xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 90197eb0945b50c9cd6e11f310cfc5078b28f75e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	HEX,
39 	MAC_ADDR,
40 	IPV4_ADDR,
41 	IPV6_ADDR,
42 	RULE_ID,
43 	PORT_ID,
44 	GROUP_ID,
45 	PRIORITY_LEVEL,
46 
47 	/* Top-level command. */
48 	FLOW,
49 
50 	/* Sub-level commands. */
51 	VALIDATE,
52 	CREATE,
53 	DESTROY,
54 	FLUSH,
55 	QUERY,
56 	LIST,
57 	ISOLATE,
58 
59 	/* Destroy arguments. */
60 	DESTROY_RULE,
61 
62 	/* Query arguments. */
63 	QUERY_ACTION,
64 
65 	/* List arguments. */
66 	LIST_GROUP,
67 
68 	/* Validate/create arguments. */
69 	GROUP,
70 	PRIORITY,
71 	INGRESS,
72 	EGRESS,
73 	TRANSFER,
74 
75 	/* Validate/create pattern. */
76 	PATTERN,
77 	ITEM_PARAM_IS,
78 	ITEM_PARAM_SPEC,
79 	ITEM_PARAM_LAST,
80 	ITEM_PARAM_MASK,
81 	ITEM_PARAM_PREFIX,
82 	ITEM_NEXT,
83 	ITEM_END,
84 	ITEM_VOID,
85 	ITEM_INVERT,
86 	ITEM_ANY,
87 	ITEM_ANY_NUM,
88 	ITEM_PF,
89 	ITEM_VF,
90 	ITEM_VF_ID,
91 	ITEM_PHY_PORT,
92 	ITEM_PHY_PORT_INDEX,
93 	ITEM_PORT_ID,
94 	ITEM_PORT_ID_ID,
95 	ITEM_MARK,
96 	ITEM_MARK_ID,
97 	ITEM_RAW,
98 	ITEM_RAW_RELATIVE,
99 	ITEM_RAW_SEARCH,
100 	ITEM_RAW_OFFSET,
101 	ITEM_RAW_LIMIT,
102 	ITEM_RAW_PATTERN,
103 	ITEM_ETH,
104 	ITEM_ETH_DST,
105 	ITEM_ETH_SRC,
106 	ITEM_ETH_TYPE,
107 	ITEM_VLAN,
108 	ITEM_VLAN_TCI,
109 	ITEM_VLAN_PCP,
110 	ITEM_VLAN_DEI,
111 	ITEM_VLAN_VID,
112 	ITEM_VLAN_INNER_TYPE,
113 	ITEM_IPV4,
114 	ITEM_IPV4_TOS,
115 	ITEM_IPV4_TTL,
116 	ITEM_IPV4_PROTO,
117 	ITEM_IPV4_SRC,
118 	ITEM_IPV4_DST,
119 	ITEM_IPV6,
120 	ITEM_IPV6_TC,
121 	ITEM_IPV6_FLOW,
122 	ITEM_IPV6_PROTO,
123 	ITEM_IPV6_HOP,
124 	ITEM_IPV6_SRC,
125 	ITEM_IPV6_DST,
126 	ITEM_ICMP,
127 	ITEM_ICMP_TYPE,
128 	ITEM_ICMP_CODE,
129 	ITEM_UDP,
130 	ITEM_UDP_SRC,
131 	ITEM_UDP_DST,
132 	ITEM_TCP,
133 	ITEM_TCP_SRC,
134 	ITEM_TCP_DST,
135 	ITEM_TCP_FLAGS,
136 	ITEM_SCTP,
137 	ITEM_SCTP_SRC,
138 	ITEM_SCTP_DST,
139 	ITEM_SCTP_TAG,
140 	ITEM_SCTP_CKSUM,
141 	ITEM_VXLAN,
142 	ITEM_VXLAN_VNI,
143 	ITEM_E_TAG,
144 	ITEM_E_TAG_GRP_ECID_B,
145 	ITEM_NVGRE,
146 	ITEM_NVGRE_TNI,
147 	ITEM_MPLS,
148 	ITEM_MPLS_LABEL,
149 	ITEM_GRE,
150 	ITEM_GRE_PROTO,
151 	ITEM_FUZZY,
152 	ITEM_FUZZY_THRESH,
153 	ITEM_GTP,
154 	ITEM_GTP_TEID,
155 	ITEM_GTPC,
156 	ITEM_GTPU,
157 	ITEM_GENEVE,
158 	ITEM_GENEVE_VNI,
159 	ITEM_GENEVE_PROTO,
160 	ITEM_VXLAN_GPE,
161 	ITEM_VXLAN_GPE_VNI,
162 	ITEM_ARP_ETH_IPV4,
163 	ITEM_ARP_ETH_IPV4_SHA,
164 	ITEM_ARP_ETH_IPV4_SPA,
165 	ITEM_ARP_ETH_IPV4_THA,
166 	ITEM_ARP_ETH_IPV4_TPA,
167 	ITEM_IPV6_EXT,
168 	ITEM_IPV6_EXT_NEXT_HDR,
169 	ITEM_ICMP6,
170 	ITEM_ICMP6_TYPE,
171 	ITEM_ICMP6_CODE,
172 	ITEM_ICMP6_ND_NS,
173 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
174 	ITEM_ICMP6_ND_NA,
175 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
176 	ITEM_ICMP6_ND_OPT,
177 	ITEM_ICMP6_ND_OPT_TYPE,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH,
179 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH,
181 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
182 	ITEM_META,
183 	ITEM_META_DATA,
184 
185 	/* Validate/create actions. */
186 	ACTIONS,
187 	ACTION_NEXT,
188 	ACTION_END,
189 	ACTION_VOID,
190 	ACTION_PASSTHRU,
191 	ACTION_JUMP,
192 	ACTION_JUMP_GROUP,
193 	ACTION_MARK,
194 	ACTION_MARK_ID,
195 	ACTION_FLAG,
196 	ACTION_QUEUE,
197 	ACTION_QUEUE_INDEX,
198 	ACTION_DROP,
199 	ACTION_COUNT,
200 	ACTION_COUNT_SHARED,
201 	ACTION_COUNT_ID,
202 	ACTION_RSS,
203 	ACTION_RSS_FUNC,
204 	ACTION_RSS_LEVEL,
205 	ACTION_RSS_FUNC_DEFAULT,
206 	ACTION_RSS_FUNC_TOEPLITZ,
207 	ACTION_RSS_FUNC_SIMPLE_XOR,
208 	ACTION_RSS_TYPES,
209 	ACTION_RSS_TYPE,
210 	ACTION_RSS_KEY,
211 	ACTION_RSS_KEY_LEN,
212 	ACTION_RSS_QUEUES,
213 	ACTION_RSS_QUEUE,
214 	ACTION_PF,
215 	ACTION_VF,
216 	ACTION_VF_ORIGINAL,
217 	ACTION_VF_ID,
218 	ACTION_PHY_PORT,
219 	ACTION_PHY_PORT_ORIGINAL,
220 	ACTION_PHY_PORT_INDEX,
221 	ACTION_PORT_ID,
222 	ACTION_PORT_ID_ORIGINAL,
223 	ACTION_PORT_ID_ID,
224 	ACTION_METER,
225 	ACTION_METER_ID,
226 	ACTION_OF_SET_MPLS_TTL,
227 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
228 	ACTION_OF_DEC_MPLS_TTL,
229 	ACTION_OF_SET_NW_TTL,
230 	ACTION_OF_SET_NW_TTL_NW_TTL,
231 	ACTION_OF_DEC_NW_TTL,
232 	ACTION_OF_COPY_TTL_OUT,
233 	ACTION_OF_COPY_TTL_IN,
234 	ACTION_OF_POP_VLAN,
235 	ACTION_OF_PUSH_VLAN,
236 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
237 	ACTION_OF_SET_VLAN_VID,
238 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
239 	ACTION_OF_SET_VLAN_PCP,
240 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
241 	ACTION_OF_POP_MPLS,
242 	ACTION_OF_POP_MPLS_ETHERTYPE,
243 	ACTION_OF_PUSH_MPLS,
244 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
245 	ACTION_VXLAN_ENCAP,
246 	ACTION_VXLAN_DECAP,
247 	ACTION_NVGRE_ENCAP,
248 	ACTION_NVGRE_DECAP,
249 	ACTION_L2_ENCAP,
250 	ACTION_L2_DECAP,
251 	ACTION_MPLSOGRE_ENCAP,
252 	ACTION_MPLSOGRE_DECAP,
253 	ACTION_MPLSOUDP_ENCAP,
254 	ACTION_MPLSOUDP_DECAP,
255 	ACTION_SET_IPV4_SRC,
256 	ACTION_SET_IPV4_SRC_IPV4_SRC,
257 	ACTION_SET_IPV4_DST,
258 	ACTION_SET_IPV4_DST_IPV4_DST,
259 	ACTION_SET_IPV6_SRC,
260 	ACTION_SET_IPV6_SRC_IPV6_SRC,
261 	ACTION_SET_IPV6_DST,
262 	ACTION_SET_IPV6_DST_IPV6_DST,
263 	ACTION_SET_TP_SRC,
264 	ACTION_SET_TP_SRC_TP_SRC,
265 	ACTION_SET_TP_DST,
266 	ACTION_SET_TP_DST_TP_DST,
267 	ACTION_MAC_SWAP,
268 	ACTION_DEC_TTL,
269 	ACTION_SET_TTL,
270 	ACTION_SET_TTL_TTL,
271 	ACTION_SET_MAC_SRC,
272 	ACTION_SET_MAC_SRC_MAC_SRC,
273 	ACTION_SET_MAC_DST,
274 	ACTION_SET_MAC_DST_MAC_DST,
275 	ACTION_INC_TCP_SEQ,
276 	ACTION_INC_TCP_SEQ_VALUE,
277 	ACTION_DEC_TCP_SEQ,
278 	ACTION_DEC_TCP_SEQ_VALUE,
279 	ACTION_INC_TCP_ACK,
280 	ACTION_INC_TCP_ACK_VALUE,
281 	ACTION_DEC_TCP_ACK,
282 	ACTION_DEC_TCP_ACK_VALUE,
283 };
284 
285 /** Maximum size for pattern in struct rte_flow_item_raw. */
286 #define ITEM_RAW_PATTERN_SIZE 40
287 
288 /** Storage size for struct rte_flow_item_raw including pattern. */
289 #define ITEM_RAW_SIZE \
290 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
291 
292 /** Maximum number of queue indices in struct rte_flow_action_rss. */
293 #define ACTION_RSS_QUEUE_NUM 32
294 
295 /** Storage for struct rte_flow_action_rss including external data. */
296 struct action_rss_data {
297 	struct rte_flow_action_rss conf;
298 	uint8_t key[RSS_HASH_KEY_LENGTH];
299 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
300 };
301 
302 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
303 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
304 
305 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
306 struct action_vxlan_encap_data {
307 	struct rte_flow_action_vxlan_encap conf;
308 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
309 	struct rte_flow_item_eth item_eth;
310 	struct rte_flow_item_vlan item_vlan;
311 	union {
312 		struct rte_flow_item_ipv4 item_ipv4;
313 		struct rte_flow_item_ipv6 item_ipv6;
314 	};
315 	struct rte_flow_item_udp item_udp;
316 	struct rte_flow_item_vxlan item_vxlan;
317 };
318 
319 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
320 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
321 
322 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
323 struct action_nvgre_encap_data {
324 	struct rte_flow_action_nvgre_encap conf;
325 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
326 	struct rte_flow_item_eth item_eth;
327 	struct rte_flow_item_vlan item_vlan;
328 	union {
329 		struct rte_flow_item_ipv4 item_ipv4;
330 		struct rte_flow_item_ipv6 item_ipv6;
331 	};
332 	struct rte_flow_item_nvgre item_nvgre;
333 };
334 
335 /** Maximum data size in struct rte_flow_action_raw_encap. */
336 #define ACTION_RAW_ENCAP_MAX_DATA 128
337 
338 /** Storage for struct rte_flow_action_raw_encap including external data. */
339 struct action_raw_encap_data {
340 	struct rte_flow_action_raw_encap conf;
341 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
342 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
343 };
344 
345 /** Storage for struct rte_flow_action_raw_decap including external data. */
346 struct action_raw_decap_data {
347 	struct rte_flow_action_raw_decap conf;
348 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
349 };
350 
351 /** Maximum number of subsequent tokens and arguments on the stack. */
352 #define CTX_STACK_SIZE 16
353 
354 /** Parser context. */
355 struct context {
356 	/** Stack of subsequent token lists to process. */
357 	const enum index *next[CTX_STACK_SIZE];
358 	/** Arguments for stacked tokens. */
359 	const void *args[CTX_STACK_SIZE];
360 	enum index curr; /**< Current token index. */
361 	enum index prev; /**< Index of the last token seen. */
362 	int next_num; /**< Number of entries in next[]. */
363 	int args_num; /**< Number of entries in args[]. */
364 	uint32_t eol:1; /**< EOL has been detected. */
365 	uint32_t last:1; /**< No more arguments. */
366 	portid_t port; /**< Current port ID (for completions). */
367 	uint32_t objdata; /**< Object-specific data. */
368 	void *object; /**< Address of current object for relative offsets. */
369 	void *objmask; /**< Object a full mask must be written to. */
370 };
371 
372 /** Token argument. */
373 struct arg {
374 	uint32_t hton:1; /**< Use network byte ordering. */
375 	uint32_t sign:1; /**< Value is signed. */
376 	uint32_t bounded:1; /**< Value is bounded. */
377 	uintmax_t min; /**< Minimum value if bounded. */
378 	uintmax_t max; /**< Maximum value if bounded. */
379 	uint32_t offset; /**< Relative offset from ctx->object. */
380 	uint32_t size; /**< Field size. */
381 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
382 };
383 
384 /** Parser token definition. */
385 struct token {
386 	/** Type displayed during completion (defaults to "TOKEN"). */
387 	const char *type;
388 	/** Help displayed during completion (defaults to token name). */
389 	const char *help;
390 	/** Private data used by parser functions. */
391 	const void *priv;
392 	/**
393 	 * Lists of subsequent tokens to push on the stack. Each call to the
394 	 * parser consumes the last entry of that stack.
395 	 */
396 	const enum index *const *next;
397 	/** Arguments stack for subsequent tokens that need them. */
398 	const struct arg *const *args;
399 	/**
400 	 * Token-processing callback, returns -1 in case of error, the
401 	 * length of the matched string otherwise. If NULL, attempts to
402 	 * match the token name.
403 	 *
404 	 * If buf is not NULL, the result should be stored in it according
405 	 * to context. An error is returned if not large enough.
406 	 */
407 	int (*call)(struct context *ctx, const struct token *token,
408 		    const char *str, unsigned int len,
409 		    void *buf, unsigned int size);
410 	/**
411 	 * Callback that provides possible values for this token, used for
412 	 * completion. Returns -1 in case of error, the number of possible
413 	 * values otherwise. If NULL, the token name is used.
414 	 *
415 	 * If buf is not NULL, entry index ent is written to buf and the
416 	 * full length of the entry is returned (same behavior as
417 	 * snprintf()).
418 	 */
419 	int (*comp)(struct context *ctx, const struct token *token,
420 		    unsigned int ent, char *buf, unsigned int size);
421 	/** Mandatory token name, no default value. */
422 	const char *name;
423 };
424 
425 /** Static initializer for the next field. */
426 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
427 
428 /** Static initializer for a NEXT() entry. */
429 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
430 
431 /** Static initializer for the args field. */
432 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
433 
434 /** Static initializer for ARGS() to target a field. */
435 #define ARGS_ENTRY(s, f) \
436 	(&(const struct arg){ \
437 		.offset = offsetof(s, f), \
438 		.size = sizeof(((s *)0)->f), \
439 	})
440 
441 /** Static initializer for ARGS() to target a bit-field. */
442 #define ARGS_ENTRY_BF(s, f, b) \
443 	(&(const struct arg){ \
444 		.size = sizeof(s), \
445 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
446 	})
447 
448 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
449 #define ARGS_ENTRY_MASK(s, f, m) \
450 	(&(const struct arg){ \
451 		.offset = offsetof(s, f), \
452 		.size = sizeof(((s *)0)->f), \
453 		.mask = (const void *)(m), \
454 	})
455 
456 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
457 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
458 	(&(const struct arg){ \
459 		.hton = 1, \
460 		.offset = offsetof(s, f), \
461 		.size = sizeof(((s *)0)->f), \
462 		.mask = (const void *)(m), \
463 	})
464 
465 /** Static initializer for ARGS() to target a pointer. */
466 #define ARGS_ENTRY_PTR(s, f) \
467 	(&(const struct arg){ \
468 		.size = sizeof(*((s *)0)->f), \
469 	})
470 
471 /** Static initializer for ARGS() with arbitrary offset and size. */
472 #define ARGS_ENTRY_ARB(o, s) \
473 	(&(const struct arg){ \
474 		.offset = (o), \
475 		.size = (s), \
476 	})
477 
478 /** Same as ARGS_ENTRY_ARB() with bounded values. */
479 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
480 	(&(const struct arg){ \
481 		.bounded = 1, \
482 		.min = (i), \
483 		.max = (a), \
484 		.offset = (o), \
485 		.size = (s), \
486 	})
487 
488 /** Same as ARGS_ENTRY() using network byte ordering. */
489 #define ARGS_ENTRY_HTON(s, f) \
490 	(&(const struct arg){ \
491 		.hton = 1, \
492 		.offset = offsetof(s, f), \
493 		.size = sizeof(((s *)0)->f), \
494 	})
495 
496 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
497 #define ARG_ENTRY_HTON(s) \
498 	(&(const struct arg){ \
499 		.hton = 1, \
500 		.offset = 0, \
501 		.size = sizeof(s), \
502 	})
503 
504 /** Parser output buffer layout expected by cmd_flow_parsed(). */
505 struct buffer {
506 	enum index command; /**< Flow command. */
507 	portid_t port; /**< Affected port ID. */
508 	union {
509 		struct {
510 			struct rte_flow_attr attr;
511 			struct rte_flow_item *pattern;
512 			struct rte_flow_action *actions;
513 			uint32_t pattern_n;
514 			uint32_t actions_n;
515 			uint8_t *data;
516 		} vc; /**< Validate/create arguments. */
517 		struct {
518 			uint32_t *rule;
519 			uint32_t rule_n;
520 		} destroy; /**< Destroy arguments. */
521 		struct {
522 			uint32_t rule;
523 			struct rte_flow_action action;
524 		} query; /**< Query arguments. */
525 		struct {
526 			uint32_t *group;
527 			uint32_t group_n;
528 		} list; /**< List arguments. */
529 		struct {
530 			int set;
531 		} isolate; /**< Isolated mode arguments. */
532 	} args; /**< Command arguments. */
533 };
534 
535 /** Private data for pattern items. */
536 struct parse_item_priv {
537 	enum rte_flow_item_type type; /**< Item type. */
538 	uint32_t size; /**< Size of item specification structure. */
539 };
540 
541 #define PRIV_ITEM(t, s) \
542 	(&(const struct parse_item_priv){ \
543 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
544 		.size = s, \
545 	})
546 
547 /** Private data for actions. */
548 struct parse_action_priv {
549 	enum rte_flow_action_type type; /**< Action type. */
550 	uint32_t size; /**< Size of action configuration structure. */
551 };
552 
553 #define PRIV_ACTION(t, s) \
554 	(&(const struct parse_action_priv){ \
555 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
556 		.size = s, \
557 	})
558 
559 static const enum index next_vc_attr[] = {
560 	GROUP,
561 	PRIORITY,
562 	INGRESS,
563 	EGRESS,
564 	TRANSFER,
565 	PATTERN,
566 	ZERO,
567 };
568 
569 static const enum index next_destroy_attr[] = {
570 	DESTROY_RULE,
571 	END,
572 	ZERO,
573 };
574 
575 static const enum index next_list_attr[] = {
576 	LIST_GROUP,
577 	END,
578 	ZERO,
579 };
580 
581 static const enum index item_param[] = {
582 	ITEM_PARAM_IS,
583 	ITEM_PARAM_SPEC,
584 	ITEM_PARAM_LAST,
585 	ITEM_PARAM_MASK,
586 	ITEM_PARAM_PREFIX,
587 	ZERO,
588 };
589 
590 static const enum index next_item[] = {
591 	ITEM_END,
592 	ITEM_VOID,
593 	ITEM_INVERT,
594 	ITEM_ANY,
595 	ITEM_PF,
596 	ITEM_VF,
597 	ITEM_PHY_PORT,
598 	ITEM_PORT_ID,
599 	ITEM_MARK,
600 	ITEM_RAW,
601 	ITEM_ETH,
602 	ITEM_VLAN,
603 	ITEM_IPV4,
604 	ITEM_IPV6,
605 	ITEM_ICMP,
606 	ITEM_UDP,
607 	ITEM_TCP,
608 	ITEM_SCTP,
609 	ITEM_VXLAN,
610 	ITEM_E_TAG,
611 	ITEM_NVGRE,
612 	ITEM_MPLS,
613 	ITEM_GRE,
614 	ITEM_FUZZY,
615 	ITEM_GTP,
616 	ITEM_GTPC,
617 	ITEM_GTPU,
618 	ITEM_GENEVE,
619 	ITEM_VXLAN_GPE,
620 	ITEM_ARP_ETH_IPV4,
621 	ITEM_IPV6_EXT,
622 	ITEM_ICMP6,
623 	ITEM_ICMP6_ND_NS,
624 	ITEM_ICMP6_ND_NA,
625 	ITEM_ICMP6_ND_OPT,
626 	ITEM_ICMP6_ND_OPT_SLA_ETH,
627 	ITEM_ICMP6_ND_OPT_TLA_ETH,
628 	ITEM_META,
629 	ZERO,
630 };
631 
632 static const enum index item_fuzzy[] = {
633 	ITEM_FUZZY_THRESH,
634 	ITEM_NEXT,
635 	ZERO,
636 };
637 
638 static const enum index item_any[] = {
639 	ITEM_ANY_NUM,
640 	ITEM_NEXT,
641 	ZERO,
642 };
643 
644 static const enum index item_vf[] = {
645 	ITEM_VF_ID,
646 	ITEM_NEXT,
647 	ZERO,
648 };
649 
650 static const enum index item_phy_port[] = {
651 	ITEM_PHY_PORT_INDEX,
652 	ITEM_NEXT,
653 	ZERO,
654 };
655 
656 static const enum index item_port_id[] = {
657 	ITEM_PORT_ID_ID,
658 	ITEM_NEXT,
659 	ZERO,
660 };
661 
662 static const enum index item_mark[] = {
663 	ITEM_MARK_ID,
664 	ITEM_NEXT,
665 	ZERO,
666 };
667 
668 static const enum index item_raw[] = {
669 	ITEM_RAW_RELATIVE,
670 	ITEM_RAW_SEARCH,
671 	ITEM_RAW_OFFSET,
672 	ITEM_RAW_LIMIT,
673 	ITEM_RAW_PATTERN,
674 	ITEM_NEXT,
675 	ZERO,
676 };
677 
678 static const enum index item_eth[] = {
679 	ITEM_ETH_DST,
680 	ITEM_ETH_SRC,
681 	ITEM_ETH_TYPE,
682 	ITEM_NEXT,
683 	ZERO,
684 };
685 
686 static const enum index item_vlan[] = {
687 	ITEM_VLAN_TCI,
688 	ITEM_VLAN_PCP,
689 	ITEM_VLAN_DEI,
690 	ITEM_VLAN_VID,
691 	ITEM_VLAN_INNER_TYPE,
692 	ITEM_NEXT,
693 	ZERO,
694 };
695 
696 static const enum index item_ipv4[] = {
697 	ITEM_IPV4_TOS,
698 	ITEM_IPV4_TTL,
699 	ITEM_IPV4_PROTO,
700 	ITEM_IPV4_SRC,
701 	ITEM_IPV4_DST,
702 	ITEM_NEXT,
703 	ZERO,
704 };
705 
706 static const enum index item_ipv6[] = {
707 	ITEM_IPV6_TC,
708 	ITEM_IPV6_FLOW,
709 	ITEM_IPV6_PROTO,
710 	ITEM_IPV6_HOP,
711 	ITEM_IPV6_SRC,
712 	ITEM_IPV6_DST,
713 	ITEM_NEXT,
714 	ZERO,
715 };
716 
717 static const enum index item_icmp[] = {
718 	ITEM_ICMP_TYPE,
719 	ITEM_ICMP_CODE,
720 	ITEM_NEXT,
721 	ZERO,
722 };
723 
724 static const enum index item_udp[] = {
725 	ITEM_UDP_SRC,
726 	ITEM_UDP_DST,
727 	ITEM_NEXT,
728 	ZERO,
729 };
730 
731 static const enum index item_tcp[] = {
732 	ITEM_TCP_SRC,
733 	ITEM_TCP_DST,
734 	ITEM_TCP_FLAGS,
735 	ITEM_NEXT,
736 	ZERO,
737 };
738 
739 static const enum index item_sctp[] = {
740 	ITEM_SCTP_SRC,
741 	ITEM_SCTP_DST,
742 	ITEM_SCTP_TAG,
743 	ITEM_SCTP_CKSUM,
744 	ITEM_NEXT,
745 	ZERO,
746 };
747 
748 static const enum index item_vxlan[] = {
749 	ITEM_VXLAN_VNI,
750 	ITEM_NEXT,
751 	ZERO,
752 };
753 
754 static const enum index item_e_tag[] = {
755 	ITEM_E_TAG_GRP_ECID_B,
756 	ITEM_NEXT,
757 	ZERO,
758 };
759 
760 static const enum index item_nvgre[] = {
761 	ITEM_NVGRE_TNI,
762 	ITEM_NEXT,
763 	ZERO,
764 };
765 
766 static const enum index item_mpls[] = {
767 	ITEM_MPLS_LABEL,
768 	ITEM_NEXT,
769 	ZERO,
770 };
771 
772 static const enum index item_gre[] = {
773 	ITEM_GRE_PROTO,
774 	ITEM_NEXT,
775 	ZERO,
776 };
777 
778 static const enum index item_gtp[] = {
779 	ITEM_GTP_TEID,
780 	ITEM_NEXT,
781 	ZERO,
782 };
783 
784 static const enum index item_geneve[] = {
785 	ITEM_GENEVE_VNI,
786 	ITEM_GENEVE_PROTO,
787 	ITEM_NEXT,
788 	ZERO,
789 };
790 
791 static const enum index item_vxlan_gpe[] = {
792 	ITEM_VXLAN_GPE_VNI,
793 	ITEM_NEXT,
794 	ZERO,
795 };
796 
797 static const enum index item_arp_eth_ipv4[] = {
798 	ITEM_ARP_ETH_IPV4_SHA,
799 	ITEM_ARP_ETH_IPV4_SPA,
800 	ITEM_ARP_ETH_IPV4_THA,
801 	ITEM_ARP_ETH_IPV4_TPA,
802 	ITEM_NEXT,
803 	ZERO,
804 };
805 
806 static const enum index item_ipv6_ext[] = {
807 	ITEM_IPV6_EXT_NEXT_HDR,
808 	ITEM_NEXT,
809 	ZERO,
810 };
811 
812 static const enum index item_icmp6[] = {
813 	ITEM_ICMP6_TYPE,
814 	ITEM_ICMP6_CODE,
815 	ITEM_NEXT,
816 	ZERO,
817 };
818 
819 static const enum index item_icmp6_nd_ns[] = {
820 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
821 	ITEM_NEXT,
822 	ZERO,
823 };
824 
825 static const enum index item_icmp6_nd_na[] = {
826 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
827 	ITEM_NEXT,
828 	ZERO,
829 };
830 
831 static const enum index item_icmp6_nd_opt[] = {
832 	ITEM_ICMP6_ND_OPT_TYPE,
833 	ITEM_NEXT,
834 	ZERO,
835 };
836 
837 static const enum index item_icmp6_nd_opt_sla_eth[] = {
838 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
839 	ITEM_NEXT,
840 	ZERO,
841 };
842 
843 static const enum index item_icmp6_nd_opt_tla_eth[] = {
844 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
845 	ITEM_NEXT,
846 	ZERO,
847 };
848 
849 static const enum index item_meta[] = {
850 	ITEM_META_DATA,
851 	ITEM_NEXT,
852 	ZERO,
853 };
854 
855 static const enum index next_action[] = {
856 	ACTION_END,
857 	ACTION_VOID,
