xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 7af08de584efa433bc2dd877be5dbbcf37a6ed01)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2016 6WIND S.A.
5  *   Copyright 2016 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stddef.h>
35 #include <stdint.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38 #include <errno.h>
39 #include <ctype.h>
40 #include <string.h>
41 #include <arpa/inet.h>
42 #include <sys/socket.h>
43 
44 #include <rte_common.h>
45 #include <rte_ethdev.h>
46 #include <rte_byteorder.h>
47 #include <cmdline_parse.h>
48 #include <cmdline_parse_etheraddr.h>
49 #include <rte_flow.h>
50 
51 #include "testpmd.h"
52 
53 /** Parser token indices. */
54 enum index {
55 	/* Special tokens. */
56 	ZERO = 0,
57 	END,
58 
59 	/* Common tokens. */
60 	INTEGER,
61 	UNSIGNED,
62 	PREFIX,
63 	BOOLEAN,
64 	STRING,
65 	MAC_ADDR,
66 	IPV4_ADDR,
67 	IPV6_ADDR,
68 	RULE_ID,
69 	PORT_ID,
70 	GROUP_ID,
71 	PRIORITY_LEVEL,
72 
73 	/* Top-level command. */
74 	FLOW,
75 
76 	/* Sub-level commands. */
77 	VALIDATE,
78 	CREATE,
79 	DESTROY,
80 	FLUSH,
81 	QUERY,
82 	LIST,
83 	ISOLATE,
84 
85 	/* Destroy arguments. */
86 	DESTROY_RULE,
87 
88 	/* Query arguments. */
89 	QUERY_ACTION,
90 
91 	/* List arguments. */
92 	LIST_GROUP,
93 
94 	/* Validate/create arguments. */
95 	GROUP,
96 	PRIORITY,
97 	INGRESS,
98 	EGRESS,
99 
100 	/* Validate/create pattern. */
101 	PATTERN,
102 	ITEM_PARAM_IS,
103 	ITEM_PARAM_SPEC,
104 	ITEM_PARAM_LAST,
105 	ITEM_PARAM_MASK,
106 	ITEM_PARAM_PREFIX,
107 	ITEM_NEXT,
108 	ITEM_END,
109 	ITEM_VOID,
110 	ITEM_INVERT,
111 	ITEM_ANY,
112 	ITEM_ANY_NUM,
113 	ITEM_PF,
114 	ITEM_VF,
115 	ITEM_VF_ID,
116 	ITEM_PORT,
117 	ITEM_PORT_INDEX,
118 	ITEM_RAW,
119 	ITEM_RAW_RELATIVE,
120 	ITEM_RAW_SEARCH,
121 	ITEM_RAW_OFFSET,
122 	ITEM_RAW_LIMIT,
123 	ITEM_RAW_PATTERN,
124 	ITEM_ETH,
125 	ITEM_ETH_DST,
126 	ITEM_ETH_SRC,
127 	ITEM_ETH_TYPE,
128 	ITEM_VLAN,
129 	ITEM_VLAN_TPID,
130 	ITEM_VLAN_TCI,
131 	ITEM_VLAN_PCP,
132 	ITEM_VLAN_DEI,
133 	ITEM_VLAN_VID,
134 	ITEM_IPV4,
135 	ITEM_IPV4_TOS,
136 	ITEM_IPV4_TTL,
137 	ITEM_IPV4_PROTO,
138 	ITEM_IPV4_SRC,
139 	ITEM_IPV4_DST,
140 	ITEM_IPV6,
141 	ITEM_IPV6_TC,
142 	ITEM_IPV6_FLOW,
143 	ITEM_IPV6_PROTO,
144 	ITEM_IPV6_HOP,
145 	ITEM_IPV6_SRC,
146 	ITEM_IPV6_DST,
147 	ITEM_ICMP,
148 	ITEM_ICMP_TYPE,
149 	ITEM_ICMP_CODE,
150 	ITEM_UDP,
151 	ITEM_UDP_SRC,
152 	ITEM_UDP_DST,
153 	ITEM_TCP,
154 	ITEM_TCP_SRC,
155 	ITEM_TCP_DST,
156 	ITEM_TCP_FLAGS,
157 	ITEM_SCTP,
158 	ITEM_SCTP_SRC,
159 	ITEM_SCTP_DST,
160 	ITEM_SCTP_TAG,
161 	ITEM_SCTP_CKSUM,
162 	ITEM_VXLAN,
163 	ITEM_VXLAN_VNI,
164 	ITEM_E_TAG,
165 	ITEM_E_TAG_GRP_ECID_B,
166 	ITEM_NVGRE,
167 	ITEM_NVGRE_TNI,
168 	ITEM_MPLS,
169 	ITEM_MPLS_LABEL,
170 	ITEM_GRE,
171 	ITEM_GRE_PROTO,
172 	ITEM_FUZZY,
173 	ITEM_FUZZY_THRESH,
174 
175 	/* Validate/create actions. */
176 	ACTIONS,
177 	ACTION_NEXT,
178 	ACTION_END,
179 	ACTION_VOID,
180 	ACTION_PASSTHRU,
181 	ACTION_MARK,
182 	ACTION_MARK_ID,
183 	ACTION_FLAG,
184 	ACTION_QUEUE,
185 	ACTION_QUEUE_INDEX,
186 	ACTION_DROP,
187 	ACTION_COUNT,
188 	ACTION_DUP,
189 	ACTION_DUP_INDEX,
190 	ACTION_RSS,
191 	ACTION_RSS_QUEUES,
192 	ACTION_RSS_QUEUE,
193 	ACTION_PF,
194 	ACTION_VF,
195 	ACTION_VF_ORIGINAL,
196 	ACTION_VF_ID,
197 };
198 
199 /** Size of pattern[] field in struct rte_flow_item_raw. */
200 #define ITEM_RAW_PATTERN_SIZE 36
201 
202 /** Storage size for struct rte_flow_item_raw including pattern. */
203 #define ITEM_RAW_SIZE \
204 	(offsetof(struct rte_flow_item_raw, pattern) + ITEM_RAW_PATTERN_SIZE)
205 
206 /** Number of queue[] entries in struct rte_flow_action_rss. */
207 #define ACTION_RSS_NUM 32
208 
209 /** Storage size for struct rte_flow_action_rss including queues. */
210 #define ACTION_RSS_SIZE \
211 	(offsetof(struct rte_flow_action_rss, queue) + \
212 	 sizeof(*((struct rte_flow_action_rss *)0)->queue) * ACTION_RSS_NUM)
213 
214 /** Maximum number of subsequent tokens and arguments on the stack. */
215 #define CTX_STACK_SIZE 16
216 
217 /** Parser context. */
218 struct context {
219 	/** Stack of subsequent token lists to process. */
220 	const enum index *next[CTX_STACK_SIZE];
221 	/** Arguments for stacked tokens. */
222 	const void *args[CTX_STACK_SIZE];
223 	enum index curr; /**< Current token index. */
224 	enum index prev; /**< Index of the last token seen. */
225 	int next_num; /**< Number of entries in next[]. */
226 	int args_num; /**< Number of entries in args[]. */
227 	uint32_t eol:1; /**< EOL has been detected. */
228 	uint32_t last:1; /**< No more arguments. */
229 	uint16_t port; /**< Current port ID (for completions). */
230 	uint32_t objdata; /**< Object-specific data. */
231 	void *object; /**< Address of current object for relative offsets. */
232 	void *objmask; /**< Object a full mask must be written to. */
233 };
234 
235 /** Token argument. */
236 struct arg {
237 	uint32_t hton:1; /**< Use network byte ordering. */
238 	uint32_t sign:1; /**< Value is signed. */
239 	uint32_t offset; /**< Relative offset from ctx->object. */
240 	uint32_t size; /**< Field size. */
241 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
242 };
243 
244 /** Parser token definition. */
245 struct token {
246 	/** Type displayed during completion (defaults to "TOKEN"). */
247 	const char *type;
248 	/** Help displayed during completion (defaults to token name). */
249 	const char *help;
250 	/** Private data used by parser functions. */
251 	const void *priv;
252 	/**
253 	 * Lists of subsequent tokens to push on the stack. Each call to the
254 	 * parser consumes the last entry of that stack.
255 	 */
256 	const enum index *const *next;
257 	/** Arguments stack for subsequent tokens that need them. */
258 	const struct arg *const *args;
259 	/**
260 	 * Token-processing callback, returns -1 in case of error, the
261 	 * length of the matched string otherwise. If NULL, attempts to
262 	 * match the token name.
263 	 *
264 	 * If buf is not NULL, the result should be stored in it according
265 	 * to context. An error is returned if not large enough.
266 	 */
267 	int (*call)(struct context *ctx, const struct token *token,
268 		    const char *str, unsigned int len,
269 		    void *buf, unsigned int size);
270 	/**
271 	 * Callback that provides possible values for this token, used for
272 	 * completion. Returns -1 in case of error, the number of possible
273 	 * values otherwise. If NULL, the token name is used.
274 	 *
275 	 * If buf is not NULL, entry index ent is written to buf and the
276 	 * full length of the entry is returned (same behavior as
277 	 * snprintf()).
