xref: /dpdk/app/test-pmd/cmdline_flow.c (revision bfd84d7e7f778a2f91c7b68a60c364b2921a9895)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	HEX,
39 	MAC_ADDR,
40 	IPV4_ADDR,
41 	IPV6_ADDR,
42 	RULE_ID,
43 	PORT_ID,
44 	GROUP_ID,
45 	PRIORITY_LEVEL,
46 
47 	/* Top-level command. */
48 	FLOW,
49 
50 	/* Sub-level commands. */
51 	VALIDATE,
52 	CREATE,
53 	DESTROY,
54 	FLUSH,
55 	QUERY,
56 	LIST,
57 	ISOLATE,
58 
59 	/* Destroy arguments. */
60 	DESTROY_RULE,
61 
62 	/* Query arguments. */
63 	QUERY_ACTION,
64 
65 	/* List arguments. */
66 	LIST_GROUP,
67 
68 	/* Validate/create arguments. */
69 	GROUP,
70 	PRIORITY,
71 	INGRESS,
72 	EGRESS,
73 	TRANSFER,
74 
75 	/* Validate/create pattern. */
76 	PATTERN,
77 	ITEM_PARAM_IS,
78 	ITEM_PARAM_SPEC,
79 	ITEM_PARAM_LAST,
80 	ITEM_PARAM_MASK,
81 	ITEM_PARAM_PREFIX,
82 	ITEM_NEXT,
83 	ITEM_END,
84 	ITEM_VOID,
85 	ITEM_INVERT,
86 	ITEM_ANY,
87 	ITEM_ANY_NUM,
88 	ITEM_PF,
89 	ITEM_VF,
90 	ITEM_VF_ID,
91 	ITEM_PHY_PORT,
92 	ITEM_PHY_PORT_INDEX,
93 	ITEM_PORT_ID,
94 	ITEM_PORT_ID_ID,
95 	ITEM_MARK,
96 	ITEM_MARK_ID,
97 	ITEM_RAW,
98 	ITEM_RAW_RELATIVE,
99 	ITEM_RAW_SEARCH,
100 	ITEM_RAW_OFFSET,
101 	ITEM_RAW_LIMIT,
102 	ITEM_RAW_PATTERN,
103 	ITEM_ETH,
104 	ITEM_ETH_DST,
105 	ITEM_ETH_SRC,
106 	ITEM_ETH_TYPE,
107 	ITEM_VLAN,
108 	ITEM_VLAN_TCI,
109 	ITEM_VLAN_PCP,
110 	ITEM_VLAN_DEI,
111 	ITEM_VLAN_VID,
112 	ITEM_VLAN_INNER_TYPE,
113 	ITEM_IPV4,
114 	ITEM_IPV4_TOS,
115 	ITEM_IPV4_TTL,
116 	ITEM_IPV4_PROTO,
117 	ITEM_IPV4_SRC,
118 	ITEM_IPV4_DST,
119 	ITEM_IPV6,
120 	ITEM_IPV6_TC,
121 	ITEM_IPV6_FLOW,
122 	ITEM_IPV6_PROTO,
123 	ITEM_IPV6_HOP,
124 	ITEM_IPV6_SRC,
125 	ITEM_IPV6_DST,
126 	ITEM_ICMP,
127 	ITEM_ICMP_TYPE,
128 	ITEM_ICMP_CODE,
129 	ITEM_UDP,
130 	ITEM_UDP_SRC,
131 	ITEM_UDP_DST,
132 	ITEM_TCP,
133 	ITEM_TCP_SRC,
134 	ITEM_TCP_DST,
135 	ITEM_TCP_FLAGS,
136 	ITEM_SCTP,
137 	ITEM_SCTP_SRC,
138 	ITEM_SCTP_DST,
139 	ITEM_SCTP_TAG,
140 	ITEM_SCTP_CKSUM,
141 	ITEM_VXLAN,
142 	ITEM_VXLAN_VNI,
143 	ITEM_E_TAG,
144 	ITEM_E_TAG_GRP_ECID_B,
145 	ITEM_NVGRE,
146 	ITEM_NVGRE_TNI,
147 	ITEM_MPLS,
148 	ITEM_MPLS_LABEL,
149 	ITEM_GRE,
150 	ITEM_GRE_PROTO,
151 	ITEM_FUZZY,
152 	ITEM_FUZZY_THRESH,
153 	ITEM_GTP,
154 	ITEM_GTP_TEID,
155 	ITEM_GTPC,
156 	ITEM_GTPU,
157 	ITEM_GENEVE,
158 	ITEM_GENEVE_VNI,
159 	ITEM_GENEVE_PROTO,
160 	ITEM_VXLAN_GPE,
161 	ITEM_VXLAN_GPE_VNI,
162 	ITEM_ARP_ETH_IPV4,
163 	ITEM_ARP_ETH_IPV4_SHA,
164 	ITEM_ARP_ETH_IPV4_SPA,
165 	ITEM_ARP_ETH_IPV4_THA,
166 	ITEM_ARP_ETH_IPV4_TPA,
167 	ITEM_IPV6_EXT,
168 	ITEM_IPV6_EXT_NEXT_HDR,
169 	ITEM_ICMP6,
170 	ITEM_ICMP6_TYPE,
171 	ITEM_ICMP6_CODE,
172 	ITEM_ICMP6_ND_NS,
173 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
174 	ITEM_ICMP6_ND_NA,
175 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
176 	ITEM_ICMP6_ND_OPT,
177 	ITEM_ICMP6_ND_OPT_TYPE,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH,
179 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH,
181 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
182 	ITEM_META,
183 	ITEM_META_DATA,
184 
185 	/* Validate/create actions. */
186 	ACTIONS,
187 	ACTION_NEXT,
188 	ACTION_END,
189 	ACTION_VOID,
190 	ACTION_PASSTHRU,
191 	ACTION_JUMP,
192 	ACTION_JUMP_GROUP,
193 	ACTION_MARK,
194 	ACTION_MARK_ID,
195 	ACTION_FLAG,
196 	ACTION_QUEUE,
197 	ACTION_QUEUE_INDEX,
198 	ACTION_DROP,
199 	ACTION_COUNT,
200 	ACTION_COUNT_SHARED,
201 	ACTION_COUNT_ID,
202 	ACTION_RSS,
203 	ACTION_RSS_FUNC,
204 	ACTION_RSS_LEVEL,
205 	ACTION_RSS_FUNC_DEFAULT,
206 	ACTION_RSS_FUNC_TOEPLITZ,
207 	ACTION_RSS_FUNC_SIMPLE_XOR,
208 	ACTION_RSS_TYPES,
209 	ACTION_RSS_TYPE,
210 	ACTION_RSS_KEY,
211 	ACTION_RSS_KEY_LEN,
212 	ACTION_RSS_QUEUES,
213 	ACTION_RSS_QUEUE,
214 	ACTION_PF,
215 	ACTION_VF,
216 	ACTION_VF_ORIGINAL,
217 	ACTION_VF_ID,
218 	ACTION_PHY_PORT,
219 	ACTION_PHY_PORT_ORIGINAL,
220 	ACTION_PHY_PORT_INDEX,
221 	ACTION_PORT_ID,
222 	ACTION_PORT_ID_ORIGINAL,
223 	ACTION_PORT_ID_ID,
224 	ACTION_METER,
225 	ACTION_METER_ID,
226 	ACTION_OF_SET_MPLS_TTL,
227 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
228 	ACTION_OF_DEC_MPLS_TTL,
229 	ACTION_OF_SET_NW_TTL,
230 	ACTION_OF_SET_NW_TTL_NW_TTL,
231 	ACTION_OF_DEC_NW_TTL,
232 	ACTION_OF_COPY_TTL_OUT,
233 	ACTION_OF_COPY_TTL_IN,
234 	ACTION_OF_POP_VLAN,
235 	ACTION_OF_PUSH_VLAN,
236 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
237 	ACTION_OF_SET_VLAN_VID,
238 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
239 	ACTION_OF_SET_VLAN_PCP,
240 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
241 	ACTION_OF_POP_MPLS,
242 	ACTION_OF_POP_MPLS_ETHERTYPE,
243 	ACTION_OF_PUSH_MPLS,
244 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
245 	ACTION_VXLAN_ENCAP,
246 	ACTION_VXLAN_DECAP,
247 	ACTION_NVGRE_ENCAP,
248 	ACTION_NVGRE_DECAP,
249 	ACTION_L2_ENCAP,
250 	ACTION_L2_DECAP,
251 	ACTION_MPLSOGRE_ENCAP,
252 	ACTION_MPLSOGRE_DECAP,
253 	ACTION_MPLSOUDP_ENCAP,
254 	ACTION_MPLSOUDP_DECAP,
255 	ACTION_SET_IPV4_SRC,
256 	ACTION_SET_IPV4_SRC_IPV4_SRC,
257 	ACTION_SET_IPV4_DST,
258 	ACTION_SET_IPV4_DST_IPV4_DST,
259 	ACTION_SET_IPV6_SRC,
260 	ACTION_SET_IPV6_SRC_IPV6_SRC,
261 	ACTION_SET_IPV6_DST,
262 	ACTION_SET_IPV6_DST_IPV6_DST,
263 	ACTION_SET_TP_SRC,
264 	ACTION_SET_TP_SRC_TP_SRC,
265 	ACTION_SET_TP_DST,
266 	ACTION_SET_TP_DST_TP_DST,
267 	ACTION_MAC_SWAP,
268 	ACTION_DEC_TTL,
269 	ACTION_SET_TTL,
270 	ACTION_SET_TTL_TTL,
271 	ACTION_SET_MAC_SRC,
272 	ACTION_SET_MAC_SRC_MAC_SRC,
273 	ACTION_SET_MAC_DST,
274 	ACTION_SET_MAC_DST_MAC_DST,
275 };
276 
277 /** Maximum size for pattern in struct rte_flow_item_raw. */
278 #define ITEM_RAW_PATTERN_SIZE 40
279 
280 /** Storage size for struct rte_flow_item_raw including pattern. */
281 #define ITEM_RAW_SIZE \
282 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
283 
284 /** Maximum number of queue indices in struct rte_flow_action_rss. */
285 #define ACTION_RSS_QUEUE_NUM 32
286 
287 /** Storage for struct rte_flow_action_rss including external data. */
288 struct action_rss_data {
289 	struct rte_flow_action_rss conf;
290 	uint8_t key[RSS_HASH_KEY_LENGTH];
291 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
292 };
293 
294 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
295 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
296 
297 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
298 struct action_vxlan_encap_data {
299 	struct rte_flow_action_vxlan_encap conf;
300 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
301 	struct rte_flow_item_eth item_eth;
302 	struct rte_flow_item_vlan item_vlan;
303 	union {
304 		struct rte_flow_item_ipv4 item_ipv4;
305 		struct rte_flow_item_ipv6 item_ipv6;
306 	};
307 	struct rte_flow_item_udp item_udp;
308 	struct rte_flow_item_vxlan item_vxlan;
309 };
310 
311 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
312 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
313 
314 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
315 struct action_nvgre_encap_data {
316 	struct rte_flow_action_nvgre_encap conf;
317 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
318 	struct rte_flow_item_eth item_eth;
319 	struct rte_flow_item_vlan item_vlan;
320 	union {
321 		struct rte_flow_item_ipv4 item_ipv4;
322 		struct rte_flow_item_ipv6 item_ipv6;
323 	};
324 	struct rte_flow_item_nvgre item_nvgre;
325 };
326 
327 /** Maximum data size in struct rte_flow_action_raw_encap. */
328 #define ACTION_RAW_ENCAP_MAX_DATA 128
329 
330 /** Storage for struct rte_flow_action_raw_encap including external data. */
331 struct action_raw_encap_data {
332 	struct rte_flow_action_raw_encap conf;
333 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
334 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
335 };
336 
337 /** Storage for struct rte_flow_action_raw_decap including external data. */
338 struct action_raw_decap_data {
339 	struct rte_flow_action_raw_decap conf;
340 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
341 };
342 
343 /** Maximum number of subsequent tokens and arguments on the stack. */
344 #define CTX_STACK_SIZE 16
345 
346 /** Parser context. */
347 struct context {
348 	/** Stack of subsequent token lists to process. */
349 	const enum index *next[CTX_STACK_SIZE];
350 	/** Arguments for stacked tokens. */
351 	const void *args[CTX_STACK_SIZE];
352 	enum index curr; /**< Current token index. */
353 	enum index prev; /**< Index of the last token seen. */
354 	int next_num; /**< Number of entries in next[]. */
355 	int args_num; /**< Number of entries in args[]. */
356 	uint32_t eol:1; /**< EOL has been detected. */
357 	uint32_t last:1; /**< No more arguments. */
358 	portid_t port; /**< Current port ID (for completions). */
359 	uint32_t objdata; /**< Object-specific data. */
360 	void *object; /**< Address of current object for relative offsets. */
361 	void *objmask; /**< Object a full mask must be written to. */
362 };
363 
364 /** Token argument. */
365 struct arg {
366 	uint32_t hton:1; /**< Use network byte ordering. */
367 	uint32_t sign:1; /**< Value is signed. */
368 	uint32_t bounded:1; /**< Value is bounded. */
369 	uintmax_t min; /**< Minimum value if bounded. */
370 	uintmax_t max; /**< Maximum value if bounded. */
371 	uint32_t offset; /**< Relative offset from ctx->object. */
372 	uint32_t size; /**< Field size. */
373 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
374 };
375 
376 /** Parser token definition. */
377 struct token {
378 	/** Type displayed during completion (defaults to "TOKEN"). */
379 	const char *type;
380 	/** Help displayed during completion (defaults to token name). */
381 	const char *help;
382 	/** Private data used by parser functions. */
383 	const void *priv;
384 	/**
385 	 * Lists of subsequent tokens to push on the stack. Each call to the
386 	 * parser consumes the last entry of that stack.
387 	 */
388 	const enum index *const *next;
389 	/** Arguments stack for subsequent tokens that need them. */
390 	const struct arg *const *args;
391 	/**
392 	 * Token-processing callback, returns -1 in case of error, the
393 	 * length of the matched string otherwise. If NULL, attempts to
394 	 * match the token name.
395 	 *
396 	 * If buf is not NULL, the result should be stored in it according
397 	 * to context. An error is returned if not large enough.
398 	 */
399 	int (*call)(struct context *ctx, const struct token *token,
400 		    const char *str, unsigned int len,
401 		    void *buf, unsigned int size);
402 	/**
403 	 * Callback that provides possible values for this token, used for
404 	 * completion. Returns -1 in case of error, the number of possible
405 	 * values otherwise. If NULL, the token name is used.
406 	 *
407 	 * If buf is not NULL, entry index ent is written to buf and the
408 	 * full length of the entry is returned (same behavior as
409 	 * snprintf()).
410 	 */
411 	int (*comp)(struct context *ctx, const struct token *token,
412 		    unsigned int ent, char *buf, unsigned int size);
413 	/** Mandatory token name, no default value. */
414 	const char *name;
415 };
416 
417 /** Static initializer for the next field. */
418 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
419 
420 /** Static initializer for a NEXT() entry. */
421 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
422 
423 /** Static initializer for the args field. */
424 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
425 
426 /** Static initializer for ARGS() to target a field. */
427 #define ARGS_ENTRY(s, f) \
428 	(&(const struct arg){ \
429 		.offset = offsetof(s, f), \
430 		.size = sizeof(((s *)0)->f), \
431 	})
432 
433 /** Static initializer for ARGS() to target a bit-field. */
434 #define ARGS_ENTRY_BF(s, f, b) \
435 	(&(const struct arg){ \
436 		.size = sizeof(s), \
437 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
438 	})
439 
440 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
441 #define ARGS_ENTRY_MASK(s, f, m) \
442 	(&(const struct arg){ \
443 		.offset = offsetof(s, f), \
444 		.size = sizeof(((s *)0)->f), \
445 		.mask = (const void *)(m), \
446 	})
447 
448 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
449 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
450 	(&(const struct arg){ \
451 		.hton = 1, \
452 		.offset = offsetof(s, f), \
453 		.size = sizeof(((s *)0)->f), \
454 		.mask = (const void *)(m), \
455 	})
456 
457 /** Static initializer for ARGS() to target a pointer. */
458 #define ARGS_ENTRY_PTR(s, f) \
459 	(&(const struct arg){ \
460 		.size = sizeof(*((s *)0)->f), \
461 	})
462 
463 /** Static initializer for ARGS() with arbitrary offset and size. */
464 #define ARGS_ENTRY_ARB(o, s) \
465 	(&(const struct arg){ \
466 		.offset = (o), \
467 		.size = (s), \
468 	})
469 
470 /** Same as ARGS_ENTRY_ARB() with bounded values. */
471 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
472 	(&(const struct arg){ \
473 		.bounded = 1, \
474 		.min = (i), \
475 		.max = (a), \
476 		.offset = (o), \
477 		.size = (s), \
478 	})
479 
480 /** Same as ARGS_ENTRY() using network byte ordering. */
481 #define ARGS_ENTRY_HTON(s, f) \
482 	(&(const struct arg){ \
483 		.hton = 1, \
484 		.offset = offsetof(s, f), \
485 		.size = sizeof(((s *)0)->f), \
486 	})
487 
488 /** Parser output buffer layout expected by cmd_flow_parsed(). */
489 struct buffer {
490 	enum index command; /**< Flow command. */
491 	portid_t port; /**< Affected port ID. */
492 	union {
493 		struct {
494 			struct rte_flow_attr attr;
495 			struct rte_flow_item *pattern;
496 			struct rte_flow_action *actions;
497 			uint32_t pattern_n;
498 			uint32_t actions_n;
499 			uint8_t *data;
500 		} vc; /**< Validate/create arguments. */
501 		struct {
502 			uint32_t *rule;
503 			uint32_t rule_n;
504 		} destroy; /**< Destroy arguments. */
505 		struct {
506 			uint32_t rule;
507 			struct rte_flow_action action;
508 		} query; /**< Query arguments. */
509 		struct {
510 			uint32_t *group;
511 			uint32_t group_n;
512 		} list; /**< List arguments. */
513 		struct {
514 			int set;
515 		} isolate; /**< Isolated mode arguments. */
516 	} args; /**< Command arguments. */
517 };
518 
519 /** Private data for pattern items. */
520 struct parse_item_priv {
521 	enum rte_flow_item_type type; /**< Item type. */
522 	uint32_t size; /**< Size of item specification structure. */
523 };
524 
525 #define PRIV_ITEM(t, s) \
526 	(&(const struct parse_item_priv){ \
527 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
528 		.size = s, \
529 	})
530 
531 /** Private data for actions. */
532 struct parse_action_priv {
533 	enum rte_flow_action_type type; /**< Action type. */
534 	uint32_t size; /**< Size of action configuration structure. */
535 };
536 
537 #define PRIV_ACTION(t, s) \
538 	(&(const struct parse_action_priv){ \
539 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
540 		.size = s, \
541 	})
542 
543 static const enum index next_vc_attr[] = {
544 	GROUP,
545 	PRIORITY,
546 	INGRESS,
547 	EGRESS,
548 	TRANSFER,
549 	PATTERN,
550 	ZERO,
551 };
552 
553 static const enum index next_destroy_attr[] = {
554 	DESTROY_RULE,
555 	END,
556 	ZERO,
557 };
558 
559 static const enum index next_list_attr[] = {
560 	LIST_GROUP,
561 	END,
562 	ZERO,
563 };
564 
565 static const enum index item_param[] = {
566 	ITEM_PARAM_IS,
567 	ITEM_PARAM_SPEC,
568 	ITEM_PARAM_LAST,
569 	ITEM_PARAM_MASK,
570 	ITEM_PARAM_PREFIX,
571 	ZERO,
572 };
573 
574 static const enum index next_item[] = {
575 	ITEM_END,
576 	ITEM_VOID,
577 	ITEM_INVERT,
578 	ITEM_ANY,
579 	ITEM_PF,
580 	ITEM_VF,
581 	ITEM_PHY_PORT,
582 	ITEM_PORT_ID,
583 	ITEM_MARK,
584 	ITEM_RAW,
585 	ITEM_ETH,
586 	ITEM_VLAN,
587 	ITEM_IPV4,
588 	ITEM_IPV6,
589 	ITEM_ICMP,
590 	ITEM_UDP,
591 	ITEM_TCP,
592 	ITEM_SCTP,
593 	ITEM_VXLAN,
594 	ITEM_E_TAG,
595 	ITEM_NVGRE,
596 	ITEM_MPLS,
597 	ITEM_GRE,
598 	ITEM_FUZZY,
599 	ITEM_GTP,
600 	ITEM_GTPC,
601 	ITEM_GTPU,
602 	ITEM_GENEVE,
603 	ITEM_VXLAN_GPE,
604 	ITEM_ARP_ETH_IPV4,
605 	ITEM_IPV6_EXT,
606 	ITEM_ICMP6,
607 	ITEM_ICMP6_ND_NS,
608 	ITEM_ICMP6_ND_NA,
609 	ITEM_ICMP6_ND_OPT,
610 	ITEM_ICMP6_ND_OPT_SLA_ETH,
611 	ITEM_ICMP6_ND_OPT_TLA_ETH,
612 	ITEM_META,
613 	ZERO,
614 };
615 
616 static const enum index item_fuzzy[] = {
617 	ITEM_FUZZY_THRESH,
618 	ITEM_NEXT,
619 	ZERO,
620 };
621 
622 static const enum index item_any[] = {
623 	ITEM_ANY_NUM,
624 	ITEM_NEXT,
625 	ZERO,
626 };
627 
628 static const enum index item_vf[] = {
629 	ITEM_VF_ID,
630 	ITEM_NEXT,
631 	ZERO,
632 };
633 
634 static const enum index item_phy_port[] = {
635 	ITEM_PHY_PORT_INDEX,
636 	ITEM_NEXT,
637 	ZERO,
638 };
639 
640 static const enum index item_port_id[] = {
641 	ITEM_PORT_ID_ID,
642 	ITEM_NEXT,
643 	ZERO,
644 };
645 
646 static const enum index item_mark[] = {
647 	ITEM_MARK_ID,
648 	ITEM_NEXT,
649 	ZERO,
650 };
651 
652 static const enum index item_raw[] = {
653 	ITEM_RAW_RELATIVE,
654 	ITEM_RAW_SEARCH,
655 	ITEM_RAW_OFFSET,
656 	ITEM_RAW_LIMIT,
657 	ITEM_RAW_PATTERN,
658 	ITEM_NEXT,
659 	ZERO,
660 };
661 
662 static const enum index item_eth[] = {
663 	ITEM_ETH_DST,
664 	ITEM_ETH_SRC,
665 	ITEM_ETH_TYPE,
666 	ITEM_NEXT,
667 	ZERO,
668 };
669 
670 static const enum index item_vlan[] = {
671 	ITEM_VLAN_TCI,
672 	ITEM_VLAN_PCP,
673 	ITEM_VLAN_DEI,
674 	ITEM_VLAN_VID,
675 	ITEM_VLAN_INNER_TYPE,
676 	ITEM_NEXT,
677 	ZERO,
678 };
679 
680 static const enum index item_ipv4[] = {
681 	ITEM_IPV4_TOS,
682 	ITEM_IPV4_TTL,
683 	ITEM_IPV4_PROTO,
684 	ITEM_IPV4_SRC,
685 	ITEM_IPV4_DST,
686 	ITEM_NEXT,
687 	ZERO,
688 };
689 
690 static const enum index item_ipv6[] = {
691 	ITEM_IPV6_TC,
692 	ITEM_IPV6_FLOW,
693 	ITEM_IPV6_PROTO,
694 	ITEM_IPV6_HOP,
695 	ITEM_IPV6_SRC,
696 	ITEM_IPV6_DST,
697 	ITEM_NEXT,
698 	ZERO,
699 };
700 
701 static const enum index item_icmp[] = {
702 	ITEM_ICMP_TYPE,
703 	ITEM_ICMP_CODE,
704 	ITEM_NEXT,
705 	ZERO,
706 };
707 
708 static const enum index item_udp[] = {
709 	ITEM_UDP_SRC,
710 	ITEM_UDP_DST,
711 	ITEM_NEXT,
712 	ZERO,
713 };
714 
715 static const enum index item_tcp[] = {
716 	ITEM_TCP_SRC,
717 	ITEM_TCP_DST,
718 	ITEM_TCP_FLAGS,
719 	ITEM_NEXT,
720 	ZERO,
721 };
722 
723 static const enum index item_sctp[] = {
724 	ITEM_SCTP_SRC,
725 	ITEM_SCTP_DST,
726 	ITEM_SCTP_TAG,
727 	ITEM_SCTP_CKSUM,
728 	ITEM_NEXT,
729 	ZERO,
730 };
731 
732 static const enum index item_vxlan[] = {
733 	ITEM_VXLAN_VNI,
734 	ITEM_NEXT,
735 	ZERO,
736 };
737 
738 static const enum index item_e_tag[] = {
739 	ITEM_E_TAG_GRP_ECID_B,
740 	ITEM_NEXT,
741 	ZERO,
742 };
743 
744 static const enum index item_nvgre[] = {
745 	ITEM_NVGRE_TNI,
746 	ITEM_NEXT,
747 	ZERO,
748 };
749 
750 static const enum index item_mpls[] = {
751 	ITEM_MPLS_LABEL,
752 	ITEM_NEXT,
753 	ZERO,
754 };
755 
756 static const enum index item_gre[] = {
757 	ITEM_GRE_PROTO,
758 	ITEM_NEXT,
759 	ZERO,
760 };
761 
762 static const enum index item_gtp[] = {
763 	ITEM_GTP_TEID,
764 	ITEM_NEXT,
765 	ZERO,
766 };
767 
768 static const enum index item_geneve[] = {
769 	ITEM_GENEVE_VNI,
770 	ITEM_GENEVE_PROTO,
771 	ITEM_NEXT,
772 	ZERO,
773 };
774 
775 static const enum index item_vxlan_gpe[] = {
776 	ITEM_VXLAN_GPE_VNI,
777 	ITEM_NEXT,
778 	ZERO,
779 };
780 
781 static const enum index item_arp_eth_ipv4[] = {
782 	ITEM_ARP_ETH_IPV4_SHA,
783 	ITEM_ARP_ETH_IPV4_SPA,
784 	ITEM_ARP_ETH_IPV4_THA,
785 	ITEM_ARP_ETH_IPV4_TPA,
786 	ITEM_NEXT,
787 	ZERO,
788 };
789 
790 static const enum index item_ipv6_ext[] = {
791 	ITEM_IPV6_EXT_NEXT_HDR,
792 	ITEM_NEXT,
793 	ZERO,
794 };
795 
796 static const enum index item_icmp6[] = {
797 	ITEM_ICMP6_TYPE,
798 	ITEM_ICMP6_CODE,
799 	ITEM_NEXT,
800 	ZERO,
801 };
802 
803 static const enum index item_icmp6_nd_ns[] = {
804 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
805 	ITEM_NEXT,
806 	ZERO,
807 };
808 
809 static const enum index item_icmp6_nd_na[] = {
810 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
811 	ITEM_NEXT,
812 	ZERO,
813 };
814 
815 static const enum index item_icmp6_nd_opt[] = {
816 	ITEM_ICMP6_ND_OPT_TYPE,
817 	ITEM_NEXT,
818 	ZERO,
819 };
820 
821 static const enum index item_icmp6_nd_opt_sla_eth[] = {
822 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
823 	ITEM_NEXT,
824 	ZERO,
825 };
826 
827 static const enum index item_icmp6_nd_opt_tla_eth[] = {
828 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