858 	ACTION_PASSTHRU,
859 	ACTION_JUMP,
860 	ACTION_MARK,
861 	ACTION_FLAG,
862 	ACTION_QUEUE,
863 	ACTION_DROP,
864 	ACTION_COUNT,
865 	ACTION_RSS,
866 	ACTION_PF,
867 	ACTION_VF,
868 	ACTION_PHY_PORT,
869 	ACTION_PORT_ID,
870 	ACTION_METER,
871 	ACTION_OF_SET_MPLS_TTL,
872 	ACTION_OF_DEC_MPLS_TTL,
873 	ACTION_OF_SET_NW_TTL,
874 	ACTION_OF_DEC_NW_TTL,
875 	ACTION_OF_COPY_TTL_OUT,
876 	ACTION_OF_COPY_TTL_IN,
877 	ACTION_OF_POP_VLAN,
878 	ACTION_OF_PUSH_VLAN,
879 	ACTION_OF_SET_VLAN_VID,
880 	ACTION_OF_SET_VLAN_PCP,
881 	ACTION_OF_POP_MPLS,
882 	ACTION_OF_PUSH_MPLS,
883 	ACTION_VXLAN_ENCAP,
884 	ACTION_VXLAN_DECAP,
885 	ACTION_NVGRE_ENCAP,
886 	ACTION_NVGRE_DECAP,
887 	ACTION_L2_ENCAP,
888 	ACTION_L2_DECAP,
889 	ACTION_MPLSOGRE_ENCAP,
890 	ACTION_MPLSOGRE_DECAP,
891 	ACTION_MPLSOUDP_ENCAP,
892 	ACTION_MPLSOUDP_DECAP,
893 	ACTION_SET_IPV4_SRC,
894 	ACTION_SET_IPV4_DST,
895 	ACTION_SET_IPV6_SRC,
896 	ACTION_SET_IPV6_DST,
897 	ACTION_SET_TP_SRC,
898 	ACTION_SET_TP_DST,
899 	ACTION_MAC_SWAP,
900 	ACTION_DEC_TTL,
901 	ACTION_SET_TTL,
902 	ACTION_SET_MAC_SRC,
903 	ACTION_SET_MAC_DST,
904 	ACTION_INC_TCP_SEQ,
905 	ACTION_DEC_TCP_SEQ,
906 	ACTION_INC_TCP_ACK,
907 	ACTION_DEC_TCP_ACK,
908 	ZERO,
909 };
910 
911 static const enum index action_mark[] = {
912 	ACTION_MARK_ID,
913 	ACTION_NEXT,
914 	ZERO,
915 };
916 
917 static const enum index action_queue[] = {
918 	ACTION_QUEUE_INDEX,
919 	ACTION_NEXT,
920 	ZERO,
921 };
922 
923 static const enum index action_count[] = {
924 	ACTION_COUNT_ID,
925 	ACTION_COUNT_SHARED,
926 	ACTION_NEXT,
927 	ZERO,
928 };
929 
930 static const enum index action_rss[] = {
931 	ACTION_RSS_FUNC,
932 	ACTION_RSS_LEVEL,
933 	ACTION_RSS_TYPES,
934 	ACTION_RSS_KEY,
935 	ACTION_RSS_KEY_LEN,
936 	ACTION_RSS_QUEUES,
937 	ACTION_NEXT,
938 	ZERO,
939 };
940 
941 static const enum index action_vf[] = {
942 	ACTION_VF_ORIGINAL,
943 	ACTION_VF_ID,
944 	ACTION_NEXT,
945 	ZERO,
946 };
947 
948 static const enum index action_phy_port[] = {
949 	ACTION_PHY_PORT_ORIGINAL,
950 	ACTION_PHY_PORT_INDEX,
951 	ACTION_NEXT,
952 	ZERO,
953 };
954 
955 static const enum index action_port_id[] = {
956 	ACTION_PORT_ID_ORIGINAL,
957 	ACTION_PORT_ID_ID,
958 	ACTION_NEXT,
959 	ZERO,
960 };
961 
962 static const enum index action_meter[] = {
963 	ACTION_METER_ID,
964 	ACTION_NEXT,
965 	ZERO,
966 };
967 
968 static const enum index action_of_set_mpls_ttl[] = {
969 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
970 	ACTION_NEXT,
971 	ZERO,
972 };
973 
974 static const enum index action_of_set_nw_ttl[] = {
975 	ACTION_OF_SET_NW_TTL_NW_TTL,
976 	ACTION_NEXT,
977 	ZERO,
978 };
979 
980 static const enum index action_of_push_vlan[] = {
981 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
982 	ACTION_NEXT,
983 	ZERO,
984 };
985 
986 static const enum index action_of_set_vlan_vid[] = {
987 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
988 	ACTION_NEXT,
989 	ZERO,
990 };
991 
992 static const enum index action_of_set_vlan_pcp[] = {
993 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
994 	ACTION_NEXT,
995 	ZERO,
996 };
997 
998 static const enum index action_of_pop_mpls[] = {
999 	ACTION_OF_POP_MPLS_ETHERTYPE,
1000 	ACTION_NEXT,
1001 	ZERO,
1002 };
1003 
1004 static const enum index action_of_push_mpls[] = {
1005 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1006 	ACTION_NEXT,
1007 	ZERO,
1008 };
1009 
1010 static const enum index action_set_ipv4_src[] = {
1011 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1012 	ACTION_NEXT,
1013 	ZERO,
1014 };
1015 
1016 static const enum index action_set_mac_src[] = {
1017 	ACTION_SET_MAC_SRC_MAC_SRC,
1018 	ACTION_NEXT,
1019 	ZERO,
1020 };
1021 
1022 static const enum index action_set_ipv4_dst[] = {
1023 	ACTION_SET_IPV4_DST_IPV4_DST,
1024 	ACTION_NEXT,
1025 	ZERO,
1026 };
1027 
1028 static const enum index action_set_ipv6_src[] = {
1029 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1030 	ACTION_NEXT,
1031 	ZERO,
1032 };
1033 
1034 static const enum index action_set_ipv6_dst[] = {
1035 	ACTION_SET_IPV6_DST_IPV6_DST,
1036 	ACTION_NEXT,
1037 	ZERO,
1038 };
1039 
1040 static const enum index action_set_tp_src[] = {
1041 	ACTION_SET_TP_SRC_TP_SRC,
1042 	ACTION_NEXT,
1043 	ZERO,
1044 };
1045 
1046 static const enum index action_set_tp_dst[] = {
1047 	ACTION_SET_TP_DST_TP_DST,
1048 	ACTION_NEXT,
1049 	ZERO,
1050 };
1051 
1052 static const enum index action_set_ttl[] = {
1053 	ACTION_SET_TTL_TTL,
1054 	ACTION_NEXT,
1055 	ZERO,
1056 };
1057 
1058 static const enum index action_jump[] = {
1059 	ACTION_JUMP_GROUP,
1060 	ACTION_NEXT,
1061 	ZERO,
1062 };
1063 
1064 static const enum index action_set_mac_dst[] = {
1065 	ACTION_SET_MAC_DST_MAC_DST,
1066 	ACTION_NEXT,
1067 	ZERO,
1068 };
1069 
1070 static const enum index action_inc_tcp_seq[] = {
1071 	ACTION_INC_TCP_SEQ_VALUE,
1072 	ACTION_NEXT,
1073 	ZERO,
1074 };
1075 
1076 static const enum index action_dec_tcp_seq[] = {
1077 	ACTION_DEC_TCP_SEQ_VALUE,
1078 	ACTION_NEXT,
1079 	ZERO,
1080 };
1081 
1082 static const enum index action_inc_tcp_ack[] = {
1083 	ACTION_INC_TCP_ACK_VALUE,
1084 	ACTION_NEXT,
1085 	ZERO,
1086 };
1087 
1088 static const enum index action_dec_tcp_ack[] = {
1089 	ACTION_DEC_TCP_ACK_VALUE,
1090 	ACTION_NEXT,
1091 	ZERO,
1092 };
1093 
1094 static int parse_init(struct context *, const struct token *,
1095 		      const char *, unsigned int,
1096 		      void *, unsigned int);
1097 static int parse_vc(struct context *, const struct token *,
1098 		    const char *, unsigned int,
1099 		    void *, unsigned int);
1100 static int parse_vc_spec(struct context *, const struct token *,
1101 			 const char *, unsigned int, void *, unsigned int);
1102 static int parse_vc_conf(struct context *, const struct token *,
1103 			 const char *, unsigned int, void *, unsigned int);
1104 static int parse_vc_action_rss(struct context *, const struct token *,
1105 			       const char *, unsigned int, void *,
1106 			       unsigned int);
1107 static int parse_vc_action_rss_func(struct context *, const struct token *,
1108 				    const char *, unsigned int, void *,
1109 				    unsigned int);
1110 static int parse_vc_action_rss_type(struct context *, const struct token *,
1111 				    const char *, unsigned int, void *,
1112 				    unsigned int);
1113 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1114 				     const char *, unsigned int, void *,
1115 				     unsigned int);
1116 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1117 				       const char *, unsigned int, void *,
1118 				       unsigned int);
1119 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1120 				       const char *, unsigned int, void *,
1121 				       unsigned int);
1122 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1123 				    const char *, unsigned int, void *,
1124 				    unsigned int);
1125 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1126 				    const char *, unsigned int, void *,
1127 				    unsigned int);
1128 static int parse_vc_action_mplsogre_encap(struct context *,
1129 					  const struct token *, const char *,
1130 					  unsigned int, void *, unsigned int);
1131 static int parse_vc_action_mplsogre_decap(struct context *,
1132 					  const struct token *, const char *,
1133 					  unsigned int, void *, unsigned int);
1134 static int parse_vc_action_mplsoudp_encap(struct context *,
1135 					  const struct token *, const char *,
1136 					  unsigned int, void *, unsigned int);
1137 static int parse_vc_action_mplsoudp_decap(struct context *,
1138 					  const struct token *, const char *,
1139 					  unsigned int, void *, unsigned int);
1140 static int parse_destroy(struct context *, const struct token *,
1141 			 const char *, unsigned int,
1142 			 void *, unsigned int);
1143 static int parse_flush(struct context *, const struct token *,
1144 		       const char *, unsigned int,
1145 		       void *, unsigned int);
1146 static int parse_query(struct context *, const struct token *,
1147 		       const char *, unsigned int,
1148 		       void *, unsigned int);
1149 static int parse_action(struct context *, const struct token *,
1150 			const char *, unsigned int,
1151 			void *, unsigned int);
1152 static int parse_list(struct context *, const struct token *,
1153 		      const char *, unsigned int,
1154 		      void *, unsigned int);
1155 static int parse_isolate(struct context *, const struct token *,
1156 			 const char *, unsigned int,
1157 			 void *, unsigned int);
1158 static int parse_int(struct context *, const struct token *,
1159 		     const char *, unsigned int,
1160 		     void *, unsigned int);
1161 static int parse_prefix(struct context *, const struct token *,
1162 			const char *, unsigned int,
1163 			void *, unsigned int);
1164 static int parse_boolean(struct context *, const struct token *,
1165 			 const char *, unsigned int,
1166 			 void *, unsigned int);
1167 static int parse_string(struct context *, const struct token *,
1168 			const char *, unsigned int,
1169 			void *, unsigned int);
1170 static int parse_hex(struct context *ctx, const struct token *token,
1171 			const char *str, unsigned int len,
1172 			void *buf, unsigned int size);
1173 static int parse_mac_addr(struct context *, const struct token *,
1174 			  const char *, unsigned int,
1175 			  void *, unsigned int);
1176 static int parse_ipv4_addr(struct context *, const struct token *,
1177 			   const char *, unsigned int,
1178 			   void *, unsigned int);
1179 static int parse_ipv6_addr(struct context *, const struct token *,
1180 			   const char *, unsigned int,
1181 			   void *, unsigned int);
1182 static int parse_port(struct context *, const struct token *,
1183 		      const char *, unsigned int,
1184 		      void *, unsigned int);
1185 static int comp_none(struct context *, const struct token *,
1186 		     unsigned int, char *, unsigned int);
1187 static int comp_boolean(struct context *, const struct token *,
1188 			unsigned int, char *, unsigned int);
1189 static int comp_action(struct context *, const struct token *,
1190 		       unsigned int, char *, unsigned int);
1191 static int comp_port(struct context *, const struct token *,
1192 		     unsigned int, char *, unsigned int);
1193 static int comp_rule_id(struct context *, const struct token *,
1194 			unsigned int, char *, unsigned int);
1195 static int comp_vc_action_rss_type(struct context *, const struct token *,
1196 				   unsigned int, char *, unsigned int);
1197 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1198 				    unsigned int, char *, unsigned int);
1199 
1200 /** Token definitions. */
1201 static const struct token token_list[] = {
1202 	/* Special tokens. */
1203 	[ZERO] = {
1204 		.name = "ZERO",
1205 		.help = "null entry, abused as the entry point",
1206 		.next = NEXT(NEXT_ENTRY(FLOW)),
1207 	},
1208 	[END] = {
1209 		.name = "",
1210 		.type = "RETURN",
1211 		.help = "command may end here",
1212 	},
1213 	/* Common tokens. */
1214 	[INTEGER] = {
1215 		.name = "{int}",
1216 		.type = "INTEGER",
1217 		.help = "integer value",
1218 		.call = parse_int,
1219 		.comp = comp_none,
1220 	},
1221 	[UNSIGNED] = {
1222 		.name = "{unsigned}",
1223 		.type = "UNSIGNED",
1224 		.help = "unsigned integer value",
1225 		.call = parse_int,
1226 		.comp = comp_none,
1227 	},
1228 	[PREFIX] = {
1229 		.name = "{prefix}",
1230 		.type = "PREFIX",
1231 		.help = "prefix length for bit-mask",
1232 		.call = parse_prefix,
1233 		.comp = comp_none,
1234 	},
1235 	[BOOLEAN] = {
1236 		.name = "{boolean}",
1237 		.type = "BOOLEAN",
1238 		.help = "any boolean value",
1239 		.call = parse_boolean,
1240 		.comp = comp_boolean,
1241 	},
1242 	[STRING] = {
1243 		.name = "{string}",
1244 		.type = "STRING",
1245 		.help = "fixed string",
1246 		.call = parse_string,
1247 		.comp = comp_none,
1248 	},
1249 	[HEX] = {
1250 		.name = "{hex}",
1251 		.type = "HEX",
1252 		.help = "fixed string",
1253 		.call = parse_hex,
1254 		.comp = comp_none,
1255 	},
1256 	[MAC_ADDR] = {
1257 		.name = "{MAC address}",
1258 		.type = "MAC-48",
1259 		.help = "standard MAC address notation",
1260 		.call = parse_mac_addr,
1261 		.comp = comp_none,
1262 	},
1263 	[IPV4_ADDR] = {
1264 		.name = "{IPv4 address}",
1265 		.type = "IPV4 ADDRESS",
1266 		.help = "standard IPv4 address notation",
1267 		.call = parse_ipv4_addr,
1268 		.comp = comp_none,
1269 	},
1270 	[IPV6_ADDR] = {
1271 		.name = "{IPv6 address}",
1272 		.type = "IPV6 ADDRESS",
1273 		.help = "standard IPv6 address notation",
1274 		.call = parse_ipv6_addr,
1275 		.comp = comp_none,
1276 	},
1277 	[RULE_ID] = {
1278 		.name = "{rule id}",
1279 		.type = "RULE ID",
1280 		.help = "rule identifier",
1281 		.call = parse_int,
1282 		.comp = comp_rule_id,
1283 	},
1284 	[PORT_ID] = {
1285 		.name = "{port_id}",
1286 		.type = "PORT ID",
1287 		.help = "port identifier",
1288 		.call = parse_port,
1289 		.comp = comp_port,
1290 	},
1291 	[GROUP_ID] = {
1292 		.name = "{group_id}",
1293 		.type = "GROUP ID",
1294 		.help = "group identifier",
1295 		.call = parse_int,
1296 		.comp = comp_none,
1297 	},
1298 	[PRIORITY_LEVEL] = {
1299 		.name = "{level}",
1300 		.type = "PRIORITY",
1301 		.help = "priority level",
1302 		.call = parse_int,
1303 		.comp = comp_none,
1304 	},
1305 	/* Top-level command. */
1306 	[FLOW] = {
1307 		.name = "flow",
1308 		.type = "{command} {port_id} [{arg} [...]]",
1309 		.help = "manage ingress/egress flow rules",
1310 		.next = NEXT(NEXT_ENTRY
1311 			     (VALIDATE,
1312 			      CREATE,
1313 			      DESTROY,
1314 			      FLUSH,
1315 			      LIST,
1316 			      QUERY,
1317 			      ISOLATE)),
1318 		.call = parse_init,
1319 	},
1320 	/* Sub-level commands. */
1321 	[VALIDATE] = {
1322 		.name = "validate",
1323 		.help = "check whether a flow rule can be created",
1324 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1325 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1326 		.call = parse_vc,
1327 	},
1328 	[CREATE] = {
1329 		.name = "create",
1330 		.help = "create a flow rule",
1331 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1332 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1333 		.call = parse_vc,
1334 	},
1335 	[DESTROY] = {
1336 		.name = "destroy",
1337 		.help = "destroy specific flow rules",
1338 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1339 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1340 		.call = parse_destroy,
1341 	},
1342 	[FLUSH] = {
1343 		.name = "flush",
1344 		.help = "destroy all flow rules",
1345 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1346 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1347 		.call = parse_flush,
1348 	},
1349 	[QUERY] = {
1350 		.name = "query",
1351 		.help = "query an existing flow rule",
1352 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1353 			     NEXT_ENTRY(RULE_ID),
1354 			     NEXT_ENTRY(PORT_ID)),
1355 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1356 			     ARGS_ENTRY(struct buffer, args.query.rule),
1357 			     ARGS_ENTRY(struct buffer, port)),
1358 		.call = parse_query,
1359 	},
1360 	[LIST] = {
1361 		.name = "list",
1362 		.help = "list existing flow rules",
1363 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1364 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1365 		.call = parse_list,
1366 	},
1367 	[ISOLATE] = {
1368 		.name = "isolate",
1369 		.help = "restrict ingress traffic to the defined flow rules",
1370 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1371 			     NEXT_ENTRY(PORT_ID)),
1372 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1373 			     ARGS_ENTRY(struct buffer, port)),
1374 		.call = parse_isolate,
1375 	},
1376 	/* Destroy arguments. */
1377 	[DESTROY_RULE] = {
1378 		.name = "rule",
1379 		.help = "specify a rule identifier",
1380 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1381 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1382 		.call = parse_destroy,
1383 	},
1384 	/* Query arguments. */
1385 	[QUERY_ACTION] = {
1386 		.name = "{action}",
1387 		.type = "ACTION",
1388 		.help = "action to query, must be part of the rule",
1389 		.call = parse_action,
1390 		.comp = comp_action,
1391 	},
1392 	/* List arguments. */
1393 	[LIST_GROUP] = {
1394 		.name = "group",
1395 		.help = "specify a group",
1396 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1397 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1398 		.call = parse_list,
1399 	},
1400 	/* Validate/create attributes. */
1401 	[GROUP] = {
1402 		.name = "group",
1403 		.help = "specify a group",
1404 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1405 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1406 		.call = parse_vc,
1407 	},
1408 	[PRIORITY] = {
1409 		.name = "priority",
1410 		.help = "specify a priority level",
1411 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1412 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1413 		.call = parse_vc,
1414 	},
1415 	[INGRESS] = {
1416 		.name = "ingress",
1417 		.help = "affect rule to ingress",
1418 		.next = NEXT(next_vc_attr),
1419 		.call = parse_vc,
1420 	},
1421 	[EGRESS] = {
1422 		.name = "egress",
1423 		.help = "affect rule to egress",
1424 		.next = NEXT(next_vc_attr),
1425 		.call = parse_vc,
1426 	},
1427 	[TRANSFER] = {
1428 		.name = "transfer",
1429 		.help = "apply rule directly to endpoints found in pattern",
1430 		.next = NEXT(next_vc_attr),
1431 		.call = parse_vc,
1432 	},
1433 	/* Validate/create pattern. */
1434 	[PATTERN] = {
1435 		.name = "pattern",
1436 		.help = "submit a list of pattern items",
1437 		.next = NEXT(next_item),
1438 		.call = parse_vc,
1439 	},
1440 	[ITEM_PARAM_IS] = {
1441 		.name = "is",
1442 		.help = "match value perfectly (with full bit-mask)",
1443 		.call = parse_vc_spec,
1444 	},
1445 	[ITEM_PARAM_SPEC] = {
1446 		.name = "spec",
1447 		.help = "match value according to configured bit-mask",
1448 		.call = parse_vc_spec,
1449 	},
1450 	[ITEM_PARAM_LAST] = {
1451 		.name = "last",
1452 		.help = "specify upper bound to establish a range",
1453 		.call = parse_vc_spec,
1454 	},
1455 	[ITEM_PARAM_MASK] = {
1456 		.name = "mask",
1457 		.help = "specify bit-mask with relevant bits set to one",
1458 		.call = parse_vc_spec,
1459 	},
1460 	[ITEM_PARAM_PREFIX] = {
1461 		.name = "prefix",
1462 		.help = "generate bit-mask from a prefix length",
1463 		.call = parse_vc_spec,
1464 	},
1465 	[ITEM_NEXT] = {
1466 		.name = "/",
1467 		.help = "specify next pattern item",
1468 		.next = NEXT(next_item),
1469 	},
1470 	[ITEM_END] = {
1471 		.name = "end",
1472 		.help = "end list of pattern items",
1473 		.priv = PRIV_ITEM(END, 0),
1474 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1475 		.call = parse_vc,
1476 	},
1477 	[ITEM_VOID] = {
1478 		.name = "void",
1479 		.help = "no-op pattern item",
1480 		.priv = PRIV_ITEM(VOID, 0),
1481 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1482 		.call = parse_vc,
1483 	},
1484 	[ITEM_INVERT] = {
1485 		.name = "invert",
1486 		.help = "perform actions when pattern does not match",
1487 		.priv = PRIV_ITEM(INVERT, 0),
1488 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1489 		.call = parse_vc,
1490 	},
1491 	[ITEM_ANY] = {
1492 		.name = "any",
1493 		.help = "match any protocol for the current layer",
1494 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1495 		.next = NEXT(item_any),
1496 		.call = parse_vc,
1497 	},
1498 	[ITEM_ANY_NUM] = {
1499 		.name = "num",
1500 		.help = "number of layers covered",
1501 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1502 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1503 	},
1504 	[ITEM_PF] = {
1505 		.name = "pf",
1506 		.help = "match traffic from/to the physical function",
1507 		.priv = PRIV_ITEM(PF, 0),
1508 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1509 		.call = parse_vc,
1510 	},
1511 	[ITEM_VF] = {
1512 		.name = "vf",
1513 		.help = "match traffic from/to a virtual function ID",
1514 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1515 		.next = NEXT(item_vf),
1516 		.call = parse_vc,
1517 	},
1518 	[ITEM_VF_ID] = {
1519 		.name = "id",
1520 		.help = "VF ID",
1521 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1522 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1523 	},
1524 	[ITEM_PHY_PORT] = {
1525 		.name = "phy_port",
1526 		.help = "match traffic from/to a specific physical port",
1527 		.priv = PRIV_ITEM(PHY_PORT,
1528 				  sizeof(struct rte_flow_item_phy_port)),
1529 		.next = NEXT(item_phy_port),
1530 		.call = parse_vc,
1531 	},
1532 	[ITEM_PHY_PORT_INDEX] = {
1533 		.name = "index",
1534 		.help = "physical port index",
1535 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1536 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1537 	},
1538 	[ITEM_PORT_ID] = {
1539 		.name = "port_id",