278 	 */
279 	int (*comp)(struct context *ctx, const struct token *token,
280 		    unsigned int ent, char *buf, unsigned int size);
281 	/** Mandatory token name, no default value. */
282 	const char *name;
283 };
284 
285 /** Static initializer for the next field. */
286 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
287 
288 /** Static initializer for a NEXT() entry. */
289 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
290 
291 /** Static initializer for the args field. */
292 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
293 
294 /** Static initializer for ARGS() to target a field. */
295 #define ARGS_ENTRY(s, f) \
296 	(&(const struct arg){ \
297 		.offset = offsetof(s, f), \
298 		.size = sizeof(((s *)0)->f), \
299 	})
300 
301 /** Static initializer for ARGS() to target a bit-field. */
302 #define ARGS_ENTRY_BF(s, f, b) \
303 	(&(const struct arg){ \
304 		.size = sizeof(s), \
305 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
306 	})
307 
308 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
309 #define ARGS_ENTRY_MASK(s, f, m) \
310 	(&(const struct arg){ \
311 		.offset = offsetof(s, f), \
312 		.size = sizeof(((s *)0)->f), \
313 		.mask = (const void *)(m), \
314 	})
315 
316 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
317 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
318 	(&(const struct arg){ \
319 		.hton = 1, \
320 		.offset = offsetof(s, f), \
321 		.size = sizeof(((s *)0)->f), \
322 		.mask = (const void *)(m), \
323 	})
324 
325 /** Static initializer for ARGS() to target a pointer. */
326 #define ARGS_ENTRY_PTR(s, f) \
327 	(&(const struct arg){ \
328 		.size = sizeof(*((s *)0)->f), \
329 	})
330 
331 /** Static initializer for ARGS() with arbitrary size. */
332 #define ARGS_ENTRY_USZ(s, f, sz) \
333 	(&(const struct arg){ \
334 		.offset = offsetof(s, f), \
335 		.size = (sz), \
336 	})
337 
338 /** Same as ARGS_ENTRY() using network byte ordering. */
339 #define ARGS_ENTRY_HTON(s, f) \
340 	(&(const struct arg){ \
341 		.hton = 1, \
342 		.offset = offsetof(s, f), \
343 		.size = sizeof(((s *)0)->f), \
344 	})
345 
346 /** Parser output buffer layout expected by cmd_flow_parsed(). */
347 struct buffer {
348 	enum index command; /**< Flow command. */
349 	uint16_t port; /**< Affected port ID. */
350 	union {
351 		struct {
352 			struct rte_flow_attr attr;
353 			struct rte_flow_item *pattern;
354 			struct rte_flow_action *actions;
355 			uint32_t pattern_n;
356 			uint32_t actions_n;
357 			uint8_t *data;
358 		} vc; /**< Validate/create arguments. */
359 		struct {
360 			uint32_t *rule;
361 			uint32_t rule_n;
362 		} destroy; /**< Destroy arguments. */
363 		struct {
364 			uint32_t rule;
365 			enum rte_flow_action_type action;
366 		} query; /**< Query arguments. */
367 		struct {
368 			uint32_t *group;
369 			uint32_t group_n;
370 		} list; /**< List arguments. */
371 		struct {
372 			int set;
373 		} isolate; /**< Isolated mode arguments. */
374 	} args; /**< Command arguments. */
375 };
376 
377 /** Private data for pattern items. */
378 struct parse_item_priv {
379 	enum rte_flow_item_type type; /**< Item type. */
380 	uint32_t size; /**< Size of item specification structure. */
381 };
382 
383 #define PRIV_ITEM(t, s) \
384 	(&(const struct parse_item_priv){ \
385 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
386 		.size = s, \
387 	})
388 
389 /** Private data for actions. */
390 struct parse_action_priv {
391 	enum rte_flow_action_type type; /**< Action type. */
392 	uint32_t size; /**< Size of action configuration structure. */
393 };
394 
395 #define PRIV_ACTION(t, s) \
396 	(&(const struct parse_action_priv){ \
397 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
398 		.size = s, \
399 	})
400 
401 static const enum index next_vc_attr[] = {
402 	GROUP,
403 	PRIORITY,
404 	INGRESS,
405 	EGRESS,
406 	PATTERN,
407 	ZERO,
408 };
409 
410 static const enum index next_destroy_attr[] = {
411 	DESTROY_RULE,
412 	END,
413 	ZERO,
414 };
415 
416 static const enum index next_list_attr[] = {
417 	LIST_GROUP,
418 	END,
419 	ZERO,
420 };
421 
422 static const enum index item_param[] = {
423 	ITEM_PARAM_IS,
424 	ITEM_PARAM_SPEC,
425 	ITEM_PARAM_LAST,
426 	ITEM_PARAM_MASK,
427 	ITEM_PARAM_PREFIX,
428 	ZERO,
429 };
430 
431 static const enum index next_item[] = {
432 	ITEM_END,
433 	ITEM_VOID,
434 	ITEM_INVERT,
435 	ITEM_ANY,
436 	ITEM_PF,
437 	ITEM_VF,
438 	ITEM_PORT,
439 	ITEM_RAW,
440 	ITEM_ETH,
441 	ITEM_VLAN,
442 	ITEM_IPV4,
443 	ITEM_IPV6,
444 	ITEM_ICMP,
445 	ITEM_UDP,
446 	ITEM_TCP,
447 	ITEM_SCTP,
448 	ITEM_VXLAN,
449 	ITEM_E_TAG,
450 	ITEM_NVGRE,
451 	ITEM_MPLS,
452 	ITEM_GRE,
453 	ITEM_FUZZY,
454 	ZERO,
455 };
456 
457 static const enum index item_fuzzy[] = {
458 	ITEM_FUZZY_THRESH,
459 	ITEM_NEXT,
460 	ZERO,
461 };
462 
463 static const enum index item_any[] = {
464 	ITEM_ANY_NUM,
465 	ITEM_NEXT,
466 	ZERO,
467 };
468 
469 static const enum index item_vf[] = {
470 	ITEM_VF_ID,
471 	ITEM_NEXT,
472 	ZERO,
473 };
474 
475 static const enum index item_port[] = {
476 	ITEM_PORT_INDEX,
477 	ITEM_NEXT,
478 	ZERO,
479 };
480 
481 static const enum index item_raw[] = {
482 	ITEM_RAW_RELATIVE,
483 	ITEM_RAW_SEARCH,
484 	ITEM_RAW_OFFSET,
485 	ITEM_RAW_LIMIT,
486 	ITEM_RAW_PATTERN,
487 	ITEM_NEXT,
488 	ZERO,
489 };
490 
491 static const enum index item_eth[] = {
492 	ITEM_ETH_DST,
493 	ITEM_ETH_SRC,
494 	ITEM_ETH_TYPE,
495 	ITEM_NEXT,
496 	ZERO,
497 };
498 
499 static const enum index item_vlan[] = {
500 	ITEM_VLAN_TPID,
501 	ITEM_VLAN_TCI,
502 	ITEM_VLAN_PCP,
503 	ITEM_VLAN_DEI,
504 	ITEM_VLAN_VID,
505 	ITEM_NEXT,
506 	ZERO,
507 };
508 
509 static const enum index item_ipv4[] = {
510 	ITEM_IPV4_TOS,
511 	ITEM_IPV4_TTL,
512 	ITEM_IPV4_PROTO,
513 	ITEM_IPV4_SRC,
514 	ITEM_IPV4_DST,
515 	ITEM_NEXT,
516 	ZERO,
517 };
518 
519 static const enum index item_ipv6[] = {
520 	ITEM_IPV6_TC,
521 	ITEM_IPV6_FLOW,
522 	ITEM_IPV6_PROTO,
523 	ITEM_IPV6_HOP,
524 	ITEM_IPV6_SRC,
525 	ITEM_IPV6_DST,
526 	ITEM_NEXT,
527 	ZERO,
528 };
529 
530 static const enum index item_icmp[] = {
531 	ITEM_ICMP_TYPE,
532 	ITEM_ICMP_CODE,
533 	ITEM_NEXT,
534 	ZERO,
535 };
536 
537 static const enum index item_udp[] = {
538 	ITEM_UDP_SRC,
539 	ITEM_UDP_DST,
540 	ITEM_NEXT,
541 	ZERO,
542 };
543 
544 static const enum index item_tcp[] = {
545 	ITEM_TCP_SRC,
546 	ITEM_TCP_DST,
547 	ITEM_TCP_FLAGS,
548 	ITEM_NEXT,
549 	ZERO,
550 };
551 
552 static const enum index item_sctp[] = {
553 	ITEM_SCTP_SRC,
554 	ITEM_SCTP_DST,
555 	ITEM_SCTP_TAG,
556 	ITEM_SCTP_CKSUM,
557 	ITEM_NEXT,
558 	ZERO,
559 };
560 
561 static const enum index item_vxlan[] = {
562 	ITEM_VXLAN_VNI,
563 	ITEM_NEXT,
564 	ZERO,
565 };
566 
567 static const enum index item_e_tag[] = {
568 	ITEM_E_TAG_GRP_ECID_B,
569 	ITEM_NEXT,
570 	ZERO,
571 };
572 
573 static const enum index item_nvgre[] = {
574 	ITEM_NVGRE_TNI,
575 	ITEM_NEXT,
576 	ZERO,
577 };
578 
579 static const enum index item_mpls[] = {
580 	ITEM_MPLS_LABEL,
581 	ITEM_NEXT,
582 	ZERO,
583 };
584 
585 static const enum index item_gre[] = {
586 	ITEM_GRE_PROTO,
587 	ITEM_NEXT,
588 	ZERO,
589 };
590 
591 static const enum index next_action[] = {
592 	ACTION_END,
593 	ACTION_VOID,
594 	ACTION_PASSTHRU,
595 	ACTION_MARK,
596 	ACTION_FLAG,
597 	ACTION_QUEUE,
598 	ACTION_DROP,
599 	ACTION_COUNT,
600 	ACTION_DUP,
601 	ACTION_RSS,
602 	ACTION_PF,
603 	ACTION_VF,
604 	ZERO,
605 };
606 
607 static const enum index action_mark[] = {
608 	ACTION_MARK_ID,
609 	ACTION_NEXT,
610 	ZERO,
611 };
612 
613 static const enum index action_queue[] = {
614 	ACTION_QUEUE_INDEX,
615 	ACTION_NEXT,
616 	ZERO,
617 };
618 
619 static const enum index action_dup[] = {
620 	ACTION_DUP_INDEX,
621 	ACTION_NEXT,
622 	ZERO,
623 };
624 
625 static const enum index action_rss[] = {
626 	ACTION_RSS_QUEUES,
627 	ACTION_NEXT,
628 	ZERO,
629 };
630 
631 static const enum index action_vf[] = {
632 	ACTION_VF_ORIGINAL,
633 	ACTION_VF_ID,
634 	ACTION_NEXT,
635 	ZERO,
636 };
637 
638 static int parse_init(struct context *, const struct token *,
639 		      const char *, unsigned int,
640 		      void *, unsigned int);
641 static int parse_vc(struct context *, const struct token *,
642 		    const char *, unsigned int,
643 		    void *, unsigned int);
644 static int parse_vc_spec(struct context *, const struct token *,
645 			 const char *, unsigned int, void *, unsigned int);
646 static int parse_vc_conf(struct context *, const struct token *,
647 			 const char *, unsigned int, void *, unsigned int);
648 static int parse_vc_action_rss_queue(struct context *, const struct token *,
649 				     const char *, unsigned int, void *,
650 				     unsigned int);
651 static int parse_destroy(struct context *, const struct token *,
652 			 const char *, unsigned int,
653 			 void *, unsigned int);
654 static int parse_flush(struct context *, const struct token *,
655 		       const char *, unsigned int,
656 		       void *, unsigned int);
657 static int parse_query(struct context *, const struct token *,
658 		       const char *, unsigned int,
659 		       void *, unsigned int);
660 static int parse_action(struct context *, const struct token *,
661 			const char *, unsigned int,
662 			void *, unsigned int);
663 static int parse_list(struct context *, const struct token *,
664 		      const char *, unsigned int,
665 		      void *, unsigned int);
666 static int parse_isolate(struct context *, const struct token *,
667 			 const char *, unsigned int,
668 			 void *, unsigned int);
669 static int parse_int(struct context *, const struct token *,
670 		     const char *, unsigned int,
671 		     void *, unsigned int);
672 static int parse_prefix(struct context *, const struct token *,
673 			const char *, unsigned int,
674 			void *, unsigned int);
675 static int parse_boolean(struct context *, const struct token *,
676 			 const char *, unsigned int,
677 			 void *, unsigned int);
678 static int parse_string(struct context *, const struct token *,
679 			const char *, unsigned int,
680 			void *, unsigned int);
681 static int parse_mac_addr(struct context *, const struct token *,
682 			  const char *, unsigned int,
683 			  void *, unsigned int);
684 static int parse_ipv4_addr(struct context *, const struct token *,
685 			   const char *, unsigned int,
686 			   void *, unsigned int);
687 static int parse_ipv6_addr(struct context *, const struct token *,
688 			   const char *, unsigned int,
689 			   void *, unsigned int);
690 static int parse_port(struct context *, const struct token *,
691 		      const char *, unsigned int,
692 		      void *, unsigned int);
693 static int comp_none(struct context *, const struct token *,
694 		     unsigned int, char *, unsigned int);
695 static int comp_boolean(struct context *, const struct token *,
696 			unsigned int, char *, unsigned int);
697 static int comp_action(struct context *, const struct token *,
698 		       unsigned int, char *, unsigned int);
699 static int comp_port(struct context *, const struct token *,
700 		     unsigned int, char *, unsigned int);
701 static int comp_rule_id(struct context *, const struct token *,
702 			unsigned int, char *, unsigned int);
703 static int comp_vc_action_rss_queue(struct context *, const struct token *,
704 				    unsigned int, char *, unsigned int);