829 	ITEM_NEXT,
830 	ZERO,
831 };
832 
833 static const enum index item_meta[] = {
834 	ITEM_META_DATA,
835 	ITEM_NEXT,
836 	ZERO,
837 };
838 
839 static const enum index next_action[] = {
840 	ACTION_END,
841 	ACTION_VOID,
842 	ACTION_PASSTHRU,
843 	ACTION_JUMP,
844 	ACTION_MARK,
845 	ACTION_FLAG,
846 	ACTION_QUEUE,
847 	ACTION_DROP,
848 	ACTION_COUNT,
849 	ACTION_RSS,
850 	ACTION_PF,
851 	ACTION_VF,
852 	ACTION_PHY_PORT,
853 	ACTION_PORT_ID,
854 	ACTION_METER,
855 	ACTION_OF_SET_MPLS_TTL,
856 	ACTION_OF_DEC_MPLS_TTL,
857 	ACTION_OF_SET_NW_TTL,
858 	ACTION_OF_DEC_NW_TTL,
859 	ACTION_OF_COPY_TTL_OUT,
860 	ACTION_OF_COPY_TTL_IN,
861 	ACTION_OF_POP_VLAN,
862 	ACTION_OF_PUSH_VLAN,
863 	ACTION_OF_SET_VLAN_VID,
864 	ACTION_OF_SET_VLAN_PCP,
865 	ACTION_OF_POP_MPLS,
866 	ACTION_OF_PUSH_MPLS,
867 	ACTION_VXLAN_ENCAP,
868 	ACTION_VXLAN_DECAP,
869 	ACTION_NVGRE_ENCAP,
870 	ACTION_NVGRE_DECAP,
871 	ACTION_L2_ENCAP,
872 	ACTION_L2_DECAP,
873 	ACTION_MPLSOGRE_ENCAP,
874 	ACTION_MPLSOGRE_DECAP,
875 	ACTION_MPLSOUDP_ENCAP,
876 	ACTION_MPLSOUDP_DECAP,
877 	ACTION_SET_IPV4_SRC,
878 	ACTION_SET_IPV4_DST,
879 	ACTION_SET_IPV6_SRC,
880 	ACTION_SET_IPV6_DST,
881 	ACTION_SET_TP_SRC,
882 	ACTION_SET_TP_DST,
883 	ACTION_MAC_SWAP,
884 	ACTION_DEC_TTL,
885 	ACTION_SET_TTL,
886 	ACTION_SET_MAC_SRC,
887 	ACTION_SET_MAC_DST,
888 	ZERO,
889 };
890 
891 static const enum index action_mark[] = {
892 	ACTION_MARK_ID,
893 	ACTION_NEXT,
894 	ZERO,
895 };
896 
897 static const enum index action_queue[] = {
898 	ACTION_QUEUE_INDEX,
899 	ACTION_NEXT,
900 	ZERO,
901 };
902 
903 static const enum index action_count[] = {
904 	ACTION_COUNT_ID,
905 	ACTION_COUNT_SHARED,
906 	ACTION_NEXT,
907 	ZERO,
908 };
909 
910 static const enum index action_rss[] = {
911 	ACTION_RSS_FUNC,
912 	ACTION_RSS_LEVEL,
913 	ACTION_RSS_TYPES,
914 	ACTION_RSS_KEY,
915 	ACTION_RSS_KEY_LEN,
916 	ACTION_RSS_QUEUES,
917 	ACTION_NEXT,
918 	ZERO,
919 };
920 
921 static const enum index action_vf[] = {
922 	ACTION_VF_ORIGINAL,
923 	ACTION_VF_ID,
924 	ACTION_NEXT,
925 	ZERO,
926 };
927 
928 static const enum index action_phy_port[] = {
929 	ACTION_PHY_PORT_ORIGINAL,
930 	ACTION_PHY_PORT_INDEX,
931 	ACTION_NEXT,
932 	ZERO,
933 };
934 
935 static const enum index action_port_id[] = {
936 	ACTION_PORT_ID_ORIGINAL,
937 	ACTION_PORT_ID_ID,
938 	ACTION_NEXT,
939 	ZERO,
940 };
941 
942 static const enum index action_meter[] = {
943 	ACTION_METER_ID,
944 	ACTION_NEXT,
945 	ZERO,
946 };
947 
948 static const enum index action_of_set_mpls_ttl[] = {
949 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
950 	ACTION_NEXT,
951 	ZERO,
952 };
953 
954 static const enum index action_of_set_nw_ttl[] = {
955 	ACTION_OF_SET_NW_TTL_NW_TTL,
956 	ACTION_NEXT,
957 	ZERO,
958 };
959 
960 static const enum index action_of_push_vlan[] = {
961 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
962 	ACTION_NEXT,
963 	ZERO,
964 };
965 
966 static const enum index action_of_set_vlan_vid[] = {
967 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
968 	ACTION_NEXT,
969 	ZERO,
970 };
971 
972 static const enum index action_of_set_vlan_pcp[] = {
973 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
974 	ACTION_NEXT,
975 	ZERO,
976 };
977 
978 static const enum index action_of_pop_mpls[] = {
979 	ACTION_OF_POP_MPLS_ETHERTYPE,
980 	ACTION_NEXT,
981 	ZERO,
982 };
983 
984 static const enum index action_of_push_mpls[] = {
985 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
986 	ACTION_NEXT,
987 	ZERO,
988 };
989 
990 static const enum index action_set_ipv4_src[] = {
991 	ACTION_SET_IPV4_SRC_IPV4_SRC,
992 	ACTION_NEXT,
993 	ZERO,
994 };
995 
996 static const enum index action_set_mac_src[] = {
997 	ACTION_SET_MAC_SRC_MAC_SRC,
998 	ACTION_NEXT,
999 	ZERO,
1000 };
1001 
1002 static const enum index action_set_ipv4_dst[] = {
1003 	ACTION_SET_IPV4_DST_IPV4_DST,
1004 	ACTION_NEXT,
1005 	ZERO,
1006 };
1007 
1008 static const enum index action_set_ipv6_src[] = {
1009 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1010 	ACTION_NEXT,
1011 	ZERO,
1012 };
1013 
1014 static const enum index action_set_ipv6_dst[] = {
1015 	ACTION_SET_IPV6_DST_IPV6_DST,
1016 	ACTION_NEXT,
1017 	ZERO,
1018 };
1019 
1020 static const enum index action_set_tp_src[] = {
1021 	ACTION_SET_TP_SRC_TP_SRC,
1022 	ACTION_NEXT,
1023 	ZERO,
1024 };
1025 
1026 static const enum index action_set_tp_dst[] = {
1027 	ACTION_SET_TP_DST_TP_DST,
1028 	ACTION_NEXT,
1029 	ZERO,
1030 };
1031 
1032 static const enum index action_set_ttl[] = {
1033 	ACTION_SET_TTL_TTL,
1034 	ACTION_NEXT,
1035 	ZERO,
1036 };
1037 
1038 static const enum index action_jump[] = {
1039 	ACTION_JUMP_GROUP,
1040 	ACTION_NEXT,
1041 	ZERO,
1042 };
1043 
1044 static const enum index action_set_mac_dst[] = {
1045 	ACTION_SET_MAC_DST_MAC_DST,
1046 	ACTION_NEXT,
1047 	ZERO,
1048 };
1049 
1050 static int parse_init(struct context *, const struct token *,
1051 		      const char *, unsigned int,
1052 		      void *, unsigned int);
1053 static int parse_vc(struct context *, const struct token *,
1054 		    const char *, unsigned int,
1055 		    void *, unsigned int);
1056 static int parse_vc_spec(struct context *, const struct token *,
1057 			 const char *, unsigned int, void *, unsigned int);
1058 static int parse_vc_conf(struct context *, const struct token *,
1059 			 const char *, unsigned int, void *, unsigned int);
1060 static int parse_vc_action_rss(struct context *, const struct token *,
1061 			       const char *, unsigned int, void *,
1062 			       unsigned int);
1063 static int parse_vc_action_rss_func(struct context *, const struct token *,
1064 				    const char *, unsigned int, void *,
1065 				    unsigned int);
1066 static int parse_vc_action_rss_type(struct context *, const struct token *,
1067 				    const char *, unsigned int, void *,
1068 				    unsigned int);
1069 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1070 				     const char *, unsigned int, void *,
1071 				     unsigned int);
1072 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1073 				       const char *, unsigned int, void *,
1074 				       unsigned int);
1075 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1076 				       const char *, unsigned int, void *,
1077 				       unsigned int);
1078 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1079 				    const char *, unsigned int, void *,
1080 				    unsigned int);
1081 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1082 				    const char *, unsigned int, void *,
1083 				    unsigned int);
1084 static int parse_vc_action_mplsogre_encap(struct context *,
1085 					  const struct token *, const char *,
1086 					  unsigned int, void *, unsigned int);
1087 static int parse_vc_action_mplsogre_decap(struct context *,
1088 					  const struct token *, const char *,
1089 					  unsigned int, void *, unsigned int);
1090 static int parse_vc_action_mplsoudp_encap(struct context *,
1091 					  const struct token *, const char *,
1092 					  unsigned int, void *, unsigned int);
1093 static int parse_vc_action_mplsoudp_decap(struct context *,
1094 					  const struct token *, const char *,
1095 					  unsigned int, void *, unsigned int);
1096 static int parse_destroy(struct context *, const struct token *,
1097 			 const char *, unsigned int,
1098 			 void *, unsigned int);
1099 static int parse_flush(struct context *, const struct token *,
1100 		       const char *, unsigned int,
1101 		       void *, unsigned int);
1102 static int parse_query(struct context *, const struct token *,
1103 		       const char *, unsigned int,
1104 		       void *, unsigned int);
1105 static int parse_action(struct context *, const struct token *,
1106 			const char *, unsigned int,
1107 			void *, unsigned int);
1108 static int parse_list(struct context *, const struct token *,
1109 		      const char *, unsigned int,
1110 		      void *, unsigned int);
1111 static int parse_isolate(struct context *, const struct token *,
1112 			 const char *, unsigned int,
1113 			 void *, unsigned int);
1114 static int parse_int(struct context *, const struct token *,
1115 		     const char *, unsigned int,
1116 		     void *, unsigned int);
1117 static int parse_prefix(struct context *, const struct token *,
1118 			const char *, unsigned int,
1119 			void *, unsigned int);
1120 static int parse_boolean(struct context *, const struct token *,
1121 			 const char *, unsigned int,
1122 			 void *, unsigned int);
1123 static int parse_string(struct context *, const struct token *,
1124 			const char *, unsigned int,
1125 			void *, unsigned int);
1126 static int parse_hex(struct context *ctx, const struct token *token,
1127 			const char *str, unsigned int len,
1128 			void *buf, unsigned int size);
1129 static int parse_mac_addr(struct context *, const struct token *,
1130 			  const char *, unsigned int,
1131 			  void *, unsigned int);
1132 static int parse_ipv4_addr(struct context *, const struct token *,
1133 			   const char *, unsigned int,
1134 			   void *, unsigned int);
1135 static int parse_ipv6_addr(struct context *, const struct token *,
1136 			   const char *, unsigned int,
1137 			   void *, unsigned int);
1138 static int parse_port(struct context *, const struct token *,
1139 		      const char *, unsigned int,
1140 		      void *, unsigned int);
1141 static int comp_none(struct context *, const struct token *,
1142 		     unsigned int, char *, unsigned int);
1143 static int comp_boolean(struct context *, const struct token *,
1144 			unsigned int, char *, unsigned int);
1145 static int comp_action(struct context *, const struct token *,
1146 		       unsigned int, char *, unsigned int);
1147 static int comp_port(struct context *, const struct token *,
1148 		     unsigned int, char *, unsigned int);
1149 static int comp_rule_id(struct context *, const struct token *,
1150 			unsigned int, char *, unsigned int);
1151 static int comp_vc_action_rss_type(struct context *, const struct token *,
1152 				   unsigned int, char *, unsigned int);
1153 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1154 				    unsigned int, char *, unsigned int);
1155 
1156 /** Token definitions. */
1157 static const struct token token_list[] = {
1158 	/* Special tokens. */
1159 	[ZERO] = {
1160 		.name = "ZERO",
1161 		.help = "null entry, abused as the entry point",
1162 		.next = NEXT(NEXT_ENTRY(FLOW)),
1163 	},
1164 	[END] = {
1165 		.name = "",
1166 		.type = "RETURN",
1167 		.help = "command may end here",
1168 	},
1169 	/* Common tokens. */
1170 	[INTEGER] = {
1171 		.name = "{int}",
1172 		.type = "INTEGER",
1173 		.help = "integer value",
1174 		.call = parse_int,
1175 		.comp = comp_none,
1176 	},
1177 	[UNSIGNED] = {
1178 		.name = "{unsigned}",
1179 		.type = "UNSIGNED",
1180 		.help = "unsigned integer value",
1181 		.call = parse_int,
1182 		.comp = comp_none,
1183 	},
1184 	[PREFIX] = {
1185 		.name = "{prefix}",
1186 		.type = "PREFIX",
1187 		.help = "prefix length for bit-mask",
1188 		.call = parse_prefix,
1189 		.comp = comp_none,
1190 	},
1191 	[BOOLEAN] = {
1192 		.name = "{boolean}",
1193 		.type = "BOOLEAN",
1194 		.help = "any boolean value",
1195 		.call = parse_boolean,
1196 		.comp = comp_boolean,
1197 	},
1198 	[STRING] = {
1199 		.name = "{string}",
1200 		.type = "STRING",
1201 		.help = "fixed string",
1202 		.call = parse_string,
1203 		.comp = comp_none,
1204 	},
1205 	[HEX] = {
1206 		.name = "{hex}",
1207 		.type = "HEX",
1208 		.help = "fixed string",
1209 		.call = parse_hex,
1210 		.comp = comp_none,
1211 	},
1212 	[MAC_ADDR] = {
1213 		.name = "{MAC address}",
1214 		.type = "MAC-48",
1215 		.help = "standard MAC address notation",
1216 		.call = parse_mac_addr,
1217 		.comp = comp_none,
1218 	},
1219 	[IPV4_ADDR] = {
1220 		.name = "{IPv4 address}",
1221 		.type = "IPV4 ADDRESS",
1222 		.help = "standard IPv4 address notation",
1223 		.call = parse_ipv4_addr,
1224 		.comp = comp_none,
1225 	},
1226 	[IPV6_ADDR] = {
1227 		.name = "{IPv6 address}",
1228 		.type = "IPV6 ADDRESS",
1229 		.help = "standard IPv6 address notation",
1230 		.call = parse_ipv6_addr,
1231 		.comp = comp_none,
1232 	},
1233 	[RULE_ID] = {
1234 		.name = "{rule id}",
1235 		.type = "RULE ID",
1236 		.help = "rule identifier",
1237 		.call = parse_int,
1238 		.comp = comp_rule_id,
1239 	},
1240 	[PORT_ID] = {
1241 		.name = "{port_id}",
1242 		.type = "PORT ID",
1243 		.help = "port identifier",
1244 		.call = parse_port,
1245 		.comp = comp_port,
1246 	},
1247 	[GROUP_ID] = {
1248 		.name = "{group_id}",
1249 		.type = "GROUP ID",
1250 		.help = "group identifier",
1251 		.call = parse_int,
1252 		.comp = comp_none,
1253 	},
1254 	[PRIORITY_LEVEL] = {
1255 		.name = "{level}",
1256 		.type = "PRIORITY",
1257 		.help = "priority level",
1258 		.call = parse_int,
1259 		.comp = comp_none,
1260 	},
1261 	/* Top-level command. */
1262 	[FLOW] = {
1263 		.name = "flow",
1264 		.type = "{command} {port_id} [{arg} [...]]",
1265 		.help = "manage ingress/egress flow rules",
1266 		.next = NEXT(NEXT_ENTRY
1267 			     (VALIDATE,
1268 			      CREATE,
1269 			      DESTROY,
1270 			      FLUSH,
1271 			      LIST,
1272 			      QUERY,
1273 			      ISOLATE)),
1274 		.call = parse_init,
1275 	},
1276 	/* Sub-level commands. */
1277 	[VALIDATE] = {
1278 		.name = "validate",
1279 		.help = "check whether a flow rule can be created",
1280 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1281 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1282 		.call = parse_vc,
1283 	},
1284 	[CREATE] = {
1285 		.name = "create",
1286 		.help = "create a flow rule",
1287 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1288 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1289 		.call = parse_vc,
1290 	},
1291 	[DESTROY] = {
1292 		.name = "destroy",
1293 		.help = "destroy specific flow rules",
1294 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1295 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1296 		.call = parse_destroy,
1297 	},
1298 	[FLUSH] = {
1299 		.name = "flush",
1300 		.help = "destroy all flow rules",
1301 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1302 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1303 		.call = parse_flush,
1304 	},
1305 	[QUERY] = {
1306 		.name = "query",
1307 		.help = "query an existing flow rule",
1308 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1309 			     NEXT_ENTRY(RULE_ID),
1310 			     NEXT_ENTRY(PORT_ID)),
1311 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1312 			     ARGS_ENTRY(struct buffer, args.query.rule),
1313 			     ARGS_ENTRY(struct buffer, port)),
1314 		.call = parse_query,
1315 	},
1316 	[LIST] = {
1317 		.name = "list",
1318 		.help = "list existing flow rules",
1319 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1320 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1321 		.call = parse_list,
1322 	},
1323 	[ISOLATE] = {
1324 		.name = "isolate",
1325 		.help = "restrict ingress traffic to the defined flow rules",
1326 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1327 			     NEXT_ENTRY(PORT_ID)),
1328 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1329 			     ARGS_ENTRY(struct buffer, port)),
1330 		.call = parse_isolate,
1331 	},
1332 	/* Destroy arguments. */
1333 	[DESTROY_RULE] = {
1334 		.name = "rule",
1335 		.help = "specify a rule identifier",
1336 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1337 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1338 		.call = parse_destroy,
1339 	},
1340 	/* Query arguments. */
1341 	[QUERY_ACTION] = {
1342 		.name = "{action}",
1343 		.type = "ACTION",
1344 		.help = "action to query, must be part of the rule",
1345 		.call = parse_action,
1346 		.comp = comp_action,
1347 	},
1348 	/* List arguments. */
1349 	[LIST_GROUP] = {
1350 		.name = "group",
1351 		.help = "specify a group",
1352 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1353 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1354 		.call = parse_list,
1355 	},
1356 	/* Validate/create attributes. */
1357 	[GROUP] = {
1358 		.name = "group",
1359 		.help = "specify a group",
1360 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1361 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1362 		.call = parse_vc,
1363 	},
1364 	[PRIORITY] = {
1365 		.name = "priority",
1366 		.help = "specify a priority level",
1367 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1368 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1369 		.call = parse_vc,
1370 	},
1371 	[INGRESS] = {
1372 		.name = "ingress",
1373 		.help = "affect rule to ingress",
1374 		.next = NEXT(next_vc_attr),
1375 		.call = parse_vc,
1376 	},
1377 	[EGRESS] = {
1378 		.name = "egress",
1379 		.help = "affect rule to egress",
1380 		.next = NEXT(next_vc_attr),
1381 		.call = parse_vc,
1382 	},
1383 	[TRANSFER] = {
1384 		.name = "transfer",
1385 		.help = "apply rule directly to endpoints found in pattern",
1386 		.next = NEXT(next_vc_attr),
1387 		.call = parse_vc,
1388 	},
1389 	/* Validate/create pattern. */
1390 	[PATTERN] = {
1391 		.name = "pattern",
1392 		.help = "submit a list of pattern items",
1393 		.next = NEXT(next_item),
1394 		.call = parse_vc,
1395 	},
1396 	[ITEM_PARAM_IS] = {
1397 		.name = "is",
1398 		.help = "match value perfectly (with full bit-mask)",
1399 		.call = parse_vc_spec,
1400 	},
1401 	[ITEM_PARAM_SPEC] = {
1402 		.name = "spec",
1403 		.help = "match value according to configured bit-mask",
1404 		.call = parse_vc_spec,
1405 	},
1406 	[ITEM_PARAM_LAST] = {
1407 		.name = "last",
1408 		.help = "specify upper bound to establish a range",
1409 		.call = parse_vc_spec,
1410 	},
1411 	[ITEM_PARAM_MASK] = {
1412 		.name = "mask",
1413 		.help = "specify bit-mask with relevant bits set to one",
1414 		.call = parse_vc_spec,
1415 	},
1416 	[ITEM_PARAM_PREFIX] = {
1417 		.name = "prefix",
1418 		.help = "generate bit-mask from a prefix length",
1419 		.call = parse_vc_spec,
1420 	},
1421 	[ITEM_NEXT] = {
1422 		.name = "/",
1423 		.help = "specify next pattern item",
1424 		.next = NEXT(next_item),
1425 	},
1426 	[ITEM_END] = {
1427 		.name = "end",
1428 		.help = "end list of pattern items",
1429 		.priv = PRIV_ITEM(END, 0),
1430 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1431 		.call = parse_vc,
1432 	},
1433 	[ITEM_VOID] = {
1434 		.name = "void",
1435 		.help = "no-op pattern item",
1436 		.priv = PRIV_ITEM(VOID, 0),
1437 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1438 		.call = parse_vc,
1439 	},
1440 	[ITEM_INVERT] = {
1441 		.name = "invert",
1442 		.help = "perform actions when pattern does not match",
1443 		.priv = PRIV_ITEM(INVERT, 0),
1444 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1445 		.call = parse_vc,
1446 	},
1447 	[ITEM_ANY] = {
1448 		.name = "any",
1449 		.help = "match any protocol for the current layer",
1450 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1451 		.next = NEXT(item_any),
1452 		.call = parse_vc,
1453 	},
1454 	[ITEM_ANY_NUM] = {
1455 		.name = "num",
1456 		.help = "number of layers covered",
1457 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1458 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1459 	},
1460 	[ITEM_PF] = {
1461 		.name = "pf",
1462 		.help = "match traffic from/to the physical function",
1463 		.priv = PRIV_ITEM(PF, 0),
1464 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1465 		.call = parse_vc,
1466 	},
1467 	[ITEM_VF] = {
1468 		.name = "vf",
1469 		.help = "match traffic from/to a virtual function ID",
1470 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1471 		.next = NEXT(item_vf),
1472 		.call = parse_vc,
1473 	},
1474 	[ITEM_VF_ID] = {
1475 		.name = "id",
1476 		.help = "VF ID",
1477 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1478 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1479 	},
1480 	[ITEM_PHY_PORT] = {
1481 		.name = "phy_port",
1482 		.help = "match traffic from/to a specific physical port",
1483 		.priv = PRIV_ITEM(PHY_PORT,
1484 				  sizeof(struct rte_flow_item_phy_port)),
1485 		.next = NEXT(item_phy_port),
1486 		.call = parse_vc,
1487 	},
1488 	[ITEM_PHY_PORT_INDEX] = {
1489 		.name = "index",
1490 		.help = "physical port index",
