xref: /dpdk/app/test-pmd/cmdline_flow.c (revision c39d1e082a4b426e915074ce30eb6f410ee2654a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 	START_SET,
32 	END_SET,
33 
34 	/* Common tokens. */
35 	INTEGER,
36 	UNSIGNED,
37 	PREFIX,
38 	BOOLEAN,
39 	STRING,
40 	HEX,
41 	MAC_ADDR,
42 	IPV4_ADDR,
43 	IPV6_ADDR,
44 	RULE_ID,
45 	PORT_ID,
46 	GROUP_ID,
47 	PRIORITY_LEVEL,
48 
49 	/* Top-level command. */
50 	SET,
51 	/* Sub-leve commands. */
52 	SET_RAW_ENCAP,
53 	SET_RAW_DECAP,
54 
55 	/* Top-level command. */
56 	FLOW,
57 	/* Sub-level commands. */
58 	VALIDATE,
59 	CREATE,
60 	DESTROY,
61 	FLUSH,
62 	QUERY,
63 	LIST,
64 	ISOLATE,
65 
66 	/* Destroy arguments. */
67 	DESTROY_RULE,
68 
69 	/* Query arguments. */
70 	QUERY_ACTION,
71 
72 	/* List arguments. */
73 	LIST_GROUP,
74 
75 	/* Validate/create arguments. */
76 	GROUP,
77 	PRIORITY,
78 	INGRESS,
79 	EGRESS,
80 	TRANSFER,
81 
82 	/* Validate/create pattern. */
83 	PATTERN,
84 	ITEM_PARAM_IS,
85 	ITEM_PARAM_SPEC,
86 	ITEM_PARAM_LAST,
87 	ITEM_PARAM_MASK,
88 	ITEM_PARAM_PREFIX,
89 	ITEM_NEXT,
90 	ITEM_END,
91 	ITEM_VOID,
92 	ITEM_INVERT,
93 	ITEM_ANY,
94 	ITEM_ANY_NUM,
95 	ITEM_PF,
96 	ITEM_VF,
97 	ITEM_VF_ID,
98 	ITEM_PHY_PORT,
99 	ITEM_PHY_PORT_INDEX,
100 	ITEM_PORT_ID,
101 	ITEM_PORT_ID_ID,
102 	ITEM_MARK,
103 	ITEM_MARK_ID,
104 	ITEM_RAW,
105 	ITEM_RAW_RELATIVE,
106 	ITEM_RAW_SEARCH,
107 	ITEM_RAW_OFFSET,
108 	ITEM_RAW_LIMIT,
109 	ITEM_RAW_PATTERN,
110 	ITEM_ETH,
111 	ITEM_ETH_DST,
112 	ITEM_ETH_SRC,
113 	ITEM_ETH_TYPE,
114 	ITEM_VLAN,
115 	ITEM_VLAN_TCI,
116 	ITEM_VLAN_PCP,
117 	ITEM_VLAN_DEI,
118 	ITEM_VLAN_VID,
119 	ITEM_VLAN_INNER_TYPE,
120 	ITEM_IPV4,
121 	ITEM_IPV4_TOS,
122 	ITEM_IPV4_TTL,
123 	ITEM_IPV4_PROTO,
124 	ITEM_IPV4_SRC,
125 	ITEM_IPV4_DST,
126 	ITEM_IPV6,
127 	ITEM_IPV6_TC,
128 	ITEM_IPV6_FLOW,
129 	ITEM_IPV6_PROTO,
130 	ITEM_IPV6_HOP,
131 	ITEM_IPV6_SRC,
132 	ITEM_IPV6_DST,
133 	ITEM_ICMP,
134 	ITEM_ICMP_TYPE,
135 	ITEM_ICMP_CODE,
136 	ITEM_UDP,
137 	ITEM_UDP_SRC,
138 	ITEM_UDP_DST,
139 	ITEM_TCP,
140 	ITEM_TCP_SRC,
141 	ITEM_TCP_DST,
142 	ITEM_TCP_FLAGS,
143 	ITEM_SCTP,
144 	ITEM_SCTP_SRC,
145 	ITEM_SCTP_DST,
146 	ITEM_SCTP_TAG,
147 	ITEM_SCTP_CKSUM,
148 	ITEM_VXLAN,
149 	ITEM_VXLAN_VNI,
150 	ITEM_E_TAG,
151 	ITEM_E_TAG_GRP_ECID_B,
152 	ITEM_NVGRE,
153 	ITEM_NVGRE_TNI,
154 	ITEM_MPLS,
155 	ITEM_MPLS_LABEL,
156 	ITEM_MPLS_TC,
157 	ITEM_MPLS_S,
158 	ITEM_GRE,
159 	ITEM_GRE_PROTO,
160 	ITEM_GRE_C_RSVD0_VER,
161 	ITEM_GRE_C_BIT,
162 	ITEM_GRE_K_BIT,
163 	ITEM_GRE_S_BIT,
164 	ITEM_FUZZY,
165 	ITEM_FUZZY_THRESH,
166 	ITEM_GTP,
167 	ITEM_GTP_TEID,
168 	ITEM_GTPC,
169 	ITEM_GTPU,
170 	ITEM_GENEVE,
171 	ITEM_GENEVE_VNI,
172 	ITEM_GENEVE_PROTO,
173 	ITEM_VXLAN_GPE,
174 	ITEM_VXLAN_GPE_VNI,
175 	ITEM_ARP_ETH_IPV4,
176 	ITEM_ARP_ETH_IPV4_SHA,
177 	ITEM_ARP_ETH_IPV4_SPA,
178 	ITEM_ARP_ETH_IPV4_THA,
179 	ITEM_ARP_ETH_IPV4_TPA,
180 	ITEM_IPV6_EXT,
181 	ITEM_IPV6_EXT_NEXT_HDR,
182 	ITEM_ICMP6,
183 	ITEM_ICMP6_TYPE,
184 	ITEM_ICMP6_CODE,
185 	ITEM_ICMP6_ND_NS,
186 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
187 	ITEM_ICMP6_ND_NA,
188 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
189 	ITEM_ICMP6_ND_OPT,
190 	ITEM_ICMP6_ND_OPT_TYPE,
191 	ITEM_ICMP6_ND_OPT_SLA_ETH,
192 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
193 	ITEM_ICMP6_ND_OPT_TLA_ETH,
194 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
195 	ITEM_META,
196 	ITEM_META_DATA,
197 	ITEM_GRE_KEY,
198 	ITEM_GRE_KEY_VALUE,
199 	ITEM_GTP_PSC,
200 	ITEM_GTP_PSC_QFI,
201 	ITEM_GTP_PSC_PDU_T,
202 	ITEM_PPPOES,
203 	ITEM_PPPOED,
204 	ITEM_PPPOE_SEID,
205 	ITEM_PPPOE_PROTO_ID,
206 
207 	/* Validate/create actions. */
208 	ACTIONS,
209 	ACTION_NEXT,
210 	ACTION_END,
211 	ACTION_VOID,
212 	ACTION_PASSTHRU,
213 	ACTION_JUMP,
214 	ACTION_JUMP_GROUP,
215 	ACTION_MARK,
216 	ACTION_MARK_ID,
217 	ACTION_FLAG,
218 	ACTION_QUEUE,
219 	ACTION_QUEUE_INDEX,
220 	ACTION_DROP,
221 	ACTION_COUNT,
222 	ACTION_COUNT_SHARED,
223 	ACTION_COUNT_ID,
224 	ACTION_RSS,
225 	ACTION_RSS_FUNC,
226 	ACTION_RSS_LEVEL,
227 	ACTION_RSS_FUNC_DEFAULT,
228 	ACTION_RSS_FUNC_TOEPLITZ,
229 	ACTION_RSS_FUNC_SIMPLE_XOR,
230 	ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
231 	ACTION_RSS_TYPES,
232 	ACTION_RSS_TYPE,
233 	ACTION_RSS_KEY,
234 	ACTION_RSS_KEY_LEN,
235 	ACTION_RSS_QUEUES,
236 	ACTION_RSS_QUEUE,
237 	ACTION_PF,
238 	ACTION_VF,
239 	ACTION_VF_ORIGINAL,
240 	ACTION_VF_ID,
241 	ACTION_PHY_PORT,
242 	ACTION_PHY_PORT_ORIGINAL,
243 	ACTION_PHY_PORT_INDEX,
244 	ACTION_PORT_ID,
245 	ACTION_PORT_ID_ORIGINAL,
246 	ACTION_PORT_ID_ID,
247 	ACTION_METER,
248 	ACTION_METER_ID,
249 	ACTION_OF_SET_MPLS_TTL,
250 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
251 	ACTION_OF_DEC_MPLS_TTL,
252 	ACTION_OF_SET_NW_TTL,
253 	ACTION_OF_SET_NW_TTL_NW_TTL,
254 	ACTION_OF_DEC_NW_TTL,
255 	ACTION_OF_COPY_TTL_OUT,
256 	ACTION_OF_COPY_TTL_IN,
257 	ACTION_OF_POP_VLAN,
258 	ACTION_OF_PUSH_VLAN,
259 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
260 	ACTION_OF_SET_VLAN_VID,
261 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
262 	ACTION_OF_SET_VLAN_PCP,
263 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
264 	ACTION_OF_POP_MPLS,
265 	ACTION_OF_POP_MPLS_ETHERTYPE,
266 	ACTION_OF_PUSH_MPLS,
267 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
268 	ACTION_VXLAN_ENCAP,
269 	ACTION_VXLAN_DECAP,
270 	ACTION_NVGRE_ENCAP,
271 	ACTION_NVGRE_DECAP,
272 	ACTION_L2_ENCAP,
273 	ACTION_L2_DECAP,
274 	ACTION_MPLSOGRE_ENCAP,
275 	ACTION_MPLSOGRE_DECAP,
276 	ACTION_MPLSOUDP_ENCAP,
277 	ACTION_MPLSOUDP_DECAP,
278 	ACTION_SET_IPV4_SRC,
279 	ACTION_SET_IPV4_SRC_IPV4_SRC,
280 	ACTION_SET_IPV4_DST,
281 	ACTION_SET_IPV4_DST_IPV4_DST,
282 	ACTION_SET_IPV6_SRC,
283 	ACTION_SET_IPV6_SRC_IPV6_SRC,
284 	ACTION_SET_IPV6_DST,
285 	ACTION_SET_IPV6_DST_IPV6_DST,
286 	ACTION_SET_TP_SRC,
287 	ACTION_SET_TP_SRC_TP_SRC,
288 	ACTION_SET_TP_DST,
289 	ACTION_SET_TP_DST_TP_DST,
290 	ACTION_MAC_SWAP,
291 	ACTION_DEC_TTL,
292 	ACTION_SET_TTL,
293 	ACTION_SET_TTL_TTL,
294 	ACTION_SET_MAC_SRC,
295 	ACTION_SET_MAC_SRC_MAC_SRC,
296 	ACTION_SET_MAC_DST,
297 	ACTION_SET_MAC_DST_MAC_DST,
298 	ACTION_INC_TCP_SEQ,
299 	ACTION_INC_TCP_SEQ_VALUE,
300 	ACTION_DEC_TCP_SEQ,
301 	ACTION_DEC_TCP_SEQ_VALUE,
302 	ACTION_INC_TCP_ACK,
303 	ACTION_INC_TCP_ACK_VALUE,
304 	ACTION_DEC_TCP_ACK,
305 	ACTION_DEC_TCP_ACK_VALUE,
306 	ACTION_RAW_ENCAP,
307 	ACTION_RAW_DECAP,
308 };
309 
310 /** Maximum size for pattern in struct rte_flow_item_raw. */
311 #define ITEM_RAW_PATTERN_SIZE 40
312 
313 /** Storage size for struct rte_flow_item_raw including pattern. */
314 #define ITEM_RAW_SIZE \
315 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
316 
317 /** Maximum number of queue indices in struct rte_flow_action_rss. */
318 #define ACTION_RSS_QUEUE_NUM 32
319 
320 /** Storage for struct rte_flow_action_rss including external data. */
321 struct action_rss_data {
322 	struct rte_flow_action_rss conf;
323 	uint8_t key[RSS_HASH_KEY_LENGTH];
324 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
325 };
326 
327 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
328 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
329 
330 #define ACTION_RAW_ENCAP_MAX_DATA 128
331 
332 /** Storage for struct rte_flow_action_raw_encap. */
333 struct raw_encap_conf {
334 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
335 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
336 	size_t size;
337 };
338 
339 struct raw_encap_conf raw_encap_conf = {.size = 0};
340 
341 /** Storage for struct rte_flow_action_raw_decap. */
342 struct raw_decap_conf {
343 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
344 	size_t size;
345 };
346 
347 struct raw_decap_conf raw_decap_conf = {.size = 0};
348 
349 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
350 struct action_vxlan_encap_data {
351 	struct rte_flow_action_vxlan_encap conf;
352 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
353 	struct rte_flow_item_eth item_eth;
354 	struct rte_flow_item_vlan item_vlan;
355 	union {
356 		struct rte_flow_item_ipv4 item_ipv4;
357 		struct rte_flow_item_ipv6 item_ipv6;
358 	};
359 	struct rte_flow_item_udp item_udp;
360 	struct rte_flow_item_vxlan item_vxlan;
361 };
362 
363 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
364 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
365 
366 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
367 struct action_nvgre_encap_data {
368 	struct rte_flow_action_nvgre_encap conf;
369 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
370 	struct rte_flow_item_eth item_eth;
371 	struct rte_flow_item_vlan item_vlan;
372 	union {
373 		struct rte_flow_item_ipv4 item_ipv4;
374 		struct rte_flow_item_ipv6 item_ipv6;
375 	};
376 	struct rte_flow_item_nvgre item_nvgre;
377 };
378 
379 /** Maximum data size in struct rte_flow_action_raw_encap. */
380 #define ACTION_RAW_ENCAP_MAX_DATA 128
381 
382 /** Storage for struct rte_flow_action_raw_encap including external data. */
383 struct action_raw_encap_data {
384 	struct rte_flow_action_raw_encap conf;
385 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
386 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
387 };
388 
389 /** Storage for struct rte_flow_action_raw_decap including external data. */
390 struct action_raw_decap_data {
391 	struct rte_flow_action_raw_decap conf;
392 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
393 };
394 
395 /** Maximum number of subsequent tokens and arguments on the stack. */
396 #define CTX_STACK_SIZE 16
397 
398 /** Parser context. */
399 struct context {
400 	/** Stack of subsequent token lists to process. */
401 	const enum index *next[CTX_STACK_SIZE];
402 	/** Arguments for stacked tokens. */
403 	const void *args[CTX_STACK_SIZE];
404 	enum index curr; /**< Current token index. */
405 	enum index prev; /**< Index of the last token seen. */
406 	int next_num; /**< Number of entries in next[]. */
407 	int args_num; /**< Number of entries in args[]. */
408 	uint32_t eol:1; /**< EOL has been detected. */
409 	uint32_t last:1; /**< No more arguments. */
410 	portid_t port; /**< Current port ID (for completions). */
411 	uint32_t objdata; /**< Object-specific data. */
412 	void *object; /**< Address of current object for relative offsets. */
413 	void *objmask; /**< Object a full mask must be written to. */
414 };
415 
416 /** Token argument. */
417 struct arg {
418 	uint32_t hton:1; /**< Use network byte ordering. */
419 	uint32_t sign:1; /**< Value is signed. */
420 	uint32_t bounded:1; /**< Value is bounded. */
421 	uintmax_t min; /**< Minimum value if bounded. */
422 	uintmax_t max; /**< Maximum value if bounded. */
423 	uint32_t offset; /**< Relative offset from ctx->object. */
424 	uint32_t size; /**< Field size. */
425 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
426 };
427 
428 /** Parser token definition. */
429 struct token {
430 	/** Type displayed during completion (defaults to "TOKEN"). */
431 	const char *type;
432 	/** Help displayed during completion (defaults to token name). */
433 	const char *help;
434 	/** Private data used by parser functions. */
435 	const void *priv;
436 	/**
437 	 * Lists of subsequent tokens to push on the stack. Each call to the
438 	 * parser consumes the last entry of that stack.
439 	 */
440 	const enum index *const *next;
441 	/** Arguments stack for subsequent tokens that need them. */
442 	const struct arg *const *args;
443 	/**
444 	 * Token-processing callback, returns -1 in case of error, the
445 	 * length of the matched string otherwise. If NULL, attempts to
446 	 * match the token name.
447 	 *
448 	 * If buf is not NULL, the result should be stored in it according
449 	 * to context. An error is returned if not large enough.
450 	 */
451 	int (*call)(struct context *ctx, const struct token *token,
452 		    const char *str, unsigned int len,
453 		    void *buf, unsigned int size);
454 	/**
455 	 * Callback that provides possible values for this token, used for
456 	 * completion. Returns -1 in case of error, the number of possible
457 	 * values otherwise. If NULL, the token name is used.
458 	 *
459 	 * If buf is not NULL, entry index ent is written to buf and the
460 	 * full length of the entry is returned (same behavior as
461 	 * snprintf()).
462 	 */
463 	int (*comp)(struct context *ctx, const struct token *token,
464 		    unsigned int ent, char *buf, unsigned int size);
465 	/** Mandatory token name, no default value. */
466 	const char *name;
467 };
468 
469 /** Static initializer for the next field. */
470 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
471 
472 /** Static initializer for a NEXT() entry. */
473 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
474 
475 /** Static initializer for the args field. */
476 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
477 
478 /** Static initializer for ARGS() to target a field. */
479 #define ARGS_ENTRY(s, f) \
480 	(&(const struct arg){ \
481 		.offset = offsetof(s, f), \
482 		.size = sizeof(((s *)0)->f), \
483 	})
484 
485 /** Static initializer for ARGS() to target a bit-field. */
486 #define ARGS_ENTRY_BF(s, f, b) \
487 	(&(const struct arg){ \
488 		.size = sizeof(s), \
489 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
490 	})
491 
492 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
493 #define ARGS_ENTRY_MASK(s, f, m) \
494 	(&(const struct arg){ \
495 		.offset = offsetof(s, f), \
496 		.size = sizeof(((s *)0)->f), \
497 		.mask = (const void *)(m), \
498 	})
499 
500 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
501 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
502 	(&(const struct arg){ \
503 		.hton = 1, \
504 		.offset = offsetof(s, f), \
505 		.size = sizeof(((s *)0)->f), \
506 		.mask = (const void *)(m), \
507 	})
508 
509 /** Static initializer for ARGS() to target a pointer. */
510 #define ARGS_ENTRY_PTR(s, f) \
511 	(&(const struct arg){ \
512 		.size = sizeof(*((s *)0)->f), \
513 	})
514 
515 /** Static initializer for ARGS() with arbitrary offset and size. */
516 #define ARGS_ENTRY_ARB(o, s) \
517 	(&(const struct arg){ \
518 		.offset = (o), \
519 		.size = (s), \
520 	})
521 
522 /** Same as ARGS_ENTRY_ARB() with bounded values. */
523 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
524 	(&(const struct arg){ \
525 		.bounded = 1, \
526 		.min = (i), \
527 		.max = (a), \
528 		.offset = (o), \
529 		.size = (s), \
530 	})
531 
532 /** Same as ARGS_ENTRY() using network byte ordering. */
533 #define ARGS_ENTRY_HTON(s, f) \
534 	(&(const struct arg){ \
535 		.hton = 1, \
536 		.offset = offsetof(s, f), \
537 		.size = sizeof(((s *)0)->f), \
538 	})
539 
540 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
541 #define ARG_ENTRY_HTON(s) \
542 	(&(const struct arg){ \
543 		.hton = 1, \
544 		.offset = 0, \
545 		.size = sizeof(s), \
546 	})
547 
548 /** Parser output buffer layout expected by cmd_flow_parsed(). */
549 struct buffer {
550 	enum index command; /**< Flow command. */
551 	portid_t port; /**< Affected port ID. */
552 	union {
553 		struct {
554 			struct rte_flow_attr attr;
555 			struct rte_flow_item *pattern;
556 			struct rte_flow_action *actions;
557 			uint32_t pattern_n;
558 			uint32_t actions_n;
559 			uint8_t *data;
560 		} vc; /**< Validate/create arguments. */
561 		struct {
562 			uint32_t *rule;
563 			uint32_t rule_n;
564 		} destroy; /**< Destroy arguments. */
565 		struct {
566 			uint32_t rule;
567 			struct rte_flow_action action;
568 		} query; /**< Query arguments. */
569 		struct {
570 			uint32_t *group;
571 			uint32_t group_n;
572 		} list; /**< List arguments. */
573 		struct {
574 			int set;
575 		} isolate; /**< Isolated mode arguments. */
576 	} args; /**< Command arguments. */
577 };
578 
579 /** Private data for pattern items. */
580 struct parse_item_priv {
581 	enum rte_flow_item_type type; /**< Item type. */
582 	uint32_t size; /**< Size of item specification structure. */
583 };
584 
585 #define PRIV_ITEM(t, s) \
586 	(&(const struct parse_item_priv){ \
587 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
588 		.size = s, \
589 	})
590 
591 /** Private data for actions. */
592 struct parse_action_priv {
593 	enum rte_flow_action_type type; /**< Action type. */
594 	uint32_t size; /**< Size of action configuration structure. */
595 };
596 
597 #define PRIV_ACTION(t, s) \
598 	(&(const struct parse_action_priv){ \
599 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
600 		.size = s, \
601 	})
602 
603 static const enum index next_vc_attr[] = {
604 	GROUP,
605 	PRIORITY,
606 	INGRESS,
607 	EGRESS,
608 	TRANSFER,
609 	PATTERN,
610 	ZERO,
611 };
612 
613 static const enum index next_destroy_attr[] = {
614 	DESTROY_RULE,
615 	END,
616 	ZERO,
617 };
618 
619 static const enum index next_list_attr[] = {
620 	LIST_GROUP,
621 	END,
622 	ZERO,
623 };
624 
625 static const enum index item_param[] = {
626 	ITEM_PARAM_IS,
627 	ITEM_PARAM_SPEC,
628 	ITEM_PARAM_LAST,
629 	ITEM_PARAM_MASK,
630 	ITEM_PARAM_PREFIX,
631 	ZERO,
632 };
633 
634 static const enum index next_item[] = {
635 	ITEM_END,
636 	ITEM_VOID,
637 	ITEM_INVERT,
638 	ITEM_ANY,
639 	ITEM_PF,
640 	ITEM_VF,
641 	ITEM_PHY_PORT,
642 	ITEM_PORT_ID,
643 	ITEM_MARK,
644 	ITEM_RAW,
645 	ITEM_ETH,
646 	ITEM_VLAN,
647 	ITEM_IPV4,
648 	ITEM_IPV6,
649 	ITEM_ICMP,
650 	ITEM_UDP,
651 	ITEM_TCP,
652 	ITEM_SCTP,
653 	ITEM_VXLAN,
654 	ITEM_E_TAG,
655 	ITEM_NVGRE,
656 	ITEM_MPLS,
657 	ITEM_GRE,
658 	ITEM_FUZZY,
659 	ITEM_GTP,
660 	ITEM_GTPC,
661 	ITEM_GTPU,
662 	ITEM_GENEVE,
663 	ITEM_VXLAN_GPE,
664 	ITEM_ARP_ETH_IPV4,
665 	ITEM_IPV6_EXT,
666 	ITEM_ICMP6,
667 	ITEM_ICMP6_ND_NS,
668 	ITEM_ICMP6_ND_NA,
669 	ITEM_ICMP6_ND_OPT,
670 	ITEM_ICMP6_ND_OPT_SLA_ETH,
671 	ITEM_ICMP6_ND_OPT_TLA_ETH,
672 	ITEM_META,
673 	ITEM_GRE_KEY,
674 	ITEM_GTP_PSC,
675 	ITEM_PPPOES,
676 	ITEM_PPPOED,
677 	ITEM_PPPOE_PROTO_ID,
678 	END_SET,
679 	ZERO,
680 };
681 
682 static const enum index item_fuzzy[] = {
683 	ITEM_FUZZY_THRESH,
684 	ITEM_NEXT,
685 	ZERO,
686 };
687 
688 static const enum index item_any[] = {
689 	ITEM_ANY_NUM,
690 	ITEM_NEXT,
691 	ZERO,
692 };
693 
694 static const enum index item_vf[] = {
695 	ITEM_VF_ID,
696 	ITEM_NEXT,
697 	ZERO,
698 };
699 
700 static const enum index item_phy_port[] = {
701 	ITEM_PHY_PORT_INDEX,
702 	ITEM_NEXT,
703 	ZERO,
704 };
705 
706 static const enum index item_port_id[] = {
707 	ITEM_PORT_ID_ID,
708 	ITEM_NEXT,
709 	ZERO,
710 };
711 
712 static const enum index item_mark[] = {
713 	ITEM_MARK_ID,
714 	ITEM_NEXT,
715 	ZERO,
716 };
717 
718 static const enum index item_raw[] = {
719 	ITEM_RAW_RELATIVE,
720 	ITEM_RAW_SEARCH,
721 	ITEM_RAW_OFFSET,
722 	ITEM_RAW_LIMIT,
723 	ITEM_RAW_PATTERN,
724 	ITEM_NEXT,
725 	ZERO,
726 };
727 
728 static const enum index item_eth[] = {
729 	ITEM_ETH_DST,
730 	ITEM_ETH_SRC,
731 	ITEM_ETH_TYPE,
732 	ITEM_NEXT,
733 	ZERO,
734 };
735 
736 static const enum index item_vlan[] = {
737 	ITEM_VLAN_TCI,
738 	ITEM_VLAN_PCP,
739 	ITEM_VLAN_DEI,
740 	ITEM_VLAN_VID,
741 	ITEM_VLAN_INNER_TYPE,
742 	ITEM_NEXT,
743 	ZERO,
744 };
745 
746 static const enum index item_ipv4[] = {
747 	ITEM_IPV4_TOS,
748 	ITEM_IPV4_TTL,
749 	ITEM_IPV4_PROTO,
750 	ITEM_IPV4_SRC,
751 	ITEM_IPV4_DST,
752 	ITEM_NEXT,
753 	ZERO,
754 };
755 
756 static const enum index item_ipv6[] = {
757 	ITEM_IPV6_TC,
758 	ITEM_IPV6_FLOW,
759 	ITEM_IPV6_PROTO,
760 	ITEM_IPV6_HOP,
761 	ITEM_IPV6_SRC,
762 	ITEM_IPV6_DST,
763 	ITEM_NEXT,
764 	ZERO,
765 };
766 
767 static const enum index item_icmp[] = {
768 	ITEM_ICMP_TYPE,
769 	ITEM_ICMP_CODE,
770 	ITEM_NEXT,
771 	ZERO,
772 };
773 
774 static const enum index item_udp[] = {
775 	ITEM_UDP_SRC,
776 	ITEM_UDP_DST,
777 	ITEM_NEXT,
778 	ZERO,
779 };
780 
781 static const enum index item_tcp[] = {
782 	ITEM_TCP_SRC,
783 	ITEM_TCP_DST,
784 	ITEM_TCP_FLAGS,
785 	ITEM_NEXT,
786 	ZERO,
787 };
788 
789 static const enum index item_sctp[] = {
790 	ITEM_SCTP_SRC,
791 	ITEM_SCTP_DST,
792 	ITEM_SCTP_TAG,
793 	ITEM_SCTP_CKSUM,
794 	ITEM_NEXT,
795 	ZERO,
796 };
797 
798 static const enum index item_vxlan[] = {
799 	ITEM_VXLAN_VNI,
800 	ITEM_NEXT,
801 	ZERO,
802 };
803 
804 static const enum index item_e_tag[] = {
805 	ITEM_E_TAG_GRP_ECID_B,
806 	ITEM_NEXT,
807 	ZERO,
808 };
809 
810 static const enum index item_nvgre[] = {
811 	ITEM_NVGRE_TNI,
812 	ITEM_NEXT,
813 	ZERO,
814 };
815 
816 static const enum index item_mpls[] = {
817 	ITEM_MPLS_LABEL,
818 	ITEM_MPLS_TC,
819 	ITEM_MPLS_S,
820 	ITEM_NEXT,
821 	ZERO,
822 };
823 
824 static const enum index item_gre[] = {
825 	ITEM_GRE_PROTO,
826 	ITEM_GRE_C_RSVD0_VER,
827 	ITEM_GRE_C_BIT,
828 	ITEM_GRE_K_BIT,
829 	ITEM_GRE_S_BIT,
830 	ITEM_NEXT,
831 	ZERO,
832 };
833 
834 static const enum index item_gre_key[] = {
835 	ITEM_GRE_KEY_VALUE,
836 	ITEM_NEXT,
837 	ZERO,
838 };
839 
840 static const enum index item_gtp[] = {
841 	ITEM_GTP_TEID,
842 	ITEM_NEXT,
843 	ZERO,
844 };
845 
846 static const enum index item_geneve[] = {
847 	ITEM_GENEVE_VNI,
848 	ITEM_GENEVE_PROTO,
849 	ITEM_NEXT,
850 	ZERO,
851 };
852 
853 static const enum index item_vxlan_gpe[] = {
854 	ITEM_VXLAN_GPE_VNI,
855 	ITEM_NEXT,
856 	ZERO,
857 };
858 
859 static const enum index item_arp_eth_ipv4[] = {
860 	ITEM_ARP_ETH_IPV4_SHA,
861 	ITEM_ARP_ETH_IPV4_SPA,
862 	ITEM_ARP_ETH_IPV4_THA,
863 	ITEM_ARP_ETH_IPV4_TPA,
864 	ITEM_NEXT,
865 	ZERO,
866 };
867 
868 static const enum index item_ipv6_ext[] = {
869 	ITEM_IPV6_EXT_NEXT_HDR,
870 	ITEM_NEXT,
871 	ZERO,
872 };
873 
874 static const enum index item_icmp6[] = {
875 	ITEM_ICMP6_TYPE,
876 	ITEM_ICMP6_CODE,
877 	ITEM_NEXT,
878 	ZERO,
879 };
880 
881 static const enum index item_icmp6_nd_ns[] = {
882 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
883 	ITEM_NEXT,
884 	ZERO,
885 };
886 
887 static const enum index item_icmp6_nd_na[] = {
888 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
889 	ITEM_NEXT,
890 	ZERO,
891 };
892 
893 static const enum index item_icmp6_nd_opt[] = {
894 	ITEM_ICMP6_ND_OPT_TYPE,
895 	ITEM_NEXT,
896 	ZERO,
897 };
898 
899 static const enum index item_icmp6_nd_opt_sla_eth[] = {
900 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
901 	ITEM_NEXT,
902 	ZERO,
903 };
904 
905 static const enum index item_icmp6_nd_opt_tla_eth[] = {
906 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
907 	ITEM_NEXT,
908 	ZERO,
909 };
910 
911 static const enum index item_meta[] = {
912 	ITEM_META_DATA,
913 	ITEM_NEXT,
914 	ZERO,
915 };
916 
917 static const enum index item_gtp_psc[] = {
918 	ITEM_GTP_PSC_QFI,
919 	ITEM_GTP_PSC_PDU_T,
920 	ITEM_NEXT,
921 	ZERO,
922 };
923 
924 static const enum index item_pppoed[] = {
925 	ITEM_PPPOE_SEID,
926 	ITEM_NEXT,
927 	ZERO,
928 };
929 
930 static const enum index item_pppoes[] = {
931 	ITEM_PPPOE_SEID,
932 	ITEM_NEXT,
933 	ZERO,
934 };
935 
936 static const enum index item_pppoe_proto_id[] = {
937 	ITEM_PPPOE_PROTO_ID,
938 	ITEM_NEXT,
939 	ZERO,
940 };
941 
942 static const enum index next_action[] = {
943 	ACTION_END,
944 	ACTION_VOID,
945 	ACTION_PASSTHRU,
946 	ACTION_JUMP,
947 	ACTION_MARK,
948 	ACTION_FLAG,
949 	ACTION_QUEUE,
950 	ACTION_DROP,
951 	ACTION_COUNT,
952 	ACTION_RSS,
953 	ACTION_PF,
