xref: /dpdk/app/test-pmd/cmdline_flow.c (revision a903c049befe0c3dc34612dbfb829e05203f9206)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_RAW,
95 	ITEM_RAW_RELATIVE,
96 	ITEM_RAW_SEARCH,
97 	ITEM_RAW_OFFSET,
98 	ITEM_RAW_LIMIT,
99 	ITEM_RAW_PATTERN,
100 	ITEM_ETH,
101 	ITEM_ETH_DST,
102 	ITEM_ETH_SRC,
103 	ITEM_ETH_TYPE,
104 	ITEM_VLAN,
105 	ITEM_VLAN_TCI,
106 	ITEM_VLAN_PCP,
107 	ITEM_VLAN_DEI,
108 	ITEM_VLAN_VID,
109 	ITEM_VLAN_INNER_TYPE,
110 	ITEM_IPV4,
111 	ITEM_IPV4_TOS,
112 	ITEM_IPV4_TTL,
113 	ITEM_IPV4_PROTO,
114 	ITEM_IPV4_SRC,
115 	ITEM_IPV4_DST,
116 	ITEM_IPV6,
117 	ITEM_IPV6_TC,
118 	ITEM_IPV6_FLOW,
119 	ITEM_IPV6_PROTO,
120 	ITEM_IPV6_HOP,
121 	ITEM_IPV6_SRC,
122 	ITEM_IPV6_DST,
123 	ITEM_ICMP,
124 	ITEM_ICMP_TYPE,
125 	ITEM_ICMP_CODE,
126 	ITEM_UDP,
127 	ITEM_UDP_SRC,
128 	ITEM_UDP_DST,
129 	ITEM_TCP,
130 	ITEM_TCP_SRC,
131 	ITEM_TCP_DST,
132 	ITEM_TCP_FLAGS,
133 	ITEM_SCTP,
134 	ITEM_SCTP_SRC,
135 	ITEM_SCTP_DST,
136 	ITEM_SCTP_TAG,
137 	ITEM_SCTP_CKSUM,
138 	ITEM_VXLAN,
139 	ITEM_VXLAN_VNI,
140 	ITEM_E_TAG,
141 	ITEM_E_TAG_GRP_ECID_B,
142 	ITEM_NVGRE,
143 	ITEM_NVGRE_TNI,
144 	ITEM_MPLS,
145 	ITEM_MPLS_LABEL,
146 	ITEM_GRE,
147 	ITEM_GRE_PROTO,
148 	ITEM_FUZZY,
149 	ITEM_FUZZY_THRESH,
150 	ITEM_GTP,
151 	ITEM_GTP_TEID,
152 	ITEM_GTPC,
153 	ITEM_GTPU,
154 	ITEM_GENEVE,
155 	ITEM_GENEVE_VNI,
156 	ITEM_GENEVE_PROTO,
157 	ITEM_VXLAN_GPE,
158 	ITEM_VXLAN_GPE_VNI,
159 	ITEM_ARP_ETH_IPV4,
160 	ITEM_ARP_ETH_IPV4_SHA,
161 	ITEM_ARP_ETH_IPV4_SPA,
162 	ITEM_ARP_ETH_IPV4_THA,
163 	ITEM_ARP_ETH_IPV4_TPA,
164 	ITEM_IPV6_EXT,
165 	ITEM_IPV6_EXT_NEXT_HDR,
166 	ITEM_ICMP6,
167 	ITEM_ICMP6_TYPE,
168 	ITEM_ICMP6_CODE,
169 	ITEM_ICMP6_ND_NS,
170 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
171 	ITEM_ICMP6_ND_NA,
172 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
173 	ITEM_ICMP6_ND_OPT,
174 	ITEM_ICMP6_ND_OPT_TYPE,
175 	ITEM_ICMP6_ND_OPT_SLA_ETH,
176 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
177 	ITEM_ICMP6_ND_OPT_TLA_ETH,
178 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
179 
180 	/* Validate/create actions. */
181 	ACTIONS,
182 	ACTION_NEXT,
183 	ACTION_END,
184 	ACTION_VOID,
185 	ACTION_PASSTHRU,
186 	ACTION_MARK,
187 	ACTION_MARK_ID,
188 	ACTION_FLAG,
189 	ACTION_QUEUE,
190 	ACTION_QUEUE_INDEX,
191 	ACTION_DROP,
192 	ACTION_COUNT,
193 	ACTION_RSS,
194 	ACTION_RSS_FUNC,
195 	ACTION_RSS_LEVEL,
196 	ACTION_RSS_FUNC_DEFAULT,
197 	ACTION_RSS_FUNC_TOEPLITZ,
198 	ACTION_RSS_FUNC_SIMPLE_XOR,
199 	ACTION_RSS_TYPES,
200 	ACTION_RSS_TYPE,
201 	ACTION_RSS_KEY,
202 	ACTION_RSS_KEY_LEN,
203 	ACTION_RSS_QUEUES,
204 	ACTION_RSS_QUEUE,
205 	ACTION_PF,
206 	ACTION_VF,
207 	ACTION_VF_ORIGINAL,
208 	ACTION_VF_ID,
209 	ACTION_PHY_PORT,
210 	ACTION_PHY_PORT_ORIGINAL,
211 	ACTION_PHY_PORT_INDEX,
212 	ACTION_PORT_ID,
213 	ACTION_PORT_ID_ORIGINAL,
214 	ACTION_PORT_ID_ID,
215 	ACTION_METER,
216 	ACTION_METER_ID,
217 };
218 
219 /** Maximum size for pattern in struct rte_flow_item_raw. */
220 #define ITEM_RAW_PATTERN_SIZE 40
221 
222 /** Storage size for struct rte_flow_item_raw including pattern. */
223 #define ITEM_RAW_SIZE \
224 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
225 
226 /** Maximum number of queue indices in struct rte_flow_action_rss. */
227 #define ACTION_RSS_QUEUE_NUM 32
228 
229 /** Storage for struct rte_flow_action_rss including external data. */
230 struct action_rss_data {
231 	struct rte_flow_action_rss conf;
232 	uint8_t key[RSS_HASH_KEY_LENGTH];
233 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
234 };
235 
236 /** Maximum number of subsequent tokens and arguments on the stack. */
237 #define CTX_STACK_SIZE 16
238 
239 /** Parser context. */
240 struct context {
241 	/** Stack of subsequent token lists to process. */
242 	const enum index *next[CTX_STACK_SIZE];
243 	/** Arguments for stacked tokens. */
244 	const void *args[CTX_STACK_SIZE];
245 	enum index curr; /**< Current token index. */
246 	enum index prev; /**< Index of the last token seen. */
247 	int next_num; /**< Number of entries in next[]. */
248 	int args_num; /**< Number of entries in args[]. */
249 	uint32_t eol:1; /**< EOL has been detected. */
250 	uint32_t last:1; /**< No more arguments. */
251 	portid_t port; /**< Current port ID (for completions). */
252 	uint32_t objdata; /**< Object-specific data. */
253 	void *object; /**< Address of current object for relative offsets. */
254 	void *objmask; /**< Object a full mask must be written to. */
255 };
256 
257 /** Token argument. */
258 struct arg {
259 	uint32_t hton:1; /**< Use network byte ordering. */
260 	uint32_t sign:1; /**< Value is signed. */
261 	uint32_t bounded:1; /**< Value is bounded. */
262 	uintmax_t min; /**< Minimum value if bounded. */
263 	uintmax_t max; /**< Maximum value if bounded. */
264 	uint32_t offset; /**< Relative offset from ctx->object. */
265 	uint32_t size; /**< Field size. */
266 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
267 };
268 
269 /** Parser token definition. */
270 struct token {
271 	/** Type displayed during completion (defaults to "TOKEN"). */
272 	const char *type;
273 	/** Help displayed during completion (defaults to token name). */
274 	const char *help;
275 	/** Private data used by parser functions. */
276 	const void *priv;
277 	/**
278 	 * Lists of subsequent tokens to push on the stack. Each call to the
279 	 * parser consumes the last entry of that stack.
280 	 */
281 	const enum index *const *next;
282 	/** Arguments stack for subsequent tokens that need them. */
283 	const struct arg *const *args;
284 	/**
285 	 * Token-processing callback, returns -1 in case of error, the
286 	 * length of the matched string otherwise. If NULL, attempts to
287 	 * match the token name.
288 	 *
289 	 * If buf is not NULL, the result should be stored in it according
290 	 * to context. An error is returned if not large enough.
291 	 */
292 	int (*call)(struct context *ctx, const struct token *token,
293 		    const char *str, unsigned int len,
294 		    void *buf, unsigned int size);
295 	/**
296 	 * Callback that provides possible values for this token, used for
297 	 * completion. Returns -1 in case of error, the number of possible
298 	 * values otherwise. If NULL, the token name is used.
299 	 *
300 	 * If buf is not NULL, entry index ent is written to buf and the
301 	 * full length of the entry is returned (same behavior as
302 	 * snprintf()).
303 	 */
304 	int (*comp)(struct context *ctx, const struct token *token,
305 		    unsigned int ent, char *buf, unsigned int size);
306 	/** Mandatory token name, no default value. */
307 	const char *name;
308 };
309 
310 /** Static initializer for the next field. */
311 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
312 
313 /** Static initializer for a NEXT() entry. */
314 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
315 
316 /** Static initializer for the args field. */
317 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
318 
319 /** Static initializer for ARGS() to target a field. */
320 #define ARGS_ENTRY(s, f) \
321 	(&(const struct arg){ \
322 		.offset = offsetof(s, f), \
323 		.size = sizeof(((s *)0)->f), \
324 	})
325 
326 /** Static initializer for ARGS() to target a bit-field. */
327 #define ARGS_ENTRY_BF(s, f, b) \
328 	(&(const struct arg){ \
329 		.size = sizeof(s), \
330 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
331 	})
332 
333 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
334 #define ARGS_ENTRY_MASK(s, f, m) \
335 	(&(const struct arg){ \
336 		.offset = offsetof(s, f), \
337 		.size = sizeof(((s *)0)->f), \
338 		.mask = (const void *)(m), \
339 	})
340 
341 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
342 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
343 	(&(const struct arg){ \
344 		.hton = 1, \
345 		.offset = offsetof(s, f), \
346 		.size = sizeof(((s *)0)->f), \
347 		.mask = (const void *)(m), \
348 	})
349 
350 /** Static initializer for ARGS() to target a pointer. */
351 #define ARGS_ENTRY_PTR(s, f) \
352 	(&(const struct arg){ \
353 		.size = sizeof(*((s *)0)->f), \
354 	})
355 
356 /** Static initializer for ARGS() with arbitrary offset and size. */
357 #define ARGS_ENTRY_ARB(o, s) \
358 	(&(const struct arg){ \
359 		.offset = (o), \
360 		.size = (s), \
361 	})
362 
363 /** Same as ARGS_ENTRY_ARB() with bounded values. */
364 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
365 	(&(const struct arg){ \
366 		.bounded = 1, \
367 		.min = (i), \
368 		.max = (a), \
369 		.offset = (o), \
370 		.size = (s), \
371 	})
372 
373 /** Same as ARGS_ENTRY() using network byte ordering. */
374 #define ARGS_ENTRY_HTON(s, f) \
375 	(&(const struct arg){ \
376 		.hton = 1, \
377 		.offset = offsetof(s, f), \
378 		.size = sizeof(((s *)0)->f), \
379 	})
380 
381 /** Parser output buffer layout expected by cmd_flow_parsed(). */
382 struct buffer {
383 	enum index command; /**< Flow command. */
384 	portid_t port; /**< Affected port ID. */
385 	union {
386 		struct {
387 			struct rte_flow_attr attr;
388 			struct rte_flow_item *pattern;
389 			struct rte_flow_action *actions;
390 			uint32_t pattern_n;
391 			uint32_t actions_n;
392 			uint8_t *data;
393 		} vc; /**< Validate/create arguments. */
394 		struct {
395 			uint32_t *rule;
396 			uint32_t rule_n;
397 		} destroy; /**< Destroy arguments. */
398 		struct {
399 			uint32_t rule;
400 			enum rte_flow_action_type action;
401 		} query; /**< Query arguments. */
402 		struct {
403 			uint32_t *group;
404 			uint32_t group_n;
405 		} list; /**< List arguments. */
406 		struct {
407 			int set;
408 		} isolate; /**< Isolated mode arguments. */
409 	} args; /**< Command arguments. */
410 };
411 
412 /** Private data for pattern items. */
413 struct parse_item_priv {
414 	enum rte_flow_item_type type; /**< Item type. */
415 	uint32_t size; /**< Size of item specification structure. */
416 };
417 
418 #define PRIV_ITEM(t, s) \
419 	(&(const struct parse_item_priv){ \
420 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
421 		.size = s, \
422 	})
423 
424 /** Private data for actions. */
425 struct parse_action_priv {
426 	enum rte_flow_action_type type; /**< Action type. */
427 	uint32_t size; /**< Size of action configuration structure. */
428 };
429 
430 #define PRIV_ACTION(t, s) \
431 	(&(const struct parse_action_priv){ \
432 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
433 		.size = s, \
434 	})
435 
436 static const enum index next_vc_attr[] = {
437 	GROUP,
438 	PRIORITY,
439 	INGRESS,
440 	EGRESS,
441 	TRANSFER,
442 	PATTERN,
443 	ZERO,
444 };
445 
446 static const enum index next_destroy_attr[] = {
447 	DESTROY_RULE,
448 	END,
449 	ZERO,
450 };
451 
452 static const enum index next_list_attr[] = {
453 	LIST_GROUP,
454 	END,
455 	ZERO,
456 };
457 
458 static const enum index item_param[] = {
459 	ITEM_PARAM_IS,
460 	ITEM_PARAM_SPEC,
461 	ITEM_PARAM_LAST,
462 	ITEM_PARAM_MASK,
463 	ITEM_PARAM_PREFIX,
464 	ZERO,
465 };
466 
467 static const enum index next_item[] = {
468 	ITEM_END,
469 	ITEM_VOID,
470 	ITEM_INVERT,
471 	ITEM_ANY,
472 	ITEM_PF,
473 	ITEM_VF,
474 	ITEM_PHY_PORT,
475 	ITEM_PORT_ID,
476 	ITEM_RAW,
477 	ITEM_ETH,
478 	ITEM_VLAN,
479 	ITEM_IPV4,
480 	ITEM_IPV6,
481 	ITEM_ICMP,
482 	ITEM_UDP,
483 	ITEM_TCP,
484 	ITEM_SCTP,
485 	ITEM_VXLAN,
486 	ITEM_E_TAG,
487 	ITEM_NVGRE,
488 	ITEM_MPLS,
489 	ITEM_GRE,
490 	ITEM_FUZZY,
491 	ITEM_GTP,
492 	ITEM_GTPC,
493 	ITEM_GTPU,
494 	ITEM_GENEVE,
495 	ITEM_VXLAN_GPE,
496 	ITEM_ARP_ETH_IPV4,
497 	ITEM_IPV6_EXT,
498 	ITEM_ICMP6,
499 	ITEM_ICMP6_ND_NS,
500 	ITEM_ICMP6_ND_NA,
501 	ITEM_ICMP6_ND_OPT,
502 	ITEM_ICMP6_ND_OPT_SLA_ETH,
503 	ITEM_ICMP6_ND_OPT_TLA_ETH,
504 	ZERO,
505 };
506 
507 static const enum index item_fuzzy[] = {
508 	ITEM_FUZZY_THRESH,
509 	ITEM_NEXT,
510 	ZERO,
511 };
512 
513 static const enum index item_any[] = {
514 	ITEM_ANY_NUM,
515 	ITEM_NEXT,
516 	ZERO,
517 };
518 
519 static const enum index item_vf[] = {
520 	ITEM_VF_ID,
521 	ITEM_NEXT,
522 	ZERO,
523 };
524 
525 static const enum index item_phy_port[] = {
526 	ITEM_PHY_PORT_INDEX,
527 	ITEM_NEXT,
528 	ZERO,
529 };
530 
531 static const enum index item_port_id[] = {
532 	ITEM_PORT_ID_ID,
533 	ITEM_NEXT,
534 	ZERO,
535 };
536 
537 static const enum index item_raw[] = {
538 	ITEM_RAW_RELATIVE,
539 	ITEM_RAW_SEARCH,
540 	ITEM_RAW_OFFSET,
541 	ITEM_RAW_LIMIT,
542 	ITEM_RAW_PATTERN,
543 	ITEM_NEXT,
544 	ZERO,
545 };
546 
547 static const enum index item_eth[] = {
548 	ITEM_ETH_DST,
549 	ITEM_ETH_SRC,
550 	ITEM_ETH_TYPE,
551 	ITEM_NEXT,
552 	ZERO,
553 };
554 
555 static const enum index item_vlan[] = {
556 	ITEM_VLAN_TCI,
557 	ITEM_VLAN_PCP,