705 
706 /** Token definitions. */
707 static const struct token token_list[] = {
708 	/* Special tokens. */
709 	[ZERO] = {
710 		.name = "ZERO",
711 		.help = "null entry, abused as the entry point",
712 		.next = NEXT(NEXT_ENTRY(FLOW)),
713 	},
714 	[END] = {
715 		.name = "",
716 		.type = "RETURN",
717 		.help = "command may end here",
718 	},
719 	/* Common tokens. */
720 	[INTEGER] = {
721 		.name = "{int}",
722 		.type = "INTEGER",
723 		.help = "integer value",
724 		.call = parse_int,
725 		.comp = comp_none,
726 	},
727 	[UNSIGNED] = {
728 		.name = "{unsigned}",
729 		.type = "UNSIGNED",
730 		.help = "unsigned integer value",
731 		.call = parse_int,
732 		.comp = comp_none,
733 	},
734 	[PREFIX] = {
735 		.name = "{prefix}",
736 		.type = "PREFIX",
737 		.help = "prefix length for bit-mask",
738 		.call = parse_prefix,
739 		.comp = comp_none,
740 	},
741 	[BOOLEAN] = {
742 		.name = "{boolean}",
743 		.type = "BOOLEAN",
744 		.help = "any boolean value",
745 		.call = parse_boolean,
746 		.comp = comp_boolean,
747 	},
748 	[STRING] = {
749 		.name = "{string}",
750 		.type = "STRING",
751 		.help = "fixed string",
752 		.call = parse_string,
753 		.comp = comp_none,
754 	},
755 	[MAC_ADDR] = {
756 		.name = "{MAC address}",
757 		.type = "MAC-48",
758 		.help = "standard MAC address notation",
759 		.call = parse_mac_addr,
760 		.comp = comp_none,
761 	},
762 	[IPV4_ADDR] = {
763 		.name = "{IPv4 address}",
764 		.type = "IPV4 ADDRESS",
765 		.help = "standard IPv4 address notation",
766 		.call = parse_ipv4_addr,
767 		.comp = comp_none,
768 	},
769 	[IPV6_ADDR] = {
770 		.name = "{IPv6 address}",
771 		.type = "IPV6 ADDRESS",
772 		.help = "standard IPv6 address notation",
773 		.call = parse_ipv6_addr,
774 		.comp = comp_none,
775 	},
776 	[RULE_ID] = {
777 		.name = "{rule id}",
778 		.type = "RULE ID",
779 		.help = "rule identifier",
780 		.call = parse_int,
781 		.comp = comp_rule_id,
782 	},
783 	[PORT_ID] = {
784 		.name = "{port_id}",
785 		.type = "PORT ID",
786 		.help = "port identifier",
787 		.call = parse_port,
788 		.comp = comp_port,
789 	},
790 	[GROUP_ID] = {
791 		.name = "{group_id}",
792 		.type = "GROUP ID",
793 		.help = "group identifier",
794 		.call = parse_int,
795 		.comp = comp_none,
796 	},
797 	[PRIORITY_LEVEL] = {
798 		.name = "{level}",
799 		.type = "PRIORITY",
800 		.help = "priority level",
801 		.call = parse_int,
802 		.comp = comp_none,
803 	},
804 	/* Top-level command. */
805 	[FLOW] = {
806 		.name = "flow",
807 		.type = "{command} {port_id} [{arg} [...]]",
808 		.help = "manage ingress/egress flow rules",
809 		.next = NEXT(NEXT_ENTRY
810 			     (VALIDATE,
811 			      CREATE,
812 			      DESTROY,
813 			      FLUSH,
814 			      LIST,
815 			      QUERY,
816 			      ISOLATE)),
817 		.call = parse_init,
818 	},
819 	/* Sub-level commands. */
820 	[VALIDATE] = {
821 		.name = "validate",
822 		.help = "check whether a flow rule can be created",
823 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
824 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
825 		.call = parse_vc,
826 	},
827 	[CREATE] = {
828 		.name = "create",
829 		.help = "create a flow rule",
830 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
831 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
832 		.call = parse_vc,
833 	},
834 	[DESTROY] = {
835 		.name = "destroy",
836 		.help = "destroy specific flow rules",
837 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
838 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
839 		.call = parse_destroy,
840 	},
841 	[FLUSH] = {
842 		.name = "flush",
843 		.help = "destroy all flow rules",
844 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
845 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
846 		.call = parse_flush,
847 	},
848 	[QUERY] = {
849 		.name = "query",
850 		.help = "query an existing flow rule",
851 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
852 			     NEXT_ENTRY(RULE_ID),
853 			     NEXT_ENTRY(PORT_ID)),
854 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
855 			     ARGS_ENTRY(struct buffer, args.query.rule),
856 			     ARGS_ENTRY(struct buffer, port)),
857 		.call = parse_query,
858 	},
859 	[LIST] = {
860 		.name = "list",
861 		.help = "list existing flow rules",
862 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
863 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
864 		.call = parse_list,
865 	},
866 	[ISOLATE] = {
867 		.name = "isolate",
868 		.help = "restrict ingress traffic to the defined flow rules",
869 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
870 			     NEXT_ENTRY(PORT_ID)),
871 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
872 			     ARGS_ENTRY(struct buffer, port)),
873 		.call = parse_isolate,
874 	},
875 	/* Destroy arguments. */
876 	[DESTROY_RULE] = {
877 		.name = "rule",
878 		.help = "specify a rule identifier",
879 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
880 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
881 		.call = parse_destroy,
882 	},
883 	/* Query arguments. */
884 	[QUERY_ACTION] = {
885 		.name = "{action}",
886 		.type = "ACTION",
887 		.help = "action to query, must be part of the rule",
888 		.call = parse_action,
889 		.comp = comp_action,
890 	},
891 	/* List arguments. */
892 	[LIST_GROUP] = {
893 		.name = "group",
894 		.help = "specify a group",
895 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
896 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
897 		.call = parse_list,
898 	},
899 	/* Validate/create attributes. */
900 	[GROUP] = {
901 		.name = "group",
902 		.help = "specify a group",
903 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
904 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
905 		.call = parse_vc,
906 	},
907 	[PRIORITY] = {
908 		.name = "priority",
909 		.help = "specify a priority level",
910 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
911 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
912 		.call = parse_vc,
913 	},
914 	[INGRESS] = {
915 		.name = "ingress",
916 		.help = "affect rule to ingress",
917 		.next = NEXT(next_vc_attr),
918 		.call = parse_vc,
919 	},
920 	[EGRESS] = {
921 		.name = "egress",
922 		.help = "affect rule to egress",
923 		.next = NEXT(next_vc_attr),
924 		.call = parse_vc,
925 	},
926 	/* Validate/create pattern. */
927 	[PATTERN] = {
928 		.name = "pattern",
929 		.help = "submit a list of pattern items",
930 		.next = NEXT(next_item),
931 		.call = parse_vc,
932 	},
933 	[ITEM_PARAM_IS] = {
934 		.name = "is",
935 		.help = "match value perfectly (with full bit-mask)",
936 		.call = parse_vc_spec,
937 	},
938 	[ITEM_PARAM_SPEC] = {
939 		.name = "spec",
940 		.help = "match value according to configured bit-mask",
941 		.call = parse_vc_spec,
942 	},
943 	[ITEM_PARAM_LAST] = {
944 		.name = "last",
945 		.help = "specify upper bound to establish a range",
946 		.call = parse_vc_spec,
947 	},
948 	[ITEM_PARAM_MASK] = {
949 		.name = "mask",
950 		.help = "specify bit-mask with relevant bits set to one",
951 		.call = parse_vc_spec,
952 	},
953 	[ITEM_PARAM_PREFIX] = {
954 		.name = "prefix",
955 		.help = "generate bit-mask from a prefix length",
956 		.call = parse_vc_spec,
957 	},
958 	[ITEM_NEXT] = {
959 		.name = "/",
960 		.help = "specify next pattern item",
961 		.next = NEXT(next_item),
962 	},
963 	[ITEM_END] = {
964 		.name = "end",
965 		.help = "end list of pattern items",
966 		.priv = PRIV_ITEM(END, 0),
967 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
968 		.call = parse_vc,
969 	},
970 	[ITEM_VOID] = {
971 		.name = "void",
972 		.help = "no-op pattern item",
973 		.priv = PRIV_ITEM(VOID, 0),
974 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
975 		.call = parse_vc,
976 	},
977 	[ITEM_INVERT] = {
978 		.name = "invert",
979 		.help = "perform actions when pattern does not match",
980 		.priv = PRIV_ITEM(INVERT, 0),
981 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
982 		.call = parse_vc,
983 	},
984 	[ITEM_ANY] = {
985 		.name = "any",
986 		.help = "match any protocol for the current layer",
987 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
988 		.next = NEXT(item_any),
989 		.call = parse_vc,
990 	},
991 	[ITEM_ANY_NUM] = {
992 		.name = "num",
993 		.help = "number of layers covered",
994 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
995 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
996 	},
997 	[ITEM_PF] = {
998 		.name = "pf",
999 		.help = "match packets addressed to the physical function",
1000 		.priv = PRIV_ITEM(PF, 0),
1001 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1002 		.call = parse_vc,
1003 	},
1004 	[ITEM_VF] = {
1005 		.name = "vf",
1006 		.help = "match packets addressed to a virtual function ID",
1007 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1008 		.next = NEXT(item_vf),
1009 		.call = parse_vc,
1010 	},
1011 	[ITEM_VF_ID] = {
1012 		.name = "id",
1013 		.help = "destination VF ID",
1014 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1015 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1016 	},
1017 	[ITEM_PORT] = {
1018 		.name = "port",
1019 		.help = "device-specific physical port index to use",
1020 		.priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
1021 		.next = NEXT(item_port),
1022 		.call = parse_vc,
1023 	},
1024 	[ITEM_PORT_INDEX] = {
1025 		.name = "index",
1026 		.help = "physical port index",
1027 		.next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
1028 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
1029 	},
1030 	[ITEM_RAW] = {
1031 		.name = "raw",
1032 		.help = "match an arbitrary byte string",
1033 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1034 		.next = NEXT(item_raw),
1035 		.call = parse_vc,
1036 	},
1037 	[ITEM_RAW_RELATIVE] = {
1038 		.name = "relative",
1039 		.help = "look for pattern after the previous item",
1040 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1041 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1042 					   relative, 1)),
1043 	},
1044 	[ITEM_RAW_SEARCH] = {
1045 		.name = "search",
1046 		.help = "search pattern from offset (see also limit)",
1047 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1048 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1049 					   search, 1)),
1050 	},
1051 	[ITEM_RAW_OFFSET] = {
1052 		.name = "offset",
1053 		.help = "absolute or relative offset for pattern",
1054 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1055 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1056 	},
1057 	[ITEM_RAW_LIMIT] = {
1058 		.name = "limit",
1059 		.help = "search area limit for start of pattern",
1060 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1061 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1062 	},
1063 	[ITEM_RAW_PATTERN] = {
1064 		.name = "pattern",
1065 		.help = "byte string to look for",
1066 		.next = NEXT(item_raw,
1067 			     NEXT_ENTRY(STRING),
1068 			     NEXT_ENTRY(ITEM_PARAM_IS,
1069 					ITEM_PARAM_SPEC,
1070 					ITEM_PARAM_MASK)),
1071 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, length),
1072 			     ARGS_ENTRY_USZ(struct rte_flow_item_raw,
1073 					    pattern,
1074 					    ITEM_RAW_PATTERN_SIZE)),
1075 	},
1076 	[ITEM_ETH] = {