954 	ACTION_VF,
955 	ACTION_PHY_PORT,
956 	ACTION_PORT_ID,
957 	ACTION_METER,
958 	ACTION_OF_SET_MPLS_TTL,
959 	ACTION_OF_DEC_MPLS_TTL,
960 	ACTION_OF_SET_NW_TTL,
961 	ACTION_OF_DEC_NW_TTL,
962 	ACTION_OF_COPY_TTL_OUT,
963 	ACTION_OF_COPY_TTL_IN,
964 	ACTION_OF_POP_VLAN,
965 	ACTION_OF_PUSH_VLAN,
966 	ACTION_OF_SET_VLAN_VID,
967 	ACTION_OF_SET_VLAN_PCP,
968 	ACTION_OF_POP_MPLS,
969 	ACTION_OF_PUSH_MPLS,
970 	ACTION_VXLAN_ENCAP,
971 	ACTION_VXLAN_DECAP,
972 	ACTION_NVGRE_ENCAP,
973 	ACTION_NVGRE_DECAP,
974 	ACTION_L2_ENCAP,
975 	ACTION_L2_DECAP,
976 	ACTION_MPLSOGRE_ENCAP,
977 	ACTION_MPLSOGRE_DECAP,
978 	ACTION_MPLSOUDP_ENCAP,
979 	ACTION_MPLSOUDP_DECAP,
980 	ACTION_SET_IPV4_SRC,
981 	ACTION_SET_IPV4_DST,
982 	ACTION_SET_IPV6_SRC,
983 	ACTION_SET_IPV6_DST,
984 	ACTION_SET_TP_SRC,
985 	ACTION_SET_TP_DST,
986 	ACTION_MAC_SWAP,
987 	ACTION_DEC_TTL,
988 	ACTION_SET_TTL,
989 	ACTION_SET_MAC_SRC,
990 	ACTION_SET_MAC_DST,
991 	ACTION_INC_TCP_SEQ,
992 	ACTION_DEC_TCP_SEQ,
993 	ACTION_INC_TCP_ACK,
994 	ACTION_DEC_TCP_ACK,
995 	ACTION_RAW_ENCAP,
996 	ACTION_RAW_DECAP,
997 	ZERO,
998 };
999 
1000 static const enum index action_mark[] = {
1001 	ACTION_MARK_ID,
1002 	ACTION_NEXT,
1003 	ZERO,
1004 };
1005 
1006 static const enum index action_queue[] = {
1007 	ACTION_QUEUE_INDEX,
1008 	ACTION_NEXT,
1009 	ZERO,
1010 };
1011 
1012 static const enum index action_count[] = {
1013 	ACTION_COUNT_ID,
1014 	ACTION_COUNT_SHARED,
1015 	ACTION_NEXT,
1016 	ZERO,
1017 };
1018 
1019 static const enum index action_rss[] = {
1020 	ACTION_RSS_FUNC,
1021 	ACTION_RSS_LEVEL,
1022 	ACTION_RSS_TYPES,
1023 	ACTION_RSS_KEY,
1024 	ACTION_RSS_KEY_LEN,
1025 	ACTION_RSS_QUEUES,
1026 	ACTION_NEXT,
1027 	ZERO,
1028 };
1029 
1030 static const enum index action_vf[] = {
1031 	ACTION_VF_ORIGINAL,
1032 	ACTION_VF_ID,
1033 	ACTION_NEXT,
1034 	ZERO,
1035 };
1036 
1037 static const enum index action_phy_port[] = {
1038 	ACTION_PHY_PORT_ORIGINAL,
1039 	ACTION_PHY_PORT_INDEX,
1040 	ACTION_NEXT,
1041 	ZERO,
1042 };
1043 
1044 static const enum index action_port_id[] = {
1045 	ACTION_PORT_ID_ORIGINAL,
1046 	ACTION_PORT_ID_ID,
1047 	ACTION_NEXT,
1048 	ZERO,
1049 };
1050 
1051 static const enum index action_meter[] = {
1052 	ACTION_METER_ID,
1053 	ACTION_NEXT,
1054 	ZERO,
1055 };
1056 
1057 static const enum index action_of_set_mpls_ttl[] = {
1058 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1059 	ACTION_NEXT,
1060 	ZERO,
1061 };
1062 
1063 static const enum index action_of_set_nw_ttl[] = {
1064 	ACTION_OF_SET_NW_TTL_NW_TTL,
1065 	ACTION_NEXT,
1066 	ZERO,
1067 };
1068 
1069 static const enum index action_of_push_vlan[] = {
1070 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1071 	ACTION_NEXT,
1072 	ZERO,
1073 };
1074 
1075 static const enum index action_of_set_vlan_vid[] = {
1076 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1077 	ACTION_NEXT,
1078 	ZERO,
1079 };
1080 
1081 static const enum index action_of_set_vlan_pcp[] = {
1082 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1083 	ACTION_NEXT,
1084 	ZERO,
1085 };
1086 
1087 static const enum index action_of_pop_mpls[] = {
1088 	ACTION_OF_POP_MPLS_ETHERTYPE,
1089 	ACTION_NEXT,
1090 	ZERO,
1091 };
1092 
1093 static const enum index action_of_push_mpls[] = {
1094 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1095 	ACTION_NEXT,
1096 	ZERO,
1097 };
1098 
1099 static const enum index action_set_ipv4_src[] = {
1100 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1101 	ACTION_NEXT,
1102 	ZERO,
1103 };
1104 
1105 static const enum index action_set_mac_src[] = {
1106 	ACTION_SET_MAC_SRC_MAC_SRC,
1107 	ACTION_NEXT,
1108 	ZERO,
1109 };
1110 
1111 static const enum index action_set_ipv4_dst[] = {
1112 	ACTION_SET_IPV4_DST_IPV4_DST,
1113 	ACTION_NEXT,
1114 	ZERO,
1115 };
1116 
1117 static const enum index action_set_ipv6_src[] = {
1118 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1119 	ACTION_NEXT,
1120 	ZERO,
1121 };
1122 
1123 static const enum index action_set_ipv6_dst[] = {
1124 	ACTION_SET_IPV6_DST_IPV6_DST,
1125 	ACTION_NEXT,
1126 	ZERO,
1127 };
1128 
1129 static const enum index action_set_tp_src[] = {
1130 	ACTION_SET_TP_SRC_TP_SRC,
1131 	ACTION_NEXT,
1132 	ZERO,
1133 };
1134 
1135 static const enum index action_set_tp_dst[] = {
1136 	ACTION_SET_TP_DST_TP_DST,
1137 	ACTION_NEXT,
1138 	ZERO,
1139 };
1140 
1141 static const enum index action_set_ttl[] = {
1142 	ACTION_SET_TTL_TTL,
1143 	ACTION_NEXT,
1144 	ZERO,
1145 };
1146 
1147 static const enum index action_jump[] = {
1148 	ACTION_JUMP_GROUP,
1149 	ACTION_NEXT,
1150 	ZERO,
1151 };
1152 
1153 static const enum index action_set_mac_dst[] = {
1154 	ACTION_SET_MAC_DST_MAC_DST,
1155 	ACTION_NEXT,
1156 	ZERO,
1157 };
1158 
1159 static const enum index action_inc_tcp_seq[] = {
1160 	ACTION_INC_TCP_SEQ_VALUE,
1161 	ACTION_NEXT,
1162 	ZERO,
1163 };
1164 
1165 static const enum index action_dec_tcp_seq[] = {
1166 	ACTION_DEC_TCP_SEQ_VALUE,
1167 	ACTION_NEXT,
1168 	ZERO,
1169 };
1170 
1171 static const enum index action_inc_tcp_ack[] = {
1172 	ACTION_INC_TCP_ACK_VALUE,
1173 	ACTION_NEXT,
1174 	ZERO,
1175 };
1176 
1177 static const enum index action_dec_tcp_ack[] = {
1178 	ACTION_DEC_TCP_ACK_VALUE,
1179 	ACTION_NEXT,
1180 	ZERO,
1181 };
1182 
1183 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1184 				     const char *, unsigned int,
1185 				     void *, unsigned int);
1186 static int parse_set_init(struct context *, const struct token *,
1187 			  const char *, unsigned int,
1188 			  void *, unsigned int);
1189 static int parse_init(struct context *, const struct token *,
1190 		      const char *, unsigned int,
1191 		      void *, unsigned int);
1192 static int parse_vc(struct context *, const struct token *,
1193 		    const char *, unsigned int,
1194 		    void *, unsigned int);
1195 static int parse_vc_spec(struct context *, const struct token *,
1196 			 const char *, unsigned int, void *, unsigned int);
1197 static int parse_vc_conf(struct context *, const struct token *,
1198 			 const char *, unsigned int, void *, unsigned int);
1199 static int parse_vc_action_rss(struct context *, const struct token *,
1200 			       const char *, unsigned int, void *,
1201 			       unsigned int);
1202 static int parse_vc_action_rss_func(struct context *, const struct token *,
1203 				    const char *, unsigned int, void *,
1204 				    unsigned int);
1205 static int parse_vc_action_rss_type(struct context *, const struct token *,
1206 				    const char *, unsigned int, void *,
1207 				    unsigned int);
1208 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1209 				     const char *, unsigned int, void *,
1210 				     unsigned int);
1211 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1212 				       const char *, unsigned int, void *,
1213 				       unsigned int);
1214 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1215 				       const char *, unsigned int, void *,
1216 				       unsigned int);
1217 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1218 				    const char *, unsigned int, void *,
1219 				    unsigned int);
1220 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1221 				    const char *, unsigned int, void *,
1222 				    unsigned int);
1223 static int parse_vc_action_mplsogre_encap(struct context *,
1224 					  const struct token *, const char *,
1225 					  unsigned int, void *, unsigned int);
1226 static int parse_vc_action_mplsogre_decap(struct context *,
1227 					  const struct token *, const char *,
1228 					  unsigned int, void *, unsigned int);
1229 static int parse_vc_action_mplsoudp_encap(struct context *,
1230 					  const struct token *, const char *,
1231 					  unsigned int, void *, unsigned int);
1232 static int parse_vc_action_mplsoudp_decap(struct context *,
1233 					  const struct token *, const char *,
1234 					  unsigned int, void *, unsigned int);
1235 static int parse_vc_action_raw_encap(struct context *,
1236 				     const struct token *, const char *,
1237 				     unsigned int, void *, unsigned int);
1238 static int parse_vc_action_raw_decap(struct context *,
1239 				     const struct token *, const char *,
1240 				     unsigned int, void *, unsigned int);
1241 static int parse_destroy(struct context *, const struct token *,
1242 			 const char *, unsigned int,
1243 			 void *, unsigned int);
1244 static int parse_flush(struct context *, const struct token *,
1245 		       const char *, unsigned int,
1246 		       void *, unsigned int);
1247 static int parse_query(struct context *, const struct token *,
1248 		       const char *, unsigned int,
1249 		       void *, unsigned int);
1250 static int parse_action(struct context *, const struct token *,
1251 			const char *, unsigned int,
1252 			void *, unsigned int);
1253 static int parse_list(struct context *, const struct token *,
1254 		      const char *, unsigned int,
1255 		      void *, unsigned int);
1256 static int parse_isolate(struct context *, const struct token *,
1257 			 const char *, unsigned int,
1258 			 void *, unsigned int);
1259 static int parse_int(struct context *, const struct token *,
1260 		     const char *, unsigned int,
1261 		     void *, unsigned int);
1262 static int parse_prefix(struct context *, const struct token *,
1263 			const char *, unsigned int,
1264 			void *, unsigned int);
1265 static int parse_boolean(struct context *, const struct token *,
1266 			 const char *, unsigned int,
1267 			 void *, unsigned int);
1268 static int parse_string(struct context *, const struct token *,
1269 			const char *, unsigned int,
1270 			void *, unsigned int);
1271 static int parse_hex(struct context *ctx, const struct token *token,
1272 			const char *str, unsigned int len,
1273 			void *buf, unsigned int size);
1274 static int parse_mac_addr(struct context *, const struct token *,
1275 			  const char *, unsigned int,
1276 			  void *, unsigned int);
1277 static int parse_ipv4_addr(struct context *, const struct token *,
1278 			   const char *, unsigned int,
1279 			   void *, unsigned int);
1280 static int parse_ipv6_addr(struct context *, const struct token *,
1281 			   const char *, unsigned int,
1282 			   void *, unsigned int);
1283 static int parse_port(struct context *, const struct token *,
1284 		      const char *, unsigned int,
1285 		      void *, unsigned int);
1286 static int comp_none(struct context *, const struct token *,
1287 		     unsigned int, char *, unsigned int);
1288 static int comp_boolean(struct context *, const struct token *,
1289 			unsigned int, char *, unsigned int);
1290 static int comp_action(struct context *, const struct token *,
1291 		       unsigned int, char *, unsigned int);
1292 static int comp_port(struct context *, const struct token *,
1293 		     unsigned int, char *, unsigned int);
1294 static int comp_rule_id(struct context *, const struct token *,
1295 			unsigned int, char *, unsigned int);
1296 static int comp_vc_action_rss_type(struct context *, const struct token *,
1297 				   unsigned int, char *, unsigned int);
1298 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1299 				    unsigned int, char *, unsigned int);
1300 
1301 /** Token definitions. */
1302 static const struct token token_list[] = {
1303 	/* Special tokens. */
1304 	[ZERO] = {
1305 		.name = "ZERO",
1306 		.help = "null entry, abused as the entry point",
1307 		.next = NEXT(NEXT_ENTRY(FLOW)),
1308 	},
1309 	[END] = {
1310 		.name = "",
1311 		.type = "RETURN",
1312 		.help = "command may end here",
1313 	},
1314 	[START_SET] = {
1315 		.name = "START_SET",
1316 		.help = "null entry, abused as the entry point for set",
1317 		.next = NEXT(NEXT_ENTRY(SET)),
1318 	},
1319 	[END_SET] = {
1320 		.name = "end_set",
1321 		.type = "RETURN",
1322 		.help = "set command may end here",
1323 	},
1324 	/* Common tokens. */
1325 	[INTEGER] = {
1326 		.name = "{int}",
1327 		.type = "INTEGER",
1328 		.help = "integer value",
1329 		.call = parse_int,
1330 		.comp = comp_none,
1331 	},
1332 	[UNSIGNED] = {
1333 		.name = "{unsigned}",
1334 		.type = "UNSIGNED",
1335 		.help = "unsigned integer value",
1336 		.call = parse_int,
1337 		.comp = comp_none,
1338 	},
1339 	[PREFIX] = {
1340 		.name = "{prefix}",
1341 		.type = "PREFIX",
1342 		.help = "prefix length for bit-mask",
1343 		.call = parse_prefix,
1344 		.comp = comp_none,
1345 	},
1346 	[BOOLEAN] = {
1347 		.name = "{boolean}",
1348 		.type = "BOOLEAN",
1349 		.help = "any boolean value",
1350 		.call = parse_boolean,
1351 		.comp = comp_boolean,
1352 	},
1353 	[STRING] = {
1354 		.name = "{string}",
1355 		.type = "STRING",
1356 		.help = "fixed string",
1357 		.call = parse_string,
1358 		.comp = comp_none,
1359 	},
1360 	[HEX] = {
1361 		.name = "{hex}",
1362 		.type = "HEX",
1363 		.help = "fixed string",
1364 		.call = parse_hex,
1365 		.comp = comp_none,
1366 	},
1367 	[MAC_ADDR] = {
1368 		.name = "{MAC address}",
1369 		.type = "MAC-48",
1370 		.help = "standard MAC address notation",
1371 		.call = parse_mac_addr,
1372 		.comp = comp_none,
1373 	},
1374 	[IPV4_ADDR] = {
1375 		.name = "{IPv4 address}",
1376 		.type = "IPV4 ADDRESS",
1377 		.help = "standard IPv4 address notation",
1378 		.call = parse_ipv4_addr,
1379 		.comp = comp_none,
1380 	},
1381 	[IPV6_ADDR] = {
1382 		.name = "{IPv6 address}",
1383 		.type = "IPV6 ADDRESS",
1384 		.help = "standard IPv6 address notation",
1385 		.call = parse_ipv6_addr,
1386 		.comp = comp_none,
1387 	},
1388 	[RULE_ID] = {
1389 		.name = "{rule id}",
1390 		.type = "RULE ID",
1391 		.help = "rule identifier",
1392 		.call = parse_int,
1393 		.comp = comp_rule_id,
1394 	},
1395 	[PORT_ID] = {
1396 		.name = "{port_id}",
1397 		.type = "PORT ID",
1398 		.help = "port identifier",
1399 		.call = parse_port,
1400 		.comp = comp_port,
1401 	},
1402 	[GROUP_ID] = {
1403 		.name = "{group_id}",
1404 		.type = "GROUP ID",
1405 		.help = "group identifier",
1406 		.call = parse_int,
1407 		.comp = comp_none,
1408 	},
1409 	[PRIORITY_LEVEL] = {
1410 		.name = "{level}",
1411 		.type = "PRIORITY",
1412 		.help = "priority level",
1413 		.call = parse_int,
1414 		.comp = comp_none,
1415 	},
1416 	/* Top-level command. */
1417 	[FLOW] = {
1418 		.name = "flow",
1419 		.type = "{command} {port_id} [{arg} [...]]",
1420 		.help = "manage ingress/egress flow rules",
1421 		.next = NEXT(NEXT_ENTRY
1422 			     (VALIDATE,
1423 			      CREATE,
1424 			      DESTROY,
1425 			      FLUSH,
1426 			      LIST,
1427 			      QUERY,
1428 			      ISOLATE)),
1429 		.call = parse_init,
1430 	},
1431 	/* Sub-level commands. */
1432 	[VALIDATE] = {
1433 		.name = "validate",
1434 		.help = "check whether a flow rule can be created",
1435 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1436 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1437 		.call = parse_vc,
1438 	},
1439 	[CREATE] = {
1440 		.name = "create",
1441 		.help = "create a flow rule",
1442 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1443 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1444 		.call = parse_vc,
1445 	},
1446 	[DESTROY] = {
1447 		.name = "destroy",
1448 		.help = "destroy specific flow rules",
1449 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1450 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1451 		.call = parse_destroy,
1452 	},
1453 	[FLUSH] = {
1454 		.name = "flush",
1455 		.help = "destroy all flow rules",
1456 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1457 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1458 		.call = parse_flush,
1459 	},
1460 	[QUERY] = {
1461 		.name = "query",
1462 		.help = "query an existing flow rule",
1463 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1464 			     NEXT_ENTRY(RULE_ID),
1465 			     NEXT_ENTRY(PORT_ID)),
1466 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1467 			     ARGS_ENTRY(struct buffer, args.query.rule),
1468 			     ARGS_ENTRY(struct buffer, port)),
1469 		.call = parse_query,
1470 	},
1471 	[LIST] = {
1472 		.name = "list",
1473 		.help = "list existing flow rules",
1474 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1475 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1476 		.call = parse_list,
1477 	},
1478 	[ISOLATE] = {
1479 		.name = "isolate",
1480 		.help = "restrict ingress traffic to the defined flow rules",
1481 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1482 			     NEXT_ENTRY(PORT_ID)),
1483 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1484 			     ARGS_ENTRY(struct buffer, port)),
1485 		.call = parse_isolate,
1486 	},
1487 	/* Destroy arguments. */
1488 	[DESTROY_RULE] = {
1489 		.name = "rule",
1490 		.help = "specify a rule identifier",
1491 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1492 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1493 		.call = parse_destroy,
1494 	},
1495 	/* Query arguments. */
1496 	[QUERY_ACTION] = {
1497 		.name = "{action}",
1498 		.type = "ACTION",
1499 		.help = "action to query, must be part of the rule",
1500 		.call = parse_action,
1501 		.comp = comp_action,
1502 	},
1503 	/* List arguments. */
1504 	[LIST_GROUP] = {
1505 		.name = "group",
1506 		.help = "specify a group",
1507 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1508 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1509 		.call = parse_list,
1510 	},
1511 	/* Validate/create attributes. */
1512 	[GROUP] = {
1513 		.name = "group",
1514 		.help = "specify a group",
1515 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1516 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1517 		.call = parse_vc,
1518 	},
1519 	[PRIORITY] = {
1520 		.name = "priority",
1521 		.help = "specify a priority level",
1522 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1523 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1524 		.call = parse_vc,
1525 	},
1526 	[INGRESS] = {
1527 		.name = "ingress",
1528 		.help = "affect rule to ingress",
1529 		.next = NEXT(next_vc_attr),
1530 		.call = parse_vc,
1531 	},
1532 	[EGRESS] = {
1533 		.name = "egress",
1534 		.help = "affect rule to egress",
1535 		.next = NEXT(next_vc_attr),
1536 		.call = parse_vc,
1537 	},
1538 	[TRANSFER] = {
1539 		.name = "transfer",
1540 		.help = "apply rule directly to endpoints found in pattern",
1541 		.next = NEXT(next_vc_attr),
1542 		.call = parse_vc,
1543 	},
1544 	/* Validate/create pattern. */
1545 	[PATTERN] = {
1546 		.name = "pattern",
1547 		.help = "submit a list of pattern items",
1548 		.next = NEXT(next_item),
1549 		.call = parse_vc,
1550 	},
1551 	[ITEM_PARAM_IS] = {
1552 		.name = "is",
1553 		.help = "match value perfectly (with full bit-mask)",
1554 		.call = parse_vc_spec,
1555 	},
1556 	[ITEM_PARAM_SPEC] = {
1557 		.name = "spec",
1558 		.help = "match value according to configured bit-mask",
1559 		.call = parse_vc_spec,
1560 	},
1561 	[ITEM_PARAM_LAST] = {
1562 		.name = "last",
1563 		.help = "specify upper bound to establish a range",
1564 		.call = parse_vc_spec,
1565 	},
1566 	[ITEM_PARAM_MASK] = {
1567 		.name = "mask",
1568 		.help = "specify bit-mask with relevant bits set to one",
1569 		.call = parse_vc_spec,
1570 	},
1571 	[ITEM_PARAM_PREFIX] = {
1572 		.name = "prefix",
1573 		.help = "generate bit-mask from a prefix length",
1574 		.call = parse_vc_spec,
1575 	},
1576 	[ITEM_NEXT] = {
1577 		.name = "/",
1578 		.help = "specify next pattern item",
1579 		.next = NEXT(next_item),
1580 	},
1581 	[ITEM_END] = {
1582 		.name = "end",
1583 		.help = "end list of pattern items",
1584 		.priv = PRIV_ITEM(END, 0),
1585 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1586 		.call = parse_vc,
1587 	},
1588 	[ITEM_VOID] = {
1589 		.name = "void",
1590 		.help = "no-op pattern item",
1591 		.priv = PRIV_ITEM(VOID, 0),
1592 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1593 		.call = parse_vc,
1594 	},
1595 	[ITEM_INVERT] = {
1596 		.name = "invert",
1597 		.help = "perform actions when pattern does not match",
1598 		.priv = PRIV_ITEM(INVERT, 0),
1599 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1600 		.call = parse_vc,
1601 	},
1602 	[ITEM_ANY] = {
1603 		.name = "any",
1604 		.help = "match any protocol for the current layer",
1605 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1606 		.next = NEXT(item_any),
1607 		.call = parse_vc,
1608 	},
1609 	[ITEM_ANY_NUM] = {
1610 		.name = "num",
1611 		.help = "number of layers covered",
1612 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1613 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1614 	},
1615 	[ITEM_PF] = {
1616 		.name = "pf",
1617 		.help = "match traffic from/to the physical function",
1618 		.priv = PRIV_ITEM(PF, 0),
1619 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1620 		.call = parse_vc,
1621 	},
1622 	[ITEM_VF] = {
1623 		.name = "vf",
1624 		.help = "match traffic from/to a virtual function ID",
1625 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1626 		.next = NEXT(item_vf),
1627 		.call = parse_vc,
1628 	},
1629 	[ITEM_VF_ID] = {
1630 		.name = "id",
1631 		.help = "VF ID",
1632 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1633 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1634 	},
1635 	[ITEM_PHY_PORT] = {
1636 		.name = "phy_port",
1637 		.help = "match traffic from/to a specific physical port",
1638 		.priv = PRIV_ITEM(PHY_PORT,
1639 				  sizeof(struct rte_flow_item_phy_port)),
1640 		.next = NEXT(item_phy_port),
1641 		.call = parse_vc,
1642 	},
1643 	[ITEM_PHY_PORT_INDEX] = {
1644 		.name = "index",
1645 		.help = "physical port index",
1646 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1647 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1648 	},
1649 	[ITEM_PORT_ID] = {
1650 		.name = "port_id",
1651 		.help = "match traffic from/to a given DPDK port ID",
1652 		.priv = PRIV_ITEM(PORT_ID,
1653 				  sizeof(struct rte_flow_item_port_id)),
1654 		.next = NEXT(item_port_id),
1655 		.call = parse_vc,
1656 	},
1657 	[ITEM_PORT_ID_ID] = {
1658 		.name = "id",
1659 		.help = "DPDK port ID",
1660 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1661 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1662 	},
1663 	[ITEM_MARK] = {
1664 		.name = "mark",
1665 		.help = "match traffic against value set in previously matched rule",
1666 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1667 		.next = NEXT(item_mark),
1668 		.call = parse_vc,
1669 	},
1670 	[ITEM_MARK_ID] = {
1671 		.name = "id",
1672 		.help = "Integer value to match against",
1673 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1674 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1675 	},
1676 	[ITEM_RAW] = {
1677 		.name = "raw",
1678 		.help = "match an arbitrary byte string",
1679 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1680 		.next = NEXT(item_raw),
1681 		.call = parse_vc,
1682 	},
1683 	[ITEM_RAW_RELATIVE] = {
1684 		.name = "relative",
1685 		.help = "look for pattern after the previous item",
1686 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1687 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1688 					   relative, 1)),
1689 	},
1690 	[ITEM_RAW_SEARCH] = {
1691 		.name = "search",
