OPT_TYPE,
258 	ITEM_ICMP6_ND_OPT_SLA_ETH,
259 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
260 	ITEM_ICMP6_ND_OPT_TLA_ETH,
261 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
262 	ITEM_META,
263 	ITEM_META_DATA,
264 	ITEM_GRE_KEY,
265 	ITEM_GRE_KEY_VALUE,
266 	ITEM_GTP_PSC,
267 	ITEM_GTP_PSC_QFI,
268 	ITEM_GTP_PSC_PDU_T,
269 	ITEM_PPPOES,
270 	ITEM_PPPOED,
271 	ITEM_PPPOE_SEID,
272 	ITEM_PPPOE_PROTO_ID,
273 	ITEM_HIGIG2,
274 	ITEM_HIGIG2_CLASSIFICATION,
275 	ITEM_HIGIG2_VID,
276 	ITEM_TAG,
277 	ITEM_TAG_DATA,
278 	ITEM_TAG_INDEX,
279 	ITEM_L2TPV3OIP,
280 	ITEM_L2TPV3OIP_SESSION_ID,
281 	ITEM_ESP,
282 	ITEM_ESP_SPI,
283 	ITEM_AH,
284 	ITEM_AH_SPI,
285 	ITEM_PFCP,
286 	ITEM_PFCP_S_FIELD,
287 	ITEM_PFCP_SEID,
288 	ITEM_ECPRI,
289 	ITEM_ECPRI_COMMON,
290 	ITEM_ECPRI_COMMON_TYPE,
291 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
292 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
293 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
294 	ITEM_ECPRI_MSG_IQ_DATA_PCID,
295 	ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
296 	ITEM_ECPRI_MSG_DLY_MSR_MSRID,
297 	ITEM_GENEVE_OPT,
298 	ITEM_GENEVE_OPT_CLASS,
299 	ITEM_GENEVE_OPT_TYPE,
300 	ITEM_GENEVE_OPT_LENGTH,
301 	ITEM_GENEVE_OPT_DATA,
302 	ITEM_INTEGRITY,
303 	ITEM_INTEGRITY_LEVEL,
304 	ITEM_INTEGRITY_VALUE,
305 	ITEM_CONNTRACK,
306 	ITEM_POL_PORT,
307 	ITEM_POL_METER,
308 	ITEM_POL_POLICY,
309 
310 	/* Validate/create actions. */
311 	ACTIONS,
312 	ACTION_NEXT,
313 	ACTION_END,
314 	ACTION_VOID,
315 	ACTION_PASSTHRU,
316 	ACTION_JUMP,
317 	ACTION_JUMP_GROUP,
318 	ACTION_MARK,
319 	ACTION_MARK_ID,
320 	ACTION_FLAG,
321 	ACTION_QUEUE,
322 	ACTION_QUEUE_INDEX,
323 	ACTION_DROP,
324 	ACTION_COUNT,
325 	ACTION_COUNT_SHARED,
326 	ACTION_COUNT_ID,
327 	ACTION_RSS,
328 	ACTION_RSS_FUNC,
329 	ACTION_RSS_LEVEL,
330 	ACTION_RSS_FUNC_DEFAULT,
331 	ACTION_RSS_FUNC_TOEPLITZ,
332 	ACTION_RSS_FUNC_SIMPLE_XOR,
333 	ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
334 	ACTION_RSS_TYPES,
335 	ACTION_RSS_TYPE,
336 	ACTION_RSS_KEY,
337 	ACTION_RSS_KEY_LEN,
338 	ACTION_RSS_QUEUES,
339 	ACTION_RSS_QUEUE,
340 	ACTION_PF,
341 	ACTION_VF,
342 	ACTION_VF_ORIGINAL,
343 	ACTION_VF_ID,
344 	ACTION_PHY_PORT,
345 	ACTION_PHY_PORT_ORIGINAL,
346 	ACTION_PHY_PORT_INDEX,
347 	ACTION_PORT_ID,
348 	ACTION_PORT_ID_ORIGINAL,
349 	ACTION_PORT_ID_ID,
350 	ACTION_METER,
351 	ACTION_METER_COLOR,
352 	ACTION_METER_COLOR_TYPE,
353 	ACTION_METER_COLOR_GREEN,
354 	ACTION_METER_COLOR_YELLOW,
355 	ACTION_METER_COLOR_RED,
356 	ACTION_METER_ID,
357 	ACTION_OF_SET_MPLS_TTL,
358 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
359 	ACTION_OF_DEC_MPLS_TTL,
360 	ACTION_OF_SET_NW_TTL,
361 	ACTION_OF_SET_NW_TTL_NW_TTL,
362 	ACTION_OF_DEC_NW_TTL,
363 	ACTION_OF_COPY_TTL_OUT,
364 	ACTION_OF_COPY_TTL_IN,
365 	ACTION_OF_POP_VLAN,
366 	ACTION_OF_PUSH_VLAN,
367 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
368 	ACTION_OF_SET_VLAN_VID,
369 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
370 	ACTION_OF_SET_VLAN_PCP,
371 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
372 	ACTION_OF_POP_MPLS,
373 	ACTION_OF_POP_MPLS_ETHERTYPE,
374 	ACTION_OF_PUSH_MPLS,
375 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
376 	ACTION_VXLAN_ENCAP,
377 	ACTION_VXLAN_DECAP,
378 	ACTION_NVGRE_ENCAP,
379 	ACTION_NVGRE_DECAP,
380 	ACTION_L2_ENCAP,
381 	ACTION_L2_DECAP,
382 	ACTION_MPLSOGRE_ENCAP,
383 	ACTION_MPLSOGRE_DECAP,
384 	ACTION_MPLSOUDP_ENCAP,
385 	ACTION_MPLSOUDP_DECAP,
386 	ACTION_SET_IPV4_SRC,
387 	ACTION_SET_IPV4_SRC_IPV4_SRC,
388 	ACTION_SET_IPV4_DST,
389 	ACTION_SET_IPV4_DST_IPV4_DST,
390 	ACTION_SET_IPV6_SRC,
391 	ACTION_SET_IPV6_SRC_IPV6_SRC,
392 	ACTION_SET_IPV6_DST,
393 	ACTION_SET_IPV6_DST_IPV6_DST,
394 	ACTION_SET_TP_SRC,
395 	ACTION_SET_TP_SRC_TP_SRC,
396 	ACTION_SET_TP_DST,
397 	ACTION_SET_TP_DST_TP_DST,
398 	ACTION_MAC_SWAP,
399 	ACTION_DEC_TTL,
400 	ACTION_SET_TTL,
401 	ACTION_SET_TTL_TTL,
402 	ACTION_SET_MAC_SRC,
403 	ACTION_SET_MAC_SRC_MAC_SRC,
404 	ACTION_SET_MAC_DST,
405 	ACTION_SET_MAC_DST_MAC_DST,
406 	ACTION_INC_TCP_SEQ,
407 	ACTION_INC_TCP_SEQ_VALUE,
408 	ACTION_DEC_TCP_SEQ,
409 	ACTION_DEC_TCP_SEQ_VALUE,
410 	ACTION_INC_TCP_ACK,
411 	ACTION_INC_TCP_ACK_VALUE,
412 	ACTION_DEC_TCP_ACK,
413 	ACTION_DEC_TCP_ACK_VALUE,
414 	ACTION_RAW_ENCAP,
415 	ACTION_RAW_DECAP,
416 	ACTION_RAW_ENCAP_INDEX,
417 	ACTION_RAW_ENCAP_INDEX_VALUE,
418 	ACTION_RAW_DECAP_INDEX,
419 	ACTION_RAW_DECAP_INDEX_VALUE,
420 	ACTION_SET_TAG,
421 	ACTION_SET_TAG_DATA,
422 	ACTION_SET_TAG_INDEX,
423 	ACTION_SET_TAG_MASK,
424 	ACTION_SET_META,
425 	ACTION_SET_META_DATA,
426 	ACTION_SET_META_MASK,
427 	ACTION_SET_IPV4_DSCP,
428 	ACTION_SET_IPV4_DSCP_VALUE,
429 	ACTION_SET_IPV6_DSCP,
430 	ACTION_SET_IPV6_DSCP_VALUE,
431 	ACTION_AGE,
432 	ACTION_AGE_TIMEOUT,
433 	ACTION_SAMPLE,
434 	ACTION_SAMPLE_RATIO,
435 	ACTION_SAMPLE_INDEX,
436 	ACTION_SAMPLE_INDEX_VALUE,
437 	ACTION_INDIRECT,
438 	INDIRECT_ACTION_ID2PTR,
439 	ACTION_MODIFY_FIELD,
440 	ACTION_MODIFY_FIELD_OP,
441 	ACTION_MODIFY_FIELD_OP_VALUE,
442 	ACTION_MODIFY_FIELD_DST_TYPE,
443 	ACTION_MODIFY_FIELD_DST_TYPE_VALUE,
444 	ACTION_MODIFY_FIELD_DST_LEVEL,
445 	ACTION_MODIFY_FIELD_DST_OFFSET,
446 	ACTION_MODIFY_FIELD_SRC_TYPE,
447 	ACTION_MODIFY_FIELD_SRC_TYPE_VALUE,
448 	ACTION_MODIFY_FIELD_SRC_LEVEL,
449 	ACTION_MODIFY_FIELD_SRC_OFFSET,
450 	ACTION_MODIFY_FIELD_SRC_VALUE,
451 	ACTION_MODIFY_FIELD_WIDTH,
452 	ACTION_CONNTRACK,
453 	ACTION_CONNTRACK_UPDATE,
454 	ACTION_CONNTRACK_UPDATE_DIR,
455 	ACTION_CONNTRACK_UPDATE_CTX,
456 	ACTION_POL_G,
457 	ACTION_POL_Y,
458 	ACTION_POL_R,
459 };
460 
461 /** Maximum size for pattern in struct rte_flow_item_raw. */
462 #define ITEM_RAW_PATTERN_SIZE 40
463 
464 /** Maximum size for GENEVE option data pattern in bytes. */
465 #define ITEM_GENEVE_OPT_DATA_SIZE 124
466 
467 /** Storage size for struct rte_flow_item_raw including pattern. */
468 #define ITEM_RAW_SIZE \
469 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
470 
471 /** Maximum number of queue indices in struct rte_flow_action_rss. */
472 #define ACTION_RSS_QUEUE_NUM 128
473 
474 /** Storage for struct rte_flow_action_rss including external data. */
475 struct action_rss_data {
476 	struct rte_flow_action_rss conf;
477 	uint8_t key[RSS_HASH_KEY_LENGTH];
478 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
479 };
480 
481 /** Maximum data size in struct rte_flow_action_raw_encap. */
482 #define ACTION_RAW_ENCAP_MAX_DATA 512
483 #define RAW_ENCAP_CONFS_MAX_NUM 8
484 
485 /** Storage for struct rte_flow_action_raw_encap. */
486 struct raw_encap_conf {
487 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
488 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
489 	size_t size;
490 };
491 
492 struct raw_encap_conf raw_encap_confs[RAW_ENCAP_CONFS_MAX_NUM];
493 
494 /** Storage for struct rte_flow_action_raw_encap including external data. */
495 struct action_raw_encap_data {
496 	struct rte_flow_action_raw_encap conf;
497 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
498 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
499 	uint16_t idx;
500 };
501 
502 /** Storage for struct rte_flow_action_raw_decap. */
503 struct raw_decap_conf {
504 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
505 	size_t size;
506 };
507 
508 struct raw_decap_conf raw_decap_confs[RAW_ENCAP_CONFS_MAX_NUM];
509 
510 /** Storage for struct rte_flow_action_raw_decap including external data. */
511 struct action_raw_decap_data {
512 	struct rte_flow_action_raw_decap conf;
513 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
514 	uint16_t idx;
515 };
516 
517 struct vxlan_encap_conf vxlan_encap_conf = {
518 	.select_ipv4 = 1,
519 	.select_vlan = 0,
520 	.select_tos_ttl = 0,
521 	.vni = "\x00\x00\x00",
522 	.udp_src = 0,
523 	.udp_dst = RTE_BE16(RTE_VXLAN_DEFAULT_PORT),
524 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
525 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
526 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
527 		"\x00\x00\x00\x00\x00\x00\x00\x01",
528 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
529 		"\x00\x00\x00\x00\x00\x00\x11\x11",
530 	.vlan_tci = 0,
531 	.ip_tos = 0,
532 	.ip_ttl = 255,
533 	.eth_src = "\x00\x00\x00\x00\x00\x00",
534 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
535 };
536 
537 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
538 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
539 
540 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
541 struct action_vxlan_encap_data {
542 	struct rte_flow_action_vxlan_encap conf;
543 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
544 	struct rte_flow_item_eth item_eth;
545 	struct rte_flow_item_vlan item_vlan;
546 	union {
547 		struct rte_flow_item_ipv4 item_ipv4;
548 		struct rte_flow_item_ipv6 item_ipv6;
549 	};
550 	struct rte_flow_item_udp item_udp;
551 	struct rte_flow_item_vxlan item_vxlan;
552 };
553 
554 struct nvgre_encap_conf nvgre_encap_conf = {
555 	.select_ipv4 = 1,
556 	.select_vlan = 0,
557 	.tni = "\x00\x00\x00",
558 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
559 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
560 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
561 		"\x00\x00\x00\x00\x00\x00\x00\x01",
562 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
563 		"\x00\x00\x00\x00\x00\x00\x11\x11",
564 	.vlan_tci = 0,
565 	.eth_src = "\x00\x00\x00\x00\x00\x00",
566 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
567 };
568 
569 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
570 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
571 
572 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
573 struct action_nvgre_encap_data {
574 	struct rte_flow_action_nvgre_encap conf;
575 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
576 	struct rte_flow_item_eth item_eth;
577 	struct rte_flow_item_vlan item_vlan;
578 	union {
579 		struct rte_flow_item_ipv4 item_ipv4;
580 		struct rte_flow_item_ipv6 item_ipv6;
581 	};
582 	struct rte_flow_item_nvgre item_nvgre;
583 };
584 
585 struct l2_encap_conf l2_encap_conf;
586 
587 struct l2_decap_conf l2_decap_conf;
588 
589 struct mplsogre_encap_conf mplsogre_encap_conf;
590 
591 struct mplsogre_decap_conf mplsogre_decap_conf;
592 
593 struct mplsoudp_encap_conf mplsoudp_encap_conf;
594 
595 struct mplsoudp_decap_conf mplsoudp_decap_conf;
596 
597 struct rte_flow_action_conntrack conntrack_context;
598 
599 #define ACTION_SAMPLE_ACTIONS_NUM 10
600 #define RAW_SAMPLE_CONFS_MAX_NUM 8
601 /** Storage for struct rte_flow_action_sample including external data. */
602 struct action_sample_data {
603 	struct rte_flow_action_sample conf;
604 	uint32_t idx;
605 };
606 /** Storage for struct rte_flow_action_sample. */
607 struct raw_sample_conf {
608 	struct rte_flow_action data[ACTION_SAMPLE_ACTIONS_NUM];
609 };
610 struct raw_sample_conf raw_sample_confs[RAW_SAMPLE_CONFS_MAX_NUM];
611 struct rte_flow_action_mark sample_mark[RAW_SAMPLE_CONFS_MAX_NUM];
612 struct rte_flow_action_queue sample_queue[RAW_SAMPLE_CONFS_MAX_NUM];
613 struct rte_flow_action_count sample_count[RAW_SAMPLE_CONFS_MAX_NUM];
614 struct rte_flow_action_port_id sample_port_id[RAW_SAMPLE_CONFS_MAX_NUM];
615 struct rte_flow_action_raw_encap sample_encap[RAW_SAMPLE_CONFS_MAX_NUM];
616 struct action_vxlan_encap_data sample_vxlan_encap[RAW_SAMPLE_CONFS_MAX_NUM];
617 struct action_nvgre_encap_data sample_nvgre_encap[RAW_SAMPLE_CONFS_MAX_NUM];
618 struct action_rss_data sample_rss_data[RAW_SAMPLE_CONFS_MAX_NUM];
619 struct rte_flow_action_vf sample_vf[RAW_SAMPLE_CONFS_MAX_NUM];
620 
621 static const char *const modify_field_ops[] = {
622 	"set", "add", "sub", NULL
623 };
624 
625 static const char *const modify_field_ids[] = {
626 	"start", "mac_dst", "mac_src",
627 	"vlan_type", "vlan_id", "mac_type",
628 	"ipv4_dscp", "ipv4_ttl", "ipv4_src", "ipv4_dst",
629 	"ipv6_dscp", "ipv6_hoplimit", "ipv6_src", "ipv6_dst",
630 	"tcp_port_src", "tcp_port_dst",
631 	"tcp_seq_num", "tcp_ack_num", "tcp_flags",
632 	"udp_port_src", "udp_port_dst",
633 	"vxlan_vni", "geneve_vni", "gtp_teid",
634 	"tag", "mark", "meta", "pointer", "value", NULL
635 };
636 
637 /** Maximum number of subsequent tokens and arguments on the stack. */
638 #define CTX_STACK_SIZE 16
639 
640 /** Parser context. */
641 struct context {
642 	/** Stack of subsequent token lists to process. */
643 	const enum index *next[CTX_STACK_SIZE];
644 	/** Arguments for stacked tokens. */
645 	const void *args[CTX_STACK_SIZE];
646 	enum index curr; /**< Current token index. */
647 	enum index prev; /**< Index of the last token seen. */
648 	int next_num; /**< Number of entries in next[]. */
649 	int args_num; /**< Number of entries in args[]. */
650 	uint32_t eol:1; /**< EOL has been detected. */
651 	uint32_t last:1; /**< No more arguments. */
652 	portid_t port; /**< Current port ID (for completions). */
653 	uint32_t objdata; /**< Object-specific data. */
654 	void *object; /**< Address of current object for relative offsets. */
655 	void *objmask; /**< Object a full mask must be written to. */
656 };
657 
658 /** Token argument. */
659 struct arg {
660 	uint32_t hton:1; /**< Use network byte ordering. */
661 	uint32_t sign:1; /**< Value is signed. */
662 	uint32_t bounded:1; /**< Value is bounded. */
663 	uintmax_t min; /**< Minimum value if bounded. */
664 	uintmax_t max; /**< Maximum value if bounded. */
665 	uint32_t offset; /**< Relative offset from ctx->object. */
666 	uint32_t size; /**< Field size. */
667 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
668 };
669 
670 /** Parser token definition. */
671 struct token {
672 	/** Type displayed during completion (defaults to "TOKEN"). */
673 	const char *type;
674 	/** Help displayed during completion (defaults to token name). */
675 	const char *help;
676 	/** Private data used by parser functions. */
677 	const void *priv;
678 	/**
679 	 * Lists of subsequent tokens to push on the stack. Each call to the
680 	 * parser consumes the last entry of that stack.
681 	 */
682 	const enum index *const *next;
683 	/** Arguments stack for subsequent tokens that need them. */
684 	const struct arg *const *args;
685 	/**
686 	 * Token-processing callback, returns -1 in case of error, the
687 	 * length of the matched string otherwise. If NULL, attempts to
688 	 * match the token name.
689 	 *
690 	 * If buf is not NULL, the result should be stored in it according
691 	 * to context. An error is returned if not large enough.
692 	 */
693 	int (*call)(struct context *ctx, const struct token *token,
694 		    const char *str, unsigned int len,
695 		    void *buf, unsigned int size);
696 	/**
697 	 * Callback that provides possible values for this token, used for
698 	 * completion. Returns -1 in case of error, the number of possible
699 	 * values otherwise. If NULL, the token name is used.
700 	 *
701 	 * If buf is not NULL, entry index ent is written to buf and the
702 	 * full length of the entry is returned (same behavior as
703 	 * snprintf()).
704 	 */
705 	int (*comp)(struct context *ctx, const struct token *token,
706 		    unsigned int ent, char *buf, unsigned int size);
707 	/** Mandatory token name, no default value. */
708 	const char *name;
709 };
710 
711 /** Static initializer for the next field. */
712 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
713 
714 /** Static initializer for a NEXT() entry. */
715 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
716 
717 /** Static initializer for the args field. */
718 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
719 
720 /** Static initializer for ARGS() to target a field. */
721 #define ARGS_ENTRY(s, f) \
722 	(&(const struct arg){ \
723 		.offset = offsetof(s, f), \
724 		.size = sizeof(((s *)0)->f), \
725 	})
726 
727 /** Static initializer for ARGS() to target a bit-field. */
728 #define ARGS_ENTRY_BF(s, f, b) \
729 	(&(const struct arg){ \
730 		.size = sizeof(s), \
731 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
732 	})
733 
734 /** Static initializer for ARGS() to target a field with limits. */
735 #define ARGS_ENTRY_BOUNDED(s, f, i, a) \
736 	(&(const struct arg){ \
737 		.bounded = 1, \
738 		.min = (i), \
739 		.max = (a), \
740 		.offset = offsetof(s, f), \
741 		.size = sizeof(((s *)0)->f), \
742 	})
743 
744 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
745 #define ARGS_ENTRY_MASK(s, f, m) \
746 	(&(const struct arg){ \
747 		.offset = offsetof(s, f), \
748 		.size = sizeof(((s *)0)->f), \
749 		.mask = (const void *)(m), \
750 	})
751 
752 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
753 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
754 	(&(const struct arg){ \
755 		.hton = 1, \
756 		.offset = offsetof(s, f), \
757 		.size = sizeof(((s *)0)->f), \
758 		.mask = (const void *)(m), \
759 	})
760 
761 /** Static initializer for ARGS() to target a pointer. */
762 #define ARGS_ENTRY_PTR(s, f) \
763 	(&(const struct arg){ \
764 		.size = sizeof(*((s *)0)->f), \
765 	})
766 
767 /** Static initializer for ARGS() with arbitrary offset and size. */
768 #define ARGS_ENTRY_ARB(o, s) \
769 	(&(const struct arg){ \
770 		.offset = (o), \
771 		.size = (s), \
772 	})
773 
774 /** Same as ARGS_ENTRY_ARB() with bounded values. */
775 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
776 	(&(const struct arg){ \
777 		.bounded = 1, \
778 		.min = (i), \
779 		.max = (a), \
780 		.offset = (o), \
781 		.size = (s), \
782 	})
783 
784 /** Same as ARGS_ENTRY() using network byte ordering. */
785 #define ARGS_ENTRY_HTON(s, f) \
786 	(&(const struct arg){ \
787 		.hton = 1, \
788 		.offset = offsetof(s, f), \
789 		.size = sizeof(((s *)0)->f), \
790 	})
791 
792 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
793 #define ARG_ENTRY_HTON(s) \
794 	(&(const struct arg){ \
795 		.hton = 1, \
796 		.offset = 0, \
797 		.size = sizeof(s), \
798 	})
799 
800 /** Parser output buffer layout expected by cmd_flow_parsed(). */
801 struct buffer {
802 	enum index command; /**< Flow command. */
803 	portid_t port; /**< Affected port ID. */
804 	union {
805 		struct {
806 			uint32_t *action_id;
807 			uint32_t action_id_n;
808 		} ia_destroy; /**< Indirect action destroy arguments. */
809 		struct {
810 			uint32_t action_id;
811 		} ia; /* Indirect action query arguments */
812 		struct {
813 			struct rte_flow_attr attr;
814 			struct tunnel_ops tunnel_ops;
815 			struct rte_flow_item *pattern;
816 			struct rte_flow_action *actions;
817 			uint32_t pattern_n;
818 			uint32_t actions_n;
819 			uint8_t *data;
820 		} vc; /**< Validate/create arguments. */
821 		struct {
822 			uint32_t *rule;
823 			uint32_t rule_n;
824 		} destroy; /**< Destroy arguments. */
825 		struct {
826 			char file[128];
827 			bool mode;
828 			uint32_t rule;
829 		} dump; /**< Dump arguments. */
830 		struct {
831 			uint32_t rule;
832 			struct rte_flow_action action;
833 		} query; /**< Query arguments. */
834 		struct {
835 			uint32_t *group;
836 			uint32_t group_n;
837 		} list; /**< List arguments. */
838 		struct {
839 			int set;
840 		} isolate; /**< Isolated mode arguments. */
841 		struct {
842 			int destroy;
843 		} aged; /**< Aged arguments. */
844 		struct {
845 			uint32_t policy_id;
846 		} policy;/**< Policy arguments. */
847 	} args; /**< Command arguments. */
848 };
849 
850 /** Private data for pattern items. */
851 struct parse_item_priv {
852 	enum rte_flow_item_type type; /**< Item type. */
853 	uint32_t size; /**< Size of item specification structure. */
854 };
855 
856 #define PRIV_ITEM(t, s) \
857 	(&(const struct parse_item_priv){ \
858 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
859 		.size = s, \
860 	})
861 
862 /** Private data for actions. */
863 struct parse_action_priv {
864 	enum rte_flow_action_type type; /**< Action type. */
865 	uint32_t size; /**< Size of action configuration structure. */
866 };
867 
868 #define PRIV_ACTION(t, s) \
869 	(&(const struct parse_action_priv){ \
870 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
871 		.size = s, \
872 	})
873 
874 static const enum index next_ia_create_attr[] = {
875 	INDIRECT_ACTION_CREATE_ID,
876 	INDIRECT_ACTION_INGRESS,
877 	INDIRECT_ACTION_EGRESS,
878 	INDIRECT_ACTION_TRANSFER,
879 	INDIRECT_ACTION_SPEC,
880 	ZERO,
881 };
882 
883 static const enum index next_dump_subcmd[] = {
884 	DUMP_ALL,
885 	DUMP_ONE,
886 	ZERO,
887 };
888 
889 static const enum index next_ia_subcmd[] = {
890 	INDIRECT_ACTION_CREATE,
891 	INDIRECT_ACTION_UPDATE,
892 	INDIRECT_ACTION_DESTROY,
893 	INDIRECT_ACTION_QUERY,
894 	ZERO,
895 };
896 
897 static const enum index next_vc_attr[] = {
898 	GROUP,
899 	PRIORITY,
900 	INGRESS,
901 	EGRESS,
902 	TRANSFER,
903 	TUNNEL_SET,
904 	TUNNEL_MATCH,
905 	PATTERN,
906 	ZERO,
907 };
908 
909 static const enum index next_destroy_attr[] = {
910 	DESTROY_RULE,
911 	END,
912 	ZERO,
913 };
914 
915 static const enum index next_dump_attr[] = {
916 	FILE_PATH,
917 	END,
918 	ZERO,
919 };
920 
921 static const enum index next_list_attr[] = {
922 	LIST_GROUP,
923 	END,
924 	ZERO,
925 };
926 
927 static const enum index next_aged_attr[] = {
928 	AGED_DESTROY,
929 	END,
930 	ZERO,
931 };
932 
933 static const enum index next_ia_destroy_attr[] = {
934 	INDIRECT_ACTION_DESTROY_ID,
935 	END,
936 	ZERO,
937 };
938 
939 static const enum index item_param[] = {
940 	ITEM_PARAM_IS,
941 	ITEM_PARAM_SPEC,
942 	ITEM_PARAM_LAST,
943 	ITEM_PARAM_MASK,
944 	ITEM_PARAM_PREFIX,
945 	ZERO,
946 };
947 
948 static const enum index next_item[] = {
949 	ITEM_END,
950 	ITEM_VOID,
951 	ITEM_INVERT,
952 	ITEM_ANY,
953 	ITEM_PF,
954 	ITEM_VF,
955 	ITEM_PHY_PORT,
956 	ITEM_PORT_ID,
957 	ITEM_MARK,
958 	ITEM_RAW,
959 	ITEM_ETH,
960 	ITEM_VLAN,
961 	ITEM_IPV4,
962 	ITEM_IPV6,
963 	ITEM_ICMP,
964 	ITEM_UDP,
965 	ITEM_TCP,
966 	ITEM_SCTP,
967 	ITEM_VXLAN,
968 	ITEM_E_TAG,
969 	ITEM_NVGRE,
970 	ITEM_MPLS,
971 	ITEM_GRE,
972 	ITEM_FUZZY,
973 	ITEM_GTP,
974 	ITEM_GTPC,
975 	ITEM_GTPU,
976 	ITEM_GENEVE,
977 	ITEM_VXLAN_GPE,
978 	ITEM_ARP_ETH_IPV4,
979 	ITEM_IPV6_EXT,
980 	ITEM_IPV6_FRAG_EXT,
981 	ITEM_ICMP6,
982 	ITEM_ICMP6_ND_NS,
983 	ITEM_ICMP6_ND_NA,
984 	ITEM_ICMP6_ND_OPT,
985 	ITEM_ICMP6_ND_OPT_SLA_ETH,
986 	ITEM_ICMP6_ND_OPT_TLA_ETH,
987 	ITEM_META,
988 	ITEM_GRE_KEY,
989 	ITEM_GTP_PSC,
990 	ITEM_PPPOES,
991 	ITEM_PPPOED,
992 	ITEM_PPPOE_PROTO_ID,
993 	ITEM_HIGIG2,
994 	ITEM_TAG,
995 	ITEM_L2TPV3OIP,
996 	ITEM_ESP,
997 	ITEM_AH,
998 	ITEM_PFCP,
999 	ITEM_ECPRI,
1000 	ITEM_GENEVE_OPT,
1001 	ITEM_INTEGRITY,
1002 	ITEM_CONNTRACK,
1003 	END_SET,
1004 	ZERO,
1005 };
1006 
1007 static const enum index item_fuzzy[] = {
1008 	ITEM_FUZZY_THRESH,
1009 	ITEM_NEXT,
1010 	ZERO,
1011 };
1012 
1013 static const enum index item_any[] = {
1014 	ITEM_ANY_NUM,
1015 	ITEM_NEXT,
1016 	ZERO,
1017 };
1018 
1019 static const enum index item_vf[] = {
1020 	ITEM_VF_ID,
1021 	ITEM_NEXT,
1022 	ZERO,
1023 };
1024 
1025 static const enum index item_phy_port[] = {
1026 	ITEM_PHY_PORT_INDEX,
1027 	ITEM_NEXT,
1028 	ZERO,
1029 };
1030 
1031 static const enum index item_port_id[] = {
1032 	ITEM_PORT_ID_ID,
1033 	ITEM_NEXT,
1034 	ZERO,
1035 };
1036 
1037 static const enum index item_mark[] = {
1038 	ITEM_MARK_ID,
1039 	ITEM_NEXT,
1040 	ZERO,
1041 };
1042 
1043 static const enum index item_raw[] = {
1044 	ITEM_RAW_RELATIVE,
1045 	ITEM_RAW_SEARCH,
1046 	ITEM_RAW_OFFSET,
1047 	ITEM_RAW_LIMIT,
1048 	ITEM_RAW_PATTERN,
1049 	ITEM_NEXT,
1050 	ZERO,
1051 };
1052 
1053 static const enum index item_eth[] = {
1054 	ITEM_ETH_DST,
1055 	ITEM_ETH_SRC,
1056 	ITEM_ETH_TYPE,
1057 	ITEM_ETH_HAS_VLAN,
1058 	ITEM_NEXT,
1059 	ZERO,
1060 };
1061 
1062 static const enum index item_vlan[] = {
1063 	ITEM_VLAN_TCI,
1064 	ITEM_VLAN_PCP,
1065 	ITEM_VLAN_DEI,
1066 	ITEM_VLAN_VID,
1067 	ITEM_VLAN_INNER_TYPE,
1068 	ITEM_VLAN_HAS_MORE_VLAN,
1069 	ITEM_NEXT,
1070 	ZERO,
1071 };
1072 
1073 static const enum index item_ipv4[] = {
1074 	ITEM_IPV4_TOS,
1075 	ITEM_IPV4_ID,
1076 	ITEM_IPV4_FRAGMENT_OFFSET,
1077 	ITEM_IPV4_TTL,
1078 	ITEM_IPV4_PROTO,
1079 	ITEM_IPV4_SRC,
1080 	ITEM_IPV4_DST,
1081 	ITEM_NEXT,
1082 	ZERO,
1083 };
1084 
1085 static const enum index item_ipv6[] = {
1086 	ITEM_IPV6_TC,
1087 	ITEM_IPV6_FLOW,
1088 	ITEM_IPV6_PROTO,
1089 	ITEM_IPV6_HOP,
1090 	ITEM_IPV6_SRC,
1091 	ITEM_IPV6_DST,
1092 	ITEM_IPV6_HAS_FRAG_EXT,
1093 	ITEM_NEXT,
1094 	ZERO,
1095 };
1096 
1097 static const enum index item_icmp[] = {
1098 	ITEM_ICMP_TYPE,
1099 	ITEM_ICMP_CODE,
1100 	ITEM_ICMP_IDENT,
1101 	ITEM_ICMP_SEQ,
1102 	ITEM_NEXT,
1103 	ZERO,
1104 };
1105 
1106 static const enum index item_udp[] = {
1107 	ITEM_UDP_SRC,
1108 	ITEM_UDP_DST,
1109 	ITEM_NEXT,
1110 	ZERO,
1111 };
1112 
1113 static const enum index item_tcp[] = {
1114 	ITEM_TCP_SRC,
1115 	ITEM_TCP_DST,
1116 	ITEM_TCP_FLAGS,
1117 	ITEM_NEXT,
1118 	ZERO,
1119 };
1120 
1121 static const enum index item_sctp[] = {
1122 	ITEM_SCTP_SRC,
1123 	ITEM_SCTP_DST,
1124 	ITEM_SCTP_TAG,
1125 	ITEM_SCTP_CKSUM,
1126 	ITEM_NEXT,
1127 	ZERO,
1128 };
1129 
1130 static const enum index item_vxlan[] = {
1131 	ITEM_VXLAN_VNI,
1132 	ITEM_NEXT,
1133 	ZERO,
1134 };
1135 
1136 static const enum index item_e_tag[] = {
1137 	ITEM_E_TAG_GRP_ECID_B,
1138 	ITEM_NEXT,
1139 	ZERO,
1140 };
1141 
1142 static const enum index item_nvgre[] = {
1143 	ITEM_NVGRE_TNI,
1144 	ITEM_NEXT,
1145 	ZERO,
1146 };
1147 
1148 static const enum index item_mpls[] = {
1149 	ITEM_MPLS_LABEL,
1150 	ITEM_MPLS_TC,
1151 	ITEM_MPLS_S,
1152 	ITEM_NEXT,
1153 	ZERO,
1154 };
1155 
1156 static const enum index item_gre[] = {
1157 	ITEM_GRE_PROTO,
1158 	ITEM_GRE_C_RSVD0_VER,
1159 	ITEM_GRE_C_BIT,
1160 	ITEM_GRE_K_BIT,
1161 	ITEM_GRE_S_BIT,
1162 	ITEM_NEXT,
1163 	ZERO,
1164 };
1165 
1166 static const enum index item_gre_key[] = {
1167 	ITEM_GRE_KEY_VALUE,
1168 	ITEM_NEXT,
1169 	ZERO,
1170 };
1171 
1172 static const enum index item_gtp[] = {
1173 	ITEM_GTP_FLAGS,
1174 	ITEM_GTP_MSG_TYPE,
1175 	ITEM_GTP_TEID,
1176 	ITEM_NEXT,
1177 	ZERO,
1178 };
1179 
1180 static const enum index item_geneve[] = {
1181 	ITEM_GENEVE_VNI,
1182 	ITEM_GENEVE_PROTO,
1183 	ITEM_GENEVE_OPTLEN,
1184 	ITEM_NEXT,
1185 	ZERO,
1186 };
1187 
1188 static const enum index item_vxlan_gpe[] = {
1189 	ITEM_VXLAN_GPE_VNI,
1190 	ITEM_NEXT,
1191 	ZERO,
1192 };
1193 
1194 static const enum index item_arp_eth_ipv4[] = {
1195 	ITEM_ARP_ETH_IPV4_SHA,
1196 	ITEM_ARP_ETH_IPV4_SPA,
1197 	ITEM_ARP_ETH_IPV4_THA,
1198 	ITEM_ARP_ETH_IPV4_TPA,
1199 	ITEM_NEXT,
1200 	ZERO,
1201 };
1202 
1203 static const enum index item_ipv6_ext[] = {
1204 	ITEM_IPV6_EXT_NEXT_HDR,
1205 	ITEM_NEXT,
1206 	ZERO,
1207 };
1208 
1209 static const enum index item_ipv6_frag_ext[] = {
1210 	ITEM_IPV6_FRAG_EXT_NEXT_HDR,
1211 	ITEM_IPV6_FRAG_EXT_FRAG_DATA,
1212 	ITEM_IPV6_FRAG_EXT_ID,
1213 	ITEM_NEXT,
1214 	ZERO,
1215 };
1216 
1217 static const enum index item_icmp6[] = {
1218 	ITEM_ICMP6_TYPE,
1219 	ITEM_ICMP6_CODE,
1220 	ITEM_NEXT,
1221 	ZERO,
1222 };
1223 
1224 static const enum index item_icmp6_nd_ns[] = {
1225 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
1226 	ITEM_NEXT,
1227 	ZERO,
1228 };
1229 
1230 static const enum index item_icmp6_nd_na[] = {
1231 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
1232 	ITEM_NEXT,
1233 	ZERO,
1234 };
1235 
1236 static const enum index item_icmp6_nd_opt[] = {
1237 	ITEM_ICMP6_ND_OPT_TYPE,
1238 	ITEM_NEXT,
1239 	ZERO,
1240 };
1241 
1242 static const enum index item_icmp6_nd_opt_sla_eth[] = {
1243 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
1244 	ITEM_NEXT,
1245 	ZERO,
1246 };
1247 
1248 static const enum index item_icmp6_nd_opt_tla_eth[] = {
1249 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
1250 	ITEM_NEXT,
1251 	ZERO,
1252 };
1253 
1254 static const enum index item_meta[] = {
1255 	ITEM_META_DATA,
1256 	ITEM_NEXT,
1257 	ZERO,
1258 };
1259 
1260 static const enum index item_gtp_psc[] = {
1261 	ITEM_GTP_PSC_QFI,
1262 	ITEM_GTP_PSC_PDU_T,
1263 	ITEM_NEXT,
1264 	ZERO,
1265 };
1266 
1267 static const enum index item_pppoed[] = {
1268 	ITEM_PPPOE_SEID,
1269 	ITEM_NEXT,
1270 	ZERO,
1271 };
1272 
1273 static const enum index item_pppoes[] = {
1274 	ITEM_PPPOE_SEID,
1275 	ITEM_NEXT,
1276 	ZERO,
1277 };
1278 
1279 static const enum index item_pppoe_proto_id[] = {
1280 	ITEM_NEXT,
1281 	ZERO,
1282 };
1283 
1284 static const enum index item_higig2[] = {
1285 	ITEM_HIGIG2_CLASSIFICATION,
1286 	ITEM_HIGIG2_VID,
1287 	ITEM_NEXT,
1288 	ZERO,
1289 };
1290 
1291 static const enum index item_esp[] = {
1292 	ITEM_ESP_SPI,
1293 	ITEM_NEXT,
1294 	ZERO,
1295 };
1296 
1297 static const enum index item_ah[] = {
1298 	ITEM_AH_SPI,
1299 	ITEM_NEXT,
1300 	ZERO,
1301 };
1302 
1303 static const enum index item_pfcp[] = {
1304 	ITEM_PFCP_S_FIELD,
1305 	ITEM_PFCP_SEID,
1306 	ITEM_NEXT,
1307 	ZERO,
1308 };
1309 
1310 static const enum index next_set_raw[] = {
1311 	SET_RAW_INDEX,
1312 	ITEM_ETH,
1313 	ZERO,
1314 };
1315 
1316 static const enum index item_tag[] = {
1317 	ITEM_TAG_DATA,
1318 	ITEM_TAG_INDEX,
1319 	ITEM_NEXT,
1320 	ZERO,
1321 };
1322 
1323 static const enum index item_l2tpv3oip[] = {
1324 	ITEM_L2TPV3OIP_SESSION_ID,
1325 	ITEM_NEXT,
1326 	ZERO,
1327 };
1328 
1329 static const enum index item_ecpri[] = {
1330 	ITEM_ECPRI_COMMON,
1331 	ITEM_NEXT,
1332 	ZERO,
1333 };
1334 
1335 static const enum index item_ecpri_common[] = {
1336 	ITEM_ECPRI_COMMON_TYPE,
1337 	ZERO,
1338 };
1339 
1340 static const enum index item_ecpri_common_type[] = {
1341 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
1342 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
1343 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
1344 	ZERO,
1345 };
1346 
1347 static const enum index item_geneve_opt[] = {
1348 	ITEM_GENEVE_OPT_CLASS,
1349 	ITEM_GENEVE_OPT_TYPE,
1350 	ITEM_GENEVE_OPT_LENGTH,
1351 	ITEM_GENEVE_OPT_DATA,
1352 	ITEM_NEXT,
1353 	ZERO,
1354 };
1355 
1356 static const enum index item_integrity[] = {
1357 	ITEM_INTEGRITY_LEVEL,
1358 	ITEM_INTEGRITY_VALUE,
1359 	ZERO,
1360 };
1361 
1362 static const enum index item_integrity_lv[] = {
1363 	ITEM_INTEGRITY_LEVEL,
1364 	ITEM_INTEGRITY_VALUE,
1365 	ITEM_NEXT,
1366 	ZERO,
1367 };
1368 
1369 static const enum index next_action[] = {
1370 	ACTION_END,
1371 	ACTION_VOID,
1372 	ACTION_PASSTHRU,
1373 	ACTION_JUMP,
1374 	ACTION_MARK,
1375 	ACTION_FLAG,
1376 	ACTION_QUEUE,
1377 	ACTION_DROP,
1378 	ACTION_COUNT,
1379 	ACTION_RSS,
1380 	ACTION_PF,
1381 	ACTION_VF,
1382 	ACTION_PHY_PORT,
1383 	ACTION_PORT_ID,
1384 	ACTION_METER,
1385 	ACTION_METER_COLOR,
1386 	ACTION_OF_SET_MPLS_TTL,
1387 	ACTION_OF_DEC_MPLS_TTL,
1388 	ACTION_OF_SET_NW_TTL,
1389 	ACTION_OF_DEC_NW_TTL,
1390 	ACTION_OF_COPY_TTL_OUT,
1391 	ACTION_OF_COPY_TTL_IN,
1392 	ACTION_OF_POP_VLAN,
1393 	ACTION_OF_PUSH_VLAN,
1394 	ACTION_OF_SET_VLAN_VID,
1395 	ACTION_OF_SET_VLAN_PCP,
1396 	ACTION_OF_POP_MPLS,
1397 	ACTION_OF_PUSH_MPLS,
1398 	ACTION_VXLAN_ENCAP,
1399 	ACTION_VXLAN_DECAP,
1400 	ACTION_NVGRE_ENCAP,
1401 	ACTION_NVGRE_DECAP,
1402 	ACTION_L2_ENCAP,
1403 	ACTION_L2_DECAP,
1404 	ACTION_MPLSOGRE_ENCAP,
1405 	ACTION_MPLSOGRE_DECAP,
1406 	ACTION_MPLSOUDP_ENCAP,
1407 	ACTION_MPLSOUDP_DECAP,
1408 	ACTION_SET_IPV4_SRC,
1409 	ACTION_SET_IPV4_DST,
1410 	ACTION_SET_IPV6_SRC,
1411 	ACTION_SET_IPV6_DST,
1412 	ACTION_SET_TP_SRC,
1413 	ACTION_SET_TP_DST,
1414 	ACTION_MAC_SWAP,
1415 	ACTION_DEC_TTL,
1416 	ACTION_SET_TTL,
1417 	ACTION_SET_MAC_SRC,
1418 	ACTION_SET_MAC_DST,
1419 	ACTION_INC_TCP_SEQ,
1420 	ACTION_DEC_TCP_SEQ,
1421 	ACTION_INC_TCP_ACK,
1422 	ACTION_DEC_TCP_ACK,
1423 	ACTION_RAW_ENCAP,
1424 	ACTION_RAW_DECAP,
1425 	ACTION_SET_TAG,
1426 	ACTION_SET_META,
1427 	ACTION_SET_IPV4_DSCP,
1428 	ACTION_SET_IPV6_DSCP,
1429 	ACTION_AGE,
1430 	ACTION_SAMPLE,
1431 	ACTION_INDIRECT,
1432 	ACTION_MODIFY_FIELD,
1433 	ACTION_CONNTRACK,
1434 	ACTION_CONNTRACK_UPDATE,
1435 	ZERO,
1436 };
1437 
1438 static const enum index action_mark[] = {
1439 	ACTION_MARK_ID,
1440 	ACTION_NEXT,
1441 	ZERO,
1442 };
1443 
1444 static const enum index action_queue[] = {
1445 	ACTION_QUEUE_INDEX,
1446 	ACTION_NEXT,
1447 	ZERO,
1448 };
1449 
1450 static const enum index action_count[] = {
1451 	ACTION_COUNT_ID,
1452 	ACTION_COUNT_SHARED,
1453 	ACTION_NEXT,
1454 	ZERO,
1455 };
1456 
1457 static const enum index action_rss[] = {
1458 	ACTION_RSS_FUNC,
1459 	ACTION_RSS_LEVEL,
1460 	ACTION_RSS_TYPES,
1461 	ACTION_RSS_KEY,
1462 	ACTION_RSS_KEY_LEN,
1463 	ACTION_RSS_QUEUES,
1464 	ACTION_NEXT,
1465 	ZERO,
1466 };
1467 
1468 static const enum index action_vf[] = {
1469 	ACTION_VF_ORIGINAL,
1470 	ACTION_VF_ID,
1471 	ACTION_NEXT,
1472 	ZERO,
1473 };
1474 
1475 static const enum index action_phy_port[] = {
1476 	ACTION_PHY_PORT_ORIGINAL,
1477 	ACTION_PHY_PORT_INDEX,
1478 	ACTION_NEXT,
1479 	ZERO,
1480 };
1481 
1482 static const enum index action_port_id[] = {
1483 	ACTION_PORT_ID_ORIGINAL,
1484 	ACTION_PORT_ID_ID,
1485 	ACTION_NEXT,
1486 	ZERO,
1487 };
1488 
1489 static const enum index action_meter[] = {
1490 	ACTION_METER_ID,
1491 	ACTION_NEXT,
1492 	ZERO,
1493 };
1494 
1495 static const enum index action_meter_color[] = {
1496 	ACTION_METER_COLOR_TYPE,
1497 	ACTION_NEXT,
1498 	ZERO,
1499 };
1500 
1501 static const enum index action_of_set_mpls_ttl[] = {
1502 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1503 	ACTION_NEXT,
1504 	ZERO,
1505 };
1506 
1507 static const enum index action_of_set_nw_ttl[] = {
1508 	ACTION_OF_SET_NW_TTL_NW_TTL,
1509 	ACTION_NEXT,
1510 	ZERO,
1511 };
1512 
1513 static const enum index action_of_push_vlan[] = {
1514 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1515 	ACTION_NEXT,
1516 	ZERO,
1517 };
1518 
1519 static const enum index action_of_set_vlan_vid[] = {
1520 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1521 	ACTION_NEXT,
1522 	ZERO,
1523 };
1524 
1525 static const enum index action_of_set_vlan_pcp[] = {
1526 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1527 	ACTION_NEXT,
1528 	ZERO,
1529 };
1530 
1531 static const enum index action_of_pop_mpls[] = {
1532 	ACTION_OF_POP_MPLS_ETHERTYPE,