1077 		.name = "eth",
1078 		.help = "match Ethernet header",
1079 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1080 		.next = NEXT(item_eth),
1081 		.call = parse_vc,
1082 	},
1083 	[ITEM_ETH_DST] = {
1084 		.name = "dst",
1085 		.help = "destination MAC",
1086 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1087 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1088 	},
1089 	[ITEM_ETH_SRC] = {
1090 		.name = "src",
1091 		.help = "source MAC",
1092 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1093 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1094 	},
1095 	[ITEM_ETH_TYPE] = {
1096 		.name = "type",
1097 		.help = "EtherType",
1098 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1099 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1100 	},
1101 	[ITEM_VLAN] = {
1102 		.name = "vlan",
1103 		.help = "match 802.1Q/ad VLAN tag",
1104 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1105 		.next = NEXT(item_vlan),
1106 		.call = parse_vc,
1107 	},
1108 	[ITEM_VLAN_TPID] = {
1109 		.name = "tpid",
1110 		.help = "tag protocol identifier",
1111 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1112 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
1113 	},
1114 	[ITEM_VLAN_TCI] = {
1115 		.name = "tci",
1116 		.help = "tag control information",
1117 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1118 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1119 	},
1120 	[ITEM_VLAN_PCP] = {
1121 		.name = "pcp",
1122 		.help = "priority code point",
1123 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1124 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1125 						  tci, "\xe0\x00")),
1126 	},
1127 	[ITEM_VLAN_DEI] = {
1128 		.name = "dei",
1129 		.help = "drop eligible indicator",
1130 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1131 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1132 						  tci, "\x10\x00")),
1133 	},
1134 	[ITEM_VLAN_VID] = {
1135 		.name = "vid",
1136 		.help = "VLAN identifier",
1137 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1138 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1139 						  tci, "\x0f\xff")),
1140 	},
1141 	[ITEM_IPV4] = {
1142 		.name = "ipv4",
1143 		.help = "match IPv4 header",
1144 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1145 		.next = NEXT(item_ipv4),
1146 		.call = parse_vc,
1147 	},
1148 	[ITEM_IPV4_TOS] = {
1149 		.name = "tos",
1150 		.help = "type of service",
1151 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1152 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1153 					     hdr.type_of_service)),
1154 	},
1155 	[ITEM_IPV4_TTL] = {
1156 		.name = "ttl",
1157 		.help = "time to live",
1158 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1159 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1160 					     hdr.time_to_live)),
1161 	},
1162 	[ITEM_IPV4_PROTO] = {
1163 		.name = "proto",
1164 		.help = "next protocol ID",
1165 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1166 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1167 					     hdr.next_proto_id)),
1168 	},
1169 	[ITEM_IPV4_SRC] = {
1170 		.name = "src",
1171 		.help = "source address",
1172 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1173 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1174 					     hdr.src_addr)),
1175 	},
1176 	[ITEM_IPV4_DST] = {
1177 		.name = "dst",
1178 		.help = "destination address",
1179 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1180 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1181 					     hdr.dst_addr)),
1182 	},
1183 	[ITEM_IPV6] = {
1184 		.name = "ipv6",
1185 		.help = "match IPv6 header",
1186 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1187 		.next = NEXT(item_ipv6),
1188 		.call = parse_vc,
1189 	},
1190 	[ITEM_IPV6_TC] = {
1191 		.name = "tc",
1192 		.help = "traffic class",
1193 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1194 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1195 						  hdr.vtc_flow,
1196 						  "\x0f\xf0\x00\x00")),
1197 	},
1198 	[ITEM_IPV6_FLOW] = {
1199 		.name = "flow",
1200 		.help = "flow label",
1201 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1202 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1203 						  hdr.vtc_flow,
1204 						  "\x00\x0f\xff\xff")),
1205 	},
1206 	[ITEM_IPV6_PROTO] = {
1207 		.name = "proto",
1208 		.help = "protocol (next header)",
1209 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1210 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1211 					     hdr.proto)),
1212 	},
1213 	[ITEM_IPV6_HOP] = {
1214 		.name = "hop",
1215 		.help = "hop limit",
1216 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1217 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1218 					     hdr.hop_limits)),
1219 	},
1220 	[ITEM_IPV6_SRC] = {
1221 		.name = "src",
1222 		.help = "source address",
1223 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1224 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1225 					     hdr.src_addr)),
1226 	},
1227 	[ITEM_IPV6_DST] = {
1228 		.name = "dst",
1229 		.help = "destination address",
1230 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1231 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1232 					     hdr.dst_addr)),
1233 	},
1234 	[ITEM_ICMP] = {
1235 		.name = "icmp",
1236 		.help = "match ICMP header",
1237 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1238 		.next = NEXT(item_icmp),
1239 		.call = parse_vc,
1240 	},
1241 	[ITEM_ICMP_TYPE] = {
1242 		.name = "type",
1243 		.help = "ICMP packet type",
1244 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1245 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1246 					     hdr.icmp_type)),
1247 	},
1248 	[ITEM_ICMP_CODE] = {
1249 		.name = "code",
1250 		.help = "ICMP packet code",
1251 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1252 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1253 					     hdr.icmp_code)),
1254 	},
1255 	[ITEM_UDP] = {
1256 		.name = "udp",
1257 		.help = "match UDP header",
1258 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1259 		.next = NEXT(item_udp),
1260 		.call = parse_vc,
1261 	},
1262 	[ITEM_UDP_SRC] = {
1263 		.name = "src",
1264 		.help = "UDP source port",
1265 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1266 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1267 					     hdr.src_port)),
1268 	},
1269 	[ITEM_UDP_DST] = {
1270 		.name = "dst",
1271 		.help = "UDP destination port",
1272 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1273 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1274 					     hdr.dst_port)),
1275 	},
1276 	[ITEM_TCP] = {
1277 		.name = "tcp",
1278 		.help = "match TCP header",
1279 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1280 		.next = NEXT(item_tcp),
1281 		.call = parse_vc,
1282 	},
1283 	[ITEM_TCP_SRC] = {
1284 		.name = "src",
1285 		.help = "TCP source port",
1286 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1287 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1288 					     hdr.src_port)),
1289 	},
1290 	[ITEM_TCP_DST] = {
1291 		.name = "dst",
1292 		.help = "TCP destination port",
1293 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1294 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1295 					     hdr.dst_port)),
1296 	},
1297 	[ITEM_TCP_FLAGS] = {
1298 		.name = "flags",
1299 		.help = "TCP flags",
1300 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1301 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1302 					     hdr.tcp_flags)),
1303 	},
1304 	[ITEM_SCTP] = {
1305 		.name = "sctp",
1306 		.help = "match SCTP header",
1307 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1308 		.next = NEXT(item_sctp),
1309 		.call = parse_vc,
1310 	},
1311 	[ITEM_SCTP_SRC] = {
1312 		.name = "src",
1313 		.help = "SCTP source port",
1314 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1315 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1316 					     hdr.src_port)),
1317 	},
1318 	[ITEM_SCTP_DST] = {
1319 		.name = "dst",
1320 		.help = "SCTP destination port",
1321 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1322 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1323 					     hdr.dst_port)),
1324 	},
1325 	[ITEM_SCTP_TAG] = {
1326 		.name = "tag",
1327 		.help = "validation tag",
1328 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1329 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1330 					     hdr.tag)),
1331 	},
1332 	[ITEM_SCTP_CKSUM] = {
1333 		.name = "cksum",
1334 		.help = "checksum",
1335 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1336 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1337 					     hdr.cksum)),
1338 	},
1339 	[ITEM_VXLAN] = {
1340 		.name = "vxlan",
1341 		.help = "match VXLAN header",
1342 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1343 		.next = NEXT(item_vxlan),
1344 		.call = parse_vc,
1345 	},
1346 	[ITEM_VXLAN_VNI] = {
1347 		.name = "vni",
1348 		.help = "VXLAN identifier",
1349 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1350 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1351 	},
1352 	[ITEM_E_TAG] = {
1353 		.name = "e_tag",
1354 		.help = "match E-Tag header",
1355 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1356 		.next = NEXT(item_e_tag),
1357 		.call = parse_vc,
1358 	},
1359 	[ITEM_E_TAG_GRP_ECID_B] = {
1360 		.name = "grp_ecid_b",
1361 		.help = "GRP and E-CID base",
1362 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1363 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1364 						  rsvd_grp_ecid_b,
1365 						  "\x3f\xff")),
1366 	},
1367 	[ITEM_NVGRE] = {
1368 		.name = "nvgre",
1369 		.help = "match NVGRE header",
1370 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1371 		.next = NEXT(item_nvgre),
1372 		.call = parse_vc,
1373 	},
1374 	[ITEM_NVGRE_TNI] = {
1375 		.name = "tni",
1376 		.help = "virtual subnet ID",
1377 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1378 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1379 	},
1380 	[ITEM_MPLS] = {
1381 		.name = "mpls",
1382 		.help = "match MPLS header",
1383 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1384 		.next = NEXT(item_mpls),
1385 		.call = parse_vc,
1386 	},
1387 	[ITEM_MPLS_LABEL] = {
1388 		.name = "label",
1389 		.help = "MPLS label",
1390 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1391 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1392 						  label_tc_s,
1393 						  "\xff\xff\xf0")),
1394 	},
1395 	[ITEM_GRE] = {
1396 		.name = "gre",
1397 		.help = "match GRE header",
1398 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1399 		.next = NEXT(item_gre),
1400 		.call = parse_vc,
1401 	},
1402 	[ITEM_GRE_PROTO] = {
1403 		.name = "protocol",
1404 		.help = "GRE protocol type",
1405 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1406 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1407 					     protocol)),
1408 	},
1409 	[ITEM_FUZZY] = {
1410 		.name = "fuzzy",
1411 		.help = "fuzzy pattern match, expect faster than default",
1412 		.priv = PRIV_ITEM(FUZZY,
1413 				sizeof(struct rte_flow_item_fuzzy)),
1414 		.next = NEXT(item_fuzzy),
1415 		.call = parse_vc,
1416 	},
1417 	[ITEM_FUZZY_THRESH] = {
1418 		.name = "thresh",
