xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 6d3fa481ee6644a23ad65b8141f7eaa163e865c5)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2016 6WIND S.A.
5  *   Copyright 2016 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stddef.h>
35 #include <stdint.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38 #include <errno.h>
39 #include <ctype.h>
40 #include <string.h>
41 #include <arpa/inet.h>
42 #include <sys/socket.h>
43 
44 #include <rte_common.h>
45 #include <rte_ethdev.h>
46 #include <rte_byteorder.h>
47 #include <cmdline_parse.h>
48 #include <cmdline_parse_etheraddr.h>
49 #include <rte_flow.h>
50 
51 #include "testpmd.h"
52 
53 /** Parser token indices. */
54 enum index {
55 	/* Special tokens. */
56 	ZERO = 0,
57 	END,
58 
59 	/* Common tokens. */
60 	INTEGER,
61 	UNSIGNED,
62 	PREFIX,
63 	BOOLEAN,
64 	STRING,
65 	MAC_ADDR,
66 	IPV4_ADDR,
67 	IPV6_ADDR,
68 	RULE_ID,
69 	PORT_ID,
70 	GROUP_ID,
71 	PRIORITY_LEVEL,
72 
73 	/* Top-level command. */
74 	FLOW,
75 
76 	/* Sub-level commands. */
77 	VALIDATE,
78 	CREATE,
79 	DESTROY,
80 	FLUSH,
81 	QUERY,
82 	LIST,
83 
84 	/* Destroy arguments. */
85 	DESTROY_RULE,
86 
87 	/* Query arguments. */
88 	QUERY_ACTION,
89 
90 	/* List arguments. */
91 	LIST_GROUP,
92 
93 	/* Validate/create arguments. */
94 	GROUP,
95 	PRIORITY,
96 	INGRESS,
97 	EGRESS,
98 
99 	/* Validate/create pattern. */
100 	PATTERN,
101 	ITEM_PARAM_IS,
102 	ITEM_PARAM_SPEC,
103 	ITEM_PARAM_LAST,
104 	ITEM_PARAM_MASK,
105 	ITEM_PARAM_PREFIX,
106 	ITEM_NEXT,
107 	ITEM_END,
108 	ITEM_VOID,
109 	ITEM_INVERT,
110 	ITEM_ANY,
111 	ITEM_ANY_NUM,
112 	ITEM_PF,
113 	ITEM_VF,
114 	ITEM_VF_ID,
115 	ITEM_PORT,
116 	ITEM_PORT_INDEX,
117 	ITEM_RAW,
118 	ITEM_RAW_RELATIVE,
119 	ITEM_RAW_SEARCH,
120 	ITEM_RAW_OFFSET,
121 	ITEM_RAW_LIMIT,
122 	ITEM_RAW_PATTERN,
123 	ITEM_ETH,
124 	ITEM_ETH_DST,
125 	ITEM_ETH_SRC,
126 	ITEM_ETH_TYPE,
127 	ITEM_VLAN,
128 	ITEM_VLAN_TPID,
129 	ITEM_VLAN_TCI,
130 	ITEM_VLAN_PCP,
131 	ITEM_VLAN_DEI,
132 	ITEM_VLAN_VID,
133 	ITEM_IPV4,
134 	ITEM_IPV4_TOS,
135 	ITEM_IPV4_TTL,
136 	ITEM_IPV4_PROTO,
137 	ITEM_IPV4_SRC,
138 	ITEM_IPV4_DST,
139 	ITEM_IPV6,
140 	ITEM_IPV6_TC,
141 	ITEM_IPV6_FLOW,
142 	ITEM_IPV6_PROTO,
143 	ITEM_IPV6_HOP,
144 	ITEM_IPV6_SRC,
145 	ITEM_IPV6_DST,
146 	ITEM_ICMP,
147 	ITEM_ICMP_TYPE,
148 	ITEM_ICMP_CODE,
149 	ITEM_UDP,
150 	ITEM_UDP_SRC,
151 	ITEM_UDP_DST,
152 	ITEM_TCP,
153 	ITEM_TCP_SRC,
154 	ITEM_TCP_DST,
155 	ITEM_SCTP,
156 	ITEM_SCTP_SRC,
157 	ITEM_SCTP_DST,
158 	ITEM_SCTP_TAG,
159 	ITEM_SCTP_CKSUM,
160 	ITEM_VXLAN,
161 	ITEM_VXLAN_VNI,
162 	ITEM_E_TAG,
163 	ITEM_E_TAG_GRP_ECID_B,
164 	ITEM_NVGRE,
165 	ITEM_NVGRE_TNI,
166 	ITEM_MPLS,
167 	ITEM_MPLS_LABEL,
168 	ITEM_GRE,
169 	ITEM_GRE_PROTO,
170 
171 	/* Validate/create actions. */
172 	ACTIONS,
173 	ACTION_NEXT,
174 	ACTION_END,
175 	ACTION_VOID,
176 	ACTION_PASSTHRU,
177 	ACTION_MARK,
178 	ACTION_MARK_ID,
179 	ACTION_FLAG,
180 	ACTION_QUEUE,
181 	ACTION_QUEUE_INDEX,
182 	ACTION_DROP,
183 	ACTION_COUNT,
184 	ACTION_DUP,
185 	ACTION_DUP_INDEX,
186 	ACTION_RSS,
187 	ACTION_RSS_QUEUES,
188 	ACTION_RSS_QUEUE,
189 	ACTION_PF,
190 	ACTION_VF,
191 	ACTION_VF_ORIGINAL,
192 	ACTION_VF_ID,
193 };
194 
195 /** Size of pattern[] field in struct rte_flow_item_raw. */
196 #define ITEM_RAW_PATTERN_SIZE 36
197 
198 /** Storage size for struct rte_flow_item_raw including pattern. */
199 #define ITEM_RAW_SIZE \
200 	(offsetof(struct rte_flow_item_raw, pattern) + ITEM_RAW_PATTERN_SIZE)
201 
202 /** Number of queue[] entries in struct rte_flow_action_rss. */
203 #define ACTION_RSS_NUM 32
204 
205 /** Storage size for struct rte_flow_action_rss including queues. */
206 #define ACTION_RSS_SIZE \
207 	(offsetof(struct rte_flow_action_rss, queue) + \
208 	 sizeof(*((struct rte_flow_action_rss *)0)->queue) * ACTION_RSS_NUM)
209 
210 /** Maximum number of subsequent tokens and arguments on the stack. */
211 #define CTX_STACK_SIZE 16
212 
213 /** Parser context. */
214 struct context {
215 	/** Stack of subsequent token lists to process. */
216 	const enum index *next[CTX_STACK_SIZE];
217 	/** Arguments for stacked tokens. */
218 	const void *args[CTX_STACK_SIZE];
219 	enum index curr; /**< Current token index. */
220 	enum index prev; /**< Index of the last token seen. */
221 	int next_num; /**< Number of entries in next[]. */
222 	int args_num; /**< Number of entries in args[]. */
223 	uint32_t reparse:1; /**< Start over from the beginning. */
224 	uint32_t eol:1; /**< EOL has been detected. */
225 	uint32_t last:1; /**< No more arguments. */
226 	uint16_t port; /**< Current port ID (for completions). */
227 	uint32_t objdata; /**< Object-specific data. */
228 	void *object; /**< Address of current object for relative offsets. */
229 	void *objmask; /**< Object a full mask must be written to. */
230 };
231 
232 /** Token argument. */
233 struct arg {
234 	uint32_t hton:1; /**< Use network byte ordering. */
235 	uint32_t sign:1; /**< Value is signed. */
236 	uint32_t offset; /**< Relative offset from ctx->object. */
237 	uint32_t size; /**< Field size. */
238 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
239 };
240 
241 /** Parser token definition. */
242 struct token {
243 	/** Type displayed during completion (defaults to "TOKEN"). */
244 	const char *type;
245 	/** Help displayed during completion (defaults to token name). */
246 	const char *help;
247 	/** Private data used by parser functions. */
248 	const void *priv;
249 	/**
250 	 * Lists of subsequent tokens to push on the stack. Each call to the
251 	 * parser consumes the last entry of that stack.
252 	 */
253 	const enum index *const *next;
254 	/** Arguments stack for subsequent tokens that need them. */
255 	const struct arg *const *args;
256 	/**
257 	 * Token-processing callback, returns -1 in case of error, the
258 	 * length of the matched string otherwise. If NULL, attempts to
259 	 * match the token name.
260 	 *
261 	 * If buf is not NULL, the result should be stored in it according
262 	 * to context. An error is returned if not large enough.
263 	 */
264 	int (*call)(struct context *ctx, const struct token *token,
265 		    const char *str, unsigned int len,
266 		    void *buf, unsigned int size);
267 	/**
268 	 * Callback that provides possible values for this token, used for
269 	 * completion. Returns -1 in case of error, the number of possible
270 	 * values otherwise. If NULL, the token name is used.
271 	 *
272 	 * If buf is not NULL, entry index ent is written to buf and the
273 	 * full length of the entry is returned (same behavior as
274 	 * snprintf()).