558 	ITEM_VLAN_DEI,
559 	ITEM_VLAN_VID,
560 	ITEM_VLAN_INNER_TYPE,
561 	ITEM_NEXT,
562 	ZERO,
563 };
564 
565 static const enum index item_ipv4[] = {
566 	ITEM_IPV4_TOS,
567 	ITEM_IPV4_TTL,
568 	ITEM_IPV4_PROTO,
569 	ITEM_IPV4_SRC,
570 	ITEM_IPV4_DST,
571 	ITEM_NEXT,
572 	ZERO,
573 };
574 
575 static const enum index item_ipv6[] = {
576 	ITEM_IPV6_TC,
577 	ITEM_IPV6_FLOW,
578 	ITEM_IPV6_PROTO,
579 	ITEM_IPV6_HOP,
580 	ITEM_IPV6_SRC,
581 	ITEM_IPV6_DST,
582 	ITEM_NEXT,
583 	ZERO,
584 };
585 
586 static const enum index item_icmp[] = {
587 	ITEM_ICMP_TYPE,
588 	ITEM_ICMP_CODE,
589 	ITEM_NEXT,
590 	ZERO,
591 };
592 
593 static const enum index item_udp[] = {
594 	ITEM_UDP_SRC,
595 	ITEM_UDP_DST,
596 	ITEM_NEXT,
597 	ZERO,
598 };
599 
600 static const enum index item_tcp[] = {
601 	ITEM_TCP_SRC,
602 	ITEM_TCP_DST,
603 	ITEM_TCP_FLAGS,
604 	ITEM_NEXT,
605 	ZERO,
606 };
607 
608 static const enum index item_sctp[] = {
609 	ITEM_SCTP_SRC,
610 	ITEM_SCTP_DST,
611 	ITEM_SCTP_TAG,
612 	ITEM_SCTP_CKSUM,
613 	ITEM_NEXT,
614 	ZERO,
615 };
616 
617 static const enum index item_vxlan[] = {
618 	ITEM_VXLAN_VNI,
619 	ITEM_NEXT,
620 	ZERO,
621 };
622 
623 static const enum index item_e_tag[] = {
624 	ITEM_E_TAG_GRP_ECID_B,
625 	ITEM_NEXT,
626 	ZERO,
627 };
628 
629 static const enum index item_nvgre[] = {
630 	ITEM_NVGRE_TNI,
631 	ITEM_NEXT,
632 	ZERO,
633 };
634 
635 static const enum index item_mpls[] = {
636 	ITEM_MPLS_LABEL,
637 	ITEM_NEXT,
638 	ZERO,
639 };
640 
641 static const enum index item_gre[] = {
642 	ITEM_GRE_PROTO,
643 	ITEM_NEXT,
644 	ZERO,
645 };
646 
647 static const enum index item_gtp[] = {
648 	ITEM_GTP_TEID,
649 	ITEM_NEXT,
650 	ZERO,
651 };
652 
653 static const enum index item_geneve[] = {
654 	ITEM_GENEVE_VNI,
655 	ITEM_GENEVE_PROTO,
656 	ITEM_NEXT,
657 	ZERO,
658 };
659 
660 static const enum index item_vxlan_gpe[] = {
661 	ITEM_VXLAN_GPE_VNI,
662 	ITEM_NEXT,
663 	ZERO,
664 };
665 
666 static const enum index item_arp_eth_ipv4[] = {
667 	ITEM_ARP_ETH_IPV4_SHA,
668 	ITEM_ARP_ETH_IPV4_SPA,
669 	ITEM_ARP_ETH_IPV4_THA,
670 	ITEM_ARP_ETH_IPV4_TPA,
671 	ITEM_NEXT,
672 	ZERO,
673 };
674 
675 static const enum index item_ipv6_ext[] = {
676 	ITEM_IPV6_EXT_NEXT_HDR,
677 	ITEM_NEXT,
678 	ZERO,
679 };
680 
681 static const enum index item_icmp6[] = {
682 	ITEM_ICMP6_TYPE,
683 	ITEM_ICMP6_CODE,
684 	ITEM_NEXT,
685 	ZERO,
686 };
687 
688 static const enum index item_icmp6_nd_ns[] = {
689 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
690 	ITEM_NEXT,
691 	ZERO,
692 };
693 
694 static const enum index item_icmp6_nd_na[] = {
695 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
696 	ITEM_NEXT,
697 	ZERO,
698 };
699 
700 static const enum index item_icmp6_nd_opt[] = {
701 	ITEM_ICMP6_ND_OPT_TYPE,
702 	ITEM_NEXT,
703 	ZERO,
704 };
705 
706 static const enum index item_icmp6_nd_opt_sla_eth[] = {
707 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
708 	ITEM_NEXT,
709 	ZERO,
710 };
711 
712 static const enum index item_icmp6_nd_opt_tla_eth[] = {
713 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
714 	ITEM_NEXT,
715 	ZERO,
716 };
717 
718 static const enum index next_action[] = {
719 	ACTION_END,
720 	ACTION_VOID,
721 	ACTION_PASSTHRU,
722 	ACTION_MARK,
723 	ACTION_FLAG,
724 	ACTION_QUEUE,
725 	ACTION_DROP,
726 	ACTION_COUNT,
727 	ACTION_RSS,
728 	ACTION_PF,
729 	ACTION_VF,
730 	ACTION_PHY_PORT,
731 	ACTION_PORT_ID,
732 	ACTION_METER,
733 	ZERO,
734 };
735 
736 static const enum index action_mark[] = {
737 	ACTION_MARK_ID,
738 	ACTION_NEXT,
739 	ZERO,
740 };
741 
742 static const enum index action_queue[] = {
743 	ACTION_QUEUE_INDEX,
744 	ACTION_NEXT,
745 	ZERO,
746 };
747 
748 static const enum index action_rss[] = {
749 	ACTION_RSS_FUNC,
750 	ACTION_RSS_LEVEL,
751 	ACTION_RSS_TYPES,
752 	ACTION_RSS_KEY,
753 	ACTION_RSS_KEY_LEN,
754 	ACTION_RSS_QUEUES,
755 	ACTION_NEXT,
756 	ZERO,
757 };
758 
759 static const enum index action_vf[] = {
760 	ACTION_VF_ORIGINAL,
761 	ACTION_VF_ID,
762 	ACTION_NEXT,
763 	ZERO,
764 };
765 
766 static const enum index action_phy_port[] = {
767 	ACTION_PHY_PORT_ORIGINAL,
768 	ACTION_PHY_PORT_INDEX,
769 	ACTION_NEXT,
770 	ZERO,
771 };
772 
773 static const enum index action_port_id[] = {
774 	ACTION_PORT_ID_ORIGINAL,
775 	ACTION_PORT_ID_ID,
776 	ACTION_NEXT,
777 	ZERO,
778 };
779 
780 static const enum index action_meter[] = {
781 	ACTION_METER_ID,
782 	ACTION_NEXT,
783 	ZERO,
784 };
785 
786 static int parse_init(struct context *, const struct token *,
787 		      const char *, unsigned int,
788 		      void *, unsigned int);
789 static int parse_vc(struct context *, const struct token *,
790 		    const char *, unsigned int,
791 		    void *, unsigned int);
792 static int parse_vc_spec(struct context *, const struct token *,
793 			 const char *, unsigned int, void *, unsigned int);
794 static int parse_vc_conf(struct context *, const struct token *,
795 			 const char *, unsigned int, void *, unsigned int);
796 static int parse_vc_action_rss(struct context *, const struct token *,
797 			       const char *, unsigned int, void *,
798 			       unsigned int);
799 static int parse_vc_action_rss_func(struct context *, const struct token *,
800 				    const char *, unsigned int, void *,
801 				    unsigned int);
802 static int parse_vc_action_rss_type(struct context *, const struct token *,
803 				    const char *, unsigned int, void *,
804 				    unsigned int);
805 static int parse_vc_action_rss_queue(struct context *, const struct token *,
806 				     const char *, unsigned int, void *,
807 				     unsigned int);
808 static int parse_destroy(struct context *, const struct token *,
809 			 const char *, unsigned int,
810 			 void *, unsigned int);
811 static int parse_flush(struct context *, const struct token *,
812 		       const char *, unsigned int,
813 		       void *, unsigned int);
814 static int parse_query(struct context *, const struct token *,
815 		       const char *, unsigned int,
816 		       void *, unsigned int);
817 static int parse_action(struct context *, const struct token *,
818 			const char *, unsigned int,
819 			void *, unsigned int);
820 static int parse_list(struct context *, const struct token *,
821 		      const char *, unsigned int,
822 		      void *, unsigned int);
823 static int parse_isolate(struct context *, const struct token *,
824 			 const char *, unsigned int,
825 			 void *, unsigned int);
826 static int parse_int(struct context *, const struct token *,
827 		     const char *, unsigned int,
828 		     void *, unsigned int);
829 static int parse_prefix(struct context *, const struct token *,
830 			const char *, unsigned int,
831 			void *, unsigned int);
832 static int parse_boolean(struct context *, const struct token *,
833 			 const char *, unsigned int,
834 			 void *, unsigned int);
835 static int parse_string(struct context *, const struct token *,
836 			const char *, unsigned int,
837 			void *, unsigned int);
838 static int parse_mac_addr(struct context *, const struct token *,
839 			  const char *, unsigned int,
840 			  void *, unsigned int);
841 static int parse_ipv4_addr(struct context *, const struct token *,
842 			   const char *, unsigned int,
843 			   void *, unsigned int);
844 static int parse_ipv6_addr(struct context *, const struct token *,
845 			   const char *, unsigned int,
846 			   void *, unsigned int);
847 static int parse_port(struct context *, const struct token *,
848 		      const char *, unsigned int,
849 		      void *, unsigned int);
850 static int comp_none(struct context *, const struct token *,
851 		     unsigned int, char *, unsigned int);
852 static int comp_boolean(struct context *, const struct token *,
853 			unsigned int, char *, unsigned int);
854 static int comp_action(struct context *, const struct token *,
855 		       unsigned int, char *, unsigned int);
856 static int comp_port(struct context *, const struct token *,
857 		     unsigned int, char *, unsigned int);
858 static int comp_rule_id(struct context *, const struct token *,
859 			unsigned int, char *, unsigned int);
860 static int comp_vc_action_rss_type(struct context *, const struct token *,
861 				   unsigned int, char *, unsigned int);
862 static int comp_vc_action_rss_queue(struct context *, const struct token *,
863 				    unsigned int, char *, unsigned int);
864 
865 /** Token definitions. */
866 static const struct token token_list[] = {
867 	/* Special tokens. */
868 	[ZERO] = {
869 		.name = "ZERO",
870 		.help = "null entry, abused as the entry point",
871 		.next = NEXT(NEXT_ENTRY(FLOW)),
872 	},
873 	[END] = {
874 		.name = "",
875 		.type = "RETURN",
876 		.help = "command may end here",
877 	},
878 	/* Common tokens. */
879 	[INTEGER] = {
880 		.name = "{int}",
881 		.type = "INTEGER",
882 		.help = "integer value",
883 		.call = parse_int,
884 		.comp = comp_none,
885 	},
886 	[UNSIGNED] = {
887 		.name = "{unsigned}",
888 		.type = "UNSIGNED",
889 		.help = "unsigned integer value",
890 		.call = parse_int,
891 		.comp = comp_none,
892 	},
893 	[PREFIX] = {
894 		.name = "{prefix}",
895 		.type = "PREFIX",
896 		.help = "prefix length for bit-mask",
897 		.call = parse_prefix,
898 		.comp = comp_none,
899 	},
900 	[BOOLEAN] = {
901 		.name = "{boolean}",
902 		.type = "BOOLEAN",
903 		.help = "any boolean value",
904 		.call = parse_boolean,
905 		.comp = comp_boolean,
906 	},
907 	[STRING] = {
908 		.name = "{string}",
909 		.type = "STRING",
910 		.help = "fixed string",
911 		.call = parse_string,
912 		.comp = comp_none,
913 	},
914 	[MAC_ADDR] = {
915 		.name = "{MAC address}",
916 		.type = "MAC-48",
917 		.help = "standard MAC address notation",
918 		.call = parse_mac_addr,
919 		.comp = comp_none,
920 	},
921 	[IPV4_ADDR] = {
922 		.name = "{IPv4 address}",
923 		.type = "IPV4 ADDRESS",
924 		.help = "standard IPv4 address notation",
925 		.call = parse_ipv4_addr,
926 		.comp = comp_none,
927 	},
928 	[IPV6_ADDR] = {
929 		.name = "{IPv6 address}",
930 		.type = "IPV6 ADDRESS",
931 		.help = "standard IPv6 address notation",
932 		.call = parse_ipv6_addr,
933 		.comp = comp_none,
934 	},
935 	[RULE_ID] = {
936 		.name = "{rule id}",
937 		.type = "RULE ID",
938 		.help = "rule identifier",
939 		.call = parse_int,
940 		.comp = comp_rule_id,
941 	},
942 	[PORT_ID] = {
943 		.name = "{port_id}",
944 		.type = "PORT ID",
945 		.help = "port identifier",
946 		.call = parse_port,
947 		.comp = comp_port,
948 	},
949 	[GROUP_ID] = {
950 		.name = "{group_id}",
951 		.type = "GROUP ID",
952 		.help = "group identifier",
953 		.call = parse_int,
954 		.comp = comp_none,
955 	},
956 	[PRIORITY_LEVEL] = {
957 		.name = "{level}",
958 		.type = "PRIORITY",
959 		.help = "priority level",
960 		.call = parse_int,
961 		.comp = comp_none,
962 	},
963 	/* Top-level command. */
964 	[FLOW] = {
965 		.name = "flow",
966 		.type = "{command} {port_id} [{arg} [...]]",
967 		.help = "manage ingress/egress flow rules",
968 		.next = NEXT(NEXT_ENTRY
969 			     (VALIDATE,
970 			      CREATE,
971 			      DESTROY,
972 			      FLUSH,
973 			      LIST,
974 			      QUERY,
975 			      ISOLATE)),
976 		.call = parse_init,
977 	},
978 	/* Sub-level commands. */
979 	[VALIDATE] = {
980 		.name = "validate",
981 		.help = "check whether a flow rule can be created",
982 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
983 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
984 		.call = parse_vc,
985 	},
986 	[CREATE] = {
987 		.name = "create",
988 		.help = "create a flow rule",
989 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
990 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
991 		.call = parse_vc,
992 	},
993 	[DESTROY] = {
994 		.name = "destroy",
995 		.help = "destroy specific flow rules",
996 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
997 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
998 		.call = parse_destroy,
999 	},
1000 	[FLUSH] = {
1001 		.name = "flush",
1002 		.help = "destroy all flow rules",
1003 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1004 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1005 		.call = parse_flush,
1006 	},
1007 	[QUERY] = {
1008 		.name = "query",
1009 		.help = "query an existing flow rule",
1010 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1011 			     NEXT_ENTRY(RULE_ID),
1012 			     NEXT_ENTRY(PORT_ID)),
1013 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
1014 			     ARGS_ENTRY(struct buffer, args.query.rule),
1015 			     ARGS_ENTRY(struct buffer, port)),
1016 		.call = parse_query,
1017 	},
1018 	[LIST] = {
1019 		.name = "list",
1020 		.help = "list existing flow rules",