1419 		.help = "match accuracy threshold",
1420 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1421 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1422 					thresh)),
1423 	},
1424 
1425 	/* Validate/create actions. */
1426 	[ACTIONS] = {
1427 		.name = "actions",
1428 		.help = "submit a list of associated actions",
1429 		.next = NEXT(next_action),
1430 		.call = parse_vc,
1431 	},
1432 	[ACTION_NEXT] = {
1433 		.name = "/",
1434 		.help = "specify next action",
1435 		.next = NEXT(next_action),
1436 	},
1437 	[ACTION_END] = {
1438 		.name = "end",
1439 		.help = "end list of actions",
1440 		.priv = PRIV_ACTION(END, 0),
1441 		.call = parse_vc,
1442 	},
1443 	[ACTION_VOID] = {
1444 		.name = "void",
1445 		.help = "no-op action",
1446 		.priv = PRIV_ACTION(VOID, 0),
1447 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1448 		.call = parse_vc,
1449 	},
1450 	[ACTION_PASSTHRU] = {
1451 		.name = "passthru",
1452 		.help = "let subsequent rule process matched packets",
1453 		.priv = PRIV_ACTION(PASSTHRU, 0),
1454 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1455 		.call = parse_vc,
1456 	},
1457 	[ACTION_MARK] = {
1458 		.name = "mark",
1459 		.help = "attach 32 bit value to packets",
1460 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1461 		.next = NEXT(action_mark),
1462 		.call = parse_vc,
1463 	},
1464 	[ACTION_MARK_ID] = {
1465 		.name = "id",
1466 		.help = "32 bit value to return with packets",
1467 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1468 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1469 		.call = parse_vc_conf,
1470 	},
1471 	[ACTION_FLAG] = {
1472 		.name = "flag",
1473 		.help = "flag packets",
1474 		.priv = PRIV_ACTION(FLAG, 0),
1475 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1476 		.call = parse_vc,
1477 	},
1478 	[ACTION_QUEUE] = {
1479 		.name = "queue",
1480 		.help = "assign packets to a given queue index",
1481 		.priv = PRIV_ACTION(QUEUE,
1482 				    sizeof(struct rte_flow_action_queue)),
1483 		.next = NEXT(action_queue),
1484 		.call = parse_vc,
1485 	},
1486 	[ACTION_QUEUE_INDEX] = {
1487 		.name = "index",
1488 		.help = "queue index to use",
1489 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1490 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1491 		.call = parse_vc_conf,
1492 	},
1493 	[ACTION_DROP] = {
1494 		.name = "drop",
1495 		.help = "drop packets (note: passthru has priority)",
1496 		.priv = PRIV_ACTION(DROP, 0),
1497 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1498 		.call = parse_vc,
1499 	},
1500 	[ACTION_COUNT] = {
1501 		.name = "count",
1502 		.help = "enable counters for this rule",
1503 		.priv = PRIV_ACTION(COUNT, 0),
1504 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1505 		.call = parse_vc,
1506 	},
1507 	[ACTION_DUP] = {
1508 		.name = "dup",
1509 		.help = "duplicate packets to a given queue index",
1510 		.priv = PRIV_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1511 		.next = NEXT(action_dup),
1512 		.call = parse_vc,
1513 	},
1514 	[ACTION_DUP_INDEX] = {
1515 		.name = "index",
1516 		.help = "queue index to duplicate packets to",
1517 		.next = NEXT(action_dup, NEXT_ENTRY(UNSIGNED)),
1518 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_dup, index)),
1519 		.call = parse_vc_conf,
1520 	},
1521 	[ACTION_RSS] = {
1522 		.name = "rss",
1523 		.help = "spread packets among several queues",
1524 		.priv = PRIV_ACTION(RSS, ACTION_RSS_SIZE),
1525 		.next = NEXT(action_rss),
1526 		.call = parse_vc,
1527 	},
1528 	[ACTION_RSS_QUEUES] = {
1529 		.name = "queues",
1530 		.help = "queue indices to use",
1531 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1532 		.call = parse_vc_conf,
1533 	},
1534 	[ACTION_RSS_QUEUE] = {
1535 		.name = "{queue}",
1536 		.help = "queue index",
1537 		.call = parse_vc_action_rss_queue,
1538 		.comp = comp_vc_action_rss_queue,
1539 	},
1540 	[ACTION_PF] = {
1541 		.name = "pf",
1542 		.help = "redirect packets to physical device function",
1543 		.priv = PRIV_ACTION(PF, 0),
1544 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1545 		.call = parse_vc,
1546 	},
1547 	[ACTION_VF] = {
1548 		.name = "vf",
1549 		.help = "redirect packets to virtual device function",
1550 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1551 		.next = NEXT(action_vf),
1552 		.call = parse_vc,
1553 	},
1554 	[ACTION_VF_ORIGINAL] = {
1555 		.name = "original",
1556 		.help = "use original VF ID if possible",
1557 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
1558 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
1559 					   original, 1)),
1560 		.call = parse_vc_conf,
1561 	},
1562 	[ACTION_VF_ID] = {
1563 		.name = "id",
1564 		.help = "VF ID to redirect packets to",
1565 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
1566 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
1567 		.call = parse_vc_conf,
1568 	},
1569 };
1570 
1571 /** Remove and return last entry from argument stack. */
1572 static const struct arg *
1573 pop_args(struct context *ctx)
1574 {
1575 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
1576 }
1577 
1578 /** Add entry on top of the argument stack. */
1579 static int
1580 push_args(struct context *ctx, const struct arg *arg)
1581 {
1582 	if (ctx->args_num == CTX_STACK_SIZE)
1583 		return -1;
1584 	ctx->args[ctx->args_num++] = arg;
1585 	return 0;
1586 }
1587 
1588 /** Spread value into buffer according to bit-mask. */
1589 static size_t
1590 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
1591 {
1592 	uint32_t i = arg->size;
1593 	uint32_t end = 0;
1594 	int sub = 1;
1595 	int add = 0;
1596 	size_t len = 0;
1597 
1598 	if (!arg->mask)
1599 		return 0;
1600 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1601 	if (!arg->hton) {
1602 		i = 0;
1603 		end = arg->size;
1604 		sub = 0;
1605 		add = 1;
1606 	}
1607 #endif
1608 	while (i != end) {
1609 		unsigned int shift = 0;
1610 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
1611 
1612 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
1613 			if (!(arg->mask[i] & (1 << shift)))
1614 				continue;
1615 			++len;
1616 			if (!dst)
1617 				continue;
1618 			*buf &= ~(1 << shift);
1619 			*buf |= (val & 1) << shift;
1620 			val >>= 1;
1621 		}
1622 		i += add;
1623 	}
1624 	return len;
1625 }
1626 
1627 /** Compare a string with a partial one of a given length. */
1628 static int
1629 strcmp_partial(const char *full, const char *partial, size_t partial_len)
1630 {
1631 	int r = strncmp(full, partial, partial_len);
1632 
1633 	if (r)
1634 		return r;
1635 	if (strlen(full) <= partial_len)
1636 		return 0;
1637 	return full[partial_len];
1638 }
1639 
1640 /**
1641  * Parse a prefix length and generate a bit-mask.
1642  *
1643  * Last argument (ctx->args) is retrieved to determine mask size, storage
1644  * location and whether the result must use network byte ordering.
1645  */
1646 static int
1647 parse_prefix(struct context *ctx, const struct token *token,
1648 	     const char *str, unsigned int len,
1649 	     void *buf, unsigned int size)
1650 {
1651 	const struct arg *arg = pop_args(ctx);
1652 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
1653 	char *end;
1654 	uintmax_t u;
1655 	unsigned int bytes;
1656 	unsigned int extra;
1657 
1658 	(void)token;
1659 	/* Argument is expected. */
1660 	if (!arg)
1661 		return -1;
1662 	errno = 0;
1663 	u = strtoumax(str, &end, 0);
1664 	if (errno || (size_t)(end - str) != len)
1665 		goto error;
1666 	if (arg->mask) {
1667 		uintmax_t v = 0;
1668 
1669 		extra = arg_entry_bf_fill(NULL, 0, arg);
1670 		if (u > extra)
1671 			goto error;
1672 		if (!ctx->object)
1673 			return len;
1674 		extra -= u;
1675 		while (u--)
1676 			(v <<= 1, v |= 1);
1677 		v <<= extra;
1678 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
1679 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
1680 			goto error;
1681 		return len;
1682 	}
1683 	bytes = u / 8;
1684 	extra = u % 8;
1685 	size = arg->size;
1686 	if (bytes > size || bytes + !!extra > size)
1687 		goto error;
1688 	if (!ctx->object)
1689 		return len;
1690 	buf = (uint8_t *)ctx->object + arg->offset;
1691 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1692 	if (!arg->hton) {
1693 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
1694 		memset(buf, 0x00, size - bytes);
1695 		if (extra)
1696 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
1697 	} else
1698 #endif
1699 	{
1700 		memset(buf, 0xff, bytes);
1701 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
1702 		if (extra)
1703 			((uint8_t *)buf)[bytes] = conv[extra];
1704 	}
1705 	if (ctx->objmask)
1706 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
1707 	return len;
1708 error:
1709 	push_args(ctx, arg);
1710 	return -1;
1711 }
1712 
1713 /** Default parsing function for token name matching. */
1714 static int
1715 parse_default(struct context *ctx, const struct token *token,
1716 	      const char *str, unsigned int len,
1717 	      void *buf, unsigned int size)
1718 {
1719 	(void)ctx;
1720 	(void)buf;
1721 	(void)size;
1722 	if (strcmp_partial(token->name, str, len))
1723 		return -1;
1724 	return len;
1725 }
1726 
1727 /** Parse flow command, initialize output buffer for subsequent tokens. */
1728 static int
1729 parse_init(struct context *ctx, const struct token *token,
1730 	   const char *str, unsigned int len,
1731 	   void *buf, unsigned int size)
1732 {
1733 	struct buffer *out = buf;
1734 
1735 	/* Token name must match. */
1736 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1737 		return -1;
1738 	/* Nothing else to do if there is no buffer. */
1739 	if (!out)
1740 		return len;
1741 	/* Make sure buffer is large enough. */
1742 	if (size < sizeof(*out))
1743 		return -1;
1744 	/* Initialize buffer. */
1745 	memset(out, 0x00, sizeof(*out));
1746 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
1747 	ctx->objdata = 0;
1748 	ctx->object = out;
1749 	ctx->objmask = NULL;
1750 	return len;
1751 }
1752 
1753 /** Parse tokens for validate/create commands. */
1754 static int
1755 parse_vc(struct context *ctx, const struct token *token,
1756 	 const char *str, unsigned int len,
1757 	 void *buf, unsigned int size)
1758 {
1759 	struct buffer *out = buf;
1760 	uint8_t *data;
1761 	uint32_t data_size;
1762 
1763 	/* Token name must match. */
1764 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1765 		return -1;
1766 	/* Nothing else to do if there is no buffer. */
1767 	if (!out)
1768 		return len;
1769 	if (!out->command) {
1770 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
1771 			return -1;
1772 		if (sizeof(*out) > size)
1773 			return -1;
1774 		out->command = ctx->curr;
1775 		ctx->objdata = 0;
1776 		ctx->object = out;
1777 		ctx->objmask = NULL;
1778 		out->args.vc.data = (uint8_t *)out + size;
1779 		return len;
1780 	}
1781 	ctx->objdata = 0;
1782 	ctx->object = &out->args.vc.attr;
1783 	ctx->objmask = NULL;
1784 	switch (ctx->curr) {
1785 	case GROUP:
1786 	case PRIORITY:
1787 		return len;
1788 	case INGRESS:
1789 		out->args.vc.attr.ingress = 1;
1790 		return len;
1791 	case EGRESS:
1792 		out->args.vc.attr.egress = 1;
1793 		return len;
1794 	case PATTERN:
1795 		out->args.vc.pattern =
1796 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1797 					       sizeof(double));