275 	 */
276 	int (*comp)(struct context *ctx, const struct token *token,
277 		    unsigned int ent, char *buf, unsigned int size);
278 	/** Mandatory token name, no default value. */
279 	const char *name;
280 };
281 
282 /** Static initializer for the next field. */
283 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
284 
285 /** Static initializer for a NEXT() entry. */
286 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
287 
288 /** Static initializer for the args field. */
289 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
290 
291 /** Static initializer for ARGS() to target a field. */
292 #define ARGS_ENTRY(s, f) \
293 	(&(const struct arg){ \
294 		.offset = offsetof(s, f), \
295 		.size = sizeof(((s *)0)->f), \
296 	})
297 
298 /** Static initializer for ARGS() to target a bit-field. */
299 #define ARGS_ENTRY_BF(s, f, b) \
300 	(&(const struct arg){ \
301 		.size = sizeof(s), \
302 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
303 	})
304 
305 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
306 #define ARGS_ENTRY_MASK(s, f, m) \
307 	(&(const struct arg){ \
308 		.offset = offsetof(s, f), \
309 		.size = sizeof(((s *)0)->f), \
310 		.mask = (const void *)(m), \
311 	})
312 
313 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
314 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
315 	(&(const struct arg){ \
316 		.hton = 1, \
317 		.offset = offsetof(s, f), \
318 		.size = sizeof(((s *)0)->f), \
319 		.mask = (const void *)(m), \
320 	})
321 
322 /** Static initializer for ARGS() to target a pointer. */
323 #define ARGS_ENTRY_PTR(s, f) \
324 	(&(const struct arg){ \
325 		.size = sizeof(*((s *)0)->f), \
326 	})
327 
328 /** Static initializer for ARGS() with arbitrary size. */
329 #define ARGS_ENTRY_USZ(s, f, sz) \
330 	(&(const struct arg){ \
331 		.offset = offsetof(s, f), \
332 		.size = (sz), \
333 	})
334 
335 /** Same as ARGS_ENTRY() using network byte ordering. */
336 #define ARGS_ENTRY_HTON(s, f) \
337 	(&(const struct arg){ \
338 		.hton = 1, \
339 		.offset = offsetof(s, f), \
340 		.size = sizeof(((s *)0)->f), \
341 	})
342 
343 /** Parser output buffer layout expected by cmd_flow_parsed(). */
344 struct buffer {
345 	enum index command; /**< Flow command. */
346 	uint16_t port; /**< Affected port ID. */
347 	union {
348 		struct {
349 			struct rte_flow_attr attr;
350 			struct rte_flow_item *pattern;
351 			struct rte_flow_action *actions;
352 			uint32_t pattern_n;
353 			uint32_t actions_n;
354 			uint8_t *data;
355 		} vc; /**< Validate/create arguments. */
356 		struct {
357 			uint32_t *rule;
358 			uint32_t rule_n;
359 		} destroy; /**< Destroy arguments. */
360 		struct {
361 			uint32_t rule;
362 			enum rte_flow_action_type action;
363 		} query; /**< Query arguments. */
364 		struct {
365 			uint32_t *group;
366 			uint32_t group_n;
367 		} list; /**< List arguments. */
368 	} args; /**< Command arguments. */
369 };
370 
371 /** Private data for pattern items. */
372 struct parse_item_priv {
373 	enum rte_flow_item_type type; /**< Item type. */
374 	uint32_t size; /**< Size of item specification structure. */
375 };
376 
377 #define PRIV_ITEM(t, s) \
378 	(&(const struct parse_item_priv){ \
379 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
380 		.size = s, \
381 	})
382 
383 /** Private data for actions. */
384 struct parse_action_priv {
385 	enum rte_flow_action_type type; /**< Action type. */
386 	uint32_t size; /**< Size of action configuration structure. */
387 };
388 
389 #define PRIV_ACTION(t, s) \
390 	(&(const struct parse_action_priv){ \
391 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
392 		.size = s, \
393 	})
394 
395 static const enum index next_vc_attr[] = {
396 	GROUP,
397 	PRIORITY,
398 	INGRESS,
399 	EGRESS,
400 	PATTERN,
401 	ZERO,
402 };
403 
404 static const enum index next_destroy_attr[] = {
405 	DESTROY_RULE,
406 	END,
407 	ZERO,
408 };
409 
410 static const enum index next_list_attr[] = {
411 	LIST_GROUP,
412 	END,
413 	ZERO,
414 };
415 
416 static const enum index item_param[] = {
417 	ITEM_PARAM_IS,
418 	ITEM_PARAM_SPEC,
419 	ITEM_PARAM_LAST,
420 	ITEM_PARAM_MASK,
421 	ITEM_PARAM_PREFIX,
422 	ZERO,
423 };
424 
425 static const enum index next_item[] = {
426 	ITEM_END,
427 	ITEM_VOID,
428 	ITEM_INVERT,
429 	ITEM_ANY,
430 	ITEM_PF,
431 	ITEM_VF,
432 	ITEM_PORT,
433 	ITEM_RAW,
434 	ITEM_ETH,
435 	ITEM_VLAN,
436 	ITEM_IPV4,
437 	ITEM_IPV6,
438 	ITEM_ICMP,
439 	ITEM_UDP,
440 	ITEM_TCP,
441 	ITEM_SCTP,
442 	ITEM_VXLAN,
443 	ITEM_E_TAG,
444 	ITEM_NVGRE,
445 	ITEM_MPLS,
446 	ITEM_GRE,
447 	ZERO,
448 };
449 
450 static const enum index item_any[] = {
451 	ITEM_ANY_NUM,
452 	ITEM_NEXT,
453 	ZERO,
454 };
455 
456 static const enum index item_vf[] = {
457 	ITEM_VF_ID,
458 	ITEM_NEXT,
459 	ZERO,
460 };
461 
462 static const enum index item_port[] = {
463 	ITEM_PORT_INDEX,
464 	ITEM_NEXT,
465 	ZERO,
466 };
467 
468 static const enum index item_raw[] = {
469 	ITEM_RAW_RELATIVE,
470 	ITEM_RAW_SEARCH,
471 	ITEM_RAW_OFFSET,
472 	ITEM_RAW_LIMIT,
473 	ITEM_RAW_PATTERN,
474 	ITEM_NEXT,
475 	ZERO,
476 };
477 
478 static const enum index item_eth[] = {
479 	ITEM_ETH_DST,
480 	ITEM_ETH_SRC,
481 	ITEM_ETH_TYPE,
482 	ITEM_NEXT,
483 	ZERO,
484 };
485 
486 static const enum index item_vlan[] = {
487 	ITEM_VLAN_TPID,
488 	ITEM_VLAN_TCI,
489 	ITEM_VLAN_PCP,
490 	ITEM_VLAN_DEI,
491 	ITEM_VLAN_VID,
492 	ITEM_NEXT,
493 	ZERO,
494 };
495 
496 static const enum index item_ipv4[] = {
497 	ITEM_IPV4_TOS,
498 	ITEM_IPV4_TTL,
499 	ITEM_IPV4_PROTO,
500 	ITEM_IPV4_SRC,
501 	ITEM_IPV4_DST,
502 	ITEM_NEXT,
503 	ZERO,
504 };
505 
506 static const enum index item_ipv6[] = {
507 	ITEM_IPV6_TC,
508 	ITEM_IPV6_FLOW,
509 	ITEM_IPV6_PROTO,
510 	ITEM_IPV6_HOP,
511 	ITEM_IPV6_SRC,
512 	ITEM_IPV6_DST,
513 	ITEM_NEXT,
514 	ZERO,
515 };
516 
517 static const enum index item_icmp[] = {
518 	ITEM_ICMP_TYPE,
519 	ITEM_ICMP_CODE,
520 	ITEM_NEXT,
521 	ZERO,
522 };
523 
524 static const enum index item_udp[] = {
525 	ITEM_UDP_SRC,
526 	ITEM_UDP_DST,
527 	ITEM_NEXT,
528 	ZERO,
529 };
530 
531 static const enum index item_tcp[] = {
532 	ITEM_TCP_SRC,
533 	ITEM_TCP_DST,
534 	ITEM_NEXT,
535 	ZERO,
536 };
537 
538 static const enum index item_sctp[] = {
539 	ITEM_SCTP_SRC,
540 	ITEM_SCTP_DST,
541 	ITEM_SCTP_TAG,
542 	ITEM_SCTP_CKSUM,
543 	ITEM_NEXT,
544 	ZERO,
545 };
546 
547 static const enum index item_vxlan[] = {
548 	ITEM_VXLAN_VNI,
549 	ITEM_NEXT,
550 	ZERO,
551 };
552 
553 static const enum index item_e_tag[] = {
554 	ITEM_E_TAG_GRP_ECID_B,
555 	ITEM_NEXT,
556 	ZERO,
557 };
558 
559 static const enum index item_nvgre[] = {
560 	ITEM_NVGRE_TNI,
561 	ITEM_NEXT,
562 	ZERO,
563 };
564 
565 static const enum index item_mpls[] = {
566 	ITEM_MPLS_LABEL,
567 	ITEM_NEXT,
568 	ZERO,
569 };
570 
571 static const enum index item_gre[] = {
572 	ITEM_GRE_PROTO,
573 	ITEM_NEXT,
574 	ZERO,
575 };
576 
577 static const enum index next_action[] = {
578 	ACTION_END,
579 	ACTION_VOID,
580 	ACTION_PASSTHRU,
581 	ACTION_MARK,
582 	ACTION_FLAG,
583 	ACTION_QUEUE,
584 	ACTION_DROP,
585 	ACTION_COUNT,
586 	ACTION_DUP,
587 	ACTION_RSS,
588 	ACTION_PF,
589 	ACTION_VF,
590 	ZERO,
591 };
592 
593 static const enum index action_mark[] = {
594 	ACTION_MARK_ID,
595 	ACTION_NEXT,
596 	ZERO,
597 };
598 
599 static const enum index action_queue[] = {
600 	ACTION_QUEUE_INDEX,
601 	ACTION_NEXT,
602 	ZERO,
603 };
604 
605 static const enum index action_dup[] = {
606 	ACTION_DUP_INDEX,
607 	ACTION_NEXT,
608 	ZERO,
609 };
610 
611 static const enum index action_rss[] = {
612 	ACTION_RSS_QUEUES,
613 	ACTION_NEXT,
614 	ZERO,
615 };
616 
617 static const enum index action_vf[] = {
618 	ACTION_VF_ORIGINAL,
619 	ACTION_VF_ID,
620 	ACTION_NEXT,
621 	ZERO,
622 };
623 
624 static int parse_init(struct context *, const struct token *,
625 		      const char *, unsigned int,
626 		      void *, unsigned int);
627 static int parse_vc(struct context *, const struct token *,
628 		    const char *, unsigned int,
629 		    void *, unsigned int);
630 static int parse_vc_spec(struct context *, const struct token *,
631 			 const char *, unsigned int, void *, unsigned int);
632 static int parse_vc_conf(struct context *, const struct token *,
633 			 const char *, unsigned int, void *, unsigned int);
634 static int parse_vc_action_rss_queue(struct context *, const struct token *,
635 				     const char *, unsigned int, void *,
636 				     unsigned int);
637 static int parse_destroy(struct context *, const struct token *,
638 			 const char *, unsigned int,
639 			 void *, unsigned int);
640 static int parse_flush(struct context *, const struct token *,
641 		       const char *, unsigned int,
642 		       void *, unsigned int);
643 static int parse_query(struct context *, const struct token *,
644 		       const char *, unsigned int,
645 		       void *, unsigned int);
646 static int parse_action(struct context *, const struct token *,
647 			const char *, unsigned int,
648 			void *, unsigned int);
649 static int parse_list(struct context *, const struct token *,
650 		      const char *, unsigned int,
651 		      void *, unsigned int);
652 static int parse_int(struct context *, const struct token *,
653 		     const char *, unsigned int,
654 		     void *, unsigned int);
655 static int parse_prefix(struct context *, const struct token *,
656 			const char *, unsigned int,
657 			void *, unsigned int);
658 static int parse_boolean(struct context *, const struct token *,
659 			 const char *, unsigned int,
660 			 void *, unsigned int);
661 static int parse_string(struct context *, const struct token *,
662 			const char *, unsigned int,
663 			void *, unsigned int);
664 static int parse_mac_addr(struct context *, const struct token *,
665 			  const char *, unsigned int,
666 			  void *, unsigned int);
667 static int parse_ipv4_addr(struct context *, const struct token *,
668 			   const char *, unsigned int,
669 			   void *, unsigned int);
670 static int parse_ipv6_addr(struct context *, const struct token *,
671 			   const char *, unsigned int,
672 			   void *, unsigned int);
673 static int parse_port(struct context *, const struct token *,
674 		      const char *, unsigned int,
675 		      void *, unsigned int);
676 static int comp_none(struct context *, const struct token *,
677 		     unsigned int, char *, unsigned int);
678 static int comp_boolean(struct context *, const struct token *,
679 			unsigned int, char *, unsigned int);
680 static int comp_action(struct context *, const struct token *,
681 		       unsigned int, char *, unsigned int);
682 static int comp_port(struct context *, const struct token *,
683 		     unsigned int, char *, unsigned int);
684 static int comp_rule_id(struct context *, const struct token *,
685 			unsigned int, char *, unsigned int);
686 static int comp_vc_action_rss_queue(struct context *, const struct token *,