1021 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1022 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1023 		.call = parse_list,
1024 	},
1025 	[ISOLATE] = {
1026 		.name = "isolate",
1027 		.help = "restrict ingress traffic to the defined flow rules",
1028 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1029 			     NEXT_ENTRY(PORT_ID)),
1030 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1031 			     ARGS_ENTRY(struct buffer, port)),
1032 		.call = parse_isolate,
1033 	},
1034 	/* Destroy arguments. */
1035 	[DESTROY_RULE] = {
1036 		.name = "rule",
1037 		.help = "specify a rule identifier",
1038 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1039 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1040 		.call = parse_destroy,
1041 	},
1042 	/* Query arguments. */
1043 	[QUERY_ACTION] = {
1044 		.name = "{action}",
1045 		.type = "ACTION",
1046 		.help = "action to query, must be part of the rule",
1047 		.call = parse_action,
1048 		.comp = comp_action,
1049 	},
1050 	/* List arguments. */
1051 	[LIST_GROUP] = {
1052 		.name = "group",
1053 		.help = "specify a group",
1054 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1055 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1056 		.call = parse_list,
1057 	},
1058 	/* Validate/create attributes. */
1059 	[GROUP] = {
1060 		.name = "group",
1061 		.help = "specify a group",
1062 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1063 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1064 		.call = parse_vc,
1065 	},
1066 	[PRIORITY] = {
1067 		.name = "priority",
1068 		.help = "specify a priority level",
1069 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1070 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1071 		.call = parse_vc,
1072 	},
1073 	[INGRESS] = {
1074 		.name = "ingress",
1075 		.help = "affect rule to ingress",
1076 		.next = NEXT(next_vc_attr),
1077 		.call = parse_vc,
1078 	},
1079 	[EGRESS] = {
1080 		.name = "egress",
1081 		.help = "affect rule to egress",
1082 		.next = NEXT(next_vc_attr),
1083 		.call = parse_vc,
1084 	},
1085 	[TRANSFER] = {
1086 		.name = "transfer",
1087 		.help = "apply rule directly to endpoints found in pattern",
1088 		.next = NEXT(next_vc_attr),
1089 		.call = parse_vc,
1090 	},
1091 	/* Validate/create pattern. */
1092 	[PATTERN] = {
1093 		.name = "pattern",
1094 		.help = "submit a list of pattern items",
1095 		.next = NEXT(next_item),
1096 		.call = parse_vc,
1097 	},
1098 	[ITEM_PARAM_IS] = {
1099 		.name = "is",
1100 		.help = "match value perfectly (with full bit-mask)",
1101 		.call = parse_vc_spec,
1102 	},
1103 	[ITEM_PARAM_SPEC] = {
1104 		.name = "spec",
1105 		.help = "match value according to configured bit-mask",
1106 		.call = parse_vc_spec,
1107 	},
1108 	[ITEM_PARAM_LAST] = {
1109 		.name = "last",
1110 		.help = "specify upper bound to establish a range",
1111 		.call = parse_vc_spec,
1112 	},
1113 	[ITEM_PARAM_MASK] = {
1114 		.name = "mask",
1115 		.help = "specify bit-mask with relevant bits set to one",
1116 		.call = parse_vc_spec,
1117 	},
1118 	[ITEM_PARAM_PREFIX] = {
1119 		.name = "prefix",
1120 		.help = "generate bit-mask from a prefix length",
1121 		.call = parse_vc_spec,
1122 	},
1123 	[ITEM_NEXT] = {
1124 		.name = "/",
1125 		.help = "specify next pattern item",
1126 		.next = NEXT(next_item),
1127 	},
1128 	[ITEM_END] = {
1129 		.name = "end",
1130 		.help = "end list of pattern items",
1131 		.priv = PRIV_ITEM(END, 0),
1132 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1133 		.call = parse_vc,
1134 	},
1135 	[ITEM_VOID] = {
1136 		.name = "void",
1137 		.help = "no-op pattern item",
1138 		.priv = PRIV_ITEM(VOID, 0),
1139 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1140 		.call = parse_vc,
1141 	},
1142 	[ITEM_INVERT] = {
1143 		.name = "invert",
1144 		.help = "perform actions when pattern does not match",
1145 		.priv = PRIV_ITEM(INVERT, 0),
1146 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1147 		.call = parse_vc,
1148 	},
1149 	[ITEM_ANY] = {
1150 		.name = "any",
1151 		.help = "match any protocol for the current layer",
1152 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1153 		.next = NEXT(item_any),
1154 		.call = parse_vc,
1155 	},
1156 	[ITEM_ANY_NUM] = {
1157 		.name = "num",
1158 		.help = "number of layers covered",
1159 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1160 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1161 	},
1162 	[ITEM_PF] = {
1163 		.name = "pf",
1164 		.help = "match traffic from/to the physical function",
1165 		.priv = PRIV_ITEM(PF, 0),
1166 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1167 		.call = parse_vc,
1168 	},
1169 	[ITEM_VF] = {
1170 		.name = "vf",
1171 		.help = "match traffic from/to a virtual function ID",
1172 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1173 		.next = NEXT(item_vf),
1174 		.call = parse_vc,
1175 	},
1176 	[ITEM_VF_ID] = {
1177 		.name = "id",
1178 		.help = "VF ID",
1179 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1180 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1181 	},
1182 	[ITEM_PHY_PORT] = {
1183 		.name = "phy_port",
1184 		.help = "match traffic from/to a specific physical port",
1185 		.priv = PRIV_ITEM(PHY_PORT,
1186 				  sizeof(struct rte_flow_item_phy_port)),
1187 		.next = NEXT(item_phy_port),
1188 		.call = parse_vc,
1189 	},
1190 	[ITEM_PHY_PORT_INDEX] = {
1191 		.name = "index",
1192 		.help = "physical port index",
1193 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1194 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1195 	},
1196 	[ITEM_PORT_ID] = {
1197 		.name = "port_id",
1198 		.help = "match traffic from/to a given DPDK port ID",
1199 		.priv = PRIV_ITEM(PORT_ID,
1200 				  sizeof(struct rte_flow_item_port_id)),
1201 		.next = NEXT(item_port_id),
1202 		.call = parse_vc,
1203 	},
1204 	[ITEM_PORT_ID_ID] = {
1205 		.name = "id",
1206 		.help = "DPDK port ID",
1207 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1208 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1209 	},
1210 	[ITEM_RAW] = {
1211 		.name = "raw",
1212 		.help = "match an arbitrary byte string",
1213 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1214 		.next = NEXT(item_raw),
1215 		.call = parse_vc,
1216 	},
1217 	[ITEM_RAW_RELATIVE] = {
1218 		.name = "relative",
1219 		.help = "look for pattern after the previous item",
1220 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1221 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1222 					   relative, 1)),
1223 	},
1224 	[ITEM_RAW_SEARCH] = {
1225 		.name = "search",
1226 		.help = "search pattern from offset (see also limit)",
1227 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1228 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1229 					   search, 1)),
1230 	},
1231 	[ITEM_RAW_OFFSET] = {
1232 		.name = "offset",
1233 		.help = "absolute or relative offset for pattern",
1234 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1235 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1236 	},
1237 	[ITEM_RAW_LIMIT] = {
1238 		.name = "limit",
1239 		.help = "search area limit for start of pattern",
1240 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1241 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1242 	},
1243 	[ITEM_RAW_PATTERN] = {
1244 		.name = "pattern",
1245 		.help = "byte string to look for",
1246 		.next = NEXT(item_raw,
1247 			     NEXT_ENTRY(STRING),
1248 			     NEXT_ENTRY(ITEM_PARAM_IS,
1249 					ITEM_PARAM_SPEC,
1250 					ITEM_PARAM_MASK)),
1251 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1252 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1253 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1254 					    ITEM_RAW_PATTERN_SIZE)),
1255 	},
1256 	[ITEM_ETH] = {
1257 		.name = "eth",
1258 		.help = "match Ethernet header",
1259 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1260 		.next = NEXT(item_eth),
1261 		.call = parse_vc,
1262 	},
1263 	[ITEM_ETH_DST] = {
1264 		.name = "dst",
1265 		.help = "destination MAC",
1266 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1267 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1268 	},
1269 	[ITEM_ETH_SRC] = {
1270 		.name = "src",
1271 		.help = "source MAC",
1272 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1273 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1274 	},
1275 	[ITEM_ETH_TYPE] = {
1276 		.name = "type",
1277 		.help = "EtherType",
1278 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1279 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1280 	},
1281 	[ITEM_VLAN] = {
1282 		.name = "vlan",
1283 		.help = "match 802.1Q/ad VLAN tag",
1284 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1285 		.next = NEXT(item_vlan),
1286 		.call = parse_vc,
1287 	},
1288 	[ITEM_VLAN_TCI] = {
1289 		.name = "tci",
1290 		.help = "tag control information",
1291 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1292 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1293 	},
1294 	[ITEM_VLAN_PCP] = {
1295 		.name = "pcp",
1296 		.help = "priority code point",
1297 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1298 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1299 						  tci, "\xe0\x00")),
1300 	},
1301 	[ITEM_VLAN_DEI] = {
1302 		.name = "dei",
1303 		.help = "drop eligible indicator",
1304 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1305 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1306 						  tci, "\x10\x00")),
1307 	},
1308 	[ITEM_VLAN_VID] = {
1309 		.name = "vid",
1310 		.help = "VLAN identifier",
1311 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1312 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1313 						  tci, "\x0f\xff")),
1314 	},
1315 	[ITEM_VLAN_INNER_TYPE] = {
1316 		.name = "inner_type",
1317 		.help = "inner EtherType",
1318 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1319 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1320 					     inner_type)),
1321 	},
1322 	[ITEM_IPV4] = {
1323 		.name = "ipv4",
1324 		.help = "match IPv4 header",
1325 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1326 		.next = NEXT(item_ipv4),
1327 		.call = parse_vc,
1328 	},
1329 	[ITEM_IPV4_TOS] = {
1330 		.name = "tos",
1331 		.help = "type of service",
1332 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1333 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1334 					     hdr.type_of_service)),
1335 	},
1336 	[ITEM_IPV4_TTL] = {
1337 		.name = "ttl",
1338 		.help = "time to live",
1339 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1340 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1341 					     hdr.time_to_live)),
1342 	},
1343 	[ITEM_IPV4_PROTO] = {
1344 		.name = "proto",
1345 		.help = "next protocol ID",
1346 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1347 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1348 					     hdr.next_proto_id)),
1349 	},
1350 	[ITEM_IPV4_SRC] = {
1351 		.name = "src",
1352 		.help = "source address",
1353 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1354 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1355 					     hdr.src_addr)),
1356 	},
1357 	[ITEM_IPV4_DST] = {
1358 		.name = "dst",
1359 		.help = "destination address",
1360 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1361 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1362 					     hdr.dst_addr)),
1363 	},
1364 	[ITEM_IPV6] = {
1365 		.name = "ipv6",
1366 		.help = "match IPv6 header",
1367 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1368 		.next = NEXT(item_ipv6),
1369 		.call = parse_vc,
1370 	},
1371 	[ITEM_IPV6_TC] = {
1372 		.name = "tc",
1373 		.help = "traffic class",
1374 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1375 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1376 						  hdr.vtc_flow,
1377 						  "\x0f\xf0\x00\x00")),
1378 	},
1379 	[ITEM_IPV6_FLOW] = {
1380 		.name = "flow",
1381 		.help = "flow label",
1382 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1383 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1384 						  hdr.vtc_flow,
1385 						  "\x00\x0f\xff\xff")),
1386 	},
1387 	[ITEM_IPV6_PROTO] = {
1388 		.name = "proto",
1389 		.help = "protocol (next header)",
1390 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1391 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1392 					     hdr.proto)),
1393 	},
1394 	[ITEM_IPV6_HOP] = {
1395 		.name = "hop",
1396 		.help = "hop limit",
1397 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1398 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1399 					     hdr.hop_limits)),