1692 		.help = "search pattern from offset (see also limit)",
1693 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1694 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1695 					   search, 1)),
1696 	},
1697 	[ITEM_RAW_OFFSET] = {
1698 		.name = "offset",
1699 		.help = "absolute or relative offset for pattern",
1700 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1701 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1702 	},
1703 	[ITEM_RAW_LIMIT] = {
1704 		.name = "limit",
1705 		.help = "search area limit for start of pattern",
1706 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1707 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1708 	},
1709 	[ITEM_RAW_PATTERN] = {
1710 		.name = "pattern",
1711 		.help = "byte string to look for",
1712 		.next = NEXT(item_raw,
1713 			     NEXT_ENTRY(STRING),
1714 			     NEXT_ENTRY(ITEM_PARAM_IS,
1715 					ITEM_PARAM_SPEC,
1716 					ITEM_PARAM_MASK)),
1717 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1718 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1719 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1720 					    ITEM_RAW_PATTERN_SIZE)),
1721 	},
1722 	[ITEM_ETH] = {
1723 		.name = "eth",
1724 		.help = "match Ethernet header",
1725 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1726 		.next = NEXT(item_eth),
1727 		.call = parse_vc,
1728 	},
1729 	[ITEM_ETH_DST] = {
1730 		.name = "dst",
1731 		.help = "destination MAC",
1732 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1733 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1734 	},
1735 	[ITEM_ETH_SRC] = {
1736 		.name = "src",
1737 		.help = "source MAC",
1738 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1739 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1740 	},
1741 	[ITEM_ETH_TYPE] = {
1742 		.name = "type",
1743 		.help = "EtherType",
1744 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1745 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1746 	},
1747 	[ITEM_VLAN] = {
1748 		.name = "vlan",
1749 		.help = "match 802.1Q/ad VLAN tag",
1750 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1751 		.next = NEXT(item_vlan),
1752 		.call = parse_vc,
1753 	},
1754 	[ITEM_VLAN_TCI] = {
1755 		.name = "tci",
1756 		.help = "tag control information",
1757 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1758 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1759 	},
1760 	[ITEM_VLAN_PCP] = {
1761 		.name = "pcp",
1762 		.help = "priority code point",
1763 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1764 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1765 						  tci, "\xe0\x00")),
1766 	},
1767 	[ITEM_VLAN_DEI] = {
1768 		.name = "dei",
1769 		.help = "drop eligible indicator",
1770 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1771 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1772 						  tci, "\x10\x00")),
1773 	},
1774 	[ITEM_VLAN_VID] = {
1775 		.name = "vid",
1776 		.help = "VLAN identifier",
1777 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1778 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1779 						  tci, "\x0f\xff")),
1780 	},
1781 	[ITEM_VLAN_INNER_TYPE] = {
1782 		.name = "inner_type",
1783 		.help = "inner EtherType",
1784 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1785 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1786 					     inner_type)),
1787 	},
1788 	[ITEM_IPV4] = {
1789 		.name = "ipv4",
1790 		.help = "match IPv4 header",
1791 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1792 		.next = NEXT(item_ipv4),
1793 		.call = parse_vc,
1794 	},
1795 	[ITEM_IPV4_TOS] = {
1796 		.name = "tos",
1797 		.help = "type of service",
1798 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1799 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1800 					     hdr.type_of_service)),
1801 	},
1802 	[ITEM_IPV4_TTL] = {
1803 		.name = "ttl",
1804 		.help = "time to live",
1805 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1806 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1807 					     hdr.time_to_live)),
1808 	},
1809 	[ITEM_IPV4_PROTO] = {
1810 		.name = "proto",
1811 		.help = "next protocol ID",
1812 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1813 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1814 					     hdr.next_proto_id)),
1815 	},
1816 	[ITEM_IPV4_SRC] = {
1817 		.name = "src",
1818 		.help = "source address",
1819 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1820 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1821 					     hdr.src_addr)),
1822 	},
1823 	[ITEM_IPV4_DST] = {
1824 		.name = "dst",
1825 		.help = "destination address",
1826 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1827 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1828 					     hdr.dst_addr)),
1829 	},
1830 	[ITEM_IPV6] = {
1831 		.name = "ipv6",
1832 		.help = "match IPv6 header",
1833 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1834 		.next = NEXT(item_ipv6),
1835 		.call = parse_vc,
1836 	},
1837 	[ITEM_IPV6_TC] = {
1838 		.name = "tc",
1839 		.help = "traffic class",
1840 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1841 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1842 						  hdr.vtc_flow,
1843 						  "\x0f\xf0\x00\x00")),
1844 	},
1845 	[ITEM_IPV6_FLOW] = {
1846 		.name = "flow",
1847 		.help = "flow label",
1848 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1849 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1850 						  hdr.vtc_flow,
1851 						  "\x00\x0f\xff\xff")),
1852 	},
1853 	[ITEM_IPV6_PROTO] = {
1854 		.name = "proto",
1855 		.help = "protocol (next header)",
1856 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1857 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1858 					     hdr.proto)),
1859 	},
1860 	[ITEM_IPV6_HOP] = {
1861 		.name = "hop",
1862 		.help = "hop limit",
1863 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1864 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1865 					     hdr.hop_limits)),
1866 	},
1867 	[ITEM_IPV6_SRC] = {
1868 		.name = "src",
1869 		.help = "source address",
1870 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1871 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1872 					     hdr.src_addr)),
1873 	},
1874 	[ITEM_IPV6_DST] = {
1875 		.name = "dst",
1876 		.help = "destination address",
1877 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1878 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1879 					     hdr.dst_addr)),
1880 	},
1881 	[ITEM_ICMP] = {
1882 		.name = "icmp",
1883 		.help = "match ICMP header",
1884 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1885 		.next = NEXT(item_icmp),
1886 		.call = parse_vc,
1887 	},
1888 	[ITEM_ICMP_TYPE] = {
1889 		.name = "type",
1890 		.help = "ICMP packet type",
1891 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1892 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1893 					     hdr.icmp_type)),
1894 	},
1895 	[ITEM_ICMP_CODE] = {
1896 		.name = "code",
1897 		.help = "ICMP packet code",
1898 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1899 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1900 					     hdr.icmp_code)),
1901 	},
1902 	[ITEM_UDP] = {
1903 		.name = "udp",
1904 		.help = "match UDP header",
1905 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1906 		.next = NEXT(item_udp),
1907 		.call = parse_vc,
1908 	},
1909 	[ITEM_UDP_SRC] = {
1910 		.name = "src",
1911 		.help = "UDP source port",
1912 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1913 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1914 					     hdr.src_port)),
1915 	},
1916 	[ITEM_UDP_DST] = {
1917 		.name = "dst",
1918 		.help = "UDP destination port",
1919 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1920 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1921 					     hdr.dst_port)),
1922 	},
1923 	[ITEM_TCP] = {
1924 		.name = "tcp",
1925 		.help = "match TCP header",
1926 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1927 		.next = NEXT(item_tcp),
1928 		.call = parse_vc,
1929 	},
1930 	[ITEM_TCP_SRC] = {
1931 		.name = "src",
1932 		.help = "TCP source port",
1933 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1934 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1935 					     hdr.src_port)),
1936 	},
1937 	[ITEM_TCP_DST] = {
1938 		.name = "dst",
1939 		.help = "TCP destination port",
1940 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1941 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1942 					     hdr.dst_port)),
1943 	},
1944 	[ITEM_TCP_FLAGS] = {
1945 		.name = "flags",
1946 		.help = "TCP flags",
1947 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1948 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1949 					     hdr.tcp_flags)),
1950 	},
1951 	[ITEM_SCTP] = {
1952 		.name = "sctp",
1953 		.help = "match SCTP header",
1954 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1955 		.next = NEXT(item_sctp),
1956 		.call = parse_vc,
1957 	},
1958 	[ITEM_SCTP_SRC] = {
1959 		.name = "src",
1960 		.help = "SCTP source port",
1961 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1962 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1963 					     hdr.src_port)),
1964 	},
1965 	[ITEM_SCTP_DST] = {
1966 		.name = "dst",
1967 		.help = "SCTP destination port",
1968 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1969 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1970 					     hdr.dst_port)),
1971 	},
1972 	[ITEM_SCTP_TAG] = {
1973 		.name = "tag",
1974 		.help = "validation tag",
1975 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1976 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1977 					     hdr.tag)),
1978 	},
1979 	[ITEM_SCTP_CKSUM] = {
1980 		.name = "cksum",
1981 		.help = "checksum",
1982 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1983 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1984 					     hdr.cksum)),
1985 	},
1986 	[ITEM_VXLAN] = {
1987 		.name = "vxlan",
1988 		.help = "match VXLAN header",
1989 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1990 		.next = NEXT(item_vxlan),
1991 		.call = parse_vc,
1992 	},
1993 	[ITEM_VXLAN_VNI] = {
1994 		.name = "vni",
1995 		.help = "VXLAN identifier",
1996 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1997 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1998 	},
1999 	[ITEM_E_TAG] = {
2000 		.name = "e_tag",
2001 		.help = "match E-Tag header",
2002 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2003 		.next = NEXT(item_e_tag),
2004 		.call = parse_vc,
2005 	},
2006 	[ITEM_E_TAG_GRP_ECID_B] = {
2007 		.name = "grp_ecid_b",
2008 		.help = "GRP and E-CID base",
2009 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2010 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2011 						  rsvd_grp_ecid_b,
2012 						  "\x3f\xff")),
2013 	},
2014 	[ITEM_NVGRE] = {
2015 		.name = "nvgre",
2016 		.help = "match NVGRE header",
2017 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2018 		.next = NEXT(item_nvgre),
2019 		.call = parse_vc,
2020 	},
2021 	[ITEM_NVGRE_TNI] = {
2022 		.name = "tni",
2023 		.help = "virtual subnet ID",
2024 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2025 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2026 	},
2027 	[ITEM_MPLS] = {
2028 		.name = "mpls",
2029 		.help = "match MPLS header",
2030 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2031 		.next = NEXT(item_mpls),
2032 		.call = parse_vc,
2033 	},
2034 	[ITEM_MPLS_LABEL] = {
2035 		.name = "label",
2036 		.help = "MPLS label",
2037 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2038 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2039 						  label_tc_s,
2040 						  "\xff\xff\xf0")),
2041 	},
2042 	[ITEM_MPLS_TC] = {
2043 		.name = "tc",
2044 		.help = "MPLS Traffic Class",
2045 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2046 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2047 						  label_tc_s,
2048 						  "\x00\x00\x0e")),
2049 	},
2050 	[ITEM_MPLS_S] = {
2051 		.name = "s",
2052 		.help = "MPLS Bottom-of-Stack",
2053 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2054 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2055 						  label_tc_s,
2056 						  "\x00\x00\x01")),
2057 	},
2058 	[ITEM_GRE] = {
2059 		.name = "gre",
2060 		.help = "match GRE header",
2061 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2062 		.next = NEXT(item_gre),
2063 		.call = parse_vc,
2064 	},
2065 	[ITEM_GRE_PROTO] = {
2066 		.name = "protocol",
2067 		.help = "GRE protocol type",
2068 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2069 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2070 					     protocol)),
2071 	},
2072 	[ITEM_GRE_C_RSVD0_VER] = {
2073 		.name = "c_rsvd0_ver",
2074 		.help =
2075 			"checksum (1b), undefined (1b), key bit (1b),"
2076 			" sequence number (1b), reserved 0 (9b),"
2077 			" version (3b)",
2078 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2079 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2080 					     c_rsvd0_ver)),
2081 	},
2082 	[ITEM_GRE_C_BIT] = {
2083 		.name = "c_bit",
2084 		.help = "checksum bit (C)",
2085 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2086 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2087 						  c_rsvd0_ver,
2088 						  "\x80\x00\x00\x00")),
2089 	},
2090 	[ITEM_GRE_S_BIT] = {
2091 		.name = "s_bit",
2092 		.help = "sequence number bit (S)",
2093 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2094 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2095 						  c_rsvd0_ver,
2096 						  "\x10\x00\x00\x00")),
2097 	},
2098 	[ITEM_GRE_K_BIT] = {
2099 		.name = "k_bit",
2100 		.help = "key bit (K)",
2101 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2102 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2103 						  c_rsvd0_ver,
2104 						  "\x20\x00\x00\x00")),
2105 	},
2106 	[ITEM_FUZZY] = {
2107 		.name = "fuzzy",
2108 		.help = "fuzzy pattern match, expect faster than default",
2109 		.priv = PRIV_ITEM(FUZZY,
2110 				sizeof(struct rte_flow_item_fuzzy)),
2111 		.next = NEXT(item_fuzzy),
2112 		.call = parse_vc,
2113 	},
2114 	[ITEM_FUZZY_THRESH] = {
2115 		.name = "thresh",
2116 		.help = "match accuracy threshold",
2117 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2118 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2119 					thresh)),
2120 	},
2121 	[ITEM_GTP] = {
2122 		.name = "gtp",
2123 		.help = "match GTP header",
2124 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2125 		.next = NEXT(item_gtp),
2126 		.call = parse_vc,
2127 	},
2128 	[ITEM_GTP_TEID] = {
2129 		.name = "teid",
2130 		.help = "tunnel endpoint identifier",
2131 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2132 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2133 	},
2134 	[ITEM_GTPC] = {
2135 		.name = "gtpc",
2136 		.help = "match GTP header",
2137 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2138 		.next = NEXT(item_gtp),
2139 		.call = parse_vc,
2140 	},
2141 	[ITEM_GTPU] = {
2142 		.name = "gtpu",
2143 		.help = "match GTP header",
2144 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2145 		.next = NEXT(item_gtp),
2146 		.call = parse_vc,
2147 	},
2148 	[ITEM_GENEVE] = {
2149 		.name = "geneve",
2150 		.help = "match GENEVE header",
2151 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2152 		.next = NEXT(item_geneve),
2153 		.call = parse_vc,
2154 	},
2155 	[ITEM_GENEVE_VNI] = {
2156 		.name = "vni",
2157 		.help = "virtual network identifier",
2158 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2159 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2160 	},
2161 	[ITEM_GENEVE_PROTO] = {
2162 		.name = "protocol",
2163 		.help = "GENEVE protocol type",
2164 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2165 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2166 					     protocol)),
2167 	},
2168 	[ITEM_VXLAN_GPE] = {
2169 		.name = "vxlan-gpe",
2170 		.help = "match VXLAN-GPE header",
2171 		.priv = PRIV_ITEM(VXLAN_GPE,
2172 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2173 		.next = NEXT(item_vxlan_gpe),
2174 		.call = parse_vc,
2175 	},
2176 	[ITEM_VXLAN_GPE_VNI] = {
2177 		.name = "vni",
2178 		.help = "VXLAN-GPE identifier",
2179 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2180 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2181 					     vni)),
2182 	},
2183 	[ITEM_ARP_ETH_IPV4] = {
2184 		.name = "arp_eth_ipv4",
2185 		.help = "match ARP header for Ethernet/IPv4",
2186 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2187 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2188 		.next = NEXT(item_arp_eth_ipv4),
2189 		.call = parse_vc,
2190 	},
2191 	[ITEM_ARP_ETH_IPV4_SHA] = {
2192 		.name = "sha",
2193 		.help = "sender hardware address",
2194 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2195 			     item_param),
2196 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2197 					     sha)),
2198 	},
2199 	[ITEM_ARP_ETH_IPV4_SPA] = {
2200 		.name = "spa",
2201 		.help = "sender IPv4 address",
2202 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2203 			     item_param),
2204 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2205 					     spa)),
2206 	},
2207 	[ITEM_ARP_ETH_IPV4_THA] = {
2208 		.name = "tha",
2209 		.help = "target hardware address",
2210 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2211 			     item_param),
2212 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2213 					     tha)),
2214 	},
2215 	[ITEM_ARP_ETH_IPV4_TPA] = {
2216 		.name = "tpa",
2217 		.help = "target IPv4 address",
2218 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2219 			     item_param),
2220 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2221 					     tpa)),
2222 	},
2223 	[ITEM_IPV6_EXT] = {
2224 		.name = "ipv6_ext",
2225 		.help = "match presence of any IPv6 extension header",
2226 		.priv = PRIV_ITEM(IPV6_EXT,
2227 				  sizeof(struct rte_flow_item_ipv6_ext)),
2228 		.next = NEXT(item_ipv6_ext),
2229 		.call = parse_vc,
2230 	},
2231 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2232 		.name = "next_hdr",
2233 		.help = "next header",
2234 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2235 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2236 					     next_hdr)),
2237 	},
2238 	[ITEM_ICMP6] = {
2239 		.name = "icmp6",
2240 		.help = "match any ICMPv6 header",
2241 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2242 		.next = NEXT(item_icmp6),
2243 		.call = parse_vc,
2244 	},
2245 	[ITEM_ICMP6_TYPE] = {
2246 		.name = "type",
2247 		.help = "ICMPv6 type",
2248 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2249 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2250 					     type)),
2251 	},
2252 	[ITEM_ICMP6_CODE] = {
2253 		.name = "code",
2254 		.help = "ICMPv6 code",
2255 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2256 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2257 					     code)),
2258 	},
2259 	[ITEM_ICMP6_ND_NS] = {
2260 		.name = "icmp6_nd_ns",
2261 		.help = "match ICMPv6 neighbor discovery solicitation",
2262 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2263 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2264 		.next = NEXT(item_icmp6_nd_ns),
2265 		.call = parse_vc,
2266 	},
2267 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2268 		.name = "target_addr",
2269 		.help = "target address",
2270 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2271 			     item_param),
2272 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2273 					     target_addr)),
2274 	},
2275 	[ITEM_ICMP6_ND_NA] = {
2276 		.name = "icmp6_nd_na",
2277 		.help = "match ICMPv6 neighbor discovery advertisement",
2278 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2279 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2280 		.next = NEXT(item_icmp6_nd_na),
2281 		.call = parse_vc,
2282 	},
2283 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2284 		.name = "target_addr",
2285 		.help = "target address",
2286 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2287 			     item_param),
2288 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2289 					     target_addr)),
2290 	},
2291 	[ITEM_ICMP6_ND_OPT] = {
2292 		.name = "icmp6_nd_opt",
2293 		.help = "match presence of any ICMPv6 neighbor discovery"
2294 			" option",
2295 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2296 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2297 		.next = NEXT(item_icmp6_nd_opt),
2298 		.call = parse_vc,
2299 	},
2300 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2301 		.name = "type",
2302 		.help = "ND option type",
2303 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2304 			     item_param),
2305 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2306 					     type)),
2307 	},
2308 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2309 		.name = "icmp6_nd_opt_sla_eth",
2310 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2311 			" link-layer address option",
2312 		.priv = PRIV_ITEM
2313 			(ICMP6_ND_OPT_SLA_ETH,
2314 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2315 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2316 		.call = parse_vc,
2317 	},
2318 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2319 		.name = "sla",
2320 		.help = "source Ethernet LLA",
2321 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2322 			     item_param),
2323 		.args = ARGS(ARGS_ENTRY_HTON
2324 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2325 	},
2326 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2327 		.name = "icmp6_nd_opt_tla_eth",
2328 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2329 			" link-layer address option",
2330 		.priv = PRIV_ITEM
2331 			(ICMP6_ND_OPT_TLA_ETH,
2332 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2333 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2334 		.call = parse_vc,
2335 	},
2336 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2337 		.name = "tla",
2338 		.help = "target Ethernet LLA",
2339 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2340 			     item_param),
2341 		.args = ARGS(ARGS_ENTRY_HTON
2342 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2343 	},
2344 	[ITEM_META] = {
2345 		.name = "meta",
2346 		.help = "match metadata header",
2347 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2348 		.next = NEXT(item_meta),
2349 		.call = parse_vc,
2350 	},
2351 	[ITEM_META_DATA] = {
2352 		.name = "data",
2353 		.help = "metadata value",
2354 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2355 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2356 						  data, "\xff\xff\xff\xff")),
2357 	},
2358 	[ITEM_GRE_KEY] = {
2359 		.name = "gre_key",
2360 		.help = "match GRE key",
2361 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2362 		.next = NEXT(item_gre_key),
2363 		.call = parse_vc,
2364 	},
2365 	[ITEM_GRE_KEY_VALUE] = {
2366 		.name = "value",
2367 		.help = "key value",