687 				    unsigned int, char *, unsigned int);
688 
689 /** Token definitions. */
690 static const struct token token_list[] = {
691 	/* Special tokens. */
692 	[ZERO] = {
693 		.name = "ZERO",
694 		.help = "null entry, abused as the entry point",
695 		.next = NEXT(NEXT_ENTRY(FLOW)),
696 	},
697 	[END] = {
698 		.name = "",
699 		.type = "RETURN",
700 		.help = "command may end here",
701 	},
702 	/* Common tokens. */
703 	[INTEGER] = {
704 		.name = "{int}",
705 		.type = "INTEGER",
706 		.help = "integer value",
707 		.call = parse_int,
708 		.comp = comp_none,
709 	},
710 	[UNSIGNED] = {
711 		.name = "{unsigned}",
712 		.type = "UNSIGNED",
713 		.help = "unsigned integer value",
714 		.call = parse_int,
715 		.comp = comp_none,
716 	},
717 	[PREFIX] = {
718 		.name = "{prefix}",
719 		.type = "PREFIX",
720 		.help = "prefix length for bit-mask",
721 		.call = parse_prefix,
722 		.comp = comp_none,
723 	},
724 	[BOOLEAN] = {
725 		.name = "{boolean}",
726 		.type = "BOOLEAN",
727 		.help = "any boolean value",
728 		.call = parse_boolean,
729 		.comp = comp_boolean,
730 	},
731 	[STRING] = {
732 		.name = "{string}",
733 		.type = "STRING",
734 		.help = "fixed string",
735 		.call = parse_string,
736 		.comp = comp_none,
737 	},
738 	[MAC_ADDR] = {
739 		.name = "{MAC address}",
740 		.type = "MAC-48",
741 		.help = "standard MAC address notation",
742 		.call = parse_mac_addr,
743 		.comp = comp_none,
744 	},
745 	[IPV4_ADDR] = {
746 		.name = "{IPv4 address}",
747 		.type = "IPV4 ADDRESS",
748 		.help = "standard IPv4 address notation",
749 		.call = parse_ipv4_addr,
750 		.comp = comp_none,
751 	},
752 	[IPV6_ADDR] = {
753 		.name = "{IPv6 address}",
754 		.type = "IPV6 ADDRESS",
755 		.help = "standard IPv6 address notation",
756 		.call = parse_ipv6_addr,
757 		.comp = comp_none,
758 	},
759 	[RULE_ID] = {
760 		.name = "{rule id}",
761 		.type = "RULE ID",
762 		.help = "rule identifier",
763 		.call = parse_int,
764 		.comp = comp_rule_id,
765 	},
766 	[PORT_ID] = {
767 		.name = "{port_id}",
768 		.type = "PORT ID",
769 		.help = "port identifier",
770 		.call = parse_port,
771 		.comp = comp_port,
772 	},
773 	[GROUP_ID] = {
774 		.name = "{group_id}",
775 		.type = "GROUP ID",
776 		.help = "group identifier",
777 		.call = parse_int,
778 		.comp = comp_none,
779 	},
780 	[PRIORITY_LEVEL] = {
781 		.name = "{level}",
782 		.type = "PRIORITY",
783 		.help = "priority level",
784 		.call = parse_int,
785 		.comp = comp_none,
786 	},
787 	/* Top-level command. */
788 	[FLOW] = {
789 		.name = "flow",
790 		.type = "{command} {port_id} [{arg} [...]]",
791 		.help = "manage ingress/egress flow rules",
792 		.next = NEXT(NEXT_ENTRY
793 			     (VALIDATE,
794 			      CREATE,
795 			      DESTROY,
796 			      FLUSH,
797 			      LIST,
798 			      QUERY)),
799 		.call = parse_init,
800 	},
801 	/* Sub-level commands. */
802 	[VALIDATE] = {
803 		.name = "validate",
804 		.help = "check whether a flow rule can be created",
805 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
806 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
807 		.call = parse_vc,
808 	},
809 	[CREATE] = {
810 		.name = "create",
811 		.help = "create a flow rule",
812 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
813 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
814 		.call = parse_vc,
815 	},
816 	[DESTROY] = {
817 		.name = "destroy",
818 		.help = "destroy specific flow rules",
819 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
820 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
821 		.call = parse_destroy,
822 	},
823 	[FLUSH] = {
824 		.name = "flush",
825 		.help = "destroy all flow rules",
826 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
827 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
828 		.call = parse_flush,
829 	},
830 	[QUERY] = {
831 		.name = "query",
832 		.help = "query an existing flow rule",
833 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
834 			     NEXT_ENTRY(RULE_ID),
835 			     NEXT_ENTRY(PORT_ID)),
836 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
837 			     ARGS_ENTRY(struct buffer, args.query.rule),
838 			     ARGS_ENTRY(struct buffer, port)),
839 		.call = parse_query,
840 	},
841 	[LIST] = {
842 		.name = "list",
843 		.help = "list existing flow rules",
844 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
845 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
846 		.call = parse_list,
847 	},
848 	/* Destroy arguments. */
849 	[DESTROY_RULE] = {
850 		.name = "rule",
851 		.help = "specify a rule identifier",
852 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
853 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
854 		.call = parse_destroy,
855 	},
856 	/* Query arguments. */
857 	[QUERY_ACTION] = {
858 		.name = "{action}",
859 		.type = "ACTION",
860 		.help = "action to query, must be part of the rule",
861 		.call = parse_action,
862 		.comp = comp_action,
863 	},
864 	/* List arguments. */
865 	[LIST_GROUP] = {
866 		.name = "group",
867 		.help = "specify a group",
868 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
869 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
870 		.call = parse_list,
871 	},
872 	/* Validate/create attributes. */
873 	[GROUP] = {
874 		.name = "group",
875 		.help = "specify a group",
876 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
877 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
878 		.call = parse_vc,
879 	},
880 	[PRIORITY] = {
881 		.name = "priority",
882 		.help = "specify a priority level",
883 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
884 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
885 		.call = parse_vc,
886 	},
887 	[INGRESS] = {
888 		.name = "ingress",
889 		.help = "affect rule to ingress",
890 		.next = NEXT(next_vc_attr),
891 		.call = parse_vc,
892 	},
893 	[EGRESS] = {
894 		.name = "egress",
895 		.help = "affect rule to egress",
896 		.next = NEXT(next_vc_attr),
897 		.call = parse_vc,
898 	},
899 	/* Validate/create pattern. */
900 	[PATTERN] = {
901 		.name = "pattern",
902 		.help = "submit a list of pattern items",
903 		.next = NEXT(next_item),
904 		.call = parse_vc,
905 	},
906 	[ITEM_PARAM_IS] = {
907 		.name = "is",
908 		.help = "match value perfectly (with full bit-mask)",
909 		.call = parse_vc_spec,
910 	},
911 	[ITEM_PARAM_SPEC] = {
912 		.name = "spec",
913 		.help = "match value according to configured bit-mask",
914 		.call = parse_vc_spec,
915 	},
916 	[ITEM_PARAM_LAST] = {
917 		.name = "last",
918 		.help = "specify upper bound to establish a range",
919 		.call = parse_vc_spec,
920 	},
921 	[ITEM_PARAM_MASK] = {
922 		.name = "mask",
923 		.help = "specify bit-mask with relevant bits set to one",
924 		.call = parse_vc_spec,
925 	},
926 	[ITEM_PARAM_PREFIX] = {
927 		.name = "prefix",
928 		.help = "generate bit-mask from a prefix length",
929 		.call = parse_vc_spec,
930 	},
931 	[ITEM_NEXT] = {
932 		.name = "/",
933 		.help = "specify next pattern item",
934 		.next = NEXT(next_item),
935 	},
936 	[ITEM_END] = {
937 		.name = "end",
938 		.help = "end list of pattern items",
939 		.priv = PRIV_ITEM(END, 0),
940 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
941 		.call = parse_vc,
942 	},
943 	[ITEM_VOID] = {
944 		.name = "void",
945 		.help = "no-op pattern item",
946 		.priv = PRIV_ITEM(VOID, 0),
947 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
948 		.call = parse_vc,
949 	},
950 	[ITEM_INVERT] = {
951 		.name = "invert",
952 		.help = "perform actions when pattern does not match",
953 		.priv = PRIV_ITEM(INVERT, 0),
954 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
955 		.call = parse_vc,
956 	},
957 	[ITEM_ANY] = {
958 		.name = "any",
959 		.help = "match any protocol for the current layer",
960 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
961 		.next = NEXT(item_any),
962 		.call = parse_vc,
963 	},
964 	[ITEM_ANY_NUM] = {
965 		.name = "num",
966 		.help = "number of layers covered",
967 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
968 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
969 	},
970 	[ITEM_PF] = {
971 		.name = "pf",
972 		.help = "match packets addressed to the physical function",
973 		.priv = PRIV_ITEM(PF, 0),
974 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
975 		.call = parse_vc,
976 	},
977 	[ITEM_VF] = {
978 		.name = "vf",
979 		.help = "match packets addressed to a virtual function ID",
980 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
981 		.next = NEXT(item_vf),
982 		.call = parse_vc,
983 	},
984 	[ITEM_VF_ID] = {
985 		.name = "id",
986 		.help = "destination VF ID",
987 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
988 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
989 	},
990 	[ITEM_PORT] = {
991 		.name = "port",
992 		.help = "device-specific physical port index to use",
993 		.priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
994 		.next = NEXT(item_port),
995 		.call = parse_vc,
996 	},
997 	[ITEM_PORT_INDEX] = {
998 		.name = "index",
999 		.help = "physical port index",
1000 		.next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
1001 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
1002 	},
1003 	[ITEM_RAW] = {
1004 		.name = "raw",
1005 		.help = "match an arbitrary byte string",
1006 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1007 		.next = NEXT(item_raw),
1008 		.call = parse_vc,
1009 	},
1010 	[ITEM_RAW_RELATIVE] = {
1011 		.name = "relative",
1012 		.help = "look for pattern after the previous item",
1013 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1014 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1015 					   relative, 1)),
1016 	},
1017 	[ITEM_RAW_SEARCH] = {
1018 		.name = "search",
1019 		.help = "search pattern from offset (see also limit)",
1020 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1021 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1022 					   search, 1)),
1023 	},
1024 	[ITEM_RAW_OFFSET] = {
1025 		.name = "offset",
1026 		.help = "absolute or relative offset for pattern",
1027 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1028 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1029 	},
1030 	[ITEM_RAW_LIMIT] = {
1031 		.name = "limit",
1032 		.help = "search area limit for start of pattern",
1033 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1034 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1035 	},
1036 	[ITEM_RAW_PATTERN] = {
1037 		.name = "pattern",
1038 		.help = "byte string to look for",
1039 		.next = NEXT(item_raw,
1040 			     NEXT_ENTRY(STRING),
1041 			     NEXT_ENTRY(ITEM_PARAM_IS,
1042 					ITEM_PARAM_SPEC,
1043 					ITEM_PARAM_MASK)),
1044 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, length),
1045 			     ARGS_ENTRY_USZ(struct rte_flow_item_raw,
1046 					    pattern,
1047 					    ITEM_RAW_PATTERN_SIZE)),
1048 	},
1049 	[ITEM_ETH] = {
1050 		.name = "eth",
1051 		.help = "match Ethernet header",
1052 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1053 		.next = NEXT(item_eth),
1054 		.call = parse_vc,
1055 	},
1056 	[ITEM_ETH_DST] = {
1057 		.name = "dst",
1058 		.help = "destination MAC",
1059 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1060 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1061 	},
1062 	[ITEM_ETH_SRC] = {
1063 		.name = "src",
1064 		.help = "source MAC",
1065 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1066 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1067 	},
1068 	[ITEM_ETH_TYPE] = {
1069 		.name = "type",
1070 		.help = "EtherType",
1071 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1072 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1073 	},
1074 	[ITEM_VLAN] = {
1075 		.name = "vlan",
1076 		.help = "match 802.1Q/ad VLAN tag",
1077 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1078 		.next = NEXT(item_vlan),
1079 		.call = parse_vc,
1080 	},
1081 	[ITEM_VLAN_TPID] = {
1082 		.name = "tpid",
1083 		.help = "tag protocol identifier",
1084 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1085 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
1086 	},
1087 	[ITEM_VLAN_TCI] = {
1088 		.name = "tci",
1089 		.help = "tag control information",
1090 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1091 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1092 	},
1093 	[ITEM_VLAN_PCP] = {
1094 		.name = "pcp",
1095 		.help = "priority code point",
1096 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1097 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1098 						  tci, "\xe0\x00")),
1099 	},
1100 	[ITEM_VLAN_DEI] = {
1101 		.name = "dei",
1102 		.help = "drop eligible indicator",
1103 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1104 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1105 						  tci, "\x10\x00")),
1106 	},
1107 	[ITEM_VLAN_VID] = {
1108 		.name = "vid",
1109 		.help = "VLAN identifier",
1110 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1111 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1112 						  tci, "\x0f\xff")),
1113 	},
1114 	[ITEM_IPV4] = {
1115 		.name = "ipv4",
1116 		.help = "match IPv4 header",
1117 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1118 		.next = NEXT(item_ipv4),
1119 		.call = parse_vc,
1120 	},
1121 	[ITEM_IPV4_TOS] = {
1122 		.name = "tos",
1123 		.help = "type of service",
1124 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1125 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1126 					     hdr.type_of_service)),
1127 	},
1128 	[ITEM_IPV4_TTL] = {
1129 		.name = "ttl",
1130 		.help = "time to live",
1131 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1132 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1133 					     hdr.time_to_live)),
1134 	},
1135 	[ITEM_IPV4_PROTO] = {
1136 		.name = "proto",
1137 		.help = "next protocol ID",
1138 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1139 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1140 					     hdr.next_proto_id)),
1141 	},
1142 	[ITEM_IPV4_SRC] = {
1143 		.name = "src",
1144 		.help = "source address",
1145 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1146 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1147 					     hdr.src_addr)),
1148 	},
1149 	[ITEM_IPV4_DST] = {
1150 		.name = "dst",
1151 		.help = "destination address",
1152 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1153 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1154 					     hdr.dst_addr)),
1155 	},
1156 	[ITEM_IPV6] = {
1157 		.name = "ipv6",
1158 		.help = "match IPv6 header",
1159 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1160 		.next = NEXT(item_ipv6),
1161 		.call = parse_vc,
1162 	},
1163 	[ITEM_IPV6_TC] = {
1164 		.name = "tc",
1165 		.help = "traffic class",
1166 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1167 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1168 						  hdr.vtc_flow,
1169 						  "\x0f\xf0\x00\x00")),
1170 	},
1171 	[ITEM_IPV6_FLOW] = {
1172 		.name = "flow",
1173 		.help = "flow label",
1174 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1175 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1176 						  hdr.vtc_flow,
1177 						  "\x00\x0f\xff\xff")),
1178 	},
1179 	[ITEM_IPV6_PROTO] = {
1180 		.name = "proto",
1181 		.help = "protocol (next header)",
1182 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1183 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1184 					     hdr.proto)),
1185 	},
1186 	[ITEM_IPV6_HOP] = {
1187 		.name = "hop",
1188 		.help = "hop limit",
1189 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1190 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1191 					     hdr.hop_limits)),
1192 	},
1193 	[ITEM_IPV6_SRC] = {
1194 		.name = "src",
1195 		.help = "source address",
1196 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1197 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1198 					     hdr.src_addr)),
1199 	},
1200 	[ITEM_IPV6_DST] = {
1201 		.name = "dst",
1202 		.help = "destination address",
1203 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1204 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1205 					     hdr.dst_addr)),
1206 	},
1207 	[ITEM_ICMP] = {
1208 		.name = "icmp",
1209 		.help = "match ICMP header",
1210 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1211 		.next = NEXT(item_icmp),
1212 		.call = parse_vc,
1213 	},
1214 	[ITEM_ICMP_TYPE] = {
1215 		.name = "type",
1216 		.help = "ICMP packet type",
1217 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1218 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1219 					     hdr.icmp_type)),
1220 	},
1221 	[ITEM_ICMP_CODE] = {
1222 		.name = "code",
1223 		.help = "ICMP packet code",
1224 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1225 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1226 					     hdr.icmp_code)),
1227 	},
1228 	[ITEM_UDP] = {
1229 		.name = "udp",
1230 		.help = "match UDP header",
1231 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1232 		.next = NEXT(item_udp),
1233 		.call = parse_vc,
1234 	},
1235 	[ITEM_UDP_SRC] = {
1236 		.name = "src",
1237 		.help = "UDP source port",
1238 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1239 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1240 					     hdr.src_port)),
1241 	},
1242 	[ITEM_UDP_DST] = {
1243 		.name = "dst",
1244 		.help = "UDP destination port",
1245 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1246 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1247 					     hdr.dst_port)),
1248 	},
1249 	[ITEM_TCP] = {
1250 		.name = "tcp",
1251 		.help = "match TCP header",
1252 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1253 		.next = NEXT(item_tcp),
1254 		.call = parse_vc,
1255 	},
1256 	[ITEM_TCP_SRC] = {
1257 		.name = "src",
1258 		.help = "TCP source port",
1259 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1260 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1261 					     hdr.src_port)),
1262 	},
1263 	[ITEM_TCP_DST] = {
1264 		.name = "dst",
1265 		.help = "TCP destination port",
1266 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1267 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1268 					     hdr.dst_port)),
1269 	},
1270 	[ITEM_SCTP] = {
1271 		.name = "sctp",
1272 		.help = "match SCTP header",
1273 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1274 		.next = NEXT(item_sctp),
1275 		.call = parse_vc,
1276 	},
1277 	[ITEM_SCTP_SRC] = {
1278 		.name = "src",
1279 		.help = "SCTP source port",
1280 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1281 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1282 					     hdr.src_port)),
1283 	},
1284 	[ITEM_SCTP_DST] = {
1285 		.name = "dst",
1286 		.help = "SCTP destination port",
1287 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1288 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1289 					     hdr.dst_port)),
1290 	},
1291 	[ITEM_SCTP_TAG] = {
1292 		.name = "tag",
1293 		.help = "validation tag",
1294 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1295 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1296 					     hdr.tag)),
1297 	},
1298 	[ITEM_SCTP_CKSUM] = {
1299 		.name = "cksum",
1300 		.help = "checksum",
1301 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1302 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1303 					     hdr.cksum)),
1304 	},
1305 	[ITEM_VXLAN] = {
1306 		.name = "vxlan",
1307 		.help = "match VXLAN header",
1308 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1309 		.next = NEXT(item_vxlan),
1310 		.call = parse_vc,
1311 	},
1312 	[ITEM_VXLAN_VNI] = {
1313 		.name = "vni",
1314 		.help = "VXLAN identifier",
1315 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1316 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1317 	},
1318 	[ITEM_E_TAG] = {
1319 		.name = "e_tag",
1320 		.help = "match E-Tag header",
1321 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1322 		.next = NEXT(item_e_tag),
1323 		.call = parse_vc,
1324 	},
1325 	[ITEM_E_TAG_GRP_ECID_B] = {
1326 		.name = "grp_ecid_b",
1327 		.help = "GRP and E-CID base",
1328 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1329 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1330 						  rsvd_grp_ecid_b,
1331 						  "\x3f\xff")),
1332 	},
1333 	[ITEM_NVGRE] = {
1334 		.name = "nvgre",
1335 		.help = "match NVGRE header",
1336 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1337 		.next = NEXT(item_nvgre),
1338 		.call = parse_vc,
1339 	},
1340 	[ITEM_NVGRE_TNI] = {
1341 		.name = "tni",
1342 		.help = "virtual subnet ID",
1343 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1344 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1345 	},
1346 	[ITEM_MPLS] = {
1347 		.name = "mpls",
1348 		.help = "match MPLS header",
1349 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1350 		.next = NEXT(item_mpls),
1351 		.call = parse_vc,
1352 	},
1353 	[ITEM_MPLS_LABEL] = {
1354 		.name = "label",
1355 		.help = "MPLS label",
1356 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1357 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1358 						  label_tc_s,
1359 						  "\xff\xff\xf0")),
1360 	},
1361 	[ITEM_GRE] = {
1362 		.name = "gre",
1363 		.help = "match GRE header",
1364 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1365 		.next = NEXT(item_gre),
1366 		.call = parse_vc,
1367 	},
1368 	[ITEM_GRE_PROTO] = {
1369 		.name = "protocol",
1370 		.help = "GRE protocol type",
1371 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1372 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1373 					     protocol)),
1374 	},
1375 	/* Validate/create actions. */
1376 	[ACTIONS] = {
1377 		.name = "actions",
1378 		.help = "submit a list of associated actions",
1379 		.next = NEXT(next_action),
1380 		.call = parse_vc,
1381 	},
1382 	[ACTION_NEXT] = {
1383 		.name = "/",
1384 		.help = "specify next action",
1385 		.next = NEXT(next_action),
1386 	},
1387 	[ACTION_END] = {
1388 		.name = "end",
1389 		.help = "end list of actions",
1390 		.priv = PRIV_ACTION(END, 0),
1391 		.call = parse_vc,
1392 	},
1393 	[ACTION_VOID] = {
1394 		.name = "void",
1395 		.help = "no-op action",
1396 		.priv = PRIV_ACTION(VOID, 0),
1397 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1398 		.call = parse_vc,
1399 	},
1400 	[ACTION_PASSTHRU] = {
1401 		.name = "passthru",
1402 		.help = "let subsequent rule process matched packets",
1403 		.priv = PRIV_ACTION(PASSTHRU, 0),
1404 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1405 		.call = parse_vc,
1406 	},
1407 	[ACTION_MARK] = {
1408 		.name = "mark",
1409 		.help = "attach 32 bit value to packets",
1410 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1411 		.next = NEXT(action_mark),
1412 		.call = parse_vc,
1413 	},
1414 	[ACTION_MARK_ID] = {
1415 		.name = "id",
1416 		.help = "32 bit value to return with packets",
1417 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1418 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1419 		.call = parse_vc_conf,
1420 	},
1421 	[ACTION_FLAG] = {
1422 		.name = "flag",
1423 		.help = "flag packets",
1424 		.priv = PRIV_ACTION(FLAG, 0),
1425 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1426 		.call = parse_vc,
1427 	},
1428 	[ACTION_QUEUE] = {
1429 		.name = "queue",
1430 		.help = "assign packets to a given queue index",
1431 		.priv = PRIV_ACTION(QUEUE,
1432 				    sizeof(struct rte_flow_action_queue)),
1433 		.next = NEXT(action_queue),
1434 		.call = parse_vc,
1435 	},
1436 	[ACTION_QUEUE_INDEX] = {
1437 		.name = "index",
1438 		.help = "queue index to use",
1439 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1440 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1441 		.call = parse_vc_conf,
1442 	},
1443 	[ACTION_DROP] = {
1444 		.name = "drop",
1445 		.help = "drop packets (note: passthru has priority)",
1446 		.priv = PRIV_ACTION(DROP, 0),
1447 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1448 		.call = parse_vc,
1449 	},
1450 	[ACTION_COUNT] = {
1451 		.name = "count",
1452 		.help = "enable counters for this rule",
1453 		.priv = PRIV_ACTION(COUNT, 0),
1454 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1455 		.call = parse_vc,
1456 	},
1457 	[ACTION_DUP] = {
1458 		.name = "dup",
1459 		.help = "duplicate packets to a given queue index",
1460 		.priv = PRIV_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1461 		.next = NEXT(action_dup),
1462 		.call = parse_vc,
1463 	},
1464 	[ACTION_DUP_INDEX] = {
1465 		.name = "index",
1466 		.help = "queue index to duplicate packets to",
1467 		.next = NEXT(action_dup, NEXT_ENTRY(UNSIGNED)),
1468 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_dup, index)),
1469 		.call = parse_vc_conf,
1470 	},
1471 	[ACTION_RSS] = {
1472 		.name = "rss",
1473 		.help = "spread packets among several queues",
1474 		.priv = PRIV_ACTION(RSS, ACTION_RSS_SIZE),
1475 		.next = NEXT(action_rss),
1476 		.call = parse_vc,
1477 	},
1478 	[ACTION_RSS_QUEUES] = {
1479 		.name = "queues",
1480 		.help = "queue indices to use",
1481 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1482 		.call = parse_vc_conf,
1483 	},
1484 	[ACTION_RSS_QUEUE] = {
1485 		.name = "{queue}",
1486 		.help = "queue index",
1487 		.call = parse_vc_action_rss_queue,
1488 		.comp = comp_vc_action_rss_queue,
1489 	},
1490 	[ACTION_PF] = {
1491 		.name = "pf",
1492 		.help = "redirect packets to physical device function",
1493 		.priv = PRIV_ACTION(PF, 0),
1494 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1495 		.call = parse_vc,
1496 	},
1497 	[ACTION_VF] = {
1498 		.name = "vf",
1499 		.help = "redirect packets to virtual device function",
1500 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1501 		.next = NEXT(action_vf),
1502 		.call = parse_vc,
1503 	},
1504 	[ACTION_VF_ORIGINAL] = {
1505 		.name = "original",
1506 		.help = "use original VF ID if possible",
1507 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
1508 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
1509 					   original, 1)),
1510 		.call = parse_vc_conf,
1511 	},
1512 	[ACTION_VF_ID] = {
1513 		.name = "id",
1514 		.help = "VF ID to redirect packets to",
1515 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
1516 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
1517 		.call = parse_vc_conf,
1518 	},
1519 };
1520 
1521 /** Remove and return last entry from argument stack. */
1522 static const struct arg *
1523 pop_args(struct context *ctx)
1524 {
1525 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
1526 }
1527 
1528 /** Add entry on top of the argument stack. */
1529 static int
1530 push_args(struct context *ctx, const struct arg *arg)
1531 {
1532 	if (ctx->args_num == CTX_STACK_SIZE)
1533 		return -1;
1534 	ctx->args[ctx->args_num++] = arg;
1535 	return 0;
1536 }
1537 
1538 /** Spread value into buffer according to bit-mask. */
1539 static size_t
1540 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
1541 {
1542 	uint32_t i = arg->size;
1543 	uint32_t end = 0;
1544 	int sub = 1;
1545 	int add = 0;
1546 	size_t len = 0;
1547 
1548 	if (!arg->mask)
1549 		return 0;
1550 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1551 	if (!arg->hton) {
1552 		i = 0;
1553 		end = arg->size;
1554 		sub = 0;
1555 		add = 1;
1556 	}
1557 #endif
1558 	while (i != end) {
1559 		unsigned int shift = 0;
1560 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
1561 
1562 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
1563 			if (!(arg->mask[i] & (1 << shift)))
1564 				continue;
1565 			++len;
1566 			if (!dst)
1567 				continue;
1568 			*buf &= ~(1 << shift);
1569 			*buf |= (val & 1) << shift;
1570 			val >>= 1;
1571 		}
1572 		i += add;
1573 	}
1574 	return len;
1575 }
1576 
1577 /**
1578  * Parse a prefix length and generate a bit-mask.
1579  *
1580  * Last argument (ctx->args) is retrieved to determine mask size, storage
1581  * location and whether the result must use network byte ordering.
1582  */
1583 static int
1584 parse_prefix(struct context *ctx, const struct token *token,
1585 	     const char *str, unsigned int len,
1586 	     void *buf, unsigned int size)
1587 {
1588 	const struct arg *arg = pop_args(ctx);
1589 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
1590 	char *end;
1591 	uintmax_t u;
1592 	unsigned int bytes;
1593 	unsigned int extra;
1594 
1595 	(void)token;
1596 	/* Argument is expected. */
1597 	if (!arg)
1598 		return -1;
1599 	errno = 0;
1600 	u = strtoumax(str, &end, 0);
1601 	if (errno || (size_t)(end - str) != len)
1602 		goto error;
1603 	if (arg->mask) {
1604 		uintmax_t v = 0;
1605 
1606 		extra = arg_entry_bf_fill(NULL, 0, arg);
1607 		if (u > extra)
1608 			goto error;
1609 		if (!ctx->object)
1610 			return len;
1611 		extra -= u;
1612 		while (u--)
1613 			(v <<= 1, v |= 1);
1614 		v <<= extra;
1615 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
1616 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
1617 			goto error;
1618 		return len;
1619 	}
1620 	bytes = u / 8;
1621 	extra = u % 8;
1622 	size = arg->size;
1623 	if (bytes > size || bytes + !!extra > size)
1624 		goto error;
1625 	if (!ctx->object)
1626 		return len;
1627 	buf = (uint8_t *)ctx->object + arg->offset;
1628 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1629 	if (!arg->hton) {
1630 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
1631 		memset(buf, 0x00, size - bytes);
1632 		if (extra)
1633 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
1634 	} else
1635 #endif
1636 	{
1637 		memset(buf, 0xff, bytes);
1638 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
1639 		if (extra)
1640 			((uint8_t *)buf)[bytes] = conv[extra];
1641 	}
1642 	if (ctx->objmask)
1643 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
1644 	return len;
1645 error:
1646 	push_args(ctx, arg);
1647 	return -1;
1648 }
1649 
1650 /** Default parsing function for token name matching. */
1651 static int
1652 parse_default(struct context *ctx, const struct token *token,
1653 	      const char *str, unsigned int len,
1654 	      void *buf, unsigned int size)
1655 {
1656 	(void)ctx;
1657 	(void)buf;
1658 	(void)size;
1659 	if (strncmp(str, token->name, len))
1660 		return -1;
1661 	return len;
1662 }
1663 
1664 /** Parse flow command, initialize output buffer for subsequent tokens. */
1665 static int
1666 parse_init(struct context *ctx, const struct token *token,
1667 	   const char *str, unsigned int len,
1668 	   void *buf, unsigned int size)
1669 {
1670 	struct buffer *out = buf;
1671 
1672 	/* Token name must match. */
1673 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1674 		return -1;
1675 	/* Nothing else to do if there is no buffer. */
1676 	if (!out)
1677 		return len;
1678 	/* Make sure buffer is large enough. */
1679 	if (size < sizeof(*out))
1680 		return -1;
1681 	/* Initialize buffer. */
1682 	memset(out, 0x00, sizeof(*out));
1683 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
1684 	ctx->objdata = 0;
1685 	ctx->object = out;
1686 	ctx->objmask = NULL;
1687 	return len;
1688 }
1689 
1690 /** Parse tokens for validate/create commands. */
1691 static int
1692 parse_vc(struct context *ctx, const struct token *token,
1693 	 const char *str, unsigned int len,
1694 	 void *buf, unsigned int size)
1695 {
1696 	struct buffer *out = buf;
1697 	uint8_t *data;
1698 	uint32_t data_size;
1699 
1700 	/* Token name must match. */
1701 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1702 		return -1;
1703 	/* Nothing else to do if there is no buffer. */
1704 	if (!out)
1705 		return len;
1706 	if (!out->command) {
1707 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
1708 			return -1;
1709 		if (sizeof(*out) > size)
1710 			return -1;
1711 		out->command = ctx->curr;
1712 		ctx->objdata = 0;
1713 		ctx->object = out;
1714 		ctx->objmask = NULL;
1715 		out->args.vc.data = (uint8_t *)out + size;
1716 		return len;
1717 	}
1718 	ctx->objdata = 0;
1719 	ctx->object = &out->args.vc.attr;
1720 	ctx->objmask = NULL;
1721 	switch (ctx->curr) {
1722 	case GROUP:
1723 	case PRIORITY:
1724 		return len;
1725 	case INGRESS:
1726 		out->args.vc.attr.ingress = 1;
1727 		return len;
1728 	case EGRESS:
1729 		out->args.vc.attr.egress = 1;
1730 		return len;
1731 	case PATTERN:
1732 		out->args.vc.pattern =
1733 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1734 					       sizeof(double));
1735 		ctx->object = out->args.vc.pattern;
1736 		ctx->objmask = NULL;
1737 		return len;
1738 	case ACTIONS:
1739 		out->args.vc.actions =
1740 			(void *)RTE_ALIGN_CEIL((uintptr_t)
1741 					       (out->args.vc.pattern +
1742 						out->args.vc.pattern_n),
1743 					       sizeof(double));
1744 		ctx->object = out->args.vc.actions;
1745 		ctx->objmask = NULL;
1746 		return len;
1747 	default:
1748 		if (!token->priv)
1749 			return -1;
1750 		break;
1751 	}
1752 	if (!out->args.vc.actions) {
1753 		const struct parse_item_priv *priv = token->priv;
1754 		struct rte_flow_item *item =
1755 			out->args.vc.pattern + out->args.vc.pattern_n;
1756 
1757 		data_size = priv->size * 3; /* spec, last, mask */
1758 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1759 					       (out->args.vc.data - data_size),
1760 					       sizeof(double));
1761 		if ((uint8_t *)item + sizeof(*item) > data)
1762 			return -1;
1763 		*item = (struct rte_flow_item){
1764 			.type = priv->type,
1765 		};
1766 		++out->args.vc.pattern_n;
1767 		ctx->object = item;
1768 		ctx->objmask = NULL;
1769 	} else {
1770 		const struct parse_action_priv *priv = token->priv;
1771 		struct rte_flow_action *action =
1772 			out->args.vc.actions + out->args.vc.actions_n;
1773 
1774 		data_size = priv->size; /* configuration */
1775 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1776 					       (out->args.vc.data - data_size),
1777 					       sizeof(double));
1778 		if ((uint8_t *)action + sizeof(*action) > data)
1779 			return -1;
1780 		*action = (struct rte_flow_action){
1781 			.type = priv->type,
1782 		};
1783 		++out->args.vc.actions_n;
1784 		ctx->object = action;
1785 		ctx->objmask = NULL;
1786 	}
1787 	memset(data, 0, data_size);
1788 	out->args.vc.data = data;
1789 	ctx->objdata = data_size;
1790 	return len;
1791 }
1792 
1793 /** Parse pattern item parameter type. */
1794 static int
1795 parse_vc_spec(struct context *ctx, const struct token *token,
1796 	      const char *str, unsigned int len,
1797 	      void *buf, unsigned int size)
1798 {
1799 	struct buffer *out = buf;
1800 	struct rte_flow_item *item;
1801 	uint32_t data_size;
1802 	int index;
1803 	int objmask = 0;
1804 
1805 	(void)size;
1806 	/* Token name must match. */
1807 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1808 		return -1;
1809 	/* Parse parameter types. */
1810 	switch (ctx->curr) {
1811 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
1812 
1813 	case ITEM_PARAM_IS:
1814 		index = 0;
1815 		objmask = 1;
1816 		break;
1817 	case ITEM_PARAM_SPEC:
1818 		index = 0;
1819 		break;
1820 	case ITEM_PARAM_LAST:
1821 		index = 1;
1822 		break;
1823 	case ITEM_PARAM_PREFIX:
1824 		/* Modify next token to expect a prefix. */
1825 		if (ctx->next_num < 2)
1826 			return -1;
1827 		ctx->next[ctx->next_num - 2] = prefix;
1828 		/* Fall through. */
1829 	case ITEM_PARAM_MASK:
1830 		index = 2;
1831 		break;
1832 	default:
1833 		return -1;
1834 	}
1835 	/* Nothing else to do if there is no buffer. */
1836 	if (!out)
1837 		return len;
1838 	if (!out->args.vc.pattern_n)
1839 		return -1;
1840 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
1841 	data_size = ctx->objdata / 3; /* spec, last, mask */
1842 	/* Point to selected object. */
1843 	ctx->object = out->args.vc.data + (data_size * index);
1844 	if (objmask) {
1845 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
1846 		item->mask = ctx->objmask;
1847 	} else
1848 		ctx->objmask = NULL;
1849 	/* Update relevant item pointer. */
1850 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
1851 		ctx->object;
1852 	return len;
1853 }
1854 
1855 /** Parse action configuration field. */
1856 static int
1857 parse_vc_conf(struct context *ctx, const struct token *token,
1858 	      const char *str, unsigned int len,
1859 	      void *buf, unsigned int size)
1860 {
1861 	struct buffer *out = buf;
1862 	struct rte_flow_action *action;
1863 
1864 	(void)size;
1865 	/* Token name must match. */
1866 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1867 		return -1;
1868 	/* Nothing else to do if there is no buffer. */
1869 	if (!out)
1870 		return len;
1871 	if (!out->args.vc.actions_n)
1872 		return -1;
1873 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
1874 	/* Point to selected object. */
1875 	ctx->object = out->args.vc.data;
1876 	ctx->objmask = NULL;
1877 	/* Update configuration pointer. */
1878 	action->conf = ctx->object;
1879 	return len;
1880 }
1881 
1882 /**
1883  * Parse queue field for RSS action.
1884  *
1885  * Valid tokens are queue indices and the "end" token.
1886  */
1887 static int
1888 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
1889 			  const char *str, unsigned int len,
1890 			  void *buf, unsigned int size)
1891 {
1892 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
1893 	int ret;
1894 	int i;
1895 
1896 	(void)token;
1897 	(void)buf;
1898 	(void)size;
1899 	if (ctx->curr != ACTION_RSS_QUEUE)
1900 		return -1;
1901 	i = ctx->objdata >> 16;
1902 	if (!strncmp(str, "end", len)) {
1903 		ctx->objdata &= 0xffff;
1904 		return len;
1905 	}
1906 	if (i >= ACTION_RSS_NUM)
1907 		return -1;
1908 	if (push_args(ctx, ARGS_ENTRY(struct rte_flow_action_rss, queue[i])))
1909 		return -1;
1910 	ret = parse_int(ctx, token, str, len, NULL, 0);
1911 	if (ret < 0) {
1912 		pop_args(ctx);
1913 		return -1;
1914 	}
1915 	++i;
1916 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
1917 	/* Repeat token. */
1918 	if (ctx->next_num == RTE_DIM(ctx->next))
1919 		return -1;
1920 	ctx->next[ctx->next_num++] = next;
1921 	if (!ctx->object)
1922 		return len;
1923 	((struct rte_flow_action_rss *)ctx->object)->num = i;
1924 	return len;
1925 }
1926 
1927 /** Parse tokens for destroy command. */
1928 static int
1929 parse_destroy(struct context *ctx, const struct token *token,
1930 	      const char *str, unsigned int len,
1931 	      void *buf, unsigned int size)
1932 {
1933 	struct buffer *out = buf;
1934 
1935 	/* Token name must match. */
1936 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1937 		return -1;
1938 	/* Nothing else to do if there is no buffer. */
1939 	if (!out)
1940 		return len;
1941 	if (!out->command) {
1942 		if (ctx->curr != DESTROY)
1943 			return -1;
1944 		if (sizeof(*out) > size)
1945 			return -1;
1946 		out->command = ctx->curr;
1947 		ctx->objdata = 0;
1948 		ctx->object = out;
1949 		ctx->objmask = NULL;
1950 		out->args.destroy.rule =
1951 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1952 					       sizeof(double));
1953 		return len;
1954 	}
1955 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
1956 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
1957 		return -1;
1958 	ctx->objdata = 0;
1959 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
1960 	ctx->objmask = NULL;
1961 	return len;
1962 }
1963 
1964 /** Parse tokens for flush command. */
1965 static int
1966 parse_flush(struct context *ctx, const struct token *token,
1967 	    const char *str, unsigned int len,
1968 	    void *buf, unsigned int size)
1969 {
1970 	struct buffer *out = buf;
1971 
1972 	/* Token name must match. */
1973 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1974 		return -1;
1975 	/* Nothing else to do if there is no buffer. */
1976 	if (!out)
1977 		return len;
1978 	if (!out->command) {
1979 		if (ctx->curr != FLUSH)
1980 			return -1;
1981 		if (sizeof(*out) > size)
1982 			return -1;
1983 		out->command = ctx->curr;
1984 		ctx->objdata = 0;
1985 		ctx->object = out;
1986 		ctx->objmask = NULL;
1987 	}
1988 	return len;
1989 }
1990 
1991 /** Parse tokens for query command. */
1992 static int
1993 parse_query(struct context *ctx, const struct token *token,
1994 	    const char *str, unsigned int len,
1995 	    void *buf, unsigned int size)
1996 {
1997 	struct buffer *out = buf;
1998 
1999 	/* Token name must match. */
2000 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2001 		return -1;
2002 	/* Nothing else to do if there is no buffer. */
2003 	if (!out)
2004 		return len;
2005 	if (!out->command) {
2006 		if (ctx->curr != QUERY)
2007 			return -1;
2008 		if (sizeof(*out) > size)
2009 			return -1;
2010 		out->command = ctx->curr;
2011 		ctx->objdata = 0;
2012 		ctx->object = out;
2013 		ctx->objmask = NULL;
2014 	}
2015 	return len;
2016 }
2017 
2018 /** Parse action names. */
2019 static int
2020 parse_action(struct context *ctx, const struct token *token,
2021 	     const char *str, unsigned int len,
2022 	     void *buf, unsigned int size)
2023 {
2024 	struct buffer *out = buf;
2025 	const struct arg *arg = pop_args(ctx);
2026 	unsigned int i;
2027 
2028 	(void)size;
2029 	/* Argument is expected. */
2030 	if (!arg)
2031 		return -1;
2032 	/* Parse action name. */
2033 	for (i = 0; next_action[i]; ++i) {
2034 		const struct parse_action_priv *priv;
2035 
2036 		token = &token_list[next_action[i]];
2037 		if (strncmp(token->name, str, len))
2038 			continue;
2039 		priv = token->priv;
2040 		if (!priv)
2041 			goto error;
2042 		if (out)
2043 			memcpy((uint8_t *)ctx->object + arg->offset,
2044 			       &priv->type,
2045 			       arg->size);
2046 		return len;
2047 	}
2048 error:
2049 	push_args(ctx, arg);
2050 	return -1;
2051 }
2052 
2053 /** Parse tokens for list command. */
2054 static int
2055 parse_list(struct context *ctx, const struct token *token,
2056 	   const char *str, unsigned int len,
2057 	   void *buf, unsigned int size)
2058 {
2059 	struct buffer *out = buf;
2060 
2061 	/* Token name must match. */
2062 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2063 		return -1;
2064 	/* Nothing else to do if there is no buffer. */
2065 	if (!out)
2066 		return len;
2067 	if (!out->command) {
2068 		if (ctx->curr != LIST)
2069 			return -1;
2070 		if (sizeof(*out) > size)
2071 			return -1;
2072 		out->command = ctx->curr;
2073 		ctx->objdata = 0;
2074 		ctx->object = out;
2075 		ctx->objmask = NULL;
2076 		out->args.list.group =
2077 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2078 					       sizeof(double));
2079 		return len;
2080 	}
2081 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
2082 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
2083 		return -1;
2084 	ctx->objdata = 0;
2085 	ctx->object = out->args.list.group + out->args.list.group_n++;
2086 	ctx->objmask = NULL;
2087 	return len;
2088 }
2089 
2090 /**
2091  * Parse signed/unsigned integers 8 to 64-bit long.
2092  *
2093  * Last argument (ctx->args) is retrieved to determine integer type and
2094  * storage location.
2095  */
2096 static int
2097 parse_int(struct context *ctx, const struct token *token,
2098 	  const char *str, unsigned int len,
2099 	  void *buf, unsigned int size)
2100 {
2101 	const struct arg *arg = pop_args(ctx);
2102 	uintmax_t u;
2103 	char *end;
2104 
2105 	(void)token;
2106 	/* Argument is expected. */
2107 	if (!arg)
2108 		return -1;
2109 	errno = 0;
2110 	u = arg->sign ?
2111 		(uintmax_t)strtoimax(str, &end, 0) :
2112 		strtoumax(str, &end, 0);
2113 	if (errno || (size_t)(end - str) != len)
2114 		goto error;
2115 	if (!ctx->object)
2116 		return len;
2117 	if (arg->mask) {
2118 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2119 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2120 			goto error;
2121 		return len;
2122 	}
2123 	buf = (uint8_t *)ctx->object + arg->offset;
2124 	size = arg->size;
2125 objmask:
2126 	switch (size) {
2127 	case sizeof(uint8_t):
2128 		*(uint8_t *)buf = u;
2129 		break;
2130 	case sizeof(uint16_t):
2131 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2132 		break;
2133 	case sizeof(uint8_t [3]):
2134 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2135 		if (!arg->hton) {
2136 			((uint8_t *)buf)[0] = u;
2137 			((uint8_t *)buf)[1] = u >> 8;
2138 			((uint8_t *)buf)[2] = u >> 16;
2139 			break;
2140 		}
2141 #endif
2142 		((uint8_t *)buf)[0] = u >> 16;
2143 		((uint8_t *)buf)[1] = u >> 8;
2144 		((uint8_t *)buf)[2] = u;
2145 		break;
2146 	case sizeof(uint32_t):
2147 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2148 		break;
2149 	case sizeof(uint64_t):
2150 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2151 		break;
2152 	default:
2153 		goto error;
2154 	}
2155 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2156 		u = -1;
2157 		buf = (uint8_t *)ctx->objmask + arg->offset;
2158 		goto objmask;
2159 	}
2160 	return len;
2161 error:
2162 	push_args(ctx, arg);
2163 	return -1;
2164 }
2165 
2166 /**
2167  * Parse a string.
2168  *
2169  * Two arguments (ctx->args) are retrieved from the stack to store data and
2170  * its length (in that order).
2171  */
2172 static int
2173 parse_string(struct context *ctx, const struct token *token,
2174 	     const char *str, unsigned int len,
2175 	     void *buf, unsigned int size)
2176 {
2177 	const struct arg *arg_data = pop_args(ctx);
2178 	const struct arg *arg_len = pop_args(ctx);
2179 	char tmp[16]; /* Ought to be enough. */
2180 	int ret;
2181 
2182 	/* Arguments are expected. */
2183 	if (!arg_data)
2184 		return -1;
2185 	if (!arg_len) {
2186 		push_args(ctx, arg_data);
2187 		return -1;
2188 	}
2189 	size = arg_data->size;
2190 	/* Bit-mask fill is not supported. */
2191 	if (arg_data->mask || size < len)
2192 		goto error;
2193 	if (!ctx->object)
2194 		return len;
2195 	/* Let parse_int() fill length information first. */
2196 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
2197 	if (ret < 0)
2198 		goto error;
2199 	push_args(ctx, arg_len);
2200 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2201 	if (ret < 0) {
2202 		pop_args(ctx);
2203 		goto error;
2204 	}
2205 	buf = (uint8_t *)ctx->object + arg_data->offset;
2206 	/* Output buffer is not necessarily NUL-terminated. */
2207 	memcpy(buf, str, len);
2208 	memset((uint8_t *)buf + len, 0x55, size - len);
2209 	if (ctx->objmask)
2210 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2211 	return len;
2212 error:
2213 	push_args(ctx, arg_len);
2214 	push_args(ctx, arg_data);
2215 	return -1;
2216 }
2217 
2218 /**
2219  * Parse a MAC address.
2220  *
2221  * Last argument (ctx->args) is retrieved to determine storage size and
2222  * location.
2223  */
2224 static int
2225 parse_mac_addr(struct context *ctx, const struct token *token,
2226 	       const char *str, unsigned int len,
2227 	       void *buf, unsigned int size)
2228 {
2229 	const struct arg *arg = pop_args(ctx);
2230 	struct ether_addr tmp;
2231 	int ret;
2232 
2233 	(void)token;
2234 	/* Argument is expected. */
2235 	if (!arg)
2236 		return -1;
2237 	size = arg->size;
2238 	/* Bit-mask fill is not supported. */
2239 	if (arg->mask || size != sizeof(tmp))
2240 		goto error;
2241 	/* Only network endian is supported. */
2242 	if (!arg->hton)
2243 		goto error;
2244 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
2245 	if (ret < 0 || (unsigned int)ret != len)
2246 		goto error;
2247 	if (!ctx->object)
2248 		return len;
2249 	buf = (uint8_t *)ctx->object + arg->offset;
2250 	memcpy(buf, &tmp, size);
2251 	if (ctx->objmask)
2252 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2253 	return len;
2254 error:
2255 	push_args(ctx, arg);
2256 	return -1;
2257 }
2258 
2259 /**
2260  * Parse an IPv4 address.
2261  *
2262  * Last argument (ctx->args) is retrieved to determine storage size and
2263  * location.
2264  */
2265 static int
2266 parse_ipv4_addr(struct context *ctx, const struct token *token,
2267 		const char *str, unsigned int len,
2268 		void *buf, unsigned int size)
2269 {
2270 	const struct arg *arg = pop_args(ctx);
2271 	char str2[len + 1];
2272 	struct in_addr tmp;
2273 	int ret;
2274 
2275 	/* Argument is expected. */
2276 	if (!arg)
2277 		return -1;
2278 	size = arg->size;
2279 	/* Bit-mask fill is not supported. */
2280 	if (arg->mask || size != sizeof(tmp))
2281 		goto error;
2282 	/* Only network endian is supported. */
2283 	if (!arg->hton)
2284 		goto error;
2285 	memcpy(str2, str, len);
2286 	str2[len] = '\0';
2287 	ret = inet_pton(AF_INET, str2, &tmp);
2288 	if (ret != 1) {
2289 		/* Attempt integer parsing. */
2290 		push_args(ctx, arg);
2291 		return parse_int(ctx, token, str, len, buf, size);
2292 	}
2293 	if (!ctx->object)
2294 		return len;
2295 	buf = (uint8_t *)ctx->object + arg->offset;
2296 	memcpy(buf, &tmp, size);
2297 	if (ctx->objmask)
2298 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2299 	return len;
2300 error:
2301 	push_args(ctx, arg);
2302 	return -1;
2303 }
2304 
2305 /**
2306  * Parse an IPv6 address.
2307  *
2308  * Last argument (ctx->args) is retrieved to determine storage size and
2309  * location.
2310  */
2311 static int
2312 parse_ipv6_addr(struct context *ctx, const struct token *token,
2313 		const char *str, unsigned int len,
2314 		void *buf, unsigned int size)
2315 {
2316 	const struct arg *arg = pop_args(ctx);
2317 	char str2[len + 1];
2318 	struct in6_addr tmp;
2319 	int ret;
2320 
2321 	(void)token;
2322 	/* Argument is expected. */
2323 	if (!arg)
2324 		return -1;
2325 	size = arg->size;
2326 	/* Bit-mask fill is not supported. */
2327 	if (arg->mask || size != sizeof(tmp))
2328 		goto error;
2329 	/* Only network endian is supported. */
2330 	if (!arg->hton)
2331 		goto error;
2332 	memcpy(str2, str, len);
2333 	str2[len] = '\0';
2334 	ret = inet_pton(AF_INET6, str2, &tmp);
2335 	if (ret != 1)
2336 		goto error;
2337 	if (!ctx->object)
2338 		return len;
2339 	buf = (uint8_t *)ctx->object + arg->offset;
2340 	memcpy(buf, &tmp, size);
2341 	if (ctx->objmask)
2342 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2343 	return len;
2344 error:
2345 	push_args(ctx, arg);
2346 	return -1;
2347 }
2348 
2349 /** Boolean values (even indices stand for false). */
2350 static const char *const boolean_name[] = {
2351 	"0", "1",
2352 	"false", "true",
2353 	"no", "yes",
2354 	"N", "Y",
2355 	NULL,
2356 };
2357 
2358 /**
2359  * Parse a boolean value.
2360  *
2361  * Last argument (ctx->args) is retrieved to determine storage size and
2362  * location.
2363  */
2364 static int
2365 parse_boolean(struct context *ctx, const struct token *token,
2366 	      const char *str, unsigned int len,
2367 	      void *buf, unsigned int size)
2368 {
2369 	const struct arg *arg = pop_args(ctx);
2370 	unsigned int i;
2371 	int ret;
2372 
2373 	/* Argument is expected. */
2374 	if (!arg)
2375 		return -1;
2376 	for (i = 0; boolean_name[i]; ++i)
2377 		if (!strncmp(str, boolean_name[i], len))
2378 			break;
2379 	/* Process token as integer. */
2380 	if (boolean_name[i])
2381 		str = i & 1 ? "1" : "0";
2382 	push_args(ctx, arg);
2383 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
2384 	return ret > 0 ? (int)len : ret;
2385 }
2386 
2387 /** Parse port and update context. */
2388 static int
2389 parse_port(struct context *ctx, const struct token *token,
2390 	   const char *str, unsigned int len,
2391 	   void *buf, unsigned int size)
2392 {
2393 	struct buffer *out = &(struct buffer){ .port = 0 };
2394 	int ret;
2395 
2396 	if (buf)
2397 		out = buf;
2398 	else {
2399 		ctx->objdata = 0;
2400 		ctx->object = out;
2401 		ctx->objmask = NULL;
2402 		size = sizeof(*out);
2403 	}
2404 	ret = parse_int(ctx, token, str, len, out, size);
2405 	if (ret >= 0)
2406 		ctx->port = out->port;
2407 	if (!buf)
2408 		ctx->object = NULL;
2409 	return ret;
2410 }
2411 
2412 /** No completion. */
2413 static int
2414 comp_none(struct context *ctx, const struct token *token,
2415 	  unsigned int ent, char *buf, unsigned int size)
2416 {
2417 	(void)ctx;
2418 	(void)token;
2419 	(void)ent;
2420 	(void)buf;
2421 	(void)size;
2422 	return 0;
2423 }
2424 
2425 /** Complete boolean values. */
2426 static int
2427 comp_boolean(struct context *ctx, const struct token *token,
2428 	     unsigned int ent, char *buf, unsigned int size)
2429 {
2430 	unsigned int i;
2431 
2432 	(void)ctx;
2433 	(void)token;
2434 	for (i = 0; boolean_name[i]; ++i)
2435 		if (buf && i == ent)
2436 			return snprintf(buf, size, "%s", boolean_name[i]);
2437 	if (buf)
2438 		return -1;
2439 	return i;
2440 }
2441 
2442 /** Complete action names. */
2443 static int
2444 comp_action(struct context *ctx, const struct token *token,
2445 	    unsigned int ent, char *buf, unsigned int size)
2446 {
2447 	unsigned int i;
2448 
2449 	(void)ctx;
2450 	(void)token;
2451 	for (i = 0; next_action[i]; ++i)
2452 		if (buf && i == ent)
2453 			return snprintf(buf, size, "%s",
2454 					token_list[next_action[i]].name);
2455 	if (buf)
2456 		return -1;
2457 	return i;
2458 }
2459 
2460 /** Complete available ports. */
2461 static int
2462 comp_port(struct context *ctx, const struct token *token,
2463 	  unsigned int ent, char *buf, unsigned int size)
2464 {
2465 	unsigned int i = 0;
2466 	portid_t p;
2467 
2468 	(void)ctx;
2469 	(void)token;
2470 	RTE_ETH_FOREACH_DEV(p) {
2471 		if (buf && i == ent)
2472 			return snprintf(buf, size, "%u", p);
2473 		++i;
2474 	}
2475 	if (buf)
2476 		return -1;
2477 	return i;
2478 }
2479 
2480 /** Complete available rule IDs. */
2481 static int
2482 comp_rule_id(struct context *ctx, const struct token *token,
2483 	     unsigned int ent, char *buf, unsigned int size)
2484 {
2485 	unsigned int i = 0;
2486 	struct rte_port *port;
2487 	struct port_flow *pf;
2488 
2489 	(void)token;
2490 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
2491 	    ctx->port == (uint16_t)RTE_PORT_ALL)
2492 		return -1;
2493 	port = &ports[ctx->port];
2494 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2495 		if (buf && i == ent)
2496 			return snprintf(buf, size, "%u", pf->id);
2497 		++i;
2498 	}
2499 	if (buf)
2500 		return -1;
2501 	return i;
2502 }
2503 
2504 /** Complete queue field for RSS action. */
2505 static int
2506 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
2507 			 unsigned int ent, char *buf, unsigned int size)
2508 {
2509 	static const char *const str[] = { "", "end", NULL };
2510 	unsigned int i;
2511 
2512 	(void)ctx;
2513 	(void)token;
2514 	for (i = 0; str[i] != NULL; ++i)
2515 		if (buf && i == ent)
2516 			return snprintf(buf, size, "%s", str[i]);
2517 	if (buf)
2518 		return -1;
2519 	return i;
2520 }
2521 
2522 /** Internal context. */
2523 static struct context cmd_flow_context;
2524 
2525 /** Global parser instance (cmdline API). */
2526 cmdline_parse_inst_t cmd_flow;
2527 
2528 /** Initialize context. */
2529 static void
2530 cmd_flow_context_init(struct context *ctx)
2531 {
2532 	/* A full memset() is not necessary. */
2533 	ctx->curr = ZERO;
2534 	ctx->prev = ZERO;
2535 	ctx->next_num = 0;
2536 	ctx->args_num = 0;
2537 	ctx->reparse = 0;
2538 	ctx->eol = 0;
2539 	ctx->last = 0;
2540 	ctx->port = 0;
2541 	ctx->objdata = 0;
2542 	ctx->object = NULL;
2543 	ctx->objmask = NULL;
2544 }
2545 
2546 /** Parse a token (cmdline API). */
2547 static int
2548 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
2549 	       unsigned int size)
2550 {
2551 	struct context *ctx = &cmd_flow_context;
2552 	const struct token *token;
2553 	const enum index *list;
2554 	int len;
2555 	int i;
2556 
2557 	(void)hdr;
2558 	/* Restart as requested. */
2559 	if (ctx->reparse)
2560 		cmd_flow_context_init(ctx);
2561 	token = &token_list[ctx->curr];
2562 	/* Check argument length. */
2563 	ctx->eol = 0;
2564 	ctx->last = 1;
2565 	for (len = 0; src[len]; ++len)
2566 		if (src[len] == '#' || isspace(src[len]))
2567 			break;
2568 	if (!len)
2569 		return -1;
2570 	/* Last argument and EOL detection. */
2571 	for (i = len; src[i]; ++i)
2572 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
2573 			break;
2574 		else if (!isspace(src[i])) {
2575 			ctx->last = 0;
2576 			break;
2577 		}
2578 	for (; src[i]; ++i)
2579 		if (src[i] == '\r' || src[i] == '\n') {
2580 			ctx->eol = 1;
2581 			break;
2582 		}
2583 	/* Initialize context if necessary. */
2584 	if (!ctx->next_num) {
2585 		if (!token->next)
2586 			return 0;
2587 		ctx->next[ctx->next_num++] = token->next[0];
2588 	}
2589 	/* Process argument through candidates. */
2590 	ctx->prev = ctx->curr;
2591 	list = ctx->next[ctx->next_num - 1];
2592 	for (i = 0; list[i]; ++i) {
2593 		const struct token *next = &token_list[list[i]];
2594 		int tmp;
2595 
2596 		ctx->curr = list[i];
2597 		if (next->call)
2598 			tmp = next->call(ctx, next, src, len, result, size);
2599 		else
2600 			tmp = parse_default(ctx, next, src, len, result, size);
2601 		if (tmp == -1 || tmp != len)
2602 			continue;
2603 		token = next;
2604 		break;
2605 	}
2606 	if (!list[i])
2607 		return -1;
2608 	--ctx->next_num;
2609 	/* Push subsequent tokens if any. */
2610 	if (token->next)
2611 		for (i = 0; token->next[i]; ++i) {
2612 			if (ctx->next_num == RTE_DIM(ctx->next))
2613 				return -1;
2614 			ctx->next[ctx->next_num++] = token->next[i];
2615 		}
2616 	/* Push arguments if any. */
2617 	if (token->args)
2618 		for (i = 0; token->args[i]; ++i) {
2619 			if (ctx->args_num == RTE_DIM(ctx->args))
2620 				return -1;
2621 			ctx->args[ctx->args_num++] = token->args[i];
2622 		}
2623 	return len;
2624 }
2625 
2626 /** Return number of completion entries (cmdline API). */
2627 static int
2628 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
2629 {
2630 	struct context *ctx = &cmd_flow_context;
2631 	const struct token *token = &token_list[ctx->curr];
2632 	const enum index *list;
2633 	int i;
2634 
2635 	(void)hdr;
2636 	/* Tell cmd_flow_parse() that context must be reinitialized. */
2637 	ctx->reparse = 1;
2638 	/* Count number of tokens in current list. */
2639 	if (ctx->next_num)
2640 		list = ctx->next[ctx->next_num - 1];
2641 	else
2642 		list = token->next[0];
2643 	for (i = 0; list[i]; ++i)
2644 		;
2645 	if (!i)
2646 		return 0;
2647 	/*
2648 	 * If there is a single token, use its completion callback, otherwise
2649 	 * return the number of entries.
2650 	 */
2651 	token = &token_list[list[0]];
2652 	if (i == 1 && token->comp) {
2653 		/* Save index for cmd_flow_get_help(). */
2654 		ctx->prev = list[0];
2655 		return token->comp(ctx, token, 0, NULL, 0);
2656 	}
2657 	return i;
2658 }
2659 
2660 /** Return a completion entry (cmdline API). */
2661 static int
2662 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
2663 			  char *dst, unsigned int size)
2664 {
2665 	struct context *ctx = &cmd_flow_context;
2666 	const struct token *token = &token_list[ctx->curr];
2667 	const enum index *list;
2668 	int i;
2669 
2670 	(void)hdr;
2671 	/* Tell cmd_flow_parse() that context must be reinitialized. */
2672 	ctx->reparse = 1;
2673 	/* Count number of tokens in current list. */
2674 	if (ctx->next_num)
2675 		list = ctx->next[ctx->next_num - 1];
2676 	else
2677 		list = token->next[0];
2678 	for (i = 0; list[i]; ++i)
2679 		;
2680 	if (!i)
2681 		return -1;
2682 	/* If there is a single token, use its completion callback. */
2683 	token = &token_list[list[0]];
2684 	if (i == 1 && token->comp) {
2685 		/* Save index for cmd_flow_get_help(). */
2686 		ctx->prev = list[0];
2687 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
2688 	}
2689 	/* Otherwise make sure the index is valid and use defaults. */
2690 	if (index >= i)
2691 		return -1;
2692 	token = &token_list[list[index]];
2693 	snprintf(dst, size, "%s", token->name);
2694 	/* Save index for cmd_flow_get_help(). */
2695 	ctx->prev = list[index];
2696 	return 0;
2697 }
2698 
2699 /** Populate help strings for current token (cmdline API). */
2700 static int
2701 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
2702 {
2703 	struct context *ctx = &cmd_flow_context;
2704 	const struct token *token = &token_list[ctx->prev];
2705 
2706 	(void)hdr;
2707 	/* Tell cmd_flow_parse() that context must be reinitialized. */
2708 	ctx->reparse = 1;
2709 	if (!size)
2710 		return -1;
2711 	/* Set token type and update global help with details. */
2712 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
2713 	if (token->help)
2714 		cmd_flow.help_str = token->help;
2715 	else
2716 		cmd_flow.help_str = token->name;
2717 	return 0;
2718 }
2719 
2720 /** Token definition template (cmdline API). */
2721 static struct cmdline_token_hdr cmd_flow_token_hdr = {
2722 	.ops = &(struct cmdline_token_ops){
2723 		.parse = cmd_flow_parse,
2724 		.complete_get_nb = cmd_flow_complete_get_nb,
2725 		.complete_get_elt = cmd_flow_complete_get_elt,
2726 		.get_help = cmd_flow_get_help,
2727 	},
2728 	.offset = 0,
2729 };
2730 
2731 /** Populate the next dynamic token. */
2732 static void
2733 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
2734 	     cmdline_parse_token_hdr_t *(*hdrs)[])
2735 {
2736 	struct context *ctx = &cmd_flow_context;
2737 
2738 	/* Always reinitialize context before requesting the first token. */
2739 	if (!(hdr - *hdrs))
2740 		cmd_flow_context_init(ctx);
2741 	/* Return NULL when no more tokens are expected. */
2742 	if (!ctx->next_num && ctx->curr) {
2743 		*hdr = NULL;
2744 		return;
2745 	}
2746 	/* Determine if command should end here. */
2747 	if (ctx->eol && ctx->last && ctx->next_num) {
2748 		const enum index *list = ctx->next[ctx->next_num - 1];
2749 		int i;
2750 
2751 		for (i = 0; list[i]; ++i) {
2752 			if (list[i] != END)
2753 				continue;
2754 			*hdr = NULL;
2755 			return;
2756 		}
2757 	}
2758 	*hdr = &cmd_flow_token_hdr;
2759 }
2760 
2761 /** Dispatch parsed buffer to function calls. */
2762 static void
2763 cmd_flow_parsed(const struct buffer *in)
2764 {
2765 	switch (in->command) {
2766 	case VALIDATE:
2767 		port_flow_validate(in->port, &in->args.vc.attr,
2768 				   in->args.vc.pattern, in->args.vc.actions);
2769 		break;
2770 	case CREATE:
2771 		port_flow_create(in->port, &in->args.vc.attr,
2772 				 in->args.vc.pattern, in->args.vc.actions);
2773 		break;
2774 	case DESTROY:
2775 		port_flow_destroy(in->port, in->args.destroy.rule_n,
2776 				  in->args.destroy.rule);
2777 		break;
2778 	case FLUSH:
2779 		port_flow_flush(in->port);
2780 		break;
2781 	case QUERY:
2782 		port_flow_query(in->port, in->args.query.rule,
2783 				in->args.query.action);
2784 		break;
2785 	case LIST:
2786 		port_flow_list(in->port, in->args.list.group_n,
2787 			       in->args.list.group);
2788 		break;
2789 	default:
2790 		break;
2791 	}
2792 }
2793 
2794 /** Token generator and output processing callback (cmdline API). */
2795 static void
2796 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
2797 {
2798 	if (cl == NULL)
2799 		cmd_flow_tok(arg0, arg2);
2800 	else
2801 		cmd_flow_parsed(arg0);
2802 }
2803 
2804 /** Global parser instance (cmdline API). */
2805 cmdline_parse_inst_t cmd_flow = {
2806 	.f = cmd_flow_cb,
2807 	.data = NULL, /**< Unused. */
2808 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
2809 	.tokens = {
2810 		NULL,
2811 	}, /**< Tokens are returned by cmd_flow_tok(). */
2812 };
2813