1400 	},
1401 	[ITEM_IPV6_SRC] = {
1402 		.name = "src",
1403 		.help = "source address",
1404 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1405 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1406 					     hdr.src_addr)),
1407 	},
1408 	[ITEM_IPV6_DST] = {
1409 		.name = "dst",
1410 		.help = "destination address",
1411 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1412 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1413 					     hdr.dst_addr)),
1414 	},
1415 	[ITEM_ICMP] = {
1416 		.name = "icmp",
1417 		.help = "match ICMP header",
1418 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1419 		.next = NEXT(item_icmp),
1420 		.call = parse_vc,
1421 	},
1422 	[ITEM_ICMP_TYPE] = {
1423 		.name = "type",
1424 		.help = "ICMP packet type",
1425 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1426 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1427 					     hdr.icmp_type)),
1428 	},
1429 	[ITEM_ICMP_CODE] = {
1430 		.name = "code",
1431 		.help = "ICMP packet code",
1432 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1433 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1434 					     hdr.icmp_code)),
1435 	},
1436 	[ITEM_UDP] = {
1437 		.name = "udp",
1438 		.help = "match UDP header",
1439 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1440 		.next = NEXT(item_udp),
1441 		.call = parse_vc,
1442 	},
1443 	[ITEM_UDP_SRC] = {
1444 		.name = "src",
1445 		.help = "UDP source port",
1446 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1447 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1448 					     hdr.src_port)),
1449 	},
1450 	[ITEM_UDP_DST] = {
1451 		.name = "dst",
1452 		.help = "UDP destination port",
1453 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1454 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1455 					     hdr.dst_port)),
1456 	},
1457 	[ITEM_TCP] = {
1458 		.name = "tcp",
1459 		.help = "match TCP header",
1460 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1461 		.next = NEXT(item_tcp),
1462 		.call = parse_vc,
1463 	},
1464 	[ITEM_TCP_SRC] = {
1465 		.name = "src",
1466 		.help = "TCP source port",
1467 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1468 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1469 					     hdr.src_port)),
1470 	},
1471 	[ITEM_TCP_DST] = {
1472 		.name = "dst",
1473 		.help = "TCP destination port",
1474 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1475 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1476 					     hdr.dst_port)),
1477 	},
1478 	[ITEM_TCP_FLAGS] = {
1479 		.name = "flags",
1480 		.help = "TCP flags",
1481 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1482 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1483 					     hdr.tcp_flags)),
1484 	},
1485 	[ITEM_SCTP] = {
1486 		.name = "sctp",
1487 		.help = "match SCTP header",
1488 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1489 		.next = NEXT(item_sctp),
1490 		.call = parse_vc,
1491 	},
1492 	[ITEM_SCTP_SRC] = {
1493 		.name = "src",
1494 		.help = "SCTP source port",
1495 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1496 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1497 					     hdr.src_port)),
1498 	},
1499 	[ITEM_SCTP_DST] = {
1500 		.name = "dst",
1501 		.help = "SCTP destination port",
1502 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1503 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1504 					     hdr.dst_port)),
1505 	},
1506 	[ITEM_SCTP_TAG] = {
1507 		.name = "tag",
1508 		.help = "validation tag",
1509 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1510 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1511 					     hdr.tag)),
1512 	},
1513 	[ITEM_SCTP_CKSUM] = {
1514 		.name = "cksum",
1515 		.help = "checksum",
1516 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1517 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1518 					     hdr.cksum)),
1519 	},
1520 	[ITEM_VXLAN] = {
1521 		.name = "vxlan",
1522 		.help = "match VXLAN header",
1523 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1524 		.next = NEXT(item_vxlan),
1525 		.call = parse_vc,
1526 	},
1527 	[ITEM_VXLAN_VNI] = {
1528 		.name = "vni",
1529 		.help = "VXLAN identifier",
1530 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1531 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1532 	},
1533 	[ITEM_E_TAG] = {
1534 		.name = "e_tag",
1535 		.help = "match E-Tag header",
1536 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1537 		.next = NEXT(item_e_tag),
1538 		.call = parse_vc,
1539 	},
1540 	[ITEM_E_TAG_GRP_ECID_B] = {
1541 		.name = "grp_ecid_b",
1542 		.help = "GRP and E-CID base",
1543 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1544 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1545 						  rsvd_grp_ecid_b,
1546 						  "\x3f\xff")),
1547 	},
1548 	[ITEM_NVGRE] = {
1549 		.name = "nvgre",
1550 		.help = "match NVGRE header",
1551 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1552 		.next = NEXT(item_nvgre),
1553 		.call = parse_vc,
1554 	},
1555 	[ITEM_NVGRE_TNI] = {
1556 		.name = "tni",
1557 		.help = "virtual subnet ID",
1558 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1559 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1560 	},
1561 	[ITEM_MPLS] = {
1562 		.name = "mpls",
1563 		.help = "match MPLS header",
1564 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1565 		.next = NEXT(item_mpls),
1566 		.call = parse_vc,
1567 	},
1568 	[ITEM_MPLS_LABEL] = {
1569 		.name = "label",
1570 		.help = "MPLS label",
1571 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1572 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1573 						  label_tc_s,
1574 						  "\xff\xff\xf0")),
1575 	},
1576 	[ITEM_GRE] = {
1577 		.name = "gre",
1578 		.help = "match GRE header",
1579 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1580 		.next = NEXT(item_gre),
1581 		.call = parse_vc,
1582 	},
1583 	[ITEM_GRE_PROTO] = {
1584 		.name = "protocol",
1585 		.help = "GRE protocol type",
1586 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1587 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1588 					     protocol)),
1589 	},
1590 	[ITEM_FUZZY] = {
1591 		.name = "fuzzy",
1592 		.help = "fuzzy pattern match, expect faster than default",
1593 		.priv = PRIV_ITEM(FUZZY,
1594 				sizeof(struct rte_flow_item_fuzzy)),
1595 		.next = NEXT(item_fuzzy),
1596 		.call = parse_vc,
1597 	},
1598 	[ITEM_FUZZY_THRESH] = {
1599 		.name = "thresh",
1600 		.help = "match accuracy threshold",
1601 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1602 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1603 					thresh)),
1604 	},
1605 	[ITEM_GTP] = {
1606 		.name = "gtp",
1607 		.help = "match GTP header",
1608 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1609 		.next = NEXT(item_gtp),
1610 		.call = parse_vc,
1611 	},
1612 	[ITEM_GTP_TEID] = {
1613 		.name = "teid",
1614 		.help = "tunnel endpoint identifier",
1615 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1616 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1617 	},
1618 	[ITEM_GTPC] = {
1619 		.name = "gtpc",
1620 		.help = "match GTP header",
1621 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1622 		.next = NEXT(item_gtp),
1623 		.call = parse_vc,
1624 	},
1625 	[ITEM_GTPU] = {
1626 		.name = "gtpu",
1627 		.help = "match GTP header",
1628 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1629 		.next = NEXT(item_gtp),
1630 		.call = parse_vc,
1631 	},
1632 	[ITEM_GENEVE] = {
1633 		.name = "geneve",
1634 		.help = "match GENEVE header",
1635 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1636 		.next = NEXT(item_geneve),
1637 		.call = parse_vc,
1638 	},
1639 	[ITEM_GENEVE_VNI] = {
1640 		.name = "vni",
1641 		.help = "virtual network identifier",
1642 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1643 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1644 	},
1645 	[ITEM_GENEVE_PROTO] = {
1646 		.name = "protocol",
1647 		.help = "GENEVE protocol type",
1648 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1649 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1650 					     protocol)),
1651 	},
1652 	[ITEM_VXLAN_GPE] = {
1653 		.name = "vxlan-gpe",
1654 		.help = "match VXLAN-GPE header",
1655 		.priv = PRIV_ITEM(VXLAN_GPE,
1656 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1657 		.next = NEXT(item_vxlan_gpe),
1658 		.call = parse_vc,
1659 	},
1660 	[ITEM_VXLAN_GPE_VNI] = {
1661 		.name = "vni",
1662 		.help = "VXLAN-GPE identifier",
1663 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1664 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1665 					     vni)),
1666 	},
1667 	[ITEM_ARP_ETH_IPV4] = {
1668 		.name = "arp_eth_ipv4",
1669 		.help = "match ARP header for Ethernet/IPv4",
1670 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1671 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1672 		.next = NEXT(item_arp_eth_ipv4),
1673 		.call = parse_vc,
1674 	},
1675 	[ITEM_ARP_ETH_IPV4_SHA] = {
1676 		.name = "sha",
1677 		.help = "sender hardware address",
1678 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1679 			     item_param),
1680 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1681 					     sha)),
1682 	},
1683 	[ITEM_ARP_ETH_IPV4_SPA] = {
1684 		.name = "spa",
1685 		.help = "sender IPv4 address",
1686 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1687 			     item_param),
1688 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1689 					     spa)),
1690 	},
1691 	[ITEM_ARP_ETH_IPV4_THA] = {
1692 		.name = "tha",
1693 		.help = "target hardware address",
1694 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1695 			     item_param),
1696 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1697 					     tha)),
1698 	},
1699 	[ITEM_ARP_ETH_IPV4_TPA] = {
1700 		.name = "tpa",
1701 		.help = "target IPv4 address",
1702 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1703 			     item_param),
1704 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1705 					     tpa)),
1706 	},
1707 	[ITEM_IPV6_EXT] = {
1708 		.name = "ipv6_ext",
1709 		.help = "match presence of any IPv6 extension header",
1710 		.priv = PRIV_ITEM(IPV6_EXT,
1711 				  sizeof(struct rte_flow_item_ipv6_ext)),
1712 		.next = NEXT(item_ipv6_ext),
1713 		.call = parse_vc,
1714 	},
1715 	[ITEM_IPV6_EXT_NEXT_HDR] = {
1716 		.name = "next_hdr",
1717 		.help = "next header",
1718 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
1719 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
1720 					     next_hdr)),
1721 	},
1722 	[ITEM_ICMP6] = {
1723 		.name = "icmp6",
1724 		.help = "match any ICMPv6 header",
1725 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1726 		.next = NEXT(item_icmp6),
1727 		.call = parse_vc,
1728 	},
1729 	[ITEM_ICMP6_TYPE] = {
1730 		.name = "type",
1731 		.help = "ICMPv6 type",
1732 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1733 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1734 					     type)),
1735 	},
1736 	[ITEM_ICMP6_CODE] = {
1737 		.name = "code",
1738 		.help = "ICMPv6 code",
1739 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1740 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1741 					     code)),
1742 	},
1743 	[ITEM_ICMP6_ND_NS] = {
1744 		.name = "icmp6_nd_ns",
1745 		.help = "match ICMPv6 neighbor discovery solicitation",
1746 		.priv = PRIV_ITEM(ICMP6_ND_NS,
1747 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
1748 		.next = NEXT(item_icmp6_nd_ns),
1749 		.call = parse_vc,
1750 	},
1751 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
1752 		.name = "target_addr",
1753 		.help = "target address",
1754 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
1755 			     item_param),
1756 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
1757 					     target_addr)),
1758 	},
1759 	[ITEM_ICMP6_ND_NA] = {
1760 		.name = "icmp6_nd_na",
1761 		.help = "match ICMPv6 neighbor discovery advertisement",
1762 		.priv = PRIV_ITEM(ICMP6_ND_NA,
1763 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
1764 		.next = NEXT(item_icmp6_nd_na),
1765 		.call = parse_vc,
1766 	},
1767 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
1768 		.name = "target_addr",
1769 		.help = "target address",
1770 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
1771 			     item_param),
1772 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
1773 					     target_addr)),
1774 	},
1775 	[ITEM_ICMP6_ND_OPT] = {
1776 		.name = "icmp6_nd_opt",
1777 		.help = "match presence of any ICMPv6 neighbor discovery"
1778 			" option",
1779 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
1780 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
1781 		.next = NEXT(item_icmp6_nd_opt),
1782 		.call = parse_vc,
1783 	},
1784 	[ITEM_ICMP6_ND_OPT_TYPE] = {
1785 		.name = "type",
1786 		.help = "ND option type",
1787 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
1788 			     item_param),
1789 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
1790 					     type)),
1791 	},
1792 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
1793 		.name = "icmp6_nd_opt_sla_eth",
1794 		.help = "match ICMPv6 neighbor discovery source Ethernet"
1795 			" link-layer address option",
1796 		.priv = PRIV_ITEM
1797 			(ICMP6_ND_OPT_SLA_ETH,
1798 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1799 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
1800 		.call = parse_vc,
1801 	},
1802 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
1803 		.name = "sla",
1804 		.help = "source Ethernet LLA",
1805 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
1806 			     item_param),
1807 		.args = ARGS(ARGS_ENTRY_HTON
1808 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
1809 	},
1810 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
1811 		.name = "icmp6_nd_opt_tla_eth",
1812 		.help = "match ICMPv6 neighbor discovery target Ethernet"
1813 			" link-layer address option",
1814 		.priv = PRIV_ITEM
1815 			(ICMP6_ND_OPT_TLA_ETH,
1816 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1817 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
1818 		.call = parse_vc,
1819 	},
1820 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
1821 		.name = "tla",
1822 		.help = "target Ethernet LLA",
1823 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
1824 			     item_param),
1825 		.args = ARGS(ARGS_ENTRY_HTON
1826 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
1827 	},
1828 
1829 	/* Validate/create actions. */
1830 	[ACTIONS] = {
1831 		.name = "actions",
1832 		.help = "submit a list of associated actions",
1833 		.next = NEXT(next_action),
1834 		.call = parse_vc,
1835 	},
1836 	[ACTION_NEXT] = {
1837 		.name = "/",
1838 		.help = "specify next action",
1839 		.next = NEXT(next_action),
1840 	},
1841 	[ACTION_END] = {
1842 		.name = "end",
1843 		.help = "end list of actions",
1844 		.priv = PRIV_ACTION(END, 0),
1845 		.call = parse_vc,
1846 	},
1847 	[ACTION_VOID] = {
1848 		.name = "void",
1849 		.help = "no-op action",
1850 		.priv = PRIV_ACTION(VOID, 0),
1851 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1852 		.call = parse_vc,
1853 	},
1854 	[ACTION_PASSTHRU] = {
1855 		.name = "passthru",
1856 		.help = "let subsequent rule process matched packets",
1857 		.priv = PRIV_ACTION(PASSTHRU, 0),
1858 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1859 		.call = parse_vc,
1860 	},
1861 	[ACTION_MARK] = {
1862 		.name = "mark",
1863 		.help = "attach 32 bit value to packets",
1864 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1865 		.next = NEXT(action_mark),
1866 		.call = parse_vc,
1867 	},
1868 	[ACTION_MARK_ID] = {
1869 		.name = "id",
1870 		.help = "32 bit value to return with packets",
1871 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1872 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1873 		.call = parse_vc_conf,
1874 	},
1875 	[ACTION_FLAG] = {
1876 		.name = "flag",
1877 		.help = "flag packets",
1878 		.priv = PRIV_ACTION(FLAG, 0),
1879 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1880 		.call = parse_vc,
1881 	},
1882 	[ACTION_QUEUE] = {
1883 		.name = "queue",
1884 		.help = "assign packets to a given queue index",
1885 		.priv = PRIV_ACTION(QUEUE,
1886 				    sizeof(struct rte_flow_action_queue)),
1887 		.next = NEXT(action_queue),
1888 		.call = parse_vc,
1889 	},
1890 	[ACTION_QUEUE_INDEX] = {
1891 		.name = "index",
1892 		.help = "queue index to use",
1893 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1894 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1895 		.call = parse_vc_conf,
1896 	},
1897 	[ACTION_DROP] = {
1898 		.name = "drop",
1899 		.help = "drop packets (note: passthru has priority)",
1900 		.priv = PRIV_ACTION(DROP, 0),
1901 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1902 		.call = parse_vc,
1903 	},
1904 	[ACTION_COUNT] = {
1905 		.name = "count",
1906 		.help = "enable counters for this rule",
1907 		.priv = PRIV_ACTION(COUNT, 0),
1908 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1909 		.call = parse_vc,
1910 	},
1911 	[ACTION_RSS] = {
1912 		.name = "rss",
1913 		.help = "spread packets among several queues",
1914 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
1915 		.next = NEXT(action_rss),
1916 		.call = parse_vc_action_rss,
1917 	},
1918 	[ACTION_RSS_FUNC] = {
1919 		.name = "func",
1920 		.help = "RSS hash function to apply",
1921 		.next = NEXT(action_rss,
1922 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
1923 					ACTION_RSS_FUNC_TOEPLITZ,
1924 					ACTION_RSS_FUNC_SIMPLE_XOR)),
1925 	},
1926 	[ACTION_RSS_FUNC_DEFAULT] = {
1927 		.name = "default",
1928 		.help = "default hash function",
1929 		.call = parse_vc_action_rss_func,
1930 	},
1931 	[ACTION_RSS_FUNC_TOEPLITZ] = {
1932 		.name = "toeplitz",
1933 		.help = "Toeplitz hash function",
1934 		.call = parse_vc_action_rss_func,
1935 	},
1936 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
1937 		.name = "simple_xor",
1938 		.help = "simple XOR hash function",
1939 		.call = parse_vc_action_rss_func,
1940 	},
1941 	[ACTION_RSS_LEVEL] = {
1942 		.name = "level",
1943 		.help = "encapsulation level for \"types\"",
1944 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
1945 		.args = ARGS(ARGS_ENTRY_ARB
1946 			     (offsetof(struct action_rss_data, conf) +
1947 			      offsetof(struct rte_flow_action_rss, level),
1948 			      sizeof(((struct rte_flow_action_rss *)0)->
1949 				     level))),
1950 	},
1951 	[ACTION_RSS_TYPES] = {
1952 		.name = "types",
1953 		.help = "specific RSS hash types",
1954 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
1955 	},
1956 	[ACTION_RSS_TYPE] = {
1957 		.name = "{type}",
1958 		.help = "RSS hash type",
1959 		.call = parse_vc_action_rss_type,
1960 		.comp = comp_vc_action_rss_type,
1961 	},
1962 	[ACTION_RSS_KEY] = {
1963 		.name = "key",
1964 		.help = "RSS hash key",
1965 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
1966 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
1967 			     ARGS_ENTRY_ARB
1968 			     (offsetof(struct action_rss_data, conf) +
1969 			      offsetof(struct rte_flow_action_rss, key_len),
1970 			      sizeof(((struct rte_flow_action_rss *)0)->
1971 				     key_len)),
1972 			     ARGS_ENTRY(struct action_rss_data, key)),
1973 	},
1974 	[ACTION_RSS_KEY_LEN] = {
1975 		.name = "key_len",
1976 		.help = "RSS hash key length in bytes",
1977 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
1978 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
1979 			     (offsetof(struct action_rss_data, conf) +
1980 			      offsetof(struct rte_flow_action_rss, key_len),
1981 			      sizeof(((struct rte_flow_action_rss *)0)->
1982 				     key_len),
1983 			      0,
1984 			      RSS_HASH_KEY_LENGTH)),
1985 	},
1986 	[ACTION_RSS_QUEUES] = {
1987 		.name = "queues",
1988 		.help = "queue indices to use",
1989 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1990 		.call = parse_vc_conf,
1991 	},
1992 	[ACTION_RSS_QUEUE] = {
1993 		.name = "{queue}",
1994 		.help = "queue index",
1995 		.call = parse_vc_action_rss_queue,
1996 		.comp = comp_vc_action_rss_queue,
1997 	},
1998 	[ACTION_PF] = {
1999 		.name = "pf",
2000 		.help = "direct traffic to physical function",
2001 		.priv = PRIV_ACTION(PF, 0),
2002 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2003 		.call = parse_vc,
2004 	},
2005 	[ACTION_VF] = {
2006 		.name = "vf",
2007 		.help = "direct traffic to a virtual function ID",
2008 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2009 		.next = NEXT(action_vf),
2010 		.call = parse_vc,
2011 	},
2012 	[ACTION_VF_ORIGINAL] = {
2013 		.name = "original",
2014 		.help = "use original VF ID if possible",
2015 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2016 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2017 					   original, 1)),
2018 		.call = parse_vc_conf,
2019 	},
2020 	[ACTION_VF_ID] = {
2021 		.name = "id",
2022 		.help = "VF ID",
2023 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2024 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2025 		.call = parse_vc_conf,
2026 	},
2027 	[ACTION_PHY_PORT] = {
2028 		.name = "phy_port",
2029 		.help = "direct packets to physical port index",
2030 		.priv = PRIV_ACTION(PHY_PORT,
2031 				    sizeof(struct rte_flow_action_phy_port)),
2032 		.next = NEXT(action_phy_port),
2033 		.call = parse_vc,
2034 	},
2035 	[ACTION_PHY_PORT_ORIGINAL] = {
2036 		.name = "original",
2037 		.help = "use original port index if possible",
2038 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2039 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2040 					   original, 1)),
2041 		.call = parse_vc_conf,
2042 	},
2043 	[ACTION_PHY_PORT_INDEX] = {
2044 		.name = "index",
2045 		.help = "physical port index",
2046 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2047 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2048 					index)),
2049 		.call = parse_vc_conf,
2050 	},
2051 	[ACTION_PORT_ID] = {
2052 		.name = "port_id",
2053 		.help = "direct matching traffic to a given DPDK port ID",
2054 		.priv = PRIV_ACTION(PORT_ID,
2055 				    sizeof(struct rte_flow_action_port_id)),
2056 		.next = NEXT(action_port_id),
2057 		.call = parse_vc,
2058 	},
2059 	[ACTION_PORT_ID_ORIGINAL] = {
2060 		.name = "original",
2061 		.help = "use original DPDK port ID if possible",
2062 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2063 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2064 					   original, 1)),
2065 		.call = parse_vc_conf,
2066 	},
2067 	[ACTION_PORT_ID_ID] = {
2068 		.name = "id",
2069 		.help = "DPDK port ID",
2070 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2071 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2072 		.call = parse_vc_conf,
2073 	},
2074 	[ACTION_METER] = {
2075 		.name = "meter",
2076 		.help = "meter the directed packets at given id",
2077 		.priv = PRIV_ACTION(METER,
2078 				    sizeof(struct rte_flow_action_meter)),
2079 		.next = NEXT(action_meter),
2080 		.call = parse_vc,
2081 	},
2082 	[ACTION_METER_ID] = {
2083 		.name = "mtr_id",
2084 		.help = "meter id to use",
2085 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2086 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2087 		.call = parse_vc_conf,
2088 	},
2089 };
2090 
2091 /** Remove and return last entry from argument stack. */
2092 static const struct arg *
2093 pop_args(struct context *ctx)
2094 {
2095 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2096 }
2097 
2098 /** Add entry on top of the argument stack. */
2099 static int
2100 push_args(struct context *ctx, const struct arg *arg)
2101 {
2102 	if (ctx->args_num == CTX_STACK_SIZE)
2103 		return -1;
2104 	ctx->args[ctx->args_num++] = arg;
2105 	return 0;
2106 }
2107 
2108 /** Spread value into buffer according to bit-mask. */
2109 static size_t
2110 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2111 {
2112 	uint32_t i = arg->size;
2113 	uint32_t end = 0;
2114 	int sub = 1;
2115 	int add = 0;
2116 	size_t len = 0;
2117 
2118 	if (!arg->mask)
2119 		return 0;
2120 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2121 	if (!arg->hton) {
2122 		i = 0;
2123 		end = arg->size;
2124 		sub = 0;
2125 		add = 1;
2126 	}
2127 #endif
2128 	while (i != end) {
2129 		unsigned int shift = 0;
2130 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2131 
2132 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2133 			if (!(arg->mask[i] & (1 << shift)))
2134 				continue;
2135 			++len;
2136 			if (!dst)
2137 				continue;
2138 			*buf &= ~(1 << shift);
2139 			*buf |= (val & 1) << shift;
2140 			val >>= 1;
2141 		}
2142 		i += add;
2143 	}
2144 	return len;
2145 }
2146 
2147 /** Compare a string with a partial one of a given length. */
2148 static int
2149 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2150 {
2151 	int r = strncmp(full, partial, partial_len);
2152 
2153 	if (r)
2154 		return r;
2155 	if (strlen(full) <= partial_len)
2156 		return 0;
2157 	return full[partial_len];
2158 }
2159 
2160 /**
2161  * Parse a prefix length and generate a bit-mask.
2162  *
2163  * Last argument (ctx->args) is retrieved to determine mask size, storage
2164  * location and whether the result must use network byte ordering.