1540 		.help = "match traffic from/to a given DPDK port ID",
1541 		.priv = PRIV_ITEM(PORT_ID,
1542 				  sizeof(struct rte_flow_item_port_id)),
1543 		.next = NEXT(item_port_id),
1544 		.call = parse_vc,
1545 	},
1546 	[ITEM_PORT_ID_ID] = {
1547 		.name = "id",
1548 		.help = "DPDK port ID",
1549 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1550 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1551 	},
1552 	[ITEM_MARK] = {
1553 		.name = "mark",
1554 		.help = "match traffic against value set in previously matched rule",
1555 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1556 		.next = NEXT(item_mark),
1557 		.call = parse_vc,
1558 	},
1559 	[ITEM_MARK_ID] = {
1560 		.name = "id",
1561 		.help = "Integer value to match against",
1562 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1563 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1564 	},
1565 	[ITEM_RAW] = {
1566 		.name = "raw",
1567 		.help = "match an arbitrary byte string",
1568 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1569 		.next = NEXT(item_raw),
1570 		.call = parse_vc,
1571 	},
1572 	[ITEM_RAW_RELATIVE] = {
1573 		.name = "relative",
1574 		.help = "look for pattern after the previous item",
1575 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1576 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1577 					   relative, 1)),
1578 	},
1579 	[ITEM_RAW_SEARCH] = {
1580 		.name = "search",
1581 		.help = "search pattern from offset (see also limit)",
1582 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1583 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1584 					   search, 1)),
1585 	},
1586 	[ITEM_RAW_OFFSET] = {
1587 		.name = "offset",
1588 		.help = "absolute or relative offset for pattern",
1589 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1590 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1591 	},
1592 	[ITEM_RAW_LIMIT] = {
1593 		.name = "limit",
1594 		.help = "search area limit for start of pattern",
1595 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1596 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1597 	},
1598 	[ITEM_RAW_PATTERN] = {
1599 		.name = "pattern",
1600 		.help = "byte string to look for",
1601 		.next = NEXT(item_raw,
1602 			     NEXT_ENTRY(STRING),
1603 			     NEXT_ENTRY(ITEM_PARAM_IS,
1604 					ITEM_PARAM_SPEC,
1605 					ITEM_PARAM_MASK)),
1606 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1607 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1608 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1609 					    ITEM_RAW_PATTERN_SIZE)),
1610 	},
1611 	[ITEM_ETH] = {
1612 		.name = "eth",
1613 		.help = "match Ethernet header",
1614 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1615 		.next = NEXT(item_eth),
1616 		.call = parse_vc,
1617 	},
1618 	[ITEM_ETH_DST] = {
1619 		.name = "dst",
1620 		.help = "destination MAC",
1621 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1622 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1623 	},
1624 	[ITEM_ETH_SRC] = {
1625 		.name = "src",
1626 		.help = "source MAC",
1627 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1628 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1629 	},
1630 	[ITEM_ETH_TYPE] = {
1631 		.name = "type",
1632 		.help = "EtherType",
1633 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1634 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1635 	},
1636 	[ITEM_VLAN] = {
1637 		.name = "vlan",
1638 		.help = "match 802.1Q/ad VLAN tag",
1639 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1640 		.next = NEXT(item_vlan),
1641 		.call = parse_vc,
1642 	},
1643 	[ITEM_VLAN_TCI] = {
1644 		.name = "tci",
1645 		.help = "tag control information",
1646 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1647 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1648 	},
1649 	[ITEM_VLAN_PCP] = {
1650 		.name = "pcp",
1651 		.help = "priority code point",
1652 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1653 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1654 						  tci, "\xe0\x00")),
1655 	},
1656 	[ITEM_VLAN_DEI] = {
1657 		.name = "dei",
1658 		.help = "drop eligible indicator",
1659 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1660 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1661 						  tci, "\x10\x00")),
1662 	},
1663 	[ITEM_VLAN_VID] = {
1664 		.name = "vid",
1665 		.help = "VLAN identifier",
1666 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1667 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1668 						  tci, "\x0f\xff")),
1669 	},
1670 	[ITEM_VLAN_INNER_TYPE] = {
1671 		.name = "inner_type",
1672 		.help = "inner EtherType",
1673 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1674 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1675 					     inner_type)),
1676 	},
1677 	[ITEM_IPV4] = {
1678 		.name = "ipv4",
1679 		.help = "match IPv4 header",
1680 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1681 		.next = NEXT(item_ipv4),
1682 		.call = parse_vc,
1683 	},
1684 	[ITEM_IPV4_TOS] = {
1685 		.name = "tos",
1686 		.help = "type of service",
1687 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1688 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1689 					     hdr.type_of_service)),
1690 	},
1691 	[ITEM_IPV4_TTL] = {
1692 		.name = "ttl",
1693 		.help = "time to live",
1694 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1695 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1696 					     hdr.time_to_live)),
1697 	},
1698 	[ITEM_IPV4_PROTO] = {
1699 		.name = "proto",
1700 		.help = "next protocol ID",
1701 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1702 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1703 					     hdr.next_proto_id)),
1704 	},
1705 	[ITEM_IPV4_SRC] = {
1706 		.name = "src",
1707 		.help = "source address",
1708 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1709 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1710 					     hdr.src_addr)),
1711 	},
1712 	[ITEM_IPV4_DST] = {
1713 		.name = "dst",
1714 		.help = "destination address",
1715 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1716 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1717 					     hdr.dst_addr)),
1718 	},
1719 	[ITEM_IPV6] = {
1720 		.name = "ipv6",
1721 		.help = "match IPv6 header",
1722 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1723 		.next = NEXT(item_ipv6),
1724 		.call = parse_vc,
1725 	},
1726 	[ITEM_IPV6_TC] = {
1727 		.name = "tc",
1728 		.help = "traffic class",
1729 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1730 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1731 						  hdr.vtc_flow,
1732 						  "\x0f\xf0\x00\x00")),
1733 	},
1734 	[ITEM_IPV6_FLOW] = {
1735 		.name = "flow",
1736 		.help = "flow label",
1737 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1738 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1739 						  hdr.vtc_flow,
1740 						  "\x00\x0f\xff\xff")),
1741 	},
1742 	[ITEM_IPV6_PROTO] = {
1743 		.name = "proto",
1744 		.help = "protocol (next header)",
1745 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1746 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1747 					     hdr.proto)),
1748 	},
1749 	[ITEM_IPV6_HOP] = {
1750 		.name = "hop",
1751 		.help = "hop limit",
1752 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1753 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1754 					     hdr.hop_limits)),
1755 	},
1756 	[ITEM_IPV6_SRC] = {
1757 		.name = "src",
1758 		.help = "source address",
1759 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1760 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1761 					     hdr.src_addr)),
1762 	},
1763 	[ITEM_IPV6_DST] = {
1764 		.name = "dst",
1765 		.help = "destination address",
1766 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1767 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1768 					     hdr.dst_addr)),
1769 	},
1770 	[ITEM_ICMP] = {
1771 		.name = "icmp",
1772 		.help = "match ICMP header",
1773 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1774 		.next = NEXT(item_icmp),
1775 		.call = parse_vc,
1776 	},
1777 	[ITEM_ICMP_TYPE] = {
1778 		.name = "type",
1779 		.help = "ICMP packet type",
1780 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1781 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1782 					     hdr.icmp_type)),
1783 	},
1784 	[ITEM_ICMP_CODE] = {
1785 		.name = "code",
1786 		.help = "ICMP packet code",
1787 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1788 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1789 					     hdr.icmp_code)),
1790 	},
1791 	[ITEM_UDP] = {
1792 		.name = "udp",
1793 		.help = "match UDP header",
1794 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1795 		.next = NEXT(item_udp),
1796 		.call = parse_vc,
1797 	},
1798 	[ITEM_UDP_SRC] = {
1799 		.name = "src",
1800 		.help = "UDP source port",
1801 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1802 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1803 					     hdr.src_port)),
1804 	},
1805 	[ITEM_UDP_DST] = {
1806 		.name = "dst",
1807 		.help = "UDP destination port",
1808 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1809 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1810 					     hdr.dst_port)),
1811 	},
1812 	[ITEM_TCP] = {
1813 		.name = "tcp",
1814 		.help = "match TCP header",
1815 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1816 		.next = NEXT(item_tcp),
1817 		.call = parse_vc,
1818 	},
1819 	[ITEM_TCP_SRC] = {
1820 		.name = "src",
1821 		.help = "TCP source port",
1822 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1823 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1824 					     hdr.src_port)),
1825 	},
1826 	[ITEM_TCP_DST] = {
1827 		.name = "dst",
1828 		.help = "TCP destination port",
1829 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1830 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1831 					     hdr.dst_port)),
1832 	},
1833 	[ITEM_TCP_FLAGS] = {
1834 		.name = "flags",
1835 		.help = "TCP flags",
1836 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1837 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1838 					     hdr.tcp_flags)),
1839 	},
1840 	[ITEM_SCTP] = {
1841 		.name = "sctp",
1842 		.help = "match SCTP header",
1843 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1844 		.next = NEXT(item_sctp),
1845 		.call = parse_vc,
1846 	},
1847 	[ITEM_SCTP_SRC] = {
1848 		.name = "src",
1849 		.help = "SCTP source port",
1850 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1851 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1852 					     hdr.src_port)),
1853 	},
1854 	[ITEM_SCTP_DST] = {
1855 		.name = "dst",
1856 		.help = "SCTP destination port",
1857 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1858 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1859 					     hdr.dst_port)),
1860 	},
1861 	[ITEM_SCTP_TAG] = {
1862 		.name = "tag",
1863 		.help = "validation tag",
1864 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1865 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1866 					     hdr.tag)),
1867 	},
1868 	[ITEM_SCTP_CKSUM] = {
1869 		.name = "cksum",
1870 		.help = "checksum",
1871 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1872 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1873 					     hdr.cksum)),
1874 	},
1875 	[ITEM_VXLAN] = {
1876 		.name = "vxlan",
1877 		.help = "match VXLAN header",
1878 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1879 		.next = NEXT(item_vxlan),
1880 		.call = parse_vc,
1881 	},
1882 	[ITEM_VXLAN_VNI] = {
1883 		.name = "vni",
1884 		.help = "VXLAN identifier",
1885 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1886 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1887 	},
1888 	[ITEM_E_TAG] = {
1889 		.name = "e_tag",
1890 		.help = "match E-Tag header",
1891 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1892 		.next = NEXT(item_e_tag),
1893 		.call = parse_vc,
1894 	},
1895 	[ITEM_E_TAG_GRP_ECID_B] = {
1896 		.name = "grp_ecid_b",
1897 		.help = "GRP and E-CID base",
1898 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1899 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1900 						  rsvd_grp_ecid_b,
1901 						  "\x3f\xff")),
1902 	},
1903 	[ITEM_NVGRE] = {
1904 		.name = "nvgre",
1905 		.help = "match NVGRE header",
1906 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1907 		.next = NEXT(item_nvgre),
1908 		.call = parse_vc,
1909 	},
1910 	[ITEM_NVGRE_TNI] = {
1911 		.name = "tni",
1912 		.help = "virtual subnet ID",
1913 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1914 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1915 	},
1916 	[ITEM_MPLS] = {
1917 		.name = "mpls",
1918 		.help = "match MPLS header",
1919 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1920 		.next = NEXT(item_mpls),
1921 		.call = parse_vc,
1922 	},
1923 	[ITEM_MPLS_LABEL] = {
1924 		.name = "label",
1925 		.help = "MPLS label",
1926 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1927 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1928 						  label_tc_s,
1929 						  "\xff\xff\xf0")),
1930 	},
1931 	[ITEM_GRE] = {
1932 		.name = "gre",
1933 		.help = "match GRE header",
1934 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1935 		.next = NEXT(item_gre),
1936 		.call = parse_vc,
1937 	},
1938 	[ITEM_GRE_PROTO] = {
1939 		.name = "protocol",
1940 		.help = "GRE protocol type",
1941 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1942 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1943 					     protocol)),
1944 	},
1945 	[ITEM_FUZZY] = {
1946 		.name = "fuzzy",
1947 		.help = "fuzzy pattern match, expect faster than default",
1948 		.priv = PRIV_ITEM(FUZZY,
1949 				sizeof(struct rte_flow_item_fuzzy)),
1950 		.next = NEXT(item_fuzzy),
1951 		.call = parse_vc,
1952 	},
1953 	[ITEM_FUZZY_THRESH] = {
1954 		.name = "thresh",
1955 		.help = "match accuracy threshold",
1956 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1957 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1958 					thresh)),
1959 	},
1960 	[ITEM_GTP] = {
1961 		.name = "gtp",
1962 		.help = "match GTP header",
1963 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1964 		.next = NEXT(item_gtp),
1965 		.call = parse_vc,
1966 	},
1967 	[ITEM_GTP_TEID] = {
1968 		.name = "teid",
1969 		.help = "tunnel endpoint identifier",
1970 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1971 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1972 	},
1973 	[ITEM_GTPC] = {
1974 		.name = "gtpc",
1975 		.help = "match GTP header",
1976 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1977 		.next = NEXT(item_gtp),
1978 		.call = parse_vc,
1979 	},
1980 	[ITEM_GTPU] = {
1981 		.name = "gtpu",
1982 		.help = "match GTP header",
1983 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1984 		.next = NEXT(item_gtp),
1985 		.call = parse_vc,
1986 	},
1987 	[ITEM_GENEVE] = {
1988 		.name = "geneve",
1989 		.help = "match GENEVE header",
1990 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1991 		.next = NEXT(item_geneve),
1992 		.call = parse_vc,
1993 	},
1994 	[ITEM_GENEVE_VNI] = {
1995 		.name = "vni",
1996 		.help = "virtual network identifier",
1997 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1998 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1999 	},
2000 	[ITEM_GENEVE_PROTO] = {
2001 		.name = "protocol",
2002 		.help = "GENEVE protocol type",
2003 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2004 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2005 					     protocol)),
2006 	},
2007 	[ITEM_VXLAN_GPE] = {
2008 		.name = "vxlan-gpe",
2009 		.help = "match VXLAN-GPE header",
2010 		.priv = PRIV_ITEM(VXLAN_GPE,
2011 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2012 		.next = NEXT(item_vxlan_gpe),
2013 		.call = parse_vc,
2014 	},
2015 	[ITEM_VXLAN_GPE_VNI] = {
2016 		.name = "vni",
2017 		.help = "VXLAN-GPE identifier",
2018 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2019 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2020 					     vni)),
2021 	},
2022 	[ITEM_ARP_ETH_IPV4] = {
2023 		.name = "arp_eth_ipv4",
2024 		.help = "match ARP header for Ethernet/IPv4",
2025 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2026 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2027 		.next = NEXT(item_arp_eth_ipv4),
2028 		.call = parse_vc,
2029 	},
2030 	[ITEM_ARP_ETH_IPV4_SHA] = {
2031 		.name = "sha",
2032 		.help = "sender hardware address",
2033 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2034 			     item_param),
2035 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2036 					     sha)),
2037 	},
2038 	[ITEM_ARP_ETH_IPV4_SPA] = {
2039 		.name = "spa",
2040 		.help = "sender IPv4 address",
2041 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2042 			     item_param),
2043 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2044 					     spa)),
2045 	},
2046 	[ITEM_ARP_ETH_IPV4_THA] = {
2047 		.name = "tha",
2048 		.help = "target hardware address",
2049 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2050 			     item_param),
2051 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2052 					     tha)),
2053 	},
2054 	[ITEM_ARP_ETH_IPV4_TPA] = {
2055 		.name = "tpa",
2056 		.help = "target IPv4 address",
2057 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2058 			     item_param),
2059 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2060 					     tpa)),
2061 	},
2062 	[ITEM_IPV6_EXT] = {
2063 		.name = "ipv6_ext",
2064 		.help = "match presence of any IPv6 extension header",
2065 		.priv = PRIV_ITEM(IPV6_EXT,
2066 				  sizeof(struct rte_flow_item_ipv6_ext)),
2067 		.next = NEXT(item_ipv6_ext),
2068 		.call = parse_vc,
2069 	},
2070 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2071 		.name = "next_hdr",
2072 		.help = "next header",
2073 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2074 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2075 					     next_hdr)),
2076 	},
2077 	[ITEM_ICMP6] = {
2078 		.name = "icmp6",
2079 		.help = "match any ICMPv6 header",
2080 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2081 		.next = NEXT(item_icmp6),
2082 		.call = parse_vc,
2083 	},
2084 	[ITEM_ICMP6_TYPE] = {
2085 		.name = "type",
2086 		.help = "ICMPv6 type",
2087 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2088 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2089 					     type)),
2090 	},
2091 	[ITEM_ICMP6_CODE] = {
2092 		.name = "code",
2093 		.help = "ICMPv6 code",
2094 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2095 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2096 					     code)),
2097 	},
2098 	[ITEM_ICMP6_ND_NS] = {
2099 		.name = "icmp6_nd_ns",
2100 		.help = "match ICMPv6 neighbor discovery solicitation",
2101 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2102 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2103 		.next = NEXT(item_icmp6_nd_ns),
2104 		.call = parse_vc,
2105 	},
2106 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2107 		.name = "target_addr",
2108 		.help = "target address",
2109 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2110 			     item_param),
2111 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2112 					     target_addr)),
2113 	},
2114 	[ITEM_ICMP6_ND_NA] = {
2115 		.name = "icmp6_nd_na",
2116 		.help = "match ICMPv6 neighbor discovery advertisement",
2117 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2118 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2119 		.next = NEXT(item_icmp6_nd_na),
2120 		.call = parse_vc,
2121 	},
2122 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2123 		.name = "target_addr",
2124 		.help = "target address",
2125 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2126 			     item_param),
2127 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2128 					     target_addr)),
2129 	},
2130 	[ITEM_ICMP6_ND_OPT] = {
2131 		.name = "icmp6_nd_opt",
2132 		.help = "match presence of any ICMPv6 neighbor discovery"
2133 			" option",
2134 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2135 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2136 		.next = NEXT(item_icmp6_nd_opt),
2137 		.call = parse_vc,
2138 	},
2139 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2140 		.name = "type",
2141 		.help = "ND option type",
2142 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2143 			     item_param),
2144 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2145 					     type)),
2146 	},
2147 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2148 		.name = "icmp6_nd_opt_sla_eth",
2149 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2150 			" link-layer address option",
2151 		.priv = PRIV_ITEM
2152 			(ICMP6_ND_OPT_SLA_ETH,