1798 		ctx->object = out->args.vc.pattern;
1799 		ctx->objmask = NULL;
1800 		return len;
1801 	case ACTIONS:
1802 		out->args.vc.actions =
1803 			(void *)RTE_ALIGN_CEIL((uintptr_t)
1804 					       (out->args.vc.pattern +
1805 						out->args.vc.pattern_n),
1806 					       sizeof(double));
1807 		ctx->object = out->args.vc.actions;
1808 		ctx->objmask = NULL;
1809 		return len;
1810 	default:
1811 		if (!token->priv)
1812 			return -1;
1813 		break;
1814 	}
1815 	if (!out->args.vc.actions) {
1816 		const struct parse_item_priv *priv = token->priv;
1817 		struct rte_flow_item *item =
1818 			out->args.vc.pattern + out->args.vc.pattern_n;
1819 
1820 		data_size = priv->size * 3; /* spec, last, mask */
1821 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1822 					       (out->args.vc.data - data_size),
1823 					       sizeof(double));
1824 		if ((uint8_t *)item + sizeof(*item) > data)
1825 			return -1;
1826 		*item = (struct rte_flow_item){
1827 			.type = priv->type,
1828 		};
1829 		++out->args.vc.pattern_n;
1830 		ctx->object = item;
1831 		ctx->objmask = NULL;
1832 	} else {
1833 		const struct parse_action_priv *priv = token->priv;
1834 		struct rte_flow_action *action =
1835 			out->args.vc.actions + out->args.vc.actions_n;
1836 
1837 		data_size = priv->size; /* configuration */
1838 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1839 					       (out->args.vc.data - data_size),
1840 					       sizeof(double));
1841 		if ((uint8_t *)action + sizeof(*action) > data)
1842 			return -1;
1843 		*action = (struct rte_flow_action){
1844 			.type = priv->type,
1845 		};
1846 		++out->args.vc.actions_n;
1847 		ctx->object = action;
1848 		ctx->objmask = NULL;
1849 	}
1850 	memset(data, 0, data_size);
1851 	out->args.vc.data = data;
1852 	ctx->objdata = data_size;
1853 	return len;
1854 }
1855 
1856 /** Parse pattern item parameter type. */
1857 static int
1858 parse_vc_spec(struct context *ctx, const struct token *token,
1859 	      const char *str, unsigned int len,
1860 	      void *buf, unsigned int size)
1861 {
1862 	struct buffer *out = buf;
1863 	struct rte_flow_item *item;
1864 	uint32_t data_size;
1865 	int index;
1866 	int objmask = 0;
1867 
1868 	(void)size;
1869 	/* Token name must match. */
1870 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1871 		return -1;
1872 	/* Parse parameter types. */
1873 	switch (ctx->curr) {
1874 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
1875 
1876 	case ITEM_PARAM_IS:
1877 		index = 0;
1878 		objmask = 1;
1879 		break;
1880 	case ITEM_PARAM_SPEC:
1881 		index = 0;
1882 		break;
1883 	case ITEM_PARAM_LAST:
1884 		index = 1;
1885 		break;
1886 	case ITEM_PARAM_PREFIX:
1887 		/* Modify next token to expect a prefix. */
1888 		if (ctx->next_num < 2)
1889 			return -1;
1890 		ctx->next[ctx->next_num - 2] = prefix;
1891 		/* Fall through. */
1892 	case ITEM_PARAM_MASK:
1893 		index = 2;
1894 		break;
1895 	default:
1896 		return -1;
1897 	}
1898 	/* Nothing else to do if there is no buffer. */
1899 	if (!out)
1900 		return len;
1901 	if (!out->args.vc.pattern_n)
1902 		return -1;
1903 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
1904 	data_size = ctx->objdata / 3; /* spec, last, mask */
1905 	/* Point to selected object. */
1906 	ctx->object = out->args.vc.data + (data_size * index);
1907 	if (objmask) {
1908 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
1909 		item->mask = ctx->objmask;
1910 	} else
1911 		ctx->objmask = NULL;
1912 	/* Update relevant item pointer. */
1913 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
1914 		ctx->object;
1915 	return len;
1916 }
1917 
1918 /** Parse action configuration field. */
1919 static int
1920 parse_vc_conf(struct context *ctx, const struct token *token,
1921 	      const char *str, unsigned int len,
1922 	      void *buf, unsigned int size)
1923 {
1924 	struct buffer *out = buf;
1925 	struct rte_flow_action *action;
1926 
1927 	(void)size;
1928 	/* Token name must match. */
1929 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1930 		return -1;
1931 	/* Nothing else to do if there is no buffer. */
1932 	if (!out)
1933 		return len;
1934 	if (!out->args.vc.actions_n)
1935 		return -1;
1936 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
1937 	/* Point to selected object. */
1938 	ctx->object = out->args.vc.data;
1939 	ctx->objmask = NULL;
1940 	/* Update configuration pointer. */
1941 	action->conf = ctx->object;
1942 	return len;
1943 }
1944 
1945 /**
1946  * Parse queue field for RSS action.
1947  *
1948  * Valid tokens are queue indices and the "end" token.
1949  */
1950 static int
1951 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
1952 			  const char *str, unsigned int len,
1953 			  void *buf, unsigned int size)
1954 {
1955 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
1956 	int ret;
1957 	int i;
1958 
1959 	(void)token;
1960 	(void)buf;
1961 	(void)size;
1962 	if (ctx->curr != ACTION_RSS_QUEUE)
1963 		return -1;
1964 	i = ctx->objdata >> 16;
1965 	if (!strcmp_partial("end", str, len)) {
1966 		ctx->objdata &= 0xffff;
1967 		return len;
1968 	}
1969 	if (i >= ACTION_RSS_NUM)
1970 		return -1;
1971 	if (push_args(ctx, ARGS_ENTRY(struct rte_flow_action_rss, queue[i])))
1972 		return -1;
1973 	ret = parse_int(ctx, token, str, len, NULL, 0);
1974 	if (ret < 0) {
1975 		pop_args(ctx);
1976 		return -1;
1977 	}
1978 	++i;
1979 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
1980 	/* Repeat token. */
1981 	if (ctx->next_num == RTE_DIM(ctx->next))
1982 		return -1;
1983 	ctx->next[ctx->next_num++] = next;
1984 	if (!ctx->object)
1985 		return len;
1986 	((struct rte_flow_action_rss *)ctx->object)->num = i;
1987 	return len;
1988 }
1989 
1990 /** Parse tokens for destroy command. */
1991 static int
1992 parse_destroy(struct context *ctx, const struct token *token,
1993 	      const char *str, unsigned int len,
1994 	      void *buf, unsigned int size)
1995 {
1996 	struct buffer *out = buf;
1997 
1998 	/* Token name must match. */
1999 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2000 		return -1;
2001 	/* Nothing else to do if there is no buffer. */
2002 	if (!out)
2003 		return len;
2004 	if (!out->command) {
2005 		if (ctx->curr != DESTROY)
2006 			return -1;
2007 		if (sizeof(*out) > size)
2008 			return -1;
2009 		out->command = ctx->curr;
2010 		ctx->objdata = 0;
2011 		ctx->object = out;
2012 		ctx->objmask = NULL;
2013 		out->args.destroy.rule =
2014 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2015 					       sizeof(double));
2016 		return len;
2017 	}
2018 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
2019 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
2020 		return -1;
2021 	ctx->objdata = 0;
2022 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
2023 	ctx->objmask = NULL;
2024 	return len;
2025 }
2026 
2027 /** Parse tokens for flush command. */
2028 static int
2029 parse_flush(struct context *ctx, const struct token *token,
2030 	    const char *str, unsigned int len,
2031 	    void *buf, unsigned int size)
2032 {
2033 	struct buffer *out = buf;
2034 
2035 	/* Token name must match. */
2036 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2037 		return -1;
2038 	/* Nothing else to do if there is no buffer. */
2039 	if (!out)
2040 		return len;
2041 	if (!out->command) {
2042 		if (ctx->curr != FLUSH)
2043 			return -1;
2044 		if (sizeof(*out) > size)
2045 			return -1;
2046 		out->command = ctx->curr;
2047 		ctx->objdata = 0;
2048 		ctx->object = out;
2049 		ctx->objmask = NULL;
2050 	}
2051 	return len;
2052 }
2053 
2054 /** Parse tokens for query command. */
2055 static int
2056 parse_query(struct context *ctx, const struct token *token,
2057 	    const char *str, unsigned int len,
2058 	    void *buf, unsigned int size)
2059 {
2060 	struct buffer *out = buf;
2061 
2062 	/* Token name must match. */
2063 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2064 		return -1;
2065 	/* Nothing else to do if there is no buffer. */
2066 	if (!out)
2067 		return len;
2068 	if (!out->command) {
2069 		if (ctx->curr != QUERY)
2070 			return -1;
2071 		if (sizeof(*out) > size)
2072 			return -1;
2073 		out->command = ctx->curr;
2074 		ctx->objdata = 0;
2075 		ctx->object = out;
2076 		ctx->objmask = NULL;
2077 	}
2078 	return len;
2079 }
2080 
2081 /** Parse action names. */
2082 static int
2083 parse_action(struct context *ctx, const struct token *token,
2084 	     const char *str, unsigned int len,
2085 	     void *buf, unsigned int size)
2086 {
2087 	struct buffer *out = buf;
2088 	const struct arg *arg = pop_args(ctx);
2089 	unsigned int i;
2090 
2091 	(void)size;
2092 	/* Argument is expected. */
2093 	if (!arg)
2094 		return -1;
2095 	/* Parse action name. */
2096 	for (i = 0; next_action[i]; ++i) {
2097 		const struct parse_action_priv *priv;
2098 
2099 		token = &token_list[next_action[i]];
2100 		if (strcmp_partial(token->name, str, len))
2101 			continue;
2102 		priv = token->priv;
2103 		if (!priv)
2104 			goto error;
2105 		if (out)
2106 			memcpy((uint8_t *)ctx->object + arg->offset,
2107 			       &priv->type,
2108 			       arg->size);
2109 		return len;
2110 	}
2111 error:
2112 	push_args(ctx, arg);
2113 	return -1;
2114 }
2115 
2116 /** Parse tokens for list command. */
2117 static int
2118 parse_list(struct context *ctx, const struct token *token,
2119 	   const char *str, unsigned int len,
2120 	   void *buf, unsigned int size)
2121 {
2122 	struct buffer *out = buf;
2123 
2124 	/* Token name must match. */
2125 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2126 		return -1;
2127 	/* Nothing else to do if there is no buffer. */
2128 	if (!out)
2129 		return len;
2130 	if (!out->command) {
2131 		if (ctx->curr != LIST)
2132 			return -1;
2133 		if (sizeof(*out) > size)
2134 			return -1;
2135 		out->command = ctx->curr;
2136 		ctx->objdata = 0;
2137 		ctx->object = out;
2138 		ctx->objmask = NULL;
2139 		out->args.list.group =
2140 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2141 					       sizeof(double));
2142 		return len;
2143 	}
2144 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
2145 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
2146 		return -1;
2147 	ctx->objdata = 0;
2148 	ctx->object = out->args.list.group + out->args.list.group_n++;
2149 	ctx->objmask = NULL;
2150 	return len;
2151 }
2152 
2153 /** Parse tokens for isolate command. */
2154 static int
2155 parse_isolate(struct context *ctx, const struct token *token,
2156 	      const char *str, unsigned int len,
2157 	      void *buf, unsigned int size)
2158 {
2159 	struct buffer *out = buf;
2160 
2161 	/* Token name must match. */
2162 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2163 		return -1;
2164 	/* Nothing else to do if there is no buffer. */
2165 	if (!out)
2166 		return len;
2167 	if (!out->command) {
2168 		if (ctx->curr != ISOLATE)
2169 			return -1;
2170 		if (sizeof(*out) > size)
2171 			return -1;
2172 		out->command = ctx->curr;
2173 		ctx->objdata = 0;
2174 		ctx->object = out;
2175 		ctx->objmask = NULL;
2176 	}
2177 	return len;
2178 }
2179 
2180 /**
2181  * Parse signed/unsigned integers 8 to 64-bit long.
2182  *
2183  * Last argument (ctx->args) is retrieved to determine integer type and
2184  * storage location.
2185  */
2186 static int
2187 parse_int(struct context *ctx, const struct token *token,
2188 	  const char *str, unsigned int len,
2189 	  void *buf, unsigned int size)
2190 {
2191 	const struct arg *arg = pop_args(ctx);
2192 	uintmax_t u;
2193 	char *end;
2194 
2195 	(void)token;
2196 	/* Argument is expected. */
2197 	if (!arg)
2198 		return -1;
2199 	errno = 0;
2200 	u = arg->sign ?
2201 		(uintmax_t)strtoimax(str, &end, 0) :
2202 		strtoumax(str, &end, 0);
2203 	if (errno || (size_t)(end - str) != len)
2204 		goto error;
2205 	if (!ctx->object)
2206 		return len;
2207 	if (arg->mask) {
2208 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2209 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2210 			goto error;
2211 		return len;
2212 	}
2213 	buf = (uint8_t *)ctx->object + arg->offset;
2214 	size = arg->size;
2215 objmask:
2216 	switch (size) {
2217 	case sizeof(uint8_t):
2218 		*(uint8_t *)buf = u;
2219 		break;
2220 	case sizeof(uint16_t):
2221 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2222 		break;
2223 	case sizeof(uint8_t [3]):
2224 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2225 		if (!arg->hton) {
2226 			((uint8_t *)buf)[0] = u;
2227 			((uint8_t *)buf)[1] = u >> 8;
2228 			((uint8_t *)buf)[2] = u >> 16;
2229 			break;
2230 		}
2231 #endif
2232 		((uint8_t *)buf)[0] = u >> 16;
2233 		((uint8_t *)buf)[1] = u >> 8;
2234 		((uint8_t *)buf)[2] = u;
2235 		break;
2236 	case sizeof(uint32_t):
2237 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2238 		break;
2239 	case sizeof(uint64_t):
2240 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2241 		break;
2242 	default:
2243 		goto error;
2244 	}
2245 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2246 		u = -1;
2247 		buf = (uint8_t *)ctx->objmask + arg->offset;
2248 		goto objmask;
2249 	}
2250 	return len;
2251 error:
2252 	push_args(ctx, arg);
2253 	return -1;
2254 }
2255 
2256 /**
2257  * Parse a string.
2258  *
2259  * Two arguments (ctx->args) are retrieved from the stack to store data and
2260  * its length (in that order).
2261  */
2262 static int
2263 parse_string(struct context *ctx, const struct token *token,
2264 	     const char *str, unsigned int len,
2265 	     void *buf, unsigned int size)
2266 {
2267 	const struct arg *arg_data = pop_args(ctx);
2268 	const struct arg *arg_len = pop_args(ctx);
2269 	char tmp[16]; /* Ought to be enough. */
2270 	int ret;
2271 
2272 	/* Arguments are expected. */
2273 	if (!arg_data)
2274 		return -1;
2275 	if (!arg_len) {
2276 		push_args(ctx, arg_data);
2277 		return -1;
2278 	}
2279 	size = arg_data->size;
2280 	/* Bit-mask fill is not supported. */
2281 	if (arg_data->mask || size < len)
2282 		goto error;
2283 	if (!ctx->object)
2284 		return len;
2285 	/* Let parse_int() fill length information first. */
2286 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
2287 	if (ret < 0)
2288 		goto error;
2289 	push_args(ctx, arg_len);
2290 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2291 	if (ret < 0) {
2292 		pop_args(ctx);
2293 		goto error;
2294 	}
2295 	buf = (uint8_t *)ctx->object + arg_data->offset;
2296 	/* Output buffer is not necessarily NUL-terminated. */
2297 	memcpy(buf, str, len);
2298 	memset((uint8_t *)buf + len, 0x55, size - len);
2299 	if (ctx->objmask)
2300 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2301 	return len;
2302 error:
2303 	push_args(ctx, arg_len);
2304 	push_args(ctx, arg_data);
2305 	return -1;
2306 }
2307 
2308 /**
2309  * Parse a MAC address.
2310  *
2311  * Last argument (ctx->args) is retrieved to determine storage size and
2312  * location.
2313  */
2314 static int
2315 parse_mac_addr(struct context *ctx, const struct token *token,
2316 	       const char *str, unsigned int len,
2317 	       void *buf, unsigned int size)
2318 {
2319 	const struct arg *arg = pop_args(ctx);
2320 	struct ether_addr tmp;
2321 	int ret;
2322 
2323 	(void)token;
2324 	/* Argument is expected. */
2325 	if (!arg)
2326 		return -1;
2327 	size = arg->size;
2328 	/* Bit-mask fill is not supported. */
2329 	if (arg->mask || size != sizeof(tmp))
2330 		goto error;
2331 	/* Only network endian is supported. */
2332 	if (!arg->hton)
2333 		goto error;
2334 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
2335 	if (ret < 0 || (unsigned int)ret != len)
2336 		goto error;
2337 	if (!ctx->object)
2338 		return len;
2339 	buf = (uint8_t *)ctx->object + arg->offset;
2340 	memcpy(buf, &tmp, size);
2341 	if (ctx->objmask)
2342 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2343 	return len;
2344 error:
2345 	push_args(ctx, arg);
2346 	return -1;
2347 }
2348 
2349 /**
2350  * Parse an IPv4 address.
2351  *
2352  * Last argument (ctx->args) is retrieved to determine storage size and
2353  * location.
2354  */
2355 static int
2356 parse_ipv4_addr(struct context *ctx, const struct token *token,
2357 		const char *str, unsigned int len,
2358 		void *buf, unsigned int size)
2359 {
2360 	const struct arg *arg = pop_args(ctx);
2361 	char str2[len + 1];
2362 	struct in_addr tmp;
2363 	int ret;
2364 
2365 	/* Argument is expected. */
2366 	if (!arg)
2367 		return -1;
2368 	size = arg->size;
2369 	/* Bit-mask fill is not supported. */
2370 	if (arg->mask || size != sizeof(tmp))
2371 		goto error;
2372 	/* Only network endian is supported. */
2373 	if (!arg->hton)
2374 		goto error;
2375 	memcpy(str2, str, len);
2376 	str2[len] = '\0';
2377 	ret = inet_pton(AF_INET, str2, &tmp);
2378 	if (ret != 1) {
2379 		/* Attempt integer parsing. */
2380 		push_args(ctx, arg);
2381 		return parse_int(ctx, token, str, len, buf, size);
2382 	}
2383 	if (!ctx->object)
2384 		return len;
2385 	buf = (uint8_t *)ctx->object + arg->offset;
2386 	memcpy(buf, &tmp, size);
2387 	if (ctx->objmask)
2388 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2389 	return len;
2390 error:
2391 	push_args(ctx, arg);
2392 	return -1;
2393 }
2394 
2395 /**
2396  * Parse an IPv6 address.
2397  *
2398  * Last argument (ctx->args) is retrieved to determine storage size and
2399  * location.
2400  */
2401 static int
2402 parse_ipv6_addr(struct context *ctx, const struct token *token,
2403 		const char *str, unsigned int len,
2404 		void *buf, unsigned int size)
2405 {
2406 	const struct arg *arg = pop_args(ctx);
2407 	char str2[len + 1];
2408 	struct in6_addr tmp;
2409 	int ret;
2410 
2411 	(void)token;
2412 	/* Argument is expected. */
2413 	if (!arg)
2414 		return -1;
2415 	size = arg->size;
2416 	/* Bit-mask fill is not supported. */
2417 	if (arg->mask || size != sizeof(tmp))
2418 		goto error;
2419 	/* Only network endian is supported. */
2420 	if (!arg->hton)
2421 		goto error;
2422 	memcpy(str2, str, len);
2423 	str2[len] = '\0';
2424 	ret = inet_pton(AF_INET6, str2, &tmp);
2425 	if (ret != 1)
2426 		goto error;
2427 	if (!ctx->object)
2428 		return len;
2429 	buf = (uint8_t *)ctx->object + arg->offset;
2430 	memcpy(buf, &tmp, size);
2431 	if (ctx->objmask)
2432 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2433 	return len;
2434 error:
2435 	push_args(ctx, arg);
2436 	return -1;
2437 }
2438 
2439 /** Boolean values (even indices stand for false). */
2440 static const char *const boolean_name[] = {
2441 	"0", "1",
2442 	"false", "true",
2443 	"no", "yes",
2444 	"N", "Y",
2445 	NULL,
2446 };
2447 
2448 /**
2449  * Parse a boolean value.
2450  *
2451  * Last argument (ctx->args) is retrieved to determine storage size and
2452  * location.
2453  */
2454 static int
2455 parse_boolean(struct context *ctx, const struct token *token,
2456 	      const char *str, unsigned int len,
2457 	      void *buf, unsigned int size)
2458 {
2459 	const struct arg *arg = pop_args(ctx);
2460 	unsigned int i;
2461 	int ret;
2462 
2463 	/* Argument is expected. */
2464 	if (!arg)
2465 		return -1;
2466 	for (i = 0; boolean_name[i]; ++i)
2467 		if (!strcmp_partial(boolean_name[i], str, len))
2468 			break;
2469 	/* Process token as integer. */
2470 	if (boolean_name[i])
2471 		str = i & 1 ? "1" : "0";
2472 	push_args(ctx, arg);
2473 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
2474 	return ret > 0 ? (int)len : ret;
2475 }
2476 
2477 /** Parse port and update context. */
2478 static int
2479 parse_port(struct context *ctx, const struct token *token,
2480 	   const char *str, unsigned int len,
2481 	   void *buf, unsigned int size)
2482 {
2483 	struct buffer *out = &(struct buffer){ .port = 0 };
2484 	int ret;
2485 
2486 	if (buf)
2487 		out = buf;
2488 	else {
2489 		ctx->objdata = 0;
2490 		ctx->object = out;
2491 		ctx->objmask = NULL;
2492 		size = sizeof(*out);
2493 	}
2494 	ret = parse_int(ctx, token, str, len, out, size);
2495 	if (ret >= 0)
2496 		ctx->port = out->port;
2497 	if (!buf)
2498 		ctx->object = NULL;
2499 	return ret;
2500 }
2501 
2502 /** No completion. */
2503 static int
2504 comp_none(struct context *ctx, const struct token *token,
2505 	  unsigned int ent, char *buf, unsigned int size)
2506 {
2507 	(void)ctx;
2508 	(void)token;
2509 	(void)ent;
2510 	(void)buf;
2511 	(void)size;
2512 	return 0;
2513 }
2514 
2515 /** Complete boolean values. */
2516 static int
2517 comp_boolean(struct context *ctx, const struct token *token,
2518 	     unsigned int ent, char *buf, unsigned int size)
2519 {
2520 	unsigned int i;
2521 
2522 	(void)ctx;
2523 	(void)token;
2524 	for (i = 0; boolean_name[i]; ++i)
2525 		if (buf && i == ent)
2526 			return snprintf(buf, size, "%s", boolean_name[i]);
2527 	if (buf)
2528 		return -1;
2529 	return i;
2530 }
2531 
2532 /** Complete action names. */
2533 static int
2534 comp_action(struct context *ctx, const struct token *token,
2535 	    unsigned int ent, char *buf, unsigned int size)
2536 {
2537 	unsigned int i;
2538 
2539 	(void)ctx;
2540 	(void)token;
2541 	for (i = 0; next_action[i]; ++i)
2542 		if (buf && i == ent)
2543 			return snprintf(buf, size, "%s",
2544 					token_list[next_action[i]].name);
2545 	if (buf)
2546 		return -1;
2547 	return i;
2548 }
2549 
2550 /** Complete available ports. */
2551 static int
2552 comp_port(struct context *ctx, const struct token *token,
2553 	  unsigned int ent, char *buf, unsigned int size)
2554 {
2555 	unsigned int i = 0;
2556 	portid_t p;
2557 
2558 	(void)ctx;
2559 	(void)token;
2560 	RTE_ETH_FOREACH_DEV(p) {
2561 		if (buf && i == ent)
2562 			return snprintf(buf, size, "%u", p);
2563 		++i;
2564 	}
2565 	if (buf)
2566 		return -1;
2567 	return i;
2568 }
2569 
2570 /** Complete available rule IDs. */
2571 static int
2572 comp_rule_id(struct context *ctx, const struct token *token,
2573 	     unsigned int ent, char *buf, unsigned int size)
2574 {
2575 	unsigned int i = 0;
2576 	struct rte_port *port;
2577 	struct port_flow *pf;
2578 
2579 	(void)token;
2580 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
2581 	    ctx->port == (uint16_t)RTE_PORT_ALL)
2582 		return -1;
2583 	port = &ports[ctx->port];
2584 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2585 		if (buf && i == ent)
2586 			return snprintf(buf, size, "%u", pf->id);
2587 		++i;
2588 	}
2589 	if (buf)
2590 		return -1;
2591 	return i;
2592 }
2593 
2594 /** Complete queue field for RSS action. */
2595 static int
2596 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
2597 			 unsigned int ent, char *buf, unsigned int size)
2598 {
2599 	static const char *const str[] = { "", "end", NULL };
2600 	unsigned int i;
2601 
2602 	(void)ctx;
2603 	(void)token;
2604 	for (i = 0; str[i] != NULL; ++i)
2605 		if (buf && i == ent)
2606 			return snprintf(buf, size, "%s", str[i]);
2607 	if (buf)
2608 		return -1;
2609 	return i;
2610 }
2611 
2612 /** Internal context. */
2613 static struct context cmd_flow_context;
2614 
2615 /** Global parser instance (cmdline API). */
2616 cmdline_parse_inst_t cmd_flow;
2617 
2618 /** Initialize context. */
2619 static void
2620 cmd_flow_context_init(struct context *ctx)
2621 {
2622 	/* A full memset() is not necessary. */
2623 	ctx->curr = ZERO;
2624 	ctx->prev = ZERO;
2625 	ctx->next_num = 0;
2626 	ctx->args_num = 0;
2627 	ctx->eol = 0;
2628 	ctx->last = 0;
2629 	ctx->port = 0;
2630 	ctx->objdata = 0;
2631 	ctx->object = NULL;
2632 	ctx->objmask = NULL;
2633 }
2634 
2635 /** Parse a token (cmdline API). */
2636 static int
2637 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
2638 	       unsigned int size)
2639 {
2640 	struct context *ctx = &cmd_flow_context;
2641 	const struct token *token;
2642 	const enum index *list;
2643 	int len;
2644 	int i;
2645 
2646 	(void)hdr;
2647 	token = &token_list[ctx->curr];
2648 	/* Check argument length. */
2649 	ctx->eol = 0;
2650 	ctx->last = 1;
2651 	for (len = 0; src[len]; ++len)
2652 		if (src[len] == '#' || isspace(src[len]))
2653 			break;
2654 	if (!len)
2655 		return -1;
2656 	/* Last argument and EOL detection. */
2657 	for (i = len; src[i]; ++i)
2658 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
2659 			break;
2660 		else if (!isspace(src[i])) {
2661 			ctx->last = 0;
2662 			break;
2663 		}
2664 	for (; src[i]; ++i)
2665 		if (src[i] == '\r' || src[i] == '\n') {
2666 			ctx->eol = 1;
2667 			break;
2668 		}
2669 	/* Initialize context if necessary. */
2670 	if (!ctx->next_num) {
2671 		if (!token->next)
2672 			return 0;
2673 		ctx->next[ctx->next_num++] = token->next[0];
2674 	}
2675 	/* Process argument through candidates. */
2676 	ctx->prev = ctx->curr;
2677 	list = ctx->next[ctx->next_num - 1];
2678 	for (i = 0; list[i]; ++i) {
2679 		const struct token *next = &token_list[list[i]];
2680 		int tmp;
2681 
2682 		ctx->curr = list[i];
2683 		if (next->call)
2684 			tmp = next->call(ctx, next, src, len, result, size);
2685 		else
2686 			tmp = parse_default(ctx, next, src, len, result, size);
2687 		if (tmp == -1 || tmp != len)
2688 			continue;
2689 		token = next;
2690 		break;
2691 	}
2692 	if (!list[i])
2693 		return -1;
2694 	--ctx->next_num;
2695 	/* Push subsequent tokens if any. */
2696 	if (token->next)
2697 		for (i = 0; token->next[i]; ++i) {
2698 			if (ctx->next_num == RTE_DIM(ctx->next))
2699 				return -1;
2700 			ctx->next[ctx->next_num++] = token->next[i];
2701 		}
2702 	/* Push arguments if any. */
2703 	if (token->args)
2704 		for (i = 0; token->args[i]; ++i) {
2705 			if (ctx->args_num == RTE_DIM(ctx->args))
2706 				return -1;
2707 			ctx->args[ctx->args_num++] = token->args[i];
2708 		}
2709 	return len;
2710 }
2711 
2712 /** Return number of completion entries (cmdline API). */
2713 static int
2714 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
2715 {
2716 	struct context *ctx = &cmd_flow_context;
2717 	const struct token *token = &token_list[ctx->curr];
2718 	const enum index *list;
2719 	int i;
2720 
2721 	(void)hdr;
2722 	/* Count number of tokens in current list. */
2723 	if (ctx->next_num)
2724 		list = ctx->next[ctx->next_num - 1];
2725 	else
2726 		list = token->next[0];
2727 	for (i = 0; list[i]; ++i)
2728 		;
2729 	if (!i)
2730 		return 0;
2731 	/*
2732 	 * If there is a single token, use its completion callback, otherwise
2733 	 * return the number of entries.
2734 	 */
2735 	token = &token_list[list[0]];
2736 	if (i == 1 && token->comp) {
2737 		/* Save index for cmd_flow_get_help(). */
2738 		ctx->prev = list[0];
2739 		return token->comp(ctx, token, 0, NULL, 0);
2740 	}
2741 	return i;
2742 }
2743 
2744 /** Return a completion entry (cmdline API). */
2745 static int
2746 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
2747 			  char *dst, unsigned int size)
2748 {
2749 	struct context *ctx = &cmd_flow_context;
2750 	const struct token *token = &token_list[ctx->curr];
2751 	const enum index *list;
2752 	int i;
2753 
2754 	(void)hdr;
2755 	/* Count number of tokens in current list. */
2756 	if (ctx->next_num)
2757 		list = ctx->next[ctx->next_num - 1];
2758 	else
2759 		list = token->next[0];
2760 	for (i = 0; list[i]; ++i)
2761 		;
2762 	if (!i)
2763 		return -1;
2764 	/* If there is a single token, use its completion callback. */
2765 	token = &token_list[list[0]];
2766 	if (i == 1 && token->comp) {
2767 		/* Save index for cmd_flow_get_help(). */
2768 		ctx->prev = list[0];
2769 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
2770 	}
2771 	/* Otherwise make sure the index is valid and use defaults. */
2772 	if (index >= i)
2773 		return -1;
2774 	token = &token_list[list[index]];
2775 	snprintf(dst, size, "%s", token->name);
2776 	/* Save index for cmd_flow_get_help(). */
2777 	ctx->prev = list[index];
2778 	return 0;
2779 }
2780 
2781 /** Populate help strings for current token (cmdline API). */
2782 static int
2783 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
2784 {
2785 	struct context *ctx = &cmd_flow_context;
2786 	const struct token *token = &token_list[ctx->prev];
2787 
2788 	(void)hdr;
2789 	if (!size)
2790 		return -1;
2791 	/* Set token type and update global help with details. */
2792 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
2793 	if (token->help)
2794 		cmd_flow.help_str = token->help;
2795 	else
2796 		cmd_flow.help_str = token->name;
2797 	return 0;
2798 }
2799 
2800 /** Token definition template (cmdline API). */
2801 static struct cmdline_token_hdr cmd_flow_token_hdr = {
2802 	.ops = &(struct cmdline_token_ops){
2803 		.parse = cmd_flow_parse,
2804 		.complete_get_nb = cmd_flow_complete_get_nb,
2805 		.complete_get_elt = cmd_flow_complete_get_elt,
2806 		.get_help = cmd_flow_get_help,
2807 	},
2808 	.offset = 0,
2809 };
2810 
2811 /** Populate the next dynamic token. */
2812 static void
2813 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
2814 	     cmdline_parse_token_hdr_t **hdr_inst)
2815 {
2816 	struct context *ctx = &cmd_flow_context;
2817 
2818 	/* Always reinitialize context before requesting the first token. */
2819 	if (!(hdr_inst - cmd_flow.tokens))
2820 		cmd_flow_context_init(ctx);
2821 	/* Return NULL when no more tokens are expected. */
2822 	if (!ctx->next_num && ctx->curr) {
2823 		*hdr = NULL;
2824 		return;
2825 	}
2826 	/* Determine if command should end here. */
2827 	if (ctx->eol && ctx->last && ctx->next_num) {
2828 		const enum index *list = ctx->next[ctx->next_num - 1];
2829 		int i;
2830 
2831 		for (i = 0; list[i]; ++i) {
2832 			if (list[i] != END)
2833 				continue;
2834 			*hdr = NULL;
2835 			return;
2836 		}
2837 	}
2838 	*hdr = &cmd_flow_token_hdr;
2839 }
2840 
2841 /** Dispatch parsed buffer to function calls. */
2842 static void
2843 cmd_flow_parsed(const struct buffer *in)
2844 {
2845 	switch (in->command) {
2846 	case VALIDATE:
2847 		port_flow_validate(in->port, &in->args.vc.attr,
2848 				   in->args.vc.pattern, in->args.vc.actions);
2849 		break;
2850 	case CREATE:
2851 		port_flow_create(in->port, &in->args.vc.attr,
2852 				 in->args.vc.pattern, in->args.vc.actions);
2853 		break;
2854 	case DESTROY:
2855 		port_flow_destroy(in->port, in->args.destroy.rule_n,
2856 				  in->args.destroy.rule);
2857 		break;
2858 	case FLUSH:
2859 		port_flow_flush(in->port);
2860 		break;
2861 	case QUERY:
2862 		port_flow_query(in->port, in->args.query.rule,
2863 				in->args.query.action);
2864 		break;
2865 	case LIST:
2866 		port_flow_list(in->port, in->args.list.group_n,
2867 			       in->args.list.group);
2868 		break;
2869 	case ISOLATE:
2870 		port_flow_isolate(in->port, in->args.isolate.set);
2871 		break;
2872 	default:
2873 		break;
2874 	}
2875 }
2876 
2877 /** Token generator and output processing callback (cmdline API). */
2878 static void
2879 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
2880 {
2881 	if (cl == NULL)
2882 		cmd_flow_tok(arg0, arg2);
2883 	else
2884 		cmd_flow_parsed(arg0);
2885 }
2886 
2887 /** Global parser instance (cmdline API). */
2888 cmdline_parse_inst_t cmd_flow = {
2889 	.f = cmd_flow_cb,
2890 	.data = NULL, /**< Unused. */
2891 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
2892 	.tokens = {
2893 		NULL,
2894 	}, /**< Tokens are returned by cmd_flow_tok(). */
2895 };
2896