2165  */
2166 static int
2167 parse_prefix(struct context *ctx, const struct token *token,
2168 	     const char *str, unsigned int len,
2169 	     void *buf, unsigned int size)
2170 {
2171 	const struct arg *arg = pop_args(ctx);
2172 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2173 	char *end;
2174 	uintmax_t u;
2175 	unsigned int bytes;
2176 	unsigned int extra;
2177 
2178 	(void)token;
2179 	/* Argument is expected. */
2180 	if (!arg)
2181 		return -1;
2182 	errno = 0;
2183 	u = strtoumax(str, &end, 0);
2184 	if (errno || (size_t)(end - str) != len)
2185 		goto error;
2186 	if (arg->mask) {
2187 		uintmax_t v = 0;
2188 
2189 		extra = arg_entry_bf_fill(NULL, 0, arg);
2190 		if (u > extra)
2191 			goto error;
2192 		if (!ctx->object)
2193 			return len;
2194 		extra -= u;
2195 		while (u--)
2196 			(v <<= 1, v |= 1);
2197 		v <<= extra;
2198 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2199 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2200 			goto error;
2201 		return len;
2202 	}
2203 	bytes = u / 8;
2204 	extra = u % 8;
2205 	size = arg->size;
2206 	if (bytes > size || bytes + !!extra > size)
2207 		goto error;
2208 	if (!ctx->object)
2209 		return len;
2210 	buf = (uint8_t *)ctx->object + arg->offset;
2211 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2212 	if (!arg->hton) {
2213 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2214 		memset(buf, 0x00, size - bytes);
2215 		if (extra)
2216 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2217 	} else
2218 #endif
2219 	{
2220 		memset(buf, 0xff, bytes);
2221 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2222 		if (extra)
2223 			((uint8_t *)buf)[bytes] = conv[extra];
2224 	}
2225 	if (ctx->objmask)
2226 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2227 	return len;
2228 error:
2229 	push_args(ctx, arg);
2230 	return -1;
2231 }
2232 
2233 /** Default parsing function for token name matching. */
2234 static int
2235 parse_default(struct context *ctx, const struct token *token,
2236 	      const char *str, unsigned int len,
2237 	      void *buf, unsigned int size)
2238 {
2239 	(void)ctx;
2240 	(void)buf;
2241 	(void)size;
2242 	if (strcmp_partial(token->name, str, len))
2243 		return -1;
2244 	return len;
2245 }
2246 
2247 /** Parse flow command, initialize output buffer for subsequent tokens. */
2248 static int
2249 parse_init(struct context *ctx, const struct token *token,
2250 	   const char *str, unsigned int len,
2251 	   void *buf, unsigned int size)
2252 {
2253 	struct buffer *out = buf;
2254 
2255 	/* Token name must match. */
2256 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2257 		return -1;
2258 	/* Nothing else to do if there is no buffer. */
2259 	if (!out)
2260 		return len;
2261 	/* Make sure buffer is large enough. */
2262 	if (size < sizeof(*out))
2263 		return -1;
2264 	/* Initialize buffer. */
2265 	memset(out, 0x00, sizeof(*out));
2266 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
2267 	ctx->objdata = 0;
2268 	ctx->object = out;
2269 	ctx->objmask = NULL;
2270 	return len;
2271 }
2272 
2273 /** Parse tokens for validate/create commands. */
2274 static int
2275 parse_vc(struct context *ctx, const struct token *token,
2276 	 const char *str, unsigned int len,
2277 	 void *buf, unsigned int size)
2278 {
2279 	struct buffer *out = buf;
2280 	uint8_t *data;
2281 	uint32_t data_size;
2282 
2283 	/* Token name must match. */
2284 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2285 		return -1;
2286 	/* Nothing else to do if there is no buffer. */
2287 	if (!out)
2288 		return len;
2289 	if (!out->command) {
2290 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
2291 			return -1;
2292 		if (sizeof(*out) > size)
2293 			return -1;
2294 		out->command = ctx->curr;
2295 		ctx->objdata = 0;
2296 		ctx->object = out;
2297 		ctx->objmask = NULL;
2298 		out->args.vc.data = (uint8_t *)out + size;
2299 		return len;
2300 	}
2301 	ctx->objdata = 0;
2302 	ctx->object = &out->args.vc.attr;
2303 	ctx->objmask = NULL;
2304 	switch (ctx->curr) {
2305 	case GROUP:
2306 	case PRIORITY:
2307 		return len;
2308 	case INGRESS:
2309 		out->args.vc.attr.ingress = 1;
2310 		return len;
2311 	case EGRESS:
2312 		out->args.vc.attr.egress = 1;
2313 		return len;
2314 	case TRANSFER:
2315 		out->args.vc.attr.transfer = 1;
2316 		return len;
2317 	case PATTERN:
2318 		out->args.vc.pattern =
2319 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2320 					       sizeof(double));
2321 		ctx->object = out->args.vc.pattern;
2322 		ctx->objmask = NULL;
2323 		return len;
2324 	case ACTIONS:
2325 		out->args.vc.actions =
2326 			(void *)RTE_ALIGN_CEIL((uintptr_t)
2327 					       (out->args.vc.pattern +
2328 						out->args.vc.pattern_n),
2329 					       sizeof(double));
2330 		ctx->object = out->args.vc.actions;
2331 		ctx->objmask = NULL;
2332 		return len;
2333 	default:
2334 		if (!token->priv)
2335 			return -1;
2336 		break;
2337 	}
2338 	if (!out->args.vc.actions) {
2339 		const struct parse_item_priv *priv = token->priv;
2340 		struct rte_flow_item *item =
2341 			out->args.vc.pattern + out->args.vc.pattern_n;
2342 
2343 		data_size = priv->size * 3; /* spec, last, mask */
2344 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2345 					       (out->args.vc.data - data_size),
2346 					       sizeof(double));
2347 		if ((uint8_t *)item + sizeof(*item) > data)
2348 			return -1;
2349 		*item = (struct rte_flow_item){
2350 			.type = priv->type,
2351 		};
2352 		++out->args.vc.pattern_n;
2353 		ctx->object = item;
2354 		ctx->objmask = NULL;
2355 	} else {
2356 		const struct parse_action_priv *priv = token->priv;
2357 		struct rte_flow_action *action =
2358 			out->args.vc.actions + out->args.vc.actions_n;
2359 
2360 		data_size = priv->size; /* configuration */
2361 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2362 					       (out->args.vc.data - data_size),
2363 					       sizeof(double));
2364 		if ((uint8_t *)action + sizeof(*action) > data)
2365 			return -1;
2366 		*action = (struct rte_flow_action){
2367 			.type = priv->type,
2368 			.conf = data_size ? data : NULL,
2369 		};
2370 		++out->args.vc.actions_n;
2371 		ctx->object = action;
2372 		ctx->objmask = NULL;
2373 	}
2374 	memset(data, 0, data_size);
2375 	out->args.vc.data = data;
2376 	ctx->objdata = data_size;
2377 	return len;
2378 }
2379 
2380 /** Parse pattern item parameter type. */
2381 static int
2382 parse_vc_spec(struct context *ctx, const struct token *token,
2383 	      const char *str, unsigned int len,
2384 	      void *buf, unsigned int size)
2385 {
2386 	struct buffer *out = buf;
2387 	struct rte_flow_item *item;
2388 	uint32_t data_size;
2389 	int index;
2390 	int objmask = 0;
2391 
2392 	(void)size;
2393 	/* Token name must match. */
2394 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2395 		return -1;
2396 	/* Parse parameter types. */
2397 	switch (ctx->curr) {
2398 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
2399 
2400 	case ITEM_PARAM_IS:
2401 		index = 0;
2402 		objmask = 1;
2403 		break;
2404 	case ITEM_PARAM_SPEC:
2405 		index = 0;
2406 		break;
2407 	case ITEM_PARAM_LAST:
2408 		index = 1;
2409 		break;
2410 	case ITEM_PARAM_PREFIX:
2411 		/* Modify next token to expect a prefix. */
2412 		if (ctx->next_num < 2)
2413 			return -1;
2414 		ctx->next[ctx->next_num - 2] = prefix;
2415 		/* Fall through. */
2416 	case ITEM_PARAM_MASK:
2417 		index = 2;
2418 		break;
2419 	default:
2420 		return -1;
2421 	}
2422 	/* Nothing else to do if there is no buffer. */
2423 	if (!out)
2424 		return len;
2425 	if (!out->args.vc.pattern_n)
2426 		return -1;
2427 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
2428 	data_size = ctx->objdata / 3; /* spec, last, mask */
2429 	/* Point to selected object. */
2430 	ctx->object = out->args.vc.data + (data_size * index);
2431 	if (objmask) {
2432 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
2433 		item->mask = ctx->objmask;
2434 	} else
2435 		ctx->objmask = NULL;
2436 	/* Update relevant item pointer. */
2437 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
2438 		ctx->object;
2439 	return len;
2440 }
2441 
2442 /** Parse action configuration field. */
2443 static int
2444 parse_vc_conf(struct context *ctx, const struct token *token,
2445 	      const char *str, unsigned int len,
2446 	      void *buf, unsigned int size)
2447 {
2448 	struct buffer *out = buf;
2449 
2450 	(void)size;
2451 	/* Token name must match. */
2452 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2453 		return -1;
2454 	/* Nothing else to do if there is no buffer. */
2455 	if (!out)
2456 		return len;
2457 	/* Point to selected object. */
2458 	ctx->object = out->args.vc.data;
2459 	ctx->objmask = NULL;
2460 	return len;
2461 }
2462 
2463 /** Parse RSS action. */
2464 static int
2465 parse_vc_action_rss(struct context *ctx, const struct token *token,
2466 		    const char *str, unsigned int len,
2467 		    void *buf, unsigned int size)
2468 {
2469 	struct buffer *out = buf;
2470 	struct rte_flow_action *action;
2471 	struct action_rss_data *action_rss_data;
2472 	unsigned int i;
2473 	int ret;
2474 
2475 	ret = parse_vc(ctx, token, str, len, buf, size);
2476 	if (ret < 0)
2477 		return ret;
2478 	/* Nothing else to do if there is no buffer. */
2479 	if (!out)
2480 		return ret;
2481 	if (!out->args.vc.actions_n)
2482 		return -1;
2483 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
2484 	/* Point to selected object. */
2485 	ctx->object = out->args.vc.data;
2486 	ctx->objmask = NULL;
2487 	/* Set up default configuration. */
2488 	action_rss_data = ctx->object;
2489 	*action_rss_data = (struct action_rss_data){
2490 		.conf = (struct rte_flow_action_rss){
2491 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2492 			.level = 0,
2493 			.types = rss_hf,
2494 			.key_len = sizeof(action_rss_data->key),
2495 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
2496 			.key = action_rss_data->key,
2497 			.queue = action_rss_data->queue,
2498 		},
2499 		.key = "testpmd's default RSS hash key",
2500 		.queue = { 0 },
2501 	};
2502 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
2503 		action_rss_data->queue[i] = i;
2504 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
2505 	    ctx->port != (portid_t)RTE_PORT_ALL) {
2506 		struct rte_eth_dev_info info;
2507 
2508 		rte_eth_dev_info_get(ctx->port, &info);
2509 		action_rss_data->conf.key_len =
2510 			RTE_MIN(sizeof(action_rss_data->key),
2511 				info.hash_key_size);
2512 	}
2513 	action->conf = &action_rss_data->conf;
2514 	return ret;
2515 }
2516 
2517 /**
2518  * Parse func field for RSS action.
2519  *
2520  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
2521  * ACTION_RSS_FUNC_* index that called this function.
2522  */
2523 static int
2524 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
2525 			 const char *str, unsigned int len,
2526 			 void *buf, unsigned int size)
2527 {
2528 	struct action_rss_data *action_rss_data;
2529 	enum rte_eth_hash_function func;
2530 
2531 	(void)buf;
2532 	(void)size;
2533 	/* Token name must match. */
2534 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2535 		return -1;
2536 	switch (ctx->curr) {
2537 	case ACTION_RSS_FUNC_DEFAULT:
2538 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
2539 		break;
2540 	case ACTION_RSS_FUNC_TOEPLITZ:
2541 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
2542 		break;
2543 	case ACTION_RSS_FUNC_SIMPLE_XOR:
2544 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
2545 		break;
2546 	default:
2547 		return -1;
2548 	}
2549 	if (!ctx->object)
2550 		return len;
2551 	action_rss_data = ctx->object;
2552 	action_rss_data->conf.func = func;
2553 	return len;
2554 }
2555 
2556 /**
2557  * Parse type field for RSS action.
2558  *
2559  * Valid tokens are type field names and the "end" token.
2560  */
2561 static int
2562 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
2563 			  const char *str, unsigned int len,
2564 			  void *buf, unsigned int size)
2565 {
2566 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
2567 	struct action_rss_data *action_rss_data;
2568 	unsigned int i;
2569 
2570 	(void)token;
2571 	(void)buf;
2572 	(void)size;
2573 	if (ctx->curr != ACTION_RSS_TYPE)
2574 		return -1;
2575 	if (!(ctx->objdata >> 16) && ctx->object) {
2576 		action_rss_data = ctx->object;
2577 		action_rss_data->conf.types = 0;
2578 	}
2579 	if (!strcmp_partial("end", str, len)) {
2580 		ctx->objdata &= 0xffff;
2581 		return len;
2582 	}
2583 	for (i = 0; rss_type_table[i].str; ++i)
2584 		if (!strcmp_partial(rss_type_table[i].str, str, len))
2585 			break;
2586 	if (!rss_type_table[i].str)
2587 		return -1;
2588 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
2589 	/* Repeat token. */
2590 	if (ctx->next_num == RTE_DIM(ctx->next))
2591 		return -1;
2592 	ctx->next[ctx->next_num++] = next;
2593 	if (!ctx->object)
2594 		return len;
2595 	action_rss_data = ctx->object;
2596 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
2597 	return len;
2598 }
2599 
2600 /**
2601  * Parse queue field for RSS action.
2602  *
2603  * Valid tokens are queue indices and the "end" token.