2153 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2154 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2155 		.call = parse_vc,
2156 	},
2157 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2158 		.name = "sla",
2159 		.help = "source Ethernet LLA",
2160 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2161 			     item_param),
2162 		.args = ARGS(ARGS_ENTRY_HTON
2163 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2164 	},
2165 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2166 		.name = "icmp6_nd_opt_tla_eth",
2167 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2168 			" link-layer address option",
2169 		.priv = PRIV_ITEM
2170 			(ICMP6_ND_OPT_TLA_ETH,
2171 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2172 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2173 		.call = parse_vc,
2174 	},
2175 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2176 		.name = "tla",
2177 		.help = "target Ethernet LLA",
2178 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2179 			     item_param),
2180 		.args = ARGS(ARGS_ENTRY_HTON
2181 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2182 	},
2183 	[ITEM_META] = {
2184 		.name = "meta",
2185 		.help = "match metadata header",
2186 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2187 		.next = NEXT(item_meta),
2188 		.call = parse_vc,
2189 	},
2190 	[ITEM_META_DATA] = {
2191 		.name = "data",
2192 		.help = "metadata value",
2193 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2194 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2195 						  data, "\xff\xff\xff\xff")),
2196 	},
2197 
2198 	/* Validate/create actions. */
2199 	[ACTIONS] = {
2200 		.name = "actions",
2201 		.help = "submit a list of associated actions",
2202 		.next = NEXT(next_action),
2203 		.call = parse_vc,
2204 	},
2205 	[ACTION_NEXT] = {
2206 		.name = "/",
2207 		.help = "specify next action",
2208 		.next = NEXT(next_action),
2209 	},
2210 	[ACTION_END] = {
2211 		.name = "end",
2212 		.help = "end list of actions",
2213 		.priv = PRIV_ACTION(END, 0),
2214 		.call = parse_vc,
2215 	},
2216 	[ACTION_VOID] = {
2217 		.name = "void",
2218 		.help = "no-op action",
2219 		.priv = PRIV_ACTION(VOID, 0),
2220 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2221 		.call = parse_vc,
2222 	},
2223 	[ACTION_PASSTHRU] = {
2224 		.name = "passthru",
2225 		.help = "let subsequent rule process matched packets",
2226 		.priv = PRIV_ACTION(PASSTHRU, 0),
2227 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2228 		.call = parse_vc,
2229 	},
2230 	[ACTION_JUMP] = {
2231 		.name = "jump",
2232 		.help = "redirect traffic to a given group",
2233 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2234 		.next = NEXT(action_jump),
2235 		.call = parse_vc,
2236 	},
2237 	[ACTION_JUMP_GROUP] = {
2238 		.name = "group",
2239 		.help = "group to redirect traffic to",
2240 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2241 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2242 		.call = parse_vc_conf,
2243 	},
2244 	[ACTION_MARK] = {
2245 		.name = "mark",
2246 		.help = "attach 32 bit value to packets",
2247 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2248 		.next = NEXT(action_mark),
2249 		.call = parse_vc,
2250 	},
2251 	[ACTION_MARK_ID] = {
2252 		.name = "id",
2253 		.help = "32 bit value to return with packets",
2254 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2255 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2256 		.call = parse_vc_conf,
2257 	},
2258 	[ACTION_FLAG] = {
2259 		.name = "flag",
2260 		.help = "flag packets",
2261 		.priv = PRIV_ACTION(FLAG, 0),
2262 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2263 		.call = parse_vc,
2264 	},
2265 	[ACTION_QUEUE] = {
2266 		.name = "queue",
2267 		.help = "assign packets to a given queue index",
2268 		.priv = PRIV_ACTION(QUEUE,
2269 				    sizeof(struct rte_flow_action_queue)),
2270 		.next = NEXT(action_queue),
2271 		.call = parse_vc,
2272 	},
2273 	[ACTION_QUEUE_INDEX] = {
2274 		.name = "index",
2275 		.help = "queue index to use",
2276 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2277 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2278 		.call = parse_vc_conf,
2279 	},
2280 	[ACTION_DROP] = {
2281 		.name = "drop",
2282 		.help = "drop packets (note: passthru has priority)",
2283 		.priv = PRIV_ACTION(DROP, 0),
2284 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2285 		.call = parse_vc,
2286 	},
2287 	[ACTION_COUNT] = {
2288 		.name = "count",
2289 		.help = "enable counters for this rule",
2290 		.priv = PRIV_ACTION(COUNT,
2291 				    sizeof(struct rte_flow_action_count)),
2292 		.next = NEXT(action_count),
2293 		.call = parse_vc,
2294 	},
2295 	[ACTION_COUNT_ID] = {
2296 		.name = "identifier",
2297 		.help = "counter identifier to use",
2298 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2299 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2300 		.call = parse_vc_conf,
2301 	},
2302 	[ACTION_COUNT_SHARED] = {
2303 		.name = "shared",
2304 		.help = "shared counter",
2305 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2306 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2307 					   shared, 1)),
2308 		.call = parse_vc_conf,
2309 	},
2310 	[ACTION_RSS] = {
2311 		.name = "rss",
2312 		.help = "spread packets among several queues",
2313 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2314 		.next = NEXT(action_rss),
2315 		.call = parse_vc_action_rss,
2316 	},
2317 	[ACTION_RSS_FUNC] = {
2318 		.name = "func",
2319 		.help = "RSS hash function to apply",
2320 		.next = NEXT(action_rss,
2321 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2322 					ACTION_RSS_FUNC_TOEPLITZ,
2323 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2324 	},
2325 	[ACTION_RSS_FUNC_DEFAULT] = {
2326 		.name = "default",
2327 		.help = "default hash function",
2328 		.call = parse_vc_action_rss_func,
2329 	},
2330 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2331 		.name = "toeplitz",
2332 		.help = "Toeplitz hash function",
2333 		.call = parse_vc_action_rss_func,
2334 	},
2335 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2336 		.name = "simple_xor",
2337 		.help = "simple XOR hash function",
2338 		.call = parse_vc_action_rss_func,
2339 	},
2340 	[ACTION_RSS_LEVEL] = {
2341 		.name = "level",
2342 		.help = "encapsulation level for \"types\"",
2343 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2344 		.args = ARGS(ARGS_ENTRY_ARB
2345 			     (offsetof(struct action_rss_data, conf) +
2346 			      offsetof(struct rte_flow_action_rss, level),
2347 			      sizeof(((struct rte_flow_action_rss *)0)->
2348 				     level))),
2349 	},
2350 	[ACTION_RSS_TYPES] = {
2351 		.name = "types",
2352 		.help = "specific RSS hash types",
2353 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2354 	},
2355 	[ACTION_RSS_TYPE] = {
2356 		.name = "{type}",
2357 		.help = "RSS hash type",
2358 		.call = parse_vc_action_rss_type,
2359 		.comp = comp_vc_action_rss_type,
2360 	},
2361 	[ACTION_RSS_KEY] = {
2362 		.name = "key",
2363 		.help = "RSS hash key",
2364 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2365 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2366 			     ARGS_ENTRY_ARB
2367 			     (offsetof(struct action_rss_data, conf) +
2368 			      offsetof(struct rte_flow_action_rss, key_len),
2369 			      sizeof(((struct rte_flow_action_rss *)0)->
2370 				     key_len)),
2371 			     ARGS_ENTRY(struct action_rss_data, key)),
2372 	},
2373 	[ACTION_RSS_KEY_LEN] = {
2374 		.name = "key_len",
2375 		.help = "RSS hash key length in bytes",
2376 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2377 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2378 			     (offsetof(struct action_rss_data, conf) +
2379 			      offsetof(struct rte_flow_action_rss, key_len),
2380 			      sizeof(((struct rte_flow_action_rss *)0)->
2381 				     key_len),
2382 			      0,
2383 			      RSS_HASH_KEY_LENGTH)),
2384 	},
2385 	[ACTION_RSS_QUEUES] = {
2386 		.name = "queues",
2387 		.help = "queue indices to use",
2388 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2389 		.call = parse_vc_conf,
2390 	},
2391 	[ACTION_RSS_QUEUE] = {
2392 		.name = "{queue}",
2393 		.help = "queue index",
2394 		.call = parse_vc_action_rss_queue,
2395 		.comp = comp_vc_action_rss_queue,
2396 	},
2397 	[ACTION_PF] = {
2398 		.name = "pf",
2399 		.help = "direct traffic to physical function",
2400 		.priv = PRIV_ACTION(PF, 0),
2401 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2402 		.call = parse_vc,
2403 	},
2404 	[ACTION_VF] = {
2405 		.name = "vf",
2406 		.help = "direct traffic to a virtual function ID",
2407 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2408 		.next = NEXT(action_vf),
2409 		.call = parse_vc,
2410 	},
2411 	[ACTION_VF_ORIGINAL] = {
2412 		.name = "original",
2413 		.help = "use original VF ID if possible",
2414 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2415 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2416 					   original, 1)),
2417 		.call = parse_vc_conf,
2418 	},
2419 	[ACTION_VF_ID] = {
2420 		.name = "id",
2421 		.help = "VF ID",
2422 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2423 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2424 		.call = parse_vc_conf,
2425 	},
2426 	[ACTION_PHY_PORT] = {
2427 		.name = "phy_port",
2428 		.help = "direct packets to physical port index",
2429 		.priv = PRIV_ACTION(PHY_PORT,
2430 				    sizeof(struct rte_flow_action_phy_port)),
2431 		.next = NEXT(action_phy_port),
2432 		.call = parse_vc,
2433 	},
2434 	[ACTION_PHY_PORT_ORIGINAL] = {
2435 		.name = "original",
2436 		.help = "use original port index if possible",
2437 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2438 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2439 					   original, 1)),
2440 		.call = parse_vc_conf,
2441 	},
2442 	[ACTION_PHY_PORT_INDEX] = {
2443 		.name = "index",
2444 		.help = "physical port index",
2445 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2446 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2447 					index)),
2448 		.call = parse_vc_conf,
2449 	},
2450 	[ACTION_PORT_ID] = {
2451 		.name = "port_id",
2452 		.help = "direct matching traffic to a given DPDK port ID",
2453 		.priv = PRIV_ACTION(PORT_ID,
2454 				    sizeof(struct rte_flow_action_port_id)),
2455 		.next = NEXT(action_port_id),
2456 		.call = parse_vc,
2457 	},
2458 	[ACTION_PORT_ID_ORIGINAL] = {
2459 		.name = "original",
2460 		.help = "use original DPDK port ID if possible",
2461 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2462 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2463 					   original, 1)),
2464 		.call = parse_vc_conf,
2465 	},
2466 	[ACTION_PORT_ID_ID] = {
2467 		.name = "id",
2468 		.help = "DPDK port ID",
2469 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2470 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2471 		.call = parse_vc_conf,
2472 	},
2473 	[ACTION_METER] = {
2474 		.name = "meter",
2475 		.help = "meter the directed packets at given id",
2476 		.priv = PRIV_ACTION(METER,
2477 				    sizeof(struct rte_flow_action_meter)),
2478 		.next = NEXT(action_meter),
2479 		.call = parse_vc,
2480 	},
2481 	[ACTION_METER_ID] = {
2482 		.name = "mtr_id",
2483 		.help = "meter id to use",
2484 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2485 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2486 		.call = parse_vc_conf,
2487 	},
2488 	[ACTION_OF_SET_MPLS_TTL] = {
2489 		.name = "of_set_mpls_ttl",
2490 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2491 		.priv = PRIV_ACTION
2492 			(OF_SET_MPLS_TTL,
2493 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2494 		.next = NEXT(action_of_set_mpls_ttl),
2495 		.call = parse_vc,
2496 	},
2497 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2498 		.name = "mpls_ttl",
2499 		.help = "MPLS TTL",
2500 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2501 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2502 					mpls_ttl)),
2503 		.call = parse_vc_conf,
2504 	},
2505 	[ACTION_OF_DEC_MPLS_TTL] = {
2506 		.name = "of_dec_mpls_ttl",
2507 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2508 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2509 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2510 		.call = parse_vc,
2511 	},
2512 	[ACTION_OF_SET_NW_TTL] = {
2513 		.name = "of_set_nw_ttl",
2514 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2515 		.priv = PRIV_ACTION
2516 			(OF_SET_NW_TTL,
2517 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2518 		.next = NEXT(action_of_set_nw_ttl),
2519 		.call = parse_vc,
2520 	},
2521 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2522 		.name = "nw_ttl",
2523 		.help = "IP TTL",
2524 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2525 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2526 					nw_ttl)),
2527 		.call = parse_vc_conf,
2528 	},
2529 	[ACTION_OF_DEC_NW_TTL] = {
2530 		.name = "of_dec_nw_ttl",
2531 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2532 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2533 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2534 		.call = parse_vc,
2535 	},
2536 	[ACTION_OF_COPY_TTL_OUT] = {
2537 		.name = "of_copy_ttl_out",
2538 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2539 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2540 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2541 		.call = parse_vc,
2542 	},
2543 	[ACTION_OF_COPY_TTL_IN] = {
2544 		.name = "of_copy_ttl_in",
2545 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2546 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2547 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2548 		.call = parse_vc,
2549 	},
2550 	[ACTION_OF_POP_VLAN] = {
2551 		.name = "of_pop_vlan",
2552 		.help = "OpenFlow's OFPAT_POP_VLAN",
2553 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2554 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2555 		.call = parse_vc,
2556 	},
2557 	[ACTION_OF_PUSH_VLAN] = {
2558 		.name = "of_push_vlan",
2559 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2560 		.priv = PRIV_ACTION
2561 			(OF_PUSH_VLAN,
2562 			 sizeof(struct rte_flow_action_of_push_vlan)),
2563 		.next = NEXT(action_of_push_vlan),
2564 		.call = parse_vc,
2565 	},
2566 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2567 		.name = "ethertype",
2568 		.help = "EtherType",
2569 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2570 		.args = ARGS(ARGS_ENTRY_HTON
2571 			     (struct rte_flow_action_of_push_vlan,
2572 			      ethertype)),
2573 		.call = parse_vc_conf,
2574 	},
2575 	[ACTION_OF_SET_VLAN_VID] = {
2576 		.name = "of_set_vlan_vid",
2577 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2578 		.priv = PRIV_ACTION
2579 			(OF_SET_VLAN_VID,
2580 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2581 		.next = NEXT(action_of_set_vlan_vid),
2582 		.call = parse_vc,
2583 	},
2584 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2585 		.name = "vlan_vid",
2586 		.help = "VLAN id",
2587 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2588 		.args = ARGS(ARGS_ENTRY_HTON
2589 			     (struct rte_flow_action_of_set_vlan_vid,
2590 			      vlan_vid)),
2591 		.call = parse_vc_conf,
2592 	},
2593 	[ACTION_OF_SET_VLAN_PCP] = {
2594 		.name = "of_set_vlan_pcp",
2595 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2596 		.priv = PRIV_ACTION
2597 			(OF_SET_VLAN_PCP,
2598 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2599 		.next = NEXT(action_of_set_vlan_pcp),
2600 		.call = parse_vc,
2601 	},
2602 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2603 		.name = "vlan_pcp",
2604 		.help = "VLAN priority",
2605 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2606 		.args = ARGS(ARGS_ENTRY_HTON
2607 			     (struct rte_flow_action_of_set_vlan_pcp,
2608 			      vlan_pcp)),
2609 		.call = parse_vc_conf,
2610 	},
2611 	[ACTION_OF_POP_MPLS] = {
2612 		.name = "of_pop_mpls",
2613 		.help = "OpenFlow's OFPAT_POP_MPLS",
2614 		.priv = PRIV_ACTION(OF_POP_MPLS,
2615 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2616 		.next = NEXT(action_of_pop_mpls),
2617 		.call = parse_vc,
2618 	},
2619 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2620 		.name = "ethertype",
2621 		.help = "EtherType",
2622 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2623 		.args = ARGS(ARGS_ENTRY_HTON
2624 			     (struct rte_flow_action_of_pop_mpls,
2625 			      ethertype)),
2626 		.call = parse_vc_conf,
2627 	},
2628 	[ACTION_OF_PUSH_MPLS] = {
2629 		.name = "of_push_mpls",
2630 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2631 		.priv = PRIV_ACTION
2632 			(OF_PUSH_MPLS,
2633 			 sizeof(struct rte_flow_action_of_push_mpls)),
2634 		.next = NEXT(action_of_push_mpls),
2635 		.call = parse_vc,
2636 	},
2637 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2638 		.name = "ethertype",
2639 		.help = "EtherType",
2640 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2641 		.args = ARGS(ARGS_ENTRY_HTON
2642 			     (struct rte_flow_action_of_push_mpls,
2643 			      ethertype)),
2644 		.call = parse_vc_conf,
2645 	},
2646 	[ACTION_VXLAN_ENCAP] = {
2647 		.name = "vxlan_encap",
2648 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2649 			" vxlan\"",
2650 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2651 				    sizeof(struct action_vxlan_encap_data)),
2652 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2653 		.call = parse_vc_action_vxlan_encap,
2654 	},
2655 	[ACTION_VXLAN_DECAP] = {
2656 		.name = "vxlan_decap",
2657 		.help = "Performs a decapsulation action by stripping all"
2658 			" headers of the VXLAN tunnel network overlay from the"
2659 			" matched flow.",
2660 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2661 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2662 		.call = parse_vc,
2663 	},
2664 	[ACTION_NVGRE_ENCAP] = {
2665 		.name = "nvgre_encap",
2666 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2667 			" nvgre\"",
2668 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2669 				    sizeof(struct action_nvgre_encap_data)),
2670 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2671 		.call = parse_vc_action_nvgre_encap,
2672 	},
2673 	[ACTION_NVGRE_DECAP] = {
2674 		.name = "nvgre_decap",
2675 		.help = "Performs a decapsulation action by stripping all"
2676 			" headers of the NVGRE tunnel network overlay from the"
2677 			" matched flow.",
2678 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2679 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2680 		.call = parse_vc,
2681 	},
2682 	[ACTION_L2_ENCAP] = {
2683 		.name = "l2_encap",
2684 		.help = "l2 encap, uses configuration set by"
2685 			" \"set l2_encap\"",
2686 		.priv = PRIV_ACTION(RAW_ENCAP,
2687 				    sizeof(struct action_raw_encap_data)),
2688 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2689 		.call = parse_vc_action_l2_encap,
2690 	},
2691 	[ACTION_L2_DECAP] = {
2692 		.name = "l2_decap",
2693 		.help = "l2 decap, uses configuration set by"
2694 			" \"set l2_decap\"",
2695 		.priv = PRIV_ACTION(RAW_DECAP,
2696 				    sizeof(struct action_raw_decap_data)),
2697 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2698 		.call = parse_vc_action_l2_decap,
2699 	},
2700 	[ACTION_MPLSOGRE_ENCAP] = {
2701 		.name = "mplsogre_encap",
2702 		.help = "mplsogre encapsulation, uses configuration set by"
2703 			" \"set mplsogre_encap\"",
2704 		.priv = PRIV_ACTION(RAW_ENCAP,
2705 				    sizeof(struct action_raw_encap_data)),
2706 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2707 		.call = parse_vc_action_mplsogre_encap,
2708 	},
2709 	[ACTION_MPLSOGRE_DECAP] = {
2710 		.name = "mplsogre_decap",
2711 		.help = "mplsogre decapsulation, uses configuration set by"
2712 			" \"set mplsogre_decap\"",
2713 		.priv = PRIV_ACTION(RAW_DECAP,
2714 				    sizeof(struct action_raw_decap_data)),
2715 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2716 		.call = parse_vc_action_mplsogre_decap,
2717 	},
2718 	[ACTION_MPLSOUDP_ENCAP] = {
2719 		.name = "mplsoudp_encap",
2720 		.help = "mplsoudp encapsulation, uses configuration set by"
2721 			" \"set mplsoudp_encap\"",
2722 		.priv = PRIV_ACTION(RAW_ENCAP,
2723 				    sizeof(struct action_raw_encap_data)),
2724 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2725 		.call = parse_vc_action_mplsoudp_encap,
2726 	},
2727 	[ACTION_MPLSOUDP_DECAP] = {
2728 		.name = "mplsoudp_decap",
2729 		.help = "mplsoudp decapsulation, uses configuration set by"
2730 			" \"set mplsoudp_decap\"",
2731 		.priv = PRIV_ACTION(RAW_DECAP,
2732 				    sizeof(struct action_raw_decap_data)),
2733 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2734 		.call = parse_vc_action_mplsoudp_decap,
2735 	},
2736 	[ACTION_SET_IPV4_SRC] = {