1491 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1492 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1493 	},
1494 	[ITEM_PORT_ID] = {
1495 		.name = "port_id",
1496 		.help = "match traffic from/to a given DPDK port ID",
1497 		.priv = PRIV_ITEM(PORT_ID,
1498 				  sizeof(struct rte_flow_item_port_id)),
1499 		.next = NEXT(item_port_id),
1500 		.call = parse_vc,
1501 	},
1502 	[ITEM_PORT_ID_ID] = {
1503 		.name = "id",
1504 		.help = "DPDK port ID",
1505 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1506 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1507 	},
1508 	[ITEM_MARK] = {
1509 		.name = "mark",
1510 		.help = "match traffic against value set in previously matched rule",
1511 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1512 		.next = NEXT(item_mark),
1513 		.call = parse_vc,
1514 	},
1515 	[ITEM_MARK_ID] = {
1516 		.name = "id",
1517 		.help = "Integer value to match against",
1518 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1519 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1520 	},
1521 	[ITEM_RAW] = {
1522 		.name = "raw",
1523 		.help = "match an arbitrary byte string",
1524 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1525 		.next = NEXT(item_raw),
1526 		.call = parse_vc,
1527 	},
1528 	[ITEM_RAW_RELATIVE] = {
1529 		.name = "relative",
1530 		.help = "look for pattern after the previous item",
1531 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1532 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1533 					   relative, 1)),
1534 	},
1535 	[ITEM_RAW_SEARCH] = {
1536 		.name = "search",
1537 		.help = "search pattern from offset (see also limit)",
1538 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1539 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1540 					   search, 1)),
1541 	},
1542 	[ITEM_RAW_OFFSET] = {
1543 		.name = "offset",
1544 		.help = "absolute or relative offset for pattern",
1545 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1546 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1547 	},
1548 	[ITEM_RAW_LIMIT] = {
1549 		.name = "limit",
1550 		.help = "search area limit for start of pattern",
1551 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1552 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1553 	},
1554 	[ITEM_RAW_PATTERN] = {
1555 		.name = "pattern",
1556 		.help = "byte string to look for",
1557 		.next = NEXT(item_raw,
1558 			     NEXT_ENTRY(STRING),
1559 			     NEXT_ENTRY(ITEM_PARAM_IS,
1560 					ITEM_PARAM_SPEC,
1561 					ITEM_PARAM_MASK)),
1562 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1563 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1564 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1565 					    ITEM_RAW_PATTERN_SIZE)),
1566 	},
1567 	[ITEM_ETH] = {
1568 		.name = "eth",
1569 		.help = "match Ethernet header",
1570 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1571 		.next = NEXT(item_eth),
1572 		.call = parse_vc,
1573 	},
1574 	[ITEM_ETH_DST] = {
1575 		.name = "dst",
1576 		.help = "destination MAC",
1577 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1578 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1579 	},
1580 	[ITEM_ETH_SRC] = {
1581 		.name = "src",
1582 		.help = "source MAC",
1583 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1584 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1585 	},
1586 	[ITEM_ETH_TYPE] = {
1587 		.name = "type",
1588 		.help = "EtherType",
1589 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1590 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1591 	},
1592 	[ITEM_VLAN] = {
1593 		.name = "vlan",
1594 		.help = "match 802.1Q/ad VLAN tag",
1595 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1596 		.next = NEXT(item_vlan),
1597 		.call = parse_vc,
1598 	},
1599 	[ITEM_VLAN_TCI] = {
1600 		.name = "tci",
1601 		.help = "tag control information",
1602 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1603 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1604 	},
1605 	[ITEM_VLAN_PCP] = {
1606 		.name = "pcp",
1607 		.help = "priority code point",
1608 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1609 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1610 						  tci, "\xe0\x00")),
1611 	},
1612 	[ITEM_VLAN_DEI] = {
1613 		.name = "dei",
1614 		.help = "drop eligible indicator",
1615 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1616 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1617 						  tci, "\x10\x00")),
1618 	},
1619 	[ITEM_VLAN_VID] = {
1620 		.name = "vid",
1621 		.help = "VLAN identifier",
1622 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1623 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1624 						  tci, "\x0f\xff")),
1625 	},
1626 	[ITEM_VLAN_INNER_TYPE] = {
1627 		.name = "inner_type",
1628 		.help = "inner EtherType",
1629 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1630 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1631 					     inner_type)),
1632 	},
1633 	[ITEM_IPV4] = {
1634 		.name = "ipv4",
1635 		.help = "match IPv4 header",
1636 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1637 		.next = NEXT(item_ipv4),
1638 		.call = parse_vc,
1639 	},
1640 	[ITEM_IPV4_TOS] = {
1641 		.name = "tos",
1642 		.help = "type of service",
1643 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1644 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1645 					     hdr.type_of_service)),
1646 	},
1647 	[ITEM_IPV4_TTL] = {
1648 		.name = "ttl",
1649 		.help = "time to live",
1650 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1651 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1652 					     hdr.time_to_live)),
1653 	},
1654 	[ITEM_IPV4_PROTO] = {
1655 		.name = "proto",
1656 		.help = "next protocol ID",
1657 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1658 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1659 					     hdr.next_proto_id)),
1660 	},
1661 	[ITEM_IPV4_SRC] = {
1662 		.name = "src",
1663 		.help = "source address",
1664 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1665 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1666 					     hdr.src_addr)),
1667 	},
1668 	[ITEM_IPV4_DST] = {
1669 		.name = "dst",
1670 		.help = "destination address",
1671 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1672 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1673 					     hdr.dst_addr)),
1674 	},
1675 	[ITEM_IPV6] = {
1676 		.name = "ipv6",
1677 		.help = "match IPv6 header",
1678 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1679 		.next = NEXT(item_ipv6),
1680 		.call = parse_vc,
1681 	},
1682 	[ITEM_IPV6_TC] = {
1683 		.name = "tc",
1684 		.help = "traffic class",
1685 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1686 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1687 						  hdr.vtc_flow,
1688 						  "\x0f\xf0\x00\x00")),
1689 	},
1690 	[ITEM_IPV6_FLOW] = {
1691 		.name = "flow",
1692 		.help = "flow label",
1693 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1694 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1695 						  hdr.vtc_flow,
1696 						  "\x00\x0f\xff\xff")),
1697 	},
1698 	[ITEM_IPV6_PROTO] = {
1699 		.name = "proto",
1700 		.help = "protocol (next header)",
1701 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1702 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1703 					     hdr.proto)),
1704 	},
1705 	[ITEM_IPV6_HOP] = {
1706 		.name = "hop",
1707 		.help = "hop limit",
1708 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1709 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1710 					     hdr.hop_limits)),
1711 	},
1712 	[ITEM_IPV6_SRC] = {
1713 		.name = "src",
1714 		.help = "source address",
1715 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1716 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1717 					     hdr.src_addr)),
1718 	},
1719 	[ITEM_IPV6_DST] = {
1720 		.name = "dst",
1721 		.help = "destination address",
1722 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1723 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1724 					     hdr.dst_addr)),
1725 	},
1726 	[ITEM_ICMP] = {
1727 		.name = "icmp",
1728 		.help = "match ICMP header",
1729 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1730 		.next = NEXT(item_icmp),
1731 		.call = parse_vc,
1732 	},
1733 	[ITEM_ICMP_TYPE] = {
1734 		.name = "type",
1735 		.help = "ICMP packet type",
1736 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1737 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1738 					     hdr.icmp_type)),
1739 	},
1740 	[ITEM_ICMP_CODE] = {
1741 		.name = "code",
1742 		.help = "ICMP packet code",
1743 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1744 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1745 					     hdr.icmp_code)),
1746 	},
1747 	[ITEM_UDP] = {
1748 		.name = "udp",
1749 		.help = "match UDP header",
1750 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1751 		.next = NEXT(item_udp),
1752 		.call = parse_vc,
1753 	},
1754 	[ITEM_UDP_SRC] = {
1755 		.name = "src",
1756 		.help = "UDP source port",
1757 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1758 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1759 					     hdr.src_port)),
1760 	},
1761 	[ITEM_UDP_DST] = {
1762 		.name = "dst",
1763 		.help = "UDP destination port",
1764 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1765 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1766 					     hdr.dst_port)),
1767 	},
1768 	[ITEM_TCP] = {
1769 		.name = "tcp",
1770 		.help = "match TCP header",
1771 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1772 		.next = NEXT(item_tcp),
1773 		.call = parse_vc,
1774 	},
1775 	[ITEM_TCP_SRC] = {
1776 		.name = "src",
1777 		.help = "TCP source port",
1778 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1779 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1780 					     hdr.src_port)),
1781 	},
1782 	[ITEM_TCP_DST] = {
1783 		.name = "dst",
1784 		.help = "TCP destination port",
1785 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1786 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1787 					     hdr.dst_port)),
1788 	},
1789 	[ITEM_TCP_FLAGS] = {
1790 		.name = "flags",
1791 		.help = "TCP flags",
1792 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1793 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1794 					     hdr.tcp_flags)),
1795 	},
1796 	[ITEM_SCTP] = {
1797 		.name = "sctp",
1798 		.help = "match SCTP header",
1799 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1800 		.next = NEXT(item_sctp),
1801 		.call = parse_vc,
1802 	},
1803 	[ITEM_SCTP_SRC] = {
1804 		.name = "src",
1805 		.help = "SCTP source port",
1806 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1807 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1808 					     hdr.src_port)),
1809 	},
1810 	[ITEM_SCTP_DST] = {
1811 		.name = "dst",
1812 		.help = "SCTP destination port",
1813 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1814 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1815 					     hdr.dst_port)),
1816 	},
1817 	[ITEM_SCTP_TAG] = {
1818 		.name = "tag",
1819 		.help = "validation tag",
1820 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1821 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1822 					     hdr.tag)),
1823 	},
1824 	[ITEM_SCTP_CKSUM] = {
1825 		.name = "cksum",
1826 		.help = "checksum",
1827 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1828 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1829 					     hdr.cksum)),
1830 	},
1831 	[ITEM_VXLAN] = {
1832 		.name = "vxlan",
1833 		.help = "match VXLAN header",
1834 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1835 		.next = NEXT(item_vxlan),
1836 		.call = parse_vc,
1837 	},
1838 	[ITEM_VXLAN_VNI] = {
1839 		.name = "vni",
1840 		.help = "VXLAN identifier",
1841 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1842 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1843 	},
1844 	[ITEM_E_TAG] = {
1845 		.name = "e_tag",
1846 		.help = "match E-Tag header",
1847 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1848 		.next = NEXT(item_e_tag),
1849 		.call = parse_vc,
1850 	},
1851 	[ITEM_E_TAG_GRP_ECID_B] = {
1852 		.name = "grp_ecid_b",
1853 		.help = "GRP and E-CID base",
1854 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1855 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1856 						  rsvd_grp_ecid_b,
1857 						  "\x3f\xff")),
1858 	},
1859 	[ITEM_NVGRE] = {
1860 		.name = "nvgre",
1861 		.help = "match NVGRE header",
1862 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1863 		.next = NEXT(item_nvgre),
1864 		.call = parse_vc,
1865 	},
1866 	[ITEM_NVGRE_TNI] = {
1867 		.name = "tni",
1868 		.help = "virtual subnet ID",
1869 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1870 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1871 	},
1872 	[ITEM_MPLS] = {
1873 		.name = "mpls",
1874 		.help = "match MPLS header",
1875 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1876 		.next = NEXT(item_mpls),
1877 		.call = parse_vc,
1878 	},
1879 	[ITEM_MPLS_LABEL] = {
1880 		.name = "label",
1881 		.help = "MPLS label",
1882 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1883 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1884 						  label_tc_s,
1885 						  "\xff\xff\xf0")),
1886 	},
1887 	[ITEM_GRE] = {
1888 		.name = "gre",
1889 		.help = "match GRE header",
1890 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1891 		.next = NEXT(item_gre),
1892 		.call = parse_vc,
1893 	},
1894 	[ITEM_GRE_PROTO] = {
1895 		.name = "protocol",
1896 		.help = "GRE protocol type",
1897 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1898 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1899 					     protocol)),
1900 	},
1901 	[ITEM_FUZZY] = {
1902 		.name = "fuzzy",
1903 		.help = "fuzzy pattern match, expect faster than default",
1904 		.priv = PRIV_ITEM(FUZZY,
1905 				sizeof(struct rte_flow_item_fuzzy)),
1906 		.next = NEXT(item_fuzzy),
1907 		.call = parse_vc,
1908 	},
1909 	[ITEM_FUZZY_THRESH] = {
1910 		.name = "thresh",
1911 		.help = "match accuracy threshold",
1912 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1913 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1914 					thresh)),
1915 	},
1916 	[ITEM_GTP] = {
1917 		.name = "gtp",
1918 		.help = "match GTP header",
1919 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1920 		.next = NEXT(item_gtp),
1921 		.call = parse_vc,
1922 	},
1923 	[ITEM_GTP_TEID] = {
1924 		.name = "teid",
1925 		.help = "tunnel endpoint identifier",
1926 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1927 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1928 	},
1929 	[ITEM_GTPC] = {
1930 		.name = "gtpc",
1931 		.help = "match GTP header",
1932 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1933 		.next = NEXT(item_gtp),
1934 		.call = parse_vc,
1935 	},
1936 	[ITEM_GTPU] = {
1937 		.name = "gtpu",
1938 		.help = "match GTP header",
1939 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1940 		.next = NEXT(item_gtp),
1941 		.call = parse_vc,
1942 	},
1943 	[ITEM_GENEVE] = {
1944 		.name = "geneve",
1945 		.help = "match GENEVE header",
1946 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1947 		.next = NEXT(item_geneve),
1948 		.call = parse_vc,
1949 	},
1950 	[ITEM_GENEVE_VNI] = {
1951 		.name = "vni",
1952 		.help = "virtual network identifier",
1953 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1954 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1955 	},
1956 	[ITEM_GENEVE_PROTO] = {
1957 		.name = "protocol",
1958 		.help = "GENEVE protocol type",
1959 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1960 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1961 					     protocol)),
1962 	},
1963 	[ITEM_VXLAN_GPE] = {
1964 		.name = "vxlan-gpe",
1965 		.help = "match VXLAN-GPE header",
1966 		.priv = PRIV_ITEM(VXLAN_GPE,
1967 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1968 		.next = NEXT(item_vxlan_gpe),
1969 		.call = parse_vc,
1970 	},
1971 	[ITEM_VXLAN_GPE_VNI] = {
1972 		.name = "vni",
1973 		.help = "VXLAN-GPE identifier",
1974 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1975 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1976 					     vni)),
1977 	},
1978 	[ITEM_ARP_ETH_IPV4] = {
1979 		.name = "arp_eth_ipv4",
1980 		.help = "match ARP header for Ethernet/IPv4",
1981 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1982 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1983 		.next = NEXT(item_arp_eth_ipv4),
1984 		.call = parse_vc,
1985 	},
1986 	[ITEM_ARP_ETH_IPV4_SHA] = {
1987 		.name = "sha",
1988 		.help = "sender hardware address",
1989 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1990 			     item_param),
1991 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1992 					     sha)),
1993 	},
1994 	[ITEM_ARP_ETH_IPV4_SPA] = {
1995 		.name = "spa",
1996 		.help = "sender IPv4 address",
1997 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1998 			     item_param),
1999 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2000 					     spa)),
2001 	},
2002 	[ITEM_ARP_ETH_IPV4_THA] = {
2003 		.name = "tha",
2004 		.help = "target hardware address",
2005 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2006 			     item_param),
2007 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2008 					     tha)),
2009 	},
2010 	[ITEM_ARP_ETH_IPV4_TPA] = {
2011 		.name = "tpa",
2012 		.help = "target IPv4 address",
2013 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2014 			     item_param),
2015 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2016 					     tpa)),
2017 	},
2018 	[ITEM_IPV6_EXT] = {
2019 		.name = "ipv6_ext",
2020 		.help = "match presence of any IPv6 extension header",
2021 		.priv = PRIV_ITEM(IPV6_EXT,
2022 				  sizeof(struct rte_flow_item_ipv6_ext)),
2023 		.next = NEXT(item_ipv6_ext),
2024 		.call = parse_vc,
2025 	},
2026 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2027 		.name = "next_hdr",
2028 		.help = "next header",
2029 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2030 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2031 					     next_hdr)),
2032 	},
2033 	[ITEM_ICMP6] = {
2034 		.name = "icmp6",
2035 		.help = "match any ICMPv6 header",
2036 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2037 		.next = NEXT(item_icmp6),
2038 		.call = parse_vc,
2039 	},
2040 	[ITEM_ICMP6_TYPE] = {
2041 		.name = "type",
2042 		.help = "ICMPv6 type",
2043 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2044 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2045 					     type)),
2046 	},
2047 	[ITEM_ICMP6_CODE] = {
2048 		.name = "code",
2049 		.help = "ICMPv6 code",
2050 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2051 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2052 					     code)),
2053 	},
2054 	[ITEM_ICMP6_ND_NS] = {
2055 		.name = "icmp6_nd_ns",
2056 		.help = "match ICMPv6 neighbor discovery solicitation",
2057 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2058 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2059 		.next = NEXT(item_icmp6_nd_ns),
2060 		.call = parse_vc,
2061 	},
2062 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2063 		.name = "target_addr",
2064 		.help = "target address",
2065 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2066 			     item_param),
2067 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2068 					     target_addr)),
2069 	},
2070 	[ITEM_ICMP6_ND_NA] = {
2071 		.name = "icmp6_nd_na",
2072 		.help = "match ICMPv6 neighbor discovery advertisement",
2073 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2074 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2075 		.next = NEXT(item_icmp6_nd_na),
2076 		.call = parse_vc,
2077 	},
2078 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2079 		.name = "target_addr",
2080 		.help = "target address",
2081 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2082 			     item_param),
2083 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2084 					     target_addr)),
2085 	},
2086 	[ITEM_ICMP6_ND_OPT] = {
2087 		.name = "icmp6_nd_opt",