1533 	ACTION_NEXT,
1534 	ZERO,
1535 };
1536 
1537 static const enum index action_of_push_mpls[] = {
1538 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1539 	ACTION_NEXT,
1540 	ZERO,
1541 };
1542 
1543 static const enum index action_set_ipv4_src[] = {
1544 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1545 	ACTION_NEXT,
1546 	ZERO,
1547 };
1548 
1549 static const enum index action_set_mac_src[] = {
1550 	ACTION_SET_MAC_SRC_MAC_SRC,
1551 	ACTION_NEXT,
1552 	ZERO,
1553 };
1554 
1555 static const enum index action_set_ipv4_dst[] = {
1556 	ACTION_SET_IPV4_DST_IPV4_DST,
1557 	ACTION_NEXT,
1558 	ZERO,
1559 };
1560 
1561 static const enum index action_set_ipv6_src[] = {
1562 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1563 	ACTION_NEXT,
1564 	ZERO,
1565 };
1566 
1567 static const enum index action_set_ipv6_dst[] = {
1568 	ACTION_SET_IPV6_DST_IPV6_DST,
1569 	ACTION_NEXT,
1570 	ZERO,
1571 };
1572 
1573 static const enum index action_set_tp_src[] = {
1574 	ACTION_SET_TP_SRC_TP_SRC,
1575 	ACTION_NEXT,
1576 	ZERO,
1577 };
1578 
1579 static const enum index action_set_tp_dst[] = {
1580 	ACTION_SET_TP_DST_TP_DST,
1581 	ACTION_NEXT,
1582 	ZERO,
1583 };
1584 
1585 static const enum index action_set_ttl[] = {
1586 	ACTION_SET_TTL_TTL,
1587 	ACTION_NEXT,
1588 	ZERO,
1589 };
1590 
1591 static const enum index action_jump[] = {
1592 	ACTION_JUMP_GROUP,
1593 	ACTION_NEXT,
1594 	ZERO,
1595 };
1596 
1597 static const enum index action_set_mac_dst[] = {
1598 	ACTION_SET_MAC_DST_MAC_DST,
1599 	ACTION_NEXT,
1600 	ZERO,
1601 };
1602 
1603 static const enum index action_inc_tcp_seq[] = {
1604 	ACTION_INC_TCP_SEQ_VALUE,
1605 	ACTION_NEXT,
1606 	ZERO,
1607 };
1608 
1609 static const enum index action_dec_tcp_seq[] = {
1610 	ACTION_DEC_TCP_SEQ_VALUE,
1611 	ACTION_NEXT,
1612 	ZERO,
1613 };
1614 
1615 static const enum index action_inc_tcp_ack[] = {
1616 	ACTION_INC_TCP_ACK_VALUE,
1617 	ACTION_NEXT,
1618 	ZERO,
1619 };
1620 
1621 static const enum index action_dec_tcp_ack[] = {
1622 	ACTION_DEC_TCP_ACK_VALUE,
1623 	ACTION_NEXT,
1624 	ZERO,
1625 };
1626 
1627 static const enum index action_raw_encap[] = {
1628 	ACTION_RAW_ENCAP_INDEX,
1629 	ACTION_NEXT,
1630 	ZERO,
1631 };
1632 
1633 static const enum index action_raw_decap[] = {
1634 	ACTION_RAW_DECAP_INDEX,
1635 	ACTION_NEXT,
1636 	ZERO,
1637 };
1638 
1639 static const enum index action_set_tag[] = {
1640 	ACTION_SET_TAG_DATA,
1641 	ACTION_SET_TAG_INDEX,
1642 	ACTION_SET_TAG_MASK,
1643 	ACTION_NEXT,
1644 	ZERO,
1645 };
1646 
1647 static const enum index action_set_meta[] = {
1648 	ACTION_SET_META_DATA,
1649 	ACTION_SET_META_MASK,
1650 	ACTION_NEXT,
1651 	ZERO,
1652 };
1653 
1654 static const enum index action_set_ipv4_dscp[] = {
1655 	ACTION_SET_IPV4_DSCP_VALUE,
1656 	ACTION_NEXT,
1657 	ZERO,
1658 };
1659 
1660 static const enum index action_set_ipv6_dscp[] = {
1661 	ACTION_SET_IPV6_DSCP_VALUE,
1662 	ACTION_NEXT,
1663 	ZERO,
1664 };
1665 
1666 static const enum index action_age[] = {
1667 	ACTION_AGE,
1668 	ACTION_AGE_TIMEOUT,
1669 	ACTION_NEXT,
1670 	ZERO,
1671 };
1672 
1673 static const enum index action_sample[] = {
1674 	ACTION_SAMPLE,
1675 	ACTION_SAMPLE_RATIO,
1676 	ACTION_SAMPLE_INDEX,
1677 	ACTION_NEXT,
1678 	ZERO,
1679 };
1680 
1681 static const enum index next_action_sample[] = {
1682 	ACTION_QUEUE,
1683 	ACTION_RSS,
1684 	ACTION_MARK,
1685 	ACTION_COUNT,
1686 	ACTION_PORT_ID,
1687 	ACTION_RAW_ENCAP,
1688 	ACTION_VXLAN_ENCAP,
1689 	ACTION_NVGRE_ENCAP,
1690 	ACTION_NEXT,
1691 	ZERO,
1692 };
1693 
1694 static const enum index action_modify_field_dst[] = {
1695 	ACTION_MODIFY_FIELD_DST_LEVEL,
1696 	ACTION_MODIFY_FIELD_DST_OFFSET,
1697 	ACTION_MODIFY_FIELD_SRC_TYPE,
1698 	ZERO,
1699 };
1700 
1701 static const enum index action_modify_field_src[] = {
1702 	ACTION_MODIFY_FIELD_SRC_LEVEL,
1703 	ACTION_MODIFY_FIELD_SRC_OFFSET,
1704 	ACTION_MODIFY_FIELD_SRC_VALUE,
1705 	ACTION_MODIFY_FIELD_WIDTH,
1706 	ZERO,
1707 };
1708 
1709 static const enum index action_update_conntrack[] = {
1710 	ACTION_CONNTRACK_UPDATE_DIR,
1711 	ACTION_CONNTRACK_UPDATE_CTX,
1712 	ACTION_NEXT,
1713 	ZERO,
1714 };
1715 
1716 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1717 				     const char *, unsigned int,
1718 				     void *, unsigned int);
1719 static int parse_set_sample_action(struct context *, const struct token *,
1720 				   const char *, unsigned int,
1721 				   void *, unsigned int);
1722 static int parse_set_init(struct context *, const struct token *,
1723 			  const char *, unsigned int,
1724 			  void *, unsigned int);
1725 static int parse_init(struct context *, const struct token *,
1726 		      const char *, unsigned int,
1727 		      void *, unsigned int);
1728 static int parse_vc(struct context *, const struct token *,
1729 		    const char *, unsigned int,
1730 		    void *, unsigned int);
1731 static int parse_vc_spec(struct context *, const struct token *,
1732 			 const char *, unsigned int, void *, unsigned int);
1733 static int parse_vc_conf(struct context *, const struct token *,
1734 			 const char *, unsigned int, void *, unsigned int);
1735 static int parse_vc_item_ecpri_type(struct context *, const struct token *,
1736 				    const char *, unsigned int,
1737 				    void *, unsigned int);
1738 static int parse_vc_action_meter_color_type(struct context *,
1739 					const struct token *,
1740 					const char *, unsigned int, void *,
1741 					unsigned int);
1742 static int parse_vc_action_rss(struct context *, const struct token *,
1743 			       const char *, unsigned int, void *,
1744 			       unsigned int);
1745 static int parse_vc_action_rss_func(struct context *, const struct token *,
1746 				    const char *, unsigned int, void *,
1747 				    unsigned int);
1748 static int parse_vc_action_rss_type(struct context *, const struct token *,
1749 				    const char *, unsigned int, void *,
1750 				    unsigned int);
1751 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1752 				     const char *, unsigned int, void *,
1753 				     unsigned int);
1754 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1755 				       const char *, unsigned int, void *,
1756 				       unsigned int);
1757 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1758 				       const char *, unsigned int, void *,
1759 				       unsigned int);
1760 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1761 				    const char *, unsigned int, void *,
1762 				    unsigned int);
1763 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1764 				    const char *, unsigned int, void *,
1765 				    unsigned int);
1766 static int parse_vc_action_mplsogre_encap(struct context *,
1767 					  const struct token *, const char *,
1768 					  unsigned int, void *, unsigned int);
1769 static int parse_vc_action_mplsogre_decap(struct context *,
1770 					  const struct token *, const char *,
1771 					  unsigned int, void *, unsigned int);
1772 static int parse_vc_action_mplsoudp_encap(struct context *,
1773 					  const struct token *, const char *,
1774 					  unsigned int, void *, unsigned int);
1775 static int parse_vc_action_mplsoudp_decap(struct context *,
1776 					  const struct token *, const char *,
1777 					  unsigned int, void *, unsigned int);
1778 static int parse_vc_action_raw_encap(struct context *,
1779 				     const struct token *, const char *,
1780 				     unsigned int, void *, unsigned int);
1781 static int parse_vc_action_raw_decap(struct context *,
1782 				     const struct token *, const char *,
1783 				     unsigned int, void *, unsigned int);
1784 static int parse_vc_action_raw_encap_index(struct context *,
1785 					   const struct token *, const char *,
1786 					   unsigned int, void *, unsigned int);
1787 static int parse_vc_action_raw_decap_index(struct context *,
1788 					   const struct token *, const char *,
1789 					   unsigned int, void *, unsigned int);
1790 static int parse_vc_action_set_meta(struct context *ctx,
1791 				    const struct token *token, const char *str,
1792 				    unsigned int len, void *buf,
1793 					unsigned int size);
1794 static int parse_vc_action_sample(struct context *ctx,
1795 				    const struct token *token, const char *str,
1796 				    unsigned int len, void *buf,
1797 				    unsigned int size);
1798 static int
1799 parse_vc_action_sample_index(struct context *ctx, const struct token *token,
1800 				const char *str, unsigned int len, void *buf,
1801 				unsigned int size);
1802 static int
1803 parse_vc_modify_field_op(struct context *ctx, const struct token *token,
1804 				const char *str, unsigned int len, void *buf,
1805 				unsigned int size);
1806 static int
1807 parse_vc_modify_field_id(struct context *ctx, const struct token *token,
1808 				const char *str, unsigned int len, void *buf,
1809 				unsigned int size);
1810 static int
1811 parse_vc_action_conntrack_update(struct context *ctx, const struct token *token,
1812 			 const char *str, unsigned int len, void *buf,
1813 			 unsigned int size);
1814 static int parse_destroy(struct context *, const struct token *,
1815 			 const char *, unsigned int,
1816 			 void *, unsigned int);
1817 static int parse_flush(struct context *, const struct token *,
1818 		       const char *, unsigned int,
1819 		       void *, unsigned int);
1820 static int parse_dump(struct context *, const struct token *,
1821 		      const char *, unsigned int,
1822 		      void *, unsigned int);
1823 static int parse_query(struct context *, const struct token *,
1824 		       const char *, unsigned int,
1825 		       void *, unsigned int);
1826 static int parse_action(struct context *, const struct token *,
1827 			const char *, unsigned int,
1828 			void *, unsigned int);
1829 static int parse_list(struct context *, const struct token *,
1830 		      const char *, unsigned int,
1831 		      void *, unsigned int);
1832 static int parse_aged(struct context *, const struct token *,
1833 		      const char *, unsigned int,
1834 		      void *, unsigned int);
1835 static int parse_isolate(struct context *, const struct token *,
1836 			 const char *, unsigned int,
1837 			 void *, unsigned int);
1838 static int parse_tunnel(struct context *, const struct token *,
1839 			const char *, unsigned int,
1840 			void *, unsigned int);
1841 static int parse_int(struct context *, const struct token *,
1842 		     const char *, unsigned int,
1843 		     void *, unsigned int);
1844 static int parse_prefix(struct context *, const struct token *,
1845 			const char *, unsigned int,
1846 			void *, unsigned int);
1847 static int parse_boolean(struct context *, const struct token *,
1848 			 const char *, unsigned int,
1849 			 void *, unsigned int);
1850 static int parse_string(struct context *, const struct token *,
1851 			const char *, unsigned int,
1852 			void *, unsigned int);
1853 static int parse_hex(struct context *ctx, const struct token *token,
1854 			const char *str, unsigned int len,
1855 			void *buf, unsigned int size);
1856 static int parse_string0(struct context *, const struct token *,
1857 			const char *, unsigned int,
1858 			void *, unsigned int);
1859 static int parse_mac_addr(struct context *, const struct token *,
1860 			  const char *, unsigned int,
1861 			  void *, unsigned int);
1862 static int parse_ipv4_addr(struct context *, const struct token *,
1863 			   const char *, unsigned int,
1864 			   void *, unsigned int);
1865 static int parse_ipv6_addr(struct context *, const struct token *,
1866 			   const char *, unsigned int,
1867 			   void *, unsigned int);
1868 static int parse_port(struct context *, const struct token *,
1869 		      const char *, unsigned int,
1870 		      void *, unsigned int);
1871 static int parse_ia(struct context *, const struct token *,
1872 		    const char *, unsigned int,
1873 		    void *, unsigned int);
1874 static int parse_ia_destroy(struct context *ctx, const struct token *token,
1875 			    const char *str, unsigned int len,
1876 			    void *buf, unsigned int size);
1877 static int parse_ia_id2ptr(struct context *ctx, const struct token *token,
1878 			   const char *str, unsigned int len, void *buf,
1879 			   unsigned int size);
1880 static int parse_mp(struct context *, const struct token *,
1881 		    const char *, unsigned int,
1882 		    void *, unsigned int);
1883 static int comp_none(struct context *, const struct token *,
1884 		     unsigned int, char *, unsigned int);
1885 static int comp_boolean(struct context *, const struct token *,
1886 			unsigned int, char *, unsigned int);
1887 static int comp_action(struct context *, const struct token *,
1888 		       unsigned int, char *, unsigned int);
1889 static int comp_port(struct context *, const struct token *,
1890 		     unsigned int, char *, unsigned int);
1891 static int comp_rule_id(struct context *, const struct token *,
1892 			unsigned int, char *, unsigned int);
1893 static int comp_vc_action_rss_type(struct context *, const struct token *,
1894 				   unsigned int, char *, unsigned int);
1895 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1896 				    unsigned int, char *, unsigned int);
1897 static int comp_set_raw_index(struct context *, const struct token *,
1898 			      unsigned int, char *, unsigned int);
1899 static int comp_set_sample_index(struct context *, const struct token *,
1900 			      unsigned int, char *, unsigned int);
1901 static int comp_set_modify_field_op(struct context *, const struct token *,
1902 			      unsigned int, char *, unsigned int);
1903 static int comp_set_modify_field_id(struct context *, const struct token *,
1904 			      unsigned int, char *, unsigned int);
1905 
1906 /** Token definitions. */
1907 static const struct token token_list[] = {
1908 	/* Special tokens. */
1909 	[ZERO] = {
1910 		.name = "ZERO",
1911 		.help = "null entry, abused as the entry point",
1912 		.next = NEXT(NEXT_ENTRY(FLOW, ADD)),
1913 	},
1914 	[END] = {
1915 		.name = "",
1916 		.type = "RETURN",
1917 		.help = "command may end here",
1918 	},
1919 	[START_SET] = {
1920 		.name = "START_SET",
1921 		.help = "null entry, abused as the entry point for set",
1922 		.next = NEXT(NEXT_ENTRY(SET)),
1923 	},
1924 	[END_SET] = {
1925 		.name = "end_set",
1926 		.type = "RETURN",
1927 		.help = "set command may end here",
1928 	},
1929 	/* Common tokens. */
1930 	[INTEGER] = {
1931 		.name = "{int}",
1932 		.type = "INTEGER",
1933 		.help = "integer value",
1934 		.call = parse_int,
1935 		.comp = comp_none,
1936 	},
1937 	[UNSIGNED] = {
1938 		.name = "{unsigned}",
1939 		.type = "UNSIGNED",
1940 		.help = "unsigned integer value",
1941 		.call = parse_int,
1942 		.comp = comp_none,
1943 	},
1944 	[PREFIX] = {
1945 		.name = "{prefix}",
1946 		.type = "PREFIX",
1947 		.help = "prefix length for bit-mask",
1948 		.call = parse_prefix,
1949 		.comp = comp_none,
1950 	},
1951 	[BOOLEAN] = {
1952 		.name = "{boolean}",
1953 		.type = "BOOLEAN",
1954 		.help = "any boolean value",
1955 		.call = parse_boolean,
1956 		.comp = comp_boolean,
1957 	},
1958 	[STRING] = {
1959 		.name = "{string}",
1960 		.type = "STRING",
1961 		.help = "fixed string",
1962 		.call = parse_string,
1963 		.comp = comp_none,
1964 	},
1965 	[HEX] = {
1966 		.name = "{hex}",
1967 		.type = "HEX",
1968 		.help = "fixed string",
1969 		.call = parse_hex,
1970 	},
1971 	[FILE_PATH] = {
1972 		.name = "{file path}",
1973 		.type = "STRING",
1974 		.help = "file path",
1975 		.call = parse_string0,
1976 		.comp = comp_none,
1977 	},
1978 	[MAC_ADDR] = {
1979 		.name = "{MAC address}",
1980 		.type = "MAC-48",
1981 		.help = "standard MAC address notation",
1982 		.call = parse_mac_addr,
1983 		.comp = comp_none,
1984 	},
1985 	[IPV4_ADDR] = {
1986 		.name = "{IPv4 address}",
1987 		.type = "IPV4 ADDRESS",
1988 		.help = "standard IPv4 address notation",
1989 		.call = parse_ipv4_addr,
1990 		.comp = comp_none,
1991 	},
1992 	[IPV6_ADDR] = {
1993 		.name = "{IPv6 address}",
1994 		.type = "IPV6 ADDRESS",
1995 		.help = "standard IPv6 address notation",
1996 		.call = parse_ipv6_addr,
1997 		.comp = comp_none,
1998 	},
1999 	[RULE_ID] = {
2000 		.name = "{rule id}",
2001 		.type = "RULE ID",
2002 		.help = "rule identifier",
2003 		.call = parse_int,
2004 		.comp = comp_rule_id,
2005 	},
2006 	[PORT_ID] = {
2007 		.name = "{port_id}",
2008 		.type = "PORT ID",
2009 		.help = "port identifier",
2010 		.call = parse_port,
2011 		.comp = comp_port,
2012 	},
2013 	[GROUP_ID] = {
2014 		.name = "{group_id}",
2015 		.type = "GROUP ID",
2016 		.help = "group identifier",
2017 		.call = parse_int,
2018 		.comp = comp_none,
2019 	},
2020 	[PRIORITY_LEVEL] = {
2021 		.name = "{level}",
2022 		.type = "PRIORITY",
2023 		.help = "priority level",
2024 		.call = parse_int,
2025 		.comp = comp_none,
2026 	},
2027 	[INDIRECT_ACTION_ID] = {
2028 		.name = "{indirect_action_id}",
2029 		.type = "INDIRECT_ACTION_ID",
2030 		.help = "indirect action id",
2031 		.call = parse_int,
2032 		.comp = comp_none,
2033 	},
2034 	[POLICY_ID] = {
2035 		.name = "{policy_id}",
2036 		.type = "POLCIY_ID",
2037 		.help = "policy id",
2038 		.call = parse_int,
2039 		.comp = comp_none,
2040 	},
2041 	/* Top-level command. */
2042 	[FLOW] = {
2043 		.name = "flow",
2044 		.type = "{command} {port_id} [{arg} [...]]",
2045 		.help = "manage ingress/egress flow rules",
2046 		.next = NEXT(NEXT_ENTRY
2047 			     (INDIRECT_ACTION,
2048 			      VALIDATE,
2049 			      CREATE,
2050 			      DESTROY,
2051 			      FLUSH,
2052 			      DUMP,
2053 			      LIST,
2054 			      AGED,
2055 			      QUERY,
2056 			      ISOLATE,
2057 			      TUNNEL)),
2058 		.call = parse_init,
2059 	},
2060 	/* Top-level command. */
2061 	[INDIRECT_ACTION] = {
2062 		.name = "indirect_action",
2063 		.type = "{command} {port_id} [{arg} [...]]",
2064 		.help = "manage indirect actions",
2065 		.next = NEXT(next_ia_subcmd, NEXT_ENTRY(PORT_ID)),
2066 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2067 		.call = parse_ia,
2068 	},
2069 	/* Sub-level commands. */
2070 	[INDIRECT_ACTION_CREATE] = {
2071 		.name = "create",
2072 		.help = "create indirect action",
2073 		.next = NEXT(next_ia_create_attr),
2074 		.call = parse_ia,
2075 	},
2076 	[INDIRECT_ACTION_UPDATE] = {
2077 		.name = "update",
2078 		.help = "update indirect action",
2079 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_SPEC),
2080 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
2081 		.args = ARGS(ARGS_ENTRY(struct buffer, args.vc.attr.group)),
2082 		.call = parse_ia,
2083 	},
2084 	[INDIRECT_ACTION_DESTROY] = {
2085 		.name = "destroy",
2086 		.help = "destroy indirect action",
2087 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_DESTROY_ID)),
2088 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2089 		.call = parse_ia_destroy,
2090 	},
2091 	[INDIRECT_ACTION_QUERY] = {
2092 		.name = "query",
2093 		.help = "query indirect action",
2094 		.next = NEXT(NEXT_ENTRY(END), NEXT_ENTRY(INDIRECT_ACTION_ID)),
2095 		.args = ARGS(ARGS_ENTRY(struct buffer, args.ia.action_id)),
2096 		.call = parse_ia,
2097 	},
2098 	[VALIDATE] = {
2099 		.name = "validate",
2100 		.help = "check whether a flow rule can be created",
2101 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
2102 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2103 		.call = parse_vc,
2104 	},
2105 	[CREATE] = {
2106 		.name = "create",
2107 		.help = "create a flow rule",
2108 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
2109 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2110 		.call = parse_vc,
2111 	},
2112 	[DESTROY] = {
2113 		.name = "destroy",
2114 		.help = "destroy specific flow rules",
2115 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
2116 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2117 		.call = parse_destroy,
2118 	},
2119 	[FLUSH] = {
2120 		.name = "flush",
2121 		.help = "destroy all flow rules",
2122 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
2123 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2124 		.call = parse_flush,
2125 	},
2126 	[DUMP] = {
2127 		.name = "dump",
2128 		.help = "dump single/all flow rules to file",
2129 		.next = NEXT(next_dump_subcmd, NEXT_ENTRY(PORT_ID)),
2130 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2131 		.call = parse_dump,
2132 	},
2133 	[QUERY] = {
2134 		.name = "query",
2135 		.help = "query an existing flow rule",
2136 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
2137 			     NEXT_ENTRY(RULE_ID),
2138 			     NEXT_ENTRY(PORT_ID)),
2139 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
2140 			     ARGS_ENTRY(struct buffer, args.query.rule),
2141 			     ARGS_ENTRY(struct buffer, port)),
2142 		.call = parse_query,
2143 	},
2144 	[LIST] = {
2145 		.name = "list",
2146 		.help = "list existing flow rules",
2147 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
2148 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2149 		.call = parse_list,
2150 	},
2151 	[AGED] = {
2152 		.name = "aged",
2153 		.help = "list and destroy aged flows",
2154 		.next = NEXT(next_aged_attr, NEXT_ENTRY(PORT_ID)),
2155 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2156 		.call = parse_aged,
2157 	},
2158 	[ISOLATE] = {
2159 		.name = "isolate",
2160 		.help = "restrict ingress traffic to the defined flow rules",
2161 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
2162 			     NEXT_ENTRY(PORT_ID)),
2163 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
2164 			     ARGS_ENTRY(struct buffer, port)),
2165 		.call = parse_isolate,
2166 	},
2167 	[TUNNEL] = {
2168 		.name = "tunnel",
2169 		.help = "new tunnel API",
2170 		.next = NEXT(NEXT_ENTRY
2171 			     (TUNNEL_CREATE, TUNNEL_LIST, TUNNEL_DESTROY)),
2172 		.call = parse_tunnel,
2173 	},
2174 	/* Tunnel arguments. */
2175 	[TUNNEL_CREATE] = {
2176 		.name = "create",
2177 		.help = "create new tunnel object",
2178 		.next = NEXT(NEXT_ENTRY(TUNNEL_CREATE_TYPE),
2179 			     NEXT_ENTRY(PORT_ID)),
2180 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2181 		.call = parse_tunnel,
2182 	},
2183 	[TUNNEL_CREATE_TYPE] = {
2184 		.name = "type",
2185 		.help = "create new tunnel",
2186 		.next = NEXT(NEXT_ENTRY(FILE_PATH)),
2187 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, type)),
2188 		.call = parse_tunnel,
2189 	},
2190 	[TUNNEL_DESTROY] = {
2191 		.name = "destroy",
2192 		.help = "destroy tunel",
2193 		.next = NEXT(NEXT_ENTRY(TUNNEL_DESTROY_ID),
2194 			     NEXT_ENTRY(PORT_ID)),
2195 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2196 		.call = parse_tunnel,
2197 	},
2198 	[TUNNEL_DESTROY_ID] = {
2199 		.name = "id",
2200 		.help = "tunnel identifier to testroy",
2201 		.next = NEXT(NEXT_ENTRY(UNSIGNED)),
2202 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2203 		.call = parse_tunnel,
2204 	},
2205 	[TUNNEL_LIST] = {
2206 		.name = "list",
2207 		.help = "list existing tunnels",
2208 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
2209 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2210 		.call = parse_tunnel,
2211 	},
2212 	/* Destroy arguments. */
2213 	[DESTROY_RULE] = {
2214 		.name = "rule",
2215 		.help = "specify a rule identifier",
2216 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
2217 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
2218 		.call = parse_destroy,
2219 	},
2220 	/* Dump arguments. */
2221 	[DUMP_ALL] = {
2222 		.name = "all",
2223 		.help = "dump all",
2224 		.next = NEXT(next_dump_attr),
2225 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file)),
2226 		.call = parse_dump,
2227 	},
2228 	[DUMP_ONE] = {
2229 		.name = "rule",
2230 		.help = "dump one rule",
2231 		.next = NEXT(next_dump_attr, NEXT_ENTRY(RULE_ID)),
2232 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file),
2233 				ARGS_ENTRY(struct buffer, args.dump.rule)),
2234 		.call = parse_dump,
2235 	},
2236 	/* Query arguments. */
2237 	[QUERY_ACTION] = {
2238 		.name = "{action}",
2239 		.type = "ACTION",
2240 		.help = "action to query, must be part of the rule",
2241 		.call = parse_action,
2242 		.comp = comp_action,
2243 	},
2244 	/* List arguments. */
2245 	[LIST_GROUP] = {
2246 		.name = "group",
2247 		.help = "specify a group",
2248 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
2249 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
2250 		.call = parse_list,
2251 	},
2252 	[AGED_DESTROY] = {
2253 		.name = "destroy",
2254 		.help = "specify aged flows need be destroyed",
2255 		.call = parse_aged,
2256 		.comp = comp_none,
2257 	},
2258 	/* Validate/create attributes. */
2259 	[GROUP] = {
2260 		.name = "group",
2261 		.help = "specify a group",
2262 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
2263 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
2264 		.call = parse_vc,
2265 	},
2266 	[PRIORITY] = {
2267 		.name = "priority",
2268 		.help = "specify a priority level",
2269 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
2270 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
2271 		.call = parse_vc,
2272 	},
2273 	[INGRESS] = {
2274 		.name = "ingress",
2275 		.help = "affect rule to ingress",
2276 		.next = NEXT(next_vc_attr),
2277 		.call = parse_vc,
2278 	},
2279 	[EGRESS] = {
2280 		.name = "egress",
2281 		.help = "affect rule to egress",
2282 		.next = NEXT(next_vc_attr),
2283 		.call = parse_vc,
2284 	},
2285 	[TRANSFER] = {
2286 		.name = "transfer",
2287 		.help = "apply rule directly to endpoints found in pattern",
2288 		.next = NEXT(next_vc_attr),
2289 		.call = parse_vc,
2290 	},
2291 	[TUNNEL_SET] = {
2292 		.name = "tunnel_set",
2293 		.help = "tunnel steer rule",
2294 		.next = NEXT(next_vc_attr, NEXT_ENTRY(UNSIGNED)),
2295 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2296 		.call = parse_vc,
2297 	},
2298 	[TUNNEL_MATCH] = {
2299 		.name = "tunnel_match",
2300 		.help = "tunnel match rule",
2301 		.next = NEXT(next_vc_attr, NEXT_ENTRY(UNSIGNED)),
2302 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2303 		.call = parse_vc,
2304 	},
2305 	/* Validate/create pattern. */
2306 	[PATTERN] = {
2307 		.name = "pattern",
2308 		.help = "submit a list of pattern items",
2309 		.next = NEXT(next_item),
2310 		.call = parse_vc,
2311 	},
2312 	[ITEM_PARAM_IS] = {
2313 		.name = "is",
2314 		.help = "match value perfectly (with full bit-mask)",
2315 		.call = parse_vc_spec,
2316 	},
2317 	[ITEM_PARAM_SPEC] = {
2318 		.name = "spec",
2319 		.help = "match value according to configured bit-mask",
2320 		.call = parse_vc_spec,
2321 	},
2322 	[ITEM_PARAM_LAST] = {
2323 		.name = "last",
2324 		.help = "specify upper bound to establish a range",
2325 		.call = parse_vc_spec,
2326 	},
2327 	[ITEM_PARAM_MASK] = {
2328 		.name = "mask",
2329 		.help = "specify bit-mask with relevant bits set to one",
2330 		.call = parse_vc_spec,
2331 	},
2332 	[ITEM_PARAM_PREFIX] = {
2333 		.name = "prefix",
2334 		.help = "generate bit-mask from a prefix length",
2335 		.call = parse_vc_spec,
2336 	},
2337 	[ITEM_NEXT] = {
2338 		.name = "/",
2339 		.help = "specify next pattern item",
2340 		.next = NEXT(next_item),
2341 	},
2342 	[ITEM_END] = {
2343 		.name = "end",
2344 		.help = "end list of pattern items",
2345 		.priv = PRIV_ITEM(END, 0),
2346 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
2347 		.call = parse_vc,
2348 	},
2349 	[ITEM_VOID] = {
2350 		.name = "void",
2351 		.help = "no-op pattern item",
2352 		.priv = PRIV_ITEM(VOID, 0),
2353 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2354 		.call = parse_vc,
2355 	},
2356 	[ITEM_INVERT] = {
2357 		.name = "invert",
2358 		.help = "perform actions when pattern does not match",
2359 		.priv = PRIV_ITEM(INVERT, 0),
2360 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2361 		.call = parse_vc,
2362 	},
2363 	[ITEM_ANY] = {
2364 		.name = "any",
2365 		.help = "match any protocol for the current layer",
2366 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
2367 		.next = NEXT(item_any),
2368 		.call = parse_vc,
2369 	},
2370 	[ITEM_ANY_NUM] = {
2371 		.name = "num",
2372 		.help = "number of layers covered",
2373 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
2374 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
2375 	},
2376 	[ITEM_PF] = {
2377 		.name = "pf",
2378 		.help = "match traffic from/to the physical function",
2379 		.priv = PRIV_ITEM(PF, 0),
2380 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2381 		.call = parse_vc,
2382 	},
2383 	[ITEM_VF] = {
2384 		.name = "vf",
2385 		.help = "match traffic from/to a virtual function ID",
2386 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
2387 		.next = NEXT(item_vf),
2388 		.call = parse_vc,
2389 	},
2390 	[ITEM_VF_ID] = {
2391 		.name = "id",
2392 		.help = "VF ID",
2393 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
2394 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
2395 	},
2396 	[ITEM_PHY_PORT] = {
2397 		.name = "phy_port",
2398 		.help = "match traffic from/to a specific physical port",
2399 		.priv = PRIV_ITEM(PHY_PORT,
2400 				  sizeof(struct rte_flow_item_phy_port)),
2401 		.next = NEXT(item_phy_port),
2402 		.call = parse_vc,
2403 	},
2404 	[ITEM_PHY_PORT_INDEX] = {
2405 		.name = "index",
2406 		.help = "physical port index",
2407 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
2408 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
2409 	},
2410 	[ITEM_PORT_ID] = {
2411 		.name = "port_id",
2412 		.help = "match traffic from/to a given DPDK port ID",
2413 		.priv = PRIV_ITEM(PORT_ID,
2414 				  sizeof(struct rte_flow_item_port_id)),
2415 		.next = NEXT(item_port_id),
2416 		.call = parse_vc,
2417 	},
2418 	[ITEM_PORT_ID_ID] = {
2419 		.name = "id",
2420 		.help = "DPDK port ID",
2421 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
2422 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
2423 	},
2424 	[ITEM_MARK] = {
2425 		.name = "mark",
2426 		.help = "match traffic against value set in previously matched rule",
2427 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
2428 		.next = NEXT(item_mark),
2429 		.call = parse_vc,
2430 	},
2431 	[ITEM_MARK_ID] = {
2432 		.name = "id",
2433 		.help = "Integer value to match against",
2434 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
2435 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
2436 	},
2437 	[ITEM_RAW] = {
2438 		.name = "raw",
2439 		.help = "match an arbitrary byte string",
2440 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
2441 		.next = NEXT(item_raw),
2442 		.call = parse_vc,
2443 	},
2444 	[ITEM_RAW_RELATIVE] = {
2445 		.name = "relative",
2446 		.help = "look for pattern after the previous item",
2447 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
2448 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
2449 					   relative, 1)),
2450 	},
2451 	[ITEM_RAW_SEARCH] = {
2452 		.name = "search",
2453 		.help = "search pattern from offset (see also limit)",
2454 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
2455 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
2456 					   search, 1)),
2457 	},
2458 	[ITEM_RAW_OFFSET] = {
2459 		.name = "offset",
2460 		.help = "absolute or relative offset for pattern",
2461 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
2462 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
2463 	},
2464 	[ITEM_RAW_LIMIT] = {
2465 		.name = "limit",
2466 		.help = "search area limit for start of pattern",
2467 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
2468 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
2469 	},
2470 	[ITEM_RAW_PATTERN] = {
2471 		.name = "pattern",
2472 		.help = "byte string to look for",
2473 		.next = NEXT(item_raw,
2474 			     NEXT_ENTRY(STRING),
2475 			     NEXT_ENTRY(ITEM_PARAM_IS,
2476 					ITEM_PARAM_SPEC,
2477 					ITEM_PARAM_MASK)),
2478 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
2479 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
2480 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
2481 					    ITEM_RAW_PATTERN_SIZE)),
2482 	},
2483 	[ITEM_ETH] = {
2484 		.name = "eth",
2485 		.help = "match Ethernet header",
2486 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
2487 		.next = NEXT(item_eth),
2488 		.call = parse_vc,
2489 	},
2490 	[ITEM_ETH_DST] = {
2491 		.name = "dst",
2492 		.help = "destination MAC",
2493 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2494 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
2495 	},
2496 	[ITEM_ETH_SRC] = {
2497 		.name = "src",
2498 		.help = "source MAC",
2499 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2500 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
2501 	},
2502 	[ITEM_ETH_TYPE] = {
2503 		.name = "type",
2504 		.help = "EtherType",
2505 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2506 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
2507 	},
2508 	[ITEM_ETH_HAS_VLAN] = {
2509 		.name = "has_vlan",
2510 		.help = "packet header contains VLAN",
2511 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2512 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_eth,
2513 					   has_vlan, 1)),
2514 	},
2515 	[ITEM_VLAN] = {
2516 		.name = "vlan",
2517 		.help = "match 802.1Q/ad VLAN tag",
2518 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
2519 		.next = NEXT(item_vlan),
2520 		.call = parse_vc,
2521 	},
2522 	[ITEM_VLAN_TCI] = {
2523 		.name = "tci",
2524 		.help = "tag control information",
2525 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2526 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
2527 	},
2528 	[ITEM_VLAN_PCP] = {
2529 		.name = "pcp",
2530 		.help = "priority code point",
2531 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2532 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2533 						  tci, "\xe0\x00")),
2534 	},
2535 	[ITEM_VLAN_DEI] = {
2536 		.name = "dei",
2537 		.help = "drop eligible indicator",
