xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 5ecb687a5698d2d8ec1f3b3b5a7a16bceca3e29c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_eth_ctrl.h>
19 #include <rte_ethdev.h>
20 #include <rte_byteorder.h>
21 #include <cmdline_parse.h>
22 #include <cmdline_parse_etheraddr.h>
23 #include <rte_flow.h>
24 
25 #include "testpmd.h"
26 
27 /** Parser token indices. */
28 enum index {
29 	/* Special tokens. */
30 	ZERO = 0,
31 	END,
32 
33 	/* Common tokens. */
34 	INTEGER,
35 	UNSIGNED,
36 	PREFIX,
37 	BOOLEAN,
38 	STRING,
39 	HEX,
40 	MAC_ADDR,
41 	IPV4_ADDR,
42 	IPV6_ADDR,
43 	RULE_ID,
44 	PORT_ID,
45 	GROUP_ID,
46 	PRIORITY_LEVEL,
47 
48 	/* Top-level command. */
49 	FLOW,
50 
51 	/* Sub-level commands. */
52 	VALIDATE,
53 	CREATE,
54 	DESTROY,
55 	FLUSH,
56 	QUERY,
57 	LIST,
58 	ISOLATE,
59 
60 	/* Destroy arguments. */
61 	DESTROY_RULE,
62 
63 	/* Query arguments. */
64 	QUERY_ACTION,
65 
66 	/* List arguments. */
67 	LIST_GROUP,
68 
69 	/* Validate/create arguments. */
70 	GROUP,
71 	PRIORITY,
72 	INGRESS,
73 	EGRESS,
74 	TRANSFER,
75 
76 	/* Validate/create pattern. */
77 	PATTERN,
78 	ITEM_PARAM_IS,
79 	ITEM_PARAM_SPEC,
80 	ITEM_PARAM_LAST,
81 	ITEM_PARAM_MASK,
82 	ITEM_PARAM_PREFIX,
83 	ITEM_NEXT,
84 	ITEM_END,
85 	ITEM_VOID,
86 	ITEM_INVERT,
87 	ITEM_ANY,
88 	ITEM_ANY_NUM,
89 	ITEM_PF,
90 	ITEM_VF,
91 	ITEM_VF_ID,
92 	ITEM_PHY_PORT,
93 	ITEM_PHY_PORT_INDEX,
94 	ITEM_PORT_ID,
95 	ITEM_PORT_ID_ID,
96 	ITEM_MARK,
97 	ITEM_MARK_ID,
98 	ITEM_RAW,
99 	ITEM_RAW_RELATIVE,
100 	ITEM_RAW_SEARCH,
101 	ITEM_RAW_OFFSET,
102 	ITEM_RAW_LIMIT,
103 	ITEM_RAW_PATTERN,
104 	ITEM_ETH,
105 	ITEM_ETH_DST,
106 	ITEM_ETH_SRC,
107 	ITEM_ETH_TYPE,
108 	ITEM_VLAN,
109 	ITEM_VLAN_TCI,
110 	ITEM_VLAN_PCP,
111 	ITEM_VLAN_DEI,
112 	ITEM_VLAN_VID,
113 	ITEM_VLAN_INNER_TYPE,
114 	ITEM_IPV4,
115 	ITEM_IPV4_TOS,
116 	ITEM_IPV4_TTL,
117 	ITEM_IPV4_PROTO,
118 	ITEM_IPV4_SRC,
119 	ITEM_IPV4_DST,
120 	ITEM_IPV6,
121 	ITEM_IPV6_TC,
122 	ITEM_IPV6_FLOW,
123 	ITEM_IPV6_PROTO,
124 	ITEM_IPV6_HOP,
125 	ITEM_IPV6_SRC,
126 	ITEM_IPV6_DST,
127 	ITEM_ICMP,
128 	ITEM_ICMP_TYPE,
129 	ITEM_ICMP_CODE,
130 	ITEM_UDP,
131 	ITEM_UDP_SRC,
132 	ITEM_UDP_DST,
133 	ITEM_TCP,
134 	ITEM_TCP_SRC,
135 	ITEM_TCP_DST,
136 	ITEM_TCP_FLAGS,
137 	ITEM_SCTP,
138 	ITEM_SCTP_SRC,
139 	ITEM_SCTP_DST,
140 	ITEM_SCTP_TAG,
141 	ITEM_SCTP_CKSUM,
142 	ITEM_VXLAN,
143 	ITEM_VXLAN_VNI,
144 	ITEM_E_TAG,
145 	ITEM_E_TAG_GRP_ECID_B,
146 	ITEM_NVGRE,
147 	ITEM_NVGRE_TNI,
148 	ITEM_MPLS,
149 	ITEM_MPLS_LABEL,
150 	ITEM_GRE,
151 	ITEM_GRE_PROTO,
152 	ITEM_FUZZY,
153 	ITEM_FUZZY_THRESH,
154 	ITEM_GTP,
155 	ITEM_GTP_TEID,
156 	ITEM_GTPC,
157 	ITEM_GTPU,
158 	ITEM_GENEVE,
159 	ITEM_GENEVE_VNI,
160 	ITEM_GENEVE_PROTO,
161 	ITEM_VXLAN_GPE,
162 	ITEM_VXLAN_GPE_VNI,
163 	ITEM_ARP_ETH_IPV4,
164 	ITEM_ARP_ETH_IPV4_SHA,
165 	ITEM_ARP_ETH_IPV4_SPA,
166 	ITEM_ARP_ETH_IPV4_THA,
167 	ITEM_ARP_ETH_IPV4_TPA,
168 	ITEM_IPV6_EXT,
169 	ITEM_IPV6_EXT_NEXT_HDR,
170 	ITEM_ICMP6,
171 	ITEM_ICMP6_TYPE,
172 	ITEM_ICMP6_CODE,
173 	ITEM_ICMP6_ND_NS,
174 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
175 	ITEM_ICMP6_ND_NA,
176 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
177 	ITEM_ICMP6_ND_OPT,
178 	ITEM_ICMP6_ND_OPT_TYPE,
179 	ITEM_ICMP6_ND_OPT_SLA_ETH,
180 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
181 	ITEM_ICMP6_ND_OPT_TLA_ETH,
182 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