2604  */
2605 static int
2606 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
2607 			  const char *str, unsigned int len,
2608 			  void *buf, unsigned int size)
2609 {
2610 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
2611 	struct action_rss_data *action_rss_data;
2612 	int ret;
2613 	int i;
2614 
2615 	(void)token;
2616 	(void)buf;
2617 	(void)size;
2618 	if (ctx->curr != ACTION_RSS_QUEUE)
2619 		return -1;
2620 	i = ctx->objdata >> 16;
2621 	if (!strcmp_partial("end", str, len)) {
2622 		ctx->objdata &= 0xffff;
2623 		return len;
2624 	}
2625 	if (i >= ACTION_RSS_QUEUE_NUM)
2626 		return -1;
2627 	if (push_args(ctx,
2628 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
2629 				     i * sizeof(action_rss_data->queue[i]),
2630 				     sizeof(action_rss_data->queue[i]))))
2631 		return -1;
2632 	ret = parse_int(ctx, token, str, len, NULL, 0);
2633 	if (ret < 0) {
2634 		pop_args(ctx);
2635 		return -1;
2636 	}
2637 	++i;
2638 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
2639 	/* Repeat token. */
2640 	if (ctx->next_num == RTE_DIM(ctx->next))
2641 		return -1;
2642 	ctx->next[ctx->next_num++] = next;
2643 	if (!ctx->object)
2644 		return len;
2645 	action_rss_data = ctx->object;
2646 	action_rss_data->conf.queue_num = i;
2647 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
2648 	return len;
2649 }
2650 
2651 /** Parse tokens for destroy command. */
2652 static int
2653 parse_destroy(struct context *ctx, const struct token *token,
2654 	      const char *str, unsigned int len,
2655 	      void *buf, unsigned int size)
2656 {
2657 	struct buffer *out = buf;
2658 
2659 	/* Token name must match. */
2660 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2661 		return -1;
2662 	/* Nothing else to do if there is no buffer. */
2663 	if (!out)
2664 		return len;
2665 	if (!out->command) {
2666 		if (ctx->curr != DESTROY)
2667 			return -1;
2668 		if (sizeof(*out) > size)
2669 			return -1;
2670 		out->command = ctx->curr;
2671 		ctx->objdata = 0;
2672 		ctx->object = out;
2673 		ctx->objmask = NULL;
2674 		out->args.destroy.rule =
2675 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2676 					       sizeof(double));
2677 		return len;
2678 	}
2679 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
2680 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
2681 		return -1;
2682 	ctx->objdata = 0;
2683 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
2684 	ctx->objmask = NULL;
2685 	return len;
2686 }
2687 
2688 /** Parse tokens for flush command. */
2689 static int
2690 parse_flush(struct context *ctx, const struct token *token,
2691 	    const char *str, unsigned int len,
2692 	    void *buf, unsigned int size)
2693 {
2694 	struct buffer *out = buf;
2695 
2696 	/* Token name must match. */
2697 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2698 		return -1;
2699 	/* Nothing else to do if there is no buffer. */
2700 	if (!out)
2701 		return len;
2702 	if (!out->command) {
2703 		if (ctx->curr != FLUSH)
2704 			return -1;
2705 		if (sizeof(*out) > size)
2706 			return -1;
2707 		out->command = ctx->curr;
2708 		ctx->objdata = 0;
2709 		ctx->object = out;
2710 		ctx->objmask = NULL;
2711 	}
2712 	return len;
2713 }
2714 
2715 /** Parse tokens for query command. */
2716 static int
2717 parse_query(struct context *ctx, const struct token *token,
2718 	    const char *str, unsigned int len,
2719 	    void *buf, unsigned int size)
2720 {
2721 	struct buffer *out = buf;
2722 
2723 	/* Token name must match. */
2724 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2725 		return -1;
2726 	/* Nothing else to do if there is no buffer. */
2727 	if (!out)
2728 		return len;
2729 	if (!out->command) {
2730 		if (ctx->curr != QUERY)
2731 			return -1;
2732 		if (sizeof(*out) > size)
2733 			return -1;
2734 		out->command = ctx->curr;
2735 		ctx->objdata = 0;
2736 		ctx->object = out;
2737 		ctx->objmask = NULL;
2738 	}
2739 	return len;
2740 }
2741 
2742 /** Parse action names. */
2743 static int
2744 parse_action(struct context *ctx, const struct token *token,
2745 	     const char *str, unsigned int len,
2746 	     void *buf, unsigned int size)
2747 {
2748 	struct buffer *out = buf;
2749 	const struct arg *arg = pop_args(ctx);
2750 	unsigned int i;
2751 
2752 	(void)size;
2753 	/* Argument is expected. */
2754 	if (!arg)
2755 		return -1;
2756 	/* Parse action name. */
2757 	for (i = 0; next_action[i]; ++i) {
2758 		const struct parse_action_priv *priv;
2759 
2760 		token = &token_list[next_action[i]];
2761 		if (strcmp_partial(token->name, str, len))
2762 			continue;
2763 		priv = token->priv;
2764 		if (!priv)
2765 			goto error;
2766 		if (out)
2767 			memcpy((uint8_t *)ctx->object + arg->offset,
2768 			       &priv->type,
2769 			       arg->size);
2770 		return len;
2771 	}
2772 error:
2773 	push_args(ctx, arg);
2774 	return -1;
2775 }
2776 
2777 /** Parse tokens for list command. */
2778 static int
2779 parse_list(struct context *ctx, const struct token *token,
2780 	   const char *str, unsigned int len,
2781 	   void *buf, unsigned int size)
2782 {
2783 	struct buffer *out = buf;
2784 
2785 	/* Token name must match. */
2786 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2787 		return -1;
2788 	/* Nothing else to do if there is no buffer. */
2789 	if (!out)
2790 		return len;
2791 	if (!out->command) {
2792 		if (ctx->curr != LIST)
2793 			return -1;
2794 		if (sizeof(*out) > size)
2795 			return -1;
2796 		out->command = ctx->curr;
2797 		ctx->objdata = 0;
2798 		ctx->object = out;
2799 		ctx->objmask = NULL;
2800 		out->args.list.group =
2801 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2802 					       sizeof(double));
2803 		return len;
2804 	}
2805 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
2806 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
2807 		return -1;
2808 	ctx->objdata = 0;
2809 	ctx->object = out->args.list.group + out->args.list.group_n++;
2810 	ctx->objmask = NULL;
2811 	return len;
2812 }
2813 
2814 /** Parse tokens for isolate command. */
2815 static int
2816 parse_isolate(struct context *ctx, const struct token *token,
2817 	      const char *str, unsigned int len,
2818 	      void *buf, unsigned int size)
2819 {
2820 	struct buffer *out = buf;
2821 
2822 	/* Token name must match. */
2823 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2824 		return -1;
2825 	/* Nothing else to do if there is no buffer. */
2826 	if (!out)
2827 		return len;
2828 	if (!out->command) {
2829 		if (ctx->curr != ISOLATE)
2830 			return -1;
2831 		if (sizeof(*out) > size)
2832 			return -1;
2833 		out->command = ctx->curr;
2834 		ctx->objdata = 0;
2835 		ctx->object = out;
2836 		ctx->objmask = NULL;
2837 	}
2838 	return len;
2839 }
2840 
2841 /**
2842  * Parse signed/unsigned integers 8 to 64-bit long.
2843  *
2844  * Last argument (ctx->args) is retrieved to determine integer type and
2845  * storage location.
2846  */
2847 static int
2848 parse_int(struct context *ctx, const struct token *token,
2849 	  const char *str, unsigned int len,
2850 	  void *buf, unsigned int size)
2851 {
2852 	const struct arg *arg = pop_args(ctx);
2853 	uintmax_t u;
2854 	char *end;
2855 
2856 	(void)token;
2857 	/* Argument is expected. */
2858 	if (!arg)
2859 		return -1;
2860 	errno = 0;
2861 	u = arg->sign ?
2862 		(uintmax_t)strtoimax(str, &end, 0) :
2863 		strtoumax(str, &end, 0);
2864 	if (errno || (size_t)(end - str) != len)
2865 		goto error;
2866 	if (arg->bounded &&
2867 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
2868 			    (intmax_t)u > (intmax_t)arg->max)) ||
2869 	     (!arg->sign && (u < arg->min || u > arg->max))))
2870 		goto error;
2871 	if (!ctx->object)
2872 		return len;
2873 	if (arg->mask) {
2874 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2875 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2876 			goto error;
2877 		return len;
2878 	}
2879 	buf = (uint8_t *)ctx->object + arg->offset;
2880 	size = arg->size;
2881 objmask:
2882 	switch (size) {
2883 	case sizeof(uint8_t):
2884 		*(uint8_t *)buf = u;
2885 		break;
2886 	case sizeof(uint16_t):
2887 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2888 		break;
2889 	case sizeof(uint8_t [3]):
2890 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2891 		if (!arg->hton) {
2892 			((uint8_t *)buf)[0] = u;
2893 			((uint8_t *)buf)[1] = u >> 8;
2894 			((uint8_t *)buf)[2] = u >> 16;
2895 			break;
2896 		}
2897 #endif
2898 		((uint8_t *)buf)[0] = u >> 16;
2899 		((uint8_t *)buf)[1] = u >> 8;
2900 		((uint8_t *)buf)[2] = u;
2901 		break;
2902 	case sizeof(uint32_t):
2903 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2904 		break;
2905 	case sizeof(uint64_t):
2906 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2907 		break;
2908 	default:
2909 		goto error;
2910 	}
2911 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2912 		u = -1;
2913 		buf = (uint8_t *)ctx->objmask + arg->offset;
2914 		goto objmask;
2915 	}
2916 	return len;
2917 error:
2918 	push_args(ctx, arg);
2919 	return -1;
2920 }
2921 
2922 /**
2923  * Parse a string.
2924  *
2925  * Three arguments (ctx->args) are retrieved from the stack to store data,
2926  * its actual length and address (in that order).
2927  */
2928 static int
2929 parse_string(struct context *ctx, const struct token *token,
2930 	     const char *str, unsigned int len,
2931 	     void *buf, unsigned int size)
2932 {
2933 	const struct arg *arg_data = pop_args(ctx);
2934 	const struct arg *arg_len = pop_args(ctx);
2935 	const struct arg *arg_addr = pop_args(ctx);
2936 	char tmp[16]; /* Ought to be enough. */
2937 	int ret;
2938 
2939 	/* Arguments are expected. */
2940 	if (!arg_data)
2941 		return -1;
2942 	if (!arg_len) {
2943 		push_args(ctx, arg_data);
2944 		return -1;
2945 	}
2946 	if (!arg_addr) {
2947 		push_args(ctx, arg_len);
2948 		push_args(ctx, arg_data);
2949 		return -1;
2950 	}
2951 	size = arg_data->size;
2952 	/* Bit-mask fill is not supported. */
2953 	if (arg_data->mask || size < len)
2954 		goto error;
2955 	if (!ctx->object)
2956 		return len;
2957 	/* Let parse_int() fill length information first. */
2958 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
2959 	if (ret < 0)
2960 		goto error;
2961 	push_args(ctx, arg_len);
2962 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2963 	if (ret < 0) {
2964 		pop_args(ctx);
2965 		goto error;
2966 	}
2967 	buf = (uint8_t *)ctx->object + arg_data->offset;
2968 	/* Output buffer is not necessarily NUL-terminated. */
2969 	memcpy(buf, str, len);
2970 	memset((uint8_t *)buf + len, 0x00, size - len);
2971 	if (ctx->objmask)
2972 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2973 	/* Save address if requested. */
2974 	if (arg_addr->size) {
2975 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
2976 		       (void *[]){
2977 			(uint8_t *)ctx->object + arg_data->offset
2978 		       },
2979 		       arg_addr->size);
2980 		if (ctx->objmask)
2981 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
2982 			       (void *[]){
2983 				(uint8_t *)ctx->objmask + arg_data->offset
2984 			       },
2985 			       arg_addr->size);
2986 	}
2987 	return len;
2988 error:
2989 	push_args(ctx, arg_addr);
2990 	push_args(ctx, arg_len);
2991 	push_args(ctx, arg_data);
2992 	return -1;
2993 }
2994 
2995 /**
2996  * Parse a MAC address.
2997  *
2998  * Last argument (ctx->args) is retrieved to determine storage size and
2999  * location.
3000  */
3001 static int
3002 parse_mac_addr(struct context *ctx, const struct token *token,
3003 	       const char *str, unsigned int len,
3004 	       void *buf, unsigned int size)
3005 {
3006 	const struct arg *arg = pop_args(ctx);
3007 	struct ether_addr tmp;
3008 	int ret;
3009 
3010 	(void)token;
3011 	/* Argument is expected. */
3012 	if (!arg)
3013 		return -1;
3014 	size = arg->size;
3015 	/* Bit-mask fill is not supported. */
3016 	if (arg->mask || size != sizeof(tmp))
3017 		goto error;
3018 	/* Only network endian is supported. */
3019 	if (!arg->hton)
3020 		goto error;
3021 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
3022 	if (ret < 0 || (unsigned int)ret != len)
3023 		goto error;
3024 	if (!ctx->object)
3025 		return len;
3026 	buf = (uint8_t *)ctx->object + arg->offset;
3027 	memcpy(buf, &tmp, size);
3028 	if (ctx->objmask)
3029 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3030 	return len;
3031 error:
3032 	push_args(ctx, arg);
3033 	return -1;
3034 }
3035 
3036 /**
3037  * Parse an IPv4 address.
3038  *
3039  * Last argument (ctx->args) is retrieved to determine storage size and
3040  * location.
3041  */
3042 static int
3043 parse_ipv4_addr(struct context *ctx, const struct token *token,
3044 		const char *str, unsigned int len,
3045 		void *buf, unsigned int size)
3046 {
3047 	const struct arg *arg = pop_args(ctx);
3048 	char str2[len + 1];
3049 	struct in_addr tmp;
3050 	int ret;
3051 
3052 	/* Argument is expected. */
3053 	if (!arg)
3054 		return -1;
3055 	size = arg->size;
3056 	/* Bit-mask fill is not supported. */
3057 	if (arg->mask || size != sizeof(tmp))
3058 		goto error;
3059 	/* Only network endian is supported. */
3060 	if (!arg->hton)
3061 		goto error;
3062 	memcpy(str2, str, len);
3063 	str2[len] = '\0';
3064 	ret = inet_pton(AF_INET, str2, &tmp);
3065 	if (ret != 1) {
3066 		/* Attempt integer parsing. */
3067 		push_args(ctx, arg);
3068 		return parse_int(ctx, token, str, len, buf, size);
3069 	}
3070 	if (!ctx->object)
3071 		return len;
3072 	buf = (uint8_t *)ctx->object + arg->offset;
3073 	memcpy(buf, &tmp, size);
3074 	if (ctx->objmask)
3075 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3076 	return len;
3077 error:
3078 	push_args(ctx, arg);
3079 	return -1;
3080 }
3081 
3082 /**
3083  * Parse an IPv6 address.
3084  *
3085  * Last argument (ctx->args) is retrieved to determine storage size and
3086  * location.
3087  */
3088 static int
3089 parse_ipv6_addr(struct context *ctx, const struct token *token,
3090 		const char *str, unsigned int len,
3091 		void *buf, unsigned int size)
3092 {
3093 	const struct arg *arg = pop_args(ctx);
3094 	char str2[len + 1];
3095 	struct in6_addr tmp;
3096 	int ret;
3097 
3098 	(void)token;
3099 	/* Argument is expected. */
3100 	if (!arg)
3101 		return -1;
3102 	size = arg->size;
3103 	/* Bit-mask fill is not supported. */
3104 	if (arg->mask || size != sizeof(tmp))
3105 		goto error;
3106 	/* Only network endian is supported. */
3107 	if (!arg->hton)
3108 		goto error;
3109 	memcpy(str2, str, len);
3110 	str2[len] = '\0';
3111 	ret = inet_pton(AF_INET6, str2, &tmp);
3112 	if (ret != 1)
3113 		goto error;
3114 	if (!ctx->object)
3115 		return len;
3116 	buf = (uint8_t *)ctx->object + arg->offset;
3117 	memcpy(buf, &tmp, size);
3118 	if (ctx->objmask)
3119 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3120 	return len;
3121 error:
3122 	push_args(ctx, arg);
3123 	return -1;
3124 }
3125 
3126 /** Boolean values (even indices stand for false). */
3127 static const char *const boolean_name[] = {
3128 	"0", "1",
3129 	"false", "true",
3130 	"no", "yes",
3131 	"N", "Y",
3132 	"off", "on",
3133 	NULL,
3134 };
3135 
3136 /**
3137  * Parse a boolean value.
3138  *
3139  * Last argument (ctx->args) is retrieved to determine storage size and
3140  * location.