2737 		.name = "set_ipv4_src",
2738 		.help = "Set a new IPv4 source address in the outermost"
2739 			" IPv4 header",
2740 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2741 			sizeof(struct rte_flow_action_set_ipv4)),
2742 		.next = NEXT(action_set_ipv4_src),
2743 		.call = parse_vc,
2744 	},
2745 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2746 		.name = "ipv4_addr",
2747 		.help = "new IPv4 source address to set",
2748 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2749 		.args = ARGS(ARGS_ENTRY_HTON
2750 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2751 		.call = parse_vc_conf,
2752 	},
2753 	[ACTION_SET_IPV4_DST] = {
2754 		.name = "set_ipv4_dst",
2755 		.help = "Set a new IPv4 destination address in the outermost"
2756 			" IPv4 header",
2757 		.priv = PRIV_ACTION(SET_IPV4_DST,
2758 			sizeof(struct rte_flow_action_set_ipv4)),
2759 		.next = NEXT(action_set_ipv4_dst),
2760 		.call = parse_vc,
2761 	},
2762 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2763 		.name = "ipv4_addr",
2764 		.help = "new IPv4 destination address to set",
2765 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2766 		.args = ARGS(ARGS_ENTRY_HTON
2767 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2768 		.call = parse_vc_conf,
2769 	},
2770 	[ACTION_SET_IPV6_SRC] = {
2771 		.name = "set_ipv6_src",
2772 		.help = "Set a new IPv6 source address in the outermost"
2773 			" IPv6 header",
2774 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2775 			sizeof(struct rte_flow_action_set_ipv6)),
2776 		.next = NEXT(action_set_ipv6_src),
2777 		.call = parse_vc,
2778 	},
2779 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2780 		.name = "ipv6_addr",
2781 		.help = "new IPv6 source address to set",
2782 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2783 		.args = ARGS(ARGS_ENTRY_HTON
2784 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2785 		.call = parse_vc_conf,
2786 	},
2787 	[ACTION_SET_IPV6_DST] = {
2788 		.name = "set_ipv6_dst",
2789 		.help = "Set a new IPv6 destination address in the outermost"
2790 			" IPv6 header",
2791 		.priv = PRIV_ACTION(SET_IPV6_DST,
2792 			sizeof(struct rte_flow_action_set_ipv6)),
2793 		.next = NEXT(action_set_ipv6_dst),
2794 		.call = parse_vc,
2795 	},
2796 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2797 		.name = "ipv6_addr",
2798 		.help = "new IPv6 destination address to set",
2799 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2800 		.args = ARGS(ARGS_ENTRY_HTON
2801 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2802 		.call = parse_vc_conf,
2803 	},
2804 	[ACTION_SET_TP_SRC] = {
2805 		.name = "set_tp_src",
2806 		.help = "set a new source port number in the outermost"
2807 			" TCP/UDP header",
2808 		.priv = PRIV_ACTION(SET_TP_SRC,
2809 			sizeof(struct rte_flow_action_set_tp)),
2810 		.next = NEXT(action_set_tp_src),
2811 		.call = parse_vc,
2812 	},
2813 	[ACTION_SET_TP_SRC_TP_SRC] = {
2814 		.name = "port",
2815 		.help = "new source port number to set",
2816 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2817 		.args = ARGS(ARGS_ENTRY_HTON
2818 			     (struct rte_flow_action_set_tp, port)),
2819 		.call = parse_vc_conf,
2820 	},
2821 	[ACTION_SET_TP_DST] = {
2822 		.name = "set_tp_dst",
2823 		.help = "set a new destination port number in the outermost"
2824 			" TCP/UDP header",
2825 		.priv = PRIV_ACTION(SET_TP_DST,
2826 			sizeof(struct rte_flow_action_set_tp)),
2827 		.next = NEXT(action_set_tp_dst),
2828 		.call = parse_vc,
2829 	},
2830 	[ACTION_SET_TP_DST_TP_DST] = {
2831 		.name = "port",
2832 		.help = "new destination port number to set",
2833 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2834 		.args = ARGS(ARGS_ENTRY_HTON
2835 			     (struct rte_flow_action_set_tp, port)),
2836 		.call = parse_vc_conf,
2837 	},
2838 	[ACTION_MAC_SWAP] = {
2839 		.name = "mac_swap",
2840 		.help = "Swap the source and destination MAC addresses"
2841 			" in the outermost Ethernet header",
2842 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2843 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2844 		.call = parse_vc,
2845 	},
2846 	[ACTION_DEC_TTL] = {
2847 		.name = "dec_ttl",
2848 		.help = "decrease network TTL if available",
2849 		.priv = PRIV_ACTION(DEC_TTL, 0),
2850 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2851 		.call = parse_vc,
2852 	},
2853 	[ACTION_SET_TTL] = {
2854 		.name = "set_ttl",
2855 		.help = "set ttl value",
2856 		.priv = PRIV_ACTION(SET_TTL,
2857 			sizeof(struct rte_flow_action_set_ttl)),
2858 		.next = NEXT(action_set_ttl),
2859 		.call = parse_vc,
2860 	},
2861 	[ACTION_SET_TTL_TTL] = {
2862 		.name = "ttl_value",
2863 		.help = "new ttl value to set",
2864 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2865 		.args = ARGS(ARGS_ENTRY_HTON
2866 			     (struct rte_flow_action_set_ttl, ttl_value)),
2867 		.call = parse_vc_conf,
2868 	},
2869 	[ACTION_SET_MAC_SRC] = {
2870 		.name = "set_mac_src",
2871 		.help = "set source mac address",
2872 		.priv = PRIV_ACTION(SET_MAC_SRC,
2873 			sizeof(struct rte_flow_action_set_mac)),
2874 		.next = NEXT(action_set_mac_src),
2875 		.call = parse_vc,
2876 	},
2877 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2878 		.name = "mac_addr",
2879 		.help = "new source mac address",
2880 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2881 		.args = ARGS(ARGS_ENTRY_HTON
2882 			     (struct rte_flow_action_set_mac, mac_addr)),
2883 		.call = parse_vc_conf,
2884 	},
2885 	[ACTION_SET_MAC_DST] = {
2886 		.name = "set_mac_dst",
2887 		.help = "set destination mac address",
2888 		.priv = PRIV_ACTION(SET_MAC_DST,
2889 			sizeof(struct rte_flow_action_set_mac)),
2890 		.next = NEXT(action_set_mac_dst),
2891 		.call = parse_vc,
2892 	},
2893 	[ACTION_SET_MAC_DST_MAC_DST] = {
2894 		.name = "mac_addr",
2895 		.help = "new destination mac address to set",
2896 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2897 		.args = ARGS(ARGS_ENTRY_HTON
2898 			     (struct rte_flow_action_set_mac, mac_addr)),
2899 		.call = parse_vc_conf,
2900 	},
2901 	[ACTION_INC_TCP_SEQ] = {
2902 		.name = "inc_tcp_seq",
2903 		.help = "increase TCP sequence number",
2904 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
2905 		.next = NEXT(action_inc_tcp_seq),
2906 		.call = parse_vc,
2907 	},
2908 	[ACTION_INC_TCP_SEQ_VALUE] = {
2909 		.name = "value",
2910 		.help = "the value to increase TCP sequence number by",
2911 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
2912 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2913 		.call = parse_vc_conf,
2914 	},
2915 	[ACTION_DEC_TCP_SEQ] = {
2916 		.name = "dec_tcp_seq",
2917 		.help = "decrease TCP sequence number",
2918 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
2919 		.next = NEXT(action_dec_tcp_seq),
2920 		.call = parse_vc,
2921 	},
2922 	[ACTION_DEC_TCP_SEQ_VALUE] = {
2923 		.name = "value",
2924 		.help = "the value to decrease TCP sequence number by",
2925 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
2926 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2927 		.call = parse_vc_conf,
2928 	},
2929 	[ACTION_INC_TCP_ACK] = {
2930 		.name = "inc_tcp_ack",
2931 		.help = "increase TCP acknowledgment number",
2932 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
2933 		.next = NEXT(action_inc_tcp_ack),
2934 		.call = parse_vc,
2935 	},
2936 	[ACTION_INC_TCP_ACK_VALUE] = {
2937 		.name = "value",
2938 		.help = "the value to increase TCP acknowledgment number by",
2939 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
2940 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2941 		.call = parse_vc_conf,
2942 	},
2943 	[ACTION_DEC_TCP_ACK] = {
2944 		.name = "dec_tcp_ack",
2945 		.help = "decrease TCP acknowledgment number",
2946 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
2947 		.next = NEXT(action_dec_tcp_ack),
2948 		.call = parse_vc,
2949 	},
2950 	[ACTION_DEC_TCP_ACK_VALUE] = {
2951 		.name = "value",
2952 		.help = "the value to decrease TCP acknowledgment number by",
2953 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
2954 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2955 		.call = parse_vc_conf,
2956 	},
2957 };
2958 
2959 /** Remove and return last entry from argument stack. */
2960 static const struct arg *
2961 pop_args(struct context *ctx)
2962 {
2963 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2964 }
2965 
2966 /** Add entry on top of the argument stack. */
2967 static int
2968 push_args(struct context *ctx, const struct arg *arg)
2969 {
2970 	if (ctx->args_num == CTX_STACK_SIZE)
2971 		return -1;
2972 	ctx->args[ctx->args_num++] = arg;
2973 	return 0;
2974 }
2975 
2976 /** Spread value into buffer according to bit-mask. */
2977 static size_t
2978 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2979 {
2980 	uint32_t i = arg->size;
2981 	uint32_t end = 0;
2982 	int sub = 1;
2983 	int add = 0;
2984 	size_t len = 0;
2985 
2986 	if (!arg->mask)
2987 		return 0;
2988 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2989 	if (!arg->hton) {
2990 		i = 0;
2991 		end = arg->size;
2992 		sub = 0;
2993 		add = 1;
2994 	}
2995 #endif
2996 	while (i != end) {
2997 		unsigned int shift = 0;
2998 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2999 
3000 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
3001 			if (!(arg->mask[i] & (1 << shift)))
3002 				continue;
3003 			++len;
3004 			if (!dst)
3005 				continue;
3006 			*buf &= ~(1 << shift);
3007 			*buf |= (val & 1) << shift;
3008 			val >>= 1;
3009 		}
3010 		i += add;
3011 	}
3012 	return len;
3013 }
3014 
3015 /** Compare a string with a partial one of a given length. */
3016 static int
3017 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3018 {
3019 	int r = strncmp(full, partial, partial_len);
3020 
3021 	if (r)
3022 		return r;
3023 	if (strlen(full) <= partial_len)
3024 		return 0;
3025 	return full[partial_len];
3026 }
3027 
3028 /**
3029  * Parse a prefix length and generate a bit-mask.
3030  *
3031  * Last argument (ctx->args) is retrieved to determine mask size, storage
3032  * location and whether the result must use network byte ordering.
3033  */
3034 static int
3035 parse_prefix(struct context *ctx, const struct token *token,
3036 	     const char *str, unsigned int len,
3037 	     void *buf, unsigned int size)
3038 {
3039 	const struct arg *arg = pop_args(ctx);
3040 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3041 	char *end;
3042 	uintmax_t u;
3043 	unsigned int bytes;
3044 	unsigned int extra;
3045 
3046 	(void)token;
3047 	/* Argument is expected. */
3048 	if (!arg)
3049 		return -1;
3050 	errno = 0;
3051 	u = strtoumax(str, &end, 0);
3052 	if (errno || (size_t)(end - str) != len)
3053 		goto error;
3054 	if (arg->mask) {
3055 		uintmax_t v = 0;
3056 
3057 		extra = arg_entry_bf_fill(NULL, 0, arg);
3058 		if (u > extra)
3059 			goto error;
3060 		if (!ctx->object)
3061 			return len;
3062 		extra -= u;
3063 		while (u--)
3064 			(v <<= 1, v |= 1);
3065 		v <<= extra;
3066 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3067 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3068 			goto error;
3069 		return len;
3070 	}
3071 	bytes = u / 8;
3072 	extra = u % 8;
3073 	size = arg->size;
3074 	if (bytes > size || bytes + !!extra > size)
3075 		goto error;
3076 	if (!ctx->object)
3077 		return len;
3078 	buf = (uint8_t *)ctx->object + arg->offset;
3079 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3080 	if (!arg->hton) {
3081 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3082 		memset(buf, 0x00, size - bytes);
3083 		if (extra)
3084 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3085 	} else
3086 #endif
3087 	{
3088 		memset(buf, 0xff, bytes);
3089 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3090 		if (extra)
3091 			((uint8_t *)buf)[bytes] = conv[extra];
3092 	}
3093 	if (ctx->objmask)
3094 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3095 	return len;
3096 error:
3097 	push_args(ctx, arg);
3098 	return -1;
3099 }
3100 
3101 /** Default parsing function for token name matching. */
3102 static int
3103 parse_default(struct context *ctx, const struct token *token,
3104 	      const char *str, unsigned int len,
3105 	      void *buf, unsigned int size)
3106 {
3107 	(void)ctx;
3108 	(void)buf;
3109 	(void)size;
3110 	if (strcmp_partial(token->name, str, len))
3111 		return -1;
3112 	return len;
3113 }
3114 
3115 /** Parse flow command, initialize output buffer for subsequent tokens. */
3116 static int
3117 parse_init(struct context *ctx, const struct token *token,
3118 	   const char *str, unsigned int len,
3119 	   void *buf, unsigned int size)
3120 {
3121 	struct buffer *out = buf;
3122 
3123 	/* Token name must match. */
3124 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3125 		return -1;
3126 	/* Nothing else to do if there is no buffer. */
3127 	if (!out)
3128 		return len;
3129 	/* Make sure buffer is large enough. */
3130 	if (size < sizeof(*out))
3131 		return -1;
3132 	/* Initialize buffer. */
3133 	memset(out, 0x00, sizeof(*out));
3134 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3135 	ctx->objdata = 0;
3136 	ctx->object = out;
3137 	ctx->objmask = NULL;
3138 	return len;
3139 }
3140 
3141 /** Parse tokens for validate/create commands. */
3142 static int
3143 parse_vc(struct context *ctx, const struct token *token,
3144 	 const char *str, unsigned int len,
3145 	 void *buf, unsigned int size)
3146 {
3147 	struct buffer *out = buf;
3148 	uint8_t *data;
3149 	uint32_t data_size;
3150 
3151 	/* Token name must match. */
3152 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3153 		return -1;
3154 	/* Nothing else to do if there is no buffer. */
3155 	if (!out)
3156 		return len;
3157 	if (!out->command) {
3158 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3159 			return -1;
3160 		if (sizeof(*out) > size)
3161 			return -1;
3162 		out->command = ctx->curr;
3163 		ctx->objdata = 0;
3164 		ctx->object = out;
3165 		ctx->objmask = NULL;
3166 		out->args.vc.data = (uint8_t *)out + size;
3167 		return len;
3168 	}
3169 	ctx->objdata = 0;
3170 	ctx->object = &out->args.vc.attr;
3171 	ctx->objmask = NULL;
3172 	switch (ctx->curr) {
3173 	case GROUP:
3174 	case PRIORITY:
3175 		return len;
3176 	case INGRESS:
3177 		out->args.vc.attr.ingress = 1;
3178 		return len;
3179 	case EGRESS:
3180 		out->args.vc.attr.egress = 1;
3181 		return len;
3182 	case TRANSFER:
3183 		out->args.vc.attr.transfer = 1;
3184 		return len;
3185 	case PATTERN:
3186 		out->args.vc.pattern =
3187 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3188 					       sizeof(double));
3189 		ctx->object = out->args.vc.pattern;
3190 		ctx->objmask = NULL;
3191 		return len;
3192 	case ACTIONS:
3193 		out->args.vc.actions =
3194 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3195 					       (out->args.vc.pattern +
3196 						out->args.vc.pattern_n),
3197 					       sizeof(double));
3198 		ctx->object = out->args.vc.actions;
3199 		ctx->objmask = NULL;
3200 		return len;
3201 	default:
3202 		if (!token->priv)
3203 			return -1;
3204 		break;
3205 	}
3206 	if (!out->args.vc.actions) {
3207 		const struct parse_item_priv *priv = token->priv;
3208 		struct rte_flow_item *item =
3209 			out->args.vc.pattern + out->args.vc.pattern_n;
3210 
3211 		data_size = priv->size * 3; /* spec, last, mask */
3212 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3213 					       (out->args.vc.data - data_size),
3214 					       sizeof(double));
3215 		if ((uint8_t *)item + sizeof(*item) > data)
3216 			return -1;
3217 		*item = (struct rte_flow_item){
3218 			.type = priv->type,
3219 		};
3220 		++out->args.vc.pattern_n;
3221 		ctx->object = item;
3222 		ctx->objmask = NULL;
3223 	} else {
3224 		const struct parse_action_priv *priv = token->priv;
3225 		struct rte_flow_action *action =
3226 			out->args.vc.actions + out->args.vc.actions_n;
3227 
3228 		data_size = priv->size; /* configuration */
3229 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3230 					       (out->args.vc.data - data_size),
3231 					       sizeof(double));
3232 		if ((uint8_t *)action + sizeof(*action) > data)
3233 			return -1;
3234 		*action = (struct rte_flow_action){
3235 			.type = priv->type,
3236 			.conf = data_size ? data : NULL,
3237 		};
3238 		++out->args.vc.actions_n;
3239 		ctx->object = action;
3240 		ctx->objmask = NULL;
3241 	}
3242 	memset(data, 0, data_size);
3243 	out->args.vc.data = data;
3244 	ctx->objdata = data_size;
3245 	return len;
3246 }
3247 
3248 /** Parse pattern item parameter type. */
3249 static int
3250 parse_vc_spec(struct context *ctx, const struct token *token,
3251 	      const char *str, unsigned int len,
3252 	      void *buf, unsigned int size)
3253 {
3254 	struct buffer *out = buf;
3255 	struct rte_flow_item *item;
3256 	uint32_t data_size;
3257 	int index;
3258 	int objmask = 0;
3259 
3260 	(void)size;
3261 	/* Token name must match. */
3262 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3263 		return -1;
3264 	/* Parse parameter types. */
3265 	switch (ctx->curr) {
3266 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3267 
3268 	case ITEM_PARAM_IS:
3269 		index = 0;
3270 		objmask = 1;
3271 		break;
3272 	case ITEM_PARAM_SPEC:
3273 		index = 0;
3274 		break;
3275 	case ITEM_PARAM_LAST:
3276 		index = 1;
3277 		break;
3278 	case ITEM_PARAM_PREFIX:
3279 		/* Modify next token to expect a prefix. */
3280 		if (ctx->next_num < 2)
3281 			return -1;
3282 		ctx->next[ctx->next_num - 2] = prefix;
3283 		/* Fall through. */
3284 	case ITEM_PARAM_MASK:
3285 		index = 2;
3286 		break;
3287 	default:
3288 		return -1;
3289 	}
3290 	/* Nothing else to do if there is no buffer. */
3291 	if (!out)
3292 		return len;
3293 	if (!out->args.vc.pattern_n)
3294 		return -1;
3295 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3296 	data_size = ctx->objdata / 3; /* spec, last, mask */
3297 	/* Point to selected object. */
3298 	ctx->object = out->args.vc.data + (data_size * index);
3299 	if (objmask) {
3300 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3301 		item->mask = ctx->objmask;
3302 	} else
3303 		ctx->objmask = NULL;
3304 	/* Update relevant item pointer. */
3305 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3306 		ctx->object;
3307 	return len;
3308 }
3309 
3310 /** Parse action configuration field. */
3311 static int
3312 parse_vc_conf(struct context *ctx, const struct token *token,
3313 	      const char *str, unsigned int len,
3314 	      void *buf, unsigned int size)
3315 {
3316 	struct buffer *out = buf;
3317 
3318 	(void)size;
3319 	/* Token name must match. */
3320 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3321 		return -1;
3322 	/* Nothing else to do if there is no buffer. */
3323 	if (!out)
3324 		return len;
3325 	/* Point to selected object. */
3326 	ctx->object = out->args.vc.data;
3327 	ctx->objmask = NULL;
3328 	return len;
3329 }
3330 
3331 /** Parse RSS action. */
3332 static int
3333 parse_vc_action_rss(struct context *ctx, const struct token *token,
3334 		    const char *str, unsigned int len,
3335 		    void *buf, unsigned int size)
3336 {
3337 	struct buffer *out = buf;
3338 	struct rte_flow_action *action;
3339 	struct action_rss_data *action_rss_data;
3340 	unsigned int i;
3341 	int ret;
3342 
3343 	ret = parse_vc(ctx, token, str, len, buf, size);
3344 	if (ret < 0)
3345 		return ret;
3346 	/* Nothing else to do if there is no buffer. */
3347 	if (!out)
3348 		return ret;
3349 	if (!out->args.vc.actions_n)
3350 		return -1;
3351 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3352 	/* Point to selected object. */
3353 	ctx->object = out->args.vc.data;
3354 	ctx->objmask = NULL;
3355 	/* Set up default configuration. */
3356 	action_rss_data = ctx->object;
3357 	*action_rss_data = (struct action_rss_data){
3358 		.conf = (struct rte_flow_action_rss){
3359 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3360 			.level = 0,
3361 			.types = rss_hf,
3362 			.key_len = sizeof(action_rss_data->key),
3363 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3364 			.key = action_rss_data->key,
3365 			.queue = action_rss_data->queue,
3366 		},
3367 		.key = "testpmd's default RSS hash key, "
3368 			"override it for better balancing",
3369 		.queue = { 0 },
3370 	};
3371 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3372 		action_rss_data->queue[i] = i;
3373 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3374 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3375 		struct rte_eth_dev_info info;
3376 
3377 		rte_eth_dev_info_get(ctx->port, &info);
3378 		action_rss_data->conf.key_len =
3379 			RTE_MIN(sizeof(action_rss_data->key),
3380 				info.hash_key_size);
3381 	}
3382 	action->conf = &action_rss_data->conf;
3383 	return ret;
3384 }
3385 
3386 /**
3387  * Parse func field for RSS action.