2088 		.help = "match presence of any ICMPv6 neighbor discovery"
2089 			" option",
2090 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2091 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2092 		.next = NEXT(item_icmp6_nd_opt),
2093 		.call = parse_vc,
2094 	},
2095 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2096 		.name = "type",
2097 		.help = "ND option type",
2098 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2099 			     item_param),
2100 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2101 					     type)),
2102 	},
2103 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2104 		.name = "icmp6_nd_opt_sla_eth",
2105 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2106 			" link-layer address option",
2107 		.priv = PRIV_ITEM
2108 			(ICMP6_ND_OPT_SLA_ETH,
2109 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2110 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2111 		.call = parse_vc,
2112 	},
2113 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2114 		.name = "sla",
2115 		.help = "source Ethernet LLA",
2116 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2117 			     item_param),
2118 		.args = ARGS(ARGS_ENTRY_HTON
2119 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2120 	},
2121 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2122 		.name = "icmp6_nd_opt_tla_eth",
2123 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2124 			" link-layer address option",
2125 		.priv = PRIV_ITEM
2126 			(ICMP6_ND_OPT_TLA_ETH,
2127 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2128 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2129 		.call = parse_vc,
2130 	},
2131 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2132 		.name = "tla",
2133 		.help = "target Ethernet LLA",
2134 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2135 			     item_param),
2136 		.args = ARGS(ARGS_ENTRY_HTON
2137 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2138 	},
2139 	[ITEM_META] = {
2140 		.name = "meta",
2141 		.help = "match metadata header",
2142 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2143 		.next = NEXT(item_meta),
2144 		.call = parse_vc,
2145 	},
2146 	[ITEM_META_DATA] = {
2147 		.name = "data",
2148 		.help = "metadata value",
2149 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2150 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2151 						  data, "\xff\xff\xff\xff")),
2152 	},
2153 
2154 	/* Validate/create actions. */
2155 	[ACTIONS] = {
2156 		.name = "actions",
2157 		.help = "submit a list of associated actions",
2158 		.next = NEXT(next_action),
2159 		.call = parse_vc,
2160 	},
2161 	[ACTION_NEXT] = {
2162 		.name = "/",
2163 		.help = "specify next action",
2164 		.next = NEXT(next_action),
2165 	},
2166 	[ACTION_END] = {
2167 		.name = "end",
2168 		.help = "end list of actions",
2169 		.priv = PRIV_ACTION(END, 0),
2170 		.call = parse_vc,
2171 	},
2172 	[ACTION_VOID] = {
2173 		.name = "void",
2174 		.help = "no-op action",
2175 		.priv = PRIV_ACTION(VOID, 0),
2176 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2177 		.call = parse_vc,
2178 	},
2179 	[ACTION_PASSTHRU] = {
2180 		.name = "passthru",
2181 		.help = "let subsequent rule process matched packets",
2182 		.priv = PRIV_ACTION(PASSTHRU, 0),
2183 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2184 		.call = parse_vc,
2185 	},
2186 	[ACTION_JUMP] = {
2187 		.name = "jump",
2188 		.help = "redirect traffic to a given group",
2189 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2190 		.next = NEXT(action_jump),
2191 		.call = parse_vc,
2192 	},
2193 	[ACTION_JUMP_GROUP] = {
2194 		.name = "group",
2195 		.help = "group to redirect traffic to",
2196 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2197 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2198 		.call = parse_vc_conf,
2199 	},
2200 	[ACTION_MARK] = {
2201 		.name = "mark",
2202 		.help = "attach 32 bit value to packets",
2203 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2204 		.next = NEXT(action_mark),
2205 		.call = parse_vc,
2206 	},
2207 	[ACTION_MARK_ID] = {
2208 		.name = "id",
2209 		.help = "32 bit value to return with packets",
2210 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2211 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2212 		.call = parse_vc_conf,
2213 	},
2214 	[ACTION_FLAG] = {
2215 		.name = "flag",
2216 		.help = "flag packets",
2217 		.priv = PRIV_ACTION(FLAG, 0),
2218 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2219 		.call = parse_vc,
2220 	},
2221 	[ACTION_QUEUE] = {
2222 		.name = "queue",
2223 		.help = "assign packets to a given queue index",
2224 		.priv = PRIV_ACTION(QUEUE,
2225 				    sizeof(struct rte_flow_action_queue)),
2226 		.next = NEXT(action_queue),
2227 		.call = parse_vc,
2228 	},
2229 	[ACTION_QUEUE_INDEX] = {
2230 		.name = "index",
2231 		.help = "queue index to use",
2232 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2233 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2234 		.call = parse_vc_conf,
2235 	},
2236 	[ACTION_DROP] = {
2237 		.name = "drop",
2238 		.help = "drop packets (note: passthru has priority)",
2239 		.priv = PRIV_ACTION(DROP, 0),
2240 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2241 		.call = parse_vc,
2242 	},
2243 	[ACTION_COUNT] = {
2244 		.name = "count",
2245 		.help = "enable counters for this rule",
2246 		.priv = PRIV_ACTION(COUNT,
2247 				    sizeof(struct rte_flow_action_count)),
2248 		.next = NEXT(action_count),
2249 		.call = parse_vc,
2250 	},
2251 	[ACTION_COUNT_ID] = {
2252 		.name = "identifier",
2253 		.help = "counter identifier to use",
2254 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2255 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2256 		.call = parse_vc_conf,
2257 	},
2258 	[ACTION_COUNT_SHARED] = {
2259 		.name = "shared",
2260 		.help = "shared counter",
2261 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2262 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2263 					   shared, 1)),
2264 		.call = parse_vc_conf,
2265 	},
2266 	[ACTION_RSS] = {
2267 		.name = "rss",
2268 		.help = "spread packets among several queues",
2269 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2270 		.next = NEXT(action_rss),
2271 		.call = parse_vc_action_rss,
2272 	},
2273 	[ACTION_RSS_FUNC] = {
2274 		.name = "func",
2275 		.help = "RSS hash function to apply",
2276 		.next = NEXT(action_rss,
2277 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2278 					ACTION_RSS_FUNC_TOEPLITZ,
2279 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2280 	},
2281 	[ACTION_RSS_FUNC_DEFAULT] = {
2282 		.name = "default",
2283 		.help = "default hash function",
2284 		.call = parse_vc_action_rss_func,
2285 	},
2286 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2287 		.name = "toeplitz",
2288 		.help = "Toeplitz hash function",
2289 		.call = parse_vc_action_rss_func,
2290 	},
2291 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2292 		.name = "simple_xor",
2293 		.help = "simple XOR hash function",
2294 		.call = parse_vc_action_rss_func,
2295 	},
2296 	[ACTION_RSS_LEVEL] = {
2297 		.name = "level",
2298 		.help = "encapsulation level for \"types\"",
2299 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2300 		.args = ARGS(ARGS_ENTRY_ARB
2301 			     (offsetof(struct action_rss_data, conf) +
2302 			      offsetof(struct rte_flow_action_rss, level),
2303 			      sizeof(((struct rte_flow_action_rss *)0)->
2304 				     level))),
2305 	},
2306 	[ACTION_RSS_TYPES] = {
2307 		.name = "types",
2308 		.help = "specific RSS hash types",
2309 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2310 	},
2311 	[ACTION_RSS_TYPE] = {
2312 		.name = "{type}",
2313 		.help = "RSS hash type",
2314 		.call = parse_vc_action_rss_type,
2315 		.comp = comp_vc_action_rss_type,
2316 	},
2317 	[ACTION_RSS_KEY] = {
2318 		.name = "key",
2319 		.help = "RSS hash key",
2320 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2321 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2322 			     ARGS_ENTRY_ARB
2323 			     (offsetof(struct action_rss_data, conf) +
2324 			      offsetof(struct rte_flow_action_rss, key_len),
2325 			      sizeof(((struct rte_flow_action_rss *)0)->
2326 				     key_len)),
2327 			     ARGS_ENTRY(struct action_rss_data, key)),
2328 	},
2329 	[ACTION_RSS_KEY_LEN] = {
2330 		.name = "key_len",
2331 		.help = "RSS hash key length in bytes",
2332 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2333 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2334 			     (offsetof(struct action_rss_data, conf) +
2335 			      offsetof(struct rte_flow_action_rss, key_len),
2336 			      sizeof(((struct rte_flow_action_rss *)0)->
2337 				     key_len),
2338 			      0,
2339 			      RSS_HASH_KEY_LENGTH)),
2340 	},
2341 	[ACTION_RSS_QUEUES] = {
2342 		.name = "queues",
2343 		.help = "queue indices to use",
2344 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2345 		.call = parse_vc_conf,
2346 	},
2347 	[ACTION_RSS_QUEUE] = {
2348 		.name = "{queue}",
2349 		.help = "queue index",
2350 		.call = parse_vc_action_rss_queue,
2351 		.comp = comp_vc_action_rss_queue,
2352 	},
2353 	[ACTION_PF] = {
2354 		.name = "pf",
2355 		.help = "direct traffic to physical function",
2356 		.priv = PRIV_ACTION(PF, 0),
2357 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2358 		.call = parse_vc,
2359 	},
2360 	[ACTION_VF] = {
2361 		.name = "vf",
2362 		.help = "direct traffic to a virtual function ID",
2363 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2364 		.next = NEXT(action_vf),
2365 		.call = parse_vc,
2366 	},
2367 	[ACTION_VF_ORIGINAL] = {
2368 		.name = "original",
2369 		.help = "use original VF ID if possible",
2370 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2371 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2372 					   original, 1)),
2373 		.call = parse_vc_conf,
2374 	},
2375 	[ACTION_VF_ID] = {
2376 		.name = "id",
2377 		.help = "VF ID",
2378 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2379 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2380 		.call = parse_vc_conf,
2381 	},
2382 	[ACTION_PHY_PORT] = {
2383 		.name = "phy_port",
2384 		.help = "direct packets to physical port index",
2385 		.priv = PRIV_ACTION(PHY_PORT,
2386 				    sizeof(struct rte_flow_action_phy_port)),
2387 		.next = NEXT(action_phy_port),
2388 		.call = parse_vc,
2389 	},
2390 	[ACTION_PHY_PORT_ORIGINAL] = {
2391 		.name = "original",
2392 		.help = "use original port index if possible",
2393 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2394 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2395 					   original, 1)),
2396 		.call = parse_vc_conf,
2397 	},
2398 	[ACTION_PHY_PORT_INDEX] = {
2399 		.name = "index",
2400 		.help = "physical port index",
2401 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2402 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2403 					index)),
2404 		.call = parse_vc_conf,
2405 	},
2406 	[ACTION_PORT_ID] = {
2407 		.name = "port_id",
2408 		.help = "direct matching traffic to a given DPDK port ID",
2409 		.priv = PRIV_ACTION(PORT_ID,
2410 				    sizeof(struct rte_flow_action_port_id)),
2411 		.next = NEXT(action_port_id),
2412 		.call = parse_vc,
2413 	},
2414 	[ACTION_PORT_ID_ORIGINAL] = {
2415 		.name = "original",
2416 		.help = "use original DPDK port ID if possible",
2417 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2418 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2419 					   original, 1)),
2420 		.call = parse_vc_conf,
2421 	},
2422 	[ACTION_PORT_ID_ID] = {
2423 		.name = "id",
2424 		.help = "DPDK port ID",
2425 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2426 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2427 		.call = parse_vc_conf,
2428 	},
2429 	[ACTION_METER] = {
2430 		.name = "meter",
2431 		.help = "meter the directed packets at given id",
2432 		.priv = PRIV_ACTION(METER,
2433 				    sizeof(struct rte_flow_action_meter)),
2434 		.next = NEXT(action_meter),
2435 		.call = parse_vc,
2436 	},
2437 	[ACTION_METER_ID] = {
2438 		.name = "mtr_id",
2439 		.help = "meter id to use",
2440 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2441 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2442 		.call = parse_vc_conf,
2443 	},
2444 	[ACTION_OF_SET_MPLS_TTL] = {
2445 		.name = "of_set_mpls_ttl",
2446 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2447 		.priv = PRIV_ACTION
2448 			(OF_SET_MPLS_TTL,
2449 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2450 		.next = NEXT(action_of_set_mpls_ttl),
2451 		.call = parse_vc,
2452 	},
2453 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2454 		.name = "mpls_ttl",
2455 		.help = "MPLS TTL",
2456 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2457 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2458 					mpls_ttl)),
2459 		.call = parse_vc_conf,
2460 	},
2461 	[ACTION_OF_DEC_MPLS_TTL] = {
2462 		.name = "of_dec_mpls_ttl",
2463 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2464 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2465 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2466 		.call = parse_vc,
2467 	},
2468 	[ACTION_OF_SET_NW_TTL] = {
2469 		.name = "of_set_nw_ttl",
2470 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2471 		.priv = PRIV_ACTION
2472 			(OF_SET_NW_TTL,
2473 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2474 		.next = NEXT(action_of_set_nw_ttl),
2475 		.call = parse_vc,
2476 	},
2477 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2478 		.name = "nw_ttl",
2479 		.help = "IP TTL",
2480 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2481 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2482 					nw_ttl)),
2483 		.call = parse_vc_conf,
2484 	},
2485 	[ACTION_OF_DEC_NW_TTL] = {
2486 		.name = "of_dec_nw_ttl",
2487 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2488 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2489 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2490 		.call = parse_vc,
2491 	},
2492 	[ACTION_OF_COPY_TTL_OUT] = {
2493 		.name = "of_copy_ttl_out",
2494 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2495 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2496 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2497 		.call = parse_vc,
2498 	},
2499 	[ACTION_OF_COPY_TTL_IN] = {
2500 		.name = "of_copy_ttl_in",
2501 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2502 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2503 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2504 		.call = parse_vc,
2505 	},
2506 	[ACTION_OF_POP_VLAN] = {
2507 		.name = "of_pop_vlan",
2508 		.help = "OpenFlow's OFPAT_POP_VLAN",
2509 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2510 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2511 		.call = parse_vc,
2512 	},
2513 	[ACTION_OF_PUSH_VLAN] = {
2514 		.name = "of_push_vlan",
2515 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2516 		.priv = PRIV_ACTION
2517 			(OF_PUSH_VLAN,
2518 			 sizeof(struct rte_flow_action_of_push_vlan)),
2519 		.next = NEXT(action_of_push_vlan),
2520 		.call = parse_vc,
2521 	},
2522 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2523 		.name = "ethertype",
2524 		.help = "EtherType",
2525 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2526 		.args = ARGS(ARGS_ENTRY_HTON
2527 			     (struct rte_flow_action_of_push_vlan,
2528 			      ethertype)),
2529 		.call = parse_vc_conf,
2530 	},
2531 	[ACTION_OF_SET_VLAN_VID] = {
2532 		.name = "of_set_vlan_vid",
2533 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2534 		.priv = PRIV_ACTION
2535 			(OF_SET_VLAN_VID,
2536 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2537 		.next = NEXT(action_of_set_vlan_vid),
2538 		.call = parse_vc,
2539 	},
2540 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2541 		.name = "vlan_vid",
2542 		.help = "VLAN id",
2543 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2544 		.args = ARGS(ARGS_ENTRY_HTON
2545 			     (struct rte_flow_action_of_set_vlan_vid,
2546 			      vlan_vid)),
2547 		.call = parse_vc_conf,
2548 	},
2549 	[ACTION_OF_SET_VLAN_PCP] = {
2550 		.name = "of_set_vlan_pcp",
2551 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2552 		.priv = PRIV_ACTION
2553 			(OF_SET_VLAN_PCP,
2554 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2555 		.next = NEXT(action_of_set_vlan_pcp),
2556 		.call = parse_vc,
2557 	},
2558 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2559 		.name = "vlan_pcp",
2560 		.help = "VLAN priority",
2561 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2562 		.args = ARGS(ARGS_ENTRY_HTON
2563 			     (struct rte_flow_action_of_set_vlan_pcp,
2564 			      vlan_pcp)),
2565 		.call = parse_vc_conf,
2566 	},
2567 	[ACTION_OF_POP_MPLS] = {
2568 		.name = "of_pop_mpls",
2569 		.help = "OpenFlow's OFPAT_POP_MPLS",
2570 		.priv = PRIV_ACTION(OF_POP_MPLS,
2571 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2572 		.next = NEXT(action_of_pop_mpls),
2573 		.call = parse_vc,
2574 	},
2575 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2576 		.name = "ethertype",
2577 		.help = "EtherType",
2578 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2579 		.args = ARGS(ARGS_ENTRY_HTON
2580 			     (struct rte_flow_action_of_pop_mpls,
2581 			      ethertype)),
2582 		.call = parse_vc_conf,
2583 	},
2584 	[ACTION_OF_PUSH_MPLS] = {
2585 		.name = "of_push_mpls",
2586 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2587 		.priv = PRIV_ACTION
2588 			(OF_PUSH_MPLS,
2589 			 sizeof(struct rte_flow_action_of_push_mpls)),
2590 		.next = NEXT(action_of_push_mpls),
2591 		.call = parse_vc,
2592 	},
2593 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2594 		.name = "ethertype",
2595 		.help = "EtherType",
2596 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2597 		.args = ARGS(ARGS_ENTRY_HTON
2598 			     (struct rte_flow_action_of_push_mpls,
2599 			      ethertype)),
2600 		.call = parse_vc_conf,
2601 	},
2602 	[ACTION_VXLAN_ENCAP] = {
2603 		.name = "vxlan_encap",
2604 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2605 			" vxlan\"",
2606 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2607 				    sizeof(struct action_vxlan_encap_data)),
2608 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2609 		.call = parse_vc_action_vxlan_encap,
2610 	},
2611 	[ACTION_VXLAN_DECAP] = {
2612 		.name = "vxlan_decap",
2613 		.help = "Performs a decapsulation action by stripping all"
2614 			" headers of the VXLAN tunnel network overlay from the"
2615 			" matched flow.",
2616 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2617 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2618 		.call = parse_vc,
2619 	},
2620 	[ACTION_NVGRE_ENCAP] = {
2621 		.name = "nvgre_encap",
2622 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2623 			" nvgre\"",
2624 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2625 				    sizeof(struct action_nvgre_encap_data)),
2626 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2627 		.call = parse_vc_action_nvgre_encap,
2628 	},
2629 	[ACTION_NVGRE_DECAP] = {
2630 		.name = "nvgre_decap",
2631 		.help = "Performs a decapsulation action by stripping all"
2632 			" headers of the NVGRE tunnel network overlay from the"
2633 			" matched flow.",
2634 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2635 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2636 		.call = parse_vc,
2637 	},
2638 	[ACTION_L2_ENCAP] = {
2639 		.name = "l2_encap",
2640 		.help = "l2 encap, uses configuration set by"
2641 			" \"set l2_encap\"",
2642 		.priv = PRIV_ACTION(RAW_ENCAP,
2643 				    sizeof(struct action_raw_encap_data)),
2644 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2645 		.call = parse_vc_action_l2_encap,
2646 	},
2647 	[ACTION_L2_DECAP] = {
2648 		.name = "l2_decap",
2649 		.help = "l2 decap, uses configuration set by"
2650 			" \"set l2_decap\"",
2651 		.priv = PRIV_ACTION(RAW_DECAP,
2652 				    sizeof(struct action_raw_decap_data)),
2653 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2654 		.call = parse_vc_action_l2_decap,
2655 	},
2656 	[ACTION_MPLSOGRE_ENCAP] = {
2657 		.name = "mplsogre_encap",
