1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <stddef.h> 7 #include <stdint.h> 8 #include <stdio.h> 9 #include <inttypes.h> 10 #include <errno.h> 11 #include <ctype.h> 12 #include <string.h> 13 #include <arpa/inet.h> 14 #include <sys/socket.h> 15 16 #include <rte_common.h> 17 #include <rte_eth_ctrl.h> 18 #include <rte_ethdev.h> 19 #include <rte_byteorder.h> 20 #include <cmdline_parse.h> 21 #include <cmdline_parse_etheraddr.h> 22 #include <rte_flow.h> 23 24 #include "testpmd.h" 25 26 /** Parser token indices. */ 27 enum index { 28 /* Special tokens. */ 29 ZERO = 0, 30 END, 31 32 /* Common tokens. */ 33 INTEGER, 34 UNSIGNED, 35 PREFIX, 36 BOOLEAN, 37 STRING, 38 MAC_ADDR, 39 IPV4_ADDR, 40 IPV6_ADDR, 41 RULE_ID, 42 PORT_ID, 43 GROUP_ID, 44 PRIORITY_LEVEL, 45 46 /* Top-level command. */ 47 FLOW, 48 49 /* Sub-level commands. */ 50 VALIDATE, 51 CREATE, 52 DESTROY, 53 FLUSH, 54 QUERY, 55 LIST, 56 ISOLATE, 57 58 /* Destroy arguments. */ 59 DESTROY_RULE, 60 61 /* Query arguments. */ 62 QUERY_ACTION, 63 64 /* List arguments. */ 65 LIST_GROUP, 66 67 /* Validate/create arguments. */ 68 GROUP, 69 PRIORITY, 70 INGRESS, 71 EGRESS, 72 TRANSFER, 73 74 /* Validate/create pattern. */ 75 PATTERN, 76 ITEM_PARAM_IS, 77 ITEM_PARAM_SPEC, 78 ITEM_PARAM_LAST, 79 ITEM_PARAM_MASK, 80 ITEM_PARAM_PREFIX, 81 ITEM_NEXT, 82 ITEM_END, 83 ITEM_VOID, 84 ITEM_INVERT, 85 ITEM_ANY, 86 ITEM_ANY_NUM, 87 ITEM_PF, 88 ITEM_VF, 89 ITEM_VF_ID, 90 ITEM_PORT, 91 ITEM_PORT_INDEX, 92 ITEM_RAW, 93 ITEM_RAW_RELATIVE, 94 ITEM_RAW_SEARCH, 95 ITEM_RAW_OFFSET, 96 ITEM_RAW_LIMIT, 97 ITEM_RAW_PATTERN, 98 ITEM_ETH, 99 ITEM_ETH_DST, 100 ITEM_ETH_SRC, 101 ITEM_ETH_TYPE, 102 ITEM_VLAN, 103 ITEM_VLAN_TCI, 104 ITEM_VLAN_PCP, 105 ITEM_VLAN_DEI, 106 ITEM_VLAN_VID, 107 ITEM_VLAN_INNER_TYPE, 108 ITEM_IPV4, 109 ITEM_IPV4_TOS, 110 ITEM_IPV4_TTL, 111 ITEM_IPV4_PROTO, 112 ITEM_IPV4_SRC, 113 ITEM_IPV4_DST, 114 ITEM_IPV6, 115 ITEM_IPV6_TC, 116 ITEM_IPV6_FLOW, 117 ITEM_IPV6_PROTO, 118 ITEM_IPV6_HOP, 119 ITEM_IPV6_SRC, 120 ITEM_IPV6_DST, 121 ITEM_ICMP, 122 ITEM_ICMP_TYPE, 123 ITEM_ICMP_CODE, 124 ITEM_UDP, 125 ITEM_UDP_SRC, 126 ITEM_UDP_DST, 127 ITEM_TCP, 128 ITEM_TCP_SRC, 129 ITEM_TCP_DST, 130 ITEM_TCP_FLAGS, 131 ITEM_SCTP, 132 ITEM_SCTP_SRC, 133 ITEM_SCTP_DST, 134 ITEM_SCTP_TAG, 135 ITEM_SCTP_CKSUM, 136 ITEM_VXLAN, 137 ITEM_VXLAN_VNI, 138 ITEM_E_TAG, 139 ITEM_E_TAG_GRP_ECID_B, 140 ITEM_NVGRE, 141 ITEM_NVGRE_TNI, 142 ITEM_MPLS, 143 ITEM_MPLS_LABEL, 144 ITEM_GRE, 145 ITEM_GRE_PROTO, 146 ITEM_FUZZY, 147 ITEM_FUZZY_THRESH, 148 ITEM_GTP, 149 ITEM_GTP_TEID, 150 ITEM_GTPC, 151 ITEM_GTPU, 152 ITEM_GENEVE, 153 ITEM_GENEVE_VNI, 154 ITEM_GENEVE_PROTO, 155 156 /* Validate/create actions. */ 157 ACTIONS, 158 ACTION_NEXT, 159 ACTION_END, 160 ACTION_VOID, 161 ACTION_PASSTHRU, 162 ACTION_MARK, 163 ACTION_MARK_ID, 164 ACTION_FLAG, 165 ACTION_QUEUE, 166 ACTION_QUEUE_INDEX, 167 ACTION_DROP, 168 ACTION_COUNT, 169 ACTION_RSS, 170 ACTION_RSS_FUNC, 171 ACTION_RSS_LEVEL, 172 ACTION_RSS_FUNC_DEFAULT, 173 ACTION_RSS_FUNC_TOEPLITZ, 174 ACTION_RSS_FUNC_SIMPLE_XOR, 175 ACTION_RSS_TYPES, 176 ACTION_RSS_TYPE, 177 ACTION_RSS_KEY, 178 ACTION_RSS_KEY_LEN, 179 ACTION_RSS_QUEUES, 180 ACTION_RSS_QUEUE, 181 ACTION_PF, 182 ACTION_VF, 183 ACTION_VF_ORIGINAL, 184 ACTION_VF_ID, 185 ACTION_METER, 186 ACTION_METER_ID, 187 }; 188 189 /** Maximum size for pattern in struct rte_flow_item_raw. */ 190 #define ITEM_RAW_PATTERN_SIZE 40 191 192 /** Storage size for struct rte_flow_item_raw including pattern. */ 193 #define ITEM_RAW_SIZE \ 194 (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE) 195 196 /** Maximum number of queue indices in struct rte_flow_action_rss. */ 197 #define ACTION_RSS_QUEUE_NUM 32 198 199 /** Storage for struct rte_flow_action_rss including external data. */ 200 struct action_rss_data { 201 struct rte_flow_action_rss conf; 202 uint8_t key[RSS_HASH_KEY_LENGTH]; 203 uint16_t queue[ACTION_RSS_QUEUE_NUM]; 204 }; 205 206 /** Maximum number of subsequent tokens and arguments on the stack. */ 207 #define CTX_STACK_SIZE 16 208 209 /** Parser context. */ 210 struct context { 211 /** Stack of subsequent token lists to process. */ 212 const enum index *next[CTX_STACK_SIZE]; 213 /** Arguments for stacked tokens. */ 214 const void *args[CTX_STACK_SIZE]; 215 enum index curr; /**< Current token index. */ 216 enum index prev; /**< Index of the last token seen. */ 217 int next_num; /**< Number of entries in next[]. */ 218 int args_num; /**< Number of entries in args[]. */ 219 uint32_t eol:1; /**< EOL has been detected. */ 220 uint32_t last:1; /**< No more arguments. */ 221 portid_t port; /**< Current port ID (for completions). */ 222 uint32_t objdata; /**< Object-specific data. */ 223 void *object; /**< Address of current object for relative offsets. */ 224 void *objmask; /**< Object a full mask must be written to. */ 225 }; 226 227 /** Token argument. */ 228 struct arg { 229 uint32_t hton:1; /**< Use network byte ordering. */ 230 uint32_t sign:1; /**< Value is signed. */ 231 uint32_t bounded:1; /**< Value is bounded. */ 232 uintmax_t min; /**< Minimum value if bounded. */ 233 uintmax_t max; /**< Maximum value if bounded. */ 234 uint32_t offset; /**< Relative offset from ctx->object. */ 235 uint32_t size; /**< Field size. */ 236 const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */ 237 }; 238 239 /** Parser token definition. */ 240 struct token { 241 /** Type displayed during completion (defaults to "TOKEN"). */ 242 const char *type; 243 /** Help displayed during completion (defaults to token name). */ 244 const char *help; 245 /** Private data used by parser functions. */ 246 const void *priv; 247 /** 248 * Lists of subsequent tokens to push on the stack. Each call to the 249 * parser consumes the last entry of that stack. 250 */ 251 const enum index *const *next; 252 /** Arguments stack for subsequent tokens that need them. */ 253 const struct arg *const *args; 254 /** 255 * Token-processing callback, returns -1 in case of error, the 256 * length of the matched string otherwise. If NULL, attempts to 257 * match the token name. 258 * 259 * If buf is not NULL, the result should be stored in it according 260 * to context. An error is returned if not large enough. 261 */ 262 int (*call)(struct context *ctx, const struct token *token, 263 const char *str, unsigned int len, 264 void *buf, unsigned int size); 265 /** 266 * Callback that provides possible values for this token, used for 267 * completion. Returns -1 in case of error, the number of possible 268 * values otherwise. If NULL, the token name is used. 269 * 270 * If buf is not NULL, entry index ent is written to buf and the 271 * full length of the entry is returned (same behavior as 272 * snprintf()). 273 */ 274 int (*comp)(struct context *ctx, const struct token *token, 275 unsigned int ent, char *buf, unsigned int size); 276 /** Mandatory token name, no default value. */ 277 const char *name; 278 }; 279 280 /** Static initializer for the next field. */ 281 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, } 282 283 /** Static initializer for a NEXT() entry. */ 284 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, } 285 286 /** Static initializer for the args field. */ 287 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, } 288 289 /** Static initializer for ARGS() to target a field. */ 290 #define ARGS_ENTRY(s, f) \ 291 (&(const struct arg){ \ 292 .offset = offsetof(s, f), \ 293 .size = sizeof(((s *)0)->f), \ 294 }) 295 296 /** Static initializer for ARGS() to target a bit-field. */ 297 #define ARGS_ENTRY_BF(s, f, b) \ 298 (&(const struct arg){ \ 299 .size = sizeof(s), \ 300 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \ 301 }) 302 303 /** Static initializer for ARGS() to target an arbitrary bit-mask. */ 304 #define ARGS_ENTRY_MASK(s, f, m) \ 305 (&(const struct arg){ \ 306 .offset = offsetof(s, f), \ 307 .size = sizeof(((s *)0)->f), \ 308 .mask = (const void *)(m), \ 309 }) 310 311 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */ 312 #define ARGS_ENTRY_MASK_HTON(s, f, m) \ 313 (&(const struct arg){ \ 314 .hton = 1, \ 315 .offset = offsetof(s, f), \ 316 .size = sizeof(((s *)0)->f), \ 317 .mask = (const void *)(m), \ 318 }) 319 320 /** Static initializer for ARGS() to target a pointer. */ 321 #define ARGS_ENTRY_PTR(s, f) \ 322 (&(const struct arg){ \ 323 .size = sizeof(*((s *)0)->f), \ 324 }) 325 326 /** Static initializer for ARGS() with arbitrary offset and size. */ 327 #define ARGS_ENTRY_ARB(o, s) \ 328 (&(const struct arg){ \ 329 .offset = (o), \ 330 .size = (s), \ 331 }) 332 333 /** Same as ARGS_ENTRY_ARB() with bounded values. */ 334 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \ 335 (&(const struct arg){ \ 336 .bounded = 1, \ 337 .min = (i), \ 338 .max = (a), \ 339 .offset = (o), \ 340 .size = (s), \ 341 }) 342 343 /** Same as ARGS_ENTRY() using network byte ordering. */ 344 #define ARGS_ENTRY_HTON(s, f) \ 345 (&(const struct arg){ \ 346 .hton = 1, \ 347 .offset = offsetof(s, f), \ 348 .size = sizeof(((s *)0)->f), \ 349 }) 350 351 /** Parser output buffer layout expected by cmd_flow_parsed(). */ 352 struct buffer { 353 enum index command; /**< Flow command. */ 354 portid_t port; /**< Affected port ID. */ 355 union { 356 struct { 357 struct rte_flow_attr attr; 358 struct rte_flow_item *pattern; 359 struct rte_flow_action *actions; 360 uint32_t pattern_n; 361 uint32_t actions_n; 362 uint8_t *data; 363 } vc; /**< Validate/create arguments. */ 364 struct { 365 uint32_t *rule; 366 uint32_t rule_n; 367 } destroy; /**< Destroy arguments. */ 368 struct { 369 uint32_t rule; 370 enum rte_flow_action_type action; 371 } query; /**< Query arguments. */ 372 struct { 373 uint32_t *group; 374 uint32_t group_n; 375 } list; /**< List arguments. */ 376 struct { 377 int set; 378 } isolate; /**< Isolated mode arguments. */ 379 } args; /**< Command arguments. */ 380 }; 381 382 /** Private data for pattern items. */ 383 struct parse_item_priv { 384 enum rte_flow_item_type type; /**< Item type. */ 385 uint32_t size; /**< Size of item specification structure. */ 386 }; 387 388 #define PRIV_ITEM(t, s) \ 389 (&(const struct parse_item_priv){ \ 390 .type = RTE_FLOW_ITEM_TYPE_ ## t, \ 391 .size = s, \ 392 }) 393 394 /** Private data for actions. */ 395 struct parse_action_priv { 396 enum rte_flow_action_type type; /**< Action type. */ 397 uint32_t size; /**< Size of action configuration structure. */ 398 }; 399 400 #define PRIV_ACTION(t, s) \ 401 (&(const struct parse_action_priv){ \ 402 .type = RTE_FLOW_ACTION_TYPE_ ## t, \ 403 .size = s, \ 404 }) 405 406 static const enum index next_vc_attr[] = { 407 GROUP, 408 PRIORITY, 409 INGRESS, 410 EGRESS, 411 TRANSFER, 412 PATTERN, 413 ZERO, 414 }; 415 416 static const enum index next_destroy_attr[] = { 417 DESTROY_RULE, 418 END, 419 ZERO, 420 }; 421 422 static const enum index next_list_attr[] = { 423 LIST_GROUP, 424 END, 425 ZERO, 426 }; 427 428 static const enum index item_param[] = { 429 ITEM_PARAM_IS, 430 ITEM_PARAM_SPEC, 431 ITEM_PARAM_LAST, 432 ITEM_PARAM_MASK, 433 ITEM_PARAM_PREFIX, 434 ZERO, 435 }; 436 437 static const enum index next_item[] = { 438 ITEM_END, 439 ITEM_VOID, 440 ITEM_INVERT, 441 ITEM_ANY, 442 ITEM_PF, 443 ITEM_VF, 444 ITEM_PORT, 445 ITEM_RAW, 446 ITEM_ETH, 447 ITEM_VLAN, 448 ITEM_IPV4, 449 ITEM_IPV6, 450 ITEM_ICMP, 451 ITEM_UDP, 452 ITEM_TCP, 453 ITEM_SCTP, 454 ITEM_VXLAN, 455 ITEM_E_TAG, 456 ITEM_NVGRE, 457 ITEM_MPLS, 458 ITEM_GRE, 459 ITEM_FUZZY, 460 ITEM_GTP, 461 ITEM_GTPC, 462 ITEM_GTPU, 463 ITEM_GENEVE, 464 ZERO, 465 }; 466 467 static const enum index item_fuzzy[] = { 468 ITEM_FUZZY_THRESH, 469 ITEM_NEXT, 470 ZERO, 471 }; 472 473 static const enum index item_any[] = { 474 ITEM_ANY_NUM, 475 ITEM_NEXT, 476 ZERO, 477 }; 478 479 static const enum index item_vf[] = { 480 ITEM_VF_ID, 481 ITEM_NEXT, 482 ZERO, 483 }; 484 485 static const enum index item_port[] = { 486 ITEM_PORT_INDEX, 487 ITEM_NEXT, 488 ZERO, 489 }; 490 491 static const enum index item_raw[] = { 492 ITEM_RAW_RELATIVE, 493 ITEM_RAW_SEARCH, 494 ITEM_RAW_OFFSET, 495 ITEM_RAW_LIMIT, 496 ITEM_RAW_PATTERN, 497 ITEM_NEXT, 498 ZERO, 499 }; 500 501 static const enum index item_eth[] = { 502 ITEM_ETH_DST, 503 ITEM_ETH_SRC, 504 ITEM_ETH_TYPE, 505 ITEM_NEXT, 506 ZERO, 507 }; 508 509 static const enum index item_vlan[] = { 510 ITEM_VLAN_TCI, 511 ITEM_VLAN_PCP, 512 ITEM_VLAN_DEI, 513 ITEM_VLAN_VID, 514 ITEM_VLAN_INNER_TYPE, 515 ITEM_NEXT, 516 ZERO, 517 }; 518 519 static const enum index item_ipv4[] = { 520 ITEM_IPV4_TOS, 521 ITEM_IPV4_TTL, 522 ITEM_IPV4_PROTO, 523 ITEM_IPV4_SRC, 524 ITEM_IPV4_DST, 525 ITEM_NEXT, 526 ZERO, 527 }; 528 529 static const enum index item_ipv6[] = { 530 ITEM_IPV6_TC, 531 ITEM_IPV6_FLOW, 532 ITEM_IPV6_PROTO, 533 ITEM_IPV6_HOP, 534 ITEM_IPV6_SRC, 535 ITEM_IPV6_DST, 536 ITEM_NEXT, 537 ZERO, 538 }; 539 540 static const enum index item_icmp[] = { 541 ITEM_ICMP_TYPE, 542 ITEM_ICMP_CODE, 543 ITEM_NEXT, 544 ZERO, 545 }; 546 547 static const enum index item_udp[] = { 548 ITEM_UDP_SRC, 549 ITEM_UDP_DST, 550 ITEM_NEXT, 551 ZERO, 552 }; 553 554 static const enum index item_tcp[] = { 555 ITEM_TCP_SRC, 556 ITEM_TCP_DST, 557 ITEM_TCP_FLAGS, 558 ITEM_NEXT, 559 ZERO, 560 }; 561 562 static const enum index item_sctp[] = { 563 ITEM_SCTP_SRC, 564 ITEM_SCTP_DST, 565 ITEM_SCTP_TAG, 566 ITEM_SCTP_CKSUM, 567 ITEM_NEXT, 568 ZERO, 569 }; 570 571 static const enum index item_vxlan[] = { 572 ITEM_VXLAN_VNI, 573 ITEM_NEXT, 574 ZERO, 575 }; 576 577 static const enum index item_e_tag[] = { 578 ITEM_E_TAG_GRP_ECID_B, 579 ITEM_NEXT, 580 ZERO, 581 }; 582 583 static const enum index item_nvgre[] = { 584 ITEM_NVGRE_TNI, 585 ITEM_NEXT, 586 ZERO, 587 }; 588 589 static const enum index item_mpls[] = { 590 ITEM_MPLS_LABEL, 591 ITEM_NEXT, 592 ZERO, 593 }; 594 595 static const enum index item_gre[] = { 596 ITEM_GRE_PROTO, 597 ITEM_NEXT, 598 ZERO, 599 }; 600 601 static const enum index item_gtp[] = { 602 ITEM_GTP_TEID, 603 ITEM_NEXT, 604 ZERO, 605 }; 606 607 static const enum index item_geneve[] = { 608 ITEM_GENEVE_VNI, 609 ITEM_GENEVE_PROTO, 610 ITEM_NEXT, 611 ZERO, 612 }; 613 614 static const enum index next_action[] = { 615 ACTION_END, 616 ACTION_VOID, 617 ACTION_PASSTHRU, 618 ACTION_MARK, 619 ACTION_FLAG, 620 ACTION_QUEUE, 621 ACTION_DROP, 622 ACTION_COUNT, 623 ACTION_RSS, 624 ACTION_PF, 625 ACTION_VF, 626 ACTION_METER, 627 ZERO, 628 }; 629 630 static const enum index action_mark[] = { 631 ACTION_MARK_ID, 632 ACTION_NEXT, 633 ZERO, 634 }; 635 636 static const enum index action_queue[] = { 637 ACTION_QUEUE_INDEX, 638 ACTION_NEXT, 639 ZERO, 640 }; 641 642 static const enum index action_rss[] = { 643 ACTION_RSS_FUNC, 644 ACTION_RSS_LEVEL, 645 ACTION_RSS_TYPES, 646 ACTION_RSS_KEY, 647 ACTION_RSS_KEY_LEN, 648 ACTION_RSS_QUEUES, 649 ACTION_NEXT, 650 ZERO, 651 }; 652 653 static const enum index action_vf[] = { 654 ACTION_VF_ORIGINAL, 655 ACTION_VF_ID, 656 ACTION_NEXT, 657 ZERO, 658 }; 659 660 static const enum index action_meter[] = { 661 ACTION_METER_ID, 662 ACTION_NEXT, 663 ZERO, 664 }; 665 666 static int parse_init(struct context *, const struct token *, 667 const char *, unsigned int, 668 void *, unsigned int); 669 static int parse_vc(struct context *, const struct token *, 670 const char *, unsigned int, 671 void *, unsigned int); 672 static int parse_vc_spec(struct context *, const struct token *, 673 const char *, unsigned int, void *, unsigned int); 674 static int parse_vc_conf(struct context *, const struct token *, 675 const char *, unsigned int, void *, unsigned int); 676 static int parse_vc_action_rss(struct context *, const struct token *, 677 const char *, unsigned int, void *, 678 unsigned int); 679 static int parse_vc_action_rss_func(struct context *, const struct token *, 680 const char *, unsigned int, void *, 681 unsigned int); 682 static int parse_vc_action_rss_type(struct context *, const struct token *, 683 const char *, unsigned int, void *, 684 unsigned int); 685 static int parse_vc_action_rss_queue(struct context *, const struct token *, 686 const char *, unsigned int, void *, 687 unsigned int); 688 static int parse_destroy(struct context *, const struct token *, 689 const char *, unsigned int, 690 void *, unsigned int); 691 static int parse_flush(struct context *, const struct token *, 692 const char *, unsigned int, 693 void *, unsigned int); 694 static int parse_query(struct context *, const struct token *, 695 const char *, unsigned int, 696 void *, unsigned int); 697 static int parse_action(struct context *, const struct token *, 698 const char *, unsigned int, 699 void *, unsigned int); 700 static int parse_list(struct context *, const struct token *, 701 const char *, unsigned int, 702 void *, unsigned int); 703 static int parse_isolate(struct context *, const struct token *, 704 const char *, unsigned int, 705 void *, unsigned int); 706 static int parse_int(struct context *, const struct token *, 707 const char *, unsigned int, 708 void *, unsigned int); 709 static int parse_prefix(struct context *, const struct token *, 710 const char *, unsigned int, 711 void *, unsigned int); 712 static int parse_boolean(struct context *, const struct token *, 713 const char *, unsigned int, 714 void *, unsigned int); 715 static int parse_string(struct context *, const struct token *, 716 const char *, unsigned int, 717 void *, unsigned int); 718 static int parse_mac_addr(struct context *, const struct token *, 719 const char *, unsigned int, 720 void *, unsigned int); 721 static int parse_ipv4_addr(struct context *, const struct token *, 722 const char *, unsigned int, 723 void *, unsigned int); 724 static int parse_ipv6_addr(struct context *, const struct token *, 725 const char *, unsigned int, 726 void *, unsigned int); 727 static int parse_port(struct context *, const struct token *, 728 const char *, unsigned int, 729 void *, unsigned int); 730 static int comp_none(struct context *, const struct token *, 731 unsigned int, char *, unsigned int); 732 static int comp_boolean(struct context *, const struct token *, 733 unsigned int, char *, unsigned int); 734 static int comp_action(struct context *, const struct token *, 735 unsigned int, char *, unsigned int); 736 static int comp_port(struct context *, const struct token *, 737 unsigned int, char *, unsigned int); 738 static int comp_rule_id(struct context *, const struct token *, 739 unsigned int, char *, unsigned int); 740 static int comp_vc_action_rss_type(struct context *, const struct token *, 741 unsigned int, char *, unsigned int); 742 static int comp_vc_action_rss_queue(struct context *, const struct token *, 743 unsigned int, char *, unsigned int); 744 745 /** Token definitions. */ 746 static const struct token token_list[] = { 747 /* Special tokens. */ 748 [ZERO] = { 749 .name = "ZERO", 750 .help = "null entry, abused as the entry point", 751 .next = NEXT(NEXT_ENTRY(FLOW)), 752 }, 753 [END] = { 754 .name = "", 755 .type = "RETURN", 756 .help = "command may end here", 757 }, 758 /* Common tokens. */ 759 [INTEGER] = { 760 .name = "{int}", 761 .type = "INTEGER", 762 .help = "integer value", 763 .call = parse_int, 764 .comp = comp_none, 765 }, 766 [UNSIGNED] = { 767 .name = "{unsigned}", 768 .type = "UNSIGNED", 769 .help = "unsigned integer value", 770 .call = parse_int, 771 .comp = comp_none, 772 }, 773 [PREFIX] = { 774 .name = "{prefix}", 775 .type = "PREFIX", 776 .help = "prefix length for bit-mask", 777 .call = parse_prefix, 778 .comp = comp_none, 779 }, 780 [BOOLEAN] = { 781 .name = "{boolean}", 782 .type = "BOOLEAN", 783 .help = "any boolean value", 784 .call = parse_boolean, 785 .comp = comp_boolean, 786 }, 787 [STRING] = { 788 .name = "{string}", 789 .type = "STRING", 790 .help = "fixed string", 791 .call = parse_string, 792 .comp = comp_none, 793 }, 794 [MAC_ADDR] = { 795 .name = "{MAC address}", 796 .type = "MAC-48", 797 .help = "standard MAC address notation", 798 .call = parse_mac_addr, 799 .comp = comp_none, 800 }, 801 [IPV4_ADDR] = { 802 .name = "{IPv4 address}", 803 .type = "IPV4 ADDRESS", 804 .help = "standard IPv4 address notation", 805 .call = parse_ipv4_addr, 806 .comp = comp_none, 807 }, 808 [IPV6_ADDR] = { 809 .name = "{IPv6 address}", 810 .type = "IPV6 ADDRESS", 811 .help = "standard IPv6 address notation", 812 .call = parse_ipv6_addr, 813 .comp = comp_none, 814 }, 815 [RULE_ID] = { 816 .name = "{rule id}", 817 .type = "RULE ID", 818 .help = "rule identifier", 819 .call = parse_int, 820 .comp = comp_rule_id, 821 }, 822 [PORT_ID] = { 823 .name = "{port_id}", 824 .type = "PORT ID", 825 .help = "port identifier", 826 .call = parse_port, 827 .comp = comp_port, 828 }, 829 [GROUP_ID] = { 830 .name = "{group_id}", 831 .type = "GROUP ID", 832 .help = "group identifier", 833 .call = parse_int, 834 .comp = comp_none, 835 }, 836 [PRIORITY_LEVEL] = { 837 .name = "{level}", 838 .type = "PRIORITY", 839 .help = "priority level", 840 .call = parse_int, 841 .comp = comp_none, 842 }, 843 /* Top-level command. */ 844 [FLOW] = { 845 .name = "flow", 846 .type = "{command} {port_id} [{arg} [...]]", 847 .help = "manage ingress/egress flow rules", 848 .next = NEXT(NEXT_ENTRY 849 (VALIDATE, 850 CREATE, 851 DESTROY, 852 FLUSH, 853 LIST, 854 QUERY, 855 ISOLATE)), 856 .call = parse_init, 857 }, 858 /* Sub-level commands. */ 859 [VALIDATE] = { 860 .name = "validate", 861 .help = "check whether a flow rule can be created", 862 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)), 863 .args = ARGS(ARGS_ENTRY(struct buffer, port)), 864 .call = parse_vc, 865 }, 866 [CREATE] = { 867 .name = "create", 868 .help = "create a flow rule", 869 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)), 870 .args = ARGS(ARGS_ENTRY(struct buffer, port)), 871 .call = parse_vc, 872 }, 873 [DESTROY] = { 874 .name = "destroy", 875 .help = "destroy specific flow rules", 876 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)), 877 .args = ARGS(ARGS_ENTRY(struct buffer, port)), 878 .call = parse_destroy, 879 }, 880 [FLUSH] = { 881 .name = "flush", 882 .help = "destroy all flow rules", 883 .next = NEXT(NEXT_ENTRY(PORT_ID)), 884 .args = ARGS(ARGS_ENTRY(struct buffer, port)), 885 .call = parse_flush, 886 }, 887 [QUERY] = { 888 .name = "query", 889 .help = "query an existing flow rule", 890 .next = NEXT(NEXT_ENTRY(QUERY_ACTION), 891 NEXT_ENTRY(RULE_ID), 892 NEXT_ENTRY(PORT_ID)), 893 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action), 894 ARGS_ENTRY(struct buffer, args.query.rule), 895 ARGS_ENTRY(struct buffer, port)), 896 .call = parse_query, 897 }, 898 [LIST] = { 899 .name = "list", 900 .help = "list existing flow rules", 901 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)), 902 .args = ARGS(ARGS_ENTRY(struct buffer, port)), 903 .call = parse_list, 904 }, 905 [ISOLATE] = { 906 .name = "isolate", 907 .help = "restrict ingress traffic to the defined flow rules", 908 .next = NEXT(NEXT_ENTRY(BOOLEAN), 909 NEXT_ENTRY(PORT_ID)), 910 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set), 911 ARGS_ENTRY(struct buffer, port)), 912 .call = parse_isolate, 913 }, 914 /* Destroy arguments. */ 915 [DESTROY_RULE] = { 916 .name = "rule", 917 .help = "specify a rule identifier", 918 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)), 919 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)), 920 .call = parse_destroy, 921 }, 922 /* Query arguments. */ 923 [QUERY_ACTION] = { 924 .name = "{action}", 925 .type = "ACTION", 926 .help = "action to query, must be part of the rule", 927 .call = parse_action, 928 .comp = comp_action, 929 }, 930 /* List arguments. */ 931 [LIST_GROUP] = { 932 .name = "group", 933 .help = "specify a group", 934 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)), 935 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)), 936 .call = parse_list, 937 }, 938 /* Validate/create attributes. */ 939 [GROUP] = { 940 .name = "group", 941 .help = "specify a group", 942 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)), 943 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)), 944 .call = parse_vc, 945 }, 946 [PRIORITY] = { 947 .name = "priority", 948 .help = "specify a priority level", 949 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)), 950 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)), 951 .call = parse_vc, 952 }, 953 [INGRESS] = { 954 .name = "ingress", 955 .help = "affect rule to ingress", 956 .next = NEXT(next_vc_attr), 957 .call = parse_vc, 958 }, 959 [EGRESS] = { 960 .name = "egress", 961 .help = "affect rule to egress", 962 .next = NEXT(next_vc_attr), 963 .call = parse_vc, 964 }, 965 [TRANSFER] = { 966 .name = "transfer", 967 .help = "apply rule directly to endpoints found in pattern", 968 .next = NEXT(next_vc_attr), 969 .call = parse_vc, 970 }, 971 /* Validate/create pattern. */ 972 [PATTERN] = { 973 .name = "pattern", 974 .help = "submit a list of pattern items", 975 .next = NEXT(next_item), 976 .call = parse_vc, 977 }, 978 [ITEM_PARAM_IS] = { 979 .name = "is", 980 .help = "match value perfectly (with full bit-mask)", 981 .call = parse_vc_spec, 982 }, 983 [ITEM_PARAM_SPEC] = { 984 .name = "spec", 985 .help = "match value according to configured bit-mask", 986 .call = parse_vc_spec, 987 }, 988 [ITEM_PARAM_LAST] = { 989 .name = "last", 990 .help = "specify upper bound to establish a range", 991 .call = parse_vc_spec, 992 }, 993 [ITEM_PARAM_MASK] = { 994 .name = "mask", 995 .help = "specify bit-mask with relevant bits set to one", 996 .call = parse_vc_spec, 997 }, 998 [ITEM_PARAM_PREFIX] = { 999 .name = "prefix", 1000 .help = "generate bit-mask from a prefix length", 1001 .call = parse_vc_spec, 1002 }, 1003 [ITEM_NEXT] = { 1004 .name = "/", 1005 .help = "specify next pattern item", 1006 .next = NEXT(next_item), 1007 }, 1008 [ITEM_END] = { 1009 .name = "end", 1010 .help = "end list of pattern items", 1011 .priv = PRIV_ITEM(END, 0), 1012 .next = NEXT(NEXT_ENTRY(ACTIONS)), 1013 .call = parse_vc, 1014 }, 1015 [ITEM_VOID] = { 1016 .name = "void", 1017 .help = "no-op pattern item", 1018 .priv = PRIV_ITEM(VOID, 0), 1019 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)), 1020 .call = parse_vc, 1021 }, 1022 [ITEM_INVERT] = { 1023 .name = "invert", 1024 .help = "perform actions when pattern does not match", 1025 .priv = PRIV_ITEM(INVERT, 0), 1026 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)), 1027 .call = parse_vc, 1028 }, 1029 [ITEM_ANY] = { 1030 .name = "any", 1031 .help = "match any protocol for the current layer", 1032 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)), 1033 .next = NEXT(item_any), 1034 .call = parse_vc, 1035 }, 1036 [ITEM_ANY_NUM] = { 1037 .name = "num", 1038 .help = "number of layers covered", 1039 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param), 1040 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)), 1041 }, 1042 [ITEM_PF] = { 1043 .name = "pf", 1044 .help = "match packets addressed to the physical function", 1045 .priv = PRIV_ITEM(PF, 0), 1046 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)), 1047 .call = parse_vc, 1048 }, 1049 [ITEM_VF] = { 1050 .name = "vf", 1051 .help = "match packets addressed to a virtual function ID", 1052 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)), 1053 .next = NEXT(item_vf), 1054 .call = parse_vc, 1055 }, 1056 [ITEM_VF_ID] = { 1057 .name = "id", 1058 .help = "destination VF ID", 1059 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param), 1060 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)), 1061 }, 1062 [ITEM_PORT] = { 1063 .name = "port", 1064 .help = "device-specific physical port index to use", 1065 .priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)), 1066 .next = NEXT(item_port), 1067 .call = parse_vc, 1068 }, 1069 [ITEM_PORT_INDEX] = { 1070 .name = "index", 1071 .help = "physical port index", 1072 .next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param), 1073 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)), 1074 }, 1075 [ITEM_RAW] = { 1076 .name = "raw", 1077 .help = "match an arbitrary byte string", 1078 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE), 1079 .next = NEXT(item_raw), 1080 .call = parse_vc, 1081 }, 1082 [ITEM_RAW_RELATIVE] = { 1083 .name = "relative", 1084 .help = "look for pattern after the previous item", 1085 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param), 1086 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw, 1087 relative, 1)), 1088 }, 1089 [ITEM_RAW_SEARCH] = { 1090 .name = "search", 1091 .help = "search pattern from offset (see also limit)", 1092 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param), 1093 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw, 1094 search, 1)), 1095 }, 1096 [ITEM_RAW_OFFSET] = { 1097 .name = "offset", 1098 .help = "absolute or relative offset for pattern", 1099 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param), 1100 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)), 1101 }, 1102 [ITEM_RAW_LIMIT] = { 1103 .name = "limit", 1104 .help = "search area limit for start of pattern", 1105 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param), 1106 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)), 1107 }, 1108 [ITEM_RAW_PATTERN] = { 1109 .name = "pattern", 1110 .help = "byte string to look for", 1111 .next = NEXT(item_raw, 1112 NEXT_ENTRY(STRING), 1113 NEXT_ENTRY(ITEM_PARAM_IS, 1114 ITEM_PARAM_SPEC, 1115 ITEM_PARAM_MASK)), 1116 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern), 1117 ARGS_ENTRY(struct rte_flow_item_raw, length), 1118 ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw), 1119 ITEM_RAW_PATTERN_SIZE)), 1120 }, 1121 [ITEM_ETH] = { 1122 .name = "eth", 1123 .help = "match Ethernet header", 1124 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)), 1125 .next = NEXT(item_eth), 1126 .call = parse_vc, 1127 }, 1128 [ITEM_ETH_DST] = { 1129 .name = "dst", 1130 .help = "destination MAC", 1131 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param), 1132 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)), 1133 }, 1134 [ITEM_ETH_SRC] = { 1135 .name = "src", 1136 .help = "source MAC", 1137 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param), 1138 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)), 1139 }, 1140 [ITEM_ETH_TYPE] = { 1141 .name = "type", 1142 .help = "EtherType", 1143 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param), 1144 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)), 1145 }, 1146 [ITEM_VLAN] = { 1147 .name = "vlan", 1148 .help = "match 802.1Q/ad VLAN tag", 1149 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), 1150 .next = NEXT(item_vlan), 1151 .call = parse_vc, 1152 }, 1153 [ITEM_VLAN_TCI] = { 1154 .name = "tci", 1155 .help = "tag control information", 1156 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), 1157 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)), 1158 }, 1159 [ITEM_VLAN_PCP] = { 1160 .name = "pcp", 1161 .help = "priority code point", 1162 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), 1163 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan, 1164 tci, "\xe0\x00")), 1165 }, 1166 [ITEM_VLAN_DEI] = { 1167 .name = "dei", 1168 .help = "drop eligible indicator", 1169 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), 1170 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan, 1171 tci, "\x10\x00")), 1172 }, 1173 [ITEM_VLAN_VID] = { 1174 .name = "vid", 1175 .help = "VLAN identifier", 1176 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), 1177 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan, 1178 tci, "\x0f\xff")), 1179 }, 1180 [ITEM_VLAN_INNER_TYPE] = { 1181 .name = "inner_type", 1182 .help = "inner EtherType", 1183 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param), 1184 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, 1185 inner_type)), 1186 }, 1187 [ITEM_IPV4] = { 1188 .name = "ipv4", 1189 .help = "match IPv4 header", 1190 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), 1191 .next = NEXT(item_ipv4), 1192 .call = parse_vc, 1193 }, 1194 [ITEM_IPV4_TOS] = { 1195 .name = "tos", 1196 .help = "type of service", 1197 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param), 1198 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, 1199 hdr.type_of_service)), 1200 }, 1201 [ITEM_IPV4_TTL] = { 1202 .name = "ttl", 1203 .help = "time to live", 1204 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param), 1205 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, 1206 hdr.time_to_live)), 1207 }, 1208 [ITEM_IPV4_PROTO] = { 1209 .name = "proto", 1210 .help = "next protocol ID", 1211 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param), 1212 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, 1213 hdr.next_proto_id)), 1214 }, 1215 [ITEM_IPV4_SRC] = { 1216 .name = "src", 1217 .help = "source address", 1218 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param), 1219 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, 1220 hdr.src_addr)), 1221 }, 1222 [ITEM_IPV4_DST] = { 1223 .name = "dst", 1224 .help = "destination address", 1225 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param), 1226 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4, 1227 hdr.dst_addr)), 1228 }, 1229 [ITEM_IPV6] = { 1230 .name = "ipv6", 1231 .help = "match IPv6 header", 1232 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), 1233 .next = NEXT(item_ipv6), 1234 .call = parse_vc, 1235 }, 1236 [ITEM_IPV6_TC] = { 1237 .name = "tc", 1238 .help = "traffic class", 1239 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), 1240 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6, 1241 hdr.vtc_flow, 1242 "\x0f\xf0\x00\x00")), 1243 }, 1244 [ITEM_IPV6_FLOW] = { 1245 .name = "flow", 1246 .help = "flow label", 1247 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), 1248 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6, 1249 hdr.vtc_flow, 1250 "\x00\x0f\xff\xff")), 1251 }, 1252 [ITEM_IPV6_PROTO] = { 1253 .name = "proto", 1254 .help = "protocol (next header)", 1255 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), 1256 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, 1257 hdr.proto)), 1258 }, 1259 [ITEM_IPV6_HOP] = { 1260 .name = "hop", 1261 .help = "hop limit", 1262 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param), 1263 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, 1264 hdr.hop_limits)), 1265 }, 1266 [ITEM_IPV6_SRC] = { 1267 .name = "src", 1268 .help = "source address", 1269 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param), 1270 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, 1271 hdr.src_addr)), 1272 }, 1273 [ITEM_IPV6_DST] = { 1274 .name = "dst", 1275 .help = "destination address", 1276 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param), 1277 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6, 1278 hdr.dst_addr)), 1279 }, 1280 [ITEM_ICMP] = { 1281 .name = "icmp", 1282 .help = "match ICMP header", 1283 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), 1284 .next = NEXT(item_icmp), 1285 .call = parse_vc, 1286 }, 1287 [ITEM_ICMP_TYPE] = { 1288 .name = "type", 1289 .help = "ICMP packet type", 1290 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param), 1291 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp, 1292 hdr.icmp_type)), 1293 }, 1294 [ITEM_ICMP_CODE] = { 1295 .name = "code", 1296 .help = "ICMP packet code", 1297 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param), 1298 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp, 1299 hdr.icmp_code)), 1300 }, 1301 [ITEM_UDP] = { 1302 .name = "udp", 1303 .help = "match UDP header", 1304 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)), 1305 .next = NEXT(item_udp), 1306 .call = parse_vc, 1307 }, 1308 [ITEM_UDP_SRC] = { 1309 .name = "src", 1310 .help = "UDP source port", 1311 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param), 1312 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp, 1313 hdr.src_port)), 1314 }, 1315 [ITEM_UDP_DST] = { 1316 .name = "dst", 1317 .help = "UDP destination port", 1318 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param), 1319 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp, 1320 hdr.dst_port)), 1321 }, 1322 [ITEM_TCP] = { 1323 .name = "tcp", 1324 .help = "match TCP header", 1325 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), 1326 .next = NEXT(item_tcp), 1327 .call = parse_vc, 1328 }, 1329 [ITEM_TCP_SRC] = { 1330 .name = "src", 1331 .help = "TCP source port", 1332 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param), 1333 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp, 1334 hdr.src_port)), 1335 }, 1336 [ITEM_TCP_DST] = { 1337 .name = "dst", 1338 .help = "TCP destination port", 1339 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param), 1340 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp, 1341 hdr.dst_port)), 1342 }, 1343 [ITEM_TCP_FLAGS] = { 1344 .name = "flags", 1345 .help = "TCP flags", 1346 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param), 1347 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp, 1348 hdr.tcp_flags)), 1349 }, 1350 [ITEM_SCTP] = { 1351 .name = "sctp", 1352 .help = "match SCTP header", 1353 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), 1354 .next = NEXT(item_sctp), 1355 .call = parse_vc, 1356 }, 1357 [ITEM_SCTP_SRC] = { 1358 .name = "src", 1359 .help = "SCTP source port", 1360 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), 1361 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, 1362 hdr.src_port)), 1363 }, 1364 [ITEM_SCTP_DST] = { 1365 .name = "dst", 1366 .help = "SCTP destination port", 1367 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), 1368 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, 1369 hdr.dst_port)), 1370 }, 1371 [ITEM_SCTP_TAG] = { 1372 .name = "tag", 1373 .help = "validation tag", 1374 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), 1375 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, 1376 hdr.tag)), 1377 }, 1378 [ITEM_SCTP_CKSUM] = { 1379 .name = "cksum", 1380 .help = "checksum", 1381 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param), 1382 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp, 1383 hdr.cksum)), 1384 }, 1385 [ITEM_VXLAN] = { 1386 .name = "vxlan", 1387 .help = "match VXLAN header", 1388 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), 1389 .next = NEXT(item_vxlan), 1390 .call = parse_vc, 1391 }, 1392 [ITEM_VXLAN_VNI] = { 1393 .name = "vni", 1394 .help = "VXLAN identifier", 1395 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param), 1396 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)), 1397 }, 1398 [ITEM_E_TAG] = { 1399 .name = "e_tag", 1400 .help = "match E-Tag header", 1401 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), 1402 .next = NEXT(item_e_tag), 1403 .call = parse_vc, 1404 }, 1405 [ITEM_E_TAG_GRP_ECID_B] = { 1406 .name = "grp_ecid_b", 1407 .help = "GRP and E-CID base", 1408 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param), 1409 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag, 1410 rsvd_grp_ecid_b, 1411 "\x3f\xff")), 1412 }, 1413 [ITEM_NVGRE] = { 1414 .name = "nvgre", 1415 .help = "match NVGRE header", 1416 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), 1417 .next = NEXT(item_nvgre), 1418 .call = parse_vc, 1419 }, 1420 [ITEM_NVGRE_TNI] = { 1421 .name = "tni", 1422 .help = "virtual subnet ID", 1423 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param), 1424 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)), 1425 }, 1426 [ITEM_MPLS] = { 1427 .name = "mpls", 1428 .help = "match MPLS header", 1429 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), 1430 .next = NEXT(item_mpls), 1431 .call = parse_vc, 1432 }, 1433 [ITEM_MPLS_LABEL] = { 1434 .name = "label", 1435 .help = "MPLS label", 1436 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param), 1437 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls, 1438 label_tc_s, 1439 "\xff\xff\xf0")), 1440 }, 1441 [ITEM_GRE] = { 1442 .name = "gre", 1443 .help = "match GRE header", 1444 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)), 1445 .next = NEXT(item_gre), 1446 .call = parse_vc, 1447 }, 1448 [ITEM_GRE_PROTO] = { 1449 .name = "protocol", 1450 .help = "GRE protocol type", 1451 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param), 1452 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre, 1453 protocol)), 1454 }, 1455 [ITEM_FUZZY] = { 1456 .name = "fuzzy", 1457 .help = "fuzzy pattern match, expect faster than default", 1458 .priv = PRIV_ITEM(FUZZY, 1459 sizeof(struct rte_flow_item_fuzzy)), 1460 .next = NEXT(item_fuzzy), 1461 .call = parse_vc, 1462 }, 1463 [ITEM_FUZZY_THRESH] = { 1464 .name = "thresh", 1465 .help = "match accuracy threshold", 1466 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param), 1467 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy, 1468 thresh)), 1469 }, 1470 [ITEM_GTP] = { 1471 .name = "gtp", 1472 .help = "match GTP header", 1473 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), 1474 .next = NEXT(item_gtp), 1475 .call = parse_vc, 1476 }, 1477 [ITEM_GTP_TEID] = { 1478 .name = "teid", 1479 .help = "tunnel endpoint identifier", 1480 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param), 1481 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)), 1482 }, 1483 [ITEM_GTPC] = { 1484 .name = "gtpc", 1485 .help = "match GTP header", 1486 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), 1487 .next = NEXT(item_gtp), 1488 .call = parse_vc, 1489 }, 1490 [ITEM_GTPU] = { 1491 .name = "gtpu", 1492 .help = "match GTP header", 1493 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), 1494 .next = NEXT(item_gtp), 1495 .call = parse_vc, 1496 }, 1497 [ITEM_GENEVE] = { 1498 .name = "geneve", 1499 .help = "match GENEVE header", 1500 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)), 1501 .next = NEXT(item_geneve), 1502 .call = parse_vc, 1503 }, 1504 [ITEM_GENEVE_VNI] = { 1505 .name = "vni", 1506 .help = "virtual network identifier", 1507 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param), 1508 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)), 1509 }, 1510 [ITEM_GENEVE_PROTO] = { 1511 .name = "protocol", 1512 .help = "GENEVE protocol type", 1513 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param), 1514 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, 1515 protocol)), 1516 }, 1517 1518 /* Validate/create actions. */ 1519 [ACTIONS] = { 1520 .name = "actions", 1521 .help = "submit a list of associated actions", 1522 .next = NEXT(next_action), 1523 .call = parse_vc, 1524 }, 1525 [ACTION_NEXT] = { 1526 .name = "/", 1527 .help = "specify next action", 1528 .next = NEXT(next_action), 1529 }, 1530 [ACTION_END] = { 1531 .name = "end", 1532 .help = "end list of actions", 1533 .priv = PRIV_ACTION(END, 0), 1534 .call = parse_vc, 1535 }, 1536 [ACTION_VOID] = { 1537 .name = "void", 1538 .help = "no-op action", 1539 .priv = PRIV_ACTION(VOID, 0), 1540 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), 1541 .call = parse_vc, 1542 }, 1543 [ACTION_PASSTHRU] = { 1544 .name = "passthru", 1545 .help = "let subsequent rule process matched packets", 1546 .priv = PRIV_ACTION(PASSTHRU, 0), 1547 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), 1548 .call = parse_vc, 1549 }, 1550 [ACTION_MARK] = { 1551 .name = "mark", 1552 .help = "attach 32 bit value to packets", 1553 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)), 1554 .next = NEXT(action_mark), 1555 .call = parse_vc, 1556 }, 1557 [ACTION_MARK_ID] = { 1558 .name = "id", 1559 .help = "32 bit value to return with packets", 1560 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)), 1561 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)), 1562 .call = parse_vc_conf, 1563 }, 1564 [ACTION_FLAG] = { 1565 .name = "flag", 1566 .help = "flag packets", 1567 .priv = PRIV_ACTION(FLAG, 0), 1568 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), 1569 .call = parse_vc, 1570 }, 1571 [ACTION_QUEUE] = { 1572 .name = "queue", 1573 .help = "assign packets to a given queue index", 1574 .priv = PRIV_ACTION(QUEUE, 1575 sizeof(struct rte_flow_action_queue)), 1576 .next = NEXT(action_queue), 1577 .call = parse_vc, 1578 }, 1579 [ACTION_QUEUE_INDEX] = { 1580 .name = "index", 1581 .help = "queue index to use", 1582 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)), 1583 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)), 1584 .call = parse_vc_conf, 1585 }, 1586 [ACTION_DROP] = { 1587 .name = "drop", 1588 .help = "drop packets (note: passthru has priority)", 1589 .priv = PRIV_ACTION(DROP, 0), 1590 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), 1591 .call = parse_vc, 1592 }, 1593 [ACTION_COUNT] = { 1594 .name = "count", 1595 .help = "enable counters for this rule", 1596 .priv = PRIV_ACTION(COUNT, 0), 1597 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), 1598 .call = parse_vc, 1599 }, 1600 [ACTION_RSS] = { 1601 .name = "rss", 1602 .help = "spread packets among several queues", 1603 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)), 1604 .next = NEXT(action_rss), 1605 .call = parse_vc_action_rss, 1606 }, 1607 [ACTION_RSS_FUNC] = { 1608 .name = "func", 1609 .help = "RSS hash function to apply", 1610 .next = NEXT(action_rss, 1611 NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT, 1612 ACTION_RSS_FUNC_TOEPLITZ, 1613 ACTION_RSS_FUNC_SIMPLE_XOR)), 1614 }, 1615 [ACTION_RSS_FUNC_DEFAULT] = { 1616 .name = "default", 1617 .help = "default hash function", 1618 .call = parse_vc_action_rss_func, 1619 }, 1620 [ACTION_RSS_FUNC_TOEPLITZ] = { 1621 .name = "toeplitz", 1622 .help = "Toeplitz hash function", 1623 .call = parse_vc_action_rss_func, 1624 }, 1625 [ACTION_RSS_FUNC_SIMPLE_XOR] = { 1626 .name = "simple_xor", 1627 .help = "simple XOR hash function", 1628 .call = parse_vc_action_rss_func, 1629 }, 1630 [ACTION_RSS_LEVEL] = { 1631 .name = "level", 1632 .help = "encapsulation level for \"types\"", 1633 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)), 1634 .args = ARGS(ARGS_ENTRY_ARB 1635 (offsetof(struct action_rss_data, conf) + 1636 offsetof(struct rte_flow_action_rss, level), 1637 sizeof(((struct rte_flow_action_rss *)0)-> 1638 level))), 1639 }, 1640 [ACTION_RSS_TYPES] = { 1641 .name = "types", 1642 .help = "specific RSS hash types", 1643 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)), 1644 }, 1645 [ACTION_RSS_TYPE] = { 1646 .name = "{type}", 1647 .help = "RSS hash type", 1648 .call = parse_vc_action_rss_type, 1649 .comp = comp_vc_action_rss_type, 1650 }, 1651 [ACTION_RSS_KEY] = { 1652 .name = "key", 1653 .help = "RSS hash key", 1654 .next = NEXT(action_rss, NEXT_ENTRY(STRING)), 1655 .args = ARGS(ARGS_ENTRY_ARB(0, 0), 1656 ARGS_ENTRY_ARB 1657 (offsetof(struct action_rss_data, conf) + 1658 offsetof(struct rte_flow_action_rss, key_len), 1659 sizeof(((struct rte_flow_action_rss *)0)-> 1660 key_len)), 1661 ARGS_ENTRY(struct action_rss_data, key)), 1662 }, 1663 [ACTION_RSS_KEY_LEN] = { 1664 .name = "key_len", 1665 .help = "RSS hash key length in bytes", 1666 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)), 1667 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED 1668 (offsetof(struct action_rss_data, conf) + 1669 offsetof(struct rte_flow_action_rss, key_len), 1670 sizeof(((struct rte_flow_action_rss *)0)-> 1671 key_len), 1672 0, 1673 RSS_HASH_KEY_LENGTH)), 1674 }, 1675 [ACTION_RSS_QUEUES] = { 1676 .name = "queues", 1677 .help = "queue indices to use", 1678 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)), 1679 .call = parse_vc_conf, 1680 }, 1681 [ACTION_RSS_QUEUE] = { 1682 .name = "{queue}", 1683 .help = "queue index", 1684 .call = parse_vc_action_rss_queue, 1685 .comp = comp_vc_action_rss_queue, 1686 }, 1687 [ACTION_PF] = { 1688 .name = "pf", 1689 .help = "redirect packets to physical device function", 1690 .priv = PRIV_ACTION(PF, 0), 1691 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)), 1692 .call = parse_vc, 1693 }, 1694 [ACTION_VF] = { 1695 .name = "vf", 1696 .help = "redirect packets to virtual device function", 1697 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)), 1698 .next = NEXT(action_vf), 1699 .call = parse_vc, 1700 }, 1701 [ACTION_VF_ORIGINAL] = { 1702 .name = "original", 1703 .help = "use original VF ID if possible", 1704 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)), 1705 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf, 1706 original, 1)), 1707 .call = parse_vc_conf, 1708 }, 1709 [ACTION_VF_ID] = { 1710 .name = "id", 1711 .help = "VF ID to redirect packets to", 1712 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)), 1713 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)), 1714 .call = parse_vc_conf, 1715 }, 1716 [ACTION_METER] = { 1717 .name = "meter", 1718 .help = "meter the directed packets at given id", 1719 .priv = PRIV_ACTION(METER, 1720 sizeof(struct rte_flow_action_meter)), 1721 .next = NEXT(action_meter), 1722 .call = parse_vc, 1723 }, 1724 [ACTION_METER_ID] = { 1725 .name = "mtr_id", 1726 .help = "meter id to use", 1727 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)), 1728 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)), 1729 .call = parse_vc_conf, 1730 }, 1731 }; 1732 1733 /** Remove and return last entry from argument stack. */ 1734 static const struct arg * 1735 pop_args(struct context *ctx) 1736 { 1737 return ctx->args_num ? ctx->args[--ctx->args_num] : NULL; 1738 } 1739 1740 /** Add entry on top of the argument stack. */ 1741 static int 1742 push_args(struct context *ctx, const struct arg *arg) 1743 { 1744 if (ctx->args_num == CTX_STACK_SIZE) 1745 return -1; 1746 ctx->args[ctx->args_num++] = arg; 1747 return 0; 1748 } 1749 1750 /** Spread value into buffer according to bit-mask. */ 1751 static size_t 1752 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg) 1753 { 1754 uint32_t i = arg->size; 1755 uint32_t end = 0; 1756 int sub = 1; 1757 int add = 0; 1758 size_t len = 0; 1759 1760 if (!arg->mask) 1761 return 0; 1762 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 1763 if (!arg->hton) { 1764 i = 0; 1765 end = arg->size; 1766 sub = 0; 1767 add = 1; 1768 } 1769 #endif 1770 while (i != end) { 1771 unsigned int shift = 0; 1772 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub); 1773 1774 for (shift = 0; arg->mask[i] >> shift; ++shift) { 1775 if (!(arg->mask[i] & (1 << shift))) 1776 continue; 1777 ++len; 1778 if (!dst) 1779 continue; 1780 *buf &= ~(1 << shift); 1781 *buf |= (val & 1) << shift; 1782 val >>= 1; 1783 } 1784 i += add; 1785 } 1786 return len; 1787 } 1788 1789 /** Compare a string with a partial one of a given length. */ 1790 static int 1791 strcmp_partial(const char *full, const char *partial, size_t partial_len) 1792 { 1793 int r = strncmp(full, partial, partial_len); 1794 1795 if (r) 1796 return r; 1797 if (strlen(full) <= partial_len) 1798 return 0; 1799 return full[partial_len]; 1800 } 1801 1802 /** 1803 * Parse a prefix length and generate a bit-mask. 1804 * 1805 * Last argument (ctx->args) is retrieved to determine mask size, storage 1806 * location and whether the result must use network byte ordering. 1807 */ 1808 static int 1809 parse_prefix(struct context *ctx, const struct token *token, 1810 const char *str, unsigned int len, 1811 void *buf, unsigned int size) 1812 { 1813 const struct arg *arg = pop_args(ctx); 1814 static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff"; 1815 char *end; 1816 uintmax_t u; 1817 unsigned int bytes; 1818 unsigned int extra; 1819 1820 (void)token; 1821 /* Argument is expected. */ 1822 if (!arg) 1823 return -1; 1824 errno = 0; 1825 u = strtoumax(str, &end, 0); 1826 if (errno || (size_t)(end - str) != len) 1827 goto error; 1828 if (arg->mask) { 1829 uintmax_t v = 0; 1830 1831 extra = arg_entry_bf_fill(NULL, 0, arg); 1832 if (u > extra) 1833 goto error; 1834 if (!ctx->object) 1835 return len; 1836 extra -= u; 1837 while (u--) 1838 (v <<= 1, v |= 1); 1839 v <<= extra; 1840 if (!arg_entry_bf_fill(ctx->object, v, arg) || 1841 !arg_entry_bf_fill(ctx->objmask, -1, arg)) 1842 goto error; 1843 return len; 1844 } 1845 bytes = u / 8; 1846 extra = u % 8; 1847 size = arg->size; 1848 if (bytes > size || bytes + !!extra > size) 1849 goto error; 1850 if (!ctx->object) 1851 return len; 1852 buf = (uint8_t *)ctx->object + arg->offset; 1853 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 1854 if (!arg->hton) { 1855 memset((uint8_t *)buf + size - bytes, 0xff, bytes); 1856 memset(buf, 0x00, size - bytes); 1857 if (extra) 1858 ((uint8_t *)buf)[size - bytes - 1] = conv[extra]; 1859 } else 1860 #endif 1861 { 1862 memset(buf, 0xff, bytes); 1863 memset((uint8_t *)buf + bytes, 0x00, size - bytes); 1864 if (extra) 1865 ((uint8_t *)buf)[bytes] = conv[extra]; 1866 } 1867 if (ctx->objmask) 1868 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); 1869 return len; 1870 error: 1871 push_args(ctx, arg); 1872 return -1; 1873 } 1874 1875 /** Default parsing function for token name matching. */ 1876 static int 1877 parse_default(struct context *ctx, const struct token *token, 1878 const char *str, unsigned int len, 1879 void *buf, unsigned int size) 1880 { 1881 (void)ctx; 1882 (void)buf; 1883 (void)size; 1884 if (strcmp_partial(token->name, str, len)) 1885 return -1; 1886 return len; 1887 } 1888 1889 /** Parse flow command, initialize output buffer for subsequent tokens. */ 1890 static int 1891 parse_init(struct context *ctx, const struct token *token, 1892 const char *str, unsigned int len, 1893 void *buf, unsigned int size) 1894 { 1895 struct buffer *out = buf; 1896 1897 /* Token name must match. */ 1898 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 1899 return -1; 1900 /* Nothing else to do if there is no buffer. */ 1901 if (!out) 1902 return len; 1903 /* Make sure buffer is large enough. */ 1904 if (size < sizeof(*out)) 1905 return -1; 1906 /* Initialize buffer. */ 1907 memset(out, 0x00, sizeof(*out)); 1908 memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out)); 1909 ctx->objdata = 0; 1910 ctx->object = out; 1911 ctx->objmask = NULL; 1912 return len; 1913 } 1914 1915 /** Parse tokens for validate/create commands. */ 1916 static int 1917 parse_vc(struct context *ctx, const struct token *token, 1918 const char *str, unsigned int len, 1919 void *buf, unsigned int size) 1920 { 1921 struct buffer *out = buf; 1922 uint8_t *data; 1923 uint32_t data_size; 1924 1925 /* Token name must match. */ 1926 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 1927 return -1; 1928 /* Nothing else to do if there is no buffer. */ 1929 if (!out) 1930 return len; 1931 if (!out->command) { 1932 if (ctx->curr != VALIDATE && ctx->curr != CREATE) 1933 return -1; 1934 if (sizeof(*out) > size) 1935 return -1; 1936 out->command = ctx->curr; 1937 ctx->objdata = 0; 1938 ctx->object = out; 1939 ctx->objmask = NULL; 1940 out->args.vc.data = (uint8_t *)out + size; 1941 return len; 1942 } 1943 ctx->objdata = 0; 1944 ctx->object = &out->args.vc.attr; 1945 ctx->objmask = NULL; 1946 switch (ctx->curr) { 1947 case GROUP: 1948 case PRIORITY: 1949 return len; 1950 case INGRESS: 1951 out->args.vc.attr.ingress = 1; 1952 return len; 1953 case EGRESS: 1954 out->args.vc.attr.egress = 1; 1955 return len; 1956 case TRANSFER: 1957 out->args.vc.attr.transfer = 1; 1958 return len; 1959 case PATTERN: 1960 out->args.vc.pattern = 1961 (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1), 1962 sizeof(double)); 1963 ctx->object = out->args.vc.pattern; 1964 ctx->objmask = NULL; 1965 return len; 1966 case ACTIONS: 1967 out->args.vc.actions = 1968 (void *)RTE_ALIGN_CEIL((uintptr_t) 1969 (out->args.vc.pattern + 1970 out->args.vc.pattern_n), 1971 sizeof(double)); 1972 ctx->object = out->args.vc.actions; 1973 ctx->objmask = NULL; 1974 return len; 1975 default: 1976 if (!token->priv) 1977 return -1; 1978 break; 1979 } 1980 if (!out->args.vc.actions) { 1981 const struct parse_item_priv *priv = token->priv; 1982 struct rte_flow_item *item = 1983 out->args.vc.pattern + out->args.vc.pattern_n; 1984 1985 data_size = priv->size * 3; /* spec, last, mask */ 1986 data = (void *)RTE_ALIGN_FLOOR((uintptr_t) 1987 (out->args.vc.data - data_size), 1988 sizeof(double)); 1989 if ((uint8_t *)item + sizeof(*item) > data) 1990 return -1; 1991 *item = (struct rte_flow_item){ 1992 .type = priv->type, 1993 }; 1994 ++out->args.vc.pattern_n; 1995 ctx->object = item; 1996 ctx->objmask = NULL; 1997 } else { 1998 const struct parse_action_priv *priv = token->priv; 1999 struct rte_flow_action *action = 2000 out->args.vc.actions + out->args.vc.actions_n; 2001 2002 data_size = priv->size; /* configuration */ 2003 data = (void *)RTE_ALIGN_FLOOR((uintptr_t) 2004 (out->args.vc.data - data_size), 2005 sizeof(double)); 2006 if ((uint8_t *)action + sizeof(*action) > data) 2007 return -1; 2008 *action = (struct rte_flow_action){ 2009 .type = priv->type, 2010 .conf = data_size ? data : NULL, 2011 }; 2012 ++out->args.vc.actions_n; 2013 ctx->object = action; 2014 ctx->objmask = NULL; 2015 } 2016 memset(data, 0, data_size); 2017 out->args.vc.data = data; 2018 ctx->objdata = data_size; 2019 return len; 2020 } 2021 2022 /** Parse pattern item parameter type. */ 2023 static int 2024 parse_vc_spec(struct context *ctx, const struct token *token, 2025 const char *str, unsigned int len, 2026 void *buf, unsigned int size) 2027 { 2028 struct buffer *out = buf; 2029 struct rte_flow_item *item; 2030 uint32_t data_size; 2031 int index; 2032 int objmask = 0; 2033 2034 (void)size; 2035 /* Token name must match. */ 2036 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2037 return -1; 2038 /* Parse parameter types. */ 2039 switch (ctx->curr) { 2040 static const enum index prefix[] = NEXT_ENTRY(PREFIX); 2041 2042 case ITEM_PARAM_IS: 2043 index = 0; 2044 objmask = 1; 2045 break; 2046 case ITEM_PARAM_SPEC: 2047 index = 0; 2048 break; 2049 case ITEM_PARAM_LAST: 2050 index = 1; 2051 break; 2052 case ITEM_PARAM_PREFIX: 2053 /* Modify next token to expect a prefix. */ 2054 if (ctx->next_num < 2) 2055 return -1; 2056 ctx->next[ctx->next_num - 2] = prefix; 2057 /* Fall through. */ 2058 case ITEM_PARAM_MASK: 2059 index = 2; 2060 break; 2061 default: 2062 return -1; 2063 } 2064 /* Nothing else to do if there is no buffer. */ 2065 if (!out) 2066 return len; 2067 if (!out->args.vc.pattern_n) 2068 return -1; 2069 item = &out->args.vc.pattern[out->args.vc.pattern_n - 1]; 2070 data_size = ctx->objdata / 3; /* spec, last, mask */ 2071 /* Point to selected object. */ 2072 ctx->object = out->args.vc.data + (data_size * index); 2073 if (objmask) { 2074 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */ 2075 item->mask = ctx->objmask; 2076 } else 2077 ctx->objmask = NULL; 2078 /* Update relevant item pointer. */ 2079 *((const void **[]){ &item->spec, &item->last, &item->mask })[index] = 2080 ctx->object; 2081 return len; 2082 } 2083 2084 /** Parse action configuration field. */ 2085 static int 2086 parse_vc_conf(struct context *ctx, const struct token *token, 2087 const char *str, unsigned int len, 2088 void *buf, unsigned int size) 2089 { 2090 struct buffer *out = buf; 2091 2092 (void)size; 2093 /* Token name must match. */ 2094 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2095 return -1; 2096 /* Nothing else to do if there is no buffer. */ 2097 if (!out) 2098 return len; 2099 /* Point to selected object. */ 2100 ctx->object = out->args.vc.data; 2101 ctx->objmask = NULL; 2102 return len; 2103 } 2104 2105 /** Parse RSS action. */ 2106 static int 2107 parse_vc_action_rss(struct context *ctx, const struct token *token, 2108 const char *str, unsigned int len, 2109 void *buf, unsigned int size) 2110 { 2111 struct buffer *out = buf; 2112 struct rte_flow_action *action; 2113 struct action_rss_data *action_rss_data; 2114 unsigned int i; 2115 int ret; 2116 2117 ret = parse_vc(ctx, token, str, len, buf, size); 2118 if (ret < 0) 2119 return ret; 2120 /* Nothing else to do if there is no buffer. */ 2121 if (!out) 2122 return ret; 2123 if (!out->args.vc.actions_n) 2124 return -1; 2125 action = &out->args.vc.actions[out->args.vc.actions_n - 1]; 2126 /* Point to selected object. */ 2127 ctx->object = out->args.vc.data; 2128 ctx->objmask = NULL; 2129 /* Set up default configuration. */ 2130 action_rss_data = ctx->object; 2131 *action_rss_data = (struct action_rss_data){ 2132 .conf = (struct rte_flow_action_rss){ 2133 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2134 .level = 0, 2135 .types = rss_hf, 2136 .key_len = sizeof(action_rss_data->key), 2137 .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM), 2138 .key = action_rss_data->key, 2139 .queue = action_rss_data->queue, 2140 }, 2141 .key = "testpmd's default RSS hash key", 2142 .queue = { 0 }, 2143 }; 2144 for (i = 0; i < action_rss_data->conf.queue_num; ++i) 2145 action_rss_data->queue[i] = i; 2146 if (!port_id_is_invalid(ctx->port, DISABLED_WARN) && 2147 ctx->port != (portid_t)RTE_PORT_ALL) { 2148 struct rte_eth_dev_info info; 2149 2150 rte_eth_dev_info_get(ctx->port, &info); 2151 action_rss_data->conf.key_len = 2152 RTE_MIN(sizeof(action_rss_data->key), 2153 info.hash_key_size); 2154 } 2155 action->conf = &action_rss_data->conf; 2156 return ret; 2157 } 2158 2159 /** 2160 * Parse func field for RSS action. 2161 * 2162 * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the 2163 * ACTION_RSS_FUNC_* index that called this function. 2164 */ 2165 static int 2166 parse_vc_action_rss_func(struct context *ctx, const struct token *token, 2167 const char *str, unsigned int len, 2168 void *buf, unsigned int size) 2169 { 2170 struct action_rss_data *action_rss_data; 2171 enum rte_eth_hash_function func; 2172 2173 (void)buf; 2174 (void)size; 2175 /* Token name must match. */ 2176 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2177 return -1; 2178 switch (ctx->curr) { 2179 case ACTION_RSS_FUNC_DEFAULT: 2180 func = RTE_ETH_HASH_FUNCTION_DEFAULT; 2181 break; 2182 case ACTION_RSS_FUNC_TOEPLITZ: 2183 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ; 2184 break; 2185 case ACTION_RSS_FUNC_SIMPLE_XOR: 2186 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR; 2187 break; 2188 default: 2189 return -1; 2190 } 2191 if (!ctx->object) 2192 return len; 2193 action_rss_data = ctx->object; 2194 action_rss_data->conf.func = func; 2195 return len; 2196 } 2197 2198 /** 2199 * Parse type field for RSS action. 2200 * 2201 * Valid tokens are type field names and the "end" token. 2202 */ 2203 static int 2204 parse_vc_action_rss_type(struct context *ctx, const struct token *token, 2205 const char *str, unsigned int len, 2206 void *buf, unsigned int size) 2207 { 2208 static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE); 2209 struct action_rss_data *action_rss_data; 2210 unsigned int i; 2211 2212 (void)token; 2213 (void)buf; 2214 (void)size; 2215 if (ctx->curr != ACTION_RSS_TYPE) 2216 return -1; 2217 if (!(ctx->objdata >> 16) && ctx->object) { 2218 action_rss_data = ctx->object; 2219 action_rss_data->conf.types = 0; 2220 } 2221 if (!strcmp_partial("end", str, len)) { 2222 ctx->objdata &= 0xffff; 2223 return len; 2224 } 2225 for (i = 0; rss_type_table[i].str; ++i) 2226 if (!strcmp_partial(rss_type_table[i].str, str, len)) 2227 break; 2228 if (!rss_type_table[i].str) 2229 return -1; 2230 ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff); 2231 /* Repeat token. */ 2232 if (ctx->next_num == RTE_DIM(ctx->next)) 2233 return -1; 2234 ctx->next[ctx->next_num++] = next; 2235 if (!ctx->object) 2236 return len; 2237 action_rss_data = ctx->object; 2238 action_rss_data->conf.types |= rss_type_table[i].rss_type; 2239 return len; 2240 } 2241 2242 /** 2243 * Parse queue field for RSS action. 2244 * 2245 * Valid tokens are queue indices and the "end" token. 2246 */ 2247 static int 2248 parse_vc_action_rss_queue(struct context *ctx, const struct token *token, 2249 const char *str, unsigned int len, 2250 void *buf, unsigned int size) 2251 { 2252 static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE); 2253 struct action_rss_data *action_rss_data; 2254 int ret; 2255 int i; 2256 2257 (void)token; 2258 (void)buf; 2259 (void)size; 2260 if (ctx->curr != ACTION_RSS_QUEUE) 2261 return -1; 2262 i = ctx->objdata >> 16; 2263 if (!strcmp_partial("end", str, len)) { 2264 ctx->objdata &= 0xffff; 2265 return len; 2266 } 2267 if (i >= ACTION_RSS_QUEUE_NUM) 2268 return -1; 2269 if (push_args(ctx, 2270 ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) + 2271 i * sizeof(action_rss_data->queue[i]), 2272 sizeof(action_rss_data->queue[i])))) 2273 return -1; 2274 ret = parse_int(ctx, token, str, len, NULL, 0); 2275 if (ret < 0) { 2276 pop_args(ctx); 2277 return -1; 2278 } 2279 ++i; 2280 ctx->objdata = i << 16 | (ctx->objdata & 0xffff); 2281 /* Repeat token. */ 2282 if (ctx->next_num == RTE_DIM(ctx->next)) 2283 return -1; 2284 ctx->next[ctx->next_num++] = next; 2285 if (!ctx->object) 2286 return len; 2287 action_rss_data = ctx->object; 2288 action_rss_data->conf.queue_num = i; 2289 action_rss_data->conf.queue = i ? action_rss_data->queue : NULL; 2290 return len; 2291 } 2292 2293 /** Parse tokens for destroy command. */ 2294 static int 2295 parse_destroy(struct context *ctx, const struct token *token, 2296 const char *str, unsigned int len, 2297 void *buf, unsigned int size) 2298 { 2299 struct buffer *out = buf; 2300 2301 /* Token name must match. */ 2302 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2303 return -1; 2304 /* Nothing else to do if there is no buffer. */ 2305 if (!out) 2306 return len; 2307 if (!out->command) { 2308 if (ctx->curr != DESTROY) 2309 return -1; 2310 if (sizeof(*out) > size) 2311 return -1; 2312 out->command = ctx->curr; 2313 ctx->objdata = 0; 2314 ctx->object = out; 2315 ctx->objmask = NULL; 2316 out->args.destroy.rule = 2317 (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1), 2318 sizeof(double)); 2319 return len; 2320 } 2321 if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) + 2322 sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size) 2323 return -1; 2324 ctx->objdata = 0; 2325 ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++; 2326 ctx->objmask = NULL; 2327 return len; 2328 } 2329 2330 /** Parse tokens for flush command. */ 2331 static int 2332 parse_flush(struct context *ctx, const struct token *token, 2333 const char *str, unsigned int len, 2334 void *buf, unsigned int size) 2335 { 2336 struct buffer *out = buf; 2337 2338 /* Token name must match. */ 2339 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2340 return -1; 2341 /* Nothing else to do if there is no buffer. */ 2342 if (!out) 2343 return len; 2344 if (!out->command) { 2345 if (ctx->curr != FLUSH) 2346 return -1; 2347 if (sizeof(*out) > size) 2348 return -1; 2349 out->command = ctx->curr; 2350 ctx->objdata = 0; 2351 ctx->object = out; 2352 ctx->objmask = NULL; 2353 } 2354 return len; 2355 } 2356 2357 /** Parse tokens for query command. */ 2358 static int 2359 parse_query(struct context *ctx, const struct token *token, 2360 const char *str, unsigned int len, 2361 void *buf, unsigned int size) 2362 { 2363 struct buffer *out = buf; 2364 2365 /* Token name must match. */ 2366 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2367 return -1; 2368 /* Nothing else to do if there is no buffer. */ 2369 if (!out) 2370 return len; 2371 if (!out->command) { 2372 if (ctx->curr != QUERY) 2373 return -1; 2374 if (sizeof(*out) > size) 2375 return -1; 2376 out->command = ctx->curr; 2377 ctx->objdata = 0; 2378 ctx->object = out; 2379 ctx->objmask = NULL; 2380 } 2381 return len; 2382 } 2383 2384 /** Parse action names. */ 2385 static int 2386 parse_action(struct context *ctx, const struct token *token, 2387 const char *str, unsigned int len, 2388 void *buf, unsigned int size) 2389 { 2390 struct buffer *out = buf; 2391 const struct arg *arg = pop_args(ctx); 2392 unsigned int i; 2393 2394 (void)size; 2395 /* Argument is expected. */ 2396 if (!arg) 2397 return -1; 2398 /* Parse action name. */ 2399 for (i = 0; next_action[i]; ++i) { 2400 const struct parse_action_priv *priv; 2401 2402 token = &token_list[next_action[i]]; 2403 if (strcmp_partial(token->name, str, len)) 2404 continue; 2405 priv = token->priv; 2406 if (!priv) 2407 goto error; 2408 if (out) 2409 memcpy((uint8_t *)ctx->object + arg->offset, 2410 &priv->type, 2411 arg->size); 2412 return len; 2413 } 2414 error: 2415 push_args(ctx, arg); 2416 return -1; 2417 } 2418 2419 /** Parse tokens for list command. */ 2420 static int 2421 parse_list(struct context *ctx, const struct token *token, 2422 const char *str, unsigned int len, 2423 void *buf, unsigned int size) 2424 { 2425 struct buffer *out = buf; 2426 2427 /* Token name must match. */ 2428 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2429 return -1; 2430 /* Nothing else to do if there is no buffer. */ 2431 if (!out) 2432 return len; 2433 if (!out->command) { 2434 if (ctx->curr != LIST) 2435 return -1; 2436 if (sizeof(*out) > size) 2437 return -1; 2438 out->command = ctx->curr; 2439 ctx->objdata = 0; 2440 ctx->object = out; 2441 ctx->objmask = NULL; 2442 out->args.list.group = 2443 (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1), 2444 sizeof(double)); 2445 return len; 2446 } 2447 if (((uint8_t *)(out->args.list.group + out->args.list.group_n) + 2448 sizeof(*out->args.list.group)) > (uint8_t *)out + size) 2449 return -1; 2450 ctx->objdata = 0; 2451 ctx->object = out->args.list.group + out->args.list.group_n++; 2452 ctx->objmask = NULL; 2453 return len; 2454 } 2455 2456 /** Parse tokens for isolate command. */ 2457 static int 2458 parse_isolate(struct context *ctx, const struct token *token, 2459 const char *str, unsigned int len, 2460 void *buf, unsigned int size) 2461 { 2462 struct buffer *out = buf; 2463 2464 /* Token name must match. */ 2465 if (parse_default(ctx, token, str, len, NULL, 0) < 0) 2466 return -1; 2467 /* Nothing else to do if there is no buffer. */ 2468 if (!out) 2469 return len; 2470 if (!out->command) { 2471 if (ctx->curr != ISOLATE) 2472 return -1; 2473 if (sizeof(*out) > size) 2474 return -1; 2475 out->command = ctx->curr; 2476 ctx->objdata = 0; 2477 ctx->object = out; 2478 ctx->objmask = NULL; 2479 } 2480 return len; 2481 } 2482 2483 /** 2484 * Parse signed/unsigned integers 8 to 64-bit long. 2485 * 2486 * Last argument (ctx->args) is retrieved to determine integer type and 2487 * storage location. 2488 */ 2489 static int 2490 parse_int(struct context *ctx, const struct token *token, 2491 const char *str, unsigned int len, 2492 void *buf, unsigned int size) 2493 { 2494 const struct arg *arg = pop_args(ctx); 2495 uintmax_t u; 2496 char *end; 2497 2498 (void)token; 2499 /* Argument is expected. */ 2500 if (!arg) 2501 return -1; 2502 errno = 0; 2503 u = arg->sign ? 2504 (uintmax_t)strtoimax(str, &end, 0) : 2505 strtoumax(str, &end, 0); 2506 if (errno || (size_t)(end - str) != len) 2507 goto error; 2508 if (arg->bounded && 2509 ((arg->sign && ((intmax_t)u < (intmax_t)arg->min || 2510 (intmax_t)u > (intmax_t)arg->max)) || 2511 (!arg->sign && (u < arg->min || u > arg->max)))) 2512 goto error; 2513 if (!ctx->object) 2514 return len; 2515 if (arg->mask) { 2516 if (!arg_entry_bf_fill(ctx->object, u, arg) || 2517 !arg_entry_bf_fill(ctx->objmask, -1, arg)) 2518 goto error; 2519 return len; 2520 } 2521 buf = (uint8_t *)ctx->object + arg->offset; 2522 size = arg->size; 2523 objmask: 2524 switch (size) { 2525 case sizeof(uint8_t): 2526 *(uint8_t *)buf = u; 2527 break; 2528 case sizeof(uint16_t): 2529 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u; 2530 break; 2531 case sizeof(uint8_t [3]): 2532 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 2533 if (!arg->hton) { 2534 ((uint8_t *)buf)[0] = u; 2535 ((uint8_t *)buf)[1] = u >> 8; 2536 ((uint8_t *)buf)[2] = u >> 16; 2537 break; 2538 } 2539 #endif 2540 ((uint8_t *)buf)[0] = u >> 16; 2541 ((uint8_t *)buf)[1] = u >> 8; 2542 ((uint8_t *)buf)[2] = u; 2543 break; 2544 case sizeof(uint32_t): 2545 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u; 2546 break; 2547 case sizeof(uint64_t): 2548 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u; 2549 break; 2550 default: 2551 goto error; 2552 } 2553 if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) { 2554 u = -1; 2555 buf = (uint8_t *)ctx->objmask + arg->offset; 2556 goto objmask; 2557 } 2558 return len; 2559 error: 2560 push_args(ctx, arg); 2561 return -1; 2562 } 2563 2564 /** 2565 * Parse a string. 2566 * 2567 * Three arguments (ctx->args) are retrieved from the stack to store data, 2568 * its actual length and address (in that order). 2569 */ 2570 static int 2571 parse_string(struct context *ctx, const struct token *token, 2572 const char *str, unsigned int len, 2573 void *buf, unsigned int size) 2574 { 2575 const struct arg *arg_data = pop_args(ctx); 2576 const struct arg *arg_len = pop_args(ctx); 2577 const struct arg *arg_addr = pop_args(ctx); 2578 char tmp[16]; /* Ought to be enough. */ 2579 int ret; 2580 2581 /* Arguments are expected. */ 2582 if (!arg_data) 2583 return -1; 2584 if (!arg_len) { 2585 push_args(ctx, arg_data); 2586 return -1; 2587 } 2588 if (!arg_addr) { 2589 push_args(ctx, arg_len); 2590 push_args(ctx, arg_data); 2591 return -1; 2592 } 2593 size = arg_data->size; 2594 /* Bit-mask fill is not supported. */ 2595 if (arg_data->mask || size < len) 2596 goto error; 2597 if (!ctx->object) 2598 return len; 2599 /* Let parse_int() fill length information first. */ 2600 ret = snprintf(tmp, sizeof(tmp), "%u", len); 2601 if (ret < 0) 2602 goto error; 2603 push_args(ctx, arg_len); 2604 ret = parse_int(ctx, token, tmp, ret, NULL, 0); 2605 if (ret < 0) { 2606 pop_args(ctx); 2607 goto error; 2608 } 2609 buf = (uint8_t *)ctx->object + arg_data->offset; 2610 /* Output buffer is not necessarily NUL-terminated. */ 2611 memcpy(buf, str, len); 2612 memset((uint8_t *)buf + len, 0x00, size - len); 2613 if (ctx->objmask) 2614 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len); 2615 /* Save address if requested. */ 2616 if (arg_addr->size) { 2617 memcpy((uint8_t *)ctx->object + arg_addr->offset, 2618 (void *[]){ 2619 (uint8_t *)ctx->object + arg_data->offset 2620 }, 2621 arg_addr->size); 2622 if (ctx->objmask) 2623 memcpy((uint8_t *)ctx->objmask + arg_addr->offset, 2624 (void *[]){ 2625 (uint8_t *)ctx->objmask + arg_data->offset 2626 }, 2627 arg_addr->size); 2628 } 2629 return len; 2630 error: 2631 push_args(ctx, arg_addr); 2632 push_args(ctx, arg_len); 2633 push_args(ctx, arg_data); 2634 return -1; 2635 } 2636 2637 /** 2638 * Parse a MAC address. 2639 * 2640 * Last argument (ctx->args) is retrieved to determine storage size and 2641 * location. 2642 */ 2643 static int 2644 parse_mac_addr(struct context *ctx, const struct token *token, 2645 const char *str, unsigned int len, 2646 void *buf, unsigned int size) 2647 { 2648 const struct arg *arg = pop_args(ctx); 2649 struct ether_addr tmp; 2650 int ret; 2651 2652 (void)token; 2653 /* Argument is expected. */ 2654 if (!arg) 2655 return -1; 2656 size = arg->size; 2657 /* Bit-mask fill is not supported. */ 2658 if (arg->mask || size != sizeof(tmp)) 2659 goto error; 2660 /* Only network endian is supported. */ 2661 if (!arg->hton) 2662 goto error; 2663 ret = cmdline_parse_etheraddr(NULL, str, &tmp, size); 2664 if (ret < 0 || (unsigned int)ret != len) 2665 goto error; 2666 if (!ctx->object) 2667 return len; 2668 buf = (uint8_t *)ctx->object + arg->offset; 2669 memcpy(buf, &tmp, size); 2670 if (ctx->objmask) 2671 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); 2672 return len; 2673 error: 2674 push_args(ctx, arg); 2675 return -1; 2676 } 2677 2678 /** 2679 * Parse an IPv4 address. 2680 * 2681 * Last argument (ctx->args) is retrieved to determine storage size and 2682 * location. 2683 */ 2684 static int 2685 parse_ipv4_addr(struct context *ctx, const struct token *token, 2686 const char *str, unsigned int len, 2687 void *buf, unsigned int size) 2688 { 2689 const struct arg *arg = pop_args(ctx); 2690 char str2[len + 1]; 2691 struct in_addr tmp; 2692 int ret; 2693 2694 /* Argument is expected. */ 2695 if (!arg) 2696 return -1; 2697 size = arg->size; 2698 /* Bit-mask fill is not supported. */ 2699 if (arg->mask || size != sizeof(tmp)) 2700 goto error; 2701 /* Only network endian is supported. */ 2702 if (!arg->hton) 2703 goto error; 2704 memcpy(str2, str, len); 2705 str2[len] = '\0'; 2706 ret = inet_pton(AF_INET, str2, &tmp); 2707 if (ret != 1) { 2708 /* Attempt integer parsing. */ 2709 push_args(ctx, arg); 2710 return parse_int(ctx, token, str, len, buf, size); 2711 } 2712 if (!ctx->object) 2713 return len; 2714 buf = (uint8_t *)ctx->object + arg->offset; 2715 memcpy(buf, &tmp, size); 2716 if (ctx->objmask) 2717 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); 2718 return len; 2719 error: 2720 push_args(ctx, arg); 2721 return -1; 2722 } 2723 2724 /** 2725 * Parse an IPv6 address. 2726 * 2727 * Last argument (ctx->args) is retrieved to determine storage size and 2728 * location. 2729 */ 2730 static int 2731 parse_ipv6_addr(struct context *ctx, const struct token *token, 2732 const char *str, unsigned int len, 2733 void *buf, unsigned int size) 2734 { 2735 const struct arg *arg = pop_args(ctx); 2736 char str2[len + 1]; 2737 struct in6_addr tmp; 2738 int ret; 2739 2740 (void)token; 2741 /* Argument is expected. */ 2742 if (!arg) 2743 return -1; 2744 size = arg->size; 2745 /* Bit-mask fill is not supported. */ 2746 if (arg->mask || size != sizeof(tmp)) 2747 goto error; 2748 /* Only network endian is supported. */ 2749 if (!arg->hton) 2750 goto error; 2751 memcpy(str2, str, len); 2752 str2[len] = '\0'; 2753 ret = inet_pton(AF_INET6, str2, &tmp); 2754 if (ret != 1) 2755 goto error; 2756 if (!ctx->object) 2757 return len; 2758 buf = (uint8_t *)ctx->object + arg->offset; 2759 memcpy(buf, &tmp, size); 2760 if (ctx->objmask) 2761 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size); 2762 return len; 2763 error: 2764 push_args(ctx, arg); 2765 return -1; 2766 } 2767 2768 /** Boolean values (even indices stand for false). */ 2769 static const char *const boolean_name[] = { 2770 "0", "1", 2771 "false", "true", 2772 "no", "yes", 2773 "N", "Y", 2774 "off", "on", 2775 NULL, 2776 }; 2777 2778 /** 2779 * Parse a boolean value. 2780 * 2781 * Last argument (ctx->args) is retrieved to determine storage size and 2782 * location. 2783 */ 2784 static int 2785 parse_boolean(struct context *ctx, const struct token *token, 2786 const char *str, unsigned int len, 2787 void *buf, unsigned int size) 2788 { 2789 const struct arg *arg = pop_args(ctx); 2790 unsigned int i; 2791 int ret; 2792 2793 /* Argument is expected. */ 2794 if (!arg) 2795 return -1; 2796 for (i = 0; boolean_name[i]; ++i) 2797 if (!strcmp_partial(boolean_name[i], str, len)) 2798 break; 2799 /* Process token as integer. */ 2800 if (boolean_name[i]) 2801 str = i & 1 ? "1" : "0"; 2802 push_args(ctx, arg); 2803 ret = parse_int(ctx, token, str, strlen(str), buf, size); 2804 return ret > 0 ? (int)len : ret; 2805 } 2806 2807 /** Parse port and update context. */ 2808 static int 2809 parse_port(struct context *ctx, const struct token *token, 2810 const char *str, unsigned int len, 2811 void *buf, unsigned int size) 2812 { 2813 struct buffer *out = &(struct buffer){ .port = 0 }; 2814 int ret; 2815 2816 if (buf) 2817 out = buf; 2818 else { 2819 ctx->objdata = 0; 2820 ctx->object = out; 2821 ctx->objmask = NULL; 2822 size = sizeof(*out); 2823 } 2824 ret = parse_int(ctx, token, str, len, out, size); 2825 if (ret >= 0) 2826 ctx->port = out->port; 2827 if (!buf) 2828 ctx->object = NULL; 2829 return ret; 2830 } 2831 2832 /** No completion. */ 2833 static int 2834 comp_none(struct context *ctx, const struct token *token, 2835 unsigned int ent, char *buf, unsigned int size) 2836 { 2837 (void)ctx; 2838 (void)token; 2839 (void)ent; 2840 (void)buf; 2841 (void)size; 2842 return 0; 2843 } 2844 2845 /** Complete boolean values. */ 2846 static int 2847 comp_boolean(struct context *ctx, const struct token *token, 2848 unsigned int ent, char *buf, unsigned int size) 2849 { 2850 unsigned int i; 2851 2852 (void)ctx; 2853 (void)token; 2854 for (i = 0; boolean_name[i]; ++i) 2855 if (buf && i == ent) 2856 return snprintf(buf, size, "%s", boolean_name[i]); 2857 if (buf) 2858 return -1; 2859 return i; 2860 } 2861 2862 /** Complete action names. */ 2863 static int 2864 comp_action(struct context *ctx, const struct token *token, 2865 unsigned int ent, char *buf, unsigned int size) 2866 { 2867 unsigned int i; 2868 2869 (void)ctx; 2870 (void)token; 2871 for (i = 0; next_action[i]; ++i) 2872 if (buf && i == ent) 2873 return snprintf(buf, size, "%s", 2874 token_list[next_action[i]].name); 2875 if (buf) 2876 return -1; 2877 return i; 2878 } 2879 2880 /** Complete available ports. */ 2881 static int 2882 comp_port(struct context *ctx, const struct token *token, 2883 unsigned int ent, char *buf, unsigned int size) 2884 { 2885 unsigned int i = 0; 2886 portid_t p; 2887 2888 (void)ctx; 2889 (void)token; 2890 RTE_ETH_FOREACH_DEV(p) { 2891 if (buf && i == ent) 2892 return snprintf(buf, size, "%u", p); 2893 ++i; 2894 } 2895 if (buf) 2896 return -1; 2897 return i; 2898 } 2899 2900 /** Complete available rule IDs. */ 2901 static int 2902 comp_rule_id(struct context *ctx, const struct token *token, 2903 unsigned int ent, char *buf, unsigned int size) 2904 { 2905 unsigned int i = 0; 2906 struct rte_port *port; 2907 struct port_flow *pf; 2908 2909 (void)token; 2910 if (port_id_is_invalid(ctx->port, DISABLED_WARN) || 2911 ctx->port == (portid_t)RTE_PORT_ALL) 2912 return -1; 2913 port = &ports[ctx->port]; 2914 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 2915 if (buf && i == ent) 2916 return snprintf(buf, size, "%u", pf->id); 2917 ++i; 2918 } 2919 if (buf) 2920 return -1; 2921 return i; 2922 } 2923 2924 /** Complete type field for RSS action. */ 2925 static int 2926 comp_vc_action_rss_type(struct context *ctx, const struct token *token, 2927 unsigned int ent, char *buf, unsigned int size) 2928 { 2929 unsigned int i; 2930 2931 (void)ctx; 2932 (void)token; 2933 for (i = 0; rss_type_table[i].str; ++i) 2934 ; 2935 if (!buf) 2936 return i + 1; 2937 if (ent < i) 2938 return snprintf(buf, size, "%s", rss_type_table[ent].str); 2939 if (ent == i) 2940 return snprintf(buf, size, "end"); 2941 return -1; 2942 } 2943 2944 /** Complete queue field for RSS action. */ 2945 static int 2946 comp_vc_action_rss_queue(struct context *ctx, const struct token *token, 2947 unsigned int ent, char *buf, unsigned int size) 2948 { 2949 (void)ctx; 2950 (void)token; 2951 if (!buf) 2952 return nb_rxq + 1; 2953 if (ent < nb_rxq) 2954 return snprintf(buf, size, "%u", ent); 2955 if (ent == nb_rxq) 2956 return snprintf(buf, size, "end"); 2957 return -1; 2958 } 2959 2960 /** Internal context. */ 2961 static struct context cmd_flow_context; 2962 2963 /** Global parser instance (cmdline API). */ 2964 cmdline_parse_inst_t cmd_flow; 2965 2966 /** Initialize context. */ 2967 static void 2968 cmd_flow_context_init(struct context *ctx) 2969 { 2970 /* A full memset() is not necessary. */ 2971 ctx->curr = ZERO; 2972 ctx->prev = ZERO; 2973 ctx->next_num = 0; 2974 ctx->args_num = 0; 2975 ctx->eol = 0; 2976 ctx->last = 0; 2977 ctx->port = 0; 2978 ctx->objdata = 0; 2979 ctx->object = NULL; 2980 ctx->objmask = NULL; 2981 } 2982 2983 /** Parse a token (cmdline API). */ 2984 static int 2985 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result, 2986 unsigned int size) 2987 { 2988 struct context *ctx = &cmd_flow_context; 2989 const struct token *token; 2990 const enum index *list; 2991 int len; 2992 int i; 2993 2994 (void)hdr; 2995 token = &token_list[ctx->curr]; 2996 /* Check argument length. */ 2997 ctx->eol = 0; 2998 ctx->last = 1; 2999 for (len = 0; src[len]; ++len) 3000 if (src[len] == '#' || isspace(src[len])) 3001 break; 3002 if (!len) 3003 return -1; 3004 /* Last argument and EOL detection. */ 3005 for (i = len; src[i]; ++i) 3006 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n') 3007 break; 3008 else if (!isspace(src[i])) { 3009 ctx->last = 0; 3010 break; 3011 } 3012 for (; src[i]; ++i) 3013 if (src[i] == '\r' || src[i] == '\n') { 3014 ctx->eol = 1; 3015 break; 3016 } 3017 /* Initialize context if necessary. */ 3018 if (!ctx->next_num) { 3019 if (!token->next) 3020 return 0; 3021 ctx->next[ctx->next_num++] = token->next[0]; 3022 } 3023 /* Process argument through candidates. */ 3024 ctx->prev = ctx->curr; 3025 list = ctx->next[ctx->next_num - 1]; 3026 for (i = 0; list[i]; ++i) { 3027 const struct token *next = &token_list[list[i]]; 3028 int tmp; 3029 3030 ctx->curr = list[i]; 3031 if (next->call) 3032 tmp = next->call(ctx, next, src, len, result, size); 3033 else 3034 tmp = parse_default(ctx, next, src, len, result, size); 3035 if (tmp == -1 || tmp != len) 3036 continue; 3037 token = next; 3038 break; 3039 } 3040 if (!list[i]) 3041 return -1; 3042 --ctx->next_num; 3043 /* Push subsequent tokens if any. */ 3044 if (token->next) 3045 for (i = 0; token->next[i]; ++i) { 3046 if (ctx->next_num == RTE_DIM(ctx->next)) 3047 return -1; 3048 ctx->next[ctx->next_num++] = token->next[i]; 3049 } 3050 /* Push arguments if any. */ 3051 if (token->args) 3052 for (i = 0; token->args[i]; ++i) { 3053 if (ctx->args_num == RTE_DIM(ctx->args)) 3054 return -1; 3055 ctx->args[ctx->args_num++] = token->args[i]; 3056 } 3057 return len; 3058 } 3059 3060 /** Return number of completion entries (cmdline API). */ 3061 static int 3062 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr) 3063 { 3064 struct context *ctx = &cmd_flow_context; 3065 const struct token *token = &token_list[ctx->curr]; 3066 const enum index *list; 3067 int i; 3068 3069 (void)hdr; 3070 /* Count number of tokens in current list. */ 3071 if (ctx->next_num) 3072 list = ctx->next[ctx->next_num - 1]; 3073 else 3074 list = token->next[0]; 3075 for (i = 0; list[i]; ++i) 3076 ; 3077 if (!i) 3078 return 0; 3079 /* 3080 * If there is a single token, use its completion callback, otherwise 3081 * return the number of entries. 3082 */ 3083 token = &token_list[list[0]]; 3084 if (i == 1 && token->comp) { 3085 /* Save index for cmd_flow_get_help(). */ 3086 ctx->prev = list[0]; 3087 return token->comp(ctx, token, 0, NULL, 0); 3088 } 3089 return i; 3090 } 3091 3092 /** Return a completion entry (cmdline API). */ 3093 static int 3094 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index, 3095 char *dst, unsigned int size) 3096 { 3097 struct context *ctx = &cmd_flow_context; 3098 const struct token *token = &token_list[ctx->curr]; 3099 const enum index *list; 3100 int i; 3101 3102 (void)hdr; 3103 /* Count number of tokens in current list. */ 3104 if (ctx->next_num) 3105 list = ctx->next[ctx->next_num - 1]; 3106 else 3107 list = token->next[0]; 3108 for (i = 0; list[i]; ++i) 3109 ; 3110 if (!i) 3111 return -1; 3112 /* If there is a single token, use its completion callback. */ 3113 token = &token_list[list[0]]; 3114 if (i == 1 && token->comp) { 3115 /* Save index for cmd_flow_get_help(). */ 3116 ctx->prev = list[0]; 3117 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0; 3118 } 3119 /* Otherwise make sure the index is valid and use defaults. */ 3120 if (index >= i) 3121 return -1; 3122 token = &token_list[list[index]]; 3123 snprintf(dst, size, "%s", token->name); 3124 /* Save index for cmd_flow_get_help(). */ 3125 ctx->prev = list[index]; 3126 return 0; 3127 } 3128 3129 /** Populate help strings for current token (cmdline API). */ 3130 static int 3131 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size) 3132 { 3133 struct context *ctx = &cmd_flow_context; 3134 const struct token *token = &token_list[ctx->prev]; 3135 3136 (void)hdr; 3137 if (!size) 3138 return -1; 3139 /* Set token type and update global help with details. */ 3140 snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN")); 3141 if (token->help) 3142 cmd_flow.help_str = token->help; 3143 else 3144 cmd_flow.help_str = token->name; 3145 return 0; 3146 } 3147 3148 /** Token definition template (cmdline API). */ 3149 static struct cmdline_token_hdr cmd_flow_token_hdr = { 3150 .ops = &(struct cmdline_token_ops){ 3151 .parse = cmd_flow_parse, 3152 .complete_get_nb = cmd_flow_complete_get_nb, 3153 .complete_get_elt = cmd_flow_complete_get_elt, 3154 .get_help = cmd_flow_get_help, 3155 }, 3156 .offset = 0, 3157 }; 3158 3159 /** Populate the next dynamic token. */ 3160 static void 3161 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr, 3162 cmdline_parse_token_hdr_t **hdr_inst) 3163 { 3164 struct context *ctx = &cmd_flow_context; 3165 3166 /* Always reinitialize context before requesting the first token. */ 3167 if (!(hdr_inst - cmd_flow.tokens)) 3168 cmd_flow_context_init(ctx); 3169 /* Return NULL when no more tokens are expected. */ 3170 if (!ctx->next_num && ctx->curr) { 3171 *hdr = NULL; 3172 return; 3173 } 3174 /* Determine if command should end here. */ 3175 if (ctx->eol && ctx->last && ctx->next_num) { 3176 const enum index *list = ctx->next[ctx->next_num - 1]; 3177 int i; 3178 3179 for (i = 0; list[i]; ++i) { 3180 if (list[i] != END) 3181 continue; 3182 *hdr = NULL; 3183 return; 3184 } 3185 } 3186 *hdr = &cmd_flow_token_hdr; 3187 } 3188 3189 /** Dispatch parsed buffer to function calls. */ 3190 static void 3191 cmd_flow_parsed(const struct buffer *in) 3192 { 3193 switch (in->command) { 3194 case VALIDATE: 3195 port_flow_validate(in->port, &in->args.vc.attr, 3196 in->args.vc.pattern, in->args.vc.actions); 3197 break; 3198 case CREATE: 3199 port_flow_create(in->port, &in->args.vc.attr, 3200 in->args.vc.pattern, in->args.vc.actions); 3201 break; 3202 case DESTROY: 3203 port_flow_destroy(in->port, in->args.destroy.rule_n, 3204 in->args.destroy.rule); 3205 break; 3206 case FLUSH: 3207 port_flow_flush(in->port); 3208 break; 3209 case QUERY: 3210 port_flow_query(in->port, in->args.query.rule, 3211 in->args.query.action); 3212 break; 3213 case LIST: 3214 port_flow_list(in->port, in->args.list.group_n, 3215 in->args.list.group); 3216 break; 3217 case ISOLATE: 3218 port_flow_isolate(in->port, in->args.isolate.set); 3219 break; 3220 default: 3221 break; 3222 } 3223 } 3224 3225 /** Token generator and output processing callback (cmdline API). */ 3226 static void 3227 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2) 3228 { 3229 if (cl == NULL) 3230 cmd_flow_tok(arg0, arg2); 3231 else 3232 cmd_flow_parsed(arg0); 3233 } 3234 3235 /** Global parser instance (cmdline API). */ 3236 cmdline_parse_inst_t cmd_flow = { 3237 .f = cmd_flow_cb, 3238 .data = NULL, /**< Unused. */ 3239 .help_str = NULL, /**< Updated by cmd_flow_get_help(). */ 3240 .tokens = { 3241 NULL, 3242 }, /**< Tokens are returned by cmd_flow_tok(). */ 3243 }; 3244