3388  *
3389  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3390  * ACTION_RSS_FUNC_* index that called this function.
3391  */
3392 static int
3393 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3394 			 const char *str, unsigned int len,
3395 			 void *buf, unsigned int size)
3396 {
3397 	struct action_rss_data *action_rss_data;
3398 	enum rte_eth_hash_function func;
3399 
3400 	(void)buf;
3401 	(void)size;
3402 	/* Token name must match. */
3403 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3404 		return -1;
3405 	switch (ctx->curr) {
3406 	case ACTION_RSS_FUNC_DEFAULT:
3407 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3408 		break;
3409 	case ACTION_RSS_FUNC_TOEPLITZ:
3410 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3411 		break;
3412 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3413 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3414 		break;
3415 	default:
3416 		return -1;
3417 	}
3418 	if (!ctx->object)
3419 		return len;
3420 	action_rss_data = ctx->object;
3421 	action_rss_data->conf.func = func;
3422 	return len;
3423 }
3424 
3425 /**
3426  * Parse type field for RSS action.
3427  *
3428  * Valid tokens are type field names and the "end" token.
3429  */
3430 static int
3431 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3432 			  const char *str, unsigned int len,
3433 			  void *buf, unsigned int size)
3434 {
3435 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3436 	struct action_rss_data *action_rss_data;
3437 	unsigned int i;
3438 
3439 	(void)token;
3440 	(void)buf;
3441 	(void)size;
3442 	if (ctx->curr != ACTION_RSS_TYPE)
3443 		return -1;
3444 	if (!(ctx->objdata >> 16) && ctx->object) {
3445 		action_rss_data = ctx->object;
3446 		action_rss_data->conf.types = 0;
3447 	}
3448 	if (!strcmp_partial("end", str, len)) {
3449 		ctx->objdata &= 0xffff;
3450 		return len;
3451 	}
3452 	for (i = 0; rss_type_table[i].str; ++i)
3453 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3454 			break;
3455 	if (!rss_type_table[i].str)
3456 		return -1;
3457 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3458 	/* Repeat token. */
3459 	if (ctx->next_num == RTE_DIM(ctx->next))
3460 		return -1;
3461 	ctx->next[ctx->next_num++] = next;
3462 	if (!ctx->object)
3463 		return len;
3464 	action_rss_data = ctx->object;
3465 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3466 	return len;
3467 }
3468 
3469 /**
3470  * Parse queue field for RSS action.
3471  *
3472  * Valid tokens are queue indices and the "end" token.
3473  */
3474 static int
3475 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3476 			  const char *str, unsigned int len,
3477 			  void *buf, unsigned int size)
3478 {
3479 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3480 	struct action_rss_data *action_rss_data;
3481 	const struct arg *arg;
3482 	int ret;
3483 	int i;
3484 
3485 	(void)token;
3486 	(void)buf;
3487 	(void)size;
3488 	if (ctx->curr != ACTION_RSS_QUEUE)
3489 		return -1;
3490 	i = ctx->objdata >> 16;
3491 	if (!strcmp_partial("end", str, len)) {
3492 		ctx->objdata &= 0xffff;
3493 		goto end;
3494 	}
3495 	if (i >= ACTION_RSS_QUEUE_NUM)
3496 		return -1;
3497 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3498 			     i * sizeof(action_rss_data->queue[i]),
3499 			     sizeof(action_rss_data->queue[i]));
3500 	if (push_args(ctx, arg))
3501 		return -1;
3502 	ret = parse_int(ctx, token, str, len, NULL, 0);
3503 	if (ret < 0) {
3504 		pop_args(ctx);
3505 		return -1;
3506 	}
3507 	++i;
3508 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3509 	/* Repeat token. */
3510 	if (ctx->next_num == RTE_DIM(ctx->next))
3511 		return -1;
3512 	ctx->next[ctx->next_num++] = next;
3513 end:
3514 	if (!ctx->object)
3515 		return len;
3516 	action_rss_data = ctx->object;
3517 	action_rss_data->conf.queue_num = i;
3518 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3519 	return len;
3520 }
3521 
3522 /** Parse VXLAN encap action. */
3523 static int
3524 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3525 			    const char *str, unsigned int len,
3526 			    void *buf, unsigned int size)
3527 {
3528 	struct buffer *out = buf;
3529 	struct rte_flow_action *action;
3530 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3531 	int ret;
3532 
3533 	ret = parse_vc(ctx, token, str, len, buf, size);
3534 	if (ret < 0)
3535 		return ret;
3536 	/* Nothing else to do if there is no buffer. */
3537 	if (!out)
3538 		return ret;
3539 	if (!out->args.vc.actions_n)
3540 		return -1;
3541 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3542 	/* Point to selected object. */
3543 	ctx->object = out->args.vc.data;
3544 	ctx->objmask = NULL;
3545 	/* Set up default configuration. */
3546 	action_vxlan_encap_data = ctx->object;
3547 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3548 		.conf = (struct rte_flow_action_vxlan_encap){
3549 			.definition = action_vxlan_encap_data->items,
3550 		},
3551 		.items = {
3552 			{
3553 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3554 				.spec = &action_vxlan_encap_data->item_eth,
3555 				.mask = &rte_flow_item_eth_mask,
3556 			},
3557 			{
3558 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3559 				.spec = &action_vxlan_encap_data->item_vlan,
3560 				.mask = &rte_flow_item_vlan_mask,
3561 			},
3562 			{
3563 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3564 				.spec = &action_vxlan_encap_data->item_ipv4,
3565 				.mask = &rte_flow_item_ipv4_mask,
3566 			},
3567 			{
3568 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3569 				.spec = &action_vxlan_encap_data->item_udp,
3570 				.mask = &rte_flow_item_udp_mask,
3571 			},
3572 			{
3573 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3574 				.spec = &action_vxlan_encap_data->item_vxlan,
3575 				.mask = &rte_flow_item_vxlan_mask,
3576 			},
3577 			{
3578 				.type = RTE_FLOW_ITEM_TYPE_END,
3579 			},
3580 		},
3581 		.item_eth.type = 0,
3582 		.item_vlan = {
3583 			.tci = vxlan_encap_conf.vlan_tci,
3584 			.inner_type = 0,
3585 		},
3586 		.item_ipv4.hdr = {
3587 			.src_addr = vxlan_encap_conf.ipv4_src,
3588 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3589 		},
3590 		.item_udp.hdr = {
3591 			.src_port = vxlan_encap_conf.udp_src,
3592 			.dst_port = vxlan_encap_conf.udp_dst,
3593 		},
3594 		.item_vxlan.flags = 0,
3595 	};
3596 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3597 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3598 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3599 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3600 	if (!vxlan_encap_conf.select_ipv4) {
3601 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3602 		       &vxlan_encap_conf.ipv6_src,
3603 		       sizeof(vxlan_encap_conf.ipv6_src));
3604 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3605 		       &vxlan_encap_conf.ipv6_dst,
3606 		       sizeof(vxlan_encap_conf.ipv6_dst));
3607 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3608 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3609 			.spec = &action_vxlan_encap_data->item_ipv6,
3610 			.mask = &rte_flow_item_ipv6_mask,
3611 		};
3612 	}
3613 	if (!vxlan_encap_conf.select_vlan)
3614 		action_vxlan_encap_data->items[1].type =
3615 			RTE_FLOW_ITEM_TYPE_VOID;
3616 	if (vxlan_encap_conf.select_tos_ttl) {
3617 		if (vxlan_encap_conf.select_ipv4) {
3618 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3619 
3620 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3621 			       sizeof(ipv4_mask_tos));
3622 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3623 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3624 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3625 					vxlan_encap_conf.ip_tos;
3626 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3627 					vxlan_encap_conf.ip_ttl;
3628 			action_vxlan_encap_data->items[2].mask =
3629 							&ipv4_mask_tos;
3630 		} else {
3631 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3632 
3633 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3634 			       sizeof(ipv6_mask_tos));
3635 			ipv6_mask_tos.hdr.vtc_flow |=
3636 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3637 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3638 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3639 				rte_cpu_to_be_32
3640 					((uint32_t)vxlan_encap_conf.ip_tos <<
3641 					 RTE_IPV6_HDR_TC_SHIFT);
3642 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3643 					vxlan_encap_conf.ip_ttl;
3644 			action_vxlan_encap_data->items[2].mask =
3645 							&ipv6_mask_tos;
3646 		}
3647 	}
3648 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3649 	       RTE_DIM(vxlan_encap_conf.vni));
3650 	action->conf = &action_vxlan_encap_data->conf;
3651 	return ret;
3652 }
3653 
3654 /** Parse NVGRE encap action. */
3655 static int
3656 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3657 			    const char *str, unsigned int len,
3658 			    void *buf, unsigned int size)
3659 {
3660 	struct buffer *out = buf;
3661 	struct rte_flow_action *action;
3662 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3663 	int ret;
3664 
3665 	ret = parse_vc(ctx, token, str, len, buf, size);
3666 	if (ret < 0)
3667 		return ret;
3668 	/* Nothing else to do if there is no buffer. */
3669 	if (!out)
3670 		return ret;
3671 	if (!out->args.vc.actions_n)
3672 		return -1;
3673 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3674 	/* Point to selected object. */
3675 	ctx->object = out->args.vc.data;
3676 	ctx->objmask = NULL;
3677 	/* Set up default configuration. */
3678 	action_nvgre_encap_data = ctx->object;
3679 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3680 		.conf = (struct rte_flow_action_nvgre_encap){
3681 			.definition = action_nvgre_encap_data->items,
3682 		},
3683 		.items = {
3684 			{
3685 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3686 				.spec = &action_nvgre_encap_data->item_eth,
3687 				.mask = &rte_flow_item_eth_mask,
3688 			},
3689 			{
3690 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3691 				.spec = &action_nvgre_encap_data->item_vlan,
3692 				.mask = &rte_flow_item_vlan_mask,
3693 			},
3694 			{
3695 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3696 				.spec = &action_nvgre_encap_data->item_ipv4,
3697 				.mask = &rte_flow_item_ipv4_mask,
3698 			},
3699 			{
3700 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3701 				.spec = &action_nvgre_encap_data->item_nvgre,
3702 				.mask = &rte_flow_item_nvgre_mask,
3703 			},
3704 			{
3705 				.type = RTE_FLOW_ITEM_TYPE_END,
3706 			},
3707 		},
3708 		.item_eth.type = 0,
3709 		.item_vlan = {
3710 			.tci = nvgre_encap_conf.vlan_tci,
3711 			.inner_type = 0,
3712 		},
3713 		.item_ipv4.hdr = {
3714 		       .src_addr = nvgre_encap_conf.ipv4_src,
3715 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3716 		},
3717 		.item_nvgre.flow_id = 0,
3718 	};
3719 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3720 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3721 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3722 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3723 	if (!nvgre_encap_conf.select_ipv4) {
3724 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3725 		       &nvgre_encap_conf.ipv6_src,
3726 		       sizeof(nvgre_encap_conf.ipv6_src));
3727 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3728 		       &nvgre_encap_conf.ipv6_dst,
3729 		       sizeof(nvgre_encap_conf.ipv6_dst));
3730 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3731 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3732 			.spec = &action_nvgre_encap_data->item_ipv6,
3733 			.mask = &rte_flow_item_ipv6_mask,
3734 		};
3735 	}
3736 	if (!nvgre_encap_conf.select_vlan)
3737 		action_nvgre_encap_data->items[1].type =
3738 			RTE_FLOW_ITEM_TYPE_VOID;
3739 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3740 	       RTE_DIM(nvgre_encap_conf.tni));
3741 	action->conf = &action_nvgre_encap_data->conf;
3742 	return ret;
3743 }
3744 
3745 /** Parse l2 encap action. */
3746 static int
3747 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3748 			 const char *str, unsigned int len,
3749 			 void *buf, unsigned int size)
3750 {
3751 	struct buffer *out = buf;
3752 	struct rte_flow_action *action;
3753 	struct action_raw_encap_data *action_encap_data;
3754 	struct rte_flow_item_eth eth = { .type = 0, };
3755 	struct rte_flow_item_vlan vlan = {
3756 		.tci = mplsoudp_encap_conf.vlan_tci,
3757 		.inner_type = 0,
3758 	};
3759 	uint8_t *header;
3760 	int ret;
3761 
3762 	ret = parse_vc(ctx, token, str, len, buf, size);
3763 	if (ret < 0)
3764 		return ret;
3765 	/* Nothing else to do if there is no buffer. */
3766 	if (!out)
3767 		return ret;
3768 	if (!out->args.vc.actions_n)
3769 		return -1;
3770 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3771 	/* Point to selected object. */
3772 	ctx->object = out->args.vc.data;
3773 	ctx->objmask = NULL;
3774 	/* Copy the headers to the buffer. */
3775 	action_encap_data = ctx->object;
3776 	*action_encap_data = (struct action_raw_encap_data) {
3777 		.conf = (struct rte_flow_action_raw_encap){
3778 			.data = action_encap_data->data,
3779 		},
3780 		.data = {},
3781 	};
3782 	header = action_encap_data->data;
3783 	if (l2_encap_conf.select_vlan)
3784 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3785 	else if (l2_encap_conf.select_ipv4)
3786 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3787 	else
3788 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3789 	memcpy(eth.dst.addr_bytes,
3790 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3791 	memcpy(eth.src.addr_bytes,
3792 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3793 	memcpy(header, &eth, sizeof(eth));
3794 	header += sizeof(eth);
3795 	if (l2_encap_conf.select_vlan) {
3796 		if (l2_encap_conf.select_ipv4)
3797 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3798 		else
3799 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3800 		memcpy(header, &vlan, sizeof(vlan));
3801 		header += sizeof(vlan);
3802 	}
3803 	action_encap_data->conf.size = header -
3804 		action_encap_data->data;
3805 	action->conf = &action_encap_data->conf;
3806 	return ret;
3807 }
3808 
3809 /** Parse l2 decap action. */
3810 static int
3811 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3812 			 const char *str, unsigned int len,
3813 			 void *buf, unsigned int size)
3814 {
3815 	struct buffer *out = buf;
3816 	struct rte_flow_action *action;
3817 	struct action_raw_decap_data *action_decap_data;
3818 	struct rte_flow_item_eth eth = { .type = 0, };
3819 	struct rte_flow_item_vlan vlan = {
3820 		.tci = mplsoudp_encap_conf.vlan_tci,
3821 		.inner_type = 0,
3822 	};
3823 	uint8_t *header;
3824 	int ret;
3825 
3826 	ret = parse_vc(ctx, token, str, len, buf, size);
3827 	if (ret < 0)
3828 		return ret;
3829 	/* Nothing else to do if there is no buffer. */
3830 	if (!out)
3831 		return ret;
3832 	if (!out->args.vc.actions_n)
3833 		return -1;
3834 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3835 	/* Point to selected object. */
3836 	ctx->object = out->args.vc.data;
3837 	ctx->objmask = NULL;
3838 	/* Copy the headers to the buffer. */
3839 	action_decap_data = ctx->object;
3840 	*action_decap_data = (struct action_raw_decap_data) {
3841 		.conf = (struct rte_flow_action_raw_decap){
3842 			.data = action_decap_data->data,
3843 		},
3844 		.data = {},
3845 	};
3846 	header = action_decap_data->data;
3847 	if (l2_decap_conf.select_vlan)
3848 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3849 	memcpy(header, &eth, sizeof(eth));
3850 	header += sizeof(eth);
3851 	if (l2_decap_conf.select_vlan) {
3852 		memcpy(header, &vlan, sizeof(vlan));
3853 		header += sizeof(vlan);
3854 	}
3855 	action_decap_data->conf.size = header -
3856 		action_decap_data->data;
3857 	action->conf = &action_decap_data->conf;
3858 	return ret;
3859 }
3860 
3861 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3862 
3863 /** Parse MPLSOGRE encap action. */
3864 static int
3865 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3866 			       const char *str, unsigned int len,
3867 			       void *buf, unsigned int size)
3868 {
3869 	struct buffer *out = buf;
3870 	struct rte_flow_action *action;
3871 	struct action_raw_encap_data *action_encap_data;
3872 	struct rte_flow_item_eth eth = { .type = 0, };
3873 	struct rte_flow_item_vlan vlan = {
3874 		.tci = mplsogre_encap_conf.vlan_tci,
3875 		.inner_type = 0,
3876 	};
3877 	struct rte_flow_item_ipv4 ipv4 = {
3878 		.hdr =  {
3879 			.src_addr = mplsogre_encap_conf.ipv4_src,
3880 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3881 			.next_proto_id = IPPROTO_GRE,
3882 			.version_ihl = RTE_IPV4_VHL_DEF,
3883 			.time_to_live = IPDEFTTL,
3884 		},
3885 	};
3886 	struct rte_flow_item_ipv6 ipv6 = {
3887 		.hdr =  {
3888 			.proto = IPPROTO_GRE,
3889 			.hop_limits = IPDEFTTL,
3890 		},
3891 	};
3892 	struct rte_flow_item_gre gre = {
3893 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3894 	};
3895 	struct rte_flow_item_mpls mpls;
3896 	uint8_t *header;
3897 	int ret;
3898 
3899 	ret = parse_vc(ctx, token, str, len, buf, size);
3900 	if (ret < 0)
3901 		return ret;
3902 	/* Nothing else to do if there is no buffer. */
3903 	if (!out)
3904 		return ret;
3905 	if (!out->args.vc.actions_n)
3906 		return -1;
3907 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3908 	/* Point to selected object. */
3909 	ctx->object = out->args.vc.data;
3910 	ctx->objmask = NULL;
3911 	/* Copy the headers to the buffer. */
3912 	action_encap_data = ctx->object;
3913 	*action_encap_data = (struct action_raw_encap_data) {
3914 		.conf = (struct rte_flow_action_raw_encap){
3915 			.data = action_encap_data->data,
3916 		},
3917 		.data = {},
3918 		.preserve = {},
3919 	};
3920 	header = action_encap_data->data;
3921 	if (mplsogre_encap_conf.select_vlan)
3922 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3923 	else if (mplsogre_encap_conf.select_ipv4)
3924 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3925 	else
3926 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3927 	memcpy(eth.dst.addr_bytes,
3928 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3929 	memcpy(eth.src.addr_bytes,
3930 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3931 	memcpy(header, &eth, sizeof(eth));
3932 	header += sizeof(eth);
3933 	if (mplsogre_encap_conf.select_vlan) {
3934 		if (mplsogre_encap_conf.select_ipv4)
3935 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3936 		else
3937 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3938 		memcpy(header, &vlan, sizeof(vlan));
3939 		header += sizeof(vlan);
3940 	}
3941 	if (mplsogre_encap_conf.select_ipv4) {
3942 		memcpy(header, &ipv4, sizeof(ipv4));
3943 		header += sizeof(ipv4);
3944 	} else {
3945 		memcpy(&ipv6.hdr.src_addr,
3946 		       &mplsogre_encap_conf.ipv6_src,
3947 		       sizeof(mplsogre_encap_conf.ipv6_src));
3948 		memcpy(&ipv6.hdr.dst_addr,
3949 		       &mplsogre_encap_conf.ipv6_dst,
3950 		       sizeof(mplsogre_encap_conf.ipv6_dst));
3951 		memcpy(header, &ipv6, sizeof(ipv6));
3952 		header += sizeof(ipv6);
3953 	}
3954 	memcpy(header, &gre, sizeof(gre));
3955 	header += sizeof(gre);
3956 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3957 	       RTE_DIM(mplsogre_encap_conf.label));
3958 	mpls.label_tc_s[2] |= 0x1;
3959 	memcpy(header, &mpls, sizeof(mpls));
3960 	header += sizeof(mpls);
3961 	action_encap_data->conf.size = header -
3962 		action_encap_data->data;
3963 	action->conf = &action_encap_data->conf;
3964 	return ret;
3965 }
3966 
3967 /** Parse MPLSOGRE decap action. */
3968 static int
3969 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3970 			       const char *str, unsigned int len,
3971 			       void *buf, unsigned int size)
3972 {
3973 	struct buffer *out = buf;
3974 	struct rte_flow_action *action;
3975 	struct action_raw_decap_data *action_decap_data;
3976 	struct rte_flow_item_eth eth = { .type = 0, };
3977 	struct rte_flow_item_vlan vlan = {.tci = 0};
3978 	struct rte_flow_item_ipv4 ipv4 = {
3979 		.hdr =  {
3980 			.next_proto_id = IPPROTO_GRE,
3981 		},
3982 	};
3983 	struct rte_flow_item_ipv6 ipv6 = {
3984 		.hdr =  {
3985 			.proto = IPPROTO_GRE,
3986 		},
3987 	};
3988 	struct rte_flow_item_gre gre = {
3989 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3990 	};
3991 	struct rte_flow_item_mpls mpls;
3992 	uint8_t *header;
3993 	int ret;
3994 
3995 	ret = parse_vc(ctx, token, str, len, buf, size);
3996 	if (ret < 0)
3997 		return ret;
3998 	/* Nothing else to do if there is no buffer. */
3999 	if (!out)
4000 		return ret;
4001 	if (!out->args.vc.actions_n)
4002 		return -1;
4003 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4004 	/* Point to selected object. */
4005 	ctx->object = out->args.vc.data;
4006 	ctx->objmask = NULL;
4007 	/* Copy the headers to the buffer. */
4008 	action_decap_data = ctx->object;
4009 	*action_decap_data = (struct action_raw_decap_data) {
4010 		.conf = (struct rte_flow_action_raw_decap){
4011 			.data = action_decap_data->data,
4012 		},
4013 		.data = {},
4014 	};
4015 	header = action_decap_data->data;
4016 	if (mplsogre_decap_conf.select_vlan)