3141  */
3142 static int
3143 parse_boolean(struct context *ctx, const struct token *token,
3144 	      const char *str, unsigned int len,
3145 	      void *buf, unsigned int size)
3146 {
3147 	const struct arg *arg = pop_args(ctx);
3148 	unsigned int i;
3149 	int ret;
3150 
3151 	/* Argument is expected. */
3152 	if (!arg)
3153 		return -1;
3154 	for (i = 0; boolean_name[i]; ++i)
3155 		if (!strcmp_partial(boolean_name[i], str, len))
3156 			break;
3157 	/* Process token as integer. */
3158 	if (boolean_name[i])
3159 		str = i & 1 ? "1" : "0";
3160 	push_args(ctx, arg);
3161 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
3162 	return ret > 0 ? (int)len : ret;
3163 }
3164 
3165 /** Parse port and update context. */
3166 static int
3167 parse_port(struct context *ctx, const struct token *token,
3168 	   const char *str, unsigned int len,
3169 	   void *buf, unsigned int size)
3170 {
3171 	struct buffer *out = &(struct buffer){ .port = 0 };
3172 	int ret;
3173 
3174 	if (buf)
3175 		out = buf;
3176 	else {
3177 		ctx->objdata = 0;
3178 		ctx->object = out;
3179 		ctx->objmask = NULL;
3180 		size = sizeof(*out);
3181 	}
3182 	ret = parse_int(ctx, token, str, len, out, size);
3183 	if (ret >= 0)
3184 		ctx->port = out->port;
3185 	if (!buf)
3186 		ctx->object = NULL;
3187 	return ret;
3188 }
3189 
3190 /** No completion. */
3191 static int
3192 comp_none(struct context *ctx, const struct token *token,
3193 	  unsigned int ent, char *buf, unsigned int size)
3194 {
3195 	(void)ctx;
3196 	(void)token;
3197 	(void)ent;
3198 	(void)buf;
3199 	(void)size;
3200 	return 0;
3201 }
3202 
3203 /** Complete boolean values. */
3204 static int
3205 comp_boolean(struct context *ctx, const struct token *token,
3206 	     unsigned int ent, char *buf, unsigned int size)
3207 {
3208 	unsigned int i;
3209 
3210 	(void)ctx;
3211 	(void)token;
3212 	for (i = 0; boolean_name[i]; ++i)
3213 		if (buf && i == ent)
3214 			return snprintf(buf, size, "%s", boolean_name[i]);
3215 	if (buf)
3216 		return -1;
3217 	return i;
3218 }
3219 
3220 /** Complete action names. */
3221 static int
3222 comp_action(struct context *ctx, const struct token *token,
3223 	    unsigned int ent, char *buf, unsigned int size)
3224 {
3225 	unsigned int i;
3226 
3227 	(void)ctx;
3228 	(void)token;
3229 	for (i = 0; next_action[i]; ++i)
3230 		if (buf && i == ent)
3231 			return snprintf(buf, size, "%s",
3232 					token_list[next_action[i]].name);
3233 	if (buf)
3234 		return -1;
3235 	return i;
3236 }
3237 
3238 /** Complete available ports. */
3239 static int
3240 comp_port(struct context *ctx, const struct token *token,
3241 	  unsigned int ent, char *buf, unsigned int size)
3242 {
3243 	unsigned int i = 0;
3244 	portid_t p;
3245 
3246 	(void)ctx;
3247 	(void)token;
3248 	RTE_ETH_FOREACH_DEV(p) {
3249 		if (buf && i == ent)
3250 			return snprintf(buf, size, "%u", p);
3251 		++i;
3252 	}
3253 	if (buf)
3254 		return -1;
3255 	return i;
3256 }
3257 
3258 /** Complete available rule IDs. */
3259 static int
3260 comp_rule_id(struct context *ctx, const struct token *token,
3261 	     unsigned int ent, char *buf, unsigned int size)
3262 {
3263 	unsigned int i = 0;
3264 	struct rte_port *port;
3265 	struct port_flow *pf;
3266 
3267 	(void)token;
3268 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
3269 	    ctx->port == (portid_t)RTE_PORT_ALL)
3270 		return -1;
3271 	port = &ports[ctx->port];
3272 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
3273 		if (buf && i == ent)
3274 			return snprintf(buf, size, "%u", pf->id);
3275 		++i;
3276 	}
3277 	if (buf)
3278 		return -1;
3279 	return i;
3280 }
3281 
3282 /** Complete type field for RSS action. */
3283 static int
3284 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
3285 			unsigned int ent, char *buf, unsigned int size)
3286 {
3287 	unsigned int i;
3288 
3289 	(void)ctx;
3290 	(void)token;
3291 	for (i = 0; rss_type_table[i].str; ++i)
3292 		;
3293 	if (!buf)
3294 		return i + 1;
3295 	if (ent < i)
3296 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
3297 	if (ent == i)
3298 		return snprintf(buf, size, "end");
3299 	return -1;
3300 }
3301 
3302 /** Complete queue field for RSS action. */
3303 static int
3304 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
3305 			 unsigned int ent, char *buf, unsigned int size)
3306 {
3307 	(void)ctx;
3308 	(void)token;
3309 	if (!buf)
3310 		return nb_rxq + 1;
3311 	if (ent < nb_rxq)
3312 		return snprintf(buf, size, "%u", ent);
3313 	if (ent == nb_rxq)
3314 		return snprintf(buf, size, "end");
3315 	return -1;
3316 }
3317 
3318 /** Internal context. */
3319 static struct context cmd_flow_context;
3320 
3321 /** Global parser instance (cmdline API). */
3322 cmdline_parse_inst_t cmd_flow;
3323 
3324 /** Initialize context. */
3325 static void
3326 cmd_flow_context_init(struct context *ctx)
3327 {
3328 	/* A full memset() is not necessary. */
3329 	ctx->curr = ZERO;
3330 	ctx->prev = ZERO;
3331 	ctx->next_num = 0;
3332 	ctx->args_num = 0;
3333 	ctx->eol = 0;
3334 	ctx->last = 0;
3335 	ctx->port = 0;
3336 	ctx->objdata = 0;
3337 	ctx->object = NULL;
3338 	ctx->objmask = NULL;
3339 }
3340 
3341 /** Parse a token (cmdline API). */
3342 static int
3343 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
3344 	       unsigned int size)
3345 {
3346 	struct context *ctx = &cmd_flow_context;
3347 	const struct token *token;
3348 	const enum index *list;
3349 	int len;
3350 	int i;
3351 
3352 	(void)hdr;
3353 	token = &token_list[ctx->curr];
3354 	/* Check argument length. */
3355 	ctx->eol = 0;
3356 	ctx->last = 1;
3357 	for (len = 0; src[len]; ++len)
3358 		if (src[len] == '#' || isspace(src[len]))
3359 			break;
3360 	if (!len)
3361 		return -1;
3362 	/* Last argument and EOL detection. */
3363 	for (i = len; src[i]; ++i)
3364 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
3365 			break;
3366 		else if (!isspace(src[i])) {
3367 			ctx->last = 0;
3368 			break;
3369 		}
3370 	for (; src[i]; ++i)
3371 		if (src[i] == '\r' || src[i] == '\n') {
3372 			ctx->eol = 1;
3373 			break;
3374 		}
3375 	/* Initialize context if necessary. */
3376 	if (!ctx->next_num) {
3377 		if (!token->next)
3378 			return 0;
3379 		ctx->next[ctx->next_num++] = token->next[0];
3380 	}
3381 	/* Process argument through candidates. */
3382 	ctx->prev = ctx->curr;
3383 	list = ctx->next[ctx->next_num - 1];
3384 	for (i = 0; list[i]; ++i) {
3385 		const struct token *next = &token_list[list[i]];
3386 		int tmp;
3387 
3388 		ctx->curr = list[i];
3389 		if (next->call)
3390 			tmp = next->call(ctx, next, src, len, result, size);
3391 		else
3392 			tmp = parse_default(ctx, next, src, len, result, size);
3393 		if (tmp == -1 || tmp != len)
3394 			continue;
3395 		token = next;
3396 		break;
3397 	}
3398 	if (!list[i])
3399 		return -1;
3400 	--ctx->next_num;
3401 	/* Push subsequent tokens if any. */
3402 	if (token->next)
3403 		for (i = 0; token->next[i]; ++i) {
3404 			if (ctx->next_num == RTE_DIM(ctx->next))
3405 				return -1;
3406 			ctx->next[ctx->next_num++] = token->next[i];
3407 		}
3408 	/* Push arguments if any. */
3409 	if (token->args)
3410 		for (i = 0; token->args[i]; ++i) {
3411 			if (ctx->args_num == RTE_DIM(ctx->args))
3412 				return -1;
3413 			ctx->args[ctx->args_num++] = token->args[i];
3414 		}
3415 	return len;
3416 }
3417 
3418 /** Return number of completion entries (cmdline API). */
3419 static int
3420 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
3421 {
3422 	struct context *ctx = &cmd_flow_context;
3423 	const struct token *token = &token_list[ctx->curr];
3424 	const enum index *list;
3425 	int i;
3426 
3427 	(void)hdr;
3428 	/* Count number of tokens in current list. */
3429 	if (ctx->next_num)
3430 		list = ctx->next[ctx->next_num - 1];
3431 	else
3432 		list = token->next[0];
3433 	for (i = 0; list[i]; ++i)
3434 		;
3435 	if (!i)
3436 		return 0;
3437 	/*
3438 	 * If there is a single token, use its completion callback, otherwise
3439 	 * return the number of entries.
3440 	 */
3441 	token = &token_list[list[0]];
3442 	if (i == 1 && token->comp) {
3443 		/* Save index for cmd_flow_get_help(). */
3444 		ctx->prev = list[0];
3445 		return token->comp(ctx, token, 0, NULL, 0);
3446 	}
3447 	return i;
3448 }
3449 
3450 /** Return a completion entry (cmdline API). */
3451 static int
3452 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
3453 			  char *dst, unsigned int size)
3454 {
3455 	struct context *ctx = &cmd_flow_context;
3456 	const struct token *token = &token_list[ctx->curr];
3457 	const enum index *list;
3458 	int i;
3459 
3460 	(void)hdr;
3461 	/* Count number of tokens in current list. */
3462 	if (ctx->next_num)
3463 		list = ctx->next[ctx->next_num - 1];
3464 	else
3465 		list = token->next[0];
3466 	for (i = 0; list[i]; ++i)
3467 		;
3468 	if (!i)
3469 		return -1;
3470 	/* If there is a single token, use its completion callback. */
3471 	token = &token_list[list[0]];
3472 	if (i == 1 && token->comp) {
3473 		/* Save index for cmd_flow_get_help(). */
3474 		ctx->prev = list[0];
3475 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
3476 	}
3477 	/* Otherwise make sure the index is valid and use defaults. */
3478 	if (index >= i)
3479 		return -1;
3480 	token = &token_list[list[index]];
3481 	snprintf(dst, size, "%s", token->name);
3482 	/* Save index for cmd_flow_get_help(). */
3483 	ctx->prev = list[index];
3484 	return 0;
3485 }
3486 
3487 /** Populate help strings for current token (cmdline API). */
3488 static int
3489 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
3490 {
3491 	struct context *ctx = &cmd_flow_context;
3492 	const struct token *token = &token_list[ctx->prev];
3493 
3494 	(void)hdr;
3495 	if (!size)
3496 		return -1;
3497 	/* Set token type and update global help with details. */
3498 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
3499 	if (token->help)
3500 		cmd_flow.help_str = token->help;
3501 	else
3502 		cmd_flow.help_str = token->name;
3503 	return 0;
3504 }
3505 
3506 /** Token definition template (cmdline API). */
3507 static struct cmdline_token_hdr cmd_flow_token_hdr = {
3508 	.ops = &(struct cmdline_token_ops){
3509 		.parse = cmd_flow_parse,
3510 		.complete_get_nb = cmd_flow_complete_get_nb,
3511 		.complete_get_elt = cmd_flow_complete_get_elt,
3512 		.get_help = cmd_flow_get_help,
3513 	},
3514 	.offset = 0,
3515 };
3516 
3517 /** Populate the next dynamic token. */
3518 static void
3519 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
3520 	     cmdline_parse_token_hdr_t **hdr_inst)
3521 {
3522 	struct context *ctx = &cmd_flow_context;
3523 
3524 	/* Always reinitialize context before requesting the first token. */
3525 	if (!(hdr_inst - cmd_flow.tokens))
3526 		cmd_flow_context_init(ctx);
3527 	/* Return NULL when no more tokens are expected. */
3528 	if (!ctx->next_num && ctx->curr) {
3529 		*hdr = NULL;
3530 		return;
3531 	}
3532 	/* Determine if command should end here. */
3533 	if (ctx->eol && ctx->last && ctx->next_num) {
3534 		const enum index *list = ctx->next[ctx->next_num - 1];
3535 		int i;
3536 
3537 		for (i = 0; list[i]; ++i) {
3538 			if (list[i] != END)
3539 				continue;
3540 			*hdr = NULL;
3541 			return;
3542 		}
3543 	}
3544 	*hdr = &cmd_flow_token_hdr;
3545 }
3546 
3547 /** Dispatch parsed buffer to function calls. */
3548 static void
3549 cmd_flow_parsed(const struct buffer *in)
3550 {
3551 	switch (in->command) {
3552 	case VALIDATE:
3553 		port_flow_validate(in->port, &in->args.vc.attr,
3554 				   in->args.vc.pattern, in->args.vc.actions);
3555 		break;
3556 	case CREATE:
3557 		port_flow_create(in->port, &in->args.vc.attr,
3558 				 in->args.vc.pattern, in->args.vc.actions);
3559 		break;
3560 	case DESTROY:
3561 		port_flow_destroy(in->port, in->args.destroy.rule_n,
3562 				  in->args.destroy.rule);
3563 		break;
3564 	case FLUSH:
3565 		port_flow_flush(in->port);
3566 		break;
3567 	case QUERY:
3568 		port_flow_query(in->port, in->args.query.rule,
3569 				in->args.query.action);
3570 		break;
3571 	case LIST:
3572 		port_flow_list(in->port, in->args.list.group_n,
3573 			       in->args.list.group);
3574 		break;
3575 	case ISOLATE:
3576 		port_flow_isolate(in->port, in->args.isolate.set);
3577 		break;
3578 	default:
3579 		break;
3580 	}
3581 }
3582 
3583 /** Token generator and output processing callback (cmdline API). */
3584 static void
3585 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
3586 {
3587 	if (cl == NULL)
3588 		cmd_flow_tok(arg0, arg2);
3589 	else
3590 		cmd_flow_parsed(arg0);
3591 }
3592 
3593 /** Global parser instance (cmdline API). */
3594 cmdline_parse_inst_t cmd_flow = {
3595 	.f = cmd_flow_cb,
3596 	.data = NULL, /**< Unused. */
3597 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
3598 	.tokens = {
3599 		NULL,
3600 	}, /**< Tokens are returned by cmd_flow_tok(). */
3601 };
3602