2658 		.help = "mplsogre encapsulation, uses configuration set by"
2659 			" \"set mplsogre_encap\"",
2660 		.priv = PRIV_ACTION(RAW_ENCAP,
2661 				    sizeof(struct action_raw_encap_data)),
2662 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2663 		.call = parse_vc_action_mplsogre_encap,
2664 	},
2665 	[ACTION_MPLSOGRE_DECAP] = {
2666 		.name = "mplsogre_decap",
2667 		.help = "mplsogre decapsulation, uses configuration set by"
2668 			" \"set mplsogre_decap\"",
2669 		.priv = PRIV_ACTION(RAW_DECAP,
2670 				    sizeof(struct action_raw_decap_data)),
2671 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2672 		.call = parse_vc_action_mplsogre_decap,
2673 	},
2674 	[ACTION_MPLSOUDP_ENCAP] = {
2675 		.name = "mplsoudp_encap",
2676 		.help = "mplsoudp encapsulation, uses configuration set by"
2677 			" \"set mplsoudp_encap\"",
2678 		.priv = PRIV_ACTION(RAW_ENCAP,
2679 				    sizeof(struct action_raw_encap_data)),
2680 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2681 		.call = parse_vc_action_mplsoudp_encap,
2682 	},
2683 	[ACTION_MPLSOUDP_DECAP] = {
2684 		.name = "mplsoudp_decap",
2685 		.help = "mplsoudp decapsulation, uses configuration set by"
2686 			" \"set mplsoudp_decap\"",
2687 		.priv = PRIV_ACTION(RAW_DECAP,
2688 				    sizeof(struct action_raw_decap_data)),
2689 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2690 		.call = parse_vc_action_mplsoudp_decap,
2691 	},
2692 	[ACTION_SET_IPV4_SRC] = {
2693 		.name = "set_ipv4_src",
2694 		.help = "Set a new IPv4 source address in the outermost"
2695 			" IPv4 header",
2696 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2697 			sizeof(struct rte_flow_action_set_ipv4)),
2698 		.next = NEXT(action_set_ipv4_src),
2699 		.call = parse_vc,
2700 	},
2701 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2702 		.name = "ipv4_addr",
2703 		.help = "new IPv4 source address to set",
2704 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2705 		.args = ARGS(ARGS_ENTRY_HTON
2706 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2707 		.call = parse_vc_conf,
2708 	},
2709 	[ACTION_SET_IPV4_DST] = {
2710 		.name = "set_ipv4_dst",
2711 		.help = "Set a new IPv4 destination address in the outermost"
2712 			" IPv4 header",
2713 		.priv = PRIV_ACTION(SET_IPV4_DST,
2714 			sizeof(struct rte_flow_action_set_ipv4)),
2715 		.next = NEXT(action_set_ipv4_dst),
2716 		.call = parse_vc,
2717 	},
2718 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2719 		.name = "ipv4_addr",
2720 		.help = "new IPv4 destination address to set",
2721 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2722 		.args = ARGS(ARGS_ENTRY_HTON
2723 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2724 		.call = parse_vc_conf,
2725 	},
2726 	[ACTION_SET_IPV6_SRC] = {
2727 		.name = "set_ipv6_src",
2728 		.help = "Set a new IPv6 source address in the outermost"
2729 			" IPv6 header",
2730 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2731 			sizeof(struct rte_flow_action_set_ipv6)),
2732 		.next = NEXT(action_set_ipv6_src),
2733 		.call = parse_vc,
2734 	},
2735 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2736 		.name = "ipv6_addr",
2737 		.help = "new IPv6 source address to set",
2738 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2739 		.args = ARGS(ARGS_ENTRY_HTON
2740 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2741 		.call = parse_vc_conf,
2742 	},
2743 	[ACTION_SET_IPV6_DST] = {
2744 		.name = "set_ipv6_dst",
2745 		.help = "Set a new IPv6 destination address in the outermost"
2746 			" IPv6 header",
2747 		.priv = PRIV_ACTION(SET_IPV6_DST,
2748 			sizeof(struct rte_flow_action_set_ipv6)),
2749 		.next = NEXT(action_set_ipv6_dst),
2750 		.call = parse_vc,
2751 	},
2752 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2753 		.name = "ipv6_addr",
2754 		.help = "new IPv6 destination address to set",
2755 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2756 		.args = ARGS(ARGS_ENTRY_HTON
2757 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2758 		.call = parse_vc_conf,
2759 	},
2760 	[ACTION_SET_TP_SRC] = {
2761 		.name = "set_tp_src",
2762 		.help = "set a new source port number in the outermost"
2763 			" TCP/UDP header",
2764 		.priv = PRIV_ACTION(SET_TP_SRC,
2765 			sizeof(struct rte_flow_action_set_tp)),
2766 		.next = NEXT(action_set_tp_src),
2767 		.call = parse_vc,
2768 	},
2769 	[ACTION_SET_TP_SRC_TP_SRC] = {
2770 		.name = "port",
2771 		.help = "new source port number to set",
2772 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2773 		.args = ARGS(ARGS_ENTRY_HTON
2774 			     (struct rte_flow_action_set_tp, port)),
2775 		.call = parse_vc_conf,
2776 	},
2777 	[ACTION_SET_TP_DST] = {
2778 		.name = "set_tp_dst",
2779 		.help = "set a new destination port number in the outermost"
2780 			" TCP/UDP header",
2781 		.priv = PRIV_ACTION(SET_TP_DST,
2782 			sizeof(struct rte_flow_action_set_tp)),
2783 		.next = NEXT(action_set_tp_dst),
2784 		.call = parse_vc,
2785 	},
2786 	[ACTION_SET_TP_DST_TP_DST] = {
2787 		.name = "port",
2788 		.help = "new destination port number to set",
2789 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2790 		.args = ARGS(ARGS_ENTRY_HTON
2791 			     (struct rte_flow_action_set_tp, port)),
2792 		.call = parse_vc_conf,
2793 	},
2794 	[ACTION_MAC_SWAP] = {
2795 		.name = "mac_swap",
2796 		.help = "Swap the source and destination MAC addresses"
2797 			" in the outermost Ethernet header",
2798 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2799 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2800 		.call = parse_vc,
2801 	},
2802 	[ACTION_DEC_TTL] = {
2803 		.name = "dec_ttl",
2804 		.help = "decrease network TTL if available",
2805 		.priv = PRIV_ACTION(DEC_TTL, 0),
2806 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2807 		.call = parse_vc,
2808 	},
2809 	[ACTION_SET_TTL] = {
2810 		.name = "set_ttl",
2811 		.help = "set ttl value",
2812 		.priv = PRIV_ACTION(SET_TTL,
2813 			sizeof(struct rte_flow_action_set_ttl)),
2814 		.next = NEXT(action_set_ttl),
2815 		.call = parse_vc,
2816 	},
2817 	[ACTION_SET_TTL_TTL] = {
2818 		.name = "ttl_value",
2819 		.help = "new ttl value to set",
2820 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2821 		.args = ARGS(ARGS_ENTRY_HTON
2822 			     (struct rte_flow_action_set_ttl, ttl_value)),
2823 		.call = parse_vc_conf,
2824 	},
2825 	[ACTION_SET_MAC_SRC] = {
2826 		.name = "set_mac_src",
2827 		.help = "set source mac address",
2828 		.priv = PRIV_ACTION(SET_MAC_SRC,
2829 			sizeof(struct rte_flow_action_set_mac)),
2830 		.next = NEXT(action_set_mac_src),
2831 		.call = parse_vc,
2832 	},
2833 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2834 		.name = "mac_addr",
2835 		.help = "new source mac address",
2836 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2837 		.args = ARGS(ARGS_ENTRY_HTON
2838 			     (struct rte_flow_action_set_mac, mac_addr)),
2839 		.call = parse_vc_conf,
2840 	},
2841 	[ACTION_SET_MAC_DST] = {
2842 		.name = "set_mac_dst",
2843 		.help = "set destination mac address",
2844 		.priv = PRIV_ACTION(SET_MAC_DST,
2845 			sizeof(struct rte_flow_action_set_mac)),
2846 		.next = NEXT(action_set_mac_dst),
2847 		.call = parse_vc,
2848 	},
2849 	[ACTION_SET_MAC_DST_MAC_DST] = {
2850 		.name = "mac_addr",
2851 		.help = "new destination mac address to set",
2852 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2853 		.args = ARGS(ARGS_ENTRY_HTON
2854 			     (struct rte_flow_action_set_mac, mac_addr)),
2855 		.call = parse_vc_conf,
2856 	},
2857 };
2858 
2859 /** Remove and return last entry from argument stack. */
2860 static const struct arg *
2861 pop_args(struct context *ctx)
2862 {
2863 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2864 }
2865 
2866 /** Add entry on top of the argument stack. */
2867 static int
2868 push_args(struct context *ctx, const struct arg *arg)
2869 {
2870 	if (ctx->args_num == CTX_STACK_SIZE)
2871 		return -1;
2872 	ctx->args[ctx->args_num++] = arg;
2873 	return 0;
2874 }
2875 
2876 /** Spread value into buffer according to bit-mask. */
2877 static size_t
2878 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2879 {
2880 	uint32_t i = arg->size;
2881 	uint32_t end = 0;
2882 	int sub = 1;
2883 	int add = 0;
2884 	size_t len = 0;
2885 
2886 	if (!arg->mask)
2887 		return 0;
2888 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2889 	if (!arg->hton) {
2890 		i = 0;
2891 		end = arg->size;
2892 		sub = 0;
2893 		add = 1;
2894 	}
2895 #endif
2896 	while (i != end) {
2897 		unsigned int shift = 0;
2898 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2899 
2900 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2901 			if (!(arg->mask[i] & (1 << shift)))
2902 				continue;
2903 			++len;
2904 			if (!dst)
2905 				continue;
2906 			*buf &= ~(1 << shift);
2907 			*buf |= (val & 1) << shift;
2908 			val >>= 1;
2909 		}
2910 		i += add;
2911 	}
2912 	return len;
2913 }
2914 
2915 /** Compare a string with a partial one of a given length. */
2916 static int
2917 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2918 {
2919 	int r = strncmp(full, partial, partial_len);
2920 
2921 	if (r)
2922 		return r;
2923 	if (strlen(full) <= partial_len)
2924 		return 0;
2925 	return full[partial_len];
2926 }
2927 
2928 /**
2929  * Parse a prefix length and generate a bit-mask.
2930  *
2931  * Last argument (ctx->args) is retrieved to determine mask size, storage
2932  * location and whether the result must use network byte ordering.
2933  */
2934 static int
2935 parse_prefix(struct context *ctx, const struct token *token,
2936 	     const char *str, unsigned int len,
2937 	     void *buf, unsigned int size)
2938 {
2939 	const struct arg *arg = pop_args(ctx);
2940 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2941 	char *end;
2942 	uintmax_t u;
2943 	unsigned int bytes;
2944 	unsigned int extra;
2945 
2946 	(void)token;
2947 	/* Argument is expected. */
2948 	if (!arg)
2949 		return -1;
2950 	errno = 0;
2951 	u = strtoumax(str, &end, 0);
2952 	if (errno || (size_t)(end - str) != len)
2953 		goto error;
2954 	if (arg->mask) {
2955 		uintmax_t v = 0;
2956 
2957 		extra = arg_entry_bf_fill(NULL, 0, arg);
2958 		if (u > extra)
2959 			goto error;
2960 		if (!ctx->object)
2961 			return len;
2962 		extra -= u;
2963 		while (u--)
2964 			(v <<= 1, v |= 1);
2965 		v <<= extra;
2966 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2967 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2968 			goto error;
2969 		return len;
2970 	}
2971 	bytes = u / 8;
2972 	extra = u % 8;
2973 	size = arg->size;
2974 	if (bytes > size || bytes + !!extra > size)
2975 		goto error;
2976 	if (!ctx->object)
2977 		return len;
2978 	buf = (uint8_t *)ctx->object + arg->offset;
2979 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2980 	if (!arg->hton) {
2981 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2982 		memset(buf, 0x00, size - bytes);
2983 		if (extra)
2984 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2985 	} else
2986 #endif
2987 	{
2988 		memset(buf, 0xff, bytes);
2989 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2990 		if (extra)
2991 			((uint8_t *)buf)[bytes] = conv[extra];
2992 	}
2993 	if (ctx->objmask)
2994 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2995 	return len;
2996 error:
2997 	push_args(ctx, arg);
2998 	return -1;
2999 }
3000 
3001 /** Default parsing function for token name matching. */
3002 static int
3003 parse_default(struct context *ctx, const struct token *token,
3004 	      const char *str, unsigned int len,
3005 	      void *buf, unsigned int size)
3006 {
3007 	(void)ctx;
3008 	(void)buf;
3009 	(void)size;
3010 	if (strcmp_partial(token->name, str, len))
3011 		return -1;
3012 	return len;
3013 }
3014 
3015 /** Parse flow command, initialize output buffer for subsequent tokens. */
3016 static int
3017 parse_init(struct context *ctx, const struct token *token,
3018 	   const char *str, unsigned int len,
3019 	   void *buf, unsigned int size)
3020 {
3021 	struct buffer *out = buf;
3022 
3023 	/* Token name must match. */
3024 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3025 		return -1;
3026 	/* Nothing else to do if there is no buffer. */
3027 	if (!out)
3028 		return len;
3029 	/* Make sure buffer is large enough. */
3030 	if (size < sizeof(*out))
3031 		return -1;
3032 	/* Initialize buffer. */
3033 	memset(out, 0x00, sizeof(*out));
3034 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3035 	ctx->objdata = 0;
3036 	ctx->object = out;
3037 	ctx->objmask = NULL;
3038 	return len;
3039 }
3040 
3041 /** Parse tokens for validate/create commands. */
3042 static int
3043 parse_vc(struct context *ctx, const struct token *token,
3044 	 const char *str, unsigned int len,
3045 	 void *buf, unsigned int size)
3046 {
3047 	struct buffer *out = buf;
3048 	uint8_t *data;
3049 	uint32_t data_size;
3050 
3051 	/* Token name must match. */
3052 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3053 		return -1;
3054 	/* Nothing else to do if there is no buffer. */
3055 	if (!out)
3056 		return len;
3057 	if (!out->command) {
3058 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3059 			return -1;
3060 		if (sizeof(*out) > size)
3061 			return -1;
3062 		out->command = ctx->curr;
3063 		ctx->objdata = 0;
3064 		ctx->object = out;
3065 		ctx->objmask = NULL;
3066 		out->args.vc.data = (uint8_t *)out + size;
3067 		return len;
3068 	}
3069 	ctx->objdata = 0;
3070 	ctx->object = &out->args.vc.attr;
3071 	ctx->objmask = NULL;
3072 	switch (ctx->curr) {
3073 	case GROUP:
3074 	case PRIORITY:
3075 		return len;
3076 	case INGRESS:
3077 		out->args.vc.attr.ingress = 1;
3078 		return len;
3079 	case EGRESS:
3080 		out->args.vc.attr.egress = 1;
3081 		return len;
3082 	case TRANSFER:
3083 		out->args.vc.attr.transfer = 1;
3084 		return len;
3085 	case PATTERN:
3086 		out->args.vc.pattern =
3087 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3088 					       sizeof(double));
3089 		ctx->object = out->args.vc.pattern;
3090 		ctx->objmask = NULL;
3091 		return len;
3092 	case ACTIONS:
3093 		out->args.vc.actions =
3094 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3095 					       (out->args.vc.pattern +
3096 						out->args.vc.pattern_n),
3097 					       sizeof(double));
3098 		ctx->object = out->args.vc.actions;
3099 		ctx->objmask = NULL;
3100 		return len;
3101 	default:
3102 		if (!token->priv)
3103 			return -1;
3104 		break;
3105 	}
3106 	if (!out->args.vc.actions) {
3107 		const struct parse_item_priv *priv = token->priv;
3108 		struct rte_flow_item *item =
3109 			out->args.vc.pattern + out->args.vc.pattern_n;
3110 
3111 		data_size = priv->size * 3; /* spec, last, mask */
3112 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3113 					       (out->args.vc.data - data_size),
3114 					       sizeof(double));
3115 		if ((uint8_t *)item + sizeof(*item) > data)
3116 			return -1;
3117 		*item = (struct rte_flow_item){
3118 			.type = priv->type,
3119 		};
3120 		++out->args.vc.pattern_n;
3121 		ctx->object = item;
3122 		ctx->objmask = NULL;
3123 	} else {
3124 		const struct parse_action_priv *priv = token->priv;
3125 		struct rte_flow_action *action =
3126 			out->args.vc.actions + out->args.vc.actions_n;
3127 
3128 		data_size = priv->size; /* configuration */
3129 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3130 					       (out->args.vc.data - data_size),
3131 					       sizeof(double));
3132 		if ((uint8_t *)action + sizeof(*action) > data)
3133 			return -1;
3134 		*action = (struct rte_flow_action){
3135 			.type = priv->type,
3136 			.conf = data_size ? data : NULL,
3137 		};
3138 		++out->args.vc.actions_n;
3139 		ctx->object = action;
3140 		ctx->objmask = NULL;
3141 	}
3142 	memset(data, 0, data_size);
3143 	out->args.vc.data = data;
3144 	ctx->objdata = data_size;
3145 	return len;
3146 }
3147 
3148 /** Parse pattern item parameter type. */
3149 static int
3150 parse_vc_spec(struct context *ctx, const struct token *token,
3151 	      const char *str, unsigned int len,
3152 	      void *buf, unsigned int size)
3153 {
3154 	struct buffer *out = buf;
3155 	struct rte_flow_item *item;
3156 	uint32_t data_size;
3157 	int index;
3158 	int objmask = 0;
3159 
3160 	(void)size;
3161 	/* Token name must match. */
3162 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3163 		return -1;
3164 	/* Parse parameter types. */
3165 	switch (ctx->curr) {
3166 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3167 
3168 	case ITEM_PARAM_IS:
3169 		index = 0;
3170 		objmask = 1;
3171 		break;
3172 	case ITEM_PARAM_SPEC:
3173 		index = 0;
3174 		break;
3175 	case ITEM_PARAM_LAST:
3176 		index = 1;
3177 		break;
3178 	case ITEM_PARAM_PREFIX:
3179 		/* Modify next token to expect a prefix. */
3180 		if (ctx->next_num < 2)
3181 			return -1;
3182 		ctx->next[ctx->next_num - 2] = prefix;
3183 		/* Fall through. */
3184 	case ITEM_PARAM_MASK:
3185 		index = 2;
3186 		break;
3187 	default:
3188 		return -1;
3189 	}
3190 	/* Nothing else to do if there is no buffer. */
3191 	if (!out)
3192 		return len;
3193 	if (!out->args.vc.pattern_n)
3194 		return -1;
3195 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3196 	data_size = ctx->objdata / 3; /* spec, last, mask */
3197 	/* Point to selected object. */
3198 	ctx->object = out->args.vc.data + (data_size * index);
3199 	if (objmask) {
3200 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3201 		item->mask = ctx->objmask;
3202 	} else
3203 		ctx->objmask = NULL;
3204 	/* Update relevant item pointer. */
3205 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3206 		ctx->object;
3207 	return len;
3208 }
3209 
3210 /** Parse action configuration field. */
3211 static int
3212 parse_vc_conf(struct context *ctx, const struct token *token,
3213 	      const char *str, unsigned int len,
3214 	      void *buf, unsigned int size)
3215 {
3216 	struct buffer *out = buf;
3217 
3218 	(void)size;
3219 	/* Token name must match. */
3220 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3221 		return -1;
3222 	/* Nothing else to do if there is no buffer. */
3223 	if (!out)
3224 		return len;
3225 	/* Point to selected object. */
3226 	ctx->object = out->args.vc.data;
3227 	ctx->objmask = NULL;
3228 	return len;
3229 }
3230 
3231 /** Parse RSS action. */
3232 static int
3233 parse_vc_action_rss(struct context *ctx, const struct token *token,
3234 		    const char *str, unsigned int len,
3235 		    void *buf, unsigned int size)
3236 {
3237 	struct buffer *out = buf;
3238 	struct rte_flow_action *action;
3239 	struct action_rss_data *action_rss_data;
3240 	unsigned int i;
3241 	int ret;
3242 
3243 	ret = parse_vc(ctx, token, str, len, buf, size);
3244 	if (ret < 0)
3245 		return ret;
3246 	/* Nothing else to do if there is no buffer. */
3247 	if (!out)
3248 		return ret;
3249 	if (!out->args.vc.actions_n)
3250 		return -1;
3251 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3252 	/* Point to selected object. */
3253 	ctx->object = out->args.vc.data;
3254 	ctx->objmask = NULL;
3255 	/* Set up default configuration. */
3256 	action_rss_data = ctx->object;
3257 	*action_rss_data = (struct action_rss_data){
3258 		.conf = (struct rte_flow_action_rss){
3259 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3260 			.level = 0,
3261 			.types = rss_hf,
3262 			.key_len = sizeof(action_rss_data->key),
3263 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3264 			.key = action_rss_data->key,
3265 			.queue = action_rss_data->queue,
3266 		},
3267 		.key = "testpmd's default RSS hash key, "
3268 			"override it for better balancing",
3269 		.queue = { 0 },
3270 	};
3271 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3272 		action_rss_data->queue[i] = i;
3273 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3274 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3275 		struct rte_eth_dev_info info;
3276 
3277 		rte_eth_dev_info_get(ctx->port, &info);
3278 		action_rss_data->conf.key_len =
3279 			RTE_MIN(sizeof(action_rss_data->key),
3280 				info.hash_key_size);
3281 	}
3282 	action->conf = &action_rss_data->conf;
3283 	return ret;
3284 }
3285 
3286 /**
3287  * Parse func field for RSS action.