4017 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4018 	else if (mplsogre_encap_conf.select_ipv4)
4019 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4020 	else
4021 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4022 	memcpy(eth.dst.addr_bytes,
4023 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4024 	memcpy(eth.src.addr_bytes,
4025 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4026 	memcpy(header, &eth, sizeof(eth));
4027 	header += sizeof(eth);
4028 	if (mplsogre_encap_conf.select_vlan) {
4029 		if (mplsogre_encap_conf.select_ipv4)
4030 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4031 		else
4032 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4033 		memcpy(header, &vlan, sizeof(vlan));
4034 		header += sizeof(vlan);
4035 	}
4036 	if (mplsogre_encap_conf.select_ipv4) {
4037 		memcpy(header, &ipv4, sizeof(ipv4));
4038 		header += sizeof(ipv4);
4039 	} else {
4040 		memcpy(header, &ipv6, sizeof(ipv6));
4041 		header += sizeof(ipv6);
4042 	}
4043 	memcpy(header, &gre, sizeof(gre));
4044 	header += sizeof(gre);
4045 	memset(&mpls, 0, sizeof(mpls));
4046 	memcpy(header, &mpls, sizeof(mpls));
4047 	header += sizeof(mpls);
4048 	action_decap_data->conf.size = header -
4049 		action_decap_data->data;
4050 	action->conf = &action_decap_data->conf;
4051 	return ret;
4052 }
4053 
4054 /** Parse MPLSOUDP encap action. */
4055 static int
4056 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4057 			       const char *str, unsigned int len,
4058 			       void *buf, unsigned int size)
4059 {
4060 	struct buffer *out = buf;
4061 	struct rte_flow_action *action;
4062 	struct action_raw_encap_data *action_encap_data;
4063 	struct rte_flow_item_eth eth = { .type = 0, };
4064 	struct rte_flow_item_vlan vlan = {
4065 		.tci = mplsoudp_encap_conf.vlan_tci,
4066 		.inner_type = 0,
4067 	};
4068 	struct rte_flow_item_ipv4 ipv4 = {
4069 		.hdr =  {
4070 			.src_addr = mplsoudp_encap_conf.ipv4_src,
4071 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
4072 			.next_proto_id = IPPROTO_UDP,
4073 			.version_ihl = RTE_IPV4_VHL_DEF,
4074 			.time_to_live = IPDEFTTL,
4075 		},
4076 	};
4077 	struct rte_flow_item_ipv6 ipv6 = {
4078 		.hdr =  {
4079 			.proto = IPPROTO_UDP,
4080 			.hop_limits = IPDEFTTL,
4081 		},
4082 	};
4083 	struct rte_flow_item_udp udp = {
4084 		.hdr = {
4085 			.src_port = mplsoudp_encap_conf.udp_src,
4086 			.dst_port = mplsoudp_encap_conf.udp_dst,
4087 		},
4088 	};
4089 	struct rte_flow_item_mpls mpls;
4090 	uint8_t *header;
4091 	int ret;
4092 
4093 	ret = parse_vc(ctx, token, str, len, buf, size);
4094 	if (ret < 0)
4095 		return ret;
4096 	/* Nothing else to do if there is no buffer. */
4097 	if (!out)
4098 		return ret;
4099 	if (!out->args.vc.actions_n)
4100 		return -1;
4101 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4102 	/* Point to selected object. */
4103 	ctx->object = out->args.vc.data;
4104 	ctx->objmask = NULL;
4105 	/* Copy the headers to the buffer. */
4106 	action_encap_data = ctx->object;
4107 	*action_encap_data = (struct action_raw_encap_data) {
4108 		.conf = (struct rte_flow_action_raw_encap){
4109 			.data = action_encap_data->data,
4110 		},
4111 		.data = {},
4112 		.preserve = {},
4113 	};
4114 	header = action_encap_data->data;
4115 	if (mplsoudp_encap_conf.select_vlan)
4116 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4117 	else if (mplsoudp_encap_conf.select_ipv4)
4118 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4119 	else
4120 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4121 	memcpy(eth.dst.addr_bytes,
4122 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4123 	memcpy(eth.src.addr_bytes,
4124 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4125 	memcpy(header, &eth, sizeof(eth));
4126 	header += sizeof(eth);
4127 	if (mplsoudp_encap_conf.select_vlan) {
4128 		if (mplsoudp_encap_conf.select_ipv4)
4129 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4130 		else
4131 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4132 		memcpy(header, &vlan, sizeof(vlan));
4133 		header += sizeof(vlan);
4134 	}
4135 	if (mplsoudp_encap_conf.select_ipv4) {
4136 		memcpy(header, &ipv4, sizeof(ipv4));
4137 		header += sizeof(ipv4);
4138 	} else {
4139 		memcpy(&ipv6.hdr.src_addr,
4140 		       &mplsoudp_encap_conf.ipv6_src,
4141 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4142 		memcpy(&ipv6.hdr.dst_addr,
4143 		       &mplsoudp_encap_conf.ipv6_dst,
4144 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4145 		memcpy(header, &ipv6, sizeof(ipv6));
4146 		header += sizeof(ipv6);
4147 	}
4148 	memcpy(header, &udp, sizeof(udp));
4149 	header += sizeof(udp);
4150 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4151 	       RTE_DIM(mplsoudp_encap_conf.label));
4152 	mpls.label_tc_s[2] |= 0x1;
4153 	memcpy(header, &mpls, sizeof(mpls));
4154 	header += sizeof(mpls);
4155 	action_encap_data->conf.size = header -
4156 		action_encap_data->data;
4157 	action->conf = &action_encap_data->conf;
4158 	return ret;
4159 }
4160 
4161 /** Parse MPLSOUDP decap action. */
4162 static int
4163 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4164 			       const char *str, unsigned int len,
4165 			       void *buf, unsigned int size)
4166 {
4167 	struct buffer *out = buf;
4168 	struct rte_flow_action *action;
4169 	struct action_raw_decap_data *action_decap_data;
4170 	struct rte_flow_item_eth eth = { .type = 0, };
4171 	struct rte_flow_item_vlan vlan = {.tci = 0};
4172 	struct rte_flow_item_ipv4 ipv4 = {
4173 		.hdr =  {
4174 			.next_proto_id = IPPROTO_UDP,
4175 		},
4176 	};
4177 	struct rte_flow_item_ipv6 ipv6 = {
4178 		.hdr =  {
4179 			.proto = IPPROTO_UDP,
4180 		},
4181 	};
4182 	struct rte_flow_item_udp udp = {
4183 		.hdr = {
4184 			.dst_port = rte_cpu_to_be_16(6635),
4185 		},
4186 	};
4187 	struct rte_flow_item_mpls mpls;
4188 	uint8_t *header;
4189 	int ret;
4190 
4191 	ret = parse_vc(ctx, token, str, len, buf, size);
4192 	if (ret < 0)
4193 		return ret;
4194 	/* Nothing else to do if there is no buffer. */
4195 	if (!out)
4196 		return ret;
4197 	if (!out->args.vc.actions_n)
4198 		return -1;
4199 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4200 	/* Point to selected object. */
4201 	ctx->object = out->args.vc.data;
4202 	ctx->objmask = NULL;
4203 	/* Copy the headers to the buffer. */
4204 	action_decap_data = ctx->object;
4205 	*action_decap_data = (struct action_raw_decap_data) {
4206 		.conf = (struct rte_flow_action_raw_decap){
4207 			.data = action_decap_data->data,
4208 		},
4209 		.data = {},
4210 	};
4211 	header = action_decap_data->data;
4212 	if (mplsoudp_decap_conf.select_vlan)
4213 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4214 	else if (mplsoudp_encap_conf.select_ipv4)
4215 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4216 	else
4217 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4218 	memcpy(eth.dst.addr_bytes,
4219 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4220 	memcpy(eth.src.addr_bytes,
4221 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4222 	memcpy(header, &eth, sizeof(eth));
4223 	header += sizeof(eth);
4224 	if (mplsoudp_encap_conf.select_vlan) {
4225 		if (mplsoudp_encap_conf.select_ipv4)
4226 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4227 		else
4228 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4229 		memcpy(header, &vlan, sizeof(vlan));
4230 		header += sizeof(vlan);
4231 	}
4232 	if (mplsoudp_encap_conf.select_ipv4) {
4233 		memcpy(header, &ipv4, sizeof(ipv4));
4234 		header += sizeof(ipv4);
4235 	} else {
4236 		memcpy(header, &ipv6, sizeof(ipv6));
4237 		header += sizeof(ipv6);
4238 	}
4239 	memcpy(header, &udp, sizeof(udp));
4240 	header += sizeof(udp);
4241 	memset(&mpls, 0, sizeof(mpls));
4242 	memcpy(header, &mpls, sizeof(mpls));
4243 	header += sizeof(mpls);
4244 	action_decap_data->conf.size = header -
4245 		action_decap_data->data;
4246 	action->conf = &action_decap_data->conf;
4247 	return ret;
4248 }
4249 
4250 /** Parse tokens for destroy command. */
4251 static int
4252 parse_destroy(struct context *ctx, const struct token *token,
4253 	      const char *str, unsigned int len,
4254 	      void *buf, unsigned int size)
4255 {
4256 	struct buffer *out = buf;
4257 
4258 	/* Token name must match. */
4259 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4260 		return -1;
4261 	/* Nothing else to do if there is no buffer. */
4262 	if (!out)
4263 		return len;
4264 	if (!out->command) {
4265 		if (ctx->curr != DESTROY)
4266 			return -1;
4267 		if (sizeof(*out) > size)
4268 			return -1;
4269 		out->command = ctx->curr;
4270 		ctx->objdata = 0;
4271 		ctx->object = out;
4272 		ctx->objmask = NULL;
4273 		out->args.destroy.rule =
4274 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4275 					       sizeof(double));
4276 		return len;
4277 	}
4278 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4279 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4280 		return -1;
4281 	ctx->objdata = 0;
4282 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4283 	ctx->objmask = NULL;
4284 	return len;
4285 }
4286 
4287 /** Parse tokens for flush command. */
4288 static int
4289 parse_flush(struct context *ctx, const struct token *token,
4290 	    const char *str, unsigned int len,
4291 	    void *buf, unsigned int size)
4292 {
4293 	struct buffer *out = buf;
4294 
4295 	/* Token name must match. */
4296 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4297 		return -1;
4298 	/* Nothing else to do if there is no buffer. */
4299 	if (!out)
4300 		return len;
4301 	if (!out->command) {
4302 		if (ctx->curr != FLUSH)
4303 			return -1;
4304 		if (sizeof(*out) > size)
4305 			return -1;
4306 		out->command = ctx->curr;
4307 		ctx->objdata = 0;
4308 		ctx->object = out;
4309 		ctx->objmask = NULL;
4310 	}
4311 	return len;
4312 }
4313 
4314 /** Parse tokens for query command. */
4315 static int
4316 parse_query(struct context *ctx, const struct token *token,
4317 	    const char *str, unsigned int len,
4318 	    void *buf, unsigned int size)
4319 {
4320 	struct buffer *out = buf;
4321 
4322 	/* Token name must match. */
4323 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4324 		return -1;
4325 	/* Nothing else to do if there is no buffer. */
4326 	if (!out)
4327 		return len;
4328 	if (!out->command) {
4329 		if (ctx->curr != QUERY)
4330 			return -1;
4331 		if (sizeof(*out) > size)
4332 			return -1;
4333 		out->command = ctx->curr;
4334 		ctx->objdata = 0;
4335 		ctx->object = out;
4336 		ctx->objmask = NULL;
4337 	}
4338 	return len;
4339 }
4340 
4341 /** Parse action names. */
4342 static int
4343 parse_action(struct context *ctx, const struct token *token,
4344 	     const char *str, unsigned int len,
4345 	     void *buf, unsigned int size)
4346 {
4347 	struct buffer *out = buf;
4348 	const struct arg *arg = pop_args(ctx);
4349 	unsigned int i;
4350 
4351 	(void)size;
4352 	/* Argument is expected. */
4353 	if (!arg)
4354 		return -1;
4355 	/* Parse action name. */
4356 	for (i = 0; next_action[i]; ++i) {
4357 		const struct parse_action_priv *priv;
4358 
4359 		token = &token_list[next_action[i]];
4360 		if (strcmp_partial(token->name, str, len))
4361 			continue;
4362 		priv = token->priv;
4363 		if (!priv)
4364 			goto error;
4365 		if (out)
4366 			memcpy((uint8_t *)ctx->object + arg->offset,
4367 			       &priv->type,
4368 			       arg->size);
4369 		return len;
4370 	}
4371 error:
4372 	push_args(ctx, arg);
4373 	return -1;
4374 }
4375 
4376 /** Parse tokens for list command. */
4377 static int
4378 parse_list(struct context *ctx, const struct token *token,
4379 	   const char *str, unsigned int len,
4380 	   void *buf, unsigned int size)
4381 {
4382 	struct buffer *out = buf;
4383 
4384 	/* Token name must match. */
4385 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4386 		return -1;
4387 	/* Nothing else to do if there is no buffer. */
4388 	if (!out)
4389 		return len;
4390 	if (!out->command) {
4391 		if (ctx->curr != LIST)
4392 			return -1;
4393 		if (sizeof(*out) > size)
4394 			return -1;
4395 		out->command = ctx->curr;
4396 		ctx->objdata = 0;
4397 		ctx->object = out;
4398 		ctx->objmask = NULL;
4399 		out->args.list.group =
4400 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4401 					       sizeof(double));
4402 		return len;
4403 	}
4404 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4405 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4406 		return -1;
4407 	ctx->objdata = 0;
4408 	ctx->object = out->args.list.group + out->args.list.group_n++;
4409 	ctx->objmask = NULL;
4410 	return len;
4411 }
4412 
4413 /** Parse tokens for isolate command. */
4414 static int
4415 parse_isolate(struct context *ctx, const struct token *token,
4416 	      const char *str, unsigned int len,
4417 	      void *buf, unsigned int size)
4418 {
4419 	struct buffer *out = buf;
4420 
4421 	/* Token name must match. */
4422 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4423 		return -1;
4424 	/* Nothing else to do if there is no buffer. */
4425 	if (!out)
4426 		return len;
4427 	if (!out->command) {
4428 		if (ctx->curr != ISOLATE)
4429 			return -1;
4430 		if (sizeof(*out) > size)
4431 			return -1;
4432 		out->command = ctx->curr;
4433 		ctx->objdata = 0;
4434 		ctx->object = out;
4435 		ctx->objmask = NULL;
4436 	}
4437 	return len;
4438 }
4439 
4440 /**
4441  * Parse signed/unsigned integers 8 to 64-bit long.
4442  *
4443  * Last argument (ctx->args) is retrieved to determine integer type and
4444  * storage location.
4445  */
4446 static int
4447 parse_int(struct context *ctx, const struct token *token,
4448 	  const char *str, unsigned int len,
4449 	  void *buf, unsigned int size)
4450 {
4451 	const struct arg *arg = pop_args(ctx);
4452 	uintmax_t u;
4453 	char *end;
4454 
4455 	(void)token;
4456 	/* Argument is expected. */
4457 	if (!arg)
4458 		return -1;
4459 	errno = 0;
4460 	u = arg->sign ?
4461 		(uintmax_t)strtoimax(str, &end, 0) :
4462 		strtoumax(str, &end, 0);
4463 	if (errno || (size_t)(end - str) != len)
4464 		goto error;
4465 	if (arg->bounded &&
4466 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4467 			    (intmax_t)u > (intmax_t)arg->max)) ||
4468 	     (!arg->sign && (u < arg->min || u > arg->max))))
4469 		goto error;
4470 	if (!ctx->object)
4471 		return len;
4472 	if (arg->mask) {
4473 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4474 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4475 			goto error;
4476 		return len;
4477 	}
4478 	buf = (uint8_t *)ctx->object + arg->offset;
4479 	size = arg->size;
4480 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4481 		return -1;
4482 objmask:
4483 	switch (size) {
4484 	case sizeof(uint8_t):
4485 		*(uint8_t *)buf = u;
4486 		break;
4487 	case sizeof(uint16_t):
4488 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4489 		break;
4490 	case sizeof(uint8_t [3]):
4491 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4492 		if (!arg->hton) {
4493 			((uint8_t *)buf)[0] = u;
4494 			((uint8_t *)buf)[1] = u >> 8;
4495 			((uint8_t *)buf)[2] = u >> 16;
4496 			break;
4497 		}
4498 #endif
4499 		((uint8_t *)buf)[0] = u >> 16;
4500 		((uint8_t *)buf)[1] = u >> 8;
4501 		((uint8_t *)buf)[2] = u;
4502 		break;
4503 	case sizeof(uint32_t):
4504 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4505 		break;
4506 	case sizeof(uint64_t):
4507 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4508 		break;
4509 	default:
4510 		goto error;
4511 	}
4512 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4513 		u = -1;
4514 		buf = (uint8_t *)ctx->objmask + arg->offset;
4515 		goto objmask;
4516 	}
4517 	return len;
4518 error:
4519 	push_args(ctx, arg);
4520 	return -1;
4521 }
4522 
4523 /**
4524  * Parse a string.
4525  *
4526  * Three arguments (ctx->args) are retrieved from the stack to store data,
4527  * its actual length and address (in that order).
4528  */
4529 static int
4530 parse_string(struct context *ctx, const struct token *token,
4531 	     const char *str, unsigned int len,
4532 	     void *buf, unsigned int size)
4533 {
4534 	const struct arg *arg_data = pop_args(ctx);
4535 	const struct arg *arg_len = pop_args(ctx);
4536 	const struct arg *arg_addr = pop_args(ctx);
4537 	char tmp[16]; /* Ought to be enough. */
4538 	int ret;
4539 
4540 	/* Arguments are expected. */
4541 	if (!arg_data)
4542 		return -1;
4543 	if (!arg_len) {
4544 		push_args(ctx, arg_data);
4545 		return -1;
4546 	}
4547 	if (!arg_addr) {
4548 		push_args(ctx, arg_len);
4549 		push_args(ctx, arg_data);
4550 		return -1;
4551 	}
4552 	size = arg_data->size;
4553 	/* Bit-mask fill is not supported. */
4554 	if (arg_data->mask || size < len)
4555 		goto error;
4556 	if (!ctx->object)
4557 		return len;
4558 	/* Let parse_int() fill length information first. */
4559 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4560 	if (ret < 0)
4561 		goto error;
4562 	push_args(ctx, arg_len);
4563 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4564 	if (ret < 0) {
4565 		pop_args(ctx);
4566 		goto error;
4567 	}
4568 	buf = (uint8_t *)ctx->object + arg_data->offset;
4569 	/* Output buffer is not necessarily NUL-terminated. */
4570 	memcpy(buf, str, len);
4571 	memset((uint8_t *)buf + len, 0x00, size - len);
4572 	if (ctx->objmask)
4573 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4574 	/* Save address if requested. */
4575 	if (arg_addr->size) {
4576 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4577 		       (void *[]){
4578 			(uint8_t *)ctx->object + arg_data->offset
4579 		       },
4580 		       arg_addr->size);
4581 		if (ctx->objmask)
4582 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4583 			       (void *[]){
4584 				(uint8_t *)ctx->objmask + arg_data->offset
4585 			       },
4586 			       arg_addr->size);
4587 	}
4588 	return len;
4589 error:
4590 	push_args(ctx, arg_addr);
4591 	push_args(ctx, arg_len);
4592 	push_args(ctx, arg_data);
4593 	return -1;
4594 }
4595 
4596 static int
4597 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4598 {
4599 	char *c = NULL;
4600 	uint32_t i, len;
4601 	char tmp[3];
4602 
4603 	/* Check input parameters */
4604 	if ((src == NULL) ||
4605 		(dst == NULL) ||
4606 		(size == NULL) ||
4607 		(*size == 0))
4608 		return -1;
4609 
4610 	/* Convert chars to bytes */
4611 	for (i = 0, len = 0; i < *size; i += 2) {
4612 		snprintf(tmp, 3, "%s", src + i);
4613 		dst[len++] = strtoul(tmp, &c, 16);
4614 		if (*c != 0) {
4615 			len--;
4616 			dst[len] = 0;
4617 			*size = len;
4618 			return -1;
4619 		}
4620 	}
4621 	dst[len] = 0;
4622 	*size = len;
4623 
4624 	return 0;
4625 }
4626 
4627 static int
4628 parse_hex(struct context *ctx, const struct token *token,
4629 		const char *str, unsigned int len,
4630 		void *buf, unsigned int size)
4631 {
4632 	const struct arg *arg_data = pop_args(ctx);
4633 	const struct arg *arg_len = pop_args(ctx);
4634 	const struct arg *arg_addr = pop_args(ctx);
4635 	char tmp[16]; /* Ought to be enough. */
4636 	int ret;
4637 	unsigned int hexlen = len;
4638 	unsigned int length = 256;
4639 	uint8_t hex_tmp[length];
4640 
4641 	/* Arguments are expected. */
4642 	if (!arg_data)
4643 		return -1;
4644 	if (!arg_len) {
4645 		push_args(ctx, arg_data);
4646 		return -1;
4647 	}
4648 	if (!arg_addr) {
4649 		push_args(ctx, arg_len);
4650 		push_args(ctx, arg_data);
4651 		return -1;
4652 	}
4653 	size = arg_data->size;
4654 	/* Bit-mask fill is not supported. */
4655 	if (arg_data->mask)
4656 		goto error;
4657 	if (!ctx->object)
4658 		return len;
4659 
4660 	/* translate bytes string to array. */
4661 	if (str[0] == '0' && ((str[1] == 'x') ||
4662 			(str[1] == 'X'))) {
4663 		str += 2;
4664 		hexlen -= 2;
4665 	}
4666 	if (hexlen > length)
4667 		return -1;
4668 	ret = parse_hex_string(str, hex_tmp, &hexlen);
4669 	if (ret < 0)
4670 		goto error;
4671 	/* Let parse_int() fill length information first. */
4672 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4673 	if (ret < 0)
4674 		goto error;
4675 	push_args(ctx, arg_len);
4676 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4677 	if (ret < 0) {
4678 		pop_args(ctx);
4679 		goto error;
4680 	}
4681 	buf = (uint8_t *)ctx->object + arg_data->offset;
4682 	/* Output buffer is not necessarily NUL-terminated. */
4683 	memcpy(buf, hex_tmp, hexlen);
4684 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4685 	if (ctx->objmask)
4686 		memset((uint8_t *)ctx->objmask + arg_data->offset,
4687 					0xff, hexlen);
4688 	/* Save address if requested. */
4689 	if (arg_addr->size) {
4690 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4691 		       (void *[]){
4692 			(uint8_t *)ctx->object + arg_data->offset
4693 		       },
4694 		       arg_addr->size);
4695 		if (ctx->objmask)
4696 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4697 			       (void *[]){
4698 				(uint8_t *)ctx->objmask + arg_data->offset
4699 			       },
4700 			       arg_addr->size);
4701 	}
4702 	return len;
4703 error:
4704 	push_args(ctx, arg_addr);
4705 	push_args(ctx, arg_len);
4706 	push_args(ctx, arg_data);
4707 	return -1;
4708 
4709 }
4710 
4711 /**
4712  * Parse a MAC address.