183 	ITEM_META,
184 	ITEM_META_DATA,
185 
186 	/* Validate/create actions. */
187 	ACTIONS,
188 	ACTION_NEXT,
189 	ACTION_END,
190 	ACTION_VOID,
191 	ACTION_PASSTHRU,
192 	ACTION_JUMP,
193 	ACTION_JUMP_GROUP,
194 	ACTION_MARK,
195 	ACTION_MARK_ID,
196 	ACTION_FLAG,
197 	ACTION_QUEUE,
198 	ACTION_QUEUE_INDEX,
199 	ACTION_DROP,
200 	ACTION_COUNT,
201 	ACTION_COUNT_SHARED,
202 	ACTION_COUNT_ID,
203 	ACTION_RSS,
204 	ACTION_RSS_FUNC,
205 	ACTION_RSS_LEVEL,
206 	ACTION_RSS_FUNC_DEFAULT,
207 	ACTION_RSS_FUNC_TOEPLITZ,
208 	ACTION_RSS_FUNC_SIMPLE_XOR,
209 	ACTION_RSS_TYPES,
210 	ACTION_RSS_TYPE,
211 	ACTION_RSS_KEY,
212 	ACTION_RSS_KEY_LEN,
213 	ACTION_RSS_QUEUES,
214 	ACTION_RSS_QUEUE,
215 	ACTION_PF,
216 	ACTION_VF,
217 	ACTION_VF_ORIGINAL,
218 	ACTION_VF_ID,
219 	ACTION_PHY_PORT,
220 	ACTION_PHY_PORT_ORIGINAL,
221 	ACTION_PHY_PORT_INDEX,
222 	ACTION_PORT_ID,
223 	ACTION_PORT_ID_ORIGINAL,
224 	ACTION_PORT_ID_ID,
225 	ACTION_METER,
226 	ACTION_METER_ID,
227 	ACTION_OF_SET_MPLS_TTL,
228 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
229 	ACTION_OF_DEC_MPLS_TTL,
230 	ACTION_OF_SET_NW_TTL,
231 	ACTION_OF_SET_NW_TTL_NW_TTL,
232 	ACTION_OF_DEC_NW_TTL,
233 	ACTION_OF_COPY_TTL_OUT,
234 	ACTION_OF_COPY_TTL_IN,
235 	ACTION_OF_POP_VLAN,
236 	ACTION_OF_PUSH_VLAN,
237 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
238 	ACTION_OF_SET_VLAN_VID,
239 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
240 	ACTION_OF_SET_VLAN_PCP,
241 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
242 	ACTION_OF_POP_MPLS,
243 	ACTION_OF_POP_MPLS_ETHERTYPE,
244 	ACTION_OF_PUSH_MPLS,
245 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
246 	ACTION_VXLAN_ENCAP,
247 	ACTION_VXLAN_DECAP,
248 	ACTION_NVGRE_ENCAP,
249 	ACTION_NVGRE_DECAP,
250 	ACTION_L2_ENCAP,
251 	ACTION_L2_DECAP,
252 	ACTION_MPLSOGRE_ENCAP,
253 	ACTION_MPLSOGRE_DECAP,
254 	ACTION_MPLSOUDP_ENCAP,
255 	ACTION_MPLSOUDP_DECAP,
256 	ACTION_SET_IPV4_SRC,
257 	ACTION_SET_IPV4_SRC_IPV4_SRC,
258 	ACTION_SET_IPV4_DST,
259 	ACTION_SET_IPV4_DST_IPV4_DST,
260 	ACTION_SET_IPV6_SRC,
261 	ACTION_SET_IPV6_SRC_IPV6_SRC,
262 	ACTION_SET_IPV6_DST,
263 	ACTION_SET_IPV6_DST_IPV6_DST,
264 	ACTION_SET_TP_SRC,
265 	ACTION_SET_TP_SRC_TP_SRC,
266 	ACTION_SET_TP_DST,
267 	ACTION_SET_TP_DST_TP_DST,
268 	ACTION_MAC_SWAP,
269 	ACTION_DEC_TTL,
270 	ACTION_SET_TTL,
271 	ACTION_SET_TTL_TTL,
272 	ACTION_SET_MAC_SRC,
273 	ACTION_SET_MAC_SRC_MAC_SRC,
274 	ACTION_SET_MAC_DST,
275 	ACTION_SET_MAC_DST_MAC_DST,
276 };
277 
278 /** Maximum size for pattern in struct rte_flow_item_raw. */
279 #define ITEM_RAW_PATTERN_SIZE 40
280 
281 /** Storage size for struct rte_flow_item_raw including pattern. */
282 #define ITEM_RAW_SIZE \
283 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
284 
285 /** Maximum number of queue indices in struct rte_flow_action_rss. */
286 #define ACTION_RSS_QUEUE_NUM 32
287 
288 /** Storage for struct rte_flow_action_rss including external data. */
289 struct action_rss_data {
290 	struct rte_flow_action_rss conf;
291 	uint8_t key[RSS_HASH_KEY_LENGTH];
292 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
293 };
294 
295 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
296 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
297 
298 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
299 struct action_vxlan_encap_data {
300 	struct rte_flow_action_vxlan_encap conf;