2538 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2539 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2540 						  tci, "\x10\x00")),
2541 	},
2542 	[ITEM_VLAN_VID] = {
2543 		.name = "vid",
2544 		.help = "VLAN identifier",
2545 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2546 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2547 						  tci, "\x0f\xff")),
2548 	},
2549 	[ITEM_VLAN_INNER_TYPE] = {
2550 		.name = "inner_type",
2551 		.help = "inner EtherType",
2552 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2553 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
2554 					     inner_type)),
2555 	},
2556 	[ITEM_VLAN_HAS_MORE_VLAN] = {
2557 		.name = "has_more_vlan",
2558 		.help = "packet header contains another VLAN",
2559 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2560 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_vlan,
2561 					   has_more_vlan, 1)),
2562 	},
2563 	[ITEM_IPV4] = {
2564 		.name = "ipv4",
2565 		.help = "match IPv4 header",
2566 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
2567 		.next = NEXT(item_ipv4),
2568 		.call = parse_vc,
2569 	},
2570 	[ITEM_IPV4_TOS] = {
2571 		.name = "tos",
2572 		.help = "type of service",
2573 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2574 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2575 					     hdr.type_of_service)),
2576 	},
2577 	[ITEM_IPV4_ID] = {
2578 		.name = "packet_id",
2579 		.help = "fragment packet id",
2580 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2581 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2582 					     hdr.packet_id)),
2583 	},
2584 	[ITEM_IPV4_FRAGMENT_OFFSET] = {
2585 		.name = "fragment_offset",
2586 		.help = "fragmentation flags and fragment offset",
2587 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2588 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2589 					     hdr.fragment_offset)),
2590 	},
2591 	[ITEM_IPV4_TTL] = {
2592 		.name = "ttl",
2593 		.help = "time to live",
2594 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2595 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2596 					     hdr.time_to_live)),
2597 	},
2598 	[ITEM_IPV4_PROTO] = {
2599 		.name = "proto",
2600 		.help = "next protocol ID",
2601 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2602 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2603 					     hdr.next_proto_id)),
2604 	},
2605 	[ITEM_IPV4_SRC] = {
2606 		.name = "src",
2607 		.help = "source address",
2608 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2609 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2610 					     hdr.src_addr)),
2611 	},
2612 	[ITEM_IPV4_DST] = {
2613 		.name = "dst",
2614 		.help = "destination address",
2615 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2616 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2617 					     hdr.dst_addr)),
2618 	},
2619 	[ITEM_IPV6] = {
2620 		.name = "ipv6",
2621 		.help = "match IPv6 header",
2622 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
2623 		.next = NEXT(item_ipv6),
2624 		.call = parse_vc,
2625 	},
2626 	[ITEM_IPV6_TC] = {
2627 		.name = "tc",
2628 		.help = "traffic class",
2629 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2630 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2631 						  hdr.vtc_flow,
2632 						  "\x0f\xf0\x00\x00")),
2633 	},
2634 	[ITEM_IPV6_FLOW] = {
2635 		.name = "flow",
2636 		.help = "flow label",
2637 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2638 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2639 						  hdr.vtc_flow,
2640 						  "\x00\x0f\xff\xff")),
2641 	},
2642 	[ITEM_IPV6_PROTO] = {
2643 		.name = "proto",
2644 		.help = "protocol (next header)",
2645 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2646 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2647 					     hdr.proto)),
2648 	},
2649 	[ITEM_IPV6_HOP] = {
2650 		.name = "hop",
2651 		.help = "hop limit",
2652 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2653 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2654 					     hdr.hop_limits)),
2655 	},
2656 	[ITEM_IPV6_SRC] = {
2657 		.name = "src",
2658 		.help = "source address",
2659 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2660 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2661 					     hdr.src_addr)),
2662 	},
2663 	[ITEM_IPV6_DST] = {
2664 		.name = "dst",
2665 		.help = "destination address",
2666 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2667 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2668 					     hdr.dst_addr)),
2669 	},
2670 	[ITEM_IPV6_HAS_FRAG_EXT] = {
2671 		.name = "has_frag_ext",
2672 		.help = "fragment packet attribute",
2673 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2674 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_ipv6,
2675 					   has_frag_ext, 1)),
2676 	},
2677 	[ITEM_ICMP] = {
2678 		.name = "icmp",
2679 		.help = "match ICMP header",
2680 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
2681 		.next = NEXT(item_icmp),
2682 		.call = parse_vc,
2683 	},
2684 	[ITEM_ICMP_TYPE] = {
2685 		.name = "type",
2686 		.help = "ICMP packet type",
2687 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2688 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2689 					     hdr.icmp_type)),
2690 	},
2691 	[ITEM_ICMP_CODE] = {
2692 		.name = "code",
2693 		.help = "ICMP packet code",
2694 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2695 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2696 					     hdr.icmp_code)),
2697 	},
2698 	[ITEM_ICMP_IDENT] = {
2699 		.name = "ident",
2700 		.help = "ICMP packet identifier",
2701 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2702 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2703 					     hdr.icmp_ident)),
2704 	},
2705 	[ITEM_ICMP_SEQ] = {
2706 		.name = "seq",
2707 		.help = "ICMP packet sequence number",
2708 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2709 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2710 					     hdr.icmp_seq_nb)),
2711 	},
2712 	[ITEM_UDP] = {
2713 		.name = "udp",
2714 		.help = "match UDP header",
2715 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
2716 		.next = NEXT(item_udp),
2717 		.call = parse_vc,
2718 	},
2719 	[ITEM_UDP_SRC] = {
2720 		.name = "src",
2721 		.help = "UDP source port",
2722 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2723 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2724 					     hdr.src_port)),
2725 	},
2726 	[ITEM_UDP_DST] = {
2727 		.name = "dst",
2728 		.help = "UDP destination port",
2729 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2730 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2731 					     hdr.dst_port)),
2732 	},
2733 	[ITEM_TCP] = {
2734 		.name = "tcp",
2735 		.help = "match TCP header",
2736 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
2737 		.next = NEXT(item_tcp),
2738 		.call = parse_vc,
2739 	},
2740 	[ITEM_TCP_SRC] = {
2741 		.name = "src",
2742 		.help = "TCP source port",
2743 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2744 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2745 					     hdr.src_port)),
2746 	},
2747 	[ITEM_TCP_DST] = {
2748 		.name = "dst",
2749 		.help = "TCP destination port",
2750 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2751 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2752 					     hdr.dst_port)),
2753 	},
2754 	[ITEM_TCP_FLAGS] = {
2755 		.name = "flags",
2756 		.help = "TCP flags",
2757 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2758 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2759 					     hdr.tcp_flags)),
2760 	},
2761 	[ITEM_SCTP] = {
2762 		.name = "sctp",
2763 		.help = "match SCTP header",
2764 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
2765 		.next = NEXT(item_sctp),
2766 		.call = parse_vc,
2767 	},
2768 	[ITEM_SCTP_SRC] = {
2769 		.name = "src",
2770 		.help = "SCTP source port",
2771 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2772 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2773 					     hdr.src_port)),
2774 	},
2775 	[ITEM_SCTP_DST] = {
2776 		.name = "dst",
2777 		.help = "SCTP destination port",
2778 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2779 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2780 					     hdr.dst_port)),
2781 	},
2782 	[ITEM_SCTP_TAG] = {
2783 		.name = "tag",
2784 		.help = "validation tag",
2785 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2786 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2787 					     hdr.tag)),
2788 	},
2789 	[ITEM_SCTP_CKSUM] = {
2790 		.name = "cksum",
2791 		.help = "checksum",
2792 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2793 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2794 					     hdr.cksum)),
2795 	},
2796 	[ITEM_VXLAN] = {
2797 		.name = "vxlan",
2798 		.help = "match VXLAN header",
2799 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
2800 		.next = NEXT(item_vxlan),
2801 		.call = parse_vc,
2802 	},
2803 	[ITEM_VXLAN_VNI] = {
2804 		.name = "vni",
2805 		.help = "VXLAN identifier",
2806 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
2807 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
2808 	},
2809 	[ITEM_E_TAG] = {
2810 		.name = "e_tag",
2811 		.help = "match E-Tag header",
2812 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2813 		.next = NEXT(item_e_tag),
2814 		.call = parse_vc,
2815 	},
2816 	[ITEM_E_TAG_GRP_ECID_B] = {
2817 		.name = "grp_ecid_b",
2818 		.help = "GRP and E-CID base",
2819 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2820 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2821 						  rsvd_grp_ecid_b,
2822 						  "\x3f\xff")),
2823 	},
2824 	[ITEM_NVGRE] = {
2825 		.name = "nvgre",
2826 		.help = "match NVGRE header",
2827 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2828 		.next = NEXT(item_nvgre),
2829 		.call = parse_vc,
2830 	},
2831 	[ITEM_NVGRE_TNI] = {
2832 		.name = "tni",
2833 		.help = "virtual subnet ID",
2834 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2835 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2836 	},
2837 	[ITEM_MPLS] = {
2838 		.name = "mpls",
2839 		.help = "match MPLS header",
2840 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2841 		.next = NEXT(item_mpls),
2842 		.call = parse_vc,
2843 	},
2844 	[ITEM_MPLS_LABEL] = {
2845 		.name = "label",
2846 		.help = "MPLS label",
2847 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2848 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2849 						  label_tc_s,
2850 						  "\xff\xff\xf0")),
2851 	},
2852 	[ITEM_MPLS_TC] = {
2853 		.name = "tc",
2854 		.help = "MPLS Traffic Class",
2855 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2856 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2857 						  label_tc_s,
2858 						  "\x00\x00\x0e")),
2859 	},
2860 	[ITEM_MPLS_S] = {
2861 		.name = "s",
2862 		.help = "MPLS Bottom-of-Stack",
2863 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2864 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2865 						  label_tc_s,
2866 						  "\x00\x00\x01")),
2867 	},
2868 	[ITEM_GRE] = {
2869 		.name = "gre",
2870 		.help = "match GRE header",
2871 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2872 		.next = NEXT(item_gre),
2873 		.call = parse_vc,
2874 	},
2875 	[ITEM_GRE_PROTO] = {
2876 		.name = "protocol",
2877 		.help = "GRE protocol type",
2878 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2879 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2880 					     protocol)),
2881 	},
2882 	[ITEM_GRE_C_RSVD0_VER] = {
2883 		.name = "c_rsvd0_ver",
2884 		.help =
2885 			"checksum (1b), undefined (1b), key bit (1b),"
2886 			" sequence number (1b), reserved 0 (9b),"
2887 			" version (3b)",
2888 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2889 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2890 					     c_rsvd0_ver)),
2891 	},
2892 	[ITEM_GRE_C_BIT] = {
2893 		.name = "c_bit",
2894 		.help = "checksum bit (C)",
2895 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2896 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2897 						  c_rsvd0_ver,
2898 						  "\x80\x00\x00\x00")),
2899 	},
2900 	[ITEM_GRE_S_BIT] = {
2901 		.name = "s_bit",
2902 		.help = "sequence number bit (S)",
2903 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2904 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2905 						  c_rsvd0_ver,
2906 						  "\x10\x00\x00\x00")),
2907 	},
2908 	[ITEM_GRE_K_BIT] = {
2909 		.name = "k_bit",
2910 		.help = "key bit (K)",
2911 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2912 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2913 						  c_rsvd0_ver,
2914 						  "\x20\x00\x00\x00")),
2915 	},
2916 	[ITEM_FUZZY] = {
2917 		.name = "fuzzy",
2918 		.help = "fuzzy pattern match, expect faster than default",
2919 		.priv = PRIV_ITEM(FUZZY,
2920 				sizeof(struct rte_flow_item_fuzzy)),
2921 		.next = NEXT(item_fuzzy),
2922 		.call = parse_vc,
2923 	},
2924 	[ITEM_FUZZY_THRESH] = {
2925 		.name = "thresh",
2926 		.help = "match accuracy threshold",
2927 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2928 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2929 					thresh)),
2930 	},
2931 	[ITEM_GTP] = {
2932 		.name = "gtp",
2933 		.help = "match GTP header",
2934 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2935 		.next = NEXT(item_gtp),
2936 		.call = parse_vc,
2937 	},
2938 	[ITEM_GTP_FLAGS] = {
2939 		.name = "v_pt_rsv_flags",
2940 		.help = "GTP flags",
2941 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2942 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp,
2943 					v_pt_rsv_flags)),
2944 	},
2945 	[ITEM_GTP_MSG_TYPE] = {
2946 		.name = "msg_type",
2947 		.help = "GTP message type",
2948 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2949 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp, msg_type)),
2950 	},
2951 	[ITEM_GTP_TEID] = {
2952 		.name = "teid",
2953 		.help = "tunnel endpoint identifier",
2954 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2955 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2956 	},
2957 	[ITEM_GTPC] = {
2958 		.name = "gtpc",
2959 		.help = "match GTP header",
2960 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2961 		.next = NEXT(item_gtp),
2962 		.call = parse_vc,
2963 	},
2964 	[ITEM_GTPU] = {
2965 		.name = "gtpu",
2966 		.help = "match GTP header",
2967 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2968 		.next = NEXT(item_gtp),
2969 		.call = parse_vc,
2970 	},
2971 	[ITEM_GENEVE] = {
2972 		.name = "geneve",
2973 		.help = "match GENEVE header",
2974 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2975 		.next = NEXT(item_geneve),
2976 		.call = parse_vc,
2977 	},
2978 	[ITEM_GENEVE_VNI] = {
2979 		.name = "vni",
2980 		.help = "virtual network identifier",
2981 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2982 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2983 	},
2984 	[ITEM_GENEVE_PROTO] = {
2985 		.name = "protocol",
2986 		.help = "GENEVE protocol type",
2987 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2988 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2989 					     protocol)),
2990 	},
2991 	[ITEM_GENEVE_OPTLEN] = {
2992 		.name = "optlen",
2993 		.help = "GENEVE options length in dwords",
2994 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2995 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_geneve,
2996 						  ver_opt_len_o_c_rsvd0,
2997 						  "\x3f\x00")),
2998 	},
2999 	[ITEM_VXLAN_GPE] = {
3000 		.name = "vxlan-gpe",
3001 		.help = "match VXLAN-GPE header",
3002 		.priv = PRIV_ITEM(VXLAN_GPE,
3003 				  sizeof(struct rte_flow_item_vxlan_gpe)),
3004 		.next = NEXT(item_vxlan_gpe),
3005 		.call = parse_vc,
3006 	},
3007 	[ITEM_VXLAN_GPE_VNI] = {
3008 		.name = "vni",
3009 		.help = "VXLAN-GPE identifier",
3010 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
3011 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
3012 					     vni)),
3013 	},
3014 	[ITEM_ARP_ETH_IPV4] = {
3015 		.name = "arp_eth_ipv4",
3016 		.help = "match ARP header for Ethernet/IPv4",
3017 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
3018 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
3019 		.next = NEXT(item_arp_eth_ipv4),
3020 		.call = parse_vc,
3021 	},
3022 	[ITEM_ARP_ETH_IPV4_SHA] = {
3023 		.name = "sha",
3024 		.help = "sender hardware address",
3025 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
3026 			     item_param),
3027 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
3028 					     sha)),
3029 	},
3030 	[ITEM_ARP_ETH_IPV4_SPA] = {
3031 		.name = "spa",
3032 		.help = "sender IPv4 address",
3033 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
3034 			     item_param),
3035 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
3036 					     spa)),
3037 	},
3038 	[ITEM_ARP_ETH_IPV4_THA] = {
3039 		.name = "tha",
3040 		.help = "target hardware address",
3041 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
3042 			     item_param),
3043 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
3044 					     tha)),
3045 	},
3046 	[ITEM_ARP_ETH_IPV4_TPA] = {
3047 		.name = "tpa",
3048 		.help = "target IPv4 address",
3049 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
3050 			     item_param),
3051 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
3052 					     tpa)),
3053 	},
3054 	[ITEM_IPV6_EXT] = {
3055 		.name = "ipv6_ext",
3056 		.help = "match presence of any IPv6 extension header",
3057 		.priv = PRIV_ITEM(IPV6_EXT,
3058 				  sizeof(struct rte_flow_item_ipv6_ext)),
3059 		.next = NEXT(item_ipv6_ext),
3060 		.call = parse_vc,
3061 	},
3062 	[ITEM_IPV6_EXT_NEXT_HDR] = {
3063 		.name = "next_hdr",
3064 		.help = "next header",
3065 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
3066 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
3067 					     next_hdr)),
3068 	},
3069 	[ITEM_IPV6_FRAG_EXT] = {
3070 		.name = "ipv6_frag_ext",
3071 		.help = "match presence of IPv6 fragment extension header",
3072 		.priv = PRIV_ITEM(IPV6_FRAG_EXT,
3073 				sizeof(struct rte_flow_item_ipv6_frag_ext)),
3074 		.next = NEXT(item_ipv6_frag_ext),
3075 		.call = parse_vc,
3076 	},
3077 	[ITEM_IPV6_FRAG_EXT_NEXT_HDR] = {
3078 		.name = "next_hdr",
3079 		.help = "next header",
3080 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
3081 			     item_param),
3082 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_ipv6_frag_ext,
3083 					hdr.next_header)),
3084 	},
3085 	[ITEM_IPV6_FRAG_EXT_FRAG_DATA] = {
3086 		.name = "frag_data",
3087 		.help = "fragment flags and offset",
3088 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
3089 			     item_param),
3090 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_frag_ext,
3091 					     hdr.frag_data)),
3092 	},
3093 	[ITEM_IPV6_FRAG_EXT_ID] = {
3094 		.name = "packet_id",
3095 		.help = "fragment packet id",
3096 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
3097 			     item_param),
3098 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_frag_ext,
3099 					     hdr.id)),
3100 	},
3101 	[ITEM_ICMP6] = {
3102 		.name = "icmp6",
3103 		.help = "match any ICMPv6 header",
3104 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
3105 		.next = NEXT(item_icmp6),
3106 		.call = parse_vc,
3107 	},
3108 	[ITEM_ICMP6_TYPE] = {
3109 		.name = "type",
3110 		.help = "ICMPv6 type",
3111 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
3112 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
3113 					     type)),
3114 	},
3115 	[ITEM_ICMP6_CODE] = {
3116 		.name = "code",
3117 		.help = "ICMPv6 code",
3118 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
3119 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
3120 					     code)),
3121 	},
3122 	[ITEM_ICMP6_ND_NS] = {
3123 		.name = "icmp6_nd_ns",
3124 		.help = "match ICMPv6 neighbor discovery solicitation",
3125 		.priv = PRIV_ITEM(ICMP6_ND_NS,
3126 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
3127 		.next = NEXT(item_icmp6_nd_ns),
3128 		.call = parse_vc,
3129 	},
3130 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
3131 		.name = "target_addr",
3132 		.help = "target address",
3133 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
3134 			     item_param),
3135 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
3136 					     target_addr)),
3137 	},
3138 	[ITEM_ICMP6_ND_NA] = {
3139 		.name = "icmp6_nd_na",
3140 		.help = "match ICMPv6 neighbor discovery advertisement",
3141 		.priv = PRIV_ITEM(ICMP6_ND_NA,
3142 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
3143 		.next = NEXT(item_icmp6_nd_na),
3144 		.call = parse_vc,
3145 	},
3146 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
3147 		.name = "target_addr",
3148 		.help = "target address",
3149 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
3150 			     item_param),
3151 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
3152 					     target_addr)),
3153 	},
3154 	[ITEM_ICMP6_ND_OPT] = {
3155 		.name = "icmp6_nd_opt",
3156 		.help = "match presence of any ICMPv6 neighbor discovery"
3157 			" option",
3158 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
3159 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
3160 		.next = NEXT(item_icmp6_nd_opt),
3161 		.call = parse_vc,
3162 	},
3163 	[ITEM_ICMP6_ND_OPT_TYPE] = {
3164 		.name = "type",
3165 		.help = "ND option type",
3166 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
3167 			     item_param),
3168 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
3169 					     type)),
3170 	},
3171 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
3172 		.name = "icmp6_nd_opt_sla_eth",
3173 		.help = "match ICMPv6 neighbor discovery source Ethernet"
3174 			" link-layer address option",
3175 		.priv = PRIV_ITEM
3176 			(ICMP6_ND_OPT_SLA_ETH,
3177 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
3178 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
3179 		.call = parse_vc,
3180 	},
3181 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
3182 		.name = "sla",
3183 		.help = "source Ethernet LLA",
3184 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
3185 			     item_param),
3186 		.args = ARGS(ARGS_ENTRY_HTON
3187 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
3188 	},
3189 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
3190 		.name = "icmp6_nd_opt_tla_eth",
3191 		.help = "match ICMPv6 neighbor discovery target Ethernet"
3192 			" link-layer address option",
3193 		.priv = PRIV_ITEM
3194 			(ICMP6_ND_OPT_TLA_ETH,
3195 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
3196 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
3197 		.call = parse_vc,
3198 	},
3199 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
3200 		.name = "tla",
3201 		.help = "target Ethernet LLA",
3202 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
3203 			     item_param),
3204 		.args = ARGS(ARGS_ENTRY_HTON
3205 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
3206 	},
3207 	[ITEM_META] = {
3208 		.name = "meta",
3209 		.help = "match metadata header",
3210 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
3211 		.next = NEXT(item_meta),
3212 		.call = parse_vc,
3213 	},
3214 	[ITEM_META_DATA] = {
3215 		.name = "data",
3216 		.help = "metadata value",
3217 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
3218 		.args = ARGS(ARGS_ENTRY_MASK(struct rte_flow_item_meta,
3219 					     data, "\xff\xff\xff\xff")),
3220 	},
3221 	[ITEM_GRE_KEY] = {
3222 		.name = "gre_key",
3223 		.help = "match GRE key",
3224 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
3225 		.next = NEXT(item_gre_key),
3226 		.call = parse_vc,
3227 	},
3228 	[ITEM_GRE_KEY_VALUE] = {
3229 		.name = "value",
3230 		.help = "key value",
3231 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
3232 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3233 	},
3234 	[ITEM_GTP_PSC] = {
3235 		.name = "gtp_psc",
3236 		.help = "match GTP extension header with type 0x85",
3237 		.priv = PRIV_ITEM(GTP_PSC,
3238 				sizeof(struct rte_flow_item_gtp_psc)),
3239 		.next = NEXT(item_gtp_psc),
3240 		.call = parse_vc,
3241 	},
3242 	[ITEM_GTP_PSC_QFI] = {
3243 		.name = "qfi",
3244 		.help = "QoS flow identifier",
3245 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
3246 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
3247 					qfi)),
3248 	},
3249 	[ITEM_GTP_PSC_PDU_T] = {
3250 		.name = "pdu_t",
3251 		.help = "PDU type",
3252 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
3253 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
3254 					pdu_type)),
3255 	},
3256 	[ITEM_PPPOES] = {
3257 		.name = "pppoes",
3258 		.help = "match PPPoE session header",
3259 		.priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
3260 		.next = NEXT(item_pppoes),
3261 		.call = parse_vc,
3262 	},
3263 	[ITEM_PPPOED] = {
3264 		.name = "pppoed",
3265 		.help = "match PPPoE discovery header",
3266 		.priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
3267 		.next = NEXT(item_pppoed),
3268 		.call = parse_vc,
3269 	},
3270 	[ITEM_PPPOE_SEID] = {
3271 		.name = "seid",
3272 		.help = "session identifier",
3273 		.next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
3274 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
3275 					session_id)),
3276 	},
3277 	[ITEM_PPPOE_PROTO_ID] = {
3278 		.name = "pppoe_proto_id",
3279 		.help = "match PPPoE session protocol identifier",
3280 		.priv = PRIV_ITEM(PPPOE_PROTO_ID,
3281 				sizeof(struct rte_flow_item_pppoe_proto_id)),
3282 		.next = NEXT(item_pppoe_proto_id, NEXT_ENTRY(UNSIGNED),
3283 			     item_param),
3284 		.args = ARGS(ARGS_ENTRY_HTON
3285 			     (struct rte_flow_item_pppoe_proto_id, proto_id)),
3286 		.call = parse_vc,
3287 	},
3288 	[ITEM_HIGIG2] = {
3289 		.name = "higig2",
3290 		.help = "matches higig2 header",
3291 		.priv = PRIV_ITEM(HIGIG2,
3292 				sizeof(struct rte_flow_item_higig2_hdr)),
3293 		.next = NEXT(item_higig2),
3294 		.call = parse_vc,
3295 	},
3296 	[ITEM_HIGIG2_CLASSIFICATION] = {
3297 		.name = "classification",
3298 		.help = "matches classification of higig2 header",
3299 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
3300 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
3301 					hdr.ppt1.classification)),
3302 	},
3303 	[ITEM_HIGIG2_VID] = {
3304 		.name = "vid",
3305 		.help = "matches vid of higig2 header",
3306 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
3307 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
3308 					hdr.ppt1.vid)),
3309 	},
3310 	[ITEM_TAG] = {
3311 		.name = "tag",
3312 		.help = "match tag value",
3313 		.priv = PRIV_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
3314 		.next = NEXT(item_tag),
3315 		.call = parse_vc,
3316 	},
3317 	[ITEM_TAG_DATA] = {
3318 		.name = "data",
3319 		.help = "tag value to match",
3320 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED), item_param),
3321 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, data)),
3322 	},
3323 	[ITEM_TAG_INDEX] = {
3324 		.name = "index",
3325 		.help = "index of tag array to match",
3326 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED),
3327 			     NEXT_ENTRY(ITEM_PARAM_IS)),
3328 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, index)),
3329 	},
3330 	[ITEM_L2TPV3OIP] = {
3331 		.name = "l2tpv3oip",
3332 		.help = "match L2TPv3 over IP header",
3333 		.priv = PRIV_ITEM(L2TPV3OIP,
3334 				  sizeof(struct rte_flow_item_l2tpv3oip)),
3335 		.next = NEXT(item_l2tpv3oip),
3336 		.call = parse_vc,
3337 	},
3338 	[ITEM_L2TPV3OIP_SESSION_ID] = {
3339 		.name = "session_id",
3340 		.help = "session identifier",
3341 		.next = NEXT(item_l2tpv3oip, NEXT_ENTRY(UNSIGNED), item_param),
3342 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_l2tpv3oip,
3343 					     session_id)),
3344 	},
3345 	[ITEM_ESP] = {
3346 		.name = "esp",
3347 		.help = "match ESP header",
3348 		.priv = PRIV_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
3349 		.next = NEXT(item_esp),
3350 		.call = parse_vc,
3351 	},
3352 	[ITEM_ESP_SPI] = {
3353 		.name = "spi",
3354 		.help = "security policy index",
3355 		.next = NEXT(item_esp, NEXT_ENTRY(UNSIGNED), item_param),
3356 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_esp,
3357 				hdr.spi)),
3358 	},
3359 	[ITEM_AH] = {
3360 		.name = "ah",
3361 		.help = "match AH header",
3362 		.priv = PRIV_ITEM(AH, sizeof(struct rte_flow_item_ah)),
3363 		.next = NEXT(item_ah),
3364 		.call = parse_vc,
3365 	},
3366 	[ITEM_AH_SPI] = {
3367 		.name = "spi",
3368 		.help = "security parameters index",
3369 		.next = NEXT(item_ah, NEXT_ENTRY(UNSIGNED), item_param),
3370 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ah, spi)),
3371 	},
3372 	[ITEM_PFCP] = {
3373 		.name = "pfcp",
3374 		.help = "match pfcp header",
3375 		.priv = PRIV_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
3376 		.next = NEXT(item_pfcp),
3377 		.call = parse_vc,
3378 	},
3379 	[ITEM_PFCP_S_FIELD] = {
3380 		.name = "s_field",
3381 		.help = "S field",
3382 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
3383 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp,
3384 				s_field)),
3385 	},
3386 	[ITEM_PFCP_SEID] = {
3387 		.name = "seid",
3388 		.help = "session endpoint identifier",
3389 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
3390 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp, seid)),
3391 	},
3392 	[ITEM_ECPRI] = {
3393 		.name = "ecpri",
3394 		.help = "match eCPRI header",
3395 		.priv = PRIV_ITEM(ECPRI, sizeof(struct rte_flow_item_ecpri)),
3396 		.next = NEXT(item_ecpri),
3397 		.call = parse_vc,
3398 	},
3399 	[ITEM_ECPRI_COMMON] = {
3400 		.name = "common",
3401 		.help = "eCPRI common header",
3402 		.next = NEXT(item_ecpri_common),
3403 	},
3404 	[ITEM_ECPRI_COMMON_TYPE] = {
3405 		.name = "type",
3406 		.help = "type of common header",
3407 		.next = NEXT(item_ecpri_common_type),
3408 		.args = ARGS(ARG_ENTRY_HTON(struct rte_flow_item_ecpri)),
3409 	},
3410 	[ITEM_ECPRI_COMMON_TYPE_IQ_DATA] = {
3411 		.name = "iq_data",
3412 		.help = "Type #0: IQ Data",
3413 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
3414 					ITEM_NEXT)),
3415 		.call = parse_vc_item_ecpri_type,
3416 	},
3417 	[ITEM_ECPRI_MSG_IQ_DATA_PCID] = {
3418 		.name = "pc_id",
3419 		.help = "Physical Channel ID",
3420 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
3421 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3422 				NEXT_ENTRY(UNSIGNED), item_param),
3423 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3424 				hdr.type0.pc_id)),
3425 	},
3426 	[ITEM_ECPRI_COMMON_TYPE_RTC_CTRL] = {
3427 		.name = "rtc_ctrl",
3428 		.help = "Type #2: Real-Time Control Data",
3429 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
3430 					ITEM_NEXT)),
3431 		.call = parse_vc_item_ecpri_type,
3432 	},
3433 	[ITEM_ECPRI_MSG_RTC_CTRL_RTCID] = {
3434 		.name = "rtc_id",
3435 		.help = "Real-Time Control Data ID",
3436 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
3437 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3438 				NEXT_ENTRY(UNSIGNED), item_param),
3439 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3440 				hdr.type2.rtc_id)),
3441 	},
3442 	[ITEM_ECPRI_COMMON_TYPE_DLY_MSR] = {
3443 		.name = "delay_measure",
3444 		.help = "Type #5: One-Way Delay Measurement",
3445 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
3446 					ITEM_NEXT)),
3447 		.call = parse_vc_item_ecpri_type,
3448 	},
3449 	[ITEM_ECPRI_MSG_DLY_MSR_MSRID] = {
3450 		.name = "msr_id",
3451 		.help = "Measurement ID",
3452 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
3453 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3454 				NEXT_ENTRY(UNSIGNED), item_param),
3455 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3456 				hdr.type5.msr_id)),
3457 	},
3458 	[ITEM_GENEVE_OPT] = {
3459 		.name = "geneve-opt",
3460 		.help = "GENEVE header option",
3461 		.priv = PRIV_ITEM(GENEVE_OPT,
3462 				  sizeof(struct rte_flow_item_geneve_opt) +
3463 				  ITEM_GENEVE_OPT_DATA_SIZE),
3464 		.next = NEXT(item_geneve_opt),
3465 		.call = parse_vc,
3466 	},
3467 	[ITEM_GENEVE_OPT_CLASS]	= {
3468 		.name = "class",
3469 		.help = "GENEVE option class",
3470 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3471 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve_opt,
3472 					     option_class)),
3473 	},
3474 	[ITEM_GENEVE_OPT_TYPE] = {
3475 		.name = "type",
3476 		.help = "GENEVE option type",
3477 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3478 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_geneve_opt,
3479 					option_type)),
3480 	},
3481 	[ITEM_GENEVE_OPT_LENGTH] = {
3482 		.name = "length",
3483 		.help = "GENEVE option data length (in 32b words)",
3484 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3485 		.args = ARGS(ARGS_ENTRY_BOUNDED(
3486 				struct rte_flow_item_geneve_opt, option_len,
3487 				0, 31)),
3488 	},
3489 	[ITEM_GENEVE_OPT_DATA] = {
3490 		.name = "data",
3491 		.help = "GENEVE option data pattern",
3492 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(HEX), item_param),
3493 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_geneve_opt, data),
3494 			     ARGS_ENTRY_ARB(0, 0),
3495 			     ARGS_ENTRY_ARB
3496 				(sizeof(struct rte_flow_item_geneve_opt),
3497 				ITEM_GENEVE_OPT_DATA_SIZE)),
3498 	},
3499 	[ITEM_INTEGRITY] = {
3500 		.name = "integrity",
3501 		.help = "match packet integrity",
3502 		.priv = PRIV_ITEM(INTEGRITY,
3503 				  sizeof(struct rte_flow_item_integrity)),
3504 		.next = NEXT(item_integrity),
3505 		.call = parse_vc,
3506 	},
3507 	[ITEM_INTEGRITY_LEVEL] = {
3508 		.name = "level",
3509 		.help = "integrity level",
3510 		.next = NEXT(item_integrity_lv, NEXT_ENTRY(UNSIGNED),
3511 			     item_param),
3512 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_integrity, level)),
3513 	},
3514 	[ITEM_INTEGRITY_VALUE] = {
3515 		.name = "value",
3516 		.help = "integrity value",
3517 		.next = NEXT(item_integrity_lv, NEXT_ENTRY(UNSIGNED),
3518 			     item_param),
3519 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_integrity, value)),
3520 	},
3521 	[ITEM_CONNTRACK] = {
3522 		.name = "conntrack",
3523 		.help = "conntrack state",
3524 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT), NEXT_ENTRY(UNSIGNED),
3525 			     item_param),
3526 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_conntrack, flags)),
3527 	},
3528 	/* Validate/create actions. */
3529 	[ACTIONS] = {
3530 		.name = "actions",
3531 		.help = "submit a list of associated actions",
3532 		.next = NEXT(next_action),
3533 		.call = parse_vc,
3534 	},
3535 	[ACTION_NEXT] = {
3536 		.name = "/",
3537 		.help = "specify next action",
3538 		.next = NEXT(next_action),
3539 	},
3540 	[ACTION_END] = {
3541 		.name = "end",
3542 		.help = "end list of actions",
3543 		.priv = PRIV_ACTION(END, 0),
3544 		.call = parse_vc,
3545 	},
3546 	[ACTION_VOID] = {
3547 		.name = "void",
3548 		.help = "no-op action",
3549 		.priv = PRIV_ACTION(VOID, 0),
3550 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3551 		.call = parse_vc,
3552 	},
3553 	[ACTION_PASSTHRU] = {
3554 		.name = "passthru",
3555 		.help = "let subsequent rule process matched packets",
3556 		.priv = PRIV_ACTION(PASSTHRU, 0),
3557 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3558 		.call = parse_vc,
3559 	},
3560 	[ACTION_JUMP] = {
3561 		.name = "jump",
3562 		.help = "redirect traffic to a given group",
3563 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
3564 		.next = NEXT(action_jump),
3565 		.call = parse_vc,
3566 	},
3567 	[ACTION_JUMP_GROUP] = {
3568 		.name = "group",
3569 		.help = "group to redirect traffic to",
3570 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
3571 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
3572 		.call = parse_vc_conf,
3573 	},
3574 	[ACTION_MARK] = {
3575 		.name = "mark",
3576 		.help = "attach 32 bit value to packets",
3577 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
3578 		.next = NEXT(action_mark),
3579 		.call = parse_vc,
3580 	},
3581 	[ACTION_MARK_ID] = {
3582 		.name = "id",
3583 		.help = "32 bit value to return with packets",
3584 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
3585 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
3586 		.call = parse_vc_conf,
3587 	},
3588 	[ACTION_FLAG] = {
3589 		.name = "flag",
3590 		.help = "flag packets",
3591 		.priv = PRIV_ACTION(FLAG, 0),
3592 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3593 		.call = parse_vc,
3594 	},
3595 	[ACTION_QUEUE] = {
3596 		.name = "queue",
3597 		.help = "assign packets to a given queue index",
3598 		.priv = PRIV_ACTION(QUEUE,
3599 				    sizeof(struct rte_flow_action_queue)),
3600 		.next = NEXT(action_queue),
3601 		.call = parse_vc,
3602 	},
3603 	[ACTION_QUEUE_INDEX] = {
3604 		.name = "index",
3605 		.help = "queue index to use",
3606 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
3607 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
3608 		.call = parse_vc_conf,
3609 	},
3610 	[ACTION_DROP] = {
3611 		.name = "drop",
3612 		.help = "drop packets (note: passthru has priority)",
3613 		.priv = PRIV_ACTION(DROP, 0),
3614 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3615 		.call = parse_vc,
3616 	},
3617 	[ACTION_COUNT] = {
3618 		.name = "count",
3619 		.help = "enable counters for this rule",
3620 		.priv = PRIV_ACTION(COUNT,
3621 				    sizeof(struct rte_flow_action_count)),
3622 		.next = NEXT(action_count),
3623 		.call = parse_vc,
3624 	},
3625 	[ACTION_COUNT_ID] = {
3626 		.name = "identifier",
3627 		.help = "counter identifier to use",
3628 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
3629 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
3630 		.call = parse_vc_conf,
3631 	},
3632 	[ACTION_COUNT_SHARED] = {
3633 		.name = "shared",
3634 		.help = "shared counter",
3635 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
3636 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
3637 					   shared, 1)),
3638 		.call = parse_vc_conf,
3639 	},
3640 	[ACTION_RSS] = {
3641 		.name = "rss",
3642 		.help = "spread packets among several queues",
3643 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
3644 		.next = NEXT(action_rss),
3645 		.call = parse_vc_action_rss,
3646 	},
3647 	[ACTION_RSS_FUNC] = {
3648 		.name = "func",
3649 		.help = "RSS hash function to apply",
3650 		.next = NEXT(action_rss,
3651 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
3652 					ACTION_RSS_FUNC_TOEPLITZ,
3653 					ACTION_RSS_FUNC_SIMPLE_XOR,
3654 					ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
3655 	},
3656 	[ACTION_RSS_FUNC_DEFAULT] = {
3657 		.name = "default",
3658 		.help = "default hash function",
3659 		.call = parse_vc_action_rss_func,
3660 	},
3661 	[ACTION_RSS_FUNC_TOEPLITZ] = {
3662 		.name = "toeplitz",
3663 		.help = "Toeplitz hash function",
3664 		.call = parse_vc_action_rss_func,
3665 	},
3666 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
3667 		.name = "simple_xor",
3668 		.help = "simple XOR hash function",
3669 		.call = parse_vc_action_rss_func,
3670 	},
3671 	[ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
3672 		.name = "symmetric_toeplitz",
3673 		.help = "Symmetric Toeplitz hash function",
3674 		.call = parse_vc_action_rss_func,
3675 	},
3676 	[ACTION_RSS_LEVEL] = {
3677 		.name = "level",
3678 		.help = "encapsulation level for \"types\"",
3679 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3680 		.args = ARGS(ARGS_ENTRY_ARB
3681 			     (offsetof(struct action_rss_data, conf) +
3682 			      offsetof(struct rte_flow_action_rss, level),
3683 			      sizeof(((struct rte_flow_action_rss *)0)->
3684 				     level))),
3685 	},
3686 	[ACTION_RSS_TYPES] = {
3687 		.name = "types",
3688 		.help = "specific RSS hash types",
3689 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
3690 	},
3691 	[ACTION_RSS_TYPE] = {
3692 		.name = "{type}",
3693 		.help = "RSS hash type",
3694 		.call = parse_vc_action_rss_type,
3695 		.comp = comp_vc_action_rss_type,
3696 	},
3697 	[ACTION_RSS_KEY] = {
3698 		.name = "key",
3699 		.help = "RSS hash key",
3700 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
3701 		.args = ARGS(ARGS_ENTRY_ARB
3702 			     (offsetof(struct action_rss_data, conf) +
3703 			      offsetof(struct rte_flow_action_rss, key),
3704 			      sizeof(((struct rte_flow_action_rss *)0)->key)),
3705 			     ARGS_ENTRY_ARB
3706 			     (offsetof(struct action_rss_data, conf) +
3707 			      offsetof(struct rte_flow_action_rss, key_len),
3708 			      sizeof(((struct rte_flow_action_rss *)0)->
3709 				     key_len)),
3710 			     ARGS_ENTRY(struct action_rss_data, key)),
3711 	},
3712 	[ACTION_RSS_KEY_LEN] = {
3713 		.name = "key_len",
3714 		.help = "RSS hash key length in bytes",
3715 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3716 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3717 			     (offsetof(struct action_rss_data, conf) +
3718 			      offsetof(struct rte_flow_action_rss, key_len),
3719 			      sizeof(((struct rte_flow_action_rss *)0)->
3720 				     key_len),
3721 			      0,
3722 			      RSS_HASH_KEY_LENGTH)),
3723 	},
3724 	[ACTION_RSS_QUEUES] = {
3725 		.name = "queues",
3726 		.help = "queue indices to use",
3727 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
3728 		.call = parse_vc_conf,
3729 	},
3730 	[ACTION_RSS_QUEUE] = {
3731 		.name = "{queue}",
3732 		.help = "queue index",
3733 		.call = parse_vc_action_rss_queue,
3734 		.comp = comp_vc_action_rss_queue,
3735 	},
3736 	[ACTION_PF] = {
3737 		.name = "pf",
3738 		.help = "direct traffic to physical function",
3739 		.priv = PRIV_ACTION(PF, 0),
3740 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3741 		.call = parse_vc,
3742 	},
3743 	[ACTION_VF] = {
3744 		.name = "vf",
3745 		.help = "direct traffic to a virtual function ID",
3746 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
3747 		.next = NEXT(action_vf),
3748 		.call = parse_vc,
3749 	},
3750 	[ACTION_VF_ORIGINAL] = {
3751 		.name = "original",
3752 		.help = "use original VF ID if possible",
3753 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
3754 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
3755 					   original, 1)),
3756 		.call = parse_vc_conf,
3757 	},
3758 	[ACTION_VF_ID] = {
3759 		.name = "id",
3760 		.help = "VF ID",
3761 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
3762 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
3763 		.call = parse_vc_conf,
3764 	},
3765 	[ACTION_PHY_PORT] = {
3766 		.name = "phy_port",
3767 		.help = "direct packets to physical port index",
3768 		.priv = PRIV_ACTION(PHY_PORT,
3769 				    sizeof(struct rte_flow_action_phy_port)),
3770 		.next = NEXT(action_phy_port),
3771 		.call = parse_vc,
3772 	},
3773 	[ACTION_PHY_PORT_ORIGINAL] = {
3774 		.name = "original",
3775 		.help = "use original port index if possible",
3776 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
3777 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
3778 					   original, 1)),
3779 		.call = parse_vc_conf,
3780 	},
3781 	[ACTION_PHY_PORT_INDEX] = {
3782 		.name = "index",
3783 		.help = "physical port index",
3784 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
3785 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
3786 					index)),
3787 		.call = parse_vc_conf,
3788 	},
3789 	[ACTION_PORT_ID] = {
3790 		.name = "port_id",
3791 		.help = "direct matching traffic to a given DPDK port ID",
3792 		.priv = PRIV_ACTION(PORT_ID,
3793 				    sizeof(struct rte_flow_action_port_id)),
3794 		.next = NEXT(action_port_id),
3795 		.call = parse_vc,
3796 	},
3797 	[ACTION_PORT_ID_ORIGINAL] = {
3798 		.name = "original",
3799 		.help = "use original DPDK port ID if possible",
3800 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
3801 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
3802 					   original, 1)),
3803 		.call = parse_vc_conf,
3804 	},
3805 	[ACTION_PORT_ID_ID] = {
3806 		.name = "id",
3807 		.help = "DPDK port ID",
3808 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
3809 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
3810 		.call = parse_vc_conf,
3811 	},
3812 	[ACTION_METER] = {
3813 		.name = "meter",
3814 		.help = "meter the directed packets at given id",
3815 		.priv = PRIV_ACTION(METER,
3816 				    sizeof(struct rte_flow_action_meter)),
3817 		.next = NEXT(action_meter),
3818 		.call = parse_vc,
3819 	},
3820 	[ACTION_METER_COLOR] = {
3821 		.name = "color",
3822 		.help = "meter color for the packets",
3823 		.priv = PRIV_ACTION(METER_COLOR,
3824 				sizeof(struct rte_flow_action_meter_color)),
3825 		.next = NEXT(action_meter_color),
3826 		.call = parse_vc,
3827 	},
3828 	[ACTION_METER_COLOR_TYPE] = {
3829 		.name = "type",
3830 		.help = "specific meter color",
3831 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT),
3832 				NEXT_ENTRY(ACTION_METER_COLOR_GREEN,
3833 					ACTION_METER_COLOR_YELLOW,
3834 					ACTION_METER_COLOR_RED)),
3835 	},
3836 	[ACTION_METER_COLOR_GREEN] = {
3837 		.name = "green",
3838 		.help = "meter color green",
3839 		.call = parse_vc_action_meter_color_type,
3840 	},
3841 	[ACTION_METER_COLOR_YELLOW] = {
3842 		.name = "yellow",
3843 		.help = "meter color yellow",
3844 		.call = parse_vc_action_meter_color_type,
3845 	},
3846 	[ACTION_METER_COLOR_RED] = {
3847 		.name = "red",
3848 		.help = "meter color red",
3849 		.call = parse_vc_action_meter_color_type,
3850 	},
3851 	[ACTION_METER_ID] = {
3852 		.name = "mtr_id",
3853 		.help = "meter id to use",
3854 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
3855 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
3856 		.call = parse_vc_conf,
3857 	},
3858 	[ACTION_OF_SET_MPLS_TTL] = {
3859 		.name = "of_set_mpls_ttl",
3860 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
3861 		.priv = PRIV_ACTION
3862 			(OF_SET_MPLS_TTL,
3863 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
3864 		.next = NEXT(action_of_set_mpls_ttl),
3865 		.call = parse_vc,
3866 	},
3867 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
3868 		.name = "mpls_ttl",
3869 		.help = "MPLS TTL",
3870 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
3871 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
3872 					mpls_ttl)),
3873 		.call = parse_vc_conf,
3874 	},
3875 	[ACTION_OF_DEC_MPLS_TTL] = {
3876 		.name = "of_dec_mpls_ttl",
3877 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
3878 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
3879 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3880 		.call = parse_vc,
3881 	},
3882 	[ACTION_OF_SET_NW_TTL] = {
3883 		.name = "of_set_nw_ttl",
3884 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
3885 		.priv = PRIV_ACTION
3886 			(OF_SET_NW_TTL,
3887 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
3888 		.next = NEXT(action_of_set_nw_ttl),
3889 		.call = parse_vc,
3890 	},
3891 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
3892 		.name = "nw_ttl",
3893 		.help = "IP TTL",
3894 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
3895 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
3896 					nw_ttl)),
3897 		.call = parse_vc_conf,
3898 	},
3899 	[ACTION_OF_DEC_NW_TTL] = {
3900 		.name = "of_dec_nw_ttl",
3901 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
3902 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
3903 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3904 		.call = parse_vc,
3905 	},
3906 	[ACTION_OF_COPY_TTL_OUT] = {
3907 		.name = "of_copy_ttl_out",
3908 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
3909 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
3910 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3911 		.call = parse_vc,
3912 	},
3913 	[ACTION_OF_COPY_TTL_IN] = {
3914 		.name = "of_copy_ttl_in",
3915 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
3916 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
3917 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3918 		.call = parse_vc,
3919 	},
3920 	[ACTION_OF_POP_VLAN] = {
3921 		.name = "of_pop_vlan",
3922 		.help = "OpenFlow's OFPAT_POP_VLAN",
3923 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
3924 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3925 		.call = parse_vc,
3926 	},
3927 	[ACTION_OF_PUSH_VLAN] = {
3928 		.name = "of_push_vlan",
3929 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
3930 		.priv = PRIV_ACTION
3931 			(OF_PUSH_VLAN,
3932 			 sizeof(struct rte_flow_action_of_push_vlan)),
3933 		.next = NEXT(action_of_push_vlan),
3934 		.call = parse_vc,
3935 	},
3936 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
3937 		.name = "ethertype",
3938 		.help = "EtherType",
3939 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
3940 		.args = ARGS(ARGS_ENTRY_HTON
3941 			     (struct rte_flow_action_of_push_vlan,
3942 			      ethertype)),
3943 		.call = parse_vc_conf,
3944 	},
3945 	[ACTION_OF_SET_VLAN_VID] = {
3946 		.name = "of_set_vlan_vid",
3947 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
3948 		.priv = PRIV_ACTION
3949 			(OF_SET_VLAN_VID,
3950 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
3951 		.next = NEXT(action_of_set_vlan_vid),
3952 		.call = parse_vc,
3953 	},
3954 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
3955 		.name = "vlan_vid",
3956 		.help = "VLAN id",
3957 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
3958 		.args = ARGS(ARGS_ENTRY_HTON
3959 			     (struct rte_flow_action_of_set_vlan_vid,
3960 			      vlan_vid)),
3961 		.call = parse_vc_conf,
3962 	},
3963 	[ACTION_OF_SET_VLAN_PCP] = {
3964 		.name = "of_set_vlan_pcp",
3965 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
3966 		.priv = PRIV_ACTION
3967 			(OF_SET_VLAN_PCP,
3968 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
3969 		.next = NEXT(action_of_set_vlan_pcp),
3970 		.call = parse_vc,
3971 	},
3972 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
3973 		.name = "vlan_pcp",
3974 		.help = "VLAN priority",
3975 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
3976 		.args = ARGS(ARGS_ENTRY_HTON
3977 			     (struct rte_flow_action_of_set_vlan_pcp,
3978 			      vlan_pcp)),
3979 		.call = parse_vc_conf,
3980 	},
3981 	[ACTION_OF_POP_MPLS] = {
3982 		.name = "of_pop_mpls",
3983 		.help = "OpenFlow's OFPAT_POP_MPLS",
3984 		.priv = PRIV_ACTION(OF_POP_MPLS,
3985 				    sizeof(struct rte_flow_action_of_pop_mpls)),
3986 		.next = NEXT(action_of_pop_mpls),
3987 		.call = parse_vc,
3988 	},
3989 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
3990 		.name = "ethertype",
3991 		.help = "EtherType",
3992 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
3993 		.args = ARGS(ARGS_ENTRY_HTON
3994 			     (struct rte_flow_action_of_pop_mpls,
3995 			      ethertype)),
3996 		.call = parse_vc_conf,
3997 	},
3998 	[ACTION_OF_PUSH_MPLS] = {
3999 		.name = "of_push_mpls",
4000 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
4001 		.priv = PRIV_ACTION
4002 			(OF_PUSH_MPLS,
4003 			 sizeof(struct rte_flow_action_of_push_mpls)),
4004 		.next = NEXT(action_of_push_mpls),
4005 		.call = parse_vc,
4006 	},
4007 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
4008 		.name = "ethertype",
4009 		.help = "EtherType",
4010 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
4011 		.args = ARGS(ARGS_ENTRY_HTON
4012 			     (struct rte_flow_action_of_push_mpls,
4013 			      ethertype)),
4014 		.call = parse_vc_conf,
4015 	},
4016 	[ACTION_VXLAN_ENCAP] = {
4017 		.name = "vxlan_encap",
4018 		.help = "VXLAN encapsulation, uses configuration set by \"set"
4019 			" vxlan\"",
4020 		.priv = PRIV_ACTION(VXLAN_ENCAP,
4021 				    sizeof(struct action_vxlan_encap_data)),
4022 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4023 		.call = parse_vc_action_vxlan_encap,
4024 	},
4025 	[ACTION_VXLAN_DECAP] = {
4026 		.name = "vxlan_decap",
4027 		.help = "Performs a decapsulation action by stripping all"
4028 			" headers of the VXLAN tunnel network overlay from the"
4029 			" matched flow.",
4030 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
4031 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4032 		.call = parse_vc,
4033 	},
4034 	[ACTION_NVGRE_ENCAP] = {
4035 		.name = "nvgre_encap",
4036 		.help = "NVGRE encapsulation, uses configuration set by \"set"
4037 			" nvgre\"",
4038 		.priv = PRIV_ACTION(NVGRE_ENCAP,
4039 				    sizeof(struct action_nvgre_encap_data)),
4040 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4041 		.call = parse_vc_action_nvgre_encap,
4042 	},
4043 	[ACTION_NVGRE_DECAP] = {
4044 		.name = "nvgre_decap",
4045 		.help = "Performs a decapsulation action by stripping all"
4046 			" headers of the NVGRE tunnel network overlay from the"
4047 			" matched flow.",
4048 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
4049 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4050 		.call = parse_vc,
4051 	},
4052 	[ACTION_L2_ENCAP] = {
4053 		.name = "l2_encap",
4054 		.help = "l2 encap, uses configuration set by"
4055 			" \"set l2_encap\"",
4056 		.priv = PRIV_ACTION(RAW_ENCAP,
4057 				    sizeof(struct action_raw_encap_data)),
4058 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4059 		.call = parse_vc_action_l2_encap,
4060 	},
4061 	[ACTION_L2_DECAP] = {
4062 		.name = "l2_decap",
4063 		.help = "l2 decap, uses configuration set by"
4064 			" \"set l2_decap\"",
4065 		.priv = PRIV_ACTION(RAW_DECAP,
4066 				    sizeof(struct action_raw_decap_data)),
4067 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4068 		.call = parse_vc_action_l2_decap,
4069 	},
4070 	[ACTION_MPLSOGRE_ENCAP] = {
4071 		.name = "mplsogre_encap",
4072 		.help = "mplsogre encapsulation, uses configuration set by"
4073 			" \"set mplsogre_encap\"",
4074 		.priv = PRIV_ACTION(RAW_ENCAP,
4075 				    sizeof(struct action_raw_encap_data)),
4076 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4077 		.call = parse_vc_action_mplsogre_encap,
4078 	},
4079 	[ACTION_MPLSOGRE_DECAP] = {
4080 		.name = "mplsogre_decap",
4081 		.help = "mplsogre decapsulation, uses configuration set by"
4082 			" \"set mplsogre_decap\"",
4083 		.priv = PRIV_ACTION(RAW_DECAP,
4084 				    sizeof(struct action_raw_decap_data)),
4085 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4086 		.call = parse_vc_action_mplsogre_decap,
4087 	},
4088 	[ACTION_MPLSOUDP_ENCAP] = {
4089 		.name = "mplsoudp_encap",
4090 		.help = "mplsoudp encapsulation, uses configuration set by"
4091 			" \"set mplsoudp_encap\"",
4092 		.priv = PRIV_ACTION(RAW_ENCAP,
4093 				    sizeof(struct action_raw_encap_data)),
4094 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4095 		.call = parse_vc_action_mplsoudp_encap,
4096 	},
4097 	[ACTION_MPLSOUDP_DECAP] = {
4098 		.name = "mplsoudp_decap",
4099 		.help = "mplsoudp decapsulation, uses configuration set by"
4100 			" \"set mplsoudp_decap\"",
4101 		.priv = PRIV_ACTION(RAW_DECAP,
4102 				    sizeof(struct action_raw_decap_data)),
4103 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4104 		.call = parse_vc_action_mplsoudp_decap,
4105 	},
4106 	[ACTION_SET_IPV4_SRC] = {
4107 		.name = "set_ipv4_src",
4108 		.help = "Set a new IPv4 source address in the outermost"
4109 			" IPv4 header",
4110 		.priv = PRIV_ACTION(SET_IPV4_SRC,
4111 			sizeof(struct rte_flow_action_set_ipv4)),
4112 		.next = NEXT(action_set_ipv4_src),
4113 		.call = parse_vc,
4114 	},
4115 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
4116 		.name = "ipv4_addr",
4117 		.help = "new IPv4 source address to set",
4118 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
4119 		.args = ARGS(ARGS_ENTRY_HTON
4120 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
4121 		.call = parse_vc_conf,
4122 	},
4123 	[ACTION_SET_IPV4_DST] = {
4124 		.name = "set_ipv4_dst",
4125 		.help = "Set a new IPv4 destination address in the outermost"
4126 			" IPv4 header",
4127 		.priv = PRIV_ACTION(SET_IPV4_DST,
4128 			sizeof(struct rte_flow_action_set_ipv4)),
4129 		.next = NEXT(action_set_ipv4_dst),
4130 		.call = parse_vc,
4131 	},
4132 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
4133 		.name = "ipv4_addr",
4134 		.help = "new IPv4 destination address to set",
4135 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
4136 		.args = ARGS(ARGS_ENTRY_HTON
4137 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
4138 		.call = parse_vc_conf,
4139 	},
4140 	[ACTION_SET_IPV6_SRC] = {
4141 		.name = "set_ipv6_src",
4142 		.help = "Set a new IPv6 source address in the outermost"
4143 			" IPv6 header",
4144 		.priv = PRIV_ACTION(SET_IPV6_SRC,
4145 			sizeof(struct rte_flow_action_set_ipv6)),
4146 		.next = NEXT(action_set_ipv6_src),
4147 		.call = parse_vc,
4148 	},
4149 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
4150 		.name = "ipv6_addr",
4151 		.help = "new IPv6 source address to set",
4152 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
4153 		.args = ARGS(ARGS_ENTRY_HTON
4154 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
4155 		.call = parse_vc_conf,
4156 	},
4157 	[ACTION_SET_IPV6_DST] = {
4158 		.name = "set_ipv6_dst",
4159 		.help = "Set a new IPv6 destination address in the outermost"
4160 			" IPv6 header",
4161 		.priv = PRIV_ACTION(SET_IPV6_DST,
4162 			sizeof(struct rte_flow_action_set_ipv6)),
4163 		.next = NEXT(action_set_ipv6_dst),
4164 		.call = parse_vc,
4165 	},
4166 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
4167 		.name = "ipv6_addr",
4168 		.help = "new IPv6 destination address to set",
4169 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
4170 		.args = ARGS(ARGS_ENTRY_HTON
4171 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
4172 		.call = parse_vc_conf,
4173 	},
4174 	[ACTION_SET_TP_SRC] = {
4175 		.name = "set_tp_src",
4176 		.help = "set a new source port number in the outermost"
4177 			" TCP/UDP header",
4178 		.priv = PRIV_ACTION(SET_TP_SRC,
4179 			sizeof(struct rte_flow_action_set_tp)),
4180 		.next = NEXT(action_set_tp_src),
4181 		.call = parse_vc,
4182 	},
4183 	[ACTION_SET_TP_SRC_TP_SRC] = {
4184 		.name = "port",
4185 		.help = "new source port number to set",
4186 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
4187 		.args = ARGS(ARGS_ENTRY_HTON
4188 			     (struct rte_flow_action_set_tp, port)),
4189 		.call = parse_vc_conf,
4190 	},
4191 	[ACTION_SET_TP_DST] = {
4192 		.name = "set_tp_dst",
4193 		.help = "set a new destination port number in the outermost"
4194 			" TCP/UDP header",
4195 		.priv = PRIV_ACTION(SET_TP_DST,
4196 			sizeof(struct rte_flow_action_set_tp)),
4197 		.next = NEXT(action_set_tp_dst),
4198 		.call = parse_vc,
4199 	},
4200 	[ACTION_SET_TP_DST_TP_DST] = {
4201 		.name = "port",
4202 		.help = "new destination port number to set",
4203 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
4204 		.args = ARGS(ARGS_ENTRY_HTON
4205 			     (struct rte_flow_action_set_tp, port)),
4206 		.call = parse_vc_conf,
4207 	},
4208 	[ACTION_MAC_SWAP] = {
4209 		.name = "mac_swap",
4210 		.help = "Swap the source and destination MAC addresses"
4211 			" in the outermost Ethernet header",
4212 		.priv = PRIV_ACTION(MAC_SWAP, 0),
4213 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4214 		.call = parse_vc,
4215 	},
4216 	[ACTION_DEC_TTL] = {
4217 		.name = "dec_ttl",
4218 		.help = "decrease network TTL if available",
4219 		.priv = PRIV_ACTION(DEC_TTL, 0),
4220 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4221 		.call = parse_vc,
4222 	},
4223 	[ACTION_SET_TTL] = {
4224 		.name = "set_ttl",
4225 		.help = "set ttl value",
4226 		.priv = PRIV_ACTION(SET_TTL,
4227 			sizeof(struct rte_flow_action_set_ttl)),
4228 		.next = NEXT(action_set_ttl),
4229 		.call = parse_vc,
4230 	},
4231 	[ACTION_SET_TTL_TTL] = {
4232 		.name = "ttl_value",
4233 		.help = "new ttl value to set",
4234 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
4235 		.args = ARGS(ARGS_ENTRY_HTON
4236 			     (struct rte_flow_action_set_ttl, ttl_value)),
4237 		.call = parse_vc_conf,
4238 	},
4239 	[ACTION_SET_MAC_SRC] = {
4240 		.name = "set_mac_src",
4241 		.help = "set source mac address",
4242 		.priv = PRIV_ACTION(SET_MAC_SRC,
4243 			sizeof(struct rte_flow_action_set_mac)),
4244 		.next = NEXT(action_set_mac_src),
4245 		.call = parse_vc,
4246 	},
4247 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
4248 		.name = "mac_addr",
4249 		.help = "new source mac address",
4250 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
4251 		.args = ARGS(ARGS_ENTRY_HTON
4252 			     (struct rte_flow_action_set_mac, mac_addr)),
4253 		.call = parse_vc_conf,
4254 	},
4255 	[ACTION_SET_MAC_DST] = {
4256 		.name = "set_mac_dst",
4257 		.help = "set destination mac address",
4258 		.priv = PRIV_ACTION(SET_MAC_DST,
4259 			sizeof(struct rte_flow_action_set_mac)),
4260 		.next = NEXT(action_set_mac_dst),
4261 		.call = parse_vc,
4262 	},
4263 	[ACTION_SET_MAC_DST_MAC_DST] = {
4264 		.name = "mac_addr",
4265 		.help = "new destination mac address to set",
4266 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
4267 		.args = ARGS(ARGS_ENTRY_HTON
4268 			     (struct rte_flow_action_set_mac, mac_addr)),
4269 		.call = parse_vc_conf,
4270 	},
4271 	[ACTION_INC_TCP_SEQ] = {
4272 		.name = "inc_tcp_seq",
4273 		.help = "increase TCP sequence number",
4274 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
4275 		.next = NEXT(action_inc_tcp_seq),
4276 		.call = parse_vc,
4277 	},
4278 	[ACTION_INC_TCP_SEQ_VALUE] = {
4279 		.name = "value",
4280 		.help = "the value to increase TCP sequence number by",
4281 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
4282 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4283 		.call = parse_vc_conf,
4284 	},
4285 	[ACTION_DEC_TCP_SEQ] = {
4286 		.name = "dec_tcp_seq",
4287 		.help = "decrease TCP sequence number",
4288 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
4289 		.next = NEXT(action_dec_tcp_seq),
4290 		.call = parse_vc,
4291 	},
4292 	[ACTION_DEC_TCP_SEQ_VALUE] = {
4293 		.name = "value",
4294 		.help = "the value to decrease TCP sequence number by",
4295 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
4296 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4297 		.call = parse_vc_conf,
4298 	},
4299 	[ACTION_INC_TCP_ACK] = {
4300 		.name = "inc_tcp_ack",
4301 		.help = "increase TCP acknowledgment number",
4302 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
4303 		.next = NEXT(action_inc_tcp_ack),
4304 		.call = parse_vc,
4305 	},
4306 	[ACTION_INC_TCP_ACK_VALUE] = {
4307 		.name = "value",
4308 		.help = "the value to increase TCP acknowledgment number by",
4309 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
4310 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4311 		.call = parse_vc_conf,
4312 	},
4313 	[ACTION_DEC_TCP_ACK] = {
4314 		.name = "dec_tcp_ack",
4315 		.help = "decrease TCP acknowledgment number",
4316 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
4317 		.next = NEXT(action_dec_tcp_ack),
4318 		.call = parse_vc,
4319 	},
4320 	[ACTION_DEC_TCP_ACK_VALUE] = {
4321 		.name = "value",
4322 		.help = "the value to decrease TCP acknowledgment number by",
4323 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
4324 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4325 		.call = parse_vc_conf,
4326 	},
4327 	[ACTION_RAW_ENCAP] = {
4328 		.name = "raw_encap",
4329 		.help = "encapsulation data, defined by set raw_encap",
4330 		.priv = PRIV_ACTION(RAW_ENCAP,
4331 			sizeof(struct action_raw_encap_data)),
4332 		.next = NEXT(action_raw_encap),
4333 		.call = parse_vc_action_raw_encap,
4334 	},
4335 	[ACTION_RAW_ENCAP_INDEX] = {
4336 		.name = "index",
4337 		.help = "the index of raw_encap_confs",
4338 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_ENCAP_INDEX_VALUE)),
4339 	},
4340 	[ACTION_RAW_ENCAP_INDEX_VALUE] = {
4341 		.name = "{index}",
4342 		.type = "UNSIGNED",
4343 		.help = "unsigned integer value",
4344 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4345 		.call = parse_vc_action_raw_encap_index,
4346 		.comp = comp_set_raw_index,
4347 	},
4348 	[ACTION_RAW_DECAP] = {
4349 		.name = "raw_decap",
4350 		.help = "decapsulation data, defined by set raw_encap",
4351 		.priv = PRIV_ACTION(RAW_DECAP,
4352 			sizeof(struct action_raw_decap_data)),
4353 		.next = NEXT(action_raw_decap),
4354 		.call = parse_vc_action_raw_decap,
4355 	},
4356 	[ACTION_RAW_DECAP_INDEX] = {
4357 		.name = "index",
4358 		.help = "the index of raw_encap_confs",
4359 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_DECAP_INDEX_VALUE)),
4360 	},
4361 	[ACTION_RAW_DECAP_INDEX_VALUE] = {
4362 		.name = "{index}",
4363 		.type = "UNSIGNED",
4364 		.help = "unsigned integer value",
4365 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4366 		.call = parse_vc_action_raw_decap_index,
4367 		.comp = comp_set_raw_index,
4368 	},
4369 	[ACTION_MODIFY_FIELD] = {
4370 		.name = "modify_field",
4371 		.help = "modify destination field with data from source field",
4372 		.priv = PRIV_ACTION(MODIFY_FIELD,
4373 			sizeof(struct rte_flow_action_modify_field)),
4374 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_OP)),
4375 		.call = parse_vc,
4376 	},
4377 	[ACTION_MODIFY_FIELD_OP] = {
4378 		.name = "op",
4379 		.help = "operation type",
4380 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_DST_TYPE),
4381 			NEXT_ENTRY(ACTION_MODIFY_FIELD_OP_VALUE)),
4382 		.call = parse_vc_conf,
4383 	},
4384 	[ACTION_MODIFY_FIELD_OP_VALUE] = {
4385 		.name = "{operation}",
4386 		.help = "operation type value",
4387 		.call = parse_vc_modify_field_op,
4388 		.comp = comp_set_modify_field_op,
4389 	},
4390 	[ACTION_MODIFY_FIELD_DST_TYPE] = {
4391 		.name = "dst_type",
4392 		.help = "destination field type",
4393 		.next = NEXT(action_modify_field_dst,
4394 			NEXT_ENTRY(ACTION_MODIFY_FIELD_DST_TYPE_VALUE)),
4395 		.call = parse_vc_conf,
4396 	},
4397 	[ACTION_MODIFY_FIELD_DST_TYPE_VALUE] = {
4398 		.name = "{dst_type}",
4399 		.help = "destination field type value",
4400 		.call = parse_vc_modify_field_id,
4401 		.comp = comp_set_modify_field_id,
4402 	},
4403 	[ACTION_MODIFY_FIELD_DST_LEVEL] = {
4404 		.name = "dst_level",
4405 		.help = "destination field level",
4406 		.next = NEXT(action_modify_field_dst, NEXT_ENTRY(UNSIGNED)),
4407 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4408 					dst.level)),
4409 		.call = parse_vc_conf,
4410 	},
4411 	[ACTION_MODIFY_FIELD_DST_OFFSET] = {
4412 		.name = "dst_offset",
4413 		.help = "destination field bit offset",
4414 		.next = NEXT(action_modify_field_dst, NEXT_ENTRY(UNSIGNED)),
4415 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4416 					dst.offset)),
4417 		.call = parse_vc_conf,
4418 	},
4419 	[ACTION_MODIFY_FIELD_SRC_TYPE] = {
4420 		.name = "src_type",
4421 		.help = "source field type",
4422 		.next = NEXT(action_modify_field_src,
4423 			NEXT_ENTRY(ACTION_MODIFY_FIELD_SRC_TYPE_VALUE)),
4424 		.call = parse_vc_conf,
4425 	},
4426 	[ACTION_MODIFY_FIELD_SRC_TYPE_VALUE] = {
4427 		.name = "{src_type}",
4428 		.help = "source field type value",
4429 		.call = parse_vc_modify_field_id,
4430 		.comp = comp_set_modify_field_id,
4431 	},
4432 	[ACTION_MODIFY_FIELD_SRC_LEVEL] = {
4433 		.name = "src_level",
4434 		.help = "source field level",
4435 		.next = NEXT(action_modify_field_src, NEXT_ENTRY(UNSIGNED)),
4436 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4437 					src.level)),
4438 		.call = parse_vc_conf,
4439 	},
4440 	[ACTION_MODIFY_FIELD_SRC_OFFSET] = {
4441 		.name = "src_offset",
4442 		.help = "source field bit offset",
4443 		.next = NEXT(action_modify_field_src, NEXT_ENTRY(UNSIGNED)),
4444 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4445 					src.offset)),
4446 		.call = parse_vc_conf,
4447 	},
4448 	[ACTION_MODIFY_FIELD_SRC_VALUE] = {
4449 		.name = "src_value",
4450 		.help = "source immediate value",
4451 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_WIDTH),
4452 			NEXT_ENTRY(UNSIGNED)),
4453 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4454 					src.value)),
4455 		.call = parse_vc_conf,
4456 	},
4457 	[ACTION_MODIFY_FIELD_WIDTH] = {
4458 		.name = "width",
4459 		.help = "number of bits to copy",
4460 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT),
4461 			NEXT_ENTRY(UNSIGNED)),
4462 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4463 					width)),
4464 		.call = parse_vc_conf,
4465 	},
4466 	/* Top level command. */
4467 	[SET] = {
4468 		.name = "set",
4469 		.help = "set raw encap/decap/sample data",
4470 		.type = "set raw_encap|raw_decap <index> <pattern>"
4471 				" or set sample_actions <index> <action>",
4472 		.next = NEXT(NEXT_ENTRY
4473 			     (SET_RAW_ENCAP,
4474 			      SET_RAW_DECAP,
4475 			      SET_SAMPLE_ACTIONS)),
4476 		.call = parse_set_init,
4477 	},
4478 	/* Sub-level commands. */
4479 	[SET_RAW_ENCAP] = {
4480 		.name = "raw_encap",
4481 		.help = "set raw encap data",
4482 		.next = NEXT(next_set_raw),
4483 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4484 				(offsetof(struct buffer, port),
4485 				 sizeof(((struct buffer *)0)->port),
4486 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
4487 		.call = parse_set_raw_encap_decap,
4488 	},
4489 	[SET_RAW_DECAP] = {
4490 		.name = "raw_decap",
4491 		.help = "set raw decap data",
4492 		.next = NEXT(next_set_raw),
4493 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4494 				(offsetof(struct buffer, port),
4495 				 sizeof(((struct buffer *)0)->port),
4496 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
4497 		.call = parse_set_raw_encap_decap,
4498 	},
4499 	[SET_RAW_INDEX] = {
4500 		.name = "{index}",
4501 		.type = "UNSIGNED",
4502 		.help = "index of raw_encap/raw_decap data",
4503 		.next = NEXT(next_item),
4504 		.call = parse_port,
4505 	},
4506 	[SET_SAMPLE_INDEX] = {
4507 		.name = "{index}",
4508 		.type = "UNSIGNED",
4509 		.help = "index of sample actions",
4510 		.next = NEXT(next_action_sample),
4511 		.call = parse_port,
4512 	},
4513 	[SET_SAMPLE_ACTIONS] = {
4514 		.name = "sample_actions",
4515 		.help = "set sample actions list",
4516 		.next = NEXT(NEXT_ENTRY(SET_SAMPLE_INDEX)),
4517 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4518 				(offsetof(struct buffer, port),
4519 				 sizeof(((struct buffer *)0)->port),
4520 				 0, RAW_SAMPLE_CONFS_MAX_NUM - 1)),
4521 		.call = parse_set_sample_action,
4522 	},
4523 	[ACTION_SET_TAG] = {
4524 		.name = "set_tag",
4525 		.help = "set tag",
4526 		.priv = PRIV_ACTION(SET_TAG,
4527 			sizeof(struct rte_flow_action_set_tag)),
4528 		.next = NEXT(action_set_tag),
4529 		.call = parse_vc,
4530 	},
4531 	[ACTION_SET_TAG_INDEX] = {
4532 		.name = "index",
4533 		.help = "index of tag array",
4534 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4535 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_set_tag, index)),
4536 		.call = parse_vc_conf,
4537 	},
4538 	[ACTION_SET_TAG_DATA] = {
4539 		.name = "data",
4540 		.help = "tag value",
4541 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4542 		.args = ARGS(ARGS_ENTRY
4543 			     (struct rte_flow_action_set_tag, data)),
4544 		.call = parse_vc_conf,
4545 	},
4546 	[ACTION_SET_TAG_MASK] = {
4547 		.name = "mask",
4548 		.help = "mask for tag value",
4549 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4550 		.args = ARGS(ARGS_ENTRY
4551 			     (struct rte_flow_action_set_tag, mask)),
4552 		.call = parse_vc_conf,
4553 	},
4554 	[ACTION_SET_META] = {
4555 		.name = "set_meta",
4556 		.help = "set metadata",
4557 		.priv = PRIV_ACTION(SET_META,
4558 			sizeof(struct rte_flow_action_set_meta)),
4559 		.next = NEXT(action_set_meta),
4560 		.call = parse_vc_action_set_meta,
4561 	},
4562 	[ACTION_SET_META_DATA] = {
4563 		.name = "data",
4564 		.help = "metadata value",
4565 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
4566 		.args = ARGS(ARGS_ENTRY
4567 			     (struct rte_flow_action_set_meta, data)),
4568 		.call = parse_vc_conf,
4569 	},
4570 	[ACTION_SET_META_MASK] = {
4571 		.name = "mask",
4572 		.help = "mask for metadata value",
4573 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
4574 		.args = ARGS(ARGS_ENTRY
4575 			     (struct rte_flow_action_set_meta, mask)),
4576 		.call = parse_vc_conf,
4577 	},
4578 	[ACTION_SET_IPV4_DSCP] = {
4579 		.name = "set_ipv4_dscp",
4580 		.help = "set DSCP value",
4581 		.priv = PRIV_ACTION(SET_IPV4_DSCP,
4582 			sizeof(struct rte_flow_action_set_dscp)),
4583 		.next = NEXT(action_set_ipv4_dscp),
4584 		.call = parse_vc,
4585 	},
4586 	[ACTION_SET_IPV4_DSCP_VALUE] = {
4587 		.name = "dscp_value",
4588 		.help = "new IPv4 DSCP value to set",
4589 		.next = NEXT(action_set_ipv4_dscp, NEXT_ENTRY(UNSIGNED)),
4590 		.args = ARGS(ARGS_ENTRY
4591 			     (struct rte_flow_action_set_dscp, dscp)),
4592 		.call = parse_vc_conf,
4593 	},
4594 	[ACTION_SET_IPV6_DSCP] = {
4595 		.name = "set_ipv6_dscp",
4596 		.help = "set DSCP value",
4597 		.priv = PRIV_ACTION(SET_IPV6_DSCP,
4598 			sizeof(struct rte_flow_action_set_dscp)),
4599 		.next = NEXT(action_set_ipv6_dscp),
4600 		.call = parse_vc,
4601 	},
4602 	[ACTION_SET_IPV6_DSCP_VALUE] = {
4603 		.name = "dscp_value",
4604 		.help = "new IPv6 DSCP value to set",
4605 		.next = NEXT(action_set_ipv6_dscp, NEXT_ENTRY(UNSIGNED)),
4606 		.args = ARGS(ARGS_ENTRY
4607 			     (struct rte_flow_action_set_dscp, dscp)),
4608 		.call = parse_vc_conf,
4609 	},
4610 	[ACTION_AGE] = {
4611 		.name = "age",
4612 		.help = "set a specific metadata header",
4613 		.next = NEXT(action_age),
4614 		.priv = PRIV_ACTION(AGE,
4615 			sizeof(struct rte_flow_action_age)),
4616 		.call = parse_vc,
4617 	},
4618 	[ACTION_AGE_TIMEOUT] = {
4619 		.name = "timeout",
4620 		.help = "flow age timeout value",
4621 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_age,
4622 					   timeout, 24)),
4623 		.next = NEXT(action_age, NEXT_ENTRY(UNSIGNED)),
4624 		.call = parse_vc_conf,
4625 	},
4626 	[ACTION_SAMPLE] = {
4627 		.name = "sample",
4628 		.help = "set a sample action",
4629 		.next = NEXT(action_sample),
4630 		.priv = PRIV_ACTION(SAMPLE,
4631 			sizeof(struct action_sample_data)),
4632 		.call = parse_vc_action_sample,
4633 	},
4634 	[ACTION_SAMPLE_RATIO] = {
4635 		.name = "ratio",
4636 		.help = "flow sample ratio value",
4637 		.next = NEXT(action_sample, NEXT_ENTRY(UNSIGNED)),
4638 		.args = ARGS(ARGS_ENTRY_ARB
4639 			     (offsetof(struct action_sample_data, conf) +
4640 			      offsetof(struct rte_flow_action_sample, ratio),
4641 			      sizeof(((struct rte_flow_action_sample *)0)->
4642 				     ratio))),
4643 	},
4644 	[ACTION_SAMPLE_INDEX] = {
4645 		.name = "index",
4646 		.help = "the index of sample actions list",
4647 		.next = NEXT(NEXT_ENTRY(ACTION_SAMPLE_INDEX_VALUE)),
4648 	},
4649 	[ACTION_SAMPLE_INDEX_VALUE] = {
4650 		.name = "{index}",
4651 		.type = "UNSIGNED",
4652 		.help = "unsigned integer value",
4653 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4654 		.call = parse_vc_action_sample_index,
4655 		.comp = comp_set_sample_index,
4656 	},
4657 	[ACTION_CONNTRACK] = {
4658 		.name = "conntrack",
4659 		.help = "create a conntrack object",
4660 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4661 		.priv = PRIV_ACTION(CONNTRACK,
4662 				    sizeof(struct rte_flow_action_conntrack)),
4663 		.call = parse_vc,
4664 	},
4665 	[ACTION_CONNTRACK_UPDATE] = {
4666 		.name = "conntrack_update",
4667 		.help = "update a conntrack object",
4668 		.next = NEXT(action_update_conntrack),
4669 		.priv = PRIV_ACTION(CONNTRACK,
4670 				    sizeof(struct rte_flow_modify_conntrack)),
4671 		.call = parse_vc,
4672 	},
4673 	[ACTION_CONNTRACK_UPDATE_DIR] = {
4674 		.name = "dir",
4675 		.help = "update a conntrack object direction",
4676 		.next = NEXT(action_update_conntrack),
4677 		.call = parse_vc_action_conntrack_update,
4678 	},
4679 	[ACTION_CONNTRACK_UPDATE_CTX] = {
4680 		.name = "ctx",
4681 		.help = "update a conntrack object context",
4682 		.next = NEXT(action_update_conntrack),
4683 		.call = parse_vc_action_conntrack_update,
4684 	},
4685 	/* Indirect action destroy arguments. */
4686 	[INDIRECT_ACTION_DESTROY_ID] = {
4687 		.name = "action_id",
4688 		.help = "specify a indirect action id to destroy",
4689 		.next = NEXT(next_ia_destroy_attr,
4690 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
4691 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer,
4692 					    args.ia_destroy.action_id)),
4693 		.call = parse_ia_destroy,
4694 	},
4695 	/* Indirect action create arguments. */
4696 	[INDIRECT_ACTION_CREATE_ID] = {
4697 		.name = "action_id",
4698 		.help = "specify a indirect action id to create",
4699 		.next = NEXT(next_ia_create_attr,
4700 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
4701 		.args = ARGS(ARGS_ENTRY(struct buffer, args.vc.attr.group)),
4702 	},
4703 	[ACTION_INDIRECT] = {
4704 		.name = "indirect",
4705 		.help = "apply indirect action by id",
4706 		.priv = PRIV_ACTION(INDIRECT, 0),
4707 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_ID2PTR)),
4708 		.args = ARGS(ARGS_ENTRY_ARB(0, sizeof(uint32_t))),
4709 		.call = parse_vc,
4710 	},
4711 	[INDIRECT_ACTION_ID2PTR] = {
4712 		.name = "{action_id}",
4713 		.type = "INDIRECT_ACTION_ID",
4714 		.help = "indirect action id",
4715 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4716 		.call = parse_ia_id2ptr,
4717 		.comp = comp_none,
4718 	},
4719 	[INDIRECT_ACTION_INGRESS] = {
4720 		.name = "ingress",
4721 		.help = "affect rule to ingress",
4722 		.next = NEXT(next_ia_create_attr),
4723 		.call = parse_ia,
4724 	},
4725 	[INDIRECT_ACTION_EGRESS] = {
4726 		.name = "egress",
4727 		.help = "affect rule to egress",
4728 		.next = NEXT(next_ia_create_attr),
4729 		.call = parse_ia,
4730 	},
4731 	[INDIRECT_ACTION_TRANSFER] = {
4732 		.name = "transfer",
4733 		.help = "affect rule to transfer",
4734 		.next = NEXT(next_ia_create_attr),
4735 		.call = parse_ia,
4736 	},
4737 	[INDIRECT_ACTION_SPEC] = {
4738 		.name = "action",
4739 		.help = "specify action to create indirect handle",
4740 		.next = NEXT(next_action),
4741 	},
4742 	[ACTION_POL_G] = {
4743 		.name = "g_actions",
4744 		.help = "submit a list of associated actions for green",
4745 		.next = NEXT(next_action),
4746 		.call = parse_mp,
4747 	},
4748 	[ACTION_POL_Y] = {
4749 		.name = "y_actions",
4750 		.help = "submit a list of associated actions for yellow",
4751 		.next = NEXT(next_action),
4752 	},
4753 	[ACTION_POL_R] = {
4754 		.name = "r_actions",
4755 		.help = "submit a list of associated actions for red",
4756 		.next = NEXT(next_action),
4757 	},
4758 
4759 	/* Top-level command. */
4760 	[ADD] = {
4761 		.name = "add",
4762 		.type = "port meter policy {port_id} {arg}",
4763 		.help = "add port meter policy",
4764 		.next = NEXT(NEXT_ENTRY(ITEM_POL_PORT)),
4765 		.call = parse_init,
4766 	},
4767 	/* Sub-level commands. */
4768 	[ITEM_POL_PORT] = {
4769 		.name = "port",
4770 		.help = "add port meter policy",
4771 		.next = NEXT(NEXT_ENTRY(ITEM_POL_METER)),
4772 	},
4773 	[ITEM_POL_METER] = {
4774 		.name = "meter",
4775 		.help = "add port meter policy",
4776 		.next = NEXT(NEXT_ENTRY(ITEM_POL_POLICY)),
4777 	},
4778 	[ITEM_POL_POLICY] = {
4779 		.name = "policy",
4780 		.help = "add port meter policy",
4781 		.next = NEXT(NEXT_ENTRY(ACTION_POL_R),
4782 				NEXT_ENTRY(ACTION_POL_Y),
4783 				NEXT_ENTRY(ACTION_POL_G),
4784 				NEXT_ENTRY(POLICY_ID),
4785 				NEXT_ENTRY(PORT_ID)),
4786 		.args = ARGS(ARGS_ENTRY(struct buffer, args.policy.policy_id),
4787 				ARGS_ENTRY(struct buffer, port)),
4788 		.call = parse_mp,
4789 	},
4790 };
4791 
4792 /** Remove and return last entry from argument stack. */
4793 static const struct arg *
4794 pop_args(struct context *ctx)
4795 {
4796 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
4797 }
4798 
4799 /** Add entry on top of the argument stack. */
4800 static int
4801 push_args(struct context *ctx, const struct arg *arg)
4802 {
4803 	if (ctx->args_num == CTX_STACK_SIZE)
4804 		return -1;
4805 	ctx->args[ctx->args_num++] = arg;
4806 	return 0;
4807 }
4808 
4809 /** Spread value into buffer according to bit-mask. */
4810 static size_t
4811 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
4812 {
4813 	uint32_t i = arg->size;
4814 	uint32_t end = 0;
4815 	int sub = 1;
4816 	int add = 0;
4817 	size_t len = 0;
4818 
4819 	if (!arg->mask)
4820 		return 0;
4821 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4822 	if (!arg->hton) {
4823 		i = 0;
4824 		end = arg->size;
4825 		sub = 0;
4826 		add = 1;
4827 	}
4828 #endif
4829 	while (i != end) {
4830 		unsigned int shift = 0;
4831 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
4832 
4833 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
4834 			if (!(arg->mask[i] & (1 << shift)))
4835 				continue;
4836 			++len;
4837 			if (!dst)
4838 				continue;
4839 			*buf &= ~(1 << shift);
4840 			*buf |= (val & 1) << shift;
4841 			val >>= 1;
4842 		}
4843 		i += add;
4844 	}
4845 	return len;
4846 }
4847 
4848 /** Compare a string with a partial one of a given length. */
4849 static int
4850 strcmp_partial(const char *full, const char *partial, size_t partial_len)
4851 {
4852 	int r = strncmp(full, partial, partial_len);
4853 
4854 	if (r)
4855 		return r;
4856 	if (strlen(full) <= partial_len)
4857 		return 0;
4858 	return full[partial_len];
4859 }
4860 
4861 /**
4862  * Parse a prefix length and generate a bit-mask.
4863  *
4864  * Last argument (ctx->args) is retrieved to determine mask size, storage
4865  * location and whether the result must use network byte ordering.
4866  */
4867 static int
4868 parse_prefix(struct context *ctx, const struct token *token,
4869 	     const char *str, unsigned int len,
4870 	     void *buf, unsigned int size)
4871 {
4872 	const struct arg *arg = pop_args(ctx);
4873 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
4874 	char *end;
4875 	uintmax_t u;
4876 	unsigned int bytes;
4877 	unsigned int extra;
4878 
4879 	(void)token;
4880 	/* Argument is expected. */
4881 	if (!arg)
4882 		return -1;
4883 	errno = 0;
4884 	u = strtoumax(str, &end, 0);
4885 	if (errno || (size_t)(end - str) != len)
4886 		goto error;
4887 	if (arg->mask) {
4888 		uintmax_t v = 0;
4889 
4890 		extra = arg_entry_bf_fill(NULL, 0, arg);
4891 		if (u > extra)
4892 			goto error;
4893 		if (!ctx->object)
4894 			return len;
4895 		extra -= u;
4896 		while (u--)
4897 			(v <<= 1, v |= 1);
4898 		v <<= extra;
4899 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
4900 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4901 			goto error;
4902 		return len;
4903 	}
4904 	bytes = u / 8;
4905 	extra = u % 8;
4906 	size = arg->size;
4907 	if (bytes > size || bytes + !!extra > size)
4908 		goto error;
4909 	if (!ctx->object)
4910 		return len;
4911 	buf = (uint8_t *)ctx->object + arg->offset;
4912 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4913 	if (!arg->hton) {
4914 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
4915 		memset(buf, 0x00, size - bytes);
4916 		if (extra)
4917 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
4918 	} else
4919 #endif
4920 	{
4921 		memset(buf, 0xff, bytes);
4922 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
4923 		if (extra)
4924 			((uint8_t *)buf)[bytes] = conv[extra];
4925 	}
4926 	if (ctx->objmask)
4927 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4928 	return len;
4929 error:
4930 	push_args(ctx, arg);
4931 	return -1;
4932 }
4933 
4934 /** Default parsing function for token name matching. */
4935 static int
4936 parse_default(struct context *ctx, const struct token *token,
4937 	      const char *str, unsigned int len,
4938 	      void *buf, unsigned int size)
4939 {
4940 	(void)ctx;
4941 	(void)buf;
4942 	(void)size;
4943 	if (strcmp_partial(token->name, str, len))
4944 		return -1;
4945 	return len;
4946 }
4947 
4948 /** Parse flow command, initialize output buffer for subsequent tokens. */
4949 static int
4950 parse_init(struct context *ctx, const struct token *token,
4951 	   const char *str, unsigned int len,
4952 	   void *buf, unsigned int size)
4953 {
4954 	struct buffer *out = buf;
4955 
4956 	/* Token name must match. */
4957 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4958 		return -1;
4959 	/* Nothing else to do if there is no buffer. */
4960 	if (!out)
4961 		return len;
4962 	/* Make sure buffer is large enough. */
4963 	if (size < sizeof(*out))
4964 		return -1;
4965 	/* Initialize buffer. */
4966 	memset(out, 0x00, sizeof(*out));
4967 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
4968 	ctx->objdata = 0;
4969 	ctx->object = out;
4970 	ctx->objmask = NULL;
4971 	return len;
4972 }
4973 
4974 /** Parse tokens for indirect action commands. */
4975 static int
4976 parse_ia(struct context *ctx, const struct token *token,
4977 	 const char *str, unsigned int len,
4978 	 void *buf, unsigned int size)
4979 {
4980 	struct buffer *out = buf;
4981 
4982 	/* Token name must match. */
4983 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4984 		return -1;
4985 	/* Nothing else to do if there is no buffer. */
4986 	if (!out)
4987 		return len;
4988 	if (!out->command) {
4989 		if (ctx->curr != INDIRECT_ACTION)
4990 			return -1;
4991 		if (sizeof(*out) > size)
4992 			return -1;
4993 		out->command = ctx->curr;
4994 		ctx->objdata = 0;
4995 		ctx->object = out;
4996 		ctx->objmask = NULL;
4997 		out->args.vc.data = (uint8_t *)out + size;
4998 		return len;
4999 	}
5000 	switch (ctx->curr) {
5001 	case INDIRECT_ACTION_CREATE:
5002 	case INDIRECT_ACTION_UPDATE:
5003 		out->args.vc.actions =
5004 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5005 					       sizeof(double));
5006 		out->args.vc.attr.group = UINT32_MAX;
5007 		/* fallthrough */
5008 	case INDIRECT_ACTION_QUERY:
5009 		out->command = ctx->curr;
5010 		ctx->objdata = 0;
5011 		ctx->object = out;
5012 		ctx->objmask = NULL;
5013 		return len;
5014 	case INDIRECT_ACTION_EGRESS:
5015 		out->args.vc.attr.egress = 1;
5016 		return len;
5017 	case INDIRECT_ACTION_INGRESS:
5018 		out->args.vc.attr.ingress = 1;
5019 		return len;
5020 	case INDIRECT_ACTION_TRANSFER:
5021 		out->args.vc.attr.transfer = 1;
5022 		return len;
5023 	default:
5024 		return -1;
5025 	}
5026 }
5027 
5028 
5029 /** Parse tokens for indirect action destroy command. */
5030 static int
5031 parse_ia_destroy(struct context *ctx, const struct token *token,
5032 		 const char *str, unsigned int len,
5033 		 void *buf, unsigned int size)
5034 {
5035 	struct buffer *out = buf;
5036 	uint32_t *action_id;
5037 
5038 	/* Token name must match. */
5039 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5040 		return -1;
5041 	/* Nothing else to do if there is no buffer. */
5042 	if (!out)
5043 		return len;
5044 	if (!out->command || out->command == INDIRECT_ACTION) {
5045 		if (ctx->curr != INDIRECT_ACTION_DESTROY)
5046 			return -1;
5047 		if (sizeof(*out) > size)
5048 			return -1;
5049 		out->command = ctx->curr;
5050 		ctx->objdata = 0;
5051 		ctx->object = out;
5052 		ctx->objmask = NULL;
5053 		out->args.ia_destroy.action_id =
5054 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5055 					       sizeof(double));
5056 		return len;
5057 	}
5058 	action_id = out->args.ia_destroy.action_id
5059 		    + out->args.ia_destroy.action_id_n++;
5060 	if ((uint8_t *)action_id > (uint8_t *)out + size)
5061 		return -1;
5062 	ctx->objdata = 0;
5063 	ctx->object = action_id;
5064 	ctx->objmask = NULL;
5065 	return len;
5066 }
5067 
5068 /** Parse tokens for meter policy action commands. */
5069 static int
5070 parse_mp(struct context *ctx, const struct token *token,
5071 	const char *str, unsigned int len,
5072 	void *buf, unsigned int size)
5073 {
5074 	struct buffer *out = buf;
5075 
5076 	/* Token name must match. */
5077 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5078 		return -1;
5079 	/* Nothing else to do if there is no buffer. */
5080 	if (!out)
5081 		return len;
5082 	if (!out->command) {
5083 		if (ctx->curr != ITEM_POL_POLICY)
5084 			return -1;
5085 		if (sizeof(*out) > size)
5086 			return -1;
5087 		out->command = ctx->curr;
5088 		ctx->objdata = 0;
5089 		ctx->object = out;
5090 		ctx->objmask = NULL;
5091 		out->args.vc.data = (uint8_t *)out + size;
5092 		return len;
5093 	}
5094 	switch (ctx->curr) {
5095 	case ACTION_POL_G:
5096 		out->args.vc.actions =
5097 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5098 					sizeof(double));
5099 		out->command = ctx->curr;
5100 		ctx->objdata = 0;
5101 		ctx->object = out;
5102 		ctx->objmask = NULL;
5103 		return len;
5104 	default:
5105 		return -1;
5106 	}
5107 }
5108 
5109 /** Parse tokens for validate/create commands. */
5110 static int
5111 parse_vc(struct context *ctx, const struct token *token,
5112 	 const char *str, unsigned int len,
5113 	 void *buf, unsigned int size)
5114 {
5115 	struct buffer *out = buf;
5116 	uint8_t *data;
5117 	uint32_t data_size;
5118 
5119 	/* Token name must match. */
5120 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5121 		return -1;
5122 	/* Nothing else to do if there is no buffer. */
5123 	if (!out)
5124 		return len;
5125 	if (!out->command) {
5126 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
5127 			return -1;
5128 		if (sizeof(*out) > size)
5129 			return -1;
5130 		out->command = ctx->curr;
5131 		ctx->objdata = 0;
5132 		ctx->object = out;
5133 		ctx->objmask = NULL;
5134 		out->args.vc.data = (uint8_t *)out + size;
5135 		return len;
5136 	}
5137 	ctx->objdata = 0;
5138 	switch (ctx->curr) {
5139 	default:
5140 		ctx->object = &out->args.vc.attr;
5141 		break;
5142 	case TUNNEL_SET:
5143 	case TUNNEL_MATCH:
5144 		ctx->object = &out->args.vc.tunnel_ops;
5145 		break;
5146 	}
5147 	ctx->objmask = NULL;
5148 	switch (ctx->curr) {
5149 	case GROUP:
5150 	case PRIORITY:
5151 		return len;
5152 	case TUNNEL_SET:
5153 		out->args.vc.tunnel_ops.enabled = 1;
5154 		out->args.vc.tunnel_ops.actions = 1;
5155 		return len;
5156 	case TUNNEL_MATCH:
5157 		out->args.vc.tunnel_ops.enabled = 1;
5158 		out->args.vc.tunnel_ops.items = 1;
5159 		return len;
5160 	case INGRESS:
5161 		out->args.vc.attr.ingress = 1;
5162 		return len;
5163 	case EGRESS:
5164 		out->args.vc.attr.egress = 1;
5165 		return len;
5166 	case TRANSFER:
5167 		out->args.vc.attr.transfer = 1;
5168 		return len;
5169 	case PATTERN:
5170 		out->args.vc.pattern =
5171 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5172 					       sizeof(double));
5173 		ctx->object = out->args.vc.pattern;
5174 		ctx->objmask = NULL;
5175 		return len;
5176 	case ACTIONS:
5177 		out->args.vc.actions =
5178 			(void *)RTE_ALIGN_CEIL((uintptr_t)
5179 					       (out->args.vc.pattern +
5180 						out->args.vc.pattern_n),
5181 					       sizeof(double));
5182 		ctx->object = out->args.vc.actions;
5183 		ctx->objmask = NULL;
5184 		return len;
5185 	default:
5186 		if (!token->priv)
5187 			return -1;
5188 		break;
5189 	}
5190 	if (!out->args.vc.actions) {
5191 		const struct parse_item_priv *priv = token->priv;
5192 		struct rte_flow_item *item =
5193 			out->args.vc.pattern + out->args.vc.pattern_n;
5194 
5195 		data_size = priv->size * 3; /* spec, last, mask */
5196 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
5197 					       (out->args.vc.data - data_size),
5198 					       sizeof(double));
5199 		if ((uint8_t *)item + sizeof(*item) > data)
5200 			return -1;
5201 		*item = (struct rte_flow_item){
5202 			.type = priv->type,
5203 		};
5204 		++out->args.vc.pattern_n;
5205 		ctx->object = item;
5206 		ctx->objmask = NULL;
5207 	} else {
5208 		const struct parse_action_priv *priv = token->priv;
5209 		struct rte_flow_action *action =
5210 			out->args.vc.actions + out->args.vc.actions_n;
5211 
5212 		data_size = priv->size; /* configuration */
5213 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
5214 					       (out->args.vc.data - data_size),
5215 					       sizeof(double));
5216 		if ((uint8_t *)action + sizeof(*action) > data)
5217 			return -1;
5218 		*action = (struct rte_flow_action){
5219 			.type = priv->type,
5220 			.conf = data_size ? data : NULL,
5221 		};
5222 		++out->args.vc.actions_n;
5223 		ctx->object = action;
5224 		ctx->objmask = NULL;
5225 	}
5226 	memset(data, 0, data_size);
5227 	out->args.vc.data = data;
5228 	ctx->objdata = data_size;
5229 	return len;
5230 }
5231 
5232 /** Parse pattern item parameter type. */
5233 static int
5234 parse_vc_spec(struct context *ctx, const struct token *token,
5235 	      const char *str, unsigned int len,
5236 	      void *buf, unsigned int size)
5237 {
5238 	struct buffer *out = buf;
5239 	struct rte_flow_item *item;
5240 	uint32_t data_size;
5241 	int index;
5242 	int objmask = 0;
5243 
5244 	(void)size;
5245 	/* Token name must match. */
5246 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5247 		return -1;
5248 	/* Parse parameter types. */
5249 	switch (ctx->curr) {
5250 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
5251 
5252 	case ITEM_PARAM_IS:
5253 		index = 0;
5254 		objmask = 1;
5255 		break;
5256 	case ITEM_PARAM_SPEC:
5257 		index = 0;
5258 		break;
5259 	case ITEM_PARAM_LAST:
5260 		index = 1;
5261 		break;
5262 	case ITEM_PARAM_PREFIX:
5263 		/* Modify next token to expect a prefix. */
5264 		if (ctx->next_num < 2)
5265 			return -1;
5266 		ctx->next[ctx->next_num - 2] = prefix;
5267 		/* Fall through. */
5268 	case ITEM_PARAM_MASK:
5269 		index = 2;
5270 		break;
5271 	default:
5272 		return -1;
5273 	}
5274 	/* Nothing else to do if there is no buffer. */
5275 	if (!out)
5276 		return len;
5277 	if (!out->args.vc.pattern_n)
5278 		return -1;
5279 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
5280 	data_size = ctx->objdata / 3; /* spec, last, mask */
5281 	/* Point to selected object. */
5282 	ctx->object = out->args.vc.data + (data_size * index);
5283 	if (objmask) {
5284 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
5285 		item->mask = ctx->objmask;
5286 	} else
5287 		ctx->objmask = NULL;
5288 	/* Update relevant item pointer. */
5289 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
5290 		ctx->object;
5291 	return len;
5292 }
5293 
5294 /** Parse action configuration field. */
5295 static int
5296 parse_vc_conf(struct context *ctx, const struct token *token,
5297 	      const char *str, unsigned int len,
5298 	      void *buf, unsigned int size)
5299 {
5300 	struct buffer *out = buf;
5301 
5302 	(void)size;
5303 	/* Token name must match. */
5304 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5305 		return -1;
5306 	/* Nothing else to do if there is no buffer. */
5307 	if (!out)
5308 		return len;
5309 	/* Point to selected object. */
5310 	ctx->object = out->args.vc.data;
5311 	ctx->objmask = NULL;
5312 	return len;
5313 }
5314 
5315 /** Parse eCPRI common header type field. */
5316 static int
5317 parse_vc_item_ecpri_type(struct context *ctx, const struct token *token,
5318 			 const char *str, unsigned int len,
5319 			 void *buf, unsigned int size)
5320 {
5321 	struct rte_flow_item_ecpri *ecpri;
5322 	struct rte_flow_item_ecpri *ecpri_mask;
5323 	struct rte_flow_item *item;
5324 	uint32_t data_size;
5325 	uint8_t msg_type;
5326 	struct buffer *out = buf;
5327 	const struct arg *arg;
5328 
5329 	(void)size;
5330 	/* Token name must match. */
5331 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5332 		return -1;
5333 	switch (ctx->curr) {
5334 	case ITEM_ECPRI_COMMON_TYPE_IQ_DATA:
5335 		msg_type = RTE_ECPRI_MSG_TYPE_IQ_DATA;
5336 		break;
5337 	case ITEM_ECPRI_COMMON_TYPE_RTC_CTRL:
5338 		msg_type = RTE_ECPRI_MSG_TYPE_RTC_CTRL;
5339 		break;
5340 	case ITEM_ECPRI_COMMON_TYPE_DLY_MSR:
5341 		msg_type = RTE_ECPRI_MSG_TYPE_DLY_MSR;
5342 		break;
5343 	default:
5344 		return -1;
5345 	}
5346 	if (!ctx->object)
5347 		return len;
5348 	arg = pop_args(ctx);
5349 	if (!arg)
5350 		return -1;
5351 	ecpri = (struct rte_flow_item_ecpri *)out->args.vc.data;
5352 	ecpri->hdr.common.type = msg_type;
5353 	data_size = ctx->objdata / 3; /* spec, last, mask */
5354 	ecpri_mask = (struct rte_flow_item_ecpri *)(out->args.vc.data +
5355 						    (data_size * 2));
5356 	ecpri_mask->hdr.common.type = 0xFF;
5357 	if (arg->hton) {
5358 		ecpri->hdr.common.u32 = rte_cpu_to_be_32(ecpri->hdr.common.u32);
5359 		ecpri_mask->hdr.common.u32 =
5360 				rte_cpu_to_be_32(ecpri_mask->hdr.common.u32);
5361 	}
5362 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
5363 	item->spec = ecpri;
5364 	item->mask = ecpri_mask;
5365 	return len;
5366 }
5367 
5368 /** Parse meter color action type. */
5369 static int
5370 parse_vc_action_meter_color_type(struct context *ctx, const struct token *token,
5371 				const char *str, unsigned int len,
5372 				void *buf, unsigned int size)
5373 {
5374 	struct rte_flow_action *action_data;
5375 	struct rte_flow_action_meter_color *conf;
5376 	enum rte_color color;
5377 
5378 	(void)buf;
5379 	(void)size;
5380 	/* Token name must match. */
5381 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5382 		return -1;
5383 	switch (ctx->curr) {
5384 	case ACTION_METER_COLOR_GREEN:
5385 		color = RTE_COLOR_GREEN;
5386 	break;
5387 	case ACTION_METER_COLOR_YELLOW:
5388 		color = RTE_COLOR_YELLOW;
5389 	break;
5390 	case ACTION_METER_COLOR_RED:
5391 		color = RTE_COLOR_RED;
5392 	break;
5393 	default:
5394 		return -1;
5395 	}
5396 
5397 	if (!ctx->object)
5398 		return len;
5399 	action_data = ctx->object;
5400 	conf = (struct rte_flow_action_meter_color *)
5401 					(uintptr_t)(action_data->conf);
5402 	conf->color = color;
5403 	return len;
5404 }
5405 
5406 /** Parse RSS action. */
5407 static int
5408 parse_vc_action_rss(struct context *ctx, const struct token *token,
5409 		    const char *str, unsigned int len,
5410 		    void *buf, unsigned int size)
5411 {
5412 	struct buffer *out = buf;
5413 	struct rte_flow_action *action;
5414 	struct action_rss_data *action_rss_data;
5415 	unsigned int i;
5416 	int ret;
5417 
5418 	ret = parse_vc(ctx, token, str, len, buf, size);
5419 	if (ret < 0)
5420 		return ret;
5421 	/* Nothing else to do if there is no buffer. */
5422 	if (!out)
5423 		return ret;
5424 	if (!out->args.vc.actions_n)
5425 		return -1;
5426 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5427 	/* Point to selected object. */
5428 	ctx->object = out->args.vc.data;
5429 	ctx->objmask = NULL;
5430 	/* Set up default configuration. */
5431 	action_rss_data = ctx->object;
5432 	*action_rss_data = (struct action_rss_data){
5433 		.conf = (struct rte_flow_action_rss){
5434 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5435 			.level = 0,
5436 			.types = rss_hf,
5437 			.key_len = 0,
5438 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
5439 			.key = NULL,
5440 			.queue = action_rss_data->queue,
5441 		},
5442 		.queue = { 0 },
5443 	};
5444 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
5445 		action_rss_data->queue[i] = i;
5446 	action->conf = &action_rss_data->conf;
5447 	return ret;
5448 }
5449 
5450 /**
5451  * Parse func field for RSS action.
5452  *
5453  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
5454  * ACTION_RSS_FUNC_* index that called this function.
5455  */
5456 static int
5457 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
5458 			 const char *str, unsigned int len,
5459 			 void *buf, unsigned int size)
5460 {
5461 	struct action_rss_data *action_rss_data;
5462 	enum rte_eth_hash_function func;
5463 
5464 	(void)buf;
5465 	(void)size;
5466 	/* Token name must match. */
5467 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5468 		return -1;
5469 	switch (ctx->curr) {
5470 	case ACTION_RSS_FUNC_DEFAULT:
5471 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
5472 		break;
5473 	case ACTION_RSS_FUNC_TOEPLITZ:
5474 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
5475 		break;
5476 	case ACTION_RSS_FUNC_SIMPLE_XOR:
5477 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
5478 		break;
5479 	case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
5480 		func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
5481 		break;
5482 	default:
5483 		return -1;
5484 	}
5485 	if (!ctx->object)
5486 		return len;
5487 	action_rss_data = ctx->object;
5488 	action_rss_data->conf.func = func;
5489 	return len;
5490 }
5491 
5492 /**
5493  * Parse type field for RSS action.
5494  *
5495  * Valid tokens are type field names and the "end" token.
5496  */
5497 static int
5498 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
5499 			  const char *str, unsigned int len,
5500 			  void *buf, unsigned int size)
5501 {
5502 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
5503 	struct action_rss_data *action_rss_data;
5504 	unsigned int i;
5505 
5506 	(void)token;
5507 	(void)buf;
5508 	(void)size;
5509 	if (ctx->curr != ACTION_RSS_TYPE)
5510 		return -1;
5511 	if (!(ctx->objdata >> 16) && ctx->object) {
5512 		action_rss_data = ctx->object;
5513 		action_rss_data->conf.types = 0;
5514 	}
5515 	if (!strcmp_partial("end", str, len)) {
5516 		ctx->objdata &= 0xffff;
5517 		return len;
5518 	}
5519 	for (i = 0; rss_type_table[i].str; ++i)
5520 		if (!strcmp_partial(rss_type_table[i].str, str, len))
5521 			break;
5522 	if (!rss_type_table[i].str)
5523 		return -1;
5524 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
5525 	/* Repeat token. */
5526 	if (ctx->next_num == RTE_DIM(ctx->next))
5527 		return -1;
5528 	ctx->next[ctx->next_num++] = next;
5529 	if (!ctx->object)
5530 		return len;
5531 	action_rss_data = ctx->object;
5532 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
5533 	return len;
5534 }
5535 
5536 /**
5537  * Parse queue field for RSS action.
5538  *
5539  * Valid tokens are queue indices and the "end" token.
5540  */
5541 static int
5542 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
5543 			  const char *str, unsigned int len,
5544 			  void *buf, unsigned int size)
5545 {
5546 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
5547 	struct action_rss_data *action_rss_data;
5548 	const struct arg *arg;
5549 	int ret;
5550 	int i;
5551 
5552 	(void)token;
5553 	(void)buf;
5554 	(void)size;
5555 	if (ctx->curr != ACTION_RSS_QUEUE)
5556 		return -1;
5557 	i = ctx->objdata >> 16;
5558 	if (!strcmp_partial("end", str, len)) {
5559 		ctx->objdata &= 0xffff;
5560 		goto end;
5561 	}
5562 	if (i >= ACTION_RSS_QUEUE_NUM)
5563 		return -1;
5564 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
5565 			     i * sizeof(action_rss_data->queue[i]),
5566 			     sizeof(action_rss_data->queue[i]));
5567 	if (push_args(ctx, arg))
5568 		return -1;
5569 	ret = parse_int(ctx, token, str, len, NULL, 0);
5570 	if (ret < 0) {
5571 		pop_args(ctx);
5572 		return -1;
5573 	}
5574 	++i;
5575 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
5576 	/* Repeat token. */
5577 	if (ctx->next_num == RTE_DIM(ctx->next))
5578 		return -1;
5579 	ctx->next[ctx->next_num++] = next;
5580 end:
5581 	if (!ctx->object)
5582 		return len;
5583 	action_rss_data = ctx->object;
5584 	action_rss_data->conf.queue_num = i;
5585 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
5586 	return len;
5587 }
5588 
5589 /** Setup VXLAN encap configuration. */
5590 static int
5591 parse_setup_vxlan_encap_data(struct action_vxlan_encap_data *action_vxlan_encap_data)
5592 {
5593 	/* Set up default configuration. */
5594 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
5595 		.conf = (struct rte_flow_action_vxlan_encap){
5596 			.definition = action_vxlan_encap_data->items,
5597 		},
5598 		.items = {
5599 			{
5600 				.type = RTE_FLOW_ITEM_TYPE_ETH,
5601 				.spec = &action_vxlan_encap_data->item_eth,
5602 				.mask = &rte_flow_item_eth_mask,
5603 			},
5604 			{
5605 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
5606 				.spec = &action_vxlan_encap_data->item_vlan,
5607 				.mask = &rte_flow_item_vlan_mask,
5608 			},
5609 			{
5610 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
5611 				.spec = &action_vxlan_encap_data->item_ipv4,
5612 				.mask = &rte_flow_item_ipv4_mask,
5613 			},
5614 			{
5615 				.type = RTE_FLOW_ITEM_TYPE_UDP,
5616 				.spec = &action_vxlan_encap_data->item_udp,
5617 				.mask = &rte_flow_item_udp_mask,
5618 			},
5619 			{
5620 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
5621 				.spec = &action_vxlan_encap_data->item_vxlan,
5622 				.mask = &rte_flow_item_vxlan_mask,
5623 			},
5624 			{
5625 				.type = RTE_FLOW_ITEM_TYPE_END,
5626 			},
5627 		},
5628 		.item_eth.type = 0,
5629 		.item_vlan = {
5630 			.tci = vxlan_encap_conf.vlan_tci,
5631 			.inner_type = 0,
5632 		},
5633 		.item_ipv4.hdr = {
5634 			.src_addr = vxlan_encap_conf.ipv4_src,
5635 			.dst_addr = vxlan_encap_conf.ipv4_dst,
5636 		},
5637 		.item_udp.hdr = {
5638 			.src_port = vxlan_encap_conf.udp_src,
5639 			.dst_port = vxlan_encap_conf.udp_dst,
5640 		},
5641 		.item_vxlan.flags = 0,
5642 	};
5643 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
5644 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5645 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
5646 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5647 	if (!vxlan_encap_conf.select_ipv4) {
5648 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
5649 		       &vxlan_encap_conf.ipv6_src,
5650 		       sizeof(vxlan_encap_conf.ipv6_src));
5651 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
5652 		       &vxlan_encap_conf.ipv6_dst,
5653 		       sizeof(vxlan_encap_conf.ipv6_dst));
5654 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
5655 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
5656 			.spec = &action_vxlan_encap_data->item_ipv6,
5657 			.mask = &rte_flow_item_ipv6_mask,
5658 		};
5659 	}
5660 	if (!vxlan_encap_conf.select_vlan)
5661 		action_vxlan_encap_data->items[1].type =
5662 			RTE_FLOW_ITEM_TYPE_VOID;
5663 	if (vxlan_encap_conf.select_tos_ttl) {
5664 		if (vxlan_encap_conf.select_ipv4) {
5665 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
5666 
5667 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
5668 			       sizeof(ipv4_mask_tos));
5669 			ipv4_mask_tos.hdr.type_of_service = 0xff;
5670 			ipv4_mask_tos.hdr.time_to_live = 0xff;
5671 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
5672 					vxlan_encap_conf.ip_tos;
5673 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
5674 					vxlan_encap_conf.ip_ttl;
5675 			action_vxlan_encap_data->items[2].mask =
5676 							&ipv4_mask_tos;
5677 		} else {
5678 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
5679 
5680 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
5681 			       sizeof(ipv6_mask_tos));
5682 			ipv6_mask_tos.hdr.vtc_flow |=
5683 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
5684 			ipv6_mask_tos.hdr.hop_limits = 0xff;
5685 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
5686 				rte_cpu_to_be_32
5687 					((uint32_t)vxlan_encap_conf.ip_tos <<
5688 					 RTE_IPV6_HDR_TC_SHIFT);
5689 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
5690 					vxlan_encap_conf.ip_ttl;
5691 			action_vxlan_encap_data->items[2].mask =
5692 							&ipv6_mask_tos;
5693 		}
5694 	}
5695 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
5696 	       RTE_DIM(vxlan_encap_conf.vni));
5697 	return 0;
5698 }
5699 
5700 /** Parse VXLAN encap action. */
5701 static int
5702 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
5703 			    const char *str, unsigned int len,
5704 			    void *buf, unsigned int size)
5705 {
5706 	struct buffer *out = buf;
5707 	struct rte_flow_action *action;
5708 	struct action_vxlan_encap_data *action_vxlan_encap_data;
5709 	int ret;
5710 
5711 	ret = parse_vc(ctx, token, str, len, buf, size);
5712 	if (ret < 0)
5713 		return ret;
5714 	/* Nothing else to do if there is no buffer. */
5715 	if (!out)
5716 		return ret;
5717 	if (!out->args.vc.actions_n)
5718 		return -1;
5719 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5720 	/* Point to selected object. */
5721 	ctx->object = out->args.vc.data;
5722 	ctx->objmask = NULL;
5723 	action_vxlan_encap_data = ctx->object;
5724 	parse_setup_vxlan_encap_data(action_vxlan_encap_data);
5725 	action->conf = &action_vxlan_encap_data->conf;
5726 	return ret;
5727 }
5728 
5729 /** Setup NVGRE encap configuration. */
5730 static int
5731 parse_setup_nvgre_encap_data(struct action_nvgre_encap_data *action_nvgre_encap_data)
5732 {
5733 	/* Set up default configuration. */
5734 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
5735 		.conf = (struct rte_flow_action_nvgre_encap){
5736 			.definition = action_nvgre_encap_data->items,
5737 		},
5738 		.items = {
5739 			{
5740 				.type = RTE_FLOW_ITEM_TYPE_ETH,
5741 				.spec = &action_nvgre_encap_data->item_eth,
5742 				.mask = &rte_flow_item_eth_mask,
5743 			},
5744 			{
5745 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
5746 				.spec = &action_nvgre_encap_data->item_vlan,
5747 				.mask = &rte_flow_item_vlan_mask,
5748 			},
5749 			{
5750 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
5751 				.spec = &action_nvgre_encap_data->item_ipv4,
5752 				.mask = &rte_flow_item_ipv4_mask,
5753 			},
5754 			{
5755 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
5756 				.spec = &action_nvgre_encap_data->item_nvgre,
5757 				.mask = &rte_flow_item_nvgre_mask,
5758 			},
5759 			{
5760 				.type = RTE_FLOW_ITEM_TYPE_END,
5761 			},
5762 		},
5763 		.item_eth.type = 0,
5764 		.item_vlan = {
5765 			.tci = nvgre_encap_conf.vlan_tci,
5766 			.inner_type = 0,
5767 		},
5768 		.item_ipv4.hdr = {
5769 		       .src_addr = nvgre_encap_conf.ipv4_src,
5770 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
5771 		},
5772 		.item_nvgre.c_k_s_rsvd0_ver = RTE_BE16(0x2000),
5773 		.item_nvgre.protocol = RTE_BE16(RTE_ETHER_TYPE_TEB),
5774 		.item_nvgre.flow_id = 0,
5775 	};
5776 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
5777 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5778 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
5779 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5780 	if (!nvgre_encap_conf.select_ipv4) {
5781 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
5782 		       &nvgre_encap_conf.ipv6_src,
5783 		       sizeof(nvgre_encap_conf.ipv6_src));
5784 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
5785 		       &nvgre_encap_conf.ipv6_dst,
5786 		       sizeof(nvgre_encap_conf.ipv6_dst));
5787 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
5788 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
5789 			.spec = &action_nvgre_encap_data->item_ipv6,
5790 			.mask = &rte_flow_item_ipv6_mask,
5791 		};
5792 	}
5793 	if (!nvgre_encap_conf.select_vlan)
5794 		action_nvgre_encap_data->items[1].type =
5795 			RTE_FLOW_ITEM_TYPE_VOID;
5796 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
5797 	       RTE_DIM(nvgre_encap_conf.tni));
5798 	return 0;
5799 }
5800 
5801 /** Parse NVGRE encap action. */
5802 static int
5803 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
5804 			    const char *str, unsigned int len,
5805 			    void *buf, unsigned int size)
5806 {
5807 	struct buffer *out = buf;
5808 	struct rte_flow_action *action;
5809 	struct action_nvgre_encap_data *action_nvgre_encap_data;
5810 	int ret;
5811 
5812 	ret = parse_vc(ctx, token, str, len, buf, size);
5813 	if (ret < 0)
5814 		return ret;
5815 	/* Nothing else to do if there is no buffer. */
5816 	if (!out)
5817 		return ret;
5818 	if (!out->args.vc.actions_n)
5819 		return -1;
5820 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5821 	/* Point to selected object. */
5822 	ctx->object = out->args.vc.data;
5823 	ctx->objmask = NULL;
5824 	action_nvgre_encap_data = ctx->object;
5825 	parse_setup_nvgre_encap_data(action_nvgre_encap_data);
5826 	action->conf = &action_nvgre_encap_data->conf;
5827 	return ret;
5828 }
5829 
5830 /** Parse l2 encap action. */
5831 static int
5832 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
5833 			 const char *str, unsigned int len,
5834 			 void *buf, unsigned int size)
5835 {
5836 	struct buffer *out = buf;
5837 	struct rte_flow_action *action;
5838 	struct action_raw_encap_data *action_encap_data;
5839 	struct rte_flow_item_eth eth = { .type = 0, };
5840 	struct rte_flow_item_vlan vlan = {
5841 		.tci = mplsoudp_encap_conf.vlan_tci,
5842 		.inner_type = 0,
5843 	};
5844 	uint8_t *header;
5845 	int ret;
5846 
5847 	ret = parse_vc(ctx, token, str, len, buf, size);
5848 	if (ret < 0)
5849 		return ret;
5850 	/* Nothing else to do if there is no buffer. */
5851 	if (!out)
5852 		return ret;
5853 	if (!out->args.vc.actions_n)
5854 		return -1;
5855 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5856 	/* Point to selected object. */
5857 	ctx->object = out->args.vc.data;
5858 	ctx->objmask = NULL;
5859 	/* Copy the headers to the buffer. */
5860 	action_encap_data = ctx->object;
5861 	*action_encap_data = (struct action_raw_encap_data) {
5862 		.conf = (struct rte_flow_action_raw_encap){
5863 			.data = action_encap_data->data,
5864 		},
5865 		.data = {},
5866 	};
5867 	header = action_encap_data->data;
5868 	if (l2_encap_conf.select_vlan)
5869 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5870 	else if (l2_encap_conf.select_ipv4)
5871 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5872 	else
5873 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5874 	memcpy(eth.dst.addr_bytes,
5875 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5876 	memcpy(eth.src.addr_bytes,
5877 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5878 	memcpy(header, &eth, sizeof(eth));
5879 	header += sizeof(eth);
5880 	if (l2_encap_conf.select_vlan) {
5881 		if (l2_encap_conf.select_ipv4)
5882 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5883 		else
5884 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5885 		memcpy(header, &vlan, sizeof(vlan));
5886 		header += sizeof(vlan);
5887 	}
5888 	action_encap_data->conf.size = header -
5889 		action_encap_data->data;
5890 	action->conf = &action_encap_data->conf;
5891 	return ret;
5892 }
5893 
5894 /** Parse l2 decap action. */
5895 static int
5896 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
5897 			 const char *str, unsigned int len,
5898 			 void *buf, unsigned int size)
5899 {
5900 	struct buffer *out = buf;
5901 	struct rte_flow_action *action;
5902 	struct action_raw_decap_data *action_decap_data;
5903 	struct rte_flow_item_eth eth = { .type = 0, };
5904 	struct rte_flow_item_vlan vlan = {
5905 		.tci = mplsoudp_encap_conf.vlan_tci,
5906 		.inner_type = 0,
5907 	};
5908 	uint8_t *header;
5909 	int ret;
5910 
5911 	ret = parse_vc(ctx, token, str, len, buf, size);
5912 	if (ret < 0)
5913 		return ret;
5914 	/* Nothing else to do if there is no buffer. */
5915 	if (!out)
5916 		return ret;
5917 	if (!out->args.vc.actions_n)
5918 		return -1;
5919 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5920 	/* Point to selected object. */
5921 	ctx->object = out->args.vc.data;
5922 	ctx->objmask = NULL;
5923 	/* Copy the headers to the buffer. */
5924 	action_decap_data = ctx->object;
5925 	*action_decap_data = (struct action_raw_decap_data) {
5926 		.conf = (struct rte_flow_action_raw_decap){
5927 			.data = action_decap_data->data,
5928 		},
5929 		.data = {},
5930 	};
5931 	header = action_decap_data->data;
5932 	if (l2_decap_conf.select_vlan)
5933 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5934 	memcpy(header, &eth, sizeof(eth));
5935 	header += sizeof(eth);
5936 	if (l2_decap_conf.select_vlan) {
5937 		memcpy(header, &vlan, sizeof(vlan));
5938 		header += sizeof(vlan);
5939 	}
5940 	action_decap_data->conf.size = header -
5941 		action_decap_data->data;
5942 	action->conf = &action_decap_data->conf;
5943 	return ret;
5944 }
5945 
5946 #define ETHER_TYPE_MPLS_UNICAST 0x8847
5947 
5948 /** Parse MPLSOGRE encap action. */
5949 static int
5950 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
5951 			       const char *str, unsigned int len,
5952 			       void *buf, unsigned int size)
5953 {
5954 	struct buffer *out = buf;
5955 	struct rte_flow_action *action;
5956 	struct action_raw_encap_data *action_encap_data;
5957 	struct rte_flow_item_eth eth = { .type = 0, };
5958 	struct rte_flow_item_vlan vlan = {
5959 		.tci = mplsogre_encap_conf.vlan_tci,
5960 		.inner_type = 0,
5961 	};
5962 	struct rte_flow_item_ipv4 ipv4 = {
5963 		.hdr =  {
5964 			.src_addr = mplsogre_encap_conf.ipv4_src,
5965 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
5966 			.next_proto_id = IPPROTO_GRE,
5967 			.version_ihl = RTE_IPV4_VHL_DEF,
5968 			.time_to_live = IPDEFTTL,
5969 		},
5970 	};
5971 	struct rte_flow_item_ipv6 ipv6 = {
5972 		.hdr =  {
5973 			.proto = IPPROTO_GRE,
5974 			.hop_limits = IPDEFTTL,
5975 		},
5976 	};
5977 	struct rte_flow_item_gre gre = {
5978 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
5979 	};
5980 	struct rte_flow_item_mpls mpls = {
5981 		.ttl = 0,
5982 	};
5983 	uint8_t *header;
5984 	int ret;
5985 
5986 	ret = parse_vc(ctx, token, str, len, buf, size);
5987 	if (ret < 0)
5988 		return ret;
5989 	/* Nothing else to do if there is no buffer. */
5990 	if (!out)
5991 		return ret;
5992 	if (!out->args.vc.actions_n)
5993 		return -1;
5994 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5995 	/* Point to selected object. */
5996 	ctx->object = out->args.vc.data;
5997 	ctx->objmask = NULL;
5998 	/* Copy the headers to the buffer. */
5999 	action_encap_data = ctx->object;
6000 	*action_encap_data = (struct action_raw_encap_data) {
6001 		.conf = (struct rte_flow_action_raw_encap){
6002 			.data = action_encap_data->data,
6003 		},
6004 		.data = {},
6005 		.preserve = {},
6006 	};
6007 	header = action_encap_data->data;
6008 	if (mplsogre_encap_conf.select_vlan)
6009 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
6010 	else if (mplsogre_encap_conf.select_ipv4)
6011 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6012 	else
6013 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6014 	memcpy(eth.dst.addr_bytes,
6015 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
6016 	memcpy(eth.src.addr_bytes,
6017 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
6018 	memcpy(header, &eth, sizeof(eth));
6019 	header += sizeof(eth);
6020 	if (mplsogre_encap_conf.select_vlan) {
6021 		if (mplsogre_encap_conf.select_ipv4)
6022 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6023 		else
6024 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6025 		memcpy(header, &vlan, sizeof(vlan));
6026 		header += sizeof(vlan);
6027 	}
6028 	if (mplsogre_encap_conf.select_ipv4) {
6029 		memcpy(header, &ipv4, sizeof(ipv4));
6030 		header += sizeof(ipv4);
6031 	} else {
6032 		memcpy(&ipv6.hdr.src_addr,
6033 		       &mplsogre_encap_conf.ipv6_src,
6034 		       sizeof(mplsogre_encap_conf.ipv6_src));
6035 		memcpy(&ipv6.hdr.dst_addr,
6036 		       &mplsogre_encap_conf.ipv6_dst,
6037 		       sizeof(mplsogre_encap_conf.ipv6_dst));
6038 		memcpy(header, &ipv6, sizeof(ipv6));
6039 		header += sizeof(ipv6);
6040 	}
6041 	memcpy(header, &gre, sizeof(gre));
6042 	header += sizeof(gre);
6043 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
6044 	       RTE_DIM(mplsogre_encap_conf.label));
6045 	mpls.label_tc_s[2] |= 0x1;
6046 	memcpy(header, &mpls, sizeof(mpls));
6047 	header += sizeof(mpls);
6048 	action_encap_data->conf.size = header -
6049 		action_encap_data->data;
6050 	action->conf = &action_encap_data->conf;
6051 	return ret;
6052 }
6053 
6054 /** Parse MPLSOGRE decap action. */
6055 static int
6056 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
6057 			       const char *str, unsigned int len,
6058 			       void *buf, unsigned int size)
6059 {
6060 	struct buffer *out = buf;
6061 	struct rte_flow_action *action;
6062 	struct action_raw_decap_data *action_decap_data;
6063 	struct rte_flow_item_eth eth = { .type = 0, };
6064 	struct rte_flow_item_vlan vlan = {.tci = 0};
6065 	struct rte_flow_item_ipv4 ipv4 = {
6066 		.hdr =  {
6067 			.next_proto_id = IPPROTO_GRE,
6068 		},
6069 	};
6070 	struct rte_flow_item_ipv6 ipv6 = {
6071 		.hdr =  {
6072 			.proto = IPPROTO_GRE,
6073 		},
6074 	};
6075 	struct rte_flow_item_gre gre = {
6076 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
6077 	};
6078 	struct rte_flow_item_mpls mpls;
6079 	uint8_t *header;
6080 	int ret;
6081 
6082 	ret = parse_vc(ctx, token, str, len, buf, size);
6083 	if (ret < 0)
6084 		return ret;
6085 	/* Nothing else to do if there is no buffer. */
6086 	if (!out)
6087 		return ret;
6088 	if (!out->args.vc.actions_n)
6089 		return -1;
6090 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6091 	/* Point to selected object. */
6092 	ctx->object = out->args.vc.data;
6093 	ctx->objmask = NULL;
6094 	/* Copy the headers to the buffer. */
6095 	action_decap_data = ctx->object;
6096 	*action_decap_data = (struct action_raw_decap_data) {
6097 		.conf = (struct rte_flow_action_raw_decap){
6098 			.data = action_decap_data->data,
6099 		},
6100 		.data = {},
6101 	};
6102 	header = action_decap_data->data;
6103 	if (mplsogre_decap_conf.select_vlan)
6104 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
6105 	else if (mplsogre_encap_conf.select_ipv4)
6106 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6107 	else
6108 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6109 	memcpy(eth.dst.addr_bytes,
6110 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
6111 	memcpy(eth.src.addr_bytes,
6112 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
6113 	memcpy(header, &eth, sizeof(eth));
6114 	header += sizeof(eth);
6115 	if (mplsogre_encap_conf.select_vlan) {
6116 		if (mplsogre_encap_conf.select_ipv4)
6117 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6118 		else
6119 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6120 		memcpy(header, &vlan, sizeof(vlan));
6121 		header += sizeof(vlan);
6122 	}
6123 	if (mplsogre_encap_conf.select_ipv4) {
6124 		memcpy(header, &ipv4, sizeof(ipv4));
6125 		header += sizeof(ipv4);
6126 	} else {
6127 		memcpy(header, &ipv6, sizeof(ipv6));
6128 		header += sizeof(ipv6);
6129 	}
6130 	memcpy(header, &gre, sizeof(gre));
6131 	header += sizeof(gre);
6132 	memset(&mpls, 0, sizeof(mpls));
6133 	memcpy(header, &mpls, sizeof(mpls));
6134 	header += sizeof(mpls);
6135 	action_decap_data->conf.size = header -
6136 		action_decap_data->data;
6137 	action->conf = &action_decap_data->conf;
6138 	return ret;
6139 }
6140 
6141 /** Parse MPLSOUDP encap action. */
6142 static int
6143 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
6144 			       const char *str, unsigned int len,
6145 			       void *buf, unsigned int size)
6146 {
6147 	struct buffer *out = buf;
6148 	struct rte_flow_action *action;
6149 	struct action_raw_encap_data *action_encap_data;
6150 	struct rte_flow_item_eth eth = { .type = 0, };
6151 	struct rte_flow_item_vlan vlan = {
6152 		.tci = mplsoudp_encap_conf.vlan_tci,
6153 		.inner_type = 0,
6154 	};
6155 	struct rte_flow_item_ipv4 ipv4 = {
6156 		.hdr =  {
6157 			.src_addr = mplsoudp_encap_conf.ipv4_src,
6158 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
6159 			.next_proto_id = IPPROTO_UDP,
6160 			.version_ihl = RTE_IPV4_VHL_DEF,
6161 			.time_to_live = IPDEFTTL,
6162 		},
6163 	};
6164 	struct rte_flow_item_ipv6 ipv6 = {
6165 		.hdr =  {
6166 			.proto = IPPROTO_UDP,
6167 			.hop_limits = IPDEFTTL,
6168 		},
6169 	};
6170 	struct rte_flow_item_udp udp = {
6171 		.hdr = {
6172 			.src_port = mplsoudp_encap_conf.udp_src,
6173 			.dst_port = mplsoudp_encap_conf.udp_dst,
6174 		},
6175 	};
6176 	struct rte_flow_item_mpls mpls;
6177 	uint8_t *header;
6178 	int ret;
6179 
6180 	ret = parse_vc(ctx, token, str, len, buf, size);
6181 	if (ret < 0)
6182 		return ret;
6183 	/* Nothing else to do if there is no buffer. */
6184 	if (!out)
6185 		return ret;
6186 	if (!out->args.vc.actions_n)
6187 		return -1;
6188 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6189 	/* Point to selected object. */
6190 	ctx->object = out->args.vc.data;
6191 	ctx->objmask = NULL;
6192 	/* Copy the headers to the buffer. */
6193 	action_encap_data = ctx->object;
6194 	*action_encap_data = (struct action_raw_encap_data) {
6195 		.conf = (struct rte_flow_action_raw_encap){
6196 			.data = action_encap_data->data,
6197 		},
6198 		.data = {},
6199 		.preserve = {},
6200 	};
6201 	header = action_encap_data->data;
6202 	if (mplsoudp_encap_conf.select_vlan)
6203 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
6204 	else if (mplsoudp_encap_conf.select_ipv4)
6205 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6206 	else
6207 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6208 	memcpy(eth.dst.addr_bytes,
6209 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
6210 	memcpy(eth.src.addr_bytes,
6211 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
6212 	memcpy(header, &eth, sizeof(eth));
6213 	header += sizeof(eth);
6214 	if (mplsoudp_encap_conf.select_vlan) {
6215 		if (mplsoudp_encap_conf.select_ipv4)
6216 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6217 		else
6218 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6219 		memcpy(header, &vlan, sizeof(vlan));
6220 		header += sizeof(vlan);
6221 	}
6222 	if (mplsoudp_encap_conf.select_ipv4) {
6223 		memcpy(header, &ipv4, sizeof(ipv4));
6224 		header += sizeof(ipv4);
6225 	} else {
6226 		memcpy(&ipv6.hdr.src_addr,
6227 		       &mplsoudp_encap_conf.ipv6_src,
6228 		       sizeof(mplsoudp_encap_conf.ipv6_src));
6229 		memcpy(&ipv6.hdr.dst_addr,
6230 		       &mplsoudp_encap_conf.ipv6_dst,
6231 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
6232 		memcpy(header, &ipv6, sizeof(ipv6));
6233 		header += sizeof(ipv6);
6234 	}
6235 	memcpy(header, &udp, sizeof(udp));
6236 	header += sizeof(udp);
6237 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
6238 	       RTE_DIM(mplsoudp_encap_conf.label));
6239 	mpls.label_tc_s[2] |= 0x1;
6240 	memcpy(header, &mpls, sizeof(mpls));
6241 	header += sizeof(mpls);
6242 	action_encap_data->conf.size = header -
6243 		action_encap_data->data;
6244 	action->conf = &action_encap_data->conf;
6245 	return ret;
6246 }
6247 
6248 /** Parse MPLSOUDP decap action. */
6249 static int
6250 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
6251 			       const char *str, unsigned int len,
6252 			       void *buf, unsigned int size)
6253 {
6254 	struct buffer *out = buf;
6255 	struct rte_flow_action *action;
6256 	struct action_raw_decap_data *action_decap_data;
6257 	struct rte_flow_item_eth eth = { .type = 0, };
6258 	struct rte_flow_item_vlan vlan = {.tci = 0};
6259 	struct rte_flow_item_ipv4 ipv4 = {
6260 		.hdr =  {
6261 			.next_proto_id = IPPROTO_UDP,
6262 		},
6263 	};
6264 	struct rte_flow_item_ipv6 ipv6 = {
6265 		.hdr =  {
6266 			.proto = IPPROTO_UDP,
6267 		},
6268 	};
6269 	struct rte_flow_item_udp udp = {
6270 		.hdr = {
6271 			.dst_port = rte_cpu_to_be_16(6635),
6272 		},
6273 	};
6274 	struct rte_flow_item_mpls mpls;
6275 	uint8_t *header;
6276 	int ret;
6277 
6278 	ret = parse_vc(ctx, token, str, len, buf, size);
6279 	if (ret < 0)
6280 		return ret;
6281 	/* Nothing else to do if there is no buffer. */
6282 	if (!out)
6283 		return ret;
6284 	if (!out->args.vc.actions_n)
6285 		return -1;
6286 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6287 	/* Point to selected object. */
6288 	ctx->object = out->args.vc.data;
6289 	ctx->objmask = NULL;
6290 	/* Copy the headers to the buffer. */
6291 	action_decap_data = ctx->object;
6292 	*action_decap_data = (struct action_raw_decap_data) {
6293 		.conf = (struct rte_flow_action_raw_decap){
6294 			.data = action_decap_data->data,
6295 		},
6296 		.data = {},
6297 	};
6298 	header = action_decap_data->data;
6299 	if (mplsoudp_decap_conf.select_vlan)
6300 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
6301 	else if (mplsoudp_encap_conf.select_ipv4)
6302 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6303 	else
6304 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6305 	memcpy(eth.dst.addr_bytes,
6306 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
6307 	memcpy(eth.src.addr_bytes,
6308 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
6309 	memcpy(header, &eth, sizeof(eth));
6310 	header += sizeof(eth);
6311 	if (mplsoudp_encap_conf.select_vlan) {
6312 		if (mplsoudp_encap_conf.select_ipv4)
6313 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6314 		else
6315 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6316 		memcpy(header, &vlan, sizeof(vlan));
6317 		header += sizeof(vlan);
6318 	}
6319 	if (mplsoudp_encap_conf.select_ipv4) {
6320 		memcpy(header, &ipv4, sizeof(ipv4));
6321 		header += sizeof(ipv4);
6322 	} else {
6323 		memcpy(header, &ipv6, sizeof(ipv6));
6324 		header += sizeof(ipv6);
6325 	}
6326 	memcpy(header, &udp, sizeof(udp));
6327 	header += sizeof(udp);
6328 	memset(&mpls, 0, sizeof(mpls));
6329 	memcpy(header, &mpls, sizeof(mpls));
6330 	header += sizeof(mpls);
6331 	action_decap_data->conf.size = header -
6332 		action_decap_data->data;
6333 	action->conf = &action_decap_data->conf;
6334 	return ret;
6335 }
6336 
6337 static int
6338 parse_vc_action_raw_decap_index(struct context *ctx, const struct token *token,
6339 				const char *str, unsigned int len, void *buf,
6340 				unsigned int size)
6341 {
6342 	struct action_raw_decap_data *action_raw_decap_data;
6343 	struct rte_flow_action *action;
6344 	const struct arg *arg;
6345 	struct buffer *out = buf;
6346 	int ret;
6347 	uint16_t idx;
6348 
6349 	RTE_SET_USED(token);
6350 	RTE_SET_USED(buf);
6351 	RTE_SET_USED(size);
6352 	arg = ARGS_ENTRY_ARB_BOUNDED
6353 		(offsetof(struct action_raw_decap_data, idx),
6354 		 sizeof(((struct action_raw_decap_data *)0)->idx),
6355 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
6356 	if (push_args(ctx, arg))
6357 		return -1;
6358 	ret = parse_int(ctx, token, str, len, NULL, 0);
6359 	if (ret < 0) {
6360 		pop_args(ctx);
6361 		return -1;
6362 	}
6363 	if (!ctx->object)
6364 		return len;
6365 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6366 	action_raw_decap_data = ctx->object;
6367 	idx = action_raw_decap_data->idx;
6368 	action_raw_decap_data->conf.data = raw_decap_confs[idx].data;
6369 	action_raw_decap_data->conf.size = raw_decap_confs[idx].size;
6370 	action->conf = &action_raw_decap_data->conf;
6371 	return len;
6372 }
6373 
6374 
6375 static int
6376 parse_vc_action_raw_encap_index(struct context *ctx, const struct token *token,
6377 				const char *str, unsigned int len, void *buf,
6378 				unsigned int size)
6379 {
6380 	struct action_raw_encap_data *action_raw_encap_data;
6381 	struct rte_flow_action *action;
6382 	const struct arg *arg;
6383 	struct buffer *out = buf;
6384 	int ret;
6385 	uint16_t idx;
6386 
6387 	RTE_SET_USED(token);
6388 	RTE_SET_USED(buf);
6389 	RTE_SET_USED(size);
6390 	if (ctx->curr != ACTION_RAW_ENCAP_INDEX_VALUE)
6391 		return -1;
6392 	arg = ARGS_ENTRY_ARB_BOUNDED
6393 		(offsetof(struct action_raw_encap_data, idx),
6394 		 sizeof(((struct action_raw_encap_data *)0)->idx),
6395 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
6396 	if (push_args(ctx, arg))
6397 		return -1;
6398 	ret = parse_int(ctx, token, str, len, NULL, 0);
6399 	if (ret < 0) {
6400 		pop_args(ctx);
6401 		return -1;
6402 	}
6403 	if (!ctx->object)
6404 		return len;
6405 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6406 	action_raw_encap_data = ctx->object;
6407 	idx = action_raw_encap_data->idx;
6408 	action_raw_encap_data->conf.data = raw_encap_confs[idx].data;
6409 	action_raw_encap_data->conf.size = raw_encap_confs[idx].size;
6410 	action_raw_encap_data->conf.preserve = NULL;
6411 	action->conf = &action_raw_encap_data->conf;
6412 	return len;
6413 }
6414 
6415 static int
6416 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
6417 			  const char *str, unsigned int len, void *buf,
6418 			  unsigned int size)
6419 {
6420 	struct buffer *out = buf;
6421 	struct rte_flow_action *action;
6422 	struct action_raw_encap_data *action_raw_encap_data = NULL;
6423 	int ret;
6424 
6425 	ret = parse_vc(ctx, token, str, len, buf, size);
6426 	if (ret < 0)
6427 		return ret;
6428 	/* Nothing else to do if there is no buffer. */
6429 	if (!out)
6430 		return ret;
6431 	if (!out->args.vc.actions_n)
6432 		return -1;
6433 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6434 	/* Point to selected object. */
6435 	ctx->object = out->args.vc.data;
6436 	ctx->objmask = NULL;
6437 	/* Copy the headers to the buffer. */
6438 	action_raw_encap_data = ctx->object;
6439 	action_raw_encap_data->conf.data = raw_encap_confs[0].data;
6440 	action_raw_encap_data->conf.preserve = NULL;
6441 	action_raw_encap_data->conf.size = raw_encap_confs[0].size;
6442 	action->conf = &action_raw_encap_data->conf;
6443 	return ret;
6444 }
6445 
6446 static int
6447 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
6448 			  const char *str, unsigned int len, void *buf,
6449 			  unsigned int size)
6450 {
6451 	struct buffer *out = buf;
6452 	struct rte_flow_action *action;
6453 	struct action_raw_decap_data *action_raw_decap_data = NULL;
6454 	int ret;
6455 
6456 	ret = parse_vc(ctx, token, str, len, buf, size);
6457 	if (ret < 0)
6458 		return ret;
6459 	/* Nothing else to do if there is no buffer. */
6460 	if (!out)
6461 		return ret;
6462 	if (!out->args.vc.actions_n)
6463 		return -1;
6464 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6465 	/* Point to selected object. */
6466 	ctx->object = out->args.vc.data;
6467 	ctx->objmask = NULL;
6468 	/* Copy the headers to the buffer. */
6469 	action_raw_decap_data = ctx->object;
6470 	action_raw_decap_data->conf.data = raw_decap_confs[0].data;
6471 	action_raw_decap_data->conf.size = raw_decap_confs[0].size;
6472 	action->conf = &action_raw_decap_data->conf;
6473 	return ret;
6474 }
6475 
6476 static int
6477 parse_vc_action_set_meta(struct context *ctx, const struct token *token,
6478 			 const char *str, unsigned int len, void *buf,
6479 			 unsigned int size)
6480 {
6481 	int ret;
6482 
6483 	ret = parse_vc(ctx, token, str, len, buf, size);
6484 	if (ret < 0)
6485 		return ret;
6486 	ret = rte_flow_dynf_metadata_register();
6487 	if (ret < 0)
6488 		return -1;
6489 	return len;
6490 }
6491 
6492 static int
6493 parse_vc_action_sample(struct context *ctx, const struct token *token,
6494 			 const char *str, unsigned int len, void *buf,
6495 			 unsigned int size)
6496 {
6497 	struct buffer *out = buf;
6498 	struct rte_flow_action *action;
6499 	struct action_sample_data *action_sample_data = NULL;
6500 	static struct rte_flow_action end_action = {
6501 		RTE_FLOW_ACTION_TYPE_END, 0
6502 	};
6503 	int ret;
6504 
6505 	ret = parse_vc(ctx, token, str, len, buf, size);
6506 	if (ret < 0)
6507 		return ret;
6508 	/* Nothing else to do if there is no buffer. */
6509 	if (!out)
6510 		return ret;
6511 	if (!out->args.vc.actions_n)
6512 		return -1;
6513 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6514 	/* Point to selected object. */
6515 	ctx->object = out->args.vc.data;
6516 	ctx->objmask = NULL;
6517 	/* Copy the headers to the buffer. */
6518 	action_sample_data = ctx->object;
6519 	action_sample_data->conf.actions = &end_action;
6520 	action->conf = &action_sample_data->conf;
6521 	return ret;
6522 }
6523 
6524 static int
6525 parse_vc_action_sample_index(struct context *ctx, const struct token *token,
6526 				const char *str, unsigned int len, void *buf,
6527 				unsigned int size)
6528 {
6529 	struct action_sample_data *action_sample_data;
6530 	struct rte_flow_action *action;
6531 	const struct arg *arg;
6532 	struct buffer *out = buf;
6533 	int ret;
6534 	uint16_t idx;
6535 
6536 	RTE_SET_USED(token);
6537 	RTE_SET_USED(buf);
6538 	RTE_SET_USED(size);
6539 	if (ctx->curr != ACTION_SAMPLE_INDEX_VALUE)
6540 		return -1;
6541 	arg = ARGS_ENTRY_ARB_BOUNDED
6542 		(offsetof(struct action_sample_data, idx),
6543 		 sizeof(((struct action_sample_data *)0)->idx),
6544 		 0, RAW_SAMPLE_CONFS_MAX_NUM - 1);
6545 	if (push_args(ctx, arg))
6546 		return -1;
6547 	ret = parse_int(ctx, token, str, len, NULL, 0);
6548 	if (ret < 0) {
6549 		pop_args(ctx);
6550 		return -1;
6551 	}
6552 	if (!ctx->object)
6553 		return len;
6554 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6555 	action_sample_data = ctx->object;
6556 	idx = action_sample_data->idx;
6557 	action_sample_data->conf.actions = raw_sample_confs[idx].data;
6558 	action->conf = &action_sample_data->conf;
6559 	return len;
6560 }
6561 
6562 /** Parse operation for modify_field command. */
6563 static int
6564 parse_vc_modify_field_op(struct context *ctx, const struct token *token,
6565 			 const char *str, unsigned int len, void *buf,
6566 			 unsigned int size)
6567 {
6568 	struct rte_flow_action_modify_field *action_modify_field;
6569 	unsigned int i;
6570 
6571 	(void)token;
6572 	(void)buf;
6573 	(void)size;
6574 	if (ctx->curr != ACTION_MODIFY_FIELD_OP_VALUE)
6575 		return -1;
6576 	for (i = 0; modify_field_ops[i]; ++i)
6577 		if (!strcmp_partial(modify_field_ops[i], str, len))
6578 			break;
6579 	if (!modify_field_ops[i])
6580 		return -1;
6581 	if (!ctx->object)
6582 		return len;
6583 	action_modify_field = ctx->object;
6584 	action_modify_field->operation = (enum rte_flow_modify_op)i;
6585 	return len;
6586 }
6587 
6588 /** Parse id for modify_field command. */
6589 static int
6590 parse_vc_modify_field_id(struct context *ctx, const struct token *token,
6591 			 const char *str, unsigned int len, void *buf,
6592 			 unsigned int size)
6593 {
6594 	struct rte_flow_action_modify_field *action_modify_field;
6595 	unsigned int i;
6596 
6597 	(void)token;
6598 	(void)buf;
6599 	(void)size;
6600 	if (ctx->curr != ACTION_MODIFY_FIELD_DST_TYPE_VALUE &&
6601 		ctx->curr != ACTION_MODIFY_FIELD_SRC_TYPE_VALUE)
6602 		return -1;
6603 	for (i = 0; modify_field_ids[i]; ++i)
6604 		if (!strcmp_partial(modify_field_ids[i], str, len))
6605 			break;
6606 	if (!modify_field_ids[i])
6607 		return -1;
6608 	if (!ctx->object)
6609 		return len;
6610 	action_modify_field = ctx->object;
6611 	if (ctx->curr == ACTION_MODIFY_FIELD_DST_TYPE_VALUE)
6612 		action_modify_field->dst.field = (enum rte_flow_field_id)i;
6613 	else
6614 		action_modify_field->src.field = (enum rte_flow_field_id)i;
6615 	return len;
6616 }
6617 
6618 /** Parse the conntrack update, not a rte_flow_action. */
6619 static int
6620 parse_vc_action_conntrack_update(struct context *ctx, const struct token *token,
6621 			 const char *str, unsigned int len, void *buf,
6622 			 unsigned int size)
6623 {
6624 	struct buffer *out = buf;
6625 	struct rte_flow_modify_conntrack *ct_modify = NULL;
6626 
6627 	(void)size;
6628 	if (ctx->curr != ACTION_CONNTRACK_UPDATE_CTX &&
6629 	    ctx->curr != ACTION_CONNTRACK_UPDATE_DIR)
6630 		return -1;
6631 	/* Token name must match. */
6632 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6633 		return -1;
6634 	ct_modify = (struct rte_flow_modify_conntrack *)out->args.vc.data;
6635 	/* Nothing else to do if there is no buffer. */
6636 	if (!out)
6637 		return len;
6638 	if (ctx->curr == ACTION_CONNTRACK_UPDATE_DIR) {
6639 		ct_modify->new_ct.is_original_dir =
6640 				conntrack_context.is_original_dir;
6641 		ct_modify->direction = 1;
6642 	} else {
6643 		uint32_t old_dir;
6644 
6645 		old_dir = ct_modify->new_ct.is_original_dir;
6646 		memcpy(&ct_modify->new_ct, &conntrack_context,
6647 		       sizeof(conntrack_context));
6648 		ct_modify->new_ct.is_original_dir = old_dir;
6649 		ct_modify->state = 1;
6650 	}
6651 	return len;
6652 }
6653 
6654 /** Parse tokens for destroy command. */
6655 static int
6656 parse_destroy(struct context *ctx, const struct token *token,
6657 	      const char *str, unsigned int len,
6658 	      void *buf, unsigned int size)
6659 {
6660 	struct buffer *out = buf;
6661 
6662 	/* Token name must match. */
6663 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6664 		return -1;
6665 	/* Nothing else to do if there is no buffer. */
6666 	if (!out)
6667 		return len;
6668 	if (!out->command) {
6669 		if (ctx->curr != DESTROY)
6670 			return -1;
6671 		if (sizeof(*out) > size)
6672 			return -1;
6673 		out->command = ctx->curr;
6674 		ctx->objdata = 0;
6675 		ctx->object = out;
6676 		ctx->objmask = NULL;
6677 		out->args.destroy.rule =
6678 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6679 					       sizeof(double));
6680 		return len;
6681 	}
6682 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
6683 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
6684 		return -1;
6685 	ctx->objdata = 0;
6686 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
6687 	ctx->objmask = NULL;
6688 	return len;
6689 }
6690 
6691 /** Parse tokens for flush command. */
6692 static int
6693 parse_flush(struct context *ctx, const struct token *token,
6694 	    const char *str, unsigned int len,
6695 	    void *buf, unsigned int size)
6696 {
6697 	struct buffer *out = buf;
6698 
6699 	/* Token name must match. */
6700 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6701 		return -1;
6702 	/* Nothing else to do if there is no buffer. */
6703 	if (!out)
6704 		return len;
6705 	if (!out->command) {
6706 		if (ctx->curr != FLUSH)
6707 			return -1;
6708 		if (sizeof(*out) > size)
6709 			return -1;
6710 		out->command = ctx->curr;
6711 		ctx->objdata = 0;
6712 		ctx->object = out;
6713 		ctx->objmask = NULL;
6714 	}
6715 	return len;
6716 }
6717 
6718 /** Parse tokens for dump command. */
6719 static int
6720 parse_dump(struct context *ctx, const struct token *token,
6721 	    const char *str, unsigned int len,
6722 	    void *buf, unsigned int size)
6723 {
6724 	struct buffer *out = buf;
6725 
6726 	/* Token name must match. */
6727 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6728 		return -1;
6729 	/* Nothing else to do if there is no buffer. */
6730 	if (!out)
6731 		return len;
6732 	if (!out->command) {
6733 		if (ctx->curr != DUMP)
6734 			return -1;
6735 		if (sizeof(*out) > size)
6736 			return -1;
6737 		out->command = ctx->curr;
6738 		ctx->objdata = 0;
6739 		ctx->object = out;
6740 		ctx->objmask = NULL;
6741 		return len;
6742 	}
6743 	switch (ctx->curr) {
6744 	case DUMP_ALL:
6745 	case DUMP_ONE:
6746 		out->args.dump.mode = (ctx->curr == DUMP_ALL) ? true : false;
6747 		out->command = ctx->curr;
6748 		ctx->objdata = 0;
6749 		ctx->object = out;
6750 		ctx->objmask = NULL;
6751 		return len;
6752 	default:
6753 		return -1;
6754 	}
6755 }
6756 
6757 /** Parse tokens for query command. */
6758 static int
6759 parse_query(struct context *ctx, const struct token *token,
6760 	    const char *str, unsigned int len,
6761 	    void *buf, unsigned int size)
6762 {
6763 	struct buffer *out = buf;
6764 
6765 	/* Token name must match. */
6766 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6767 		return -1;
6768 	/* Nothing else to do if there is no buffer. */
6769 	if (!out)
6770 		return len;
6771 	if (!out->command) {
6772 		if (ctx->curr != QUERY)
6773 			return -1;
6774 		if (sizeof(*out) > size)
6775 			return -1;
6776 		out->command = ctx->curr;
6777 		ctx->objdata = 0;
6778 		ctx->object = out;
6779 		ctx->objmask = NULL;
6780 	}
6781 	return len;
6782 }
6783 
6784 /** Parse action names. */
6785 static int
6786 parse_action(struct context *ctx, const struct token *token,
6787 	     const char *str, unsigned int len,
6788 	     void *buf, unsigned int size)
6789 {
6790 	struct buffer *out = buf;
6791 	const struct arg *arg = pop_args(ctx);
6792 	unsigned int i;
6793 
6794 	(void)size;
6795 	/* Argument is expected. */
6796 	if (!arg)
6797 		return -1;
6798 	/* Parse action name. */
6799 	for (i = 0; next_action[i]; ++i) {
6800 		const struct parse_action_priv *priv;
6801 
6802 		token = &token_list[next_action[i]];
6803 		if (strcmp_partial(token->name, str, len))
6804 			continue;
6805 		priv = token->priv;
6806 		if (!priv)
6807 			goto error;
6808 		if (out)
6809 			memcpy((uint8_t *)ctx->object + arg->offset,
6810 			       &priv->type,
6811 			       arg->size);
6812 		return len;
6813 	}
6814 error:
6815 	push_args(ctx, arg);
6816 	return -1;
6817 }
6818 
6819 /** Parse tokens for list command. */
6820 static int
6821 parse_list(struct context *ctx, const struct token *token,
6822 	   const char *str, unsigned int len,
6823 	   void *buf, unsigned int size)
6824 {
6825 	struct buffer *out = buf;
6826 
6827 	/* Token name must match. */
6828 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6829 		return -1;
6830 	/* Nothing else to do if there is no buffer. */
6831 	if (!out)
6832 		return len;
6833 	if (!out->command) {
6834 		if (ctx->curr != LIST)
6835 			return -1;
6836 		if (sizeof(*out) > size)
6837 			return -1;
6838 		out->command = ctx->curr;
6839 		ctx->objdata = 0;
6840 		ctx->object = out;
6841 		ctx->objmask = NULL;
6842 		out->args.list.group =
6843 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6844 					       sizeof(double));
6845 		return len;
6846 	}
6847 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
6848 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
6849 		return -1;
6850 	ctx->objdata = 0;
6851 	ctx->object = out->args.list.group + out->args.list.group_n++;
6852 	ctx->objmask = NULL;
6853 	return len;
6854 }
6855 
6856 /** Parse tokens for list all aged flows command. */
6857 static int
6858 parse_aged(struct context *ctx, const struct token *token,
6859 	   const char *str, unsigned int len,
6860 	   void *buf, unsigned int size)
6861 {
6862 	struct buffer *out = buf;
6863 
6864 	/* Token name must match. */
6865 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6866 		return -1;
6867 	/* Nothing else to do if there is no buffer. */
6868 	if (!out)
6869 		return len;
6870 	if (!out->command) {
6871 		if (ctx->curr != AGED)
6872 			return -1;
6873 		if (sizeof(*out) > size)
6874 			return -1;
6875 		out->command = ctx->curr;
6876 		ctx->objdata = 0;
6877 		ctx->object = out;
6878 		ctx->objmask = NULL;
6879 	}
6880 	if (ctx->curr == AGED_DESTROY)
6881 		out->args.aged.destroy = 1;
6882 	return len;
6883 }
6884 
6885 /** Parse tokens for isolate command. */
6886 static int
6887 parse_isolate(struct context *ctx, const struct token *token,
6888 	      const char *str, unsigned int len,
6889 	      void *buf, unsigned int size)
6890 {
6891 	struct buffer *out = buf;
6892 
6893 	/* Token name must match. */
6894 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6895 		return -1;
6896 	/* Nothing else to do if there is no buffer. */
6897 	if (!out)
6898 		return len;
6899 	if (!out->command) {
6900 		if (ctx->curr != ISOLATE)
6901 			return -1;
6902 		if (sizeof(*out) > size)
6903 			return -1;
6904 		out->command = ctx->curr;
6905 		ctx->objdata = 0;
6906 		ctx->object = out;
6907 		ctx->objmask = NULL;
6908 	}
6909 	return len;
6910 }
6911 
6912 static int
6913 parse_tunnel(struct context *ctx, const struct token *token,
6914 	     const char *str, unsigned int len,
6915 	     void *buf, unsigned int size)
6916 {
6917 	struct buffer *out = buf;
6918 
6919 	/* Token name must match. */
6920 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6921 		return -1;
6922 	/* Nothing else to do if there is no buffer. */
6923 	if (!out)
6924 		return len;
6925 	if (!out->command) {
6926 		if (ctx->curr != TUNNEL)
6927 			return -1;
6928 		if (sizeof(*out) > size)
6929 			return -1;
6930 		out->command = ctx->curr;
6931 		ctx->objdata = 0;
6932 		ctx->object = out;
6933 		ctx->objmask = NULL;
6934 	} else {
6935 		switch (ctx->curr) {
6936 		default:
6937 			break;
6938 		case TUNNEL_CREATE:
6939 		case TUNNEL_DESTROY:
6940 		case TUNNEL_LIST:
6941 			out->command = ctx->curr;
6942 			break;
6943 		case TUNNEL_CREATE_TYPE:
6944 		case TUNNEL_DESTROY_ID:
6945 			ctx->object = &out->args.vc.tunnel_ops;
6946 			break;
6947 		}
6948 	}
6949 
6950 	return len;
6951 }
6952 
6953 /**
6954  * Parse signed/unsigned integers 8 to 64-bit long.
6955  *
6956  * Last argument (ctx->args) is retrieved to determine integer type and
6957  * storage location.
6958  */
6959 static int
6960 parse_int(struct context *ctx, const struct token *token,
6961 	  const char *str, unsigned int len,
6962 	  void *buf, unsigned int size)
6963 {
6964 	const struct arg *arg = pop_args(ctx);
6965 	uintmax_t u;
6966 	char *end;
6967 
6968 	(void)token;
6969 	/* Argument is expected. */
6970 	if (!arg)
6971 		return -1;
6972 	errno = 0;
6973 	u = arg->sign ?
6974 		(uintmax_t)strtoimax(str, &end, 0) :
6975 		strtoumax(str, &end, 0);
6976 	if (errno || (size_t)(end - str) != len)
6977 		goto error;
6978 	if (arg->bounded &&
6979 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
6980 			    (intmax_t)u > (intmax_t)arg->max)) ||
6981 	     (!arg->sign && (u < arg->min || u > arg->max))))
6982 		goto error;
6983 	if (!ctx->object)
6984 		return len;
6985 	if (arg->mask) {
6986 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
6987 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
6988 			goto error;
6989 		return len;
6990 	}
6991 	buf = (uint8_t *)ctx->object + arg->offset;
6992 	size = arg->size;
6993 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
6994 		return -1;
6995 objmask:
6996 	switch (size) {
6997 	case sizeof(uint8_t):
6998 		*(uint8_t *)buf = u;
6999 		break;
7000 	case sizeof(uint16_t):
7001 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
7002 		break;
7003 	case sizeof(uint8_t [3]):
7004 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
7005 		if (!arg->hton) {
7006 			((uint8_t *)buf)[0] = u;
7007 			((uint8_t *)buf)[1] = u >> 8;
7008 			((uint8_t *)buf)[2] = u >> 16;
7009 			break;
7010 		}
7011 #endif
7012 		((uint8_t *)buf)[0] = u >> 16;
7013 		((uint8_t *)buf)[1] = u >> 8;
7014 		((uint8_t *)buf)[2] = u;
7015 		break;
7016 	case sizeof(uint32_t):
7017 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
7018 		break;
7019 	case sizeof(uint64_t):
7020 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
7021 		break;
7022 	default:
7023 		goto error;
7024 	}
7025 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
7026 		u = -1;
7027 		buf = (uint8_t *)ctx->objmask + arg->offset;
7028 		goto objmask;
7029 	}
7030 	return len;
7031 error:
7032 	push_args(ctx, arg);
7033 	return -1;
7034 }
7035 
7036 /**
7037  * Parse a string.
7038  *
7039  * Three arguments (ctx->args) are retrieved from the stack to store data,
7040  * its actual length and address (in that order).
7041  */
7042 static int
7043 parse_string(struct context *ctx, const struct token *token,
7044 	     const char *str, unsigned int len,
7045 	     void *buf, unsigned int size)
7046 {
7047 	const struct arg *arg_data = pop_args(ctx);
7048 	const struct arg *arg_len = pop_args(ctx);
7049 	const struct arg *arg_addr = pop_args(ctx);
7050 	char tmp[16]; /* Ought to be enough. */
7051 	int ret;
7052 
7053 	/* Arguments are expected. */
7054 	if (!arg_data)
7055 		return -1;
7056 	if (!arg_len) {
7057 		push_args(ctx, arg_data);
7058 		return -1;
7059 	}
7060 	if (!arg_addr) {
7061 		push_args(ctx, arg_len);
7062 		push_args(ctx, arg_data);
7063 		return -1;
7064 	}
7065 	size = arg_data->size;
7066 	/* Bit-mask fill is not supported. */
7067 	if (arg_data->mask || size < len)
7068 		goto error;
7069 	if (!ctx->object)
7070 		return len;
7071 	/* Let parse_int() fill length information first. */
7072 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
7073 	if (ret < 0)
7074 		goto error;
7075 	push_args(ctx, arg_len);
7076 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
7077 	if (ret < 0) {
7078 		pop_args(ctx);
7079 		goto error;
7080 	}
7081 	buf = (uint8_t *)ctx->object + arg_data->offset;
7082 	/* Output buffer is not necessarily NUL-terminated. */
7083 	memcpy(buf, str, len);
7084 	memset((uint8_t *)buf + len, 0x00, size - len);
7085 	if (ctx->objmask)
7086 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
7087 	/* Save address if requested. */
7088 	if (arg_addr->size) {
7089 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
7090 		       (void *[]){
7091 			(uint8_t *)ctx->object + arg_data->offset
7092 		       },
7093 		       arg_addr->size);
7094 		if (ctx->objmask)
7095 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
7096 			       (void *[]){
7097 				(uint8_t *)ctx->objmask + arg_data->offset
7098 			       },
7099 			       arg_addr->size);
7100 	}
7101 	return len;
7102 error:
7103 	push_args(ctx, arg_addr);
7104 	push_args(ctx, arg_len);
7105 	push_args(ctx, arg_data);
7106 	return -1;
7107 }
7108 
7109 static int
7110 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
7111 {
7112 	char *c = NULL;
7113 	uint32_t i, len;
7114 	char tmp[3];
7115 
7116 	/* Check input parameters */
7117 	if ((src == NULL) ||
7118 		(dst == NULL) ||
7119 		(size == NULL) ||
7120 		(*size == 0))
7121 		return -1;
7122 
7123 	/* Convert chars to bytes */
7124 	for (i = 0, len = 0; i < *size; i += 2) {
7125 		snprintf(tmp, 3, "%s", src + i);
7126 		dst[len++] = strtoul(tmp, &c, 16);
7127 		if (*c != 0) {
7128 			len--;
7129 			dst[len] = 0;
7130 			*size = len;
7131 			return -1;
7132 		}
7133 	}
7134 	dst[len] = 0;
7135 	*size = len;
7136 
7137 	return 0;
7138 }
7139 
7140 static int
7141 parse_hex(struct context *ctx, const struct token *token,
7142 		const char *str, unsigned int len,
7143 		void *buf, unsigned int size)
7144 {
7145 	const struct arg *arg_data = pop_args(ctx);
7146 	const struct arg *arg_len = pop_args(ctx);
7147 	const struct arg *arg_addr = pop_args(ctx);
7148 	char tmp[16]; /* Ought to be enough. */
7149 	int ret;
7150 	unsigned int hexlen = len;
7151 	unsigned int length = 256;
7152 	uint8_t hex_tmp[length];
7153 
7154 	/* Arguments are expected. */
7155 	if (!arg_data)
7156 		return -1;
7157 	if (!arg_len) {
7158 		push_args(ctx, arg_data);
7159 		return -1;
7160 	}
7161 	if (!arg_addr) {
7162 		push_args(ctx, arg_len);
7163 		push_args(ctx, arg_data);
7164 		return -1;
7165 	}
7166 	size = arg_data->size;
7167 	/* Bit-mask fill is not supported. */
7168 	if (arg_data->mask)
7169 		goto error;
7170 	if (!ctx->object)
7171 		return len;
7172 
7173 	/* translate bytes string to array. */
7174 	if (str[0] == '0' && ((str[1] == 'x') ||
7175 			(str[1] == 'X'))) {
7176 		str += 2;
7177 		hexlen -= 2;
7178 	}
7179 	if (hexlen > length)
7180 		return -1;
7181 	ret = parse_hex_string(str, hex_tmp, &hexlen);
7182 	if (ret < 0)
7183 		goto error;
7184 	/* Let parse_int() fill length information first. */
7185 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
7186 	if (ret < 0)
7187 		goto error;
7188 	/* Save length if requested. */
7189 	if (arg_len->size) {
7190 		push_args(ctx, arg_len);
7191 		ret = parse_int(ctx, token, tmp, ret, NULL, 0);
7192 		if (ret < 0) {
7193 			pop_args(ctx);
7194 			goto error;
7195 		}
7196 	}
7197 	buf = (uint8_t *)ctx->object + arg_data->offset;
7198 	/* Output buffer is not necessarily NUL-terminated. */
7199 	memcpy(buf, hex_tmp, hexlen);
7200 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
7201 	if (ctx->objmask)
7202 		memset((uint8_t *)ctx->objmask + arg_data->offset,
7203 					0xff, hexlen);
7204 	/* Save address if requested. */
7205 	if (arg_addr->size) {
7206 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
7207 		       (void *[]){
7208 			(uint8_t *)ctx->object + arg_data->offset
7209 		       },
7210 		       arg_addr->size);
7211 		if (ctx->objmask)
7212 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
7213 			       (void *[]){
7214 				(uint8_t *)ctx->objmask + arg_data->offset
7215 			       },
7216 			       arg_addr->size);
7217 	}
7218 	return len;
7219 error:
7220 	push_args(ctx, arg_addr);
7221 	push_args(ctx, arg_len);
7222 	push_args(ctx, arg_data);
7223 	return -1;
7224 
7225 }
7226 
7227 /**
7228  * Parse a zero-ended string.
7229  */
7230 static int
7231 parse_string0(struct context *ctx, const struct token *token __rte_unused,
7232 	     const char *str, unsigned int len,
7233 	     void *buf, unsigned int size)
7234 {
7235 	const struct arg *arg_data = pop_args(ctx);
7236 
7237 	/* Arguments are expected. */
7238 	if (!arg_data)
7239 		return -1;
7240 	size = arg_data->size;
7241 	/* Bit-mask fill is not supported. */
7242 	if (arg_data->mask || size < len + 1)
7243 		goto error;
7244 	if (!ctx->object)
7245 		return len;
7246 	buf = (uint8_t *)ctx->object + arg_data->offset;
7247 	strncpy(buf, str, len);
7248 	if (ctx->objmask)
7249 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
7250 	return len;
7251 error:
7252 	push_args(ctx, arg_data);
7253 	return -1;
7254 }
7255 
7256 /**
7257  * Parse a MAC address.
7258  *
7259  * Last argument (ctx->args) is retrieved to determine storage size and
7260  * location.
7261  */
7262 static int
7263 parse_mac_addr(struct context *ctx, const struct token *token,
7264 	       const char *str, unsigned int len,
7265 	       void *buf, unsigned int size)
7266 {
7267 	const struct arg *arg = pop_args(ctx);
7268 	struct rte_ether_addr tmp;
7269 	int ret;
7270 
7271 	(void)token;
7272 	/* Argument is expected. */
7273 	if (!arg)
7274 		return -1;
7275 	size = arg->size;
7276 	/* Bit-mask fill is not supported. */
7277 	if (arg->mask || size != sizeof(tmp))
7278 		goto error;
7279 	/* Only network endian is supported. */
7280 	if (!arg->hton)
7281 		goto error;
7282 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
7283 	if (ret < 0 || (unsigned int)ret != len)
7284 		goto error;
7285 	if (!ctx->object)
7286 		return len;
7287 	buf = (uint8_t *)ctx->object + arg->offset;
7288 	memcpy(buf, &tmp, size);
7289 	if (ctx->objmask)
7290 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
7291 	return len;
7292 error:
7293 	push_args(ctx, arg);
7294 	return -1;
7295 }
7296 
7297 /**
7298  * Parse an IPv4 address.
7299  *
7300  * Last argument (ctx->args) is retrieved to determine storage size and
7301  * location.
7302  */
7303 static int
7304 parse_ipv4_addr(struct context *ctx, const struct token *token,
7305 		const char *str, unsigned int len,
7306 		void *buf, unsigned int size)
7307 {
7308 	const struct arg *arg = pop_args(ctx);
7309 	char str2[len + 1];
7310 	struct in_addr tmp;
7311 	int ret;
7312 
7313 	/* Argument is expected. */
7314 	if (!arg)
7315 		return -1;
7316 	size = arg->size;
7317 	/* Bit-mask fill is not supported. */
7318 	if (arg->mask || size != sizeof(tmp))
7319 		goto error;
7320 	/* Only network endian is supported. */
7321 	if (!arg->hton)
7322 		goto error;
7323 	memcpy(str2, str, len);
7324 	str2[len] = '\0';
7325 	ret = inet_pton(AF_INET, str2, &tmp);
7326 	if (ret != 1) {
7327 		/* Attempt integer parsing. */
7328 		push_args(ctx, arg);
7329 		return parse_int(ctx, token, str, len, buf, size);
7330 	}
7331 	if (!ctx->object)
7332 		return len;
7333 	buf = (uint8_t *)ctx->object + arg->offset;
7334 	memcpy(buf, &tmp, size);
7335 	if (ctx->objmask)
7336 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
7337 	return len;
7338 error:
7339 	push_args(ctx, arg);
7340 	return -1;
7341 }
7342 
7343 /**
7344  * Parse an IPv6 address.
7345  *
7346  * Last argument (ctx->args) is retrieved to determine storage size and
7347  * location.
7348  */
7349 static int
7350 parse_ipv6_addr(struct context *ctx, const struct token *token,
7351 		const char *str, unsigned int len,
7352 		void *buf, unsigned int size)
7353 {
7354 	const struct arg *arg = pop_args(ctx);
7355 	char str2[len + 1];
7356 	struct in6_addr tmp;
7357 	int ret;
7358 
7359 	(void)token;
7360 	/* Argument is expected. */
7361 	if (!arg)
7362 		return -1;
7363 	size = arg->size;
7364 	/* Bit-mask fill is not supported. */
7365 	if (arg->mask || size != sizeof(tmp))
7366 		goto error;
7367 	/* Only network endian is supported. */
7368 	if (!arg->hton)
7369 		goto error;
7370 	memcpy(str2, str, len);
7371 	str2[len] = '\0';
7372 	ret = inet_pton(AF_INET6, str2, &tmp);
7373 	if (ret != 1)
7374 		goto error;
7375 	if (!ctx->object)
7376 		return len;
7377 	buf = (uint8_t *)ctx->object + arg->offset;
7378 	memcpy(buf, &tmp, size);
7379 	if (ctx->objmask)
7380 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
7381 	return len;
7382 error:
7383 	push_args(ctx, arg);
7384 	return -1;
7385 }
7386 
7387 /** Boolean values (even indices stand for false). */
7388 static const char *const boolean_name[] = {
7389 	"0", "1",
7390 	"false", "true",
7391 	"no", "yes",
7392 	"N", "Y",
7393 	"off", "on",
7394 	NULL,
7395 };
7396 
7397 /**
7398  * Parse a boolean value.
7399  *
7400  * Last argument (ctx->args) is retrieved to determine storage size and
7401  * location.
7402  */
7403 static int
7404 parse_boolean(struct context *ctx, const struct token *token,
7405 	      const char *str, unsigned int len,
7406 	      void *buf, unsigned int size)
7407 {
7408 	const struct arg *arg = pop_args(ctx);
7409 	unsigned int i;
7410 	int ret;
7411 
7412 	/* Argument is expected. */
7413 	if (!arg)
7414 		return -1;
7415 	for (i = 0; boolean_name[i]; ++i)
7416 		if (!strcmp_partial(boolean_name[i], str, len))
7417 			break;
7418 	/* Process token as integer. */
7419 	if (boolean_name[i])
7420 		str = i & 1 ? "1" : "0";
7421 	push_args(ctx, arg);
7422 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
7423 	return ret > 0 ? (int)len : ret;
7424 }
7425 
7426 /** Parse port and update context. */
7427 static int
7428 parse_port(struct context *ctx, const struct token *token,
7429 	   const char *str, unsigned int len,
7430 	   void *buf, unsigned int size)
7431 {
7432 	struct buffer *out = &(struct buffer){ .port = 0 };
7433 	int ret;
7434 
7435 	if (buf)
7436 		out = buf;
7437 	else {
7438 		ctx->objdata = 0;
7439 		ctx->object = out;
7440 		ctx->objmask = NULL;
7441 		size = sizeof(*out);
7442 	}
7443 	ret = parse_int(ctx, token, str, len, out, size);
7444 	if (ret >= 0)
7445 		ctx->port = out->port;
7446 	if (!buf)
7447 		ctx->object = NULL;
7448 	return ret;
7449 }
7450 
7451 static int
7452 parse_ia_id2ptr(struct context *ctx, const struct token *token,
7453 		const char *str, unsigned int len,
7454 		void *buf, unsigned int size)
7455 {
7456 	struct rte_flow_action *action = ctx->object;
7457 	uint32_t id;
7458 	int ret;
7459 
7460 	(void)buf;
7461 	(void)size;
7462 	ctx->objdata = 0;
7463 	ctx->object = &id;
7464 	ctx->objmask = NULL;
7465 	ret = parse_int(ctx, token, str, len, ctx->object, sizeof(id));
7466 	ctx->object = action;
7467 	if (ret != (int)len)
7468 		return ret;
7469 	/* set indirect action */
7470 	if (action) {
7471 		action->conf = port_action_handle_get_by_id(ctx->port, id);
7472 		ret = (action->conf) ? ret : -1;
7473 	}
7474 	return ret;
7475 }
7476 
7477 /** Parse set command, initialize output buffer for subsequent tokens. */
7478 static int
7479 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
7480 			  const char *str, unsigned int len,
7481 			  void *buf, unsigned int size)
7482 {
7483 	struct buffer *out = buf;
7484 
7485 	/* Token name must match. */
7486 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7487 		return -1;
7488 	/* Nothing else to do if there is no buffer. */
7489 	if (!out)
7490 		return len;
7491 	/* Make sure buffer is large enough. */
7492 	if (size < sizeof(*out))
7493 		return -1;
7494 	ctx->objdata = 0;
7495 	ctx->objmask = NULL;
7496 	ctx->object = out;
7497 	if (!out->command)
7498 		return -1;
7499 	out->command = ctx->curr;
7500 	/* For encap/decap we need is pattern */
7501 	out->args.vc.pattern = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7502 						       sizeof(double));
7503 	return len;
7504 }
7505 
7506 /** Parse set command, initialize output buffer for subsequent tokens. */
7507 static int
7508 parse_set_sample_action(struct context *ctx, const struct token *token,
7509 			  const char *str, unsigned int len,
7510 			  void *buf, unsigned int size)
7511 {
7512 	struct buffer *out = buf;
7513 
7514 	/* Token name must match. */
7515 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7516 		return -1;
7517 	/* Nothing else to do if there is no buffer. */
7518 	if (!out)
7519 		return len;
7520 	/* Make sure buffer is large enough. */
7521 	if (size < sizeof(*out))
7522 		return -1;
7523 	ctx->objdata = 0;
7524 	ctx->objmask = NULL;
7525 	ctx->object = out;
7526 	if (!out->command)
7527 		return -1;
7528 	out->command = ctx->curr;
7529 	/* For sampler we need is actions */
7530 	out->args.vc.actions = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7531 						       sizeof(double));
7532 	return len;
7533 }
7534 
7535 /**
7536  * Parse set raw_encap/raw_decap command,
7537  * initialize output buffer for subsequent tokens.
7538  */
7539 static int
7540 parse_set_init(struct context *ctx, const struct token *token,
7541 	       const char *str, unsigned int len,
7542 	       void *buf, unsigned int size)
7543 {
7544 	struct buffer *out = buf;
7545 
7546 	/* Token name must match. */
7547 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7548 		return -1;
7549 	/* Nothing else to do if there is no buffer. */
7550 	if (!out)
7551 		return len;
7552 	/* Make sure buffer is large enough. */
7553 	if (size < sizeof(*out))
7554 		return -1;
7555 	/* Initialize buffer. */
7556 	memset(out, 0x00, sizeof(*out));
7557 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
7558 	ctx->objdata = 0;
7559 	ctx->object = out;
7560 	ctx->objmask = NULL;
7561 	if (!out->command) {
7562 		if (ctx->curr != SET)
7563 			return -1;
7564 		if (sizeof(*out) > size)
7565 			return -1;
7566 		out->command = ctx->curr;
7567 		out->args.vc.data = (uint8_t *)out + size;
7568 		ctx->object  = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7569 						       sizeof(double));
7570 	}
7571 	return len;
7572 }
7573 
7574 /** No completion. */
7575 static int
7576 comp_none(struct context *ctx, const struct token *token,
7577 	  unsigned int ent, char *buf, unsigned int size)
7578 {
7579 	(void)ctx;
7580 	(void)token;
7581 	(void)ent;
7582 	(void)buf;
7583 	(void)size;
7584 	return 0;
7585 }
7586 
7587 /** Complete boolean values. */
7588 static int
7589 comp_boolean(struct context *ctx, const struct token *token,
7590 	     unsigned int ent, char *buf, unsigned int size)
7591 {
7592 	unsigned int i;
7593 
7594 	(void)ctx;
7595 	(void)token;
7596 	for (i = 0; boolean_name[i]; ++i)
7597 		if (buf && i == ent)
7598 			return strlcpy(buf, boolean_name[i], size);
7599 	if (buf)
7600 		return -1;
7601 	return i;
7602 }
7603 
7604 /** Complete action names. */
7605 static int
7606 comp_action(struct context *ctx, const struct token *token,
7607 	    unsigned int ent, char *buf, unsigned int size)
7608 {
7609 	unsigned int i;
7610 
7611 	(void)ctx;
7612 	(void)token;
7613 	for (i = 0; next_action[i]; ++i)
7614 		if (buf && i == ent)
7615 			return strlcpy(buf, token_list[next_action[i]].name,
7616 				       size);
7617 	if (buf)
7618 		return -1;
7619 	return i;
7620 }
7621 
7622 /** Complete available ports. */
7623 static int
7624 comp_port(struct context *ctx, const struct token *token,
7625 	  unsigned int ent, char *buf, unsigned int size)
7626 {
7627 	unsigned int i = 0;
7628 	portid_t p;
7629 
7630 	(void)ctx;
7631 	(void)token;
7632 	RTE_ETH_FOREACH_DEV(p) {
7633 		if (buf && i == ent)
7634 			return snprintf(buf, size, "%u", p);
7635 		++i;
7636 	}
7637 	if (buf)
7638 		return -1;
7639 	return i;
7640 }
7641 
7642 /** Complete available rule IDs. */
7643 static int
7644 comp_rule_id(struct context *ctx, const struct token *token,
7645 	     unsigned int ent, char *buf, unsigned int size)
7646 {
7647 	unsigned int i = 0;
7648 	struct rte_port *port;
7649 	struct port_flow *pf;
7650 
7651 	(void)token;
7652 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
7653 	    ctx->port == (portid_t)RTE_PORT_ALL)
7654 		return -1;
7655 	port = &ports[ctx->port];
7656 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
7657 		if (buf && i == ent)
7658 			return snprintf(buf, size, "%u", pf->id);
7659 		++i;
7660 	}
7661 	if (buf)
7662 		return -1;
7663 	return i;
7664 }
7665 
7666 /** Complete type field for RSS action. */
7667 static int
7668 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
7669 			unsigned int ent, char *buf, unsigned int size)
7670 {
7671 	unsigned int i;
7672 
7673 	(void)ctx;
7674 	(void)token;
7675 	for (i = 0; rss_type_table[i].str; ++i)
7676 		;
7677 	if (!buf)
7678 		return i + 1;
7679 	if (ent < i)
7680 		return strlcpy(buf, rss_type_table[ent].str, size);
7681 	if (ent == i)
7682 		return snprintf(buf, size, "end");
7683 	return -1;
7684 }
7685 
7686 /** Complete queue field for RSS action. */
7687 static int
7688 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
7689 			 unsigned int ent, char *buf, unsigned int size)
7690 {
7691 	(void)ctx;
7692 	(void)token;
7693 	if (!buf)
7694 		return nb_rxq + 1;
7695 	if (ent < nb_rxq)
7696 		return snprintf(buf, size, "%u", ent);
7697 	if (ent == nb_rxq)
7698 		return snprintf(buf, size, "end");
7699 	return -1;
7700 }
7701 
7702 /** Complete index number for set raw_encap/raw_decap commands. */
7703 static int
7704 comp_set_raw_index(struct context *ctx, const struct token *token,
7705 		   unsigned int ent, char *buf, unsigned int size)
7706 {
7707 	uint16_t idx = 0;
7708 	uint16_t nb = 0;
7709 
7710 	RTE_SET_USED(ctx);
7711 	RTE_SET_USED(token);
7712 	for (idx = 0; idx < RAW_ENCAP_CONFS_MAX_NUM; ++idx) {
7713 		if (buf && idx == ent)
7714 			return snprintf(buf, size, "%u", idx);
7715 		++nb;
7716 	}
7717 	return nb;
7718 }
7719 
7720 /** Complete index number for set raw_encap/raw_decap commands. */
7721 static int
7722 comp_set_sample_index(struct context *ctx, const struct token *token,
7723 		   unsigned int ent, char *buf, unsigned int size)
7724 {
7725 	uint16_t idx = 0;
7726 	uint16_t nb = 0;
7727 
7728 	RTE_SET_USED(ctx);
7729 	RTE_SET_USED(token);
7730 	for (idx = 0; idx < RAW_SAMPLE_CONFS_MAX_NUM; ++idx) {
7731 		if (buf && idx == ent)
7732 			return snprintf(buf, size, "%u", idx);
7733 		++nb;
7734 	}
7735 	return nb;
7736 }
7737 
7738 /** Complete operation for modify_field command. */
7739 static int
7740 comp_set_modify_field_op(struct context *ctx, const struct token *token,
7741 		   unsigned int ent, char *buf, unsigned int size)
7742 {
7743 	uint16_t idx = 0;
7744 
7745 	RTE_SET_USED(ctx);
7746 	RTE_SET_USED(token);
7747 	for (idx = 0; modify_field_ops[idx]; ++idx)
7748 		;
7749 	if (!buf)
7750 		return idx + 1;
7751 	if (ent < idx)
7752 		return strlcpy(buf, modify_field_ops[ent], size);
7753 	return -1;
7754 }
7755 
7756 /** Complete field id for modify_field command. */
7757 static int
7758 comp_set_modify_field_id(struct context *ctx, const struct token *token,
7759 		   unsigned int ent, char *buf, unsigned int size)
7760 {
7761 	uint16_t idx = 0;
7762 
7763 	RTE_SET_USED(ctx);
7764 	RTE_SET_USED(token);
7765 	for (idx = 0; modify_field_ids[idx]; ++idx)
7766 		;
7767 	if (!buf)
7768 		return idx + 1;
7769 	if (ent < idx)
7770 		return strlcpy(buf, modify_field_ids[ent], size);
7771 	return -1;
7772 }
7773 
7774 /** Internal context. */
7775 static struct context cmd_flow_context;
7776 
7777 /** Global parser instance (cmdline API). */
7778 cmdline_parse_inst_t cmd_flow;
7779 cmdline_parse_inst_t cmd_set_raw;
7780 
7781 /** Initialize context. */
7782 static void
7783 cmd_flow_context_init(struct context *ctx)
7784 {
7785 	/* A full memset() is not necessary. */
7786 	ctx->curr = ZERO;
7787 	ctx->prev = ZERO;
7788 	ctx->next_num = 0;
7789 	ctx->args_num = 0;
7790 	ctx->eol = 0;
7791 	ctx->last = 0;
7792 	ctx->port = 0;
7793 	ctx->objdata = 0;
7794 	ctx->object = NULL;
7795 	ctx->objmask = NULL;
7796 }
7797 
7798 /** Parse a token (cmdline API). */
7799 static int
7800 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
7801 	       unsigned int size)
7802 {
7803 	struct context *ctx = &cmd_flow_context;
7804 	const struct token *token;
7805 	const enum index *list;
7806 	int len;
7807 	int i;
7808 
7809 	(void)hdr;
7810 	token = &token_list[ctx->curr];
7811 	/* Check argument length. */
7812 	ctx->eol = 0;
7813 	ctx->last = 1;
7814 	for (len = 0; src[len]; ++len)
7815 		if (src[len] == '#' || isspace(src[len]))
7816 			break;
7817 	if (!len)
7818 		return -1;
7819 	/* Last argument and EOL detection. */
7820 	for (i = len; src[i]; ++i)
7821 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
7822 			break;
7823 		else if (!isspace(src[i])) {
7824 			ctx->last = 0;
7825 			break;
7826 		}
7827 	for (; src[i]; ++i)
7828 		if (src[i] == '\r' || src[i] == '\n') {
7829 			ctx->eol = 1;
7830 			break;
7831 		}
7832 	/* Initialize context if necessary. */
7833 	if (!ctx->next_num) {
7834 		if (!token->next)
7835 			return 0;
7836 		ctx->next[ctx->next_num++] = token->next[0];
7837 	}
7838 	/* Process argument through candidates. */
7839 	ctx->prev = ctx->curr;
7840 	list = ctx->next[ctx->next_num - 1];
7841 	for (i = 0; list[i]; ++i) {
7842 		const struct token *next = &token_list[list[i]];
7843 		int tmp;
7844 
7845 		ctx->curr = list[i];
7846 		if (next->call)
7847 			tmp = next->call(ctx, next, src, len, result, size);
7848 		else
7849 			tmp = parse_default(ctx, next, src, len, result, size);
7850 		if (tmp == -1 || tmp != len)
7851 			continue;
7852 		token = next;
7853 		break;
7854 	}
7855 	if (!list[i])
7856 		return -1;
7857 	--ctx->next_num;
7858 	/* Push subsequent tokens if any. */
7859 	if (token->next)
7860 		for (i = 0; token->next[i]; ++i) {
7861 			if (ctx->next_num == RTE_DIM(ctx->next))
7862 				return -1;
7863 			ctx->next[ctx->next_num++] = token->next[i];
7864 		}
7865 	/* Push arguments if any. */
7866 	if (token->args)
7867 		for (i = 0; token->args[i]; ++i) {
7868 			if (ctx->args_num == RTE_DIM(ctx->args))
7869 				return -1;
7870 			ctx->args[ctx->args_num++] = token->args[i];
7871 		}
7872 	return len;
7873 }
7874 
7875 /** Return number of completion entries (cmdline API). */
7876 static int
7877 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
7878 {
7879 	struct context *ctx = &cmd_flow_context;
7880 	const struct token *token = &token_list[ctx->curr];
7881 	const enum index *list;
7882 	int i;
7883 
7884 	(void)hdr;
7885 	/* Count number of tokens in current list. */
7886 	if (ctx->next_num)
7887 		list = ctx->next[ctx->next_num - 1];
7888 	else
7889 		list = token->next[0];
7890 	for (i = 0; list[i]; ++i)
7891 		;
7892 	if (!i)
7893 		return 0;
7894 	/*
7895 	 * If there is a single token, use its completion callback, otherwise
7896 	 * return the number of entries.
7897 	 */
7898 	token = &token_list[list[0]];
7899 	if (i == 1 && token->comp) {
7900 		/* Save index for cmd_flow_get_help(). */
7901 		ctx->prev = list[0];
7902 		return token->comp(ctx, token, 0, NULL, 0);
7903 	}
7904 	return i;
7905 }
7906 
7907 /** Return a completion entry (cmdline API). */
7908 static int
7909 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
7910 			  char *dst, unsigned int size)
7911 {
7912 	struct context *ctx = &cmd_flow_context;
7913 	const struct token *token = &token_list[ctx->curr];
7914 	const enum index *list;
7915 	int i;
7916 
7917 	(void)hdr;
7918 	/* Count number of tokens in current list. */
7919 	if (ctx->next_num)
7920 		list = ctx->next[ctx->next_num - 1];
7921 	else
7922 		list = token->next[0];
7923 	for (i = 0; list[i]; ++i)
7924 		;
7925 	if (!i)
7926 		return -1;
7927 	/* If there is a single token, use its completion callback. */
7928 	token = &token_list[list[0]];
7929 	if (i == 1 && token->comp) {
7930 		/* Save index for cmd_flow_get_help(). */
7931 		ctx->prev = list[0];
7932 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
7933 	}
7934 	/* Otherwise make sure the index is valid and use defaults. */
7935 	if (index >= i)
7936 		return -1;
7937 	token = &token_list[list[index]];
7938 	strlcpy(dst, token->name, size);
7939 	/* Save index for cmd_flow_get_help(). */
7940 	ctx->prev = list[index];
7941 	return 0;
7942 }
7943 
7944 /** Populate help strings for current token (cmdline API). */
7945 static int
7946 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
7947 {
7948 	struct context *ctx = &cmd_flow_context;
7949 	const struct token *token = &token_list[ctx->prev];
7950 
7951 	(void)hdr;
7952 	if (!size)
7953 		return -1;
7954 	/* Set token type and update global help with details. */
7955 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
7956 	if (token->help)
7957 		cmd_flow.help_str = token->help;
7958 	else
7959 		cmd_flow.help_str = token->name;
7960 	return 0;
7961 }
7962 
7963 /** Token definition template (cmdline API). */
7964 static struct cmdline_token_hdr cmd_flow_token_hdr = {
7965 	.ops = &(struct cmdline_token_ops){
7966 		.parse = cmd_flow_parse,
7967 		.complete_get_nb = cmd_flow_complete_get_nb,
7968 		.complete_get_elt = cmd_flow_complete_get_elt,
7969 		.get_help = cmd_flow_get_help,
7970 	},
7971 	.offset = 0,
7972 };
7973 
7974 /** Populate the next dynamic token. */
7975 static void
7976 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
7977 	     cmdline_parse_token_hdr_t **hdr_inst)
7978 {
7979 	struct context *ctx = &cmd_flow_context;
7980 
7981 	/* Always reinitialize context before requesting the first token. */
7982 	if (!(hdr_inst - cmd_flow.tokens))
7983 		cmd_flow_context_init(ctx);
7984 	/* Return NULL when no more tokens are expected. */
7985 	if (!ctx->next_num && ctx->curr) {
7986 		*hdr = NULL;
7987 		return;
7988 	}
7989 	/* Determine if command should end here. */
7990 	if (ctx->eol && ctx->last && ctx->next_num) {
7991 		const enum index *list = ctx->next[ctx->next_num - 1];
7992 		int i;
7993 
7994 		for (i = 0; list[i]; ++i) {
7995 			if (list[i] != END)
7996 				continue;
7997 			*hdr = NULL;
7998 			return;
7999 		}
8000 	}
8001 	*hdr = &cmd_flow_token_hdr;
8002 }
8003 
8004 /** Dispatch parsed buffer to function calls. */
8005 static void
8006 cmd_flow_parsed(const struct buffer *in)
8007 {
8008 	switch (in->command) {
8009 	case INDIRECT_ACTION_CREATE:
8010 		port_action_handle_create(
8011 				in->port, in->args.vc.attr.group,
8012 				&((const struct rte_flow_indir_action_conf) {
8013 					.ingress = in->args.vc.attr.ingress,
8014 					.egress = in->args.vc.attr.egress,
8015 					.transfer = in->args.vc.attr.transfer,
8016 				}),
8017 				in->args.vc.actions);
8018 		break;
8019 	case INDIRECT_ACTION_DESTROY:
8020 		port_action_handle_destroy(in->port,
8021 					   in->args.ia_destroy.action_id_n,
8022 					   in->args.ia_destroy.action_id);
8023 		break;
8024 	case INDIRECT_ACTION_UPDATE:
8025 		port_action_handle_update(in->port, in->args.vc.attr.group,
8026 					  in->args.vc.actions);
8027 		break;
8028 	case INDIRECT_ACTION_QUERY:
8029 		port_action_handle_query(in->port, in->args.ia.action_id);
8030 		break;
8031 	case VALIDATE:
8032 		port_flow_validate(in->port, &in->args.vc.attr,
8033 				   in->args.vc.pattern, in->args.vc.actions,
8034 				   &in->args.vc.tunnel_ops);
8035 		break;
8036 	case CREATE:
8037 		port_flow_create(in->port, &in->args.vc.attr,
8038 				 in->args.vc.pattern, in->args.vc.actions,
8039 				 &in->args.vc.tunnel_ops);
8040 		break;
8041 	case DESTROY:
8042 		port_flow_destroy(in->port, in->args.destroy.rule_n,
8043 				  in->args.destroy.rule);
8044 		break;
8045 	case FLUSH:
8046 		port_flow_flush(in->port);
8047 		break;
8048 	case DUMP_ONE:
8049 	case DUMP_ALL:
8050 		port_flow_dump(in->port, in->args.dump.mode,
8051 				in->args.dump.rule, in->args.dump.file);
8052 		break;
8053 	case QUERY:
8054 		port_flow_query(in->port, in->args.query.rule,
8055 				&in->args.query.action);
8056 		break;
8057 	case LIST:
8058 		port_flow_list(in->port, in->args.list.group_n,
8059 			       in->args.list.group);
8060 		break;
8061 	case ISOLATE:
8062 		port_flow_isolate(in->port, in->args.isolate.set);
8063 		break;
8064 	case AGED:
8065 		port_flow_aged(in->port, in->args.aged.destroy);
8066 		break;
8067 	case TUNNEL_CREATE:
8068 		port_flow_tunnel_create(in->port, &in->args.vc.tunnel_ops);
8069 		break;
8070 	case TUNNEL_DESTROY:
8071 		port_flow_tunnel_destroy(in->port, in->args.vc.tunnel_ops.id);
8072 		break;
8073 	case TUNNEL_LIST:
8074 		port_flow_tunnel_list(in->port);
8075 		break;
8076 	case ACTION_POL_G:
8077 		port_meter_policy_add(in->port, in->args.policy.policy_id,
8078 					in->args.vc.actions);
8079 		break;
8080 	default:
8081 		break;
8082 	}
8083 }
8084 
8085 /** Token generator and output processing callback (cmdline API). */
8086 static void
8087 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
8088 {
8089 	if (cl == NULL)
8090 		cmd_flow_tok(arg0, arg2);
8091 	else
8092 		cmd_flow_parsed(arg0);
8093 }
8094 
8095 /** Global parser instance (cmdline API). */
8096 cmdline_parse_inst_t cmd_flow = {
8097 	.f = cmd_flow_cb,
8098 	.data = NULL, /**< Unused. */
8099 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
8100 	.tokens = {
8101 		NULL,
8102 	}, /**< Tokens are returned by cmd_flow_tok(). */
8103 };
8104 
8105 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
8106 
8107 static void
8108 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
8109 {
8110 	struct rte_ipv4_hdr *ipv4;
8111 	struct rte_ether_hdr *eth;
8112 	struct rte_ipv6_hdr *ipv6;
8113 	struct rte_vxlan_hdr *vxlan;
8114 	struct rte_vxlan_gpe_hdr *gpe;
8115 	struct rte_flow_item_nvgre *nvgre;
8116 	uint32_t ipv6_vtc_flow;
8117 
8118 	switch (item->type) {
8119 	case RTE_FLOW_ITEM_TYPE_ETH:
8120 		eth = (struct rte_ether_hdr *)buf;
8121 		if (next_proto)
8122 			eth->ether_type = rte_cpu_to_be_16(next_proto);
8123 		break;
8124 	case RTE_FLOW_ITEM_TYPE_IPV4:
8125 		ipv4 = (struct rte_ipv4_hdr *)buf;
8126 		ipv4->version_ihl = 0x45;
8127 		if (next_proto && ipv4->next_proto_id == 0)
8128 			ipv4->next_proto_id = (uint8_t)next_proto;
8129 		break;
8130 	case RTE_FLOW_ITEM_TYPE_IPV6:
8131 		ipv6 = (struct rte_ipv6_hdr *)buf;
8132 		if (next_proto && ipv6->proto == 0)
8133 			ipv6->proto = (uint8_t)next_proto;
8134 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->vtc_flow);
8135 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
8136 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
8137 		ipv6->vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
8138 		break;
8139 	case RTE_FLOW_ITEM_TYPE_VXLAN:
8140 		vxlan = (struct rte_vxlan_hdr *)buf;
8141 		vxlan->vx_flags = 0x08;
8142 		break;
8143 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
8144 		gpe = (struct rte_vxlan_gpe_hdr *)buf;
8145 		gpe->vx_flags = 0x0C;
8146 		break;
8147 	case RTE_FLOW_ITEM_TYPE_NVGRE:
8148 		nvgre = (struct rte_flow_item_nvgre *)buf;
8149 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
8150 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
8151 		break;
8152 	default:
8153 		break;
8154 	}
8155 }
8156 
8157 /** Helper of get item's default mask. */
8158 static const void *
8159 flow_item_default_mask(const struct rte_flow_item *item)
8160 {
8161 	const void *mask = NULL;
8162 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
8163 
8164 	switch (item->type) {
8165 	case RTE_FLOW_ITEM_TYPE_ANY:
8166 		mask = &rte_flow_item_any_mask;
8167 		break;
8168 	case RTE_FLOW_ITEM_TYPE_VF:
8169 		mask = &rte_flow_item_vf_mask;
8170 		break;
8171 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
8172 		mask = &rte_flow_item_port_id_mask;
8173 		break;
8174 	case RTE_FLOW_ITEM_TYPE_RAW:
8175 		mask = &rte_flow_item_raw_mask;
8176 		break;
8177 	case RTE_FLOW_ITEM_TYPE_ETH:
8178 		mask = &rte_flow_item_eth_mask;
8179 		break;
8180 	case RTE_FLOW_ITEM_TYPE_VLAN:
8181 		mask = &rte_flow_item_vlan_mask;
8182 		break;
8183 	case RTE_FLOW_ITEM_TYPE_IPV4:
8184 		mask = &rte_flow_item_ipv4_mask;
8185 		break;
8186 	case RTE_FLOW_ITEM_TYPE_IPV6:
8187 		mask = &rte_flow_item_ipv6_mask;
8188 		break;
8189 	case RTE_FLOW_ITEM_TYPE_ICMP:
8190 		mask = &rte_flow_item_icmp_mask;
8191 		break;
8192 	case RTE_FLOW_ITEM_TYPE_UDP:
8193 		mask = &rte_flow_item_udp_mask;
8194 		break;
8195 	case RTE_FLOW_ITEM_TYPE_TCP:
8196 		mask = &rte_flow_item_tcp_mask;
8197 		break;
8198 	case RTE_FLOW_ITEM_TYPE_SCTP:
8199 		mask = &rte_flow_item_sctp_mask;
8200 		break;
8201 	case RTE_FLOW_ITEM_TYPE_VXLAN:
8202 		mask = &rte_flow_item_vxlan_mask;
8203 		break;
8204 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
8205 		mask = &rte_flow_item_vxlan_gpe_mask;
8206 		break;
8207 	case RTE_FLOW_ITEM_TYPE_E_TAG:
8208 		mask = &rte_flow_item_e_tag_mask;
8209 		break;
8210 	case RTE_FLOW_ITEM_TYPE_NVGRE:
8211 		mask = &rte_flow_item_nvgre_mask;
8212 		break;
8213 	case RTE_FLOW_ITEM_TYPE_MPLS:
8214 		mask = &rte_flow_item_mpls_mask;
8215 		break;
8216 	case RTE_FLOW_ITEM_TYPE_GRE:
8217 		mask = &rte_flow_item_gre_mask;
8218 		break;
8219 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
8220 		mask = &gre_key_default_mask;
8221 		break;
8222 	case RTE_FLOW_ITEM_TYPE_META:
8223 		mask = &rte_flow_item_meta_mask;
8224 		break;
8225 	case RTE_FLOW_ITEM_TYPE_FUZZY:
8226 		mask = &rte_flow_item_fuzzy_mask;
8227 		break;
8228 	case RTE_FLOW_ITEM_TYPE_GTP:
8229 		mask = &rte_flow_item_gtp_mask;
8230 		break;
8231 	case RTE_FLOW_ITEM_TYPE_GTP_PSC:
8232 		mask = &rte_flow_item_gtp_psc_mask;
8233 		break;
8234 	case RTE_FLOW_ITEM_TYPE_GENEVE:
8235 		mask = &rte_flow_item_geneve_mask;
8236 		break;
8237 	case RTE_FLOW_ITEM_TYPE_GENEVE_OPT:
8238 		mask = &rte_flow_item_geneve_opt_mask;
8239 		break;
8240 	case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
8241 		mask = &rte_flow_item_pppoe_proto_id_mask;
8242 		break;
8243 	case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
8244 		mask = &rte_flow_item_l2tpv3oip_mask;
8245 		break;
8246 	case RTE_FLOW_ITEM_TYPE_ESP:
8247 		mask = &rte_flow_item_esp_mask;
8248 		break;
8249 	case RTE_FLOW_ITEM_TYPE_AH:
8250 		mask = &rte_flow_item_ah_mask;
8251 		break;
8252 	case RTE_FLOW_ITEM_TYPE_PFCP:
8253 		mask = &rte_flow_item_pfcp_mask;
8254 		break;
8255 	default:
8256 		break;
8257 	}
8258 	return mask;
8259 }
8260 
8261 /** Dispatch parsed buffer to function calls. */
8262 static void
8263 cmd_set_raw_parsed_sample(const struct buffer *in)
8264 {
8265 	uint32_t n = in->args.vc.actions_n;
8266 	uint32_t i = 0;
8267 	struct rte_flow_action *action = NULL;
8268 	struct rte_flow_action *data = NULL;
8269 	const struct rte_flow_action_rss *rss = NULL;
8270 	size_t size = 0;
8271 	uint16_t idx = in->port; /* We borrow port field as index */
8272 	uint32_t max_size = sizeof(struct rte_flow_action) *
8273 						ACTION_SAMPLE_ACTIONS_NUM;
8274 
8275 	RTE_ASSERT(in->command == SET_SAMPLE_ACTIONS);
8276 	data = (struct rte_flow_action *)&raw_sample_confs[idx].data;
8277 	memset(data, 0x00, max_size);
8278 	for (; i <= n - 1; i++) {
8279 		action = in->args.vc.actions + i;
8280 		if (action->type == RTE_FLOW_ACTION_TYPE_END)
8281 			break;
8282 		switch (action->type) {
8283 		case RTE_FLOW_ACTION_TYPE_MARK:
8284 			size = sizeof(struct rte_flow_action_mark);
8285 			rte_memcpy(&sample_mark[idx],
8286 				(const void *)action->conf, size);
8287 			action->conf = &sample_mark[idx];
8288 			break;
8289 		case RTE_FLOW_ACTION_TYPE_COUNT:
8290 			size = sizeof(struct rte_flow_action_count);
8291 			rte_memcpy(&sample_count[idx],
8292 				(const void *)action->conf, size);
8293 			action->conf = &sample_count[idx];
8294 			break;
8295 		case RTE_FLOW_ACTION_TYPE_QUEUE:
8296 			size = sizeof(struct rte_flow_action_queue);
8297 			rte_memcpy(&sample_queue[idx],
8298 				(const void *)action->conf, size);
8299 			action->conf = &sample_queue[idx];
8300 			break;
8301 		case RTE_FLOW_ACTION_TYPE_RSS:
8302 			size = sizeof(struct rte_flow_action_rss);
8303 			rss = action->conf;
8304 			rte_memcpy(&sample_rss_data[idx].conf,
8305 				   (const void *)rss, size);
8306 			if (rss->key_len && rss->key) {
8307 				sample_rss_data[idx].conf.key =
8308 						sample_rss_data[idx].key;
8309 				rte_memcpy((void *)((uintptr_t)
8310 					   sample_rss_data[idx].conf.key),
8311 					   (const void *)rss->key,
8312 					   sizeof(uint8_t) * rss->key_len);
8313 			}
8314 			if (rss->queue_num && rss->queue) {
8315 				sample_rss_data[idx].conf.queue =
8316 						sample_rss_data[idx].queue;
8317 				rte_memcpy((void *)((uintptr_t)
8318 					   sample_rss_data[idx].conf.queue),
8319 					   (const void *)rss->queue,
8320 					   sizeof(uint16_t) * rss->queue_num);
8321 			}
8322 			action->conf = &sample_rss_data[idx].conf;
8323 			break;
8324 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
8325 			size = sizeof(struct rte_flow_action_raw_encap);
8326 			rte_memcpy(&sample_encap[idx],
8327 				(const void *)action->conf, size);
8328 			action->conf = &sample_encap[idx];
8329 			break;
8330 		case RTE_FLOW_ACTION_TYPE_PORT_ID:
8331 			size = sizeof(struct rte_flow_action_port_id);
8332 			rte_memcpy(&sample_port_id[idx],
8333 				(const void *)action->conf, size);
8334 			action->conf = &sample_port_id[idx];
8335 			break;
8336 		case RTE_FLOW_ACTION_TYPE_PF:
8337 			break;
8338 		case RTE_FLOW_ACTION_TYPE_VF:
8339 			size = sizeof(struct rte_flow_action_vf);
8340 			rte_memcpy(&sample_vf[idx],
8341 					(const void *)action->conf, size);
8342 			action->conf = &sample_vf[idx];
8343 			break;
8344 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
8345 			size = sizeof(struct rte_flow_action_vxlan_encap);
8346 			parse_setup_vxlan_encap_data(&sample_vxlan_encap[idx]);
8347 			action->conf = &sample_vxlan_encap[idx].conf;
8348 			break;
8349 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
8350 			size = sizeof(struct rte_flow_action_nvgre_encap);
8351 			parse_setup_nvgre_encap_data(&sample_nvgre_encap[idx]);
8352 			action->conf = &sample_nvgre_encap[idx];
8353 			break;
8354 		default:
8355 			printf("Error - Not supported action\n");
8356 			return;
8357 		}
8358 		rte_memcpy(data, action, sizeof(struct rte_flow_action));
8359 		data++;
8360 	}
8361 }
8362 
8363 /** Dispatch parsed buffer to function calls. */
8364 static void
8365 cmd_set_raw_parsed(const struct buffer *in)
8366 {
8367 	uint32_t n = in->args.vc.pattern_n;
8368 	int i = 0;
8369 	struct rte_flow_item *item = NULL;
8370 	size_t size = 0;
8371 	uint8_t *data = NULL;
8372 	uint8_t *data_tail = NULL;
8373 	size_t *total_size = NULL;
8374 	uint16_t upper_layer = 0;
8375 	uint16_t proto = 0;
8376 	uint16_t idx = in->port; /* We borrow port field as index */
8377 	int gtp_psc = -1; /* GTP PSC option index. */
8378 
8379 	if (in->command == SET_SAMPLE_ACTIONS)
8380 		return cmd_set_raw_parsed_sample(in);
8381 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
8382 		   in->command == SET_RAW_DECAP);
8383 	if (in->command == SET_RAW_ENCAP) {
8384 		total_size = &raw_encap_confs[idx].size;
8385 		data = (uint8_t *)&raw_encap_confs[idx].data;
8386 	} else {
8387 		total_size = &raw_decap_confs[idx].size;
8388 		data = (uint8_t *)&raw_decap_confs[idx].data;
8389 	}
8390 	*total_size = 0;
8391 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
8392 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
8393 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
8394 	for (i = n - 1 ; i >= 0; --i) {
8395 		const struct rte_flow_item_gtp *gtp;
8396 		const struct rte_flow_item_geneve_opt *opt;
8397 
8398 		item = in->args.vc.pattern + i;
8399 		if (item->spec == NULL)
8400 			item->spec = flow_item_default_mask(item);
8401 		switch (item->type) {
8402 		case RTE_FLOW_ITEM_TYPE_ETH:
8403 			size = sizeof(struct rte_ether_hdr);
8404 			break;
8405 		case RTE_FLOW_ITEM_TYPE_VLAN:
8406 			size = sizeof(struct rte_vlan_hdr);
8407 			proto = RTE_ETHER_TYPE_VLAN;
8408 			break;
8409 		case RTE_FLOW_ITEM_TYPE_IPV4:
8410 			size = sizeof(struct rte_ipv4_hdr);
8411 			proto = RTE_ETHER_TYPE_IPV4;
8412 			break;
8413 		case RTE_FLOW_ITEM_TYPE_IPV6:
8414 			size = sizeof(struct rte_ipv6_hdr);
8415 			proto = RTE_ETHER_TYPE_IPV6;
8416 			break;
8417 		case RTE_FLOW_ITEM_TYPE_UDP:
8418 			size = sizeof(struct rte_udp_hdr);
8419 			proto = 0x11;
8420 			break;
8421 		case RTE_FLOW_ITEM_TYPE_TCP:
8422 			size = sizeof(struct rte_tcp_hdr);
8423 			proto = 0x06;
8424 			break;
8425 		case RTE_FLOW_ITEM_TYPE_VXLAN:
8426 			size = sizeof(struct rte_vxlan_hdr);
8427 			break;
8428 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
8429 			size = sizeof(struct rte_vxlan_gpe_hdr);
8430 			break;
8431 		case RTE_FLOW_ITEM_TYPE_GRE:
8432 			size = sizeof(struct rte_gre_hdr);
8433 			proto = 0x2F;
8434 			break;
8435 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
8436 			size = sizeof(rte_be32_t);
8437 			proto = 0x0;
8438 			break;
8439 		case RTE_FLOW_ITEM_TYPE_MPLS:
8440 			size = sizeof(struct rte_mpls_hdr);
8441 			proto = 0x0;
8442 			break;
8443 		case RTE_FLOW_ITEM_TYPE_NVGRE:
8444 			size = sizeof(struct rte_flow_item_nvgre);
8445 			proto = 0x2F;
8446 			break;
8447 		case RTE_FLOW_ITEM_TYPE_GENEVE:
8448 			size = sizeof(struct rte_geneve_hdr);
8449 			break;
8450 		case RTE_FLOW_ITEM_TYPE_GENEVE_OPT:
8451 			opt = (const struct rte_flow_item_geneve_opt *)
8452 								item->spec;
8453 			size = offsetof(struct rte_flow_item_geneve_opt, data);
8454 			if (opt->option_len && opt->data) {
8455 				*total_size += opt->option_len *
8456 					       sizeof(uint32_t);
8457 				rte_memcpy(data_tail - (*total_size),
8458 					   opt->data,
8459 					   opt->option_len * sizeof(uint32_t));
8460 			}
8461 			break;
8462 		case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
8463 			size = sizeof(rte_be32_t);
8464 			proto = 0x73;
8465 			break;
8466 		case RTE_FLOW_ITEM_TYPE_ESP:
8467 			size = sizeof(struct rte_esp_hdr);
8468 			proto = 0x32;
8469 			break;
8470 		case RTE_FLOW_ITEM_TYPE_AH:
8471 			size = sizeof(struct rte_flow_item_ah);
8472 			proto = 0x33;
8473 			break;
8474 		case RTE_FLOW_ITEM_TYPE_GTP:
8475 			if (gtp_psc < 0) {
8476 				size = sizeof(struct rte_gtp_hdr);
8477 				break;
8478 			}
8479 			if (gtp_psc != i + 1) {
8480 				printf("Error - GTP PSC does not follow GTP\n");
8481 				goto error;
8482 			}
8483 			gtp = item->spec;
8484 			if ((gtp->v_pt_rsv_flags & 0x07) != 0x04) {
8485 				/* Only E flag should be set. */
8486 				printf("Error - GTP unsupported flags\n");
8487 				goto error;
8488 			} else {
8489 				struct rte_gtp_hdr_ext_word ext_word = {
8490 					.next_ext = 0x85
8491 				};
8492 
8493 				/* We have to add GTP header extra word. */
8494 				*total_size += sizeof(ext_word);
8495 				rte_memcpy(data_tail - (*total_size),
8496 					   &ext_word, sizeof(ext_word));
8497 			}
8498 			size = sizeof(struct rte_gtp_hdr);
8499 			break;
8500 		case RTE_FLOW_ITEM_TYPE_GTP_PSC:
8501 			if (gtp_psc >= 0) {
8502 				printf("Error - Multiple GTP PSC items\n");
8503 				goto error;
8504 			} else {
8505 				const struct rte_flow_item_gtp_psc
8506 					*opt = item->spec;
8507 				struct {
8508 					uint8_t len;
8509 					uint8_t pdu_type;
8510 					uint8_t qfi;
8511 					uint8_t next;
8512 				} psc;
8513 
8514 				if (opt->pdu_type & 0x0F) {
8515 					/* Support the minimal option only. */
8516 					printf("Error - GTP PSC option with "
8517 					       "extra fields not supported\n");
8518 					goto error;
8519 				}
8520 				psc.len = sizeof(psc);
8521 				psc.pdu_type = opt->pdu_type;
8522 				psc.qfi = opt->qfi;
8523 				psc.next = 0;
8524 				*total_size += sizeof(psc);
8525 				rte_memcpy(data_tail - (*total_size),
8526 					   &psc, sizeof(psc));
8527 				gtp_psc = i;
8528 				size = 0;
8529 			}
8530 			break;
8531 		case RTE_FLOW_ITEM_TYPE_PFCP:
8532 			size = sizeof(struct rte_flow_item_pfcp);
8533 			break;
8534 		default:
8535 			printf("Error - Not supported item\n");
8536 			goto error;
8537 		}
8538 		*total_size += size;
8539 		rte_memcpy(data_tail - (*total_size), item->spec, size);
8540 		/* update some fields which cannot be set by cmdline */
8541 		update_fields((data_tail - (*total_size)), item,
8542 			      upper_layer);
8543 		upper_layer = proto;
8544 	}
8545 	if (verbose_level & 0x1)
8546 		printf("total data size is %zu\n", (*total_size));
8547 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
8548 	memmove(data, (data_tail - (*total_size)), *total_size);
8549 	return;
8550 
8551 error:
8552 	*total_size = 0;
8553 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
8554 }
8555 
8556 /** Populate help strings for current token (cmdline API). */
8557 static int
8558 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
8559 		     unsigned int size)
8560 {
8561 	struct context *ctx = &cmd_flow_context;
8562 	const struct token *token = &token_list[ctx->prev];
8563 
8564 	(void)hdr;
8565 	if (!size)
8566 		return -1;
8567 	/* Set token type and update global help with details. */
8568 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
8569 	if (token->help)
8570 		cmd_set_raw.help_str = token->help;
8571 	else
8572 		cmd_set_raw.help_str = token->name;
8573 	return 0;
8574 }
8575 
8576 /** Token definition template (cmdline API). */
8577 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
8578 	.ops = &(struct cmdline_token_ops){
8579 		.parse = cmd_flow_parse,
8580 		.complete_get_nb = cmd_flow_complete_get_nb,
8581 		.complete_get_elt = cmd_flow_complete_get_elt,
8582 		.get_help = cmd_set_raw_get_help,
8583 	},
8584 	.offset = 0,
8585 };
8586 
8587 /** Populate the next dynamic token. */
8588 static void
8589 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
8590 	     cmdline_parse_token_hdr_t **hdr_inst)
8591 {
8592 	struct context *ctx = &cmd_flow_context;
8593 
8594 	/* Always reinitialize context before requesting the first token. */
8595 	if (!(hdr_inst - cmd_set_raw.tokens)) {
8596 		cmd_flow_context_init(ctx);
8597 		ctx->curr = START_SET;
8598 	}
8599 	/* Return NULL when no more tokens are expected. */
8600 	if (!ctx->next_num && (ctx->curr != START_SET)) {
8601 		*hdr = NULL;
8602 		return;
8603 	}
8604 	/* Determine if command should end here. */
8605 	if (ctx->eol && ctx->last && ctx->next_num) {
8606 		const enum index *list = ctx->next[ctx->next_num - 1];
8607 		int i;
8608 
8609 		for (i = 0; list[i]; ++i) {
8610 			if (list[i] != END)
8611 				continue;
8612 			*hdr = NULL;
8613 			return;
8614 		}
8615 	}
8616 	*hdr = &cmd_set_raw_token_hdr;
8617 }
8618 
8619 /** Token generator and output processing callback (cmdline API). */
8620 static void
8621 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
8622 {
8623 	if (cl == NULL)
8624 		cmd_set_raw_tok(arg0, arg2);
8625 	else
8626 		cmd_set_raw_parsed(arg0);
8627 }
8628 
8629 /** Global parser instance (cmdline API). */
8630 cmdline_parse_inst_t cmd_set_raw = {
8631 	.f = cmd_set_raw_cb,
8632 	.data = NULL, /**< Unused. */
8633 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
8634 	.tokens = {
8635 		NULL,
8636 	}, /**< Tokens are returned by cmd_flow_tok(). */
8637 };
8638 
8639 /* *** display raw_encap/raw_decap buf */
8640 struct cmd_show_set_raw_result {
8641 	cmdline_fixed_string_t cmd_show;
8642 	cmdline_fixed_string_t cmd_what;
8643 	cmdline_fixed_string_t cmd_all;
8644 	uint16_t cmd_index;
8645 };
8646 
8647 static void
8648 cmd_show_set_raw_parsed(void *parsed_result, struct cmdline *cl, void *data)
8649 {
8650 	struct cmd_show_set_raw_result *res = parsed_result;
8651 	uint16_t index = res->cmd_index;
8652 	uint8_t all = 0;
8653 	uint8_t *raw_data = NULL;
8654 	size_t raw_size = 0;
8655 	char title[16] = {0};
8656 
8657 	RTE_SET_USED(cl);
8658 	RTE_SET_USED(data);
8659 	if (!strcmp(res->cmd_all, "all")) {
8660 		all = 1;
8661 		index = 0;
8662 	} else if (index >= RAW_ENCAP_CONFS_MAX_NUM) {
8663 		printf("index should be 0-%u\n", RAW_ENCAP_CONFS_MAX_NUM - 1);
8664 		return;
8665 	}
8666 	do {
8667 		if (!strcmp(res->cmd_what, "raw_encap")) {
8668 			raw_data = (uint8_t *)&raw_encap_confs[index].data;
8669 			raw_size = raw_encap_confs[index].size;
8670 			snprintf(title, 16, "\nindex: %u", index);
8671 			rte_hexdump(stdout, title, raw_data, raw_size);
8672 		} else {
8673 			raw_data = (uint8_t *)&raw_decap_confs[index].data;
8674 			raw_size = raw_decap_confs[index].size;
8675 			snprintf(title, 16, "\nindex: %u", index);
8676 			rte_hexdump(stdout, title, raw_data, raw_size);
8677 		}
8678 	} while (all && ++index < RAW_ENCAP_CONFS_MAX_NUM);
8679 }
8680 
8681 cmdline_parse_token_string_t cmd_show_set_raw_cmd_show =
8682 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8683 			cmd_show, "show");
8684 cmdline_parse_token_string_t cmd_show_set_raw_cmd_what =
8685 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8686 			cmd_what, "raw_encap#raw_decap");
8687 cmdline_parse_token_num_t cmd_show_set_raw_cmd_index =
8688 	TOKEN_NUM_INITIALIZER(struct cmd_show_set_raw_result,
8689 			cmd_index, RTE_UINT16);
8690 cmdline_parse_token_string_t cmd_show_set_raw_cmd_all =
8691 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8692 			cmd_all, "all");
8693 cmdline_parse_inst_t cmd_show_set_raw = {
8694 	.f = cmd_show_set_raw_parsed,
8695 	.data = NULL,
8696 	.help_str = "show <raw_encap|raw_decap> <index>",
8697 	.tokens = {
8698 		(void *)&cmd_show_set_raw_cmd_show,
8699 		(void *)&cmd_show_set_raw_cmd_what,
8700 		(void *)&cmd_show_set_raw_cmd_index,
8701 		NULL,
8702 	},
8703 };
8704 cmdline_parse_inst_t cmd_show_set_raw_all = {
8705 	.f = cmd_show_set_raw_parsed,
8706 	.data = NULL,
8707 	.help_str = "show <raw_encap|raw_decap> all",
8708 	.tokens = {
8709 		(void *)&cmd_show_set_raw_cmd_show,
8710 		(void *)&cmd_show_set_raw_cmd_what,
8711 		(void *)&cmd_show_set_raw_cmd_all,
8712 		NULL,
8713 	},
8714 };
8715