4713  *
4714  * Last argument (ctx->args) is retrieved to determine storage size and
4715  * location.
4716  */
4717 static int
4718 parse_mac_addr(struct context *ctx, const struct token *token,
4719 	       const char *str, unsigned int len,
4720 	       void *buf, unsigned int size)
4721 {
4722 	const struct arg *arg = pop_args(ctx);
4723 	struct rte_ether_addr tmp;
4724 	int ret;
4725 
4726 	(void)token;
4727 	/* Argument is expected. */
4728 	if (!arg)
4729 		return -1;
4730 	size = arg->size;
4731 	/* Bit-mask fill is not supported. */
4732 	if (arg->mask || size != sizeof(tmp))
4733 		goto error;
4734 	/* Only network endian is supported. */
4735 	if (!arg->hton)
4736 		goto error;
4737 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4738 	if (ret < 0 || (unsigned int)ret != len)
4739 		goto error;
4740 	if (!ctx->object)
4741 		return len;
4742 	buf = (uint8_t *)ctx->object + arg->offset;
4743 	memcpy(buf, &tmp, size);
4744 	if (ctx->objmask)
4745 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4746 	return len;
4747 error:
4748 	push_args(ctx, arg);
4749 	return -1;
4750 }
4751 
4752 /**
4753  * Parse an IPv4 address.
4754  *
4755  * Last argument (ctx->args) is retrieved to determine storage size and
4756  * location.
4757  */
4758 static int
4759 parse_ipv4_addr(struct context *ctx, const struct token *token,
4760 		const char *str, unsigned int len,
4761 		void *buf, unsigned int size)
4762 {
4763 	const struct arg *arg = pop_args(ctx);
4764 	char str2[len + 1];
4765 	struct in_addr tmp;
4766 	int ret;
4767 
4768 	/* Argument is expected. */
4769 	if (!arg)
4770 		return -1;
4771 	size = arg->size;
4772 	/* Bit-mask fill is not supported. */
4773 	if (arg->mask || size != sizeof(tmp))
4774 		goto error;
4775 	/* Only network endian is supported. */
4776 	if (!arg->hton)
4777 		goto error;
4778 	memcpy(str2, str, len);
4779 	str2[len] = '\0';
4780 	ret = inet_pton(AF_INET, str2, &tmp);
4781 	if (ret != 1) {
4782 		/* Attempt integer parsing. */
4783 		push_args(ctx, arg);
4784 		return parse_int(ctx, token, str, len, buf, size);
4785 	}
4786 	if (!ctx->object)
4787 		return len;
4788 	buf = (uint8_t *)ctx->object + arg->offset;
4789 	memcpy(buf, &tmp, size);
4790 	if (ctx->objmask)
4791 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4792 	return len;
4793 error:
4794 	push_args(ctx, arg);
4795 	return -1;
4796 }
4797 
4798 /**
4799  * Parse an IPv6 address.
4800  *
4801  * Last argument (ctx->args) is retrieved to determine storage size and
4802  * location.
4803  */
4804 static int
4805 parse_ipv6_addr(struct context *ctx, const struct token *token,
4806 		const char *str, unsigned int len,
4807 		void *buf, unsigned int size)
4808 {
4809 	const struct arg *arg = pop_args(ctx);
4810 	char str2[len + 1];
4811 	struct in6_addr tmp;
4812 	int ret;
4813 
4814 	(void)token;
4815 	/* Argument is expected. */
4816 	if (!arg)
4817 		return -1;
4818 	size = arg->size;
4819 	/* Bit-mask fill is not supported. */
4820 	if (arg->mask || size != sizeof(tmp))
4821 		goto error;
4822 	/* Only network endian is supported. */
4823 	if (!arg->hton)
4824 		goto error;
4825 	memcpy(str2, str, len);
4826 	str2[len] = '\0';
4827 	ret = inet_pton(AF_INET6, str2, &tmp);
4828 	if (ret != 1)
4829 		goto error;
4830 	if (!ctx->object)
4831 		return len;
4832 	buf = (uint8_t *)ctx->object + arg->offset;
4833 	memcpy(buf, &tmp, size);
4834 	if (ctx->objmask)
4835 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4836 	return len;
4837 error:
4838 	push_args(ctx, arg);
4839 	return -1;
4840 }
4841 
4842 /** Boolean values (even indices stand for false). */
4843 static const char *const boolean_name[] = {
4844 	"0", "1",
4845 	"false", "true",
4846 	"no", "yes",
4847 	"N", "Y",
4848 	"off", "on",
4849 	NULL,
4850 };
4851 
4852 /**
4853  * Parse a boolean value.
4854  *
4855  * Last argument (ctx->args) is retrieved to determine storage size and
4856  * location.
4857  */
4858 static int
4859 parse_boolean(struct context *ctx, const struct token *token,
4860 	      const char *str, unsigned int len,
4861 	      void *buf, unsigned int size)
4862 {
4863 	const struct arg *arg = pop_args(ctx);
4864 	unsigned int i;
4865 	int ret;
4866 
4867 	/* Argument is expected. */
4868 	if (!arg)
4869 		return -1;
4870 	for (i = 0; boolean_name[i]; ++i)
4871 		if (!strcmp_partial(boolean_name[i], str, len))
4872 			break;
4873 	/* Process token as integer. */
4874 	if (boolean_name[i])
4875 		str = i & 1 ? "1" : "0";
4876 	push_args(ctx, arg);
4877 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4878 	return ret > 0 ? (int)len : ret;
4879 }
4880 
4881 /** Parse port and update context. */
4882 static int
4883 parse_port(struct context *ctx, const struct token *token,
4884 	   const char *str, unsigned int len,
4885 	   void *buf, unsigned int size)
4886 {
4887 	struct buffer *out = &(struct buffer){ .port = 0 };
4888 	int ret;
4889 
4890 	if (buf)
4891 		out = buf;
4892 	else {
4893 		ctx->objdata = 0;
4894 		ctx->object = out;
4895 		ctx->objmask = NULL;
4896 		size = sizeof(*out);
4897 	}
4898 	ret = parse_int(ctx, token, str, len, out, size);
4899 	if (ret >= 0)
4900 		ctx->port = out->port;
4901 	if (!buf)
4902 		ctx->object = NULL;
4903 	return ret;
4904 }
4905 
4906 /** No completion. */
4907 static int
4908 comp_none(struct context *ctx, const struct token *token,
4909 	  unsigned int ent, char *buf, unsigned int size)
4910 {
4911 	(void)ctx;
4912 	(void)token;
4913 	(void)ent;
4914 	(void)buf;
4915 	(void)size;
4916 	return 0;
4917 }
4918 
4919 /** Complete boolean values. */
4920 static int
4921 comp_boolean(struct context *ctx, const struct token *token,
4922 	     unsigned int ent, char *buf, unsigned int size)
4923 {
4924 	unsigned int i;
4925 
4926 	(void)ctx;
4927 	(void)token;
4928 	for (i = 0; boolean_name[i]; ++i)
4929 		if (buf && i == ent)
4930 			return strlcpy(buf, boolean_name[i], size);
4931 	if (buf)
4932 		return -1;
4933 	return i;
4934 }
4935 
4936 /** Complete action names. */
4937 static int
4938 comp_action(struct context *ctx, const struct token *token,
4939 	    unsigned int ent, char *buf, unsigned int size)
4940 {
4941 	unsigned int i;
4942 
4943 	(void)ctx;
4944 	(void)token;
4945 	for (i = 0; next_action[i]; ++i)
4946 		if (buf && i == ent)
4947 			return strlcpy(buf, token_list[next_action[i]].name,
4948 				       size);
4949 	if (buf)
4950 		return -1;
4951 	return i;
4952 }
4953 
4954 /** Complete available ports. */
4955 static int
4956 comp_port(struct context *ctx, const struct token *token,
4957 	  unsigned int ent, char *buf, unsigned int size)
4958 {
4959 	unsigned int i = 0;
4960 	portid_t p;
4961 
4962 	(void)ctx;
4963 	(void)token;
4964 	RTE_ETH_FOREACH_DEV(p) {
4965 		if (buf && i == ent)
4966 			return snprintf(buf, size, "%u", p);
4967 		++i;
4968 	}
4969 	if (buf)
4970 		return -1;
4971 	return i;
4972 }
4973 
4974 /** Complete available rule IDs. */
4975 static int
4976 comp_rule_id(struct context *ctx, const struct token *token,
4977 	     unsigned int ent, char *buf, unsigned int size)
4978 {
4979 	unsigned int i = 0;
4980 	struct rte_port *port;
4981 	struct port_flow *pf;
4982 
4983 	(void)token;
4984 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4985 	    ctx->port == (portid_t)RTE_PORT_ALL)
4986 		return -1;
4987 	port = &ports[ctx->port];
4988 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4989 		if (buf && i == ent)
4990 			return snprintf(buf, size, "%u", pf->id);
4991 		++i;
4992 	}
4993 	if (buf)
4994 		return -1;
4995 	return i;
4996 }
4997 
4998 /** Complete type field for RSS action. */
4999 static int
5000 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5001 			unsigned int ent, char *buf, unsigned int size)
5002 {
5003 	unsigned int i;
5004 
5005 	(void)ctx;
5006 	(void)token;
5007 	for (i = 0; rss_type_table[i].str; ++i)
5008 		;
5009 	if (!buf)
5010 		return i + 1;
5011 	if (ent < i)
5012 		return strlcpy(buf, rss_type_table[ent].str, size);
5013 	if (ent == i)
5014 		return snprintf(buf, size, "end");
5015 	return -1;
5016 }
5017 
5018 /** Complete queue field for RSS action. */
5019 static int
5020 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5021 			 unsigned int ent, char *buf, unsigned int size)
5022 {
5023 	(void)ctx;
5024 	(void)token;
5025 	if (!buf)
5026 		return nb_rxq + 1;
5027 	if (ent < nb_rxq)
5028 		return snprintf(buf, size, "%u", ent);
5029 	if (ent == nb_rxq)
5030 		return snprintf(buf, size, "end");
5031 	return -1;
5032 }
5033 
5034 /** Internal context. */
5035 static struct context cmd_flow_context;
5036 
5037 /** Global parser instance (cmdline API). */
5038 cmdline_parse_inst_t cmd_flow;
5039 
5040 /** Initialize context. */
5041 static void
5042 cmd_flow_context_init(struct context *ctx)
5043 {
5044 	/* A full memset() is not necessary. */
5045 	ctx->curr = ZERO;
5046 	ctx->prev = ZERO;
5047 	ctx->next_num = 0;
5048 	ctx->args_num = 0;
5049 	ctx->eol = 0;
5050 	ctx->last = 0;
5051 	ctx->port = 0;
5052 	ctx->objdata = 0;
5053 	ctx->object = NULL;
5054 	ctx->objmask = NULL;
5055 }
5056 
5057 /** Parse a token (cmdline API). */
5058 static int
5059 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5060 	       unsigned int size)
5061 {
5062 	struct context *ctx = &cmd_flow_context;
5063 	const struct token *token;
5064 	const enum index *list;
5065 	int len;
5066 	int i;
5067 
5068 	(void)hdr;
5069 	token = &token_list[ctx->curr];
5070 	/* Check argument length. */
5071 	ctx->eol = 0;
5072 	ctx->last = 1;
5073 	for (len = 0; src[len]; ++len)
5074 		if (src[len] == '#' || isspace(src[len]))
5075 			break;
5076 	if (!len)
5077 		return -1;
5078 	/* Last argument and EOL detection. */
5079 	for (i = len; src[i]; ++i)
5080 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5081 			break;
5082 		else if (!isspace(src[i])) {
5083 			ctx->last = 0;
5084 			break;
5085 		}
5086 	for (; src[i]; ++i)
5087 		if (src[i] == '\r' || src[i] == '\n') {
5088 			ctx->eol = 1;
5089 			break;
5090 		}
5091 	/* Initialize context if necessary. */
5092 	if (!ctx->next_num) {
5093 		if (!token->next)
5094 			return 0;
5095 		ctx->next[ctx->next_num++] = token->next[0];
5096 	}
5097 	/* Process argument through candidates. */
5098 	ctx->prev = ctx->curr;
5099 	list = ctx->next[ctx->next_num - 1];
5100 	for (i = 0; list[i]; ++i) {
5101 		const struct token *next = &token_list[list[i]];
5102 		int tmp;
5103 
5104 		ctx->curr = list[i];
5105 		if (next->call)
5106 			tmp = next->call(ctx, next, src, len, result, size);
5107 		else
5108 			tmp = parse_default(ctx, next, src, len, result, size);
5109 		if (tmp == -1 || tmp != len)
5110 			continue;
5111 		token = next;
5112 		break;
5113 	}
5114 	if (!list[i])
5115 		return -1;
5116 	--ctx->next_num;
5117 	/* Push subsequent tokens if any. */
5118 	if (token->next)
5119 		for (i = 0; token->next[i]; ++i) {
5120 			if (ctx->next_num == RTE_DIM(ctx->next))
5121 				return -1;
5122 			ctx->next[ctx->next_num++] = token->next[i];
5123 		}
5124 	/* Push arguments if any. */
5125 	if (token->args)
5126 		for (i = 0; token->args[i]; ++i) {
5127 			if (ctx->args_num == RTE_DIM(ctx->args))
5128 				return -1;
5129 			ctx->args[ctx->args_num++] = token->args[i];
5130 		}
5131 	return len;
5132 }
5133 
5134 /** Return number of completion entries (cmdline API). */
5135 static int
5136 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5137 {
5138 	struct context *ctx = &cmd_flow_context;
5139 	const struct token *token = &token_list[ctx->curr];
5140 	const enum index *list;
5141 	int i;
5142 
5143 	(void)hdr;
5144 	/* Count number of tokens in current list. */
5145 	if (ctx->next_num)
5146 		list = ctx->next[ctx->next_num - 1];
5147 	else
5148 		list = token->next[0];
5149 	for (i = 0; list[i]; ++i)
5150 		;
5151 	if (!i)
5152 		return 0;
5153 	/*
5154 	 * If there is a single token, use its completion callback, otherwise
5155 	 * return the number of entries.
5156 	 */
5157 	token = &token_list[list[0]];
5158 	if (i == 1 && token->comp) {
5159 		/* Save index for cmd_flow_get_help(). */
5160 		ctx->prev = list[0];
5161 		return token->comp(ctx, token, 0, NULL, 0);
5162 	}
5163 	return i;
5164 }
5165 
5166 /** Return a completion entry (cmdline API). */
5167 static int
5168 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5169 			  char *dst, unsigned int size)
5170 {
5171 	struct context *ctx = &cmd_flow_context;
5172 	const struct token *token = &token_list[ctx->curr];
5173 	const enum index *list;
5174 	int i;
5175 
5176 	(void)hdr;
5177 	/* Count number of tokens in current list. */
5178 	if (ctx->next_num)
5179 		list = ctx->next[ctx->next_num - 1];
5180 	else
5181 		list = token->next[0];
5182 	for (i = 0; list[i]; ++i)
5183 		;
5184 	if (!i)
5185 		return -1;
5186 	/* If there is a single token, use its completion callback. */
5187 	token = &token_list[list[0]];
5188 	if (i == 1 && token->comp) {
5189 		/* Save index for cmd_flow_get_help(). */
5190 		ctx->prev = list[0];
5191 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5192 	}
5193 	/* Otherwise make sure the index is valid and use defaults. */
5194 	if (index >= i)
5195 		return -1;
5196 	token = &token_list[list[index]];
5197 	strlcpy(dst, token->name, size);
5198 	/* Save index for cmd_flow_get_help(). */
5199 	ctx->prev = list[index];
5200 	return 0;
5201 }
5202 
5203 /** Populate help strings for current token (cmdline API). */
5204 static int
5205 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5206 {
5207 	struct context *ctx = &cmd_flow_context;
5208 	const struct token *token = &token_list[ctx->prev];
5209 
5210 	(void)hdr;
5211 	if (!size)
5212 		return -1;
5213 	/* Set token type and update global help with details. */
5214 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5215 	if (token->help)
5216 		cmd_flow.help_str = token->help;
5217 	else
5218 		cmd_flow.help_str = token->name;
5219 	return 0;
5220 }
5221 
5222 /** Token definition template (cmdline API). */
5223 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5224 	.ops = &(struct cmdline_token_ops){
5225 		.parse = cmd_flow_parse,
5226 		.complete_get_nb = cmd_flow_complete_get_nb,
5227 		.complete_get_elt = cmd_flow_complete_get_elt,
5228 		.get_help = cmd_flow_get_help,
5229 	},
5230 	.offset = 0,
5231 };
5232 
5233 /** Populate the next dynamic token. */
5234 static void
5235 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5236 	     cmdline_parse_token_hdr_t **hdr_inst)
5237 {
5238 	struct context *ctx = &cmd_flow_context;
5239 
5240 	/* Always reinitialize context before requesting the first token. */
5241 	if (!(hdr_inst - cmd_flow.tokens))
5242 		cmd_flow_context_init(ctx);
5243 	/* Return NULL when no more tokens are expected. */
5244 	if (!ctx->next_num && ctx->curr) {
5245 		*hdr = NULL;
5246 		return;
5247 	}
5248 	/* Determine if command should end here. */
5249 	if (ctx->eol && ctx->last && ctx->next_num) {
5250 		const enum index *list = ctx->next[ctx->next_num - 1];
5251 		int i;
5252 
5253 		for (i = 0; list[i]; ++i) {
5254 			if (list[i] != END)
5255 				continue;
5256 			*hdr = NULL;
5257 			return;
5258 		}
5259 	}
5260 	*hdr = &cmd_flow_token_hdr;
5261 }
5262 
5263 /** Dispatch parsed buffer to function calls. */
5264 static void
5265 cmd_flow_parsed(const struct buffer *in)
5266 {
5267 	switch (in->command) {
5268 	case VALIDATE:
5269 		port_flow_validate(in->port, &in->args.vc.attr,
5270 				   in->args.vc.pattern, in->args.vc.actions);
5271 		break;
5272 	case CREATE:
5273 		port_flow_create(in->port, &in->args.vc.attr,
5274 				 in->args.vc.pattern, in->args.vc.actions);
5275 		break;
5276 	case DESTROY:
5277 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5278 				  in->args.destroy.rule);
5279 		break;
5280 	case FLUSH:
5281 		port_flow_flush(in->port);
5282 		break;
5283 	case QUERY:
5284 		port_flow_query(in->port, in->args.query.rule,
5285 				&in->args.query.action);
5286 		break;
5287 	case LIST:
5288 		port_flow_list(in->port, in->args.list.group_n,
5289 			       in->args.list.group);
5290 		break;
5291 	case ISOLATE:
5292 		port_flow_isolate(in->port, in->args.isolate.set);
5293 		break;
5294 	default:
5295 		break;
5296 	}
5297 }
5298 
5299 /** Token generator and output processing callback (cmdline API). */
5300 static void
5301 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5302 {
5303 	if (cl == NULL)
5304 		cmd_flow_tok(arg0, arg2);
5305 	else
5306 		cmd_flow_parsed(arg0);
5307 }
5308 
5309 /** Global parser instance (cmdline API). */
5310 cmdline_parse_inst_t cmd_flow = {
5311 	.f = cmd_flow_cb,
5312 	.data = NULL, /**< Unused. */
5313 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5314 	.tokens = {
5315 		NULL,
5316 	}, /**< Tokens are returned by cmd_flow_tok(). */
5317 };
5318