2368 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2369 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2370 	},
2371 	[ITEM_GTP_PSC] = {
2372 		.name = "gtp_psc",
2373 		.help = "match GTP extension header with type 0x85",
2374 		.priv = PRIV_ITEM(GTP_PSC,
2375 				sizeof(struct rte_flow_item_gtp_psc)),
2376 		.next = NEXT(item_gtp_psc),
2377 		.call = parse_vc,
2378 	},
2379 	[ITEM_GTP_PSC_QFI] = {
2380 		.name = "qfi",
2381 		.help = "QoS flow identifier",
2382 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2383 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2384 					qfi)),
2385 	},
2386 	[ITEM_GTP_PSC_PDU_T] = {
2387 		.name = "pdu_t",
2388 		.help = "PDU type",
2389 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2390 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2391 					pdu_type)),
2392 	},
2393 	[ITEM_PPPOES] = {
2394 		.name = "pppoes",
2395 		.help = "match PPPoE session header",
2396 		.priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
2397 		.next = NEXT(item_pppoes),
2398 		.call = parse_vc,
2399 	},
2400 	[ITEM_PPPOED] = {
2401 		.name = "pppoed",
2402 		.help = "match PPPoE discovery header",
2403 		.priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
2404 		.next = NEXT(item_pppoed),
2405 		.call = parse_vc,
2406 	},
2407 	[ITEM_PPPOE_SEID] = {
2408 		.name = "seid",
2409 		.help = "session identifier",
2410 		.next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
2411 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
2412 					session_id)),
2413 	},
2414 	[ITEM_PPPOE_PROTO_ID] = {
2415 		.name = "proto_id",
2416 		.help = "match PPPoE session protocol identifier",
2417 		.priv = PRIV_ITEM(PPPOE_PROTO_ID,
2418 				sizeof(struct rte_flow_item_pppoe_proto_id)),
2419 		.next = NEXT(item_pppoe_proto_id),
2420 		.call = parse_vc,
2421 	},
2422 	/* Validate/create actions. */
2423 	[ACTIONS] = {
2424 		.name = "actions",
2425 		.help = "submit a list of associated actions",
2426 		.next = NEXT(next_action),
2427 		.call = parse_vc,
2428 	},
2429 	[ACTION_NEXT] = {
2430 		.name = "/",
2431 		.help = "specify next action",
2432 		.next = NEXT(next_action),
2433 	},
2434 	[ACTION_END] = {
2435 		.name = "end",
2436 		.help = "end list of actions",
2437 		.priv = PRIV_ACTION(END, 0),
2438 		.call = parse_vc,
2439 	},
2440 	[ACTION_VOID] = {
2441 		.name = "void",
2442 		.help = "no-op action",
2443 		.priv = PRIV_ACTION(VOID, 0),
2444 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2445 		.call = parse_vc,
2446 	},
2447 	[ACTION_PASSTHRU] = {
2448 		.name = "passthru",
2449 		.help = "let subsequent rule process matched packets",
2450 		.priv = PRIV_ACTION(PASSTHRU, 0),
2451 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2452 		.call = parse_vc,
2453 	},
2454 	[ACTION_JUMP] = {
2455 		.name = "jump",
2456 		.help = "redirect traffic to a given group",
2457 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2458 		.next = NEXT(action_jump),
2459 		.call = parse_vc,
2460 	},
2461 	[ACTION_JUMP_GROUP] = {
2462 		.name = "group",
2463 		.help = "group to redirect traffic to",
2464 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2465 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2466 		.call = parse_vc_conf,
2467 	},
2468 	[ACTION_MARK] = {
2469 		.name = "mark",
2470 		.help = "attach 32 bit value to packets",
2471 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2472 		.next = NEXT(action_mark),
2473 		.call = parse_vc,
2474 	},
2475 	[ACTION_MARK_ID] = {
2476 		.name = "id",
2477 		.help = "32 bit value to return with packets",
2478 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2479 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2480 		.call = parse_vc_conf,
2481 	},
2482 	[ACTION_FLAG] = {
2483 		.name = "flag",
2484 		.help = "flag packets",
2485 		.priv = PRIV_ACTION(FLAG, 0),
2486 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2487 		.call = parse_vc,
2488 	},
2489 	[ACTION_QUEUE] = {
2490 		.name = "queue",
2491 		.help = "assign packets to a given queue index",
2492 		.priv = PRIV_ACTION(QUEUE,
2493 				    sizeof(struct rte_flow_action_queue)),
2494 		.next = NEXT(action_queue),
2495 		.call = parse_vc,
2496 	},
2497 	[ACTION_QUEUE_INDEX] = {
2498 		.name = "index",
2499 		.help = "queue index to use",
2500 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2501 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2502 		.call = parse_vc_conf,
2503 	},
2504 	[ACTION_DROP] = {
2505 		.name = "drop",
2506 		.help = "drop packets (note: passthru has priority)",
2507 		.priv = PRIV_ACTION(DROP, 0),
2508 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2509 		.call = parse_vc,
2510 	},
2511 	[ACTION_COUNT] = {
2512 		.name = "count",
2513 		.help = "enable counters for this rule",
2514 		.priv = PRIV_ACTION(COUNT,
2515 				    sizeof(struct rte_flow_action_count)),
2516 		.next = NEXT(action_count),
2517 		.call = parse_vc,
2518 	},
2519 	[ACTION_COUNT_ID] = {
2520 		.name = "identifier",
2521 		.help = "counter identifier to use",
2522 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2523 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2524 		.call = parse_vc_conf,
2525 	},
2526 	[ACTION_COUNT_SHARED] = {
2527 		.name = "shared",
2528 		.help = "shared counter",
2529 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2530 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2531 					   shared, 1)),
2532 		.call = parse_vc_conf,
2533 	},
2534 	[ACTION_RSS] = {
2535 		.name = "rss",
2536 		.help = "spread packets among several queues",
2537 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2538 		.next = NEXT(action_rss),
2539 		.call = parse_vc_action_rss,
2540 	},
2541 	[ACTION_RSS_FUNC] = {
2542 		.name = "func",
2543 		.help = "RSS hash function to apply",
2544 		.next = NEXT(action_rss,
2545 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2546 					ACTION_RSS_FUNC_TOEPLITZ,
2547 					ACTION_RSS_FUNC_SIMPLE_XOR,
2548 					ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
2549 	},
2550 	[ACTION_RSS_FUNC_DEFAULT] = {
2551 		.name = "default",
2552 		.help = "default hash function",
2553 		.call = parse_vc_action_rss_func,
2554 	},
2555 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2556 		.name = "toeplitz",
2557 		.help = "Toeplitz hash function",
2558 		.call = parse_vc_action_rss_func,
2559 	},
2560 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2561 		.name = "simple_xor",
2562 		.help = "simple XOR hash function",
2563 		.call = parse_vc_action_rss_func,
2564 	},
2565 	[ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
2566 		.name = "symmetric_toeplitz",
2567 		.help = "Symmetric Toeplitz hash function",
2568 		.call = parse_vc_action_rss_func,
2569 	},
2570 	[ACTION_RSS_LEVEL] = {
2571 		.name = "level",
2572 		.help = "encapsulation level for \"types\"",
2573 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2574 		.args = ARGS(ARGS_ENTRY_ARB
2575 			     (offsetof(struct action_rss_data, conf) +
2576 			      offsetof(struct rte_flow_action_rss, level),
2577 			      sizeof(((struct rte_flow_action_rss *)0)->
2578 				     level))),
2579 	},
2580 	[ACTION_RSS_TYPES] = {
2581 		.name = "types",
2582 		.help = "specific RSS hash types",
2583 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2584 	},
2585 	[ACTION_RSS_TYPE] = {
2586 		.name = "{type}",
2587 		.help = "RSS hash type",
2588 		.call = parse_vc_action_rss_type,
2589 		.comp = comp_vc_action_rss_type,
2590 	},
2591 	[ACTION_RSS_KEY] = {
2592 		.name = "key",
2593 		.help = "RSS hash key",
2594 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2595 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2596 			     ARGS_ENTRY_ARB
2597 			     (offsetof(struct action_rss_data, conf) +
2598 			      offsetof(struct rte_flow_action_rss, key_len),
2599 			      sizeof(((struct rte_flow_action_rss *)0)->
2600 				     key_len)),
2601 			     ARGS_ENTRY(struct action_rss_data, key)),
2602 	},
2603 	[ACTION_RSS_KEY_LEN] = {
2604 		.name = "key_len",
2605 		.help = "RSS hash key length in bytes",
2606 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2607 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2608 			     (offsetof(struct action_rss_data, conf) +
2609 			      offsetof(struct rte_flow_action_rss, key_len),
2610 			      sizeof(((struct rte_flow_action_rss *)0)->
2611 				     key_len),
2612 			      0,
2613 			      RSS_HASH_KEY_LENGTH)),
2614 	},
2615 	[ACTION_RSS_QUEUES] = {
2616 		.name = "queues",
2617 		.help = "queue indices to use",
2618 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2619 		.call = parse_vc_conf,
2620 	},
2621 	[ACTION_RSS_QUEUE] = {
2622 		.name = "{queue}",
2623 		.help = "queue index",
2624 		.call = parse_vc_action_rss_queue,
2625 		.comp = comp_vc_action_rss_queue,
2626 	},
2627 	[ACTION_PF] = {
2628 		.name = "pf",
2629 		.help = "direct traffic to physical function",
2630 		.priv = PRIV_ACTION(PF, 0),
2631 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2632 		.call = parse_vc,
2633 	},
2634 	[ACTION_VF] = {
2635 		.name = "vf",
2636 		.help = "direct traffic to a virtual function ID",
2637 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2638 		.next = NEXT(action_vf),
2639 		.call = parse_vc,
2640 	},
2641 	[ACTION_VF_ORIGINAL] = {
2642 		.name = "original",
2643 		.help = "use original VF ID if possible",
2644 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2645 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2646 					   original, 1)),
2647 		.call = parse_vc_conf,
2648 	},
2649 	[ACTION_VF_ID] = {
2650 		.name = "id",
2651 		.help = "VF ID",
2652 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2653 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2654 		.call = parse_vc_conf,
2655 	},
2656 	[ACTION_PHY_PORT] = {
2657 		.name = "phy_port",
2658 		.help = "direct packets to physical port index",
2659 		.priv = PRIV_ACTION(PHY_PORT,
2660 				    sizeof(struct rte_flow_action_phy_port)),
2661 		.next = NEXT(action_phy_port),
2662 		.call = parse_vc,
2663 	},
2664 	[ACTION_PHY_PORT_ORIGINAL] = {
2665 		.name = "original",
2666 		.help = "use original port index if possible",
2667 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2668 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2669 					   original, 1)),
2670 		.call = parse_vc_conf,
2671 	},
2672 	[ACTION_PHY_PORT_INDEX] = {
2673 		.name = "index",
2674 		.help = "physical port index",
2675 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2676 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2677 					index)),
2678 		.call = parse_vc_conf,
2679 	},
2680 	[ACTION_PORT_ID] = {
2681 		.name = "port_id",
2682 		.help = "direct matching traffic to a given DPDK port ID",
2683 		.priv = PRIV_ACTION(PORT_ID,
2684 				    sizeof(struct rte_flow_action_port_id)),
2685 		.next = NEXT(action_port_id),
2686 		.call = parse_vc,
2687 	},
2688 	[ACTION_PORT_ID_ORIGINAL] = {
2689 		.name = "original",
2690 		.help = "use original DPDK port ID if possible",
2691 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2692 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2693 					   original, 1)),
2694 		.call = parse_vc_conf,
2695 	},
2696 	[ACTION_PORT_ID_ID] = {
2697 		.name = "id",
2698 		.help = "DPDK port ID",
2699 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2700 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2701 		.call = parse_vc_conf,
2702 	},
2703 	[ACTION_METER] = {
2704 		.name = "meter",
2705 		.help = "meter the directed packets at given id",
2706 		.priv = PRIV_ACTION(METER,
2707 				    sizeof(struct rte_flow_action_meter)),
2708 		.next = NEXT(action_meter),
2709 		.call = parse_vc,
2710 	},
2711 	[ACTION_METER_ID] = {
2712 		.name = "mtr_id",
2713 		.help = "meter id to use",
2714 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2715 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2716 		.call = parse_vc_conf,
2717 	},
2718 	[ACTION_OF_SET_MPLS_TTL] = {
2719 		.name = "of_set_mpls_ttl",
2720 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2721 		.priv = PRIV_ACTION
2722 			(OF_SET_MPLS_TTL,
2723 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2724 		.next = NEXT(action_of_set_mpls_ttl),
2725 		.call = parse_vc,
2726 	},
2727 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2728 		.name = "mpls_ttl",
2729 		.help = "MPLS TTL",
2730 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2731 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2732 					mpls_ttl)),
2733 		.call = parse_vc_conf,
2734 	},
2735 	[ACTION_OF_DEC_MPLS_TTL] = {
2736 		.name = "of_dec_mpls_ttl",
2737 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2738 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2739 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2740 		.call = parse_vc,
2741 	},
2742 	[ACTION_OF_SET_NW_TTL] = {
2743 		.name = "of_set_nw_ttl",
2744 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2745 		.priv = PRIV_ACTION
2746 			(OF_SET_NW_TTL,
2747 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2748 		.next = NEXT(action_of_set_nw_ttl),
2749 		.call = parse_vc,
2750 	},
2751 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2752 		.name = "nw_ttl",
2753 		.help = "IP TTL",
2754 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2755 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2756 					nw_ttl)),
2757 		.call = parse_vc_conf,
2758 	},
2759 	[ACTION_OF_DEC_NW_TTL] = {
2760 		.name = "of_dec_nw_ttl",
2761 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2762 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2763 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2764 		.call = parse_vc,
2765 	},
2766 	[ACTION_OF_COPY_TTL_OUT] = {
2767 		.name = "of_copy_ttl_out",
2768 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2769 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2770 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2771 		.call = parse_vc,
2772 	},
2773 	[ACTION_OF_COPY_TTL_IN] = {
2774 		.name = "of_copy_ttl_in",
2775 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2776 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2777 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2778 		.call = parse_vc,
2779 	},
2780 	[ACTION_OF_POP_VLAN] = {
2781 		.name = "of_pop_vlan",
2782 		.help = "OpenFlow's OFPAT_POP_VLAN",
2783 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2784 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2785 		.call = parse_vc,
2786 	},
2787 	[ACTION_OF_PUSH_VLAN] = {
2788 		.name = "of_push_vlan",
2789 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2790 		.priv = PRIV_ACTION
2791 			(OF_PUSH_VLAN,
2792 			 sizeof(struct rte_flow_action_of_push_vlan)),
2793 		.next = NEXT(action_of_push_vlan),
2794 		.call = parse_vc,
2795 	},
2796 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2797 		.name = "ethertype",
2798 		.help = "EtherType",
2799 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2800 		.args = ARGS(ARGS_ENTRY_HTON
2801 			     (struct rte_flow_action_of_push_vlan,
2802 			      ethertype)),
2803 		.call = parse_vc_conf,
2804 	},
2805 	[ACTION_OF_SET_VLAN_VID] = {
2806 		.name = "of_set_vlan_vid",
2807 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2808 		.priv = PRIV_ACTION
2809 			(OF_SET_VLAN_VID,
2810 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2811 		.next = NEXT(action_of_set_vlan_vid),
2812 		.call = parse_vc,
2813 	},
2814 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2815 		.name = "vlan_vid",
2816 		.help = "VLAN id",
2817 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2818 		.args = ARGS(ARGS_ENTRY_HTON
2819 			     (struct rte_flow_action_of_set_vlan_vid,
2820 			      vlan_vid)),
2821 		.call = parse_vc_conf,
2822 	},
2823 	[ACTION_OF_SET_VLAN_PCP] = {
2824 		.name = "of_set_vlan_pcp",
2825 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2826 		.priv = PRIV_ACTION
2827 			(OF_SET_VLAN_PCP,
2828 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2829 		.next = NEXT(action_of_set_vlan_pcp),
2830 		.call = parse_vc,
2831 	},
2832 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2833 		.name = "vlan_pcp",
2834 		.help = "VLAN priority",
2835 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2836 		.args = ARGS(ARGS_ENTRY_HTON
2837 			     (struct rte_flow_action_of_set_vlan_pcp,
2838 			      vlan_pcp)),
2839 		.call = parse_vc_conf,
2840 	},
2841 	[ACTION_OF_POP_MPLS] = {
2842 		.name = "of_pop_mpls",
2843 		.help = "OpenFlow's OFPAT_POP_MPLS",
2844 		.priv = PRIV_ACTION(OF_POP_MPLS,
2845 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2846 		.next = NEXT(action_of_pop_mpls),
2847 		.call = parse_vc,
2848 	},
2849 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2850 		.name = "ethertype",
2851 		.help = "EtherType",
2852 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2853 		.args = ARGS(ARGS_ENTRY_HTON
2854 			     (struct rte_flow_action_of_pop_mpls,
2855 			      ethertype)),
2856 		.call = parse_vc_conf,
2857 	},
2858 	[ACTION_OF_PUSH_MPLS] = {
2859 		.name = "of_push_mpls",
2860 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2861 		.priv = PRIV_ACTION
2862 			(OF_PUSH_MPLS,
2863 			 sizeof(struct rte_flow_action_of_push_mpls)),
2864 		.next = NEXT(action_of_push_mpls),
2865 		.call = parse_vc,
2866 	},
2867 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2868 		.name = "ethertype",
2869 		.help = "EtherType",
2870 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2871 		.args = ARGS(ARGS_ENTRY_HTON
2872 			     (struct rte_flow_action_of_push_mpls,
2873 			      ethertype)),
2874 		.call = parse_vc_conf,
2875 	},
2876 	[ACTION_VXLAN_ENCAP] = {
2877 		.name = "vxlan_encap",
2878 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2879 			" vxlan\"",
2880 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2881 				    sizeof(struct action_vxlan_encap_data)),
2882 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2883 		.call = parse_vc_action_vxlan_encap,
2884 	},
2885 	[ACTION_VXLAN_DECAP] = {
2886 		.name = "vxlan_decap",
2887 		.help = "Performs a decapsulation action by stripping all"
2888 			" headers of the VXLAN tunnel network overlay from the"
2889 			" matched flow.",
2890 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2891 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2892 		.call = parse_vc,
2893 	},
2894 	[ACTION_NVGRE_ENCAP] = {
2895 		.name = "nvgre_encap",
2896 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2897 			" nvgre\"",
2898 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2899 				    sizeof(struct action_nvgre_encap_data)),
2900 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2901 		.call = parse_vc_action_nvgre_encap,
2902 	},
2903 	[ACTION_NVGRE_DECAP] = {
2904 		.name = "nvgre_decap",
2905 		.help = "Performs a decapsulation action by stripping all"
2906 			" headers of the NVGRE tunnel network overlay from the"
2907 			" matched flow.",
2908 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2909 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2910 		.call = parse_vc,
2911 	},
2912 	[ACTION_L2_ENCAP] = {
2913 		.name = "l2_encap",
2914 		.help = "l2 encap, uses configuration set by"
2915 			" \"set l2_encap\"",
2916 		.priv = PRIV_ACTION(RAW_ENCAP,
2917 				    sizeof(struct action_raw_encap_data)),
2918 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2919 		.call = parse_vc_action_l2_encap,
2920 	},
2921 	[ACTION_L2_DECAP] = {
2922 		.name = "l2_decap",
2923 		.help = "l2 decap, uses configuration set by"
2924 			" \"set l2_decap\"",
2925 		.priv = PRIV_ACTION(RAW_DECAP,
2926 				    sizeof(struct action_raw_decap_data)),
2927 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2928 		.call = parse_vc_action_l2_decap,
2929 	},
2930 	[ACTION_MPLSOGRE_ENCAP] = {
2931 		.name = "mplsogre_encap",
2932 		.help = "mplsogre encapsulation, uses configuration set by"
2933 			" \"set mplsogre_encap\"",
2934 		.priv = PRIV_ACTION(RAW_ENCAP,
2935 				    sizeof(struct action_raw_encap_data)),
2936 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2937 		.call = parse_vc_action_mplsogre_encap,
2938 	},
2939 	[ACTION_MPLSOGRE_DECAP] = {
2940 		.name = "mplsogre_decap",
2941 		.help = "mplsogre decapsulation, uses configuration set by"
2942 			" \"set mplsogre_decap\"",
2943 		.priv = PRIV_ACTION(RAW_DECAP,
2944 				    sizeof(struct action_raw_decap_data)),
2945 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2946 		.call = parse_vc_action_mplsogre_decap,
2947 	},
2948 	[ACTION_MPLSOUDP_ENCAP] = {
2949 		.name = "mplsoudp_encap",
2950 		.help = "mplsoudp encapsulation, uses configuration set by"
2951 			" \"set mplsoudp_encap\"",
2952 		.priv = PRIV_ACTION(RAW_ENCAP,
2953 				    sizeof(struct action_raw_encap_data)),
2954 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2955 		.call = parse_vc_action_mplsoudp_encap,
2956 	},
2957 	[ACTION_MPLSOUDP_DECAP] = {
2958 		.name = "mplsoudp_decap",
2959 		.help = "mplsoudp decapsulation, uses configuration set by"
2960 			" \"set mplsoudp_decap\"",
2961 		.priv = PRIV_ACTION(RAW_DECAP,
2962 				    sizeof(struct action_raw_decap_data)),
2963 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2964 		.call = parse_vc_action_mplsoudp_decap,
2965 	},
2966 	[ACTION_SET_IPV4_SRC] = {
2967 		.name = "set_ipv4_src",
2968 		.help = "Set a new IPv4 source address in the outermost"
2969 			" IPv4 header",
2970 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2971 			sizeof(struct rte_flow_action_set_ipv4)),
2972 		.next = NEXT(action_set_ipv4_src),
2973 		.call = parse_vc,
2974 	},
2975 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2976 		.name = "ipv4_addr",
2977 		.help = "new IPv4 source address to set",
2978 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2979 		.args = ARGS(ARGS_ENTRY_HTON
2980 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2981 		.call = parse_vc_conf,
2982 	},
2983 	[ACTION_SET_IPV4_DST] = {
2984 		.name = "set_ipv4_dst",
2985 		.help = "Set a new IPv4 destination address in the outermost"
2986 			" IPv4 header",
2987 		.priv = PRIV_ACTION(SET_IPV4_DST,
2988 			sizeof(struct rte_flow_action_set_ipv4)),
2989 		.next = NEXT(action_set_ipv4_dst),
2990 		.call = parse_vc,
2991 	},
2992 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2993 		.name = "ipv4_addr",
2994 		.help = "new IPv4 destination address to set",
2995 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2996 		.args = ARGS(ARGS_ENTRY_HTON
2997 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2998 		.call = parse_vc_conf,
2999 	},
3000 	[ACTION_SET_IPV6_SRC] = {
3001 		.name = "set_ipv6_src",
3002 		.help = "Set a new IPv6 source address in the outermost"
3003 			" IPv6 header",
3004 		.priv = PRIV_ACTION(SET_IPV6_SRC,
3005 			sizeof(struct rte_flow_action_set_ipv6)),
3006 		.next = NEXT(action_set_ipv6_src),
3007 		.call = parse_vc,
3008 	},
3009 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3010 		.name = "ipv6_addr",
3011 		.help = "new IPv6 source address to set",
3012 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3013 		.args = ARGS(ARGS_ENTRY_HTON
3014 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3015 		.call = parse_vc_conf,
3016 	},
3017 	[ACTION_SET_IPV6_DST] = {
3018 		.name = "set_ipv6_dst",
3019 		.help = "Set a new IPv6 destination address in the outermost"
3020 			" IPv6 header",
3021 		.priv = PRIV_ACTION(SET_IPV6_DST,
3022 			sizeof(struct rte_flow_action_set_ipv6)),
3023 		.next = NEXT(action_set_ipv6_dst),
3024 		.call = parse_vc,
3025 	},
3026 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
3027 		.name = "ipv6_addr",
3028 		.help = "new IPv6 destination address to set",
3029 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
3030 		.args = ARGS(ARGS_ENTRY_HTON
3031 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3032 		.call = parse_vc_conf,
3033 	},
3034 	[ACTION_SET_TP_SRC] = {
3035 		.name = "set_tp_src",
3036 		.help = "set a new source port number in the outermost"
3037 			" TCP/UDP header",
3038 		.priv = PRIV_ACTION(SET_TP_SRC,
3039 			sizeof(struct rte_flow_action_set_tp)),
3040 		.next = NEXT(action_set_tp_src),
3041 		.call = parse_vc,
3042 	},
3043 	[ACTION_SET_TP_SRC_TP_SRC] = {
3044 		.name = "port",
3045 		.help = "new source port number to set",
3046 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
3047 		.args = ARGS(ARGS_ENTRY_HTON
3048 			     (struct rte_flow_action_set_tp, port)),
3049 		.call = parse_vc_conf,
3050 	},
3051 	[ACTION_SET_TP_DST] = {
3052 		.name = "set_tp_dst",
3053 		.help = "set a new destination port number in the outermost"
3054 			" TCP/UDP header",
3055 		.priv = PRIV_ACTION(SET_TP_DST,
3056 			sizeof(struct rte_flow_action_set_tp)),
3057 		.next = NEXT(action_set_tp_dst),
3058 		.call = parse_vc,
3059 	},
3060 	[ACTION_SET_TP_DST_TP_DST] = {
3061 		.name = "port",
3062 		.help = "new destination port number to set",
3063 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
3064 		.args = ARGS(ARGS_ENTRY_HTON
3065 			     (struct rte_flow_action_set_tp, port)),
3066 		.call = parse_vc_conf,
3067 	},
3068 	[ACTION_MAC_SWAP] = {
3069 		.name = "mac_swap",
3070 		.help = "Swap the source and destination MAC addresses"
3071 			" in the outermost Ethernet header",
3072 		.priv = PRIV_ACTION(MAC_SWAP, 0),
3073 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3074 		.call = parse_vc,
3075 	},
3076 	[ACTION_DEC_TTL] = {
3077 		.name = "dec_ttl",
3078 		.help = "decrease network TTL if available",
3079 		.priv = PRIV_ACTION(DEC_TTL, 0),
3080 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3081 		.call = parse_vc,
3082 	},
3083 	[ACTION_SET_TTL] = {
3084 		.name = "set_ttl",
3085 		.help = "set ttl value",
3086 		.priv = PRIV_ACTION(SET_TTL,
3087 			sizeof(struct rte_flow_action_set_ttl)),
3088 		.next = NEXT(action_set_ttl),
3089 		.call = parse_vc,
3090 	},
3091 	[ACTION_SET_TTL_TTL] = {
3092 		.name = "ttl_value",
3093 		.help = "new ttl value to set",
3094 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3095 		.args = ARGS(ARGS_ENTRY_HTON
3096 			     (struct rte_flow_action_set_ttl, ttl_value)),
3097 		.call = parse_vc_conf,
3098 	},
3099 	[ACTION_SET_MAC_SRC] = {
3100 		.name = "set_mac_src",
3101 		.help = "set source mac address",
3102 		.priv = PRIV_ACTION(SET_MAC_SRC,
3103 			sizeof(struct rte_flow_action_set_mac)),
3104 		.next = NEXT(action_set_mac_src),
3105 		.call = parse_vc,
3106 	},
3107 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
3108 		.name = "mac_addr",
3109 		.help = "new source mac address",
3110 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3111 		.args = ARGS(ARGS_ENTRY_HTON
3112 			     (struct rte_flow_action_set_mac, mac_addr)),
3113 		.call = parse_vc_conf,
3114 	},
3115 	[ACTION_SET_MAC_DST] = {
3116 		.name = "set_mac_dst",
3117 		.help = "set destination mac address",
3118 		.priv = PRIV_ACTION(SET_MAC_DST,
3119 			sizeof(struct rte_flow_action_set_mac)),
3120 		.next = NEXT(action_set_mac_dst),
3121 		.call = parse_vc,
3122 	},
3123 	[ACTION_SET_MAC_DST_MAC_DST] = {
3124 		.name = "mac_addr",
3125 		.help = "new destination mac address to set",
3126 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3127 		.args = ARGS(ARGS_ENTRY_HTON
3128 			     (struct rte_flow_action_set_mac, mac_addr)),
3129 		.call = parse_vc_conf,
3130 	},
3131 	[ACTION_INC_TCP_SEQ] = {
3132 		.name = "inc_tcp_seq",
3133 		.help = "increase TCP sequence number",
3134 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3135 		.next = NEXT(action_inc_tcp_seq),
3136 		.call = parse_vc,
3137 	},
3138 	[ACTION_INC_TCP_SEQ_VALUE] = {
3139 		.name = "value",
3140 		.help = "the value to increase TCP sequence number by",
3141 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3142 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3143 		.call = parse_vc_conf,
3144 	},
3145 	[ACTION_DEC_TCP_SEQ] = {
3146 		.name = "dec_tcp_seq",
3147 		.help = "decrease TCP sequence number",
3148 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3149 		.next = NEXT(action_dec_tcp_seq),
3150 		.call = parse_vc,
3151 	},
3152 	[ACTION_DEC_TCP_SEQ_VALUE] = {
3153 		.name = "value",
3154 		.help = "the value to decrease TCP sequence number by",
3155 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3156 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3157 		.call = parse_vc_conf,
3158 	},
3159 	[ACTION_INC_TCP_ACK] = {
3160 		.name = "inc_tcp_ack",
3161 		.help = "increase TCP acknowledgment number",
3162 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3163 		.next = NEXT(action_inc_tcp_ack),
3164 		.call = parse_vc,
3165 	},
3166 	[ACTION_INC_TCP_ACK_VALUE] = {
3167 		.name = "value",
3168 		.help = "the value to increase TCP acknowledgment number by",
3169 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3170 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3171 		.call = parse_vc_conf,
3172 	},
3173 	[ACTION_DEC_TCP_ACK] = {
3174 		.name = "dec_tcp_ack",
3175 		.help = "decrease TCP acknowledgment number",
3176 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3177 		.next = NEXT(action_dec_tcp_ack),
3178 		.call = parse_vc,
3179 	},
3180 	[ACTION_DEC_TCP_ACK_VALUE] = {
3181 		.name = "value",
3182 		.help = "the value to decrease TCP acknowledgment number by",
3183 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3184 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3185 		.call = parse_vc_conf,
3186 	},
3187 	[ACTION_RAW_ENCAP] = {
3188 		.name = "raw_encap",
3189 		.help = "encapsulation data, defined by set raw_encap",
3190 		.priv = PRIV_ACTION(RAW_ENCAP,
3191 			sizeof(struct rte_flow_action_raw_encap)),
3192 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3193 		.call = parse_vc_action_raw_encap,
3194 	},
3195 	[ACTION_RAW_DECAP] = {
3196 		.name = "raw_decap",
3197 		.help = "decapsulation data, defined by set raw_encap",
3198 		.priv = PRIV_ACTION(RAW_DECAP,
3199 			sizeof(struct rte_flow_action_raw_decap)),
3200 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3201 		.call = parse_vc_action_raw_decap,
3202 	},
3203 	/* Top level command. */
3204 	[SET] = {
3205 		.name = "set",
3206 		.help = "set raw encap/decap data",
3207 		.type = "set raw_encap|raw_decap <pattern>",
3208 		.next = NEXT(NEXT_ENTRY
3209 			     (SET_RAW_ENCAP,
3210 			      SET_RAW_DECAP)),
3211 		.call = parse_set_init,
3212 	},
3213 	/* Sub-level commands. */
3214 	[SET_RAW_ENCAP] = {
3215 		.name = "raw_encap",
3216 		.help = "set raw encap data",
3217 		.next = NEXT(next_item),
3218 		.call = parse_set_raw_encap_decap,
3219 	},
3220 	[SET_RAW_DECAP] = {
3221 		.name = "raw_decap",
3222 		.help = "set raw decap data",
3223 		.next = NEXT(next_item),
3224 		.call = parse_set_raw_encap_decap,
3225 	}
3226 };
3227 
3228 /** Remove and return last entry from argument stack. */
3229 static const struct arg *
3230 pop_args(struct context *ctx)
3231 {
3232 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3233 }
3234 
3235 /** Add entry on top of the argument stack. */
3236 static int
3237 push_args(struct context *ctx, const struct arg *arg)
3238 {
3239 	if (ctx->args_num == CTX_STACK_SIZE)
3240 		return -1;
3241 	ctx->args[ctx->args_num++] = arg;
3242 	return 0;
3243 }
3244 
3245 /** Spread value into buffer according to bit-mask. */
3246 static size_t
3247 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3248 {
3249 	uint32_t i = arg->size;
3250 	uint32_t end = 0;
3251 	int sub = 1;
3252 	int add = 0;
3253 	size_t len = 0;
3254 
3255 	if (!arg->mask)
3256 		return 0;
3257 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3258 	if (!arg->hton) {
3259 		i = 0;
3260 		end = arg->size;
3261 		sub = 0;
3262 		add = 1;
3263 	}
3264 #endif
3265 	while (i != end) {
3266 		unsigned int shift = 0;
3267 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3268 
3269 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
3270 			if (!(arg->mask[i] & (1 << shift)))
3271 				continue;
3272 			++len;
3273 			if (!dst)
3274 				continue;
3275 			*buf &= ~(1 << shift);
3276 			*buf |= (val & 1) << shift;
3277 			val >>= 1;
3278 		}
3279 		i += add;
3280 	}
3281 	return len;
3282 }
3283 
3284 /** Compare a string with a partial one of a given length. */
3285 static int
3286 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3287 {
3288 	int r = strncmp(full, partial, partial_len);
3289 
3290 	if (r)
3291 		return r;
3292 	if (strlen(full) <= partial_len)
3293 		return 0;
3294 	return full[partial_len];
3295 }
3296 
3297 /**
3298  * Parse a prefix length and generate a bit-mask.
3299  *
3300  * Last argument (ctx->args) is retrieved to determine mask size, storage
3301  * location and whether the result must use network byte ordering.
3302  */
3303 static int
3304 parse_prefix(struct context *ctx, const struct token *token,
3305 	     const char *str, unsigned int len,
3306 	     void *buf, unsigned int size)
3307 {
3308 	const struct arg *arg = pop_args(ctx);
3309 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3310 	char *end;
3311 	uintmax_t u;
3312 	unsigned int bytes;
3313 	unsigned int extra;
3314 
3315 	(void)token;
3316 	/* Argument is expected. */
3317 	if (!arg)
3318 		return -1;
3319 	errno = 0;
3320 	u = strtoumax(str, &end, 0);
3321 	if (errno || (size_t)(end - str) != len)
3322 		goto error;
3323 	if (arg->mask) {
3324 		uintmax_t v = 0;
3325 
3326 		extra = arg_entry_bf_fill(NULL, 0, arg);
3327 		if (u > extra)
3328 			goto error;
3329 		if (!ctx->object)
3330 			return len;
3331 		extra -= u;
3332 		while (u--)
3333 			(v <<= 1, v |= 1);
3334 		v <<= extra;
3335 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3336 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3337 			goto error;
3338 		return len;
3339 	}
3340 	bytes = u / 8;
3341 	extra = u % 8;
3342 	size = arg->size;
3343 	if (bytes > size || bytes + !!extra > size)
3344 		goto error;
3345 	if (!ctx->object)
3346 		return len;
3347 	buf = (uint8_t *)ctx->object + arg->offset;
3348 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3349 	if (!arg->hton) {
3350 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3351 		memset(buf, 0x00, size - bytes);
3352 		if (extra)
3353 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3354 	} else
3355 #endif
3356 	{
3357 		memset(buf, 0xff, bytes);
3358 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3359 		if (extra)
3360 			((uint8_t *)buf)[bytes] = conv[extra];
3361 	}
3362 	if (ctx->objmask)
3363 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3364 	return len;
3365 error:
3366 	push_args(ctx, arg);
3367 	return -1;
3368 }
3369 
3370 /** Default parsing function for token name matching. */
3371 static int
3372 parse_default(struct context *ctx, const struct token *token,
3373 	      const char *str, unsigned int len,
3374 	      void *buf, unsigned int size)
3375 {
3376 	(void)ctx;
3377 	(void)buf;
3378 	(void)size;
3379 	if (strcmp_partial(token->name, str, len))
3380 		return -1;
3381 	return len;
3382 }
3383 
3384 /** Parse flow command, initialize output buffer for subsequent tokens. */
3385 static int
3386 parse_init(struct context *ctx, const struct token *token,
3387 	   const char *str, unsigned int len,
3388 	   void *buf, unsigned int size)
3389 {
3390 	struct buffer *out = buf;
3391 
3392 	/* Token name must match. */
3393 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3394 		return -1;
3395 	/* Nothing else to do if there is no buffer. */
3396 	if (!out)
3397 		return len;
3398 	/* Make sure buffer is large enough. */
3399 	if (size < sizeof(*out))
3400 		return -1;
3401 	/* Initialize buffer. */
3402 	memset(out, 0x00, sizeof(*out));
3403 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3404 	ctx->objdata = 0;
3405 	ctx->object = out;
3406 	ctx->objmask = NULL;
3407 	return len;
3408 }
3409 
3410 /** Parse tokens for validate/create commands. */
3411 static int
3412 parse_vc(struct context *ctx, const struct token *token,
3413 	 const char *str, unsigned int len,
3414 	 void *buf, unsigned int size)
3415 {
3416 	struct buffer *out = buf;
3417 	uint8_t *data;
3418 	uint32_t data_size;
3419 
3420 	/* Token name must match. */
3421 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3422 		return -1;
3423 	/* Nothing else to do if there is no buffer. */
3424 	if (!out)
3425 		return len;
3426 	if (!out->command) {
3427 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3428 			return -1;
3429 		if (sizeof(*out) > size)
3430 			return -1;
3431 		out->command = ctx->curr;
3432 		ctx->objdata = 0;
3433 		ctx->object = out;
3434 		ctx->objmask = NULL;
3435 		out->args.vc.data = (uint8_t *)out + size;
3436 		return len;
3437 	}
3438 	ctx->objdata = 0;
3439 	ctx->object = &out->args.vc.attr;
3440 	ctx->objmask = NULL;
3441 	switch (ctx->curr) {
3442 	case GROUP:
3443 	case PRIORITY:
3444 		return len;
3445 	case INGRESS:
3446 		out->args.vc.attr.ingress = 1;
3447 		return len;
3448 	case EGRESS:
3449 		out->args.vc.attr.egress = 1;
3450 		return len;
3451 	case TRANSFER:
3452 		out->args.vc.attr.transfer = 1;
3453 		return len;
3454 	case PATTERN:
3455 		out->args.vc.pattern =
3456 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3457 					       sizeof(double));
3458 		ctx->object = out->args.vc.pattern;
3459 		ctx->objmask = NULL;
3460 		return len;
3461 	case ACTIONS:
3462 		out->args.vc.actions =
3463 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3464 					       (out->args.vc.pattern +
3465 						out->args.vc.pattern_n),
3466 					       sizeof(double));
3467 		ctx->object = out->args.vc.actions;
3468 		ctx->objmask = NULL;
3469 		return len;
3470 	default:
3471 		if (!token->priv)
3472 			return -1;
3473 		break;
3474 	}
3475 	if (!out->args.vc.actions) {
3476 		const struct parse_item_priv *priv = token->priv;
3477 		struct rte_flow_item *item =
3478 			out->args.vc.pattern + out->args.vc.pattern_n;
3479 
3480 		data_size = priv->size * 3; /* spec, last, mask */
3481 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3482 					       (out->args.vc.data - data_size),
3483 					       sizeof(double));
3484 		if ((uint8_t *)item + sizeof(*item) > data)
3485 			return -1;
3486 		*item = (struct rte_flow_item){
3487 			.type = priv->type,
3488 		};
3489 		++out->args.vc.pattern_n;
3490 		ctx->object = item;
3491 		ctx->objmask = NULL;
3492 	} else {
3493 		const struct parse_action_priv *priv = token->priv;
3494 		struct rte_flow_action *action =
3495 			out->args.vc.actions + out->args.vc.actions_n;
3496 
3497 		data_size = priv->size; /* configuration */
3498 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3499 					       (out->args.vc.data - data_size),
3500 					       sizeof(double));
3501 		if ((uint8_t *)action + sizeof(*action) > data)
3502 			return -1;
3503 		*action = (struct rte_flow_action){
3504 			.type = priv->type,
3505 			.conf = data_size ? data : NULL,
3506 		};
3507 		++out->args.vc.actions_n;
3508 		ctx->object = action;
3509 		ctx->objmask = NULL;
3510 	}
3511 	memset(data, 0, data_size);
3512 	out->args.vc.data = data;
3513 	ctx->objdata = data_size;
3514 	return len;
3515 }
3516 
3517 /** Parse pattern item parameter type. */
3518 static int
3519 parse_vc_spec(struct context *ctx, const struct token *token,
3520 	      const char *str, unsigned int len,
3521 	      void *buf, unsigned int size)
3522 {
3523 	struct buffer *out = buf;
3524 	struct rte_flow_item *item;
3525 	uint32_t data_size;
3526 	int index;
3527 	int objmask = 0;
3528 
3529 	(void)size;
3530 	/* Token name must match. */
3531 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3532 		return -1;
3533 	/* Parse parameter types. */
3534 	switch (ctx->curr) {
3535 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3536 
3537 	case ITEM_PARAM_IS:
3538 		index = 0;
3539 		objmask = 1;
3540 		break;
3541 	case ITEM_PARAM_SPEC:
3542 		index = 0;
3543 		break;
3544 	case ITEM_PARAM_LAST:
3545 		index = 1;
3546 		break;
3547 	case ITEM_PARAM_PREFIX:
3548 		/* Modify next token to expect a prefix. */
3549 		if (ctx->next_num < 2)
3550 			return -1;
3551 		ctx->next[ctx->next_num - 2] = prefix;
3552 		/* Fall through. */
3553 	case ITEM_PARAM_MASK:
3554 		index = 2;
3555 		break;
3556 	default:
3557 		return -1;
3558 	}
3559 	/* Nothing else to do if there is no buffer. */
3560 	if (!out)
3561 		return len;
3562 	if (!out->args.vc.pattern_n)
3563 		return -1;
3564 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3565 	data_size = ctx->objdata / 3; /* spec, last, mask */
3566 	/* Point to selected object. */
3567 	ctx->object = out->args.vc.data + (data_size * index);
3568 	if (objmask) {
3569 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3570 		item->mask = ctx->objmask;
3571 	} else
3572 		ctx->objmask = NULL;
3573 	/* Update relevant item pointer. */
3574 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3575 		ctx->object;
3576 	return len;
3577 }
3578 
3579 /** Parse action configuration field. */
3580 static int
3581 parse_vc_conf(struct context *ctx, const struct token *token,
3582 	      const char *str, unsigned int len,
3583 	      void *buf, unsigned int size)
3584 {
3585 	struct buffer *out = buf;
3586 
3587 	(void)size;
3588 	/* Token name must match. */
3589 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3590 		return -1;
3591 	/* Nothing else to do if there is no buffer. */
3592 	if (!out)
3593 		return len;
3594 	/* Point to selected object. */
3595 	ctx->object = out->args.vc.data;
3596 	ctx->objmask = NULL;
3597 	return len;
3598 }
3599 
3600 /** Parse RSS action. */
3601 static int
3602 parse_vc_action_rss(struct context *ctx, const struct token *token,
3603 		    const char *str, unsigned int len,
3604 		    void *buf, unsigned int size)
3605 {
3606 	struct buffer *out = buf;
3607 	struct rte_flow_action *action;
3608 	struct action_rss_data *action_rss_data;
3609 	unsigned int i;
3610 	int ret;
3611 
3612 	ret = parse_vc(ctx, token, str, len, buf, size);
3613 	if (ret < 0)
3614 		return ret;
3615 	/* Nothing else to do if there is no buffer. */
3616 	if (!out)
3617 		return ret;
3618 	if (!out->args.vc.actions_n)
3619 		return -1;
3620 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3621 	/* Point to selected object. */
3622 	ctx->object = out->args.vc.data;
3623 	ctx->objmask = NULL;
3624 	/* Set up default configuration. */
3625 	action_rss_data = ctx->object;
3626 	*action_rss_data = (struct action_rss_data){
3627 		.conf = (struct rte_flow_action_rss){
3628 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3629 			.level = 0,
3630 			.types = rss_hf,
3631 			.key_len = sizeof(action_rss_data->key),
3632 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3633 			.key = action_rss_data->key,
3634 			.queue = action_rss_data->queue,
3635 		},
3636 		.key = "testpmd's default RSS hash key, "
3637 			"override it for better balancing",
3638 		.queue = { 0 },
3639 	};
3640 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3641 		action_rss_data->queue[i] = i;
3642 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3643 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3644 		struct rte_eth_dev_info info;
3645 		int ret2;
3646 
3647 		ret2 = rte_eth_dev_info_get(ctx->port, &info);
3648 		if (ret2 != 0)
3649 			return ret2;
3650 
3651 		action_rss_data->conf.key_len =
3652 			RTE_MIN(sizeof(action_rss_data->key),
3653 				info.hash_key_size);
3654 	}
3655 	action->conf = &action_rss_data->conf;
3656 	return ret;
3657 }
3658 
3659 /**
3660  * Parse func field for RSS action.
3661  *
3662  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3663  * ACTION_RSS_FUNC_* index that called this function.
3664  */
3665 static int
3666 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3667 			 const char *str, unsigned int len,
3668 			 void *buf, unsigned int size)
3669 {
3670 	struct action_rss_data *action_rss_data;
3671 	enum rte_eth_hash_function func;
3672 
3673 	(void)buf;
3674 	(void)size;
3675 	/* Token name must match. */
3676 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3677 		return -1;
3678 	switch (ctx->curr) {
3679 	case ACTION_RSS_FUNC_DEFAULT:
3680 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3681 		break;
3682 	case ACTION_RSS_FUNC_TOEPLITZ:
3683 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3684 		break;
3685 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3686 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3687 		break;
3688 	case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
3689 		func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
3690 		break;
3691 	default:
3692 		return -1;
3693 	}
3694 	if (!ctx->object)
3695 		return len;
3696 	action_rss_data = ctx->object;
3697 	action_rss_data->conf.func = func;
3698 	return len;
3699 }
3700 
3701 /**
3702  * Parse type field for RSS action.
3703  *
3704  * Valid tokens are type field names and the "end" token.
3705  */
3706 static int
3707 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3708 			  const char *str, unsigned int len,
3709 			  void *buf, unsigned int size)
3710 {
3711 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3712 	struct action_rss_data *action_rss_data;
3713 	unsigned int i;
3714 
3715 	(void)token;
3716 	(void)buf;
3717 	(void)size;
3718 	if (ctx->curr != ACTION_RSS_TYPE)
3719 		return -1;
3720 	if (!(ctx->objdata >> 16) && ctx->object) {
3721 		action_rss_data = ctx->object;
3722 		action_rss_data->conf.types = 0;
3723 	}
3724 	if (!strcmp_partial("end", str, len)) {
3725 		ctx->objdata &= 0xffff;
3726 		return len;
3727 	}
3728 	for (i = 0; rss_type_table[i].str; ++i)
3729 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3730 			break;
3731 	if (!rss_type_table[i].str)
3732 		return -1;
3733 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3734 	/* Repeat token. */
3735 	if (ctx->next_num == RTE_DIM(ctx->next))
3736 		return -1;
3737 	ctx->next[ctx->next_num++] = next;
3738 	if (!ctx->object)
3739 		return len;
3740 	action_rss_data = ctx->object;
3741 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3742 	return len;
3743 }
3744 
3745 /**
3746  * Parse queue field for RSS action.
3747  *
3748  * Valid tokens are queue indices and the "end" token.
3749  */
3750 static int
3751 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3752 			  const char *str, unsigned int len,
3753 			  void *buf, unsigned int size)
3754 {
3755 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3756 	struct action_rss_data *action_rss_data;
3757 	const struct arg *arg;
3758 	int ret;
3759 	int i;
3760 
3761 	(void)token;
3762 	(void)buf;
3763 	(void)size;
3764 	if (ctx->curr != ACTION_RSS_QUEUE)
3765 		return -1;
3766 	i = ctx->objdata >> 16;
3767 	if (!strcmp_partial("end", str, len)) {
3768 		ctx->objdata &= 0xffff;
3769 		goto end;
3770 	}
3771 	if (i >= ACTION_RSS_QUEUE_NUM)
3772 		return -1;
3773 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3774 			     i * sizeof(action_rss_data->queue[i]),
3775 			     sizeof(action_rss_data->queue[i]));
3776 	if (push_args(ctx, arg))
3777 		return -1;
3778 	ret = parse_int(ctx, token, str, len, NULL, 0);
3779 	if (ret < 0) {
3780 		pop_args(ctx);
3781 		return -1;
3782 	}
3783 	++i;
3784 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3785 	/* Repeat token. */
3786 	if (ctx->next_num == RTE_DIM(ctx->next))
3787 		return -1;
3788 	ctx->next[ctx->next_num++] = next;
3789 end:
3790 	if (!ctx->object)
3791 		return len;
3792 	action_rss_data = ctx->object;
3793 	action_rss_data->conf.queue_num = i;
3794 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3795 	return len;
3796 }
3797 
3798 /** Parse VXLAN encap action. */
3799 static int
3800 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3801 			    const char *str, unsigned int len,
3802 			    void *buf, unsigned int size)
3803 {
3804 	struct buffer *out = buf;
3805 	struct rte_flow_action *action;
3806 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3807 	int ret;
3808 
3809 	ret = parse_vc(ctx, token, str, len, buf, size);
3810 	if (ret < 0)
3811 		return ret;
3812 	/* Nothing else to do if there is no buffer. */
3813 	if (!out)
3814 		return ret;
3815 	if (!out->args.vc.actions_n)
3816 		return -1;
3817 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3818 	/* Point to selected object. */
3819 	ctx->object = out->args.vc.data;
3820 	ctx->objmask = NULL;
3821 	/* Set up default configuration. */
3822 	action_vxlan_encap_data = ctx->object;
3823 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3824 		.conf = (struct rte_flow_action_vxlan_encap){
3825 			.definition = action_vxlan_encap_data->items,
3826 		},
3827 		.items = {
3828 			{
3829 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3830 				.spec = &action_vxlan_encap_data->item_eth,
3831 				.mask = &rte_flow_item_eth_mask,
3832 			},
3833 			{
3834 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3835 				.spec = &action_vxlan_encap_data->item_vlan,
3836 				.mask = &rte_flow_item_vlan_mask,
3837 			},
3838 			{
3839 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3840 				.spec = &action_vxlan_encap_data->item_ipv4,
3841 				.mask = &rte_flow_item_ipv4_mask,
3842 			},
3843 			{
3844 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3845 				.spec = &action_vxlan_encap_data->item_udp,
3846 				.mask = &rte_flow_item_udp_mask,
3847 			},
3848 			{
3849 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3850 				.spec = &action_vxlan_encap_data->item_vxlan,
3851 				.mask = &rte_flow_item_vxlan_mask,
3852 			},
3853 			{
3854 				.type = RTE_FLOW_ITEM_TYPE_END,
3855 			},
3856 		},
3857 		.item_eth.type = 0,
3858 		.item_vlan = {
3859 			.tci = vxlan_encap_conf.vlan_tci,
3860 			.inner_type = 0,
3861 		},
3862 		.item_ipv4.hdr = {
3863 			.src_addr = vxlan_encap_conf.ipv4_src,
3864 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3865 		},
3866 		.item_udp.hdr = {
3867 			.src_port = vxlan_encap_conf.udp_src,
3868 			.dst_port = vxlan_encap_conf.udp_dst,
3869 		},
3870 		.item_vxlan.flags = 0,
3871 	};
3872 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3873 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3874 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3875 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3876 	if (!vxlan_encap_conf.select_ipv4) {
3877 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3878 		       &vxlan_encap_conf.ipv6_src,
3879 		       sizeof(vxlan_encap_conf.ipv6_src));
3880 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3881 		       &vxlan_encap_conf.ipv6_dst,
3882 		       sizeof(vxlan_encap_conf.ipv6_dst));
3883 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3884 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3885 			.spec = &action_vxlan_encap_data->item_ipv6,
3886 			.mask = &rte_flow_item_ipv6_mask,
3887 		};
3888 	}
3889 	if (!vxlan_encap_conf.select_vlan)
3890 		action_vxlan_encap_data->items[1].type =
3891 			RTE_FLOW_ITEM_TYPE_VOID;
3892 	if (vxlan_encap_conf.select_tos_ttl) {
3893 		if (vxlan_encap_conf.select_ipv4) {
3894 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3895 
3896 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3897 			       sizeof(ipv4_mask_tos));
3898 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3899 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3900 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3901 					vxlan_encap_conf.ip_tos;
3902 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3903 					vxlan_encap_conf.ip_ttl;
3904 			action_vxlan_encap_data->items[2].mask =
3905 							&ipv4_mask_tos;
3906 		} else {
3907 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3908 
3909 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3910 			       sizeof(ipv6_mask_tos));
3911 			ipv6_mask_tos.hdr.vtc_flow |=
3912 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3913 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3914 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3915 				rte_cpu_to_be_32
3916 					((uint32_t)vxlan_encap_conf.ip_tos <<
3917 					 RTE_IPV6_HDR_TC_SHIFT);
3918 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3919 					vxlan_encap_conf.ip_ttl;
3920 			action_vxlan_encap_data->items[2].mask =
3921 							&ipv6_mask_tos;
3922 		}
3923 	}
3924 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3925 	       RTE_DIM(vxlan_encap_conf.vni));
3926 	action->conf = &action_vxlan_encap_data->conf;
3927 	return ret;
3928 }
3929 
3930 /** Parse NVGRE encap action. */
3931 static int
3932 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3933 			    const char *str, unsigned int len,
3934 			    void *buf, unsigned int size)
3935 {
3936 	struct buffer *out = buf;
3937 	struct rte_flow_action *action;
3938 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3939 	int ret;
3940 
3941 	ret = parse_vc(ctx, token, str, len, buf, size);
3942 	if (ret < 0)
3943 		return ret;
3944 	/* Nothing else to do if there is no buffer. */
3945 	if (!out)
3946 		return ret;
3947 	if (!out->args.vc.actions_n)
3948 		return -1;
3949 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3950 	/* Point to selected object. */
3951 	ctx->object = out->args.vc.data;
3952 	ctx->objmask = NULL;
3953 	/* Set up default configuration. */
3954 	action_nvgre_encap_data = ctx->object;
3955 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3956 		.conf = (struct rte_flow_action_nvgre_encap){
3957 			.definition = action_nvgre_encap_data->items,
3958 		},
3959 		.items = {
3960 			{
3961 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3962 				.spec = &action_nvgre_encap_data->item_eth,
3963 				.mask = &rte_flow_item_eth_mask,
3964 			},
3965 			{
3966 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3967 				.spec = &action_nvgre_encap_data->item_vlan,
3968 				.mask = &rte_flow_item_vlan_mask,
3969 			},
3970 			{
3971 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3972 				.spec = &action_nvgre_encap_data->item_ipv4,
3973 				.mask = &rte_flow_item_ipv4_mask,
3974 			},
3975 			{
3976 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3977 				.spec = &action_nvgre_encap_data->item_nvgre,
3978 				.mask = &rte_flow_item_nvgre_mask,
3979 			},
3980 			{
3981 				.type = RTE_FLOW_ITEM_TYPE_END,
3982 			},
3983 		},
3984 		.item_eth.type = 0,
3985 		.item_vlan = {
3986 			.tci = nvgre_encap_conf.vlan_tci,
3987 			.inner_type = 0,
3988 		},
3989 		.item_ipv4.hdr = {
3990 		       .src_addr = nvgre_encap_conf.ipv4_src,
3991 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3992 		},
3993 		.item_nvgre.flow_id = 0,
3994 	};
3995 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3996 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3997 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3998 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3999 	if (!nvgre_encap_conf.select_ipv4) {
4000 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
4001 		       &nvgre_encap_conf.ipv6_src,
4002 		       sizeof(nvgre_encap_conf.ipv6_src));
4003 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
4004 		       &nvgre_encap_conf.ipv6_dst,
4005 		       sizeof(nvgre_encap_conf.ipv6_dst));
4006 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
4007 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
4008 			.spec = &action_nvgre_encap_data->item_ipv6,
4009 			.mask = &rte_flow_item_ipv6_mask,
4010 		};
4011 	}
4012 	if (!nvgre_encap_conf.select_vlan)
4013 		action_nvgre_encap_data->items[1].type =
4014 			RTE_FLOW_ITEM_TYPE_VOID;
4015 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
4016 	       RTE_DIM(nvgre_encap_conf.tni));
4017 	action->conf = &action_nvgre_encap_data->conf;
4018 	return ret;
4019 }
4020 
4021 /** Parse l2 encap action. */
4022 static int
4023 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
4024 			 const char *str, unsigned int len,
4025 			 void *buf, unsigned int size)
4026 {
4027 	struct buffer *out = buf;
4028 	struct rte_flow_action *action;
4029 	struct action_raw_encap_data *action_encap_data;
4030 	struct rte_flow_item_eth eth = { .type = 0, };
4031 	struct rte_flow_item_vlan vlan = {
4032 		.tci = mplsoudp_encap_conf.vlan_tci,
4033 		.inner_type = 0,
4034 	};
4035 	uint8_t *header;
4036 	int ret;
4037 
4038 	ret = parse_vc(ctx, token, str, len, buf, size);
4039 	if (ret < 0)
4040 		return ret;
4041 	/* Nothing else to do if there is no buffer. */
4042 	if (!out)
4043 		return ret;
4044 	if (!out->args.vc.actions_n)
4045 		return -1;
4046 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4047 	/* Point to selected object. */
4048 	ctx->object = out->args.vc.data;
4049 	ctx->objmask = NULL;
4050 	/* Copy the headers to the buffer. */
4051 	action_encap_data = ctx->object;
4052 	*action_encap_data = (struct action_raw_encap_data) {
4053 		.conf = (struct rte_flow_action_raw_encap){
4054 			.data = action_encap_data->data,
4055 		},
4056 		.data = {},
4057 	};
4058 	header = action_encap_data->data;
4059 	if (l2_encap_conf.select_vlan)
4060 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4061 	else if (l2_encap_conf.select_ipv4)
4062 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4063 	else
4064 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4065 	memcpy(eth.dst.addr_bytes,
4066 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4067 	memcpy(eth.src.addr_bytes,
4068 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4069 	memcpy(header, &eth, sizeof(eth));
4070 	header += sizeof(eth);
4071 	if (l2_encap_conf.select_vlan) {
4072 		if (l2_encap_conf.select_ipv4)
4073 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4074 		else
4075 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4076 		memcpy(header, &vlan, sizeof(vlan));
4077 		header += sizeof(vlan);
4078 	}
4079 	action_encap_data->conf.size = header -
4080 		action_encap_data->data;
4081 	action->conf = &action_encap_data->conf;
4082 	return ret;
4083 }
4084 
4085 /** Parse l2 decap action. */
4086 static int
4087 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
4088 			 const char *str, unsigned int len,
4089 			 void *buf, unsigned int size)
4090 {
4091 	struct buffer *out = buf;
4092 	struct rte_flow_action *action;
4093 	struct action_raw_decap_data *action_decap_data;
4094 	struct rte_flow_item_eth eth = { .type = 0, };
4095 	struct rte_flow_item_vlan vlan = {
4096 		.tci = mplsoudp_encap_conf.vlan_tci,
4097 		.inner_type = 0,
4098 	};
4099 	uint8_t *header;
4100 	int ret;
4101 
4102 	ret = parse_vc(ctx, token, str, len, buf, size);
4103 	if (ret < 0)
4104 		return ret;
4105 	/* Nothing else to do if there is no buffer. */
4106 	if (!out)
4107 		return ret;
4108 	if (!out->args.vc.actions_n)
4109 		return -1;
4110 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4111 	/* Point to selected object. */
4112 	ctx->object = out->args.vc.data;
4113 	ctx->objmask = NULL;
4114 	/* Copy the headers to the buffer. */
4115 	action_decap_data = ctx->object;
4116 	*action_decap_data = (struct action_raw_decap_data) {
4117 		.conf = (struct rte_flow_action_raw_decap){
4118 			.data = action_decap_data->data,
4119 		},
4120 		.data = {},
4121 	};
4122 	header = action_decap_data->data;
4123 	if (l2_decap_conf.select_vlan)
4124 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4125 	memcpy(header, &eth, sizeof(eth));
4126 	header += sizeof(eth);
4127 	if (l2_decap_conf.select_vlan) {
4128 		memcpy(header, &vlan, sizeof(vlan));
4129 		header += sizeof(vlan);
4130 	}
4131 	action_decap_data->conf.size = header -
4132 		action_decap_data->data;
4133 	action->conf = &action_decap_data->conf;
4134 	return ret;
4135 }
4136 
4137 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4138 
4139 /** Parse MPLSOGRE encap action. */
4140 static int
4141 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4142 			       const char *str, unsigned int len,
4143 			       void *buf, unsigned int size)
4144 {
4145 	struct buffer *out = buf;
4146 	struct rte_flow_action *action;
4147 	struct action_raw_encap_data *action_encap_data;
4148 	struct rte_flow_item_eth eth = { .type = 0, };
4149 	struct rte_flow_item_vlan vlan = {
4150 		.tci = mplsogre_encap_conf.vlan_tci,
4151 		.inner_type = 0,
4152 	};
4153 	struct rte_flow_item_ipv4 ipv4 = {
4154 		.hdr =  {
4155 			.src_addr = mplsogre_encap_conf.ipv4_src,
4156 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
4157 			.next_proto_id = IPPROTO_GRE,
4158 			.version_ihl = RTE_IPV4_VHL_DEF,
4159 			.time_to_live = IPDEFTTL,
4160 		},
4161 	};
4162 	struct rte_flow_item_ipv6 ipv6 = {
4163 		.hdr =  {
4164 			.proto = IPPROTO_GRE,
4165 			.hop_limits = IPDEFTTL,
4166 		},
4167 	};
4168 	struct rte_flow_item_gre gre = {
4169 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4170 	};
4171 	struct rte_flow_item_mpls mpls;
4172 	uint8_t *header;
4173 	int ret;
4174 
4175 	ret = parse_vc(ctx, token, str, len, buf, size);
4176 	if (ret < 0)
4177 		return ret;
4178 	/* Nothing else to do if there is no buffer. */
4179 	if (!out)
4180 		return ret;
4181 	if (!out->args.vc.actions_n)
4182 		return -1;
4183 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4184 	/* Point to selected object. */
4185 	ctx->object = out->args.vc.data;
4186 	ctx->objmask = NULL;
4187 	/* Copy the headers to the buffer. */
4188 	action_encap_data = ctx->object;
4189 	*action_encap_data = (struct action_raw_encap_data) {
4190 		.conf = (struct rte_flow_action_raw_encap){
4191 			.data = action_encap_data->data,
4192 		},
4193 		.data = {},
4194 		.preserve = {},
4195 	};
4196 	header = action_encap_data->data;
4197 	if (mplsogre_encap_conf.select_vlan)
4198 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4199 	else if (mplsogre_encap_conf.select_ipv4)
4200 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4201 	else
4202 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4203 	memcpy(eth.dst.addr_bytes,
4204 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4205 	memcpy(eth.src.addr_bytes,
4206 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4207 	memcpy(header, &eth, sizeof(eth));
4208 	header += sizeof(eth);
4209 	if (mplsogre_encap_conf.select_vlan) {
4210 		if (mplsogre_encap_conf.select_ipv4)
4211 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4212 		else
4213 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4214 		memcpy(header, &vlan, sizeof(vlan));
4215 		header += sizeof(vlan);
4216 	}
4217 	if (mplsogre_encap_conf.select_ipv4) {
4218 		memcpy(header, &ipv4, sizeof(ipv4));
4219 		header += sizeof(ipv4);
4220 	} else {
4221 		memcpy(&ipv6.hdr.src_addr,
4222 		       &mplsogre_encap_conf.ipv6_src,
4223 		       sizeof(mplsogre_encap_conf.ipv6_src));
4224 		memcpy(&ipv6.hdr.dst_addr,
4225 		       &mplsogre_encap_conf.ipv6_dst,
4226 		       sizeof(mplsogre_encap_conf.ipv6_dst));
4227 		memcpy(header, &ipv6, sizeof(ipv6));
4228 		header += sizeof(ipv6);
4229 	}
4230 	memcpy(header, &gre, sizeof(gre));
4231 	header += sizeof(gre);
4232 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4233 	       RTE_DIM(mplsogre_encap_conf.label));
4234 	mpls.label_tc_s[2] |= 0x1;
4235 	memcpy(header, &mpls, sizeof(mpls));
4236 	header += sizeof(mpls);
4237 	action_encap_data->conf.size = header -
4238 		action_encap_data->data;
4239 	action->conf = &action_encap_data->conf;
4240 	return ret;
4241 }
4242 
4243 /** Parse MPLSOGRE decap action. */
4244 static int
4245 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4246 			       const char *str, unsigned int len,
4247 			       void *buf, unsigned int size)
4248 {
4249 	struct buffer *out = buf;
4250 	struct rte_flow_action *action;
4251 	struct action_raw_decap_data *action_decap_data;
4252 	struct rte_flow_item_eth eth = { .type = 0, };
4253 	struct rte_flow_item_vlan vlan = {.tci = 0};
4254 	struct rte_flow_item_ipv4 ipv4 = {
4255 		.hdr =  {
4256 			.next_proto_id = IPPROTO_GRE,
4257 		},
4258 	};
4259 	struct rte_flow_item_ipv6 ipv6 = {
4260 		.hdr =  {
4261 			.proto = IPPROTO_GRE,
4262 		},
4263 	};
4264 	struct rte_flow_item_gre gre = {
4265 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4266 	};
4267 	struct rte_flow_item_mpls mpls;
4268 	uint8_t *header;
4269 	int ret;
4270 
4271 	ret = parse_vc(ctx, token, str, len, buf, size);
4272 	if (ret < 0)
4273 		return ret;
4274 	/* Nothing else to do if there is no buffer. */
4275 	if (!out)
4276 		return ret;
4277 	if (!out->args.vc.actions_n)
4278 		return -1;
4279 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4280 	/* Point to selected object. */
4281 	ctx->object = out->args.vc.data;
4282 	ctx->objmask = NULL;
4283 	/* Copy the headers to the buffer. */
4284 	action_decap_data = ctx->object;
4285 	*action_decap_data = (struct action_raw_decap_data) {
4286 		.conf = (struct rte_flow_action_raw_decap){
4287 			.data = action_decap_data->data,
4288 		},
4289 		.data = {},
4290 	};
4291 	header = action_decap_data->data;
4292 	if (mplsogre_decap_conf.select_vlan)
4293 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4294 	else if (mplsogre_encap_conf.select_ipv4)
4295 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4296 	else
4297 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4298 	memcpy(eth.dst.addr_bytes,
4299 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4300 	memcpy(eth.src.addr_bytes,
4301 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4302 	memcpy(header, &eth, sizeof(eth));
4303 	header += sizeof(eth);
4304 	if (mplsogre_encap_conf.select_vlan) {
4305 		if (mplsogre_encap_conf.select_ipv4)
4306 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4307 		else
4308 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4309 		memcpy(header, &vlan, sizeof(vlan));
4310 		header += sizeof(vlan);
4311 	}
4312 	if (mplsogre_encap_conf.select_ipv4) {
4313 		memcpy(header, &ipv4, sizeof(ipv4));
4314 		header += sizeof(ipv4);
4315 	} else {
4316 		memcpy(header, &ipv6, sizeof(ipv6));
4317 		header += sizeof(ipv6);
4318 	}
4319 	memcpy(header, &gre, sizeof(gre));
4320 	header += sizeof(gre);
4321 	memset(&mpls, 0, sizeof(mpls));
4322 	memcpy(header, &mpls, sizeof(mpls));
4323 	header += sizeof(mpls);
4324 	action_decap_data->conf.size = header -
4325 		action_decap_data->data;
4326 	action->conf = &action_decap_data->conf;
4327 	return ret;
4328 }
4329 
4330 /** Parse MPLSOUDP encap action. */
4331 static int
4332 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4333 			       const char *str, unsigned int len,
4334 			       void *buf, unsigned int size)
4335 {
4336 	struct buffer *out = buf;
4337 	struct rte_flow_action *action;
4338 	struct action_raw_encap_data *action_encap_data;
4339 	struct rte_flow_item_eth eth = { .type = 0, };
4340 	struct rte_flow_item_vlan vlan = {
4341 		.tci = mplsoudp_encap_conf.vlan_tci,
4342 		.inner_type = 0,
4343 	};
4344 	struct rte_flow_item_ipv4 ipv4 = {
4345 		.hdr =  {
4346 			.src_addr = mplsoudp_encap_conf.ipv4_src,
4347 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
4348 			.next_proto_id = IPPROTO_UDP,
4349 			.version_ihl = RTE_IPV4_VHL_DEF,
4350 			.time_to_live = IPDEFTTL,
4351 		},
4352 	};
4353 	struct rte_flow_item_ipv6 ipv6 = {
4354 		.hdr =  {
4355 			.proto = IPPROTO_UDP,
4356 			.hop_limits = IPDEFTTL,
4357 		},
4358 	};
4359 	struct rte_flow_item_udp udp = {
4360 		.hdr = {
4361 			.src_port = mplsoudp_encap_conf.udp_src,
4362 			.dst_port = mplsoudp_encap_conf.udp_dst,
4363 		},
4364 	};
4365 	struct rte_flow_item_mpls mpls;
4366 	uint8_t *header;
4367 	int ret;
4368 
4369 	ret = parse_vc(ctx, token, str, len, buf, size);
4370 	if (ret < 0)
4371 		return ret;
4372 	/* Nothing else to do if there is no buffer. */
4373 	if (!out)
4374 		return ret;
4375 	if (!out->args.vc.actions_n)
4376 		return -1;
4377 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4378 	/* Point to selected object. */
4379 	ctx->object = out->args.vc.data;
4380 	ctx->objmask = NULL;
4381 	/* Copy the headers to the buffer. */
4382 	action_encap_data = ctx->object;
4383 	*action_encap_data = (struct action_raw_encap_data) {
4384 		.conf = (struct rte_flow_action_raw_encap){
4385 			.data = action_encap_data->data,
4386 		},
4387 		.data = {},
4388 		.preserve = {},
4389 	};
4390 	header = action_encap_data->data;
4391 	if (mplsoudp_encap_conf.select_vlan)
4392 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4393 	else if (mplsoudp_encap_conf.select_ipv4)
4394 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4395 	else
4396 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4397 	memcpy(eth.dst.addr_bytes,
4398 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4399 	memcpy(eth.src.addr_bytes,
4400 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4401 	memcpy(header, &eth, sizeof(eth));
4402 	header += sizeof(eth);
4403 	if (mplsoudp_encap_conf.select_vlan) {
4404 		if (mplsoudp_encap_conf.select_ipv4)
4405 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4406 		else
4407 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4408 		memcpy(header, &vlan, sizeof(vlan));
4409 		header += sizeof(vlan);
4410 	}
4411 	if (mplsoudp_encap_conf.select_ipv4) {
4412 		memcpy(header, &ipv4, sizeof(ipv4));
4413 		header += sizeof(ipv4);
4414 	} else {
4415 		memcpy(&ipv6.hdr.src_addr,
4416 		       &mplsoudp_encap_conf.ipv6_src,
4417 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4418 		memcpy(&ipv6.hdr.dst_addr,
4419 		       &mplsoudp_encap_conf.ipv6_dst,
4420 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4421 		memcpy(header, &ipv6, sizeof(ipv6));
4422 		header += sizeof(ipv6);
4423 	}
4424 	memcpy(header, &udp, sizeof(udp));
4425 	header += sizeof(udp);
4426 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4427 	       RTE_DIM(mplsoudp_encap_conf.label));
4428 	mpls.label_tc_s[2] |= 0x1;
4429 	memcpy(header, &mpls, sizeof(mpls));
4430 	header += sizeof(mpls);
4431 	action_encap_data->conf.size = header -
4432 		action_encap_data->data;
4433 	action->conf = &action_encap_data->conf;
4434 	return ret;
4435 }
4436 
4437 /** Parse MPLSOUDP decap action. */
4438 static int
4439 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4440 			       const char *str, unsigned int len,
4441 			       void *buf, unsigned int size)
4442 {
4443 	struct buffer *out = buf;
4444 	struct rte_flow_action *action;
4445 	struct action_raw_decap_data *action_decap_data;
4446 	struct rte_flow_item_eth eth = { .type = 0, };
4447 	struct rte_flow_item_vlan vlan = {.tci = 0};
4448 	struct rte_flow_item_ipv4 ipv4 = {
4449 		.hdr =  {
4450 			.next_proto_id = IPPROTO_UDP,
4451 		},
4452 	};
4453 	struct rte_flow_item_ipv6 ipv6 = {
4454 		.hdr =  {
4455 			.proto = IPPROTO_UDP,
4456 		},
4457 	};
4458 	struct rte_flow_item_udp udp = {
4459 		.hdr = {
4460 			.dst_port = rte_cpu_to_be_16(6635),
4461 		},
4462 	};
4463 	struct rte_flow_item_mpls mpls;
4464 	uint8_t *header;
4465 	int ret;
4466 
4467 	ret = parse_vc(ctx, token, str, len, buf, size);
4468 	if (ret < 0)
4469 		return ret;
4470 	/* Nothing else to do if there is no buffer. */
4471 	if (!out)
4472 		return ret;
4473 	if (!out->args.vc.actions_n)
4474 		return -1;
4475 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4476 	/* Point to selected object. */
4477 	ctx->object = out->args.vc.data;
4478 	ctx->objmask = NULL;
4479 	/* Copy the headers to the buffer. */
4480 	action_decap_data = ctx->object;
4481 	*action_decap_data = (struct action_raw_decap_data) {
4482 		.conf = (struct rte_flow_action_raw_decap){
4483 			.data = action_decap_data->data,
4484 		},
4485 		.data = {},
4486 	};
4487 	header = action_decap_data->data;
4488 	if (mplsoudp_decap_conf.select_vlan)
4489 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4490 	else if (mplsoudp_encap_conf.select_ipv4)
4491 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4492 	else
4493 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4494 	memcpy(eth.dst.addr_bytes,
4495 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4496 	memcpy(eth.src.addr_bytes,
4497 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4498 	memcpy(header, &eth, sizeof(eth));
4499 	header += sizeof(eth);
4500 	if (mplsoudp_encap_conf.select_vlan) {
4501 		if (mplsoudp_encap_conf.select_ipv4)
4502 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4503 		else
4504 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4505 		memcpy(header, &vlan, sizeof(vlan));
4506 		header += sizeof(vlan);
4507 	}
4508 	if (mplsoudp_encap_conf.select_ipv4) {
4509 		memcpy(header, &ipv4, sizeof(ipv4));
4510 		header += sizeof(ipv4);
4511 	} else {
4512 		memcpy(header, &ipv6, sizeof(ipv6));
4513 		header += sizeof(ipv6);
4514 	}
4515 	memcpy(header, &udp, sizeof(udp));
4516 	header += sizeof(udp);
4517 	memset(&mpls, 0, sizeof(mpls));
4518 	memcpy(header, &mpls, sizeof(mpls));
4519 	header += sizeof(mpls);
4520 	action_decap_data->conf.size = header -
4521 		action_decap_data->data;
4522 	action->conf = &action_decap_data->conf;
4523 	return ret;
4524 }
4525 
4526 static int
4527 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
4528 			  const char *str, unsigned int len, void *buf,
4529 			  unsigned int size)
4530 {
4531 	struct buffer *out = buf;
4532 	struct rte_flow_action *action;
4533 	struct rte_flow_action_raw_encap *action_raw_encap_conf = NULL;
4534 	uint8_t *data = NULL;
4535 	int ret;
4536 
4537 	ret = parse_vc(ctx, token, str, len, buf, size);
4538 	if (ret < 0)
4539 		return ret;
4540 	/* Nothing else to do if there is no buffer. */
4541 	if (!out)
4542 		return ret;
4543 	if (!out->args.vc.actions_n)
4544 		return -1;
4545 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4546 	/* Point to selected object. */
4547 	ctx->object = out->args.vc.data;
4548 	ctx->objmask = NULL;
4549 	/* Copy the headers to the buffer. */
4550 	action_raw_encap_conf = ctx->object;
4551 	/* data stored from tail of data buffer */
4552 	data = (uint8_t *)&(raw_encap_conf.data) +
4553 		ACTION_RAW_ENCAP_MAX_DATA - raw_encap_conf.size;
4554 	action_raw_encap_conf->data = data;
4555 	action_raw_encap_conf->preserve = NULL;
4556 	action_raw_encap_conf->size = raw_encap_conf.size;
4557 	action->conf = action_raw_encap_conf;
4558 	return ret;
4559 }
4560 
4561 static int
4562 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
4563 			  const char *str, unsigned int len, void *buf,
4564 			  unsigned int size)
4565 {
4566 	struct buffer *out = buf;
4567 	struct rte_flow_action *action;
4568 	struct rte_flow_action_raw_decap *action_raw_decap_conf = NULL;
4569 	uint8_t *data = NULL;
4570 	int ret;
4571 
4572 	ret = parse_vc(ctx, token, str, len, buf, size);
4573 	if (ret < 0)
4574 		return ret;
4575 	/* Nothing else to do if there is no buffer. */
4576 	if (!out)
4577 		return ret;
4578 	if (!out->args.vc.actions_n)
4579 		return -1;
4580 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4581 	/* Point to selected object. */
4582 	ctx->object = out->args.vc.data;
4583 	ctx->objmask = NULL;
4584 	/* Copy the headers to the buffer. */
4585 	action_raw_decap_conf = ctx->object;
4586 	/* data stored from tail of data buffer */
4587 	data = (uint8_t *)&(raw_decap_conf.data) +
4588 		ACTION_RAW_ENCAP_MAX_DATA - raw_decap_conf.size;
4589 	action_raw_decap_conf->data = data;
4590 	action_raw_decap_conf->size = raw_decap_conf.size;
4591 	action->conf = action_raw_decap_conf;
4592 	return ret;
4593 }
4594 
4595 /** Parse tokens for destroy command. */
4596 static int
4597 parse_destroy(struct context *ctx, const struct token *token,
4598 	      const char *str, unsigned int len,
4599 	      void *buf, unsigned int size)
4600 {
4601 	struct buffer *out = buf;
4602 
4603 	/* Token name must match. */
4604 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4605 		return -1;
4606 	/* Nothing else to do if there is no buffer. */
4607 	if (!out)
4608 		return len;
4609 	if (!out->command) {
4610 		if (ctx->curr != DESTROY)
4611 			return -1;
4612 		if (sizeof(*out) > size)
4613 			return -1;
4614 		out->command = ctx->curr;
4615 		ctx->objdata = 0;
4616 		ctx->object = out;
4617 		ctx->objmask = NULL;
4618 		out->args.destroy.rule =
4619 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4620 					       sizeof(double));
4621 		return len;
4622 	}
4623 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4624 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4625 		return -1;
4626 	ctx->objdata = 0;
4627 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4628 	ctx->objmask = NULL;
4629 	return len;
4630 }
4631 
4632 /** Parse tokens for flush command. */
4633 static int
4634 parse_flush(struct context *ctx, const struct token *token,
4635 	    const char *str, unsigned int len,
4636 	    void *buf, unsigned int size)
4637 {
4638 	struct buffer *out = buf;
4639 
4640 	/* Token name must match. */
4641 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4642 		return -1;
4643 	/* Nothing else to do if there is no buffer. */
4644 	if (!out)
4645 		return len;
4646 	if (!out->command) {
4647 		if (ctx->curr != FLUSH)
4648 			return -1;
4649 		if (sizeof(*out) > size)
4650 			return -1;
4651 		out->command = ctx->curr;
4652 		ctx->objdata = 0;
4653 		ctx->object = out;
4654 		ctx->objmask = NULL;
4655 	}
4656 	return len;
4657 }
4658 
4659 /** Parse tokens for query command. */
4660 static int
4661 parse_query(struct context *ctx, const struct token *token,
4662 	    const char *str, unsigned int len,
4663 	    void *buf, unsigned int size)
4664 {
4665 	struct buffer *out = buf;
4666 
4667 	/* Token name must match. */
4668 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4669 		return -1;
4670 	/* Nothing else to do if there is no buffer. */
4671 	if (!out)
4672 		return len;
4673 	if (!out->command) {
4674 		if (ctx->curr != QUERY)
4675 			return -1;
4676 		if (sizeof(*out) > size)
4677 			return -1;
4678 		out->command = ctx->curr;
4679 		ctx->objdata = 0;
4680 		ctx->object = out;
4681 		ctx->objmask = NULL;
4682 	}
4683 	return len;
4684 }
4685 
4686 /** Parse action names. */
4687 static int
4688 parse_action(struct context *ctx, const struct token *token,
4689 	     const char *str, unsigned int len,
4690 	     void *buf, unsigned int size)
4691 {
4692 	struct buffer *out = buf;
4693 	const struct arg *arg = pop_args(ctx);
4694 	unsigned int i;
4695 
4696 	(void)size;
4697 	/* Argument is expected. */
4698 	if (!arg)
4699 		return -1;
4700 	/* Parse action name. */
4701 	for (i = 0; next_action[i]; ++i) {
4702 		const struct parse_action_priv *priv;
4703 
4704 		token = &token_list[next_action[i]];
4705 		if (strcmp_partial(token->name, str, len))
4706 			continue;
4707 		priv = token->priv;
4708 		if (!priv)
4709 			goto error;
4710 		if (out)
4711 			memcpy((uint8_t *)ctx->object + arg->offset,
4712 			       &priv->type,
4713 			       arg->size);
4714 		return len;
4715 	}
4716 error:
4717 	push_args(ctx, arg);
4718 	return -1;
4719 }
4720 
4721 /** Parse tokens for list command. */
4722 static int
4723 parse_list(struct context *ctx, const struct token *token,
4724 	   const char *str, unsigned int len,
4725 	   void *buf, unsigned int size)
4726 {
4727 	struct buffer *out = buf;
4728 
4729 	/* Token name must match. */
4730 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4731 		return -1;
4732 	/* Nothing else to do if there is no buffer. */
4733 	if (!out)
4734 		return len;
4735 	if (!out->command) {
4736 		if (ctx->curr != LIST)
4737 			return -1;
4738 		if (sizeof(*out) > size)
4739 			return -1;
4740 		out->command = ctx->curr;
4741 		ctx->objdata = 0;
4742 		ctx->object = out;
4743 		ctx->objmask = NULL;
4744 		out->args.list.group =
4745 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4746 					       sizeof(double));
4747 		return len;
4748 	}
4749 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4750 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4751 		return -1;
4752 	ctx->objdata = 0;
4753 	ctx->object = out->args.list.group + out->args.list.group_n++;
4754 	ctx->objmask = NULL;
4755 	return len;
4756 }
4757 
4758 /** Parse tokens for isolate command. */
4759 static int
4760 parse_isolate(struct context *ctx, const struct token *token,
4761 	      const char *str, unsigned int len,
4762 	      void *buf, unsigned int size)
4763 {
4764 	struct buffer *out = buf;
4765 
4766 	/* Token name must match. */
4767 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4768 		return -1;
4769 	/* Nothing else to do if there is no buffer. */
4770 	if (!out)
4771 		return len;
4772 	if (!out->command) {
4773 		if (ctx->curr != ISOLATE)
4774 			return -1;
4775 		if (sizeof(*out) > size)
4776 			return -1;
4777 		out->command = ctx->curr;
4778 		ctx->objdata = 0;
4779 		ctx->object = out;
4780 		ctx->objmask = NULL;
4781 	}
4782 	return len;
4783 }
4784 
4785 /**
4786  * Parse signed/unsigned integers 8 to 64-bit long.
4787  *
4788  * Last argument (ctx->args) is retrieved to determine integer type and
4789  * storage location.
4790  */
4791 static int
4792 parse_int(struct context *ctx, const struct token *token,
4793 	  const char *str, unsigned int len,
4794 	  void *buf, unsigned int size)
4795 {
4796 	const struct arg *arg = pop_args(ctx);
4797 	uintmax_t u;
4798 	char *end;
4799 
4800 	(void)token;
4801 	/* Argument is expected. */
4802 	if (!arg)
4803 		return -1;
4804 	errno = 0;
4805 	u = arg->sign ?
4806 		(uintmax_t)strtoimax(str, &end, 0) :
4807 		strtoumax(str, &end, 0);
4808 	if (errno || (size_t)(end - str) != len)
4809 		goto error;
4810 	if (arg->bounded &&
4811 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4812 			    (intmax_t)u > (intmax_t)arg->max)) ||
4813 	     (!arg->sign && (u < arg->min || u > arg->max))))
4814 		goto error;
4815 	if (!ctx->object)
4816 		return len;
4817 	if (arg->mask) {
4818 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4819 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4820 			goto error;
4821 		return len;
4822 	}
4823 	buf = (uint8_t *)ctx->object + arg->offset;
4824 	size = arg->size;
4825 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4826 		return -1;
4827 objmask:
4828 	switch (size) {
4829 	case sizeof(uint8_t):
4830 		*(uint8_t *)buf = u;
4831 		break;
4832 	case sizeof(uint16_t):
4833 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4834 		break;
4835 	case sizeof(uint8_t [3]):
4836 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4837 		if (!arg->hton) {
4838 			((uint8_t *)buf)[0] = u;
4839 			((uint8_t *)buf)[1] = u >> 8;
4840 			((uint8_t *)buf)[2] = u >> 16;
4841 			break;
4842 		}
4843 #endif
4844 		((uint8_t *)buf)[0] = u >> 16;
4845 		((uint8_t *)buf)[1] = u >> 8;
4846 		((uint8_t *)buf)[2] = u;
4847 		break;
4848 	case sizeof(uint32_t):
4849 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4850 		break;
4851 	case sizeof(uint64_t):
4852 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4853 		break;
4854 	default:
4855 		goto error;
4856 	}
4857 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4858 		u = -1;
4859 		buf = (uint8_t *)ctx->objmask + arg->offset;
4860 		goto objmask;
4861 	}
4862 	return len;
4863 error:
4864 	push_args(ctx, arg);
4865 	return -1;
4866 }
4867 
4868 /**
4869  * Parse a string.
4870  *
4871  * Three arguments (ctx->args) are retrieved from the stack to store data,
4872  * its actual length and address (in that order).
4873  */
4874 static int
4875 parse_string(struct context *ctx, const struct token *token,
4876 	     const char *str, unsigned int len,
4877 	     void *buf, unsigned int size)
4878 {
4879 	const struct arg *arg_data = pop_args(ctx);
4880 	const struct arg *arg_len = pop_args(ctx);
4881 	const struct arg *arg_addr = pop_args(ctx);
4882 	char tmp[16]; /* Ought to be enough. */
4883 	int ret;
4884 
4885 	/* Arguments are expected. */
4886 	if (!arg_data)
4887 		return -1;
4888 	if (!arg_len) {
4889 		push_args(ctx, arg_data);
4890 		return -1;
4891 	}
4892 	if (!arg_addr) {
4893 		push_args(ctx, arg_len);
4894 		push_args(ctx, arg_data);
4895 		return -1;
4896 	}
4897 	size = arg_data->size;
4898 	/* Bit-mask fill is not supported. */
4899 	if (arg_data->mask || size < len)
4900 		goto error;
4901 	if (!ctx->object)
4902 		return len;
4903 	/* Let parse_int() fill length information first. */
4904 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4905 	if (ret < 0)
4906 		goto error;
4907 	push_args(ctx, arg_len);
4908 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4909 	if (ret < 0) {
4910 		pop_args(ctx);
4911 		goto error;
4912 	}
4913 	buf = (uint8_t *)ctx->object + arg_data->offset;
4914 	/* Output buffer is not necessarily NUL-terminated. */
4915 	memcpy(buf, str, len);
4916 	memset((uint8_t *)buf + len, 0x00, size - len);
4917 	if (ctx->objmask)
4918 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4919 	/* Save address if requested. */
4920 	if (arg_addr->size) {
4921 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4922 		       (void *[]){
4923 			(uint8_t *)ctx->object + arg_data->offset
4924 		       },
4925 		       arg_addr->size);
4926 		if (ctx->objmask)
4927 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4928 			       (void *[]){
4929 				(uint8_t *)ctx->objmask + arg_data->offset
4930 			       },
4931 			       arg_addr->size);
4932 	}
4933 	return len;
4934 error:
4935 	push_args(ctx, arg_addr);
4936 	push_args(ctx, arg_len);
4937 	push_args(ctx, arg_data);
4938 	return -1;
4939 }
4940 
4941 static int
4942 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4943 {
4944 	char *c = NULL;
4945 	uint32_t i, len;
4946 	char tmp[3];
4947 
4948 	/* Check input parameters */
4949 	if ((src == NULL) ||
4950 		(dst == NULL) ||
4951 		(size == NULL) ||
4952 		(*size == 0))
4953 		return -1;
4954 
4955 	/* Convert chars to bytes */
4956 	for (i = 0, len = 0; i < *size; i += 2) {
4957 		snprintf(tmp, 3, "%s", src + i);
4958 		dst[len++] = strtoul(tmp, &c, 16);
4959 		if (*c != 0) {
4960 			len--;
4961 			dst[len] = 0;
4962 			*size = len;
4963 			return -1;
4964 		}
4965 	}
4966 	dst[len] = 0;
4967 	*size = len;
4968 
4969 	return 0;
4970 }
4971 
4972 static int
4973 parse_hex(struct context *ctx, const struct token *token,
4974 		const char *str, unsigned int len,
4975 		void *buf, unsigned int size)
4976 {
4977 	const struct arg *arg_data = pop_args(ctx);
4978 	const struct arg *arg_len = pop_args(ctx);
4979 	const struct arg *arg_addr = pop_args(ctx);
4980 	char tmp[16]; /* Ought to be enough. */
4981 	int ret;
4982 	unsigned int hexlen = len;
4983 	unsigned int length = 256;
4984 	uint8_t hex_tmp[length];
4985 
4986 	/* Arguments are expected. */
4987 	if (!arg_data)
4988 		return -1;
4989 	if (!arg_len) {
4990 		push_args(ctx, arg_data);
4991 		return -1;
4992 	}
4993 	if (!arg_addr) {
4994 		push_args(ctx, arg_len);
4995 		push_args(ctx, arg_data);
4996 		return -1;
4997 	}
4998 	size = arg_data->size;
4999 	/* Bit-mask fill is not supported. */
5000 	if (arg_data->mask)
5001 		goto error;
5002 	if (!ctx->object)
5003 		return len;
5004 
5005 	/* translate bytes string to array. */
5006 	if (str[0] == '0' && ((str[1] == 'x') ||
5007 			(str[1] == 'X'))) {
5008 		str += 2;
5009 		hexlen -= 2;
5010 	}
5011 	if (hexlen > length)
5012 		return -1;
5013 	ret = parse_hex_string(str, hex_tmp, &hexlen);
5014 	if (ret < 0)
5015 		goto error;
5016 	/* Let parse_int() fill length information first. */
5017 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
5018 	if (ret < 0)
5019 		goto error;
5020 	push_args(ctx, arg_len);
5021 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5022 	if (ret < 0) {
5023 		pop_args(ctx);
5024 		goto error;
5025 	}
5026 	buf = (uint8_t *)ctx->object + arg_data->offset;
5027 	/* Output buffer is not necessarily NUL-terminated. */
5028 	memcpy(buf, hex_tmp, hexlen);
5029 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
5030 	if (ctx->objmask)
5031 		memset((uint8_t *)ctx->objmask + arg_data->offset,
5032 					0xff, hexlen);
5033 	/* Save address if requested. */
5034 	if (arg_addr->size) {
5035 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
5036 		       (void *[]){
5037 			(uint8_t *)ctx->object + arg_data->offset
5038 		       },
5039 		       arg_addr->size);
5040 		if (ctx->objmask)
5041 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5042 			       (void *[]){
5043 				(uint8_t *)ctx->objmask + arg_data->offset
5044 			       },
5045 			       arg_addr->size);
5046 	}
5047 	return len;
5048 error:
5049 	push_args(ctx, arg_addr);
5050 	push_args(ctx, arg_len);
5051 	push_args(ctx, arg_data);
5052 	return -1;
5053 
5054 }
5055 
5056 /**
5057  * Parse a MAC address.
5058  *
5059  * Last argument (ctx->args) is retrieved to determine storage size and
5060  * location.
5061  */
5062 static int
5063 parse_mac_addr(struct context *ctx, const struct token *token,
5064 	       const char *str, unsigned int len,
5065 	       void *buf, unsigned int size)
5066 {
5067 	const struct arg *arg = pop_args(ctx);
5068 	struct rte_ether_addr tmp;
5069 	int ret;
5070 
5071 	(void)token;
5072 	/* Argument is expected. */
5073 	if (!arg)
5074 		return -1;
5075 	size = arg->size;
5076 	/* Bit-mask fill is not supported. */
5077 	if (arg->mask || size != sizeof(tmp))
5078 		goto error;
5079 	/* Only network endian is supported. */
5080 	if (!arg->hton)
5081 		goto error;
5082 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
5083 	if (ret < 0 || (unsigned int)ret != len)
5084 		goto error;
5085 	if (!ctx->object)
5086 		return len;
5087 	buf = (uint8_t *)ctx->object + arg->offset;
5088 	memcpy(buf, &tmp, size);
5089 	if (ctx->objmask)
5090 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5091 	return len;
5092 error:
5093 	push_args(ctx, arg);
5094 	return -1;
5095 }
5096 
5097 /**
5098  * Parse an IPv4 address.
5099  *
5100  * Last argument (ctx->args) is retrieved to determine storage size and
5101  * location.
5102  */
5103 static int
5104 parse_ipv4_addr(struct context *ctx, const struct token *token,
5105 		const char *str, unsigned int len,
5106 		void *buf, unsigned int size)
5107 {
5108 	const struct arg *arg = pop_args(ctx);
5109 	char str2[len + 1];
5110 	struct in_addr tmp;
5111 	int ret;
5112 
5113 	/* Argument is expected. */
5114 	if (!arg)
5115 		return -1;
5116 	size = arg->size;
5117 	/* Bit-mask fill is not supported. */
5118 	if (arg->mask || size != sizeof(tmp))
5119 		goto error;
5120 	/* Only network endian is supported. */
5121 	if (!arg->hton)
5122 		goto error;
5123 	memcpy(str2, str, len);
5124 	str2[len] = '\0';
5125 	ret = inet_pton(AF_INET, str2, &tmp);
5126 	if (ret != 1) {
5127 		/* Attempt integer parsing. */
5128 		push_args(ctx, arg);
5129 		return parse_int(ctx, token, str, len, buf, size);
5130 	}
5131 	if (!ctx->object)
5132 		return len;
5133 	buf = (uint8_t *)ctx->object + arg->offset;
5134 	memcpy(buf, &tmp, size);
5135 	if (ctx->objmask)
5136 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5137 	return len;
5138 error:
5139 	push_args(ctx, arg);
5140 	return -1;
5141 }
5142 
5143 /**
5144  * Parse an IPv6 address.
5145  *
5146  * Last argument (ctx->args) is retrieved to determine storage size and
5147  * location.
5148  */
5149 static int
5150 parse_ipv6_addr(struct context *ctx, const struct token *token,
5151 		const char *str, unsigned int len,
5152 		void *buf, unsigned int size)
5153 {
5154 	const struct arg *arg = pop_args(ctx);
5155 	char str2[len + 1];
5156 	struct in6_addr tmp;
5157 	int ret;
5158 
5159 	(void)token;
5160 	/* Argument is expected. */
5161 	if (!arg)
5162 		return -1;
5163 	size = arg->size;
5164 	/* Bit-mask fill is not supported. */
5165 	if (arg->mask || size != sizeof(tmp))
5166 		goto error;
5167 	/* Only network endian is supported. */
5168 	if (!arg->hton)
5169 		goto error;
5170 	memcpy(str2, str, len);
5171 	str2[len] = '\0';
5172 	ret = inet_pton(AF_INET6, str2, &tmp);
5173 	if (ret != 1)
5174 		goto error;
5175 	if (!ctx->object)
5176 		return len;
5177 	buf = (uint8_t *)ctx->object + arg->offset;
5178 	memcpy(buf, &tmp, size);
5179 	if (ctx->objmask)
5180 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5181 	return len;
5182 error:
5183 	push_args(ctx, arg);
5184 	return -1;
5185 }
5186 
5187 /** Boolean values (even indices stand for false). */
5188 static const char *const boolean_name[] = {
5189 	"0", "1",
5190 	"false", "true",
5191 	"no", "yes",
5192 	"N", "Y",
5193 	"off", "on",
5194 	NULL,
5195 };
5196 
5197 /**
5198  * Parse a boolean value.
5199  *
5200  * Last argument (ctx->args) is retrieved to determine storage size and
5201  * location.
5202  */
5203 static int
5204 parse_boolean(struct context *ctx, const struct token *token,
5205 	      const char *str, unsigned int len,
5206 	      void *buf, unsigned int size)
5207 {
5208 	const struct arg *arg = pop_args(ctx);
5209 	unsigned int i;
5210 	int ret;
5211 
5212 	/* Argument is expected. */
5213 	if (!arg)
5214 		return -1;
5215 	for (i = 0; boolean_name[i]; ++i)
5216 		if (!strcmp_partial(boolean_name[i], str, len))
5217 			break;
5218 	/* Process token as integer. */
5219 	if (boolean_name[i])
5220 		str = i & 1 ? "1" : "0";
5221 	push_args(ctx, arg);
5222 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
5223 	return ret > 0 ? (int)len : ret;
5224 }
5225 
5226 /** Parse port and update context. */
5227 static int
5228 parse_port(struct context *ctx, const struct token *token,
5229 	   const char *str, unsigned int len,
5230 	   void *buf, unsigned int size)
5231 {
5232 	struct buffer *out = &(struct buffer){ .port = 0 };
5233 	int ret;
5234 
5235 	if (buf)
5236 		out = buf;
5237 	else {
5238 		ctx->objdata = 0;
5239 		ctx->object = out;
5240 		ctx->objmask = NULL;
5241 		size = sizeof(*out);
5242 	}
5243 	ret = parse_int(ctx, token, str, len, out, size);
5244 	if (ret >= 0)
5245 		ctx->port = out->port;
5246 	if (!buf)
5247 		ctx->object = NULL;
5248 	return ret;
5249 }
5250 
5251 /** Parse set command, initialize output buffer for subsequent tokens. */
5252 static int
5253 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5254 			  const char *str, unsigned int len,
5255 			  void *buf, unsigned int size)
5256 {
5257 	struct buffer *out = buf;
5258 
5259 	/* Token name must match. */
5260 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5261 		return -1;
5262 	/* Nothing else to do if there is no buffer. */
5263 	if (!out)
5264 		return len;
5265 	/* Make sure buffer is large enough. */
5266 	if (size < sizeof(*out))
5267 		return -1;
5268 	ctx->objdata = 0;
5269 	ctx->objmask = NULL;
5270 	if (!out->command)
5271 		return -1;
5272 	out->command = ctx->curr;
5273 	return len;
5274 }
5275 
5276 /**
5277  * Parse set raw_encap/raw_decap command,
5278  * initialize output buffer for subsequent tokens.
5279  */
5280 static int
5281 parse_set_init(struct context *ctx, const struct token *token,
5282 	       const char *str, unsigned int len,
5283 	       void *buf, unsigned int size)
5284 {
5285 	struct buffer *out = buf;
5286 
5287 	/* Token name must match. */
5288 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5289 		return -1;
5290 	/* Nothing else to do if there is no buffer. */
5291 	if (!out)
5292 		return len;
5293 	/* Make sure buffer is large enough. */
5294 	if (size < sizeof(*out))
5295 		return -1;
5296 	/* Initialize buffer. */
5297 	memset(out, 0x00, sizeof(*out));
5298 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5299 	ctx->objdata = 0;
5300 	ctx->object = out;
5301 	ctx->objmask = NULL;
5302 	if (!out->command) {
5303 		if (ctx->curr != SET)
5304 			return -1;
5305 		if (sizeof(*out) > size)
5306 			return -1;
5307 		out->command = ctx->curr;
5308 		out->args.vc.data = (uint8_t *)out + size;
5309 		/* All we need is pattern */
5310 		out->args.vc.pattern =
5311 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5312 					       sizeof(double));
5313 		ctx->object = out->args.vc.pattern;
5314 	}
5315 	return len;
5316 }
5317 
5318 /** No completion. */
5319 static int
5320 comp_none(struct context *ctx, const struct token *token,
5321 	  unsigned int ent, char *buf, unsigned int size)
5322 {
5323 	(void)ctx;
5324 	(void)token;
5325 	(void)ent;
5326 	(void)buf;
5327 	(void)size;
5328 	return 0;
5329 }
5330 
5331 /** Complete boolean values. */
5332 static int
5333 comp_boolean(struct context *ctx, const struct token *token,
5334 	     unsigned int ent, char *buf, unsigned int size)
5335 {
5336 	unsigned int i;
5337 
5338 	(void)ctx;
5339 	(void)token;
5340 	for (i = 0; boolean_name[i]; ++i)
5341 		if (buf && i == ent)
5342 			return strlcpy(buf, boolean_name[i], size);
5343 	if (buf)
5344 		return -1;
5345 	return i;
5346 }
5347 
5348 /** Complete action names. */
5349 static int
5350 comp_action(struct context *ctx, const struct token *token,
5351 	    unsigned int ent, char *buf, unsigned int size)
5352 {
5353 	unsigned int i;
5354 
5355 	(void)ctx;
5356 	(void)token;
5357 	for (i = 0; next_action[i]; ++i)
5358 		if (buf && i == ent)
5359 			return strlcpy(buf, token_list[next_action[i]].name,
5360 				       size);
5361 	if (buf)
5362 		return -1;
5363 	return i;
5364 }
5365 
5366 /** Complete available ports. */
5367 static int
5368 comp_port(struct context *ctx, const struct token *token,
5369 	  unsigned int ent, char *buf, unsigned int size)
5370 {
5371 	unsigned int i = 0;
5372 	portid_t p;
5373 
5374 	(void)ctx;
5375 	(void)token;
5376 	RTE_ETH_FOREACH_DEV(p) {
5377 		if (buf && i == ent)
5378 			return snprintf(buf, size, "%u", p);
5379 		++i;
5380 	}
5381 	if (buf)
5382 		return -1;
5383 	return i;
5384 }
5385 
5386 /** Complete available rule IDs. */
5387 static int
5388 comp_rule_id(struct context *ctx, const struct token *token,
5389 	     unsigned int ent, char *buf, unsigned int size)
5390 {
5391 	unsigned int i = 0;
5392 	struct rte_port *port;
5393 	struct port_flow *pf;
5394 
5395 	(void)token;
5396 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5397 	    ctx->port == (portid_t)RTE_PORT_ALL)
5398 		return -1;
5399 	port = &ports[ctx->port];
5400 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5401 		if (buf && i == ent)
5402 			return snprintf(buf, size, "%u", pf->id);
5403 		++i;
5404 	}
5405 	if (buf)
5406 		return -1;
5407 	return i;
5408 }
5409 
5410 /** Complete type field for RSS action. */
5411 static int
5412 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5413 			unsigned int ent, char *buf, unsigned int size)
5414 {
5415 	unsigned int i;
5416 
5417 	(void)ctx;
5418 	(void)token;
5419 	for (i = 0; rss_type_table[i].str; ++i)
5420 		;
5421 	if (!buf)
5422 		return i + 1;
5423 	if (ent < i)
5424 		return strlcpy(buf, rss_type_table[ent].str, size);
5425 	if (ent == i)
5426 		return snprintf(buf, size, "end");
5427 	return -1;
5428 }
5429 
5430 /** Complete queue field for RSS action. */
5431 static int
5432 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5433 			 unsigned int ent, char *buf, unsigned int size)
5434 {
5435 	(void)ctx;
5436 	(void)token;
5437 	if (!buf)
5438 		return nb_rxq + 1;
5439 	if (ent < nb_rxq)
5440 		return snprintf(buf, size, "%u", ent);
5441 	if (ent == nb_rxq)
5442 		return snprintf(buf, size, "end");
5443 	return -1;
5444 }
5445 
5446 /** Internal context. */
5447 static struct context cmd_flow_context;
5448 
5449 /** Global parser instance (cmdline API). */
5450 cmdline_parse_inst_t cmd_flow;
5451 cmdline_parse_inst_t cmd_set_raw;
5452 
5453 /** Initialize context. */
5454 static void
5455 cmd_flow_context_init(struct context *ctx)
5456 {
5457 	/* A full memset() is not necessary. */
5458 	ctx->curr = ZERO;
5459 	ctx->prev = ZERO;
5460 	ctx->next_num = 0;
5461 	ctx->args_num = 0;
5462 	ctx->eol = 0;
5463 	ctx->last = 0;
5464 	ctx->port = 0;
5465 	ctx->objdata = 0;
5466 	ctx->object = NULL;
5467 	ctx->objmask = NULL;
5468 }
5469 
5470 /** Parse a token (cmdline API). */
5471 static int
5472 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5473 	       unsigned int size)
5474 {
5475 	struct context *ctx = &cmd_flow_context;
5476 	const struct token *token;
5477 	const enum index *list;
5478 	int len;
5479 	int i;
5480 
5481 	(void)hdr;
5482 	token = &token_list[ctx->curr];
5483 	/* Check argument length. */
5484 	ctx->eol = 0;
5485 	ctx->last = 1;
5486 	for (len = 0; src[len]; ++len)
5487 		if (src[len] == '#' || isspace(src[len]))
5488 			break;
5489 	if (!len)
5490 		return -1;
5491 	/* Last argument and EOL detection. */
5492 	for (i = len; src[i]; ++i)
5493 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5494 			break;
5495 		else if (!isspace(src[i])) {
5496 			ctx->last = 0;
5497 			break;
5498 		}
5499 	for (; src[i]; ++i)
5500 		if (src[i] == '\r' || src[i] == '\n') {
5501 			ctx->eol = 1;
5502 			break;
5503 		}
5504 	/* Initialize context if necessary. */
5505 	if (!ctx->next_num) {
5506 		if (!token->next)
5507 			return 0;
5508 		ctx->next[ctx->next_num++] = token->next[0];
5509 	}
5510 	/* Process argument through candidates. */
5511 	ctx->prev = ctx->curr;
5512 	list = ctx->next[ctx->next_num - 1];
5513 	for (i = 0; list[i]; ++i) {
5514 		const struct token *next = &token_list[list[i]];
5515 		int tmp;
5516 
5517 		ctx->curr = list[i];
5518 		if (next->call)
5519 			tmp = next->call(ctx, next, src, len, result, size);
5520 		else
5521 			tmp = parse_default(ctx, next, src, len, result, size);
5522 		if (tmp == -1 || tmp != len)
5523 			continue;
5524 		token = next;
5525 		break;
5526 	}
5527 	if (!list[i])
5528 		return -1;
5529 	--ctx->next_num;
5530 	/* Push subsequent tokens if any. */
5531 	if (token->next)
5532 		for (i = 0; token->next[i]; ++i) {
5533 			if (ctx->next_num == RTE_DIM(ctx->next))
5534 				return -1;
5535 			ctx->next[ctx->next_num++] = token->next[i];
5536 		}
5537 	/* Push arguments if any. */
5538 	if (token->args)
5539 		for (i = 0; token->args[i]; ++i) {
5540 			if (ctx->args_num == RTE_DIM(ctx->args))
5541 				return -1;
5542 			ctx->args[ctx->args_num++] = token->args[i];
5543 		}
5544 	return len;
5545 }
5546 
5547 /** Return number of completion entries (cmdline API). */
5548 static int
5549 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5550 {
5551 	struct context *ctx = &cmd_flow_context;
5552 	const struct token *token = &token_list[ctx->curr];
5553 	const enum index *list;
5554 	int i;
5555 
5556 	(void)hdr;
5557 	/* Count number of tokens in current list. */
5558 	if (ctx->next_num)
5559 		list = ctx->next[ctx->next_num - 1];
5560 	else
5561 		list = token->next[0];
5562 	for (i = 0; list[i]; ++i)
5563 		;
5564 	if (!i)
5565 		return 0;
5566 	/*
5567 	 * If there is a single token, use its completion callback, otherwise
5568 	 * return the number of entries.
5569 	 */
5570 	token = &token_list[list[0]];
5571 	if (i == 1 && token->comp) {
5572 		/* Save index for cmd_flow_get_help(). */
5573 		ctx->prev = list[0];
5574 		return token->comp(ctx, token, 0, NULL, 0);
5575 	}
5576 	return i;
5577 }
5578 
5579 /** Return a completion entry (cmdline API). */
5580 static int
5581 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5582 			  char *dst, unsigned int size)
5583 {
5584 	struct context *ctx = &cmd_flow_context;
5585 	const struct token *token = &token_list[ctx->curr];
5586 	const enum index *list;
5587 	int i;
5588 
5589 	(void)hdr;
5590 	/* Count number of tokens in current list. */
5591 	if (ctx->next_num)
5592 		list = ctx->next[ctx->next_num - 1];
5593 	else
5594 		list = token->next[0];
5595 	for (i = 0; list[i]; ++i)
5596 		;
5597 	if (!i)
5598 		return -1;
5599 	/* If there is a single token, use its completion callback. */
5600 	token = &token_list[list[0]];
5601 	if (i == 1 && token->comp) {
5602 		/* Save index for cmd_flow_get_help(). */
5603 		ctx->prev = list[0];
5604 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5605 	}
5606 	/* Otherwise make sure the index is valid and use defaults. */
5607 	if (index >= i)
5608 		return -1;
5609 	token = &token_list[list[index]];
5610 	strlcpy(dst, token->name, size);
5611 	/* Save index for cmd_flow_get_help(). */
5612 	ctx->prev = list[index];
5613 	return 0;
5614 }
5615 
5616 /** Populate help strings for current token (cmdline API). */
5617 static int
5618 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5619 {
5620 	struct context *ctx = &cmd_flow_context;
5621 	const struct token *token = &token_list[ctx->prev];
5622 
5623 	(void)hdr;
5624 	if (!size)
5625 		return -1;
5626 	/* Set token type and update global help with details. */
5627 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5628 	if (token->help)
5629 		cmd_flow.help_str = token->help;
5630 	else
5631 		cmd_flow.help_str = token->name;
5632 	return 0;
5633 }
5634 
5635 /** Token definition template (cmdline API). */
5636 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5637 	.ops = &(struct cmdline_token_ops){
5638 		.parse = cmd_flow_parse,
5639 		.complete_get_nb = cmd_flow_complete_get_nb,
5640 		.complete_get_elt = cmd_flow_complete_get_elt,
5641 		.get_help = cmd_flow_get_help,
5642 	},
5643 	.offset = 0,
5644 };
5645 
5646 /** Populate the next dynamic token. */
5647 static void
5648 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5649 	     cmdline_parse_token_hdr_t **hdr_inst)
5650 {
5651 	struct context *ctx = &cmd_flow_context;
5652 
5653 	/* Always reinitialize context before requesting the first token. */
5654 	if (!(hdr_inst - cmd_flow.tokens))
5655 		cmd_flow_context_init(ctx);
5656 	/* Return NULL when no more tokens are expected. */
5657 	if (!ctx->next_num && ctx->curr) {
5658 		*hdr = NULL;
5659 		return;
5660 	}
5661 	/* Determine if command should end here. */
5662 	if (ctx->eol && ctx->last && ctx->next_num) {
5663 		const enum index *list = ctx->next[ctx->next_num - 1];
5664 		int i;
5665 
5666 		for (i = 0; list[i]; ++i) {
5667 			if (list[i] != END)
5668 				continue;
5669 			*hdr = NULL;
5670 			return;
5671 		}
5672 	}
5673 	*hdr = &cmd_flow_token_hdr;
5674 }
5675 
5676 /** Dispatch parsed buffer to function calls. */
5677 static void
5678 cmd_flow_parsed(const struct buffer *in)
5679 {
5680 	switch (in->command) {
5681 	case VALIDATE:
5682 		port_flow_validate(in->port, &in->args.vc.attr,
5683 				   in->args.vc.pattern, in->args.vc.actions);
5684 		break;
5685 	case CREATE:
5686 		port_flow_create(in->port, &in->args.vc.attr,
5687 				 in->args.vc.pattern, in->args.vc.actions);
5688 		break;
5689 	case DESTROY:
5690 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5691 				  in->args.destroy.rule);
5692 		break;
5693 	case FLUSH:
5694 		port_flow_flush(in->port);
5695 		break;
5696 	case QUERY:
5697 		port_flow_query(in->port, in->args.query.rule,
5698 				&in->args.query.action);
5699 		break;
5700 	case LIST:
5701 		port_flow_list(in->port, in->args.list.group_n,
5702 			       in->args.list.group);
5703 		break;
5704 	case ISOLATE:
5705 		port_flow_isolate(in->port, in->args.isolate.set);
5706 		break;
5707 	default:
5708 		break;
5709 	}
5710 }
5711 
5712 /** Token generator and output processing callback (cmdline API). */
5713 static void
5714 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5715 {
5716 	if (cl == NULL)
5717 		cmd_flow_tok(arg0, arg2);
5718 	else
5719 		cmd_flow_parsed(arg0);
5720 }
5721 
5722 /** Global parser instance (cmdline API). */
5723 cmdline_parse_inst_t cmd_flow = {
5724 	.f = cmd_flow_cb,
5725 	.data = NULL, /**< Unused. */
5726 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5727 	.tokens = {
5728 		NULL,
5729 	}, /**< Tokens are returned by cmd_flow_tok(). */
5730 };
5731 
5732 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
5733 
5734 static void
5735 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
5736 {
5737 	struct rte_flow_item_ipv4 *ipv4;
5738 	struct rte_flow_item_eth *eth;
5739 	struct rte_flow_item_ipv6 *ipv6;
5740 	struct rte_flow_item_vxlan *vxlan;
5741 	struct rte_flow_item_vxlan_gpe *gpe;
5742 	struct rte_flow_item_nvgre *nvgre;
5743 	uint32_t ipv6_vtc_flow;
5744 
5745 	switch (item->type) {
5746 	case RTE_FLOW_ITEM_TYPE_ETH:
5747 		eth = (struct rte_flow_item_eth *)buf;
5748 		if (next_proto)
5749 			eth->type = rte_cpu_to_be_16(next_proto);
5750 		break;
5751 	case RTE_FLOW_ITEM_TYPE_IPV4:
5752 		ipv4 = (struct rte_flow_item_ipv4 *)buf;
5753 		ipv4->hdr.version_ihl = 0x45;
5754 		ipv4->hdr.next_proto_id = (uint8_t)next_proto;
5755 		break;
5756 	case RTE_FLOW_ITEM_TYPE_IPV6:
5757 		ipv6 = (struct rte_flow_item_ipv6 *)buf;
5758 		ipv6->hdr.proto = (uint8_t)next_proto;
5759 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
5760 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
5761 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
5762 		ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
5763 		break;
5764 	case RTE_FLOW_ITEM_TYPE_VXLAN:
5765 		vxlan = (struct rte_flow_item_vxlan *)buf;
5766 		vxlan->flags = 0x08;
5767 		break;
5768 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5769 		gpe = (struct rte_flow_item_vxlan_gpe *)buf;
5770 		gpe->flags = 0x0C;
5771 		break;
5772 	case RTE_FLOW_ITEM_TYPE_NVGRE:
5773 		nvgre = (struct rte_flow_item_nvgre *)buf;
5774 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
5775 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
5776 		break;
5777 	default:
5778 		break;
5779 	}
5780 }
5781 
5782 /** Helper of get item's default mask. */
5783 static const void *
5784 flow_item_default_mask(const struct rte_flow_item *item)
5785 {
5786 	const void *mask = NULL;
5787 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
5788 
5789 	switch (item->type) {
5790 	case RTE_FLOW_ITEM_TYPE_ANY:
5791 		mask = &rte_flow_item_any_mask;
5792 		break;
5793 	case RTE_FLOW_ITEM_TYPE_VF:
5794 		mask = &rte_flow_item_vf_mask;
5795 		break;
5796 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
5797 		mask = &rte_flow_item_port_id_mask;
5798 		break;
5799 	case RTE_FLOW_ITEM_TYPE_RAW:
5800 		mask = &rte_flow_item_raw_mask;
5801 		break;
5802 	case RTE_FLOW_ITEM_TYPE_ETH:
5803 		mask = &rte_flow_item_eth_mask;
5804 		break;
5805 	case RTE_FLOW_ITEM_TYPE_VLAN:
5806 		mask = &rte_flow_item_vlan_mask;
5807 		break;
5808 	case RTE_FLOW_ITEM_TYPE_IPV4:
5809 		mask = &rte_flow_item_ipv4_mask;
5810 		break;
5811 	case RTE_FLOW_ITEM_TYPE_IPV6:
5812 		mask = &rte_flow_item_ipv6_mask;
5813 		break;
5814 	case RTE_FLOW_ITEM_TYPE_ICMP:
5815 		mask = &rte_flow_item_icmp_mask;
5816 		break;
5817 	case RTE_FLOW_ITEM_TYPE_UDP:
5818 		mask = &rte_flow_item_udp_mask;
5819 		break;
5820 	case RTE_FLOW_ITEM_TYPE_TCP:
5821 		mask = &rte_flow_item_tcp_mask;
5822 		break;
5823 	case RTE_FLOW_ITEM_TYPE_SCTP:
5824 		mask = &rte_flow_item_sctp_mask;
5825 		break;
5826 	case RTE_FLOW_ITEM_TYPE_VXLAN:
5827 		mask = &rte_flow_item_vxlan_mask;
5828 		break;
5829 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5830 		mask = &rte_flow_item_vxlan_gpe_mask;
5831 		break;
5832 	case RTE_FLOW_ITEM_TYPE_E_TAG:
5833 		mask = &rte_flow_item_e_tag_mask;
5834 		break;
5835 	case RTE_FLOW_ITEM_TYPE_NVGRE:
5836 		mask = &rte_flow_item_nvgre_mask;
5837 		break;
5838 	case RTE_FLOW_ITEM_TYPE_MPLS:
5839 		mask = &rte_flow_item_mpls_mask;
5840 		break;
5841 	case RTE_FLOW_ITEM_TYPE_GRE:
5842 		mask = &rte_flow_item_gre_mask;
5843 		break;
5844 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5845 		mask = &gre_key_default_mask;
5846 		break;
5847 	case RTE_FLOW_ITEM_TYPE_META:
5848 		mask = &rte_flow_item_meta_mask;
5849 		break;
5850 	case RTE_FLOW_ITEM_TYPE_FUZZY:
5851 		mask = &rte_flow_item_fuzzy_mask;
5852 		break;
5853 	case RTE_FLOW_ITEM_TYPE_GTP:
5854 		mask = &rte_flow_item_gtp_mask;
5855 		break;
5856 	case RTE_FLOW_ITEM_TYPE_ESP:
5857 		mask = &rte_flow_item_esp_mask;
5858 		break;
5859 	case RTE_FLOW_ITEM_TYPE_GTP_PSC:
5860 		mask = &rte_flow_item_gtp_psc_mask;
5861 		break;
5862 	case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
5863 		mask = &rte_flow_item_pppoe_proto_id_mask;
5864 	default:
5865 		break;
5866 	}
5867 	return mask;
5868 }
5869 
5870 
5871 
5872 /** Dispatch parsed buffer to function calls. */
5873 static void
5874 cmd_set_raw_parsed(const struct buffer *in)
5875 {
5876 	uint32_t n = in->args.vc.pattern_n;
5877 	int i = 0;
5878 	struct rte_flow_item *item = NULL;
5879 	size_t size = 0;
5880 	uint8_t *data = NULL;
5881 	uint8_t *data_tail = NULL;
5882 	size_t *total_size = NULL;
5883 	uint16_t upper_layer = 0;
5884 	uint16_t proto = 0;
5885 
5886 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
5887 		   in->command == SET_RAW_DECAP);
5888 	if (in->command == SET_RAW_ENCAP) {
5889 		total_size = &raw_encap_conf.size;
5890 		data = (uint8_t *)&raw_encap_conf.data;
5891 	} else {
5892 		total_size = &raw_decap_conf.size;
5893 		data = (uint8_t *)&raw_decap_conf.data;
5894 	}
5895 	*total_size = 0;
5896 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5897 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
5898 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
5899 	for (i = n - 1 ; i >= 0; --i) {
5900 		item = in->args.vc.pattern + i;
5901 		if (item->spec == NULL)
5902 			item->spec = flow_item_default_mask(item);
5903 		switch (item->type) {
5904 		case RTE_FLOW_ITEM_TYPE_ETH:
5905 			size = sizeof(struct rte_flow_item_eth);
5906 			break;
5907 		case RTE_FLOW_ITEM_TYPE_VLAN:
5908 			size = sizeof(struct rte_flow_item_vlan);
5909 			proto = RTE_ETHER_TYPE_VLAN;
5910 			break;
5911 		case RTE_FLOW_ITEM_TYPE_IPV4:
5912 			size = sizeof(struct rte_flow_item_ipv4);
5913 			proto = RTE_ETHER_TYPE_IPV4;
5914 			break;
5915 		case RTE_FLOW_ITEM_TYPE_IPV6:
5916 			size = sizeof(struct rte_flow_item_ipv6);
5917 			proto = RTE_ETHER_TYPE_IPV6;
5918 			break;
5919 		case RTE_FLOW_ITEM_TYPE_UDP:
5920 			size = sizeof(struct rte_flow_item_udp);
5921 			proto = 0x11;
5922 			break;
5923 		case RTE_FLOW_ITEM_TYPE_TCP:
5924 			size = sizeof(struct rte_flow_item_tcp);
5925 			proto = 0x06;
5926 			break;
5927 		case RTE_FLOW_ITEM_TYPE_VXLAN:
5928 			size = sizeof(struct rte_flow_item_vxlan);
5929 			break;
5930 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5931 			size = sizeof(struct rte_flow_item_vxlan_gpe);
5932 			break;
5933 		case RTE_FLOW_ITEM_TYPE_GRE:
5934 			size = sizeof(struct rte_flow_item_gre);
5935 			proto = 0x2F;
5936 			break;
5937 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5938 			size = sizeof(rte_be32_t);
5939 			break;
5940 		case RTE_FLOW_ITEM_TYPE_MPLS:
5941 			size = sizeof(struct rte_flow_item_mpls);
5942 			break;
5943 		case RTE_FLOW_ITEM_TYPE_NVGRE:
5944 			size = sizeof(struct rte_flow_item_nvgre);
5945 			proto = 0x2F;
5946 			break;
5947 		default:
5948 			printf("Error - Not supported item\n");
5949 			*total_size = 0;
5950 			memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5951 			return;
5952 		}
5953 		*total_size += size;
5954 		rte_memcpy(data_tail - (*total_size), item->spec, size);
5955 		/* update some fields which cannot be set by cmdline */
5956 		update_fields((data_tail - (*total_size)), item,
5957 			      upper_layer);
5958 		upper_layer = proto;
5959 	}
5960 	if (verbose_level & 0x1)
5961 		printf("total data size is %zu\n", (*total_size));
5962 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
5963 }
5964 
5965 /** Populate help strings for current token (cmdline API). */
5966 static int
5967 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
5968 		     unsigned int size)
5969 {
5970 	struct context *ctx = &cmd_flow_context;
5971 	const struct token *token = &token_list[ctx->prev];
5972 
5973 	(void)hdr;
5974 	if (!size)
5975 		return -1;
5976 	/* Set token type and update global help with details. */
5977 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
5978 	if (token->help)
5979 		cmd_set_raw.help_str = token->help;
5980 	else
5981 		cmd_set_raw.help_str = token->name;
5982 	return 0;
5983 }
5984 
5985 /** Token definition template (cmdline API). */
5986 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
5987 	.ops = &(struct cmdline_token_ops){
5988 		.parse = cmd_flow_parse,
5989 		.complete_get_nb = cmd_flow_complete_get_nb,
5990 		.complete_get_elt = cmd_flow_complete_get_elt,
5991 		.get_help = cmd_set_raw_get_help,
5992 	},
5993 	.offset = 0,
5994 };
5995 
5996 /** Populate the next dynamic token. */
5997 static void
5998 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
5999 	     cmdline_parse_token_hdr_t **hdr_inst)
6000 {
6001 	struct context *ctx = &cmd_flow_context;
6002 
6003 	/* Always reinitialize context before requesting the first token. */
6004 	if (!(hdr_inst - cmd_set_raw.tokens)) {
6005 		cmd_flow_context_init(ctx);
6006 		ctx->curr = START_SET;
6007 	}
6008 	/* Return NULL when no more tokens are expected. */
6009 	if (!ctx->next_num && (ctx->curr != START_SET)) {
6010 		*hdr = NULL;
6011 		return;
6012 	}
6013 	/* Determine if command should end here. */
6014 	if (ctx->eol && ctx->last && ctx->next_num) {
6015 		const enum index *list = ctx->next[ctx->next_num - 1];
6016 		int i;
6017 
6018 		for (i = 0; list[i]; ++i) {
6019 			if (list[i] != END)
6020 				continue;
6021 			*hdr = NULL;
6022 			return;
6023 		}
6024 	}
6025 	*hdr = &cmd_set_raw_token_hdr;
6026 }
6027 
6028 /** Token generator and output processing callback (cmdline API). */
6029 static void
6030 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
6031 {
6032 	if (cl == NULL)
6033 		cmd_set_raw_tok(arg0, arg2);
6034 	else
6035 		cmd_set_raw_parsed(arg0);
6036 }
6037 
6038 /** Global parser instance (cmdline API). */
6039 cmdline_parse_inst_t cmd_set_raw = {
6040 	.f = cmd_set_raw_cb,
6041 	.data = NULL, /**< Unused. */
6042 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6043 	.tokens = {
6044 		NULL,
6045 	}, /**< Tokens are returned by cmd_flow_tok(). */
6046 };
6047