3288  *
3289  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3290  * ACTION_RSS_FUNC_* index that called this function.
3291  */
3292 static int
3293 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3294 			 const char *str, unsigned int len,
3295 			 void *buf, unsigned int size)
3296 {
3297 	struct action_rss_data *action_rss_data;
3298 	enum rte_eth_hash_function func;
3299 
3300 	(void)buf;
3301 	(void)size;
3302 	/* Token name must match. */
3303 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3304 		return -1;
3305 	switch (ctx->curr) {
3306 	case ACTION_RSS_FUNC_DEFAULT:
3307 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3308 		break;
3309 	case ACTION_RSS_FUNC_TOEPLITZ:
3310 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3311 		break;
3312 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3313 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3314 		break;
3315 	default:
3316 		return -1;
3317 	}
3318 	if (!ctx->object)
3319 		return len;
3320 	action_rss_data = ctx->object;
3321 	action_rss_data->conf.func = func;
3322 	return len;
3323 }
3324 
3325 /**
3326  * Parse type field for RSS action.
3327  *
3328  * Valid tokens are type field names and the "end" token.
3329  */
3330 static int
3331 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3332 			  const char *str, unsigned int len,
3333 			  void *buf, unsigned int size)
3334 {
3335 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3336 	struct action_rss_data *action_rss_data;
3337 	unsigned int i;
3338 
3339 	(void)token;
3340 	(void)buf;
3341 	(void)size;
3342 	if (ctx->curr != ACTION_RSS_TYPE)
3343 		return -1;
3344 	if (!(ctx->objdata >> 16) && ctx->object) {
3345 		action_rss_data = ctx->object;
3346 		action_rss_data->conf.types = 0;
3347 	}
3348 	if (!strcmp_partial("end", str, len)) {
3349 		ctx->objdata &= 0xffff;
3350 		return len;
3351 	}
3352 	for (i = 0; rss_type_table[i].str; ++i)
3353 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3354 			break;
3355 	if (!rss_type_table[i].str)
3356 		return -1;
3357 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3358 	/* Repeat token. */
3359 	if (ctx->next_num == RTE_DIM(ctx->next))
3360 		return -1;
3361 	ctx->next[ctx->next_num++] = next;
3362 	if (!ctx->object)
3363 		return len;
3364 	action_rss_data = ctx->object;
3365 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3366 	return len;
3367 }
3368 
3369 /**
3370  * Parse queue field for RSS action.
3371  *
3372  * Valid tokens are queue indices and the "end" token.
3373  */
3374 static int
3375 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3376 			  const char *str, unsigned int len,
3377 			  void *buf, unsigned int size)
3378 {
3379 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3380 	struct action_rss_data *action_rss_data;
3381 	int ret;
3382 	int i;
3383 
3384 	(void)token;
3385 	(void)buf;
3386 	(void)size;
3387 	if (ctx->curr != ACTION_RSS_QUEUE)
3388 		return -1;
3389 	i = ctx->objdata >> 16;
3390 	if (!strcmp_partial("end", str, len)) {
3391 		ctx->objdata &= 0xffff;
3392 		goto end;
3393 	}
3394 	if (i >= ACTION_RSS_QUEUE_NUM)
3395 		return -1;
3396 	if (push_args(ctx,
3397 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3398 				     i * sizeof(action_rss_data->queue[i]),
3399 				     sizeof(action_rss_data->queue[i]))))
3400 		return -1;
3401 	ret = parse_int(ctx, token, str, len, NULL, 0);
3402 	if (ret < 0) {
3403 		pop_args(ctx);
3404 		return -1;
3405 	}
3406 	++i;
3407 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3408 	/* Repeat token. */
3409 	if (ctx->next_num == RTE_DIM(ctx->next))
3410 		return -1;
3411 	ctx->next[ctx->next_num++] = next;
3412 end:
3413 	if (!ctx->object)
3414 		return len;
3415 	action_rss_data = ctx->object;
3416 	action_rss_data->conf.queue_num = i;
3417 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3418 	return len;
3419 }
3420 
3421 /** Parse VXLAN encap action. */
3422 static int
3423 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3424 			    const char *str, unsigned int len,
3425 			    void *buf, unsigned int size)
3426 {
3427 	struct buffer *out = buf;
3428 	struct rte_flow_action *action;
3429 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3430 	int ret;
3431 
3432 	ret = parse_vc(ctx, token, str, len, buf, size);
3433 	if (ret < 0)
3434 		return ret;
3435 	/* Nothing else to do if there is no buffer. */
3436 	if (!out)
3437 		return ret;
3438 	if (!out->args.vc.actions_n)
3439 		return -1;
3440 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3441 	/* Point to selected object. */
3442 	ctx->object = out->args.vc.data;
3443 	ctx->objmask = NULL;
3444 	/* Set up default configuration. */
3445 	action_vxlan_encap_data = ctx->object;
3446 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3447 		.conf = (struct rte_flow_action_vxlan_encap){
3448 			.definition = action_vxlan_encap_data->items,
3449 		},
3450 		.items = {
3451 			{
3452 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3453 				.spec = &action_vxlan_encap_data->item_eth,
3454 				.mask = &rte_flow_item_eth_mask,
3455 			},
3456 			{
3457 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3458 				.spec = &action_vxlan_encap_data->item_vlan,
3459 				.mask = &rte_flow_item_vlan_mask,
3460 			},
3461 			{
3462 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3463 				.spec = &action_vxlan_encap_data->item_ipv4,
3464 				.mask = &rte_flow_item_ipv4_mask,
3465 			},
3466 			{
3467 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3468 				.spec = &action_vxlan_encap_data->item_udp,
3469 				.mask = &rte_flow_item_udp_mask,
3470 			},
3471 			{
3472 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3473 				.spec = &action_vxlan_encap_data->item_vxlan,
3474 				.mask = &rte_flow_item_vxlan_mask,
3475 			},
3476 			{
3477 				.type = RTE_FLOW_ITEM_TYPE_END,
3478 			},
3479 		},
3480 		.item_eth.type = 0,
3481 		.item_vlan = {
3482 			.tci = vxlan_encap_conf.vlan_tci,
3483 			.inner_type = 0,
3484 		},
3485 		.item_ipv4.hdr = {
3486 			.src_addr = vxlan_encap_conf.ipv4_src,
3487 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3488 		},
3489 		.item_udp.hdr = {
3490 			.src_port = vxlan_encap_conf.udp_src,
3491 			.dst_port = vxlan_encap_conf.udp_dst,
3492 		},
3493 		.item_vxlan.flags = 0,
3494 	};
3495 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3496 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3497 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3498 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3499 	if (!vxlan_encap_conf.select_ipv4) {
3500 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3501 		       &vxlan_encap_conf.ipv6_src,
3502 		       sizeof(vxlan_encap_conf.ipv6_src));
3503 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3504 		       &vxlan_encap_conf.ipv6_dst,
3505 		       sizeof(vxlan_encap_conf.ipv6_dst));
3506 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3507 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3508 			.spec = &action_vxlan_encap_data->item_ipv6,
3509 			.mask = &rte_flow_item_ipv6_mask,
3510 		};
3511 	}
3512 	if (!vxlan_encap_conf.select_vlan)
3513 		action_vxlan_encap_data->items[1].type =
3514 			RTE_FLOW_ITEM_TYPE_VOID;
3515 	if (vxlan_encap_conf.select_tos_ttl) {
3516 		if (vxlan_encap_conf.select_ipv4) {
3517 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3518 
3519 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3520 			       sizeof(ipv4_mask_tos));
3521 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3522 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3523 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3524 					vxlan_encap_conf.ip_tos;
3525 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3526 					vxlan_encap_conf.ip_ttl;
3527 			action_vxlan_encap_data->items[2].mask =
3528 							&ipv4_mask_tos;
3529 		} else {
3530 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3531 
3532 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3533 			       sizeof(ipv6_mask_tos));
3534 			ipv6_mask_tos.hdr.vtc_flow |=
3535 				RTE_BE32(0xfful << IPV6_HDR_TC_SHIFT);
3536 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3537 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3538 				rte_cpu_to_be_32
3539 					((uint32_t)vxlan_encap_conf.ip_tos <<
3540 					 IPV6_HDR_TC_SHIFT);
3541 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3542 					vxlan_encap_conf.ip_ttl;
3543 			action_vxlan_encap_data->items[2].mask =
3544 							&ipv6_mask_tos;
3545 		}
3546 	}
3547 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3548 	       RTE_DIM(vxlan_encap_conf.vni));
3549 	action->conf = &action_vxlan_encap_data->conf;
3550 	return ret;
3551 }
3552 
3553 /** Parse NVGRE encap action. */
3554 static int
3555 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3556 			    const char *str, unsigned int len,
3557 			    void *buf, unsigned int size)
3558 {
3559 	struct buffer *out = buf;
3560 	struct rte_flow_action *action;
3561 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3562 	int ret;
3563 
3564 	ret = parse_vc(ctx, token, str, len, buf, size);
3565 	if (ret < 0)
3566 		return ret;
3567 	/* Nothing else to do if there is no buffer. */
3568 	if (!out)
3569 		return ret;
3570 	if (!out->args.vc.actions_n)
3571 		return -1;
3572 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3573 	/* Point to selected object. */
3574 	ctx->object = out->args.vc.data;
3575 	ctx->objmask = NULL;
3576 	/* Set up default configuration. */
3577 	action_nvgre_encap_data = ctx->object;
3578 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3579 		.conf = (struct rte_flow_action_nvgre_encap){
3580 			.definition = action_nvgre_encap_data->items,
3581 		},
3582 		.items = {
3583 			{
3584 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3585 				.spec = &action_nvgre_encap_data->item_eth,
3586 				.mask = &rte_flow_item_eth_mask,
3587 			},
3588 			{
3589 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3590 				.spec = &action_nvgre_encap_data->item_vlan,
3591 				.mask = &rte_flow_item_vlan_mask,
3592 			},
3593 			{
3594 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3595 				.spec = &action_nvgre_encap_data->item_ipv4,
3596 				.mask = &rte_flow_item_ipv4_mask,
3597 			},
3598 			{
3599 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3600 				.spec = &action_nvgre_encap_data->item_nvgre,
3601 				.mask = &rte_flow_item_nvgre_mask,
3602 			},
3603 			{
3604 				.type = RTE_FLOW_ITEM_TYPE_END,
3605 			},
3606 		},
3607 		.item_eth.type = 0,
3608 		.item_vlan = {
3609 			.tci = nvgre_encap_conf.vlan_tci,
3610 			.inner_type = 0,
3611 		},
3612 		.item_ipv4.hdr = {
3613 		       .src_addr = nvgre_encap_conf.ipv4_src,
3614 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3615 		},
3616 		.item_nvgre.flow_id = 0,
3617 	};
3618 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3619 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3620 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3621 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3622 	if (!nvgre_encap_conf.select_ipv4) {
3623 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3624 		       &nvgre_encap_conf.ipv6_src,
3625 		       sizeof(nvgre_encap_conf.ipv6_src));
3626 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3627 		       &nvgre_encap_conf.ipv6_dst,
3628 		       sizeof(nvgre_encap_conf.ipv6_dst));
3629 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3630 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3631 			.spec = &action_nvgre_encap_data->item_ipv6,
3632 			.mask = &rte_flow_item_ipv6_mask,
3633 		};
3634 	}
3635 	if (!nvgre_encap_conf.select_vlan)
3636 		action_nvgre_encap_data->items[1].type =
3637 			RTE_FLOW_ITEM_TYPE_VOID;
3638 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3639 	       RTE_DIM(nvgre_encap_conf.tni));
3640 	action->conf = &action_nvgre_encap_data->conf;
3641 	return ret;
3642 }
3643 
3644 /** Parse l2 encap action. */
3645 static int
3646 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3647 			 const char *str, unsigned int len,
3648 			 void *buf, unsigned int size)
3649 {
3650 	struct buffer *out = buf;
3651 	struct rte_flow_action *action;
3652 	struct action_raw_encap_data *action_encap_data;
3653 	struct rte_flow_item_eth eth = { .type = 0, };
3654 	struct rte_flow_item_vlan vlan = {
3655 		.tci = mplsoudp_encap_conf.vlan_tci,
3656 		.inner_type = 0,
3657 	};
3658 	uint8_t *header;
3659 	int ret;
3660 
3661 	ret = parse_vc(ctx, token, str, len, buf, size);
3662 	if (ret < 0)
3663 		return ret;
3664 	/* Nothing else to do if there is no buffer. */
3665 	if (!out)
3666 		return ret;
3667 	if (!out->args.vc.actions_n)
3668 		return -1;
3669 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3670 	/* Point to selected object. */
3671 	ctx->object = out->args.vc.data;
3672 	ctx->objmask = NULL;
3673 	/* Copy the headers to the buffer. */
3674 	action_encap_data = ctx->object;
3675 	*action_encap_data = (struct action_raw_encap_data) {
3676 		.conf = (struct rte_flow_action_raw_encap){
3677 			.data = action_encap_data->data,
3678 		},
3679 		.data = {},
3680 	};
3681 	header = action_encap_data->data;
3682 	if (l2_encap_conf.select_vlan)
3683 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3684 	else if (l2_encap_conf.select_ipv4)
3685 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3686 	else
3687 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3688 	memcpy(eth.dst.addr_bytes,
3689 	       l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
3690 	memcpy(eth.src.addr_bytes,
3691 	       l2_encap_conf.eth_src, ETHER_ADDR_LEN);
3692 	memcpy(header, &eth, sizeof(eth));
3693 	header += sizeof(eth);
3694 	if (l2_encap_conf.select_vlan) {
3695 		if (l2_encap_conf.select_ipv4)
3696 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3697 		else
3698 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3699 		memcpy(header, &vlan, sizeof(vlan));
3700 		header += sizeof(vlan);
3701 	}
3702 	action_encap_data->conf.size = header -
3703 		action_encap_data->data;
3704 	action->conf = &action_encap_data->conf;
3705 	return ret;
3706 }
3707 
3708 /** Parse l2 decap action. */
3709 static int
3710 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3711 			 const char *str, unsigned int len,
3712 			 void *buf, unsigned int size)
3713 {
3714 	struct buffer *out = buf;
3715 	struct rte_flow_action *action;
3716 	struct action_raw_decap_data *action_decap_data;
3717 	struct rte_flow_item_eth eth = { .type = 0, };
3718 	struct rte_flow_item_vlan vlan = {
3719 		.tci = mplsoudp_encap_conf.vlan_tci,
3720 		.inner_type = 0,
3721 	};
3722 	uint8_t *header;
3723 	int ret;
3724 
3725 	ret = parse_vc(ctx, token, str, len, buf, size);
3726 	if (ret < 0)
3727 		return ret;
3728 	/* Nothing else to do if there is no buffer. */
3729 	if (!out)
3730 		return ret;
3731 	if (!out->args.vc.actions_n)
3732 		return -1;
3733 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3734 	/* Point to selected object. */
3735 	ctx->object = out->args.vc.data;
3736 	ctx->objmask = NULL;
3737 	/* Copy the headers to the buffer. */
3738 	action_decap_data = ctx->object;
3739 	*action_decap_data = (struct action_raw_decap_data) {
3740 		.conf = (struct rte_flow_action_raw_decap){
3741 			.data = action_decap_data->data,
3742 		},
3743 		.data = {},
3744 	};
3745 	header = action_decap_data->data;
3746 	if (l2_decap_conf.select_vlan)
3747 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3748 	memcpy(header, &eth, sizeof(eth));
3749 	header += sizeof(eth);
3750 	if (l2_decap_conf.select_vlan) {
3751 		memcpy(header, &vlan, sizeof(vlan));
3752 		header += sizeof(vlan);
3753 	}
3754 	action_decap_data->conf.size = header -
3755 		action_decap_data->data;
3756 	action->conf = &action_decap_data->conf;
3757 	return ret;
3758 }
3759 
3760 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3761 
3762 /** Parse MPLSOGRE encap action. */
3763 static int
3764 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3765 			       const char *str, unsigned int len,
3766 			       void *buf, unsigned int size)
3767 {
3768 	struct buffer *out = buf;
3769 	struct rte_flow_action *action;
3770 	struct action_raw_encap_data *action_encap_data;
3771 	struct rte_flow_item_eth eth = { .type = 0, };
3772 	struct rte_flow_item_vlan vlan = {
3773 		.tci = mplsogre_encap_conf.vlan_tci,
3774 		.inner_type = 0,
3775 	};
3776 	struct rte_flow_item_ipv4 ipv4 = {
3777 		.hdr =  {
3778 			.src_addr = mplsogre_encap_conf.ipv4_src,
3779 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3780 			.next_proto_id = IPPROTO_GRE,
3781 		},
3782 	};
3783 	struct rte_flow_item_ipv6 ipv6 = {
3784 		.hdr =  {
3785 			.proto = IPPROTO_GRE,
3786 		},
3787 	};
3788 	struct rte_flow_item_gre gre = {
3789 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3790 	};
3791 	struct rte_flow_item_mpls mpls;
3792 	uint8_t *header;
3793 	int ret;
3794 
3795 	ret = parse_vc(ctx, token, str, len, buf, size);
3796 	if (ret < 0)
3797 		return ret;
3798 	/* Nothing else to do if there is no buffer. */
3799 	if (!out)
3800 		return ret;
3801 	if (!out->args.vc.actions_n)
3802 		return -1;
3803 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3804 	/* Point to selected object. */
3805 	ctx->object = out->args.vc.data;
3806 	ctx->objmask = NULL;
3807 	/* Copy the headers to the buffer. */
3808 	action_encap_data = ctx->object;
3809 	*action_encap_data = (struct action_raw_encap_data) {
3810 		.conf = (struct rte_flow_action_raw_encap){
3811 			.data = action_encap_data->data,
3812 		},
3813 		.data = {},
3814 		.preserve = {},
3815 	};
3816 	header = action_encap_data->data;
3817 	if (mplsogre_encap_conf.select_vlan)
3818 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3819 	else if (mplsogre_encap_conf.select_ipv4)
3820 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3821 	else
3822 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3823 	memcpy(eth.dst.addr_bytes,
3824 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3825 	memcpy(eth.src.addr_bytes,
3826 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3827 	memcpy(header, &eth, sizeof(eth));
3828 	header += sizeof(eth);
3829 	if (mplsogre_encap_conf.select_vlan) {
3830 		if (mplsogre_encap_conf.select_ipv4)
3831 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3832 		else
3833 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3834 		memcpy(header, &vlan, sizeof(vlan));
3835 		header += sizeof(vlan);
3836 	}
3837 	if (mplsogre_encap_conf.select_ipv4) {
3838 		memcpy(header, &ipv4, sizeof(ipv4));
3839 		header += sizeof(ipv4);
3840 	} else {
3841 		memcpy(&ipv6.hdr.src_addr,
3842 		       &mplsogre_encap_conf.ipv6_src,
3843 		       sizeof(mplsogre_encap_conf.ipv6_src));
3844 		memcpy(&ipv6.hdr.dst_addr,
3845 		       &mplsogre_encap_conf.ipv6_dst,
3846 		       sizeof(mplsogre_encap_conf.ipv6_dst));
3847 		memcpy(header, &ipv6, sizeof(ipv6));
3848 		header += sizeof(ipv6);
3849 	}
3850 	memcpy(header, &gre, sizeof(gre));
3851 	header += sizeof(gre);
3852 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3853 	       RTE_DIM(mplsogre_encap_conf.label));
3854 	mpls.label_tc_s[2] |= 0x1;
3855 	memcpy(header, &mpls, sizeof(mpls));
3856 	header += sizeof(mpls);
3857 	action_encap_data->conf.size = header -
3858 		action_encap_data->data;
3859 	action->conf = &action_encap_data->conf;
3860 	return ret;
3861 }
3862 
3863 /** Parse MPLSOGRE decap action. */
3864 static int
3865 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3866 			       const char *str, unsigned int len,
3867 			       void *buf, unsigned int size)
3868 {
3869 	struct buffer *out = buf;
3870 	struct rte_flow_action *action;
3871 	struct action_raw_decap_data *action_decap_data;
3872 	struct rte_flow_item_eth eth = { .type = 0, };
3873 	struct rte_flow_item_vlan vlan = {.tci = 0};
3874 	struct rte_flow_item_ipv4 ipv4 = {
3875 		.hdr =  {
3876 			.next_proto_id = IPPROTO_GRE,
3877 		},
3878 	};
3879 	struct rte_flow_item_ipv6 ipv6 = {
3880 		.hdr =  {
3881 			.proto = IPPROTO_GRE,
3882 		},
3883 	};
3884 	struct rte_flow_item_gre gre = {
3885 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3886 	};
3887 	struct rte_flow_item_mpls mpls;
3888 	uint8_t *header;
3889 	int ret;
3890 
3891 	ret = parse_vc(ctx, token, str, len, buf, size);
3892 	if (ret < 0)
3893 		return ret;
3894 	/* Nothing else to do if there is no buffer. */
3895 	if (!out)
3896 		return ret;
3897 	if (!out->args.vc.actions_n)
3898 		return -1;
3899 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3900 	/* Point to selected object. */
3901 	ctx->object = out->args.vc.data;
3902 	ctx->objmask = NULL;
3903 	/* Copy the headers to the buffer. */
3904 	action_decap_data = ctx->object;
3905 	*action_decap_data = (struct action_raw_decap_data) {
3906 		.conf = (struct rte_flow_action_raw_decap){
3907 			.data = action_decap_data->data,
3908 		},
3909 		.data = {},
3910 	};
3911 	header = action_decap_data->data;
3912 	if (mplsogre_decap_conf.select_vlan)
3913 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3914 	else if (mplsogre_encap_conf.select_ipv4)
3915 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3916 	else
3917 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3918 	memcpy(eth.dst.addr_bytes,
3919 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3920 	memcpy(eth.src.addr_bytes,
3921 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3922 	memcpy(header, &eth, sizeof(eth));
3923 	header += sizeof(eth);
3924 	if (mplsogre_encap_conf.select_vlan) {
3925 		if (mplsogre_encap_conf.select_ipv4)
3926 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3927 		else
3928 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3929 		memcpy(header, &vlan, sizeof(vlan));
3930 		header += sizeof(vlan);
3931 	}
3932 	if (mplsogre_encap_conf.select_ipv4) {
3933 		memcpy(header, &ipv4, sizeof(ipv4));
3934 		header += sizeof(ipv4);
3935 	} else {
3936 		memcpy(header, &ipv6, sizeof(ipv6));
3937 		header += sizeof(ipv6);
3938 	}
3939 	memcpy(header, &gre, sizeof(gre));
3940 	header += sizeof(gre);
3941 	memset(&mpls, 0, sizeof(mpls));
3942 	memcpy(header, &mpls, sizeof(mpls));
3943 	header += sizeof(mpls);
3944 	action_decap_data->conf.size = header -
3945 		action_decap_data->data;
3946 	action->conf = &action_decap_data->conf;
3947 	return ret;
3948 }
3949 
3950 /** Parse MPLSOUDP encap action. */
3951 static int
3952 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
3953 			       const char *str, unsigned int len,
3954 			       void *buf, unsigned int size)
3955 {
3956 	struct buffer *out = buf;
3957 	struct rte_flow_action *action;
3958 	struct action_raw_encap_data *action_encap_data;
3959 	struct rte_flow_item_eth eth = { .type = 0, };
3960 	struct rte_flow_item_vlan vlan = {
3961 		.tci = mplsoudp_encap_conf.vlan_tci,
3962 		.inner_type = 0,
3963 	};
3964 	struct rte_flow_item_ipv4 ipv4 = {
3965 		.hdr =  {
3966 			.src_addr = mplsoudp_encap_conf.ipv4_src,
3967 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
3968 			.next_proto_id = IPPROTO_UDP,
3969 		},
3970 	};
3971 	struct rte_flow_item_ipv6 ipv6 = {
3972 		.hdr =  {
3973 			.proto = IPPROTO_UDP,
3974 		},
3975 	};
3976 	struct rte_flow_item_udp udp = {
3977 		.hdr = {
3978 			.src_port = mplsoudp_encap_conf.udp_src,
3979 			.dst_port = mplsoudp_encap_conf.udp_dst,
3980 		},
3981 	};
3982 	struct rte_flow_item_mpls mpls;
3983 	uint8_t *header;
3984 	int ret;
3985 
3986 	ret = parse_vc(ctx, token, str, len, buf, size);
3987 	if (ret < 0)
3988 		return ret;
3989 	/* Nothing else to do if there is no buffer. */
3990 	if (!out)
3991 		return ret;
3992 	if (!out->args.vc.actions_n)
3993 		return -1;
3994 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3995 	/* Point to selected object. */
3996 	ctx->object = out->args.vc.data;
3997 	ctx->objmask = NULL;
3998 	/* Copy the headers to the buffer. */
3999 	action_encap_data = ctx->object;
4000 	*action_encap_data = (struct action_raw_encap_data) {
4001 		.conf = (struct rte_flow_action_raw_encap){
4002 			.data = action_encap_data->data,
4003 		},
4004 		.data = {},
4005 		.preserve = {},
4006 	};
4007 	header = action_encap_data->data;
4008 	if (mplsoudp_encap_conf.select_vlan)
4009 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4010 	else if (mplsoudp_encap_conf.select_ipv4)
4011 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4012 	else
4013 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4014 	memcpy(eth.dst.addr_bytes,
4015 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4016 	memcpy(eth.src.addr_bytes,
4017 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4018 	memcpy(header, &eth, sizeof(eth));
4019 	header += sizeof(eth);
4020 	if (mplsoudp_encap_conf.select_vlan) {
4021 		if (mplsoudp_encap_conf.select_ipv4)
4022 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4023 		else
4024 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4025 		memcpy(header, &vlan, sizeof(vlan));
4026 		header += sizeof(vlan);
4027 	}
4028 	if (mplsoudp_encap_conf.select_ipv4) {
4029 		memcpy(header, &ipv4, sizeof(ipv4));
4030 		header += sizeof(ipv4);
4031 	} else {
4032 		memcpy(&ipv6.hdr.src_addr,
4033 		       &mplsoudp_encap_conf.ipv6_src,
4034 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4035 		memcpy(&ipv6.hdr.dst_addr,
4036 		       &mplsoudp_encap_conf.ipv6_dst,
4037 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4038 		memcpy(header, &ipv6, sizeof(ipv6));
4039 		header += sizeof(ipv6);
4040 	}
4041 	memcpy(header, &udp, sizeof(udp));
4042 	header += sizeof(udp);
4043 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4044 	       RTE_DIM(mplsoudp_encap_conf.label));
4045 	mpls.label_tc_s[2] |= 0x1;
4046 	memcpy(header, &mpls, sizeof(mpls));
4047 	header += sizeof(mpls);
4048 	action_encap_data->conf.size = header -
4049 		action_encap_data->data;
4050 	action->conf = &action_encap_data->conf;
4051 	return ret;
4052 }
4053 
4054 /** Parse MPLSOUDP decap action. */
4055 static int
4056 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4057 			       const char *str, unsigned int len,
4058 			       void *buf, unsigned int size)
4059 {
4060 	struct buffer *out = buf;
4061 	struct rte_flow_action *action;
4062 	struct action_raw_decap_data *action_decap_data;
4063 	struct rte_flow_item_eth eth = { .type = 0, };
4064 	struct rte_flow_item_vlan vlan = {.tci = 0};
4065 	struct rte_flow_item_ipv4 ipv4 = {
4066 		.hdr =  {
4067 			.next_proto_id = IPPROTO_UDP,
4068 		},
4069 	};
4070 	struct rte_flow_item_ipv6 ipv6 = {
4071 		.hdr =  {
4072 			.proto = IPPROTO_UDP,
4073 		},
4074 	};
4075 	struct rte_flow_item_udp udp = {
4076 		.hdr = {
4077 			.dst_port = rte_cpu_to_be_16(6635),
4078 		},
4079 	};
4080 	struct rte_flow_item_mpls mpls;
4081 	uint8_t *header;
4082 	int ret;
4083 
4084 	ret = parse_vc(ctx, token, str, len, buf, size);
4085 	if (ret < 0)
4086 		return ret;
4087 	/* Nothing else to do if there is no buffer. */
4088 	if (!out)
4089 		return ret;
4090 	if (!out->args.vc.actions_n)
4091 		return -1;
4092 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4093 	/* Point to selected object. */
4094 	ctx->object = out->args.vc.data;
4095 	ctx->objmask = NULL;
4096 	/* Copy the headers to the buffer. */
4097 	action_decap_data = ctx->object;
4098 	*action_decap_data = (struct action_raw_decap_data) {
4099 		.conf = (struct rte_flow_action_raw_decap){
4100 			.data = action_decap_data->data,
4101 		},
4102 		.data = {},
4103 	};
4104 	header = action_decap_data->data;
4105 	if (mplsoudp_decap_conf.select_vlan)
4106 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4107 	else if (mplsoudp_encap_conf.select_ipv4)
4108 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4109 	else
4110 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4111 	memcpy(eth.dst.addr_bytes,
4112 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4113 	memcpy(eth.src.addr_bytes,
4114 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4115 	memcpy(header, &eth, sizeof(eth));
4116 	header += sizeof(eth);
4117 	if (mplsoudp_encap_conf.select_vlan) {
4118 		if (mplsoudp_encap_conf.select_ipv4)
4119 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4120 		else
4121 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4122 		memcpy(header, &vlan, sizeof(vlan));
4123 		header += sizeof(vlan);
4124 	}
4125 	if (mplsoudp_encap_conf.select_ipv4) {
4126 		memcpy(header, &ipv4, sizeof(ipv4));
4127 		header += sizeof(ipv4);
4128 	} else {
4129 		memcpy(header, &ipv6, sizeof(ipv6));
4130 		header += sizeof(ipv6);
4131 	}
4132 	memcpy(header, &udp, sizeof(udp));
4133 	header += sizeof(udp);
4134 	memset(&mpls, 0, sizeof(mpls));
4135 	memcpy(header, &mpls, sizeof(mpls));
4136 	header += sizeof(mpls);
4137 	action_decap_data->conf.size = header -
4138 		action_decap_data->data;
4139 	action->conf = &action_decap_data->conf;
4140 	return ret;
4141 }
4142 
4143 /** Parse tokens for destroy command. */
4144 static int
4145 parse_destroy(struct context *ctx, const struct token *token,
4146 	      const char *str, unsigned int len,
4147 	      void *buf, unsigned int size)
4148 {
4149 	struct buffer *out = buf;
4150 
4151 	/* Token name must match. */
4152 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4153 		return -1;
4154 	/* Nothing else to do if there is no buffer. */
4155 	if (!out)
4156 		return len;
4157 	if (!out->command) {
4158 		if (ctx->curr != DESTROY)
4159 			return -1;
4160 		if (sizeof(*out) > size)
4161 			return -1;
4162 		out->command = ctx->curr;
4163 		ctx->objdata = 0;
4164 		ctx->object = out;
4165 		ctx->objmask = NULL;
4166 		out->args.destroy.rule =
4167 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4168 					       sizeof(double));
4169 		return len;
4170 	}
4171 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4172 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4173 		return -1;
4174 	ctx->objdata = 0;
4175 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4176 	ctx->objmask = NULL;
4177 	return len;
4178 }
4179 
4180 /** Parse tokens for flush command. */
4181 static int
4182 parse_flush(struct context *ctx, const struct token *token,
4183 	    const char *str, unsigned int len,
4184 	    void *buf, unsigned int size)
4185 {
4186 	struct buffer *out = buf;
4187 
4188 	/* Token name must match. */
4189 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4190 		return -1;
4191 	/* Nothing else to do if there is no buffer. */
4192 	if (!out)
4193 		return len;
4194 	if (!out->command) {
4195 		if (ctx->curr != FLUSH)
4196 			return -1;
4197 		if (sizeof(*out) > size)
4198 			return -1;
4199 		out->command = ctx->curr;
4200 		ctx->objdata = 0;
4201 		ctx->object = out;
4202 		ctx->objmask = NULL;
4203 	}
4204 	return len;
4205 }
4206 
4207 /** Parse tokens for query command. */
4208 static int
4209 parse_query(struct context *ctx, const struct token *token,
4210 	    const char *str, unsigned int len,
4211 	    void *buf, unsigned int size)
4212 {
4213 	struct buffer *out = buf;
4214 
4215 	/* Token name must match. */
4216 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4217 		return -1;
4218 	/* Nothing else to do if there is no buffer. */
4219 	if (!out)
4220 		return len;
4221 	if (!out->command) {
4222 		if (ctx->curr != QUERY)
4223 			return -1;
4224 		if (sizeof(*out) > size)
4225 			return -1;
4226 		out->command = ctx->curr;
4227 		ctx->objdata = 0;
4228 		ctx->object = out;
4229 		ctx->objmask = NULL;
4230 	}
4231 	return len;
4232 }
4233 
4234 /** Parse action names. */
4235 static int
4236 parse_action(struct context *ctx, const struct token *token,
4237 	     const char *str, unsigned int len,
4238 	     void *buf, unsigned int size)
4239 {
4240 	struct buffer *out = buf;
4241 	const struct arg *arg = pop_args(ctx);
4242 	unsigned int i;
4243 
4244 	(void)size;
4245 	/* Argument is expected. */
4246 	if (!arg)
4247 		return -1;
4248 	/* Parse action name. */
4249 	for (i = 0; next_action[i]; ++i) {
4250 		const struct parse_action_priv *priv;
4251 
4252 		token = &token_list[next_action[i]];
4253 		if (strcmp_partial(token->name, str, len))
4254 			continue;
4255 		priv = token->priv;
4256 		if (!priv)
4257 			goto error;
4258 		if (out)
4259 			memcpy((uint8_t *)ctx->object + arg->offset,
4260 			       &priv->type,
4261 			       arg->size);
4262 		return len;
4263 	}
4264 error:
4265 	push_args(ctx, arg);
4266 	return -1;
4267 }
4268 
4269 /** Parse tokens for list command. */
4270 static int
4271 parse_list(struct context *ctx, const struct token *token,
4272 	   const char *str, unsigned int len,
4273 	   void *buf, unsigned int size)
4274 {
4275 	struct buffer *out = buf;
4276 
4277 	/* Token name must match. */
4278 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4279 		return -1;
4280 	/* Nothing else to do if there is no buffer. */
4281 	if (!out)
4282 		return len;
4283 	if (!out->command) {
4284 		if (ctx->curr != LIST)
4285 			return -1;
4286 		if (sizeof(*out) > size)
4287 			return -1;
4288 		out->command = ctx->curr;
4289 		ctx->objdata = 0;
4290 		ctx->object = out;
4291 		ctx->objmask = NULL;
4292 		out->args.list.group =
4293 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4294 					       sizeof(double));
4295 		return len;
4296 	}
4297 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4298 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4299 		return -1;
4300 	ctx->objdata = 0;
4301 	ctx->object = out->args.list.group + out->args.list.group_n++;
4302 	ctx->objmask = NULL;
4303 	return len;
4304 }
4305 
4306 /** Parse tokens for isolate command. */
4307 static int
4308 parse_isolate(struct context *ctx, const struct token *token,
4309 	      const char *str, unsigned int len,
4310 	      void *buf, unsigned int size)
4311 {
4312 	struct buffer *out = buf;
4313 
4314 	/* Token name must match. */
4315 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4316 		return -1;
4317 	/* Nothing else to do if there is no buffer. */
4318 	if (!out)
4319 		return len;
4320 	if (!out->command) {
4321 		if (ctx->curr != ISOLATE)
4322 			return -1;
4323 		if (sizeof(*out) > size)
4324 			return -1;
4325 		out->command = ctx->curr;
4326 		ctx->objdata = 0;
4327 		ctx->object = out;
4328 		ctx->objmask = NULL;
4329 	}
4330 	return len;
4331 }
4332 
4333 /**
4334  * Parse signed/unsigned integers 8 to 64-bit long.
4335  *
4336  * Last argument (ctx->args) is retrieved to determine integer type and
4337  * storage location.
4338  */
4339 static int
4340 parse_int(struct context *ctx, const struct token *token,
4341 	  const char *str, unsigned int len,
4342 	  void *buf, unsigned int size)
4343 {
4344 	const struct arg *arg = pop_args(ctx);
4345 	uintmax_t u;
4346 	char *end;
4347 
4348 	(void)token;
4349 	/* Argument is expected. */
4350 	if (!arg)
4351 		return -1;
4352 	errno = 0;
4353 	u = arg->sign ?
4354 		(uintmax_t)strtoimax(str, &end, 0) :
4355 		strtoumax(str, &end, 0);
4356 	if (errno || (size_t)(end - str) != len)
4357 		goto error;
4358 	if (arg->bounded &&
4359 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4360 			    (intmax_t)u > (intmax_t)arg->max)) ||
4361 	     (!arg->sign && (u < arg->min || u > arg->max))))
4362 		goto error;
4363 	if (!ctx->object)
4364 		return len;
4365 	if (arg->mask) {
4366 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4367 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4368 			goto error;
4369 		return len;
4370 	}
4371 	buf = (uint8_t *)ctx->object + arg->offset;
4372 	size = arg->size;
4373 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4374 		return -1;
4375 objmask:
4376 	switch (size) {
4377 	case sizeof(uint8_t):
4378 		*(uint8_t *)buf = u;
4379 		break;
4380 	case sizeof(uint16_t):
4381 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4382 		break;
4383 	case sizeof(uint8_t [3]):
4384 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4385 		if (!arg->hton) {
4386 			((uint8_t *)buf)[0] = u;
4387 			((uint8_t *)buf)[1] = u >> 8;
4388 			((uint8_t *)buf)[2] = u >> 16;
4389 			break;
4390 		}
4391 #endif
4392 		((uint8_t *)buf)[0] = u >> 16;
4393 		((uint8_t *)buf)[1] = u >> 8;
4394 		((uint8_t *)buf)[2] = u;
4395 		break;
4396 	case sizeof(uint32_t):
4397 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4398 		break;
4399 	case sizeof(uint64_t):
4400 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4401 		break;
4402 	default:
4403 		goto error;
4404 	}
4405 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4406 		u = -1;
4407 		buf = (uint8_t *)ctx->objmask + arg->offset;
4408 		goto objmask;
4409 	}
4410 	return len;
4411 error:
4412 	push_args(ctx, arg);
4413 	return -1;
4414 }
4415 
4416 /**
4417  * Parse a string.
4418  *
4419  * Three arguments (ctx->args) are retrieved from the stack to store data,
4420  * its actual length and address (in that order).
4421  */
4422 static int
4423 parse_string(struct context *ctx, const struct token *token,
4424 	     const char *str, unsigned int len,
4425 	     void *buf, unsigned int size)
4426 {
4427 	const struct arg *arg_data = pop_args(ctx);
4428 	const struct arg *arg_len = pop_args(ctx);
4429 	const struct arg *arg_addr = pop_args(ctx);
4430 	char tmp[16]; /* Ought to be enough. */
4431 	int ret;
4432 
4433 	/* Arguments are expected. */
4434 	if (!arg_data)
4435 		return -1;
4436 	if (!arg_len) {
4437 		push_args(ctx, arg_data);
4438 		return -1;
4439 	}
4440 	if (!arg_addr) {
4441 		push_args(ctx, arg_len);
4442 		push_args(ctx, arg_data);
4443 		return -1;
4444 	}
4445 	size = arg_data->size;
4446 	/* Bit-mask fill is not supported. */
4447 	if (arg_data->mask || size < len)
4448 		goto error;
4449 	if (!ctx->object)
4450 		return len;
4451 	/* Let parse_int() fill length information first. */
4452 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4453 	if (ret < 0)
4454 		goto error;
4455 	push_args(ctx, arg_len);
4456 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4457 	if (ret < 0) {
4458 		pop_args(ctx);
4459 		goto error;
4460 	}
4461 	buf = (uint8_t *)ctx->object + arg_data->offset;
4462 	/* Output buffer is not necessarily NUL-terminated. */
4463 	memcpy(buf, str, len);
4464 	memset((uint8_t *)buf + len, 0x00, size - len);
4465 	if (ctx->objmask)
4466 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4467 	/* Save address if requested. */
4468 	if (arg_addr->size) {
4469 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4470 		       (void *[]){
4471 			(uint8_t *)ctx->object + arg_data->offset
4472 		       },
4473 		       arg_addr->size);
4474 		if (ctx->objmask)
4475 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4476 			       (void *[]){
4477 				(uint8_t *)ctx->objmask + arg_data->offset
4478 			       },
4479 			       arg_addr->size);
4480 	}
4481 	return len;
4482 error:
4483 	push_args(ctx, arg_addr);
4484 	push_args(ctx, arg_len);
4485 	push_args(ctx, arg_data);
4486 	return -1;
4487 }
4488 
4489 static int
4490 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4491 {
4492 	char *c = NULL;
4493 	uint32_t i, len;
4494 	char tmp[3];
4495 
4496 	/* Check input parameters */
4497 	if ((src == NULL) ||
4498 		(dst == NULL) ||
4499 		(size == NULL) ||
4500 		(*size == 0))
4501 		return -1;
4502 
4503 	/* Convert chars to bytes */
4504 	for (i = 0, len = 0; i < *size; i += 2) {
4505 		snprintf(tmp, 3, "%s", src + i);
4506 		dst[len++] = strtoul(tmp, &c, 16);
4507 		if (*c != 0) {
4508 			len--;
4509 			dst[len] = 0;
4510 			*size = len;
4511 			return -1;
4512 		}
4513 	}
4514 	dst[len] = 0;
4515 	*size = len;
4516 
4517 	return 0;
4518 }
4519 
4520 static int
4521 parse_hex(struct context *ctx, const struct token *token,
4522 		const char *str, unsigned int len,
4523 		void *buf, unsigned int size)
4524 {
4525 	const struct arg *arg_data = pop_args(ctx);
4526 	const struct arg *arg_len = pop_args(ctx);
4527 	const struct arg *arg_addr = pop_args(ctx);
4528 	char tmp[16]; /* Ought to be enough. */
4529 	int ret;
4530 	unsigned int hexlen = len;
4531 	unsigned int length = 256;
4532 	uint8_t hex_tmp[length];
4533 
4534 	/* Arguments are expected. */
4535 	if (!arg_data)
4536 		return -1;
4537 	if (!arg_len) {
4538 		push_args(ctx, arg_data);
4539 		return -1;
4540 	}
4541 	if (!arg_addr) {
4542 		push_args(ctx, arg_len);
4543 		push_args(ctx, arg_data);
4544 		return -1;
4545 	}
4546 	size = arg_data->size;
4547 	/* Bit-mask fill is not supported. */
4548 	if (arg_data->mask)
4549 		goto error;
4550 	if (!ctx->object)
4551 		return len;
4552 
4553 	/* translate bytes string to array. */
4554 	if (str[0] == '0' && ((str[1] == 'x') ||
4555 			(str[1] == 'X'))) {
4556 		str += 2;
4557 		hexlen -= 2;
4558 	}
4559 	if (hexlen > length)
4560 		return -1;
4561 	ret = parse_hex_string(str, hex_tmp, &hexlen);
4562 	if (ret < 0)
4563 		goto error;
4564 	/* Let parse_int() fill length information first. */
4565 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4566 	if (ret < 0)
4567 		goto error;
4568 	push_args(ctx, arg_len);
4569 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4570 	if (ret < 0) {
4571 		pop_args(ctx);
4572 		goto error;
4573 	}
4574 	buf = (uint8_t *)ctx->object + arg_data->offset;
4575 	/* Output buffer is not necessarily NUL-terminated. */
4576 	memcpy(buf, hex_tmp, hexlen);
4577 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4578 	if (ctx->objmask)
4579 		memset((uint8_t *)ctx->objmask + arg_data->offset,
4580 					0xff, hexlen);
4581 	/* Save address if requested. */
4582 	if (arg_addr->size) {
4583 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4584 		       (void *[]){
4585 			(uint8_t *)ctx->object + arg_data->offset
4586 		       },
4587 		       arg_addr->size);
4588 		if (ctx->objmask)
4589 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4590 			       (void *[]){
4591 				(uint8_t *)ctx->objmask + arg_data->offset
4592 			       },
4593 			       arg_addr->size);
4594 	}
4595 	return len;
4596 error:
4597 	push_args(ctx, arg_addr);
4598 	push_args(ctx, arg_len);
4599 	push_args(ctx, arg_data);
4600 	return -1;
4601 
4602 }
4603 
4604 /**
4605  * Parse a MAC address.
4606  *
4607  * Last argument (ctx->args) is retrieved to determine storage size and
4608  * location.
4609  */
4610 static int
4611 parse_mac_addr(struct context *ctx, const struct token *token,
4612 	       const char *str, unsigned int len,
4613 	       void *buf, unsigned int size)
4614 {
4615 	const struct arg *arg = pop_args(ctx);
4616 	struct ether_addr tmp;
4617 	int ret;
4618 
4619 	(void)token;
4620 	/* Argument is expected. */
4621 	if (!arg)
4622 		return -1;
4623 	size = arg->size;
4624 	/* Bit-mask fill is not supported. */
4625 	if (arg->mask || size != sizeof(tmp))
4626 		goto error;
4627 	/* Only network endian is supported. */
4628 	if (!arg->hton)
4629 		goto error;
4630 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4631 	if (ret < 0 || (unsigned int)ret != len)
4632 		goto error;
4633 	if (!ctx->object)
4634 		return len;
4635 	buf = (uint8_t *)ctx->object + arg->offset;
4636 	memcpy(buf, &tmp, size);
4637 	if (ctx->objmask)
4638 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4639 	return len;
4640 error:
4641 	push_args(ctx, arg);
4642 	return -1;
4643 }
4644 
4645 /**
4646  * Parse an IPv4 address.
4647  *
4648  * Last argument (ctx->args) is retrieved to determine storage size and
4649  * location.
4650  */
4651 static int
4652 parse_ipv4_addr(struct context *ctx, const struct token *token,
4653 		const char *str, unsigned int len,
4654 		void *buf, unsigned int size)
4655 {
4656 	const struct arg *arg = pop_args(ctx);
4657 	char str2[len + 1];
4658 	struct in_addr tmp;
4659 	int ret;
4660 
4661 	/* Argument is expected. */
4662 	if (!arg)
4663 		return -1;
4664 	size = arg->size;
4665 	/* Bit-mask fill is not supported. */
4666 	if (arg->mask || size != sizeof(tmp))
4667 		goto error;
4668 	/* Only network endian is supported. */
4669 	if (!arg->hton)
4670 		goto error;
4671 	memcpy(str2, str, len);
4672 	str2[len] = '\0';
4673 	ret = inet_pton(AF_INET, str2, &tmp);
4674 	if (ret != 1) {
4675 		/* Attempt integer parsing. */
4676 		push_args(ctx, arg);
4677 		return parse_int(ctx, token, str, len, buf, size);
4678 	}
4679 	if (!ctx->object)
4680 		return len;
4681 	buf = (uint8_t *)ctx->object + arg->offset;
4682 	memcpy(buf, &tmp, size);
4683 	if (ctx->objmask)
4684 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4685 	return len;
4686 error:
4687 	push_args(ctx, arg);
4688 	return -1;
4689 }
4690 
4691 /**
4692  * Parse an IPv6 address.
4693  *
4694  * Last argument (ctx->args) is retrieved to determine storage size and
4695  * location.
4696  */
4697 static int
4698 parse_ipv6_addr(struct context *ctx, const struct token *token,
4699 		const char *str, unsigned int len,
4700 		void *buf, unsigned int size)
4701 {
4702 	const struct arg *arg = pop_args(ctx);
4703 	char str2[len + 1];
4704 	struct in6_addr tmp;
4705 	int ret;
4706 
4707 	(void)token;
4708 	/* Argument is expected. */
4709 	if (!arg)
4710 		return -1;
4711 	size = arg->size;
4712 	/* Bit-mask fill is not supported. */
4713 	if (arg->mask || size != sizeof(tmp))
4714 		goto error;
4715 	/* Only network endian is supported. */
4716 	if (!arg->hton)
4717 		goto error;
4718 	memcpy(str2, str, len);
4719 	str2[len] = '\0';
4720 	ret = inet_pton(AF_INET6, str2, &tmp);
4721 	if (ret != 1)
4722 		goto error;
4723 	if (!ctx->object)
4724 		return len;
4725 	buf = (uint8_t *)ctx->object + arg->offset;
4726 	memcpy(buf, &tmp, size);
4727 	if (ctx->objmask)
4728 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4729 	return len;
4730 error:
4731 	push_args(ctx, arg);
4732 	return -1;
4733 }
4734 
4735 /** Boolean values (even indices stand for false). */
4736 static const char *const boolean_name[] = {
4737 	"0", "1",
4738 	"false", "true",
4739 	"no", "yes",
4740 	"N", "Y",
4741 	"off", "on",
4742 	NULL,
4743 };
4744 
4745 /**
4746  * Parse a boolean value.
4747  *
4748  * Last argument (ctx->args) is retrieved to determine storage size and
4749  * location.
4750  */
4751 static int
4752 parse_boolean(struct context *ctx, const struct token *token,
4753 	      const char *str, unsigned int len,
4754 	      void *buf, unsigned int size)
4755 {
4756 	const struct arg *arg = pop_args(ctx);
4757 	unsigned int i;
4758 	int ret;
4759 
4760 	/* Argument is expected. */
4761 	if (!arg)
4762 		return -1;
4763 	for (i = 0; boolean_name[i]; ++i)
4764 		if (!strcmp_partial(boolean_name[i], str, len))
4765 			break;
4766 	/* Process token as integer. */
4767 	if (boolean_name[i])
4768 		str = i & 1 ? "1" : "0";
4769 	push_args(ctx, arg);
4770 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4771 	return ret > 0 ? (int)len : ret;
4772 }
4773 
4774 /** Parse port and update context. */
4775 static int
4776 parse_port(struct context *ctx, const struct token *token,
4777 	   const char *str, unsigned int len,
4778 	   void *buf, unsigned int size)
4779 {
4780 	struct buffer *out = &(struct buffer){ .port = 0 };
4781 	int ret;
4782 
4783 	if (buf)
4784 		out = buf;
4785 	else {
4786 		ctx->objdata = 0;
4787 		ctx->object = out;
4788 		ctx->objmask = NULL;
4789 		size = sizeof(*out);
4790 	}
4791 	ret = parse_int(ctx, token, str, len, out, size);
4792 	if (ret >= 0)
4793 		ctx->port = out->port;
4794 	if (!buf)
4795 		ctx->object = NULL;
4796 	return ret;
4797 }
4798 
4799 /** No completion. */
4800 static int
4801 comp_none(struct context *ctx, const struct token *token,
4802 	  unsigned int ent, char *buf, unsigned int size)
4803 {
4804 	(void)ctx;
4805 	(void)token;
4806 	(void)ent;
4807 	(void)buf;
4808 	(void)size;
4809 	return 0;
4810 }
4811 
4812 /** Complete boolean values. */
4813 static int
4814 comp_boolean(struct context *ctx, const struct token *token,
4815 	     unsigned int ent, char *buf, unsigned int size)
4816 {
4817 	unsigned int i;
4818 
4819 	(void)ctx;
4820 	(void)token;
4821 	for (i = 0; boolean_name[i]; ++i)
4822 		if (buf && i == ent)
4823 			return strlcpy(buf, boolean_name[i], size);
4824 	if (buf)
4825 		return -1;
4826 	return i;
4827 }
4828 
4829 /** Complete action names. */
4830 static int
4831 comp_action(struct context *ctx, const struct token *token,
4832 	    unsigned int ent, char *buf, unsigned int size)
4833 {
4834 	unsigned int i;
4835 
4836 	(void)ctx;
4837 	(void)token;
4838 	for (i = 0; next_action[i]; ++i)
4839 		if (buf && i == ent)
4840 			return strlcpy(buf, token_list[next_action[i]].name,
4841 				       size);
4842 	if (buf)
4843 		return -1;
4844 	return i;
4845 }
4846 
4847 /** Complete available ports. */
4848 static int
4849 comp_port(struct context *ctx, const struct token *token,
4850 	  unsigned int ent, char *buf, unsigned int size)
4851 {
4852 	unsigned int i = 0;
4853 	portid_t p;
4854 
4855 	(void)ctx;
4856 	(void)token;
4857 	RTE_ETH_FOREACH_DEV(p) {
4858 		if (buf && i == ent)
4859 			return snprintf(buf, size, "%u", p);
4860 		++i;
4861 	}
4862 	if (buf)
4863 		return -1;
4864 	return i;
4865 }
4866 
4867 /** Complete available rule IDs. */
4868 static int
4869 comp_rule_id(struct context *ctx, const struct token *token,
4870 	     unsigned int ent, char *buf, unsigned int size)
4871 {
4872 	unsigned int i = 0;
4873 	struct rte_port *port;
4874 	struct port_flow *pf;
4875 
4876 	(void)token;
4877 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4878 	    ctx->port == (portid_t)RTE_PORT_ALL)
4879 		return -1;
4880 	port = &ports[ctx->port];
4881 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4882 		if (buf && i == ent)
4883 			return snprintf(buf, size, "%u", pf->id);
4884 		++i;
4885 	}
4886 	if (buf)
4887 		return -1;
4888 	return i;
4889 }
4890 
4891 /** Complete type field for RSS action. */
4892 static int
4893 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4894 			unsigned int ent, char *buf, unsigned int size)
4895 {
4896 	unsigned int i;
4897 
4898 	(void)ctx;
4899 	(void)token;
4900 	for (i = 0; rss_type_table[i].str; ++i)
4901 		;
4902 	if (!buf)
4903 		return i + 1;
4904 	if (ent < i)
4905 		return strlcpy(buf, rss_type_table[ent].str, size);
4906 	if (ent == i)
4907 		return snprintf(buf, size, "end");
4908 	return -1;
4909 }
4910 
4911 /** Complete queue field for RSS action. */
4912 static int
4913 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4914 			 unsigned int ent, char *buf, unsigned int size)
4915 {
4916 	(void)ctx;
4917 	(void)token;
4918 	if (!buf)
4919 		return nb_rxq + 1;
4920 	if (ent < nb_rxq)
4921 		return snprintf(buf, size, "%u", ent);
4922 	if (ent == nb_rxq)
4923 		return snprintf(buf, size, "end");
4924 	return -1;
4925 }
4926 
4927 /** Internal context. */
4928 static struct context cmd_flow_context;
4929 
4930 /** Global parser instance (cmdline API). */
4931 cmdline_parse_inst_t cmd_flow;
4932 
4933 /** Initialize context. */
4934 static void
4935 cmd_flow_context_init(struct context *ctx)
4936 {
4937 	/* A full memset() is not necessary. */
4938 	ctx->curr = ZERO;
4939 	ctx->prev = ZERO;
4940 	ctx->next_num = 0;
4941 	ctx->args_num = 0;
4942 	ctx->eol = 0;
4943 	ctx->last = 0;
4944 	ctx->port = 0;
4945 	ctx->objdata = 0;
4946 	ctx->object = NULL;
4947 	ctx->objmask = NULL;
4948 }
4949 
4950 /** Parse a token (cmdline API). */
4951 static int
4952 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4953 	       unsigned int size)
4954 {
4955 	struct context *ctx = &cmd_flow_context;
4956 	const struct token *token;
4957 	const enum index *list;
4958 	int len;
4959 	int i;
4960 
4961 	(void)hdr;
4962 	token = &token_list[ctx->curr];
4963 	/* Check argument length. */
4964 	ctx->eol = 0;
4965 	ctx->last = 1;
4966 	for (len = 0; src[len]; ++len)
4967 		if (src[len] == '#' || isspace(src[len]))
4968 			break;
4969 	if (!len)
4970 		return -1;
4971 	/* Last argument and EOL detection. */
4972 	for (i = len; src[i]; ++i)
4973 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4974 			break;
4975 		else if (!isspace(src[i])) {
4976 			ctx->last = 0;
4977 			break;
4978 		}
4979 	for (; src[i]; ++i)
4980 		if (src[i] == '\r' || src[i] == '\n') {
4981 			ctx->eol = 1;
4982 			break;
4983 		}
4984 	/* Initialize context if necessary. */
4985 	if (!ctx->next_num) {
4986 		if (!token->next)
4987 			return 0;
4988 		ctx->next[ctx->next_num++] = token->next[0];
4989 	}
4990 	/* Process argument through candidates. */
4991 	ctx->prev = ctx->curr;
4992 	list = ctx->next[ctx->next_num - 1];
4993 	for (i = 0; list[i]; ++i) {
4994 		const struct token *next = &token_list[list[i]];
4995 		int tmp;
4996 
4997 		ctx->curr = list[i];
4998 		if (next->call)
4999 			tmp = next->call(ctx, next, src, len, result, size);
5000 		else
5001 			tmp = parse_default(ctx, next, src, len, result, size);
5002 		if (tmp == -1 || tmp != len)
5003 			continue;
5004 		token = next;
5005 		break;
5006 	}
5007 	if (!list[i])
5008 		return -1;
5009 	--ctx->next_num;
5010 	/* Push subsequent tokens if any. */
5011 	if (token->next)
5012 		for (i = 0; token->next[i]; ++i) {
5013 			if (ctx->next_num == RTE_DIM(ctx->next))
5014 				return -1;
5015 			ctx->next[ctx->next_num++] = token->next[i];
5016 		}
5017 	/* Push arguments if any. */
5018 	if (token->args)
5019 		for (i = 0; token->args[i]; ++i) {
5020 			if (ctx->args_num == RTE_DIM(ctx->args))
5021 				return -1;
5022 			ctx->args[ctx->args_num++] = token->args[i];
5023 		}
5024 	return len;
5025 }
5026 
5027 /** Return number of completion entries (cmdline API). */
5028 static int
5029 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5030 {
5031 	struct context *ctx = &cmd_flow_context;
5032 	const struct token *token = &token_list[ctx->curr];
5033 	const enum index *list;
5034 	int i;
5035 
5036 	(void)hdr;
5037 	/* Count number of tokens in current list. */
5038 	if (ctx->next_num)
5039 		list = ctx->next[ctx->next_num - 1];
5040 	else
5041 		list = token->next[0];
5042 	for (i = 0; list[i]; ++i)
5043 		;
5044 	if (!i)
5045 		return 0;
5046 	/*
5047 	 * If there is a single token, use its completion callback, otherwise
5048 	 * return the number of entries.
5049 	 */
5050 	token = &token_list[list[0]];
5051 	if (i == 1 && token->comp) {
5052 		/* Save index for cmd_flow_get_help(). */
5053 		ctx->prev = list[0];
5054 		return token->comp(ctx, token, 0, NULL, 0);
5055 	}
5056 	return i;
5057 }
5058 
5059 /** Return a completion entry (cmdline API). */
5060 static int
5061 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5062 			  char *dst, unsigned int size)
5063 {
5064 	struct context *ctx = &cmd_flow_context;
5065 	const struct token *token = &token_list[ctx->curr];
5066 	const enum index *list;
5067 	int i;
5068 
5069 	(void)hdr;
5070 	/* Count number of tokens in current list. */
5071 	if (ctx->next_num)
5072 		list = ctx->next[ctx->next_num - 1];
5073 	else
5074 		list = token->next[0];
5075 	for (i = 0; list[i]; ++i)
5076 		;
5077 	if (!i)
5078 		return -1;
5079 	/* If there is a single token, use its completion callback. */
5080 	token = &token_list[list[0]];
5081 	if (i == 1 && token->comp) {
5082 		/* Save index for cmd_flow_get_help(). */
5083 		ctx->prev = list[0];
5084 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5085 	}
5086 	/* Otherwise make sure the index is valid and use defaults. */
5087 	if (index >= i)
5088 		return -1;
5089 	token = &token_list[list[index]];
5090 	strlcpy(dst, token->name, size);
5091 	/* Save index for cmd_flow_get_help(). */
5092 	ctx->prev = list[index];
5093 	return 0;
5094 }
5095 
5096 /** Populate help strings for current token (cmdline API). */
5097 static int
5098 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5099 {
5100 	struct context *ctx = &cmd_flow_context;
5101 	const struct token *token = &token_list[ctx->prev];
5102 
5103 	(void)hdr;
5104 	if (!size)
5105 		return -1;
5106 	/* Set token type and update global help with details. */
5107 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5108 	if (token->help)
5109 		cmd_flow.help_str = token->help;
5110 	else
5111 		cmd_flow.help_str = token->name;
5112 	return 0;
5113 }
5114 
5115 /** Token definition template (cmdline API). */
5116 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5117 	.ops = &(struct cmdline_token_ops){
5118 		.parse = cmd_flow_parse,
5119 		.complete_get_nb = cmd_flow_complete_get_nb,
5120 		.complete_get_elt = cmd_flow_complete_get_elt,
5121 		.get_help = cmd_flow_get_help,
5122 	},
5123 	.offset = 0,
5124 };
5125 
5126 /** Populate the next dynamic token. */
5127 static void
5128 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5129 	     cmdline_parse_token_hdr_t **hdr_inst)
5130 {
5131 	struct context *ctx = &cmd_flow_context;
5132 
5133 	/* Always reinitialize context before requesting the first token. */
5134 	if (!(hdr_inst - cmd_flow.tokens))
5135 		cmd_flow_context_init(ctx);
5136 	/* Return NULL when no more tokens are expected. */
5137 	if (!ctx->next_num && ctx->curr) {
5138 		*hdr = NULL;
5139 		return;
5140 	}
5141 	/* Determine if command should end here. */
5142 	if (ctx->eol && ctx->last && ctx->next_num) {
5143 		const enum index *list = ctx->next[ctx->next_num - 1];
5144 		int i;
5145 
5146 		for (i = 0; list[i]; ++i) {
5147 			if (list[i] != END)
5148 				continue;
5149 			*hdr = NULL;
5150 			return;
5151 		}
5152 	}
5153 	*hdr = &cmd_flow_token_hdr;
5154 }
5155 
5156 /** Dispatch parsed buffer to function calls. */
5157 static void
5158 cmd_flow_parsed(const struct buffer *in)
5159 {
5160 	switch (in->command) {
5161 	case VALIDATE:
5162 		port_flow_validate(in->port, &in->args.vc.attr,
5163 				   in->args.vc.pattern, in->args.vc.actions);
5164 		break;
5165 	case CREATE:
5166 		port_flow_create(in->port, &in->args.vc.attr,
5167 				 in->args.vc.pattern, in->args.vc.actions);
5168 		break;
5169 	case DESTROY:
5170 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5171 				  in->args.destroy.rule);
5172 		break;
5173 	case FLUSH:
5174 		port_flow_flush(in->port);
5175 		break;
5176 	case QUERY:
5177 		port_flow_query(in->port, in->args.query.rule,
5178 				&in->args.query.action);
5179 		break;
5180 	case LIST:
5181 		port_flow_list(in->port, in->args.list.group_n,
5182 			       in->args.list.group);
5183 		break;
5184 	case ISOLATE:
5185 		port_flow_isolate(in->port, in->args.isolate.set);
5186 		break;
5187 	default:
5188 		break;
5189 	}
5190 }
5191 
5192 /** Token generator and output processing callback (cmdline API). */
5193 static void
5194 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5195 {
5196 	if (cl == NULL)
5197 		cmd_flow_tok(arg0, arg2);
5198 	else
5199 		cmd_flow_parsed(arg0);
5200 }
5201 
5202 /** Global parser instance (cmdline API). */
5203 cmdline_parse_inst_t cmd_flow = {
5204 	.f = cmd_flow_cb,
5205 	.data = NULL, /**< Unused. */
5206 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5207 	.tokens = {
5208 		NULL,
5209 	}, /**< Tokens are returned by cmd_flow_tok(). */
5210 };
5211