301 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
302 	struct rte_flow_item_eth item_eth;
303 	struct rte_flow_item_vlan item_vlan;
304 	union {
305 		struct rte_flow_item_ipv4 item_ipv4;
306 		struct rte_flow_item_ipv6 item_ipv6;
307 	};
308 	struct rte_flow_item_udp item_udp;
309 	struct rte_flow_item_vxlan item_vxlan;
310 };
311 
312 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
313 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
314 
315 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
316 struct action_nvgre_encap_data {
317 	struct rte_flow_action_nvgre_encap conf;
318 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
319 	struct rte_flow_item_eth item_eth;
320 	struct rte_flow_item_vlan item_vlan;
321 	union {
322 		struct rte_flow_item_ipv4 item_ipv4;
323 		struct rte_flow_item_ipv6 item_ipv6;
324 	};
325 	struct rte_flow_item_nvgre item_nvgre;
326 };
327 
328 /** Maximum data size in struct rte_flow_action_raw_encap. */
329 #define ACTION_RAW_ENCAP_MAX_DATA 128
330 
331 /** Storage for struct rte_flow_action_raw_encap including external data. */
332 struct action_raw_encap_data {
333 	struct rte_flow_action_raw_encap conf;
334 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
335 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
336 };
337 
338 /** Storage for struct rte_flow_action_raw_decap including external data. */
339 struct action_raw_decap_data {
340 	struct rte_flow_action_raw_decap conf;
341 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
342 };
343 
344 /** Maximum number of subsequent tokens and arguments on the stack. */
345 #define CTX_STACK_SIZE 16
346 
347 /** Parser context. */
348 struct context {
349 	/** Stack of subsequent token lists to process. */
350 	const enum index *next[CTX_STACK_SIZE];
351 	/** Arguments for stacked tokens. */
352 	const void *args[CTX_STACK_SIZE];
353 	enum index curr; /**< Current token index. */
354 	enum index prev; /**< Index of the last token seen. */
355 	int next_num; /**< Number of entries in next[]. */
356 	int args_num; /**< Number of entries in args[]. */
357 	uint32_t eol:1; /**< EOL has been detected. */
358 	uint32_t last:1; /**< No more arguments. */
359 	portid_t port; /**< Current port ID (for completions). */
360 	uint32_t objdata; /**< Object-specific data. */
361 	void *object; /**< Address of current object for relative offsets. */
362 	void *objmask; /**< Object a full mask must be written to. */
363 };
364 
365 /** Token argument. */
366 struct arg {
367 	uint32_t hton:1; /**< Use network byte ordering. */
368 	uint32_t sign:1; /**< Value is signed. */
369 	uint32_t bounded:1; /**< Value is bounded. */
370 	uintmax_t min; /**< Minimum value if bounded. */
371 	uintmax_t max; /**< Maximum value if bounded. */
372 	uint32_t offset; /**< Relative offset from ctx->object. */
373 	uint32_t size; /**< Field size. */
374 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
375 };
376 
377 /** Parser token definition. */
378 struct token {
379 	/** Type displayed during completion (defaults to "TOKEN"). */
380 	const char *type;
381 	/** Help displayed during completion (defaults to token name). */
382 	const char *help;
383 	/** Private data used by parser functions. */
384 	const void *priv;
385 	/**
386 	 * Lists of subsequent tokens to push on the stack. Each call to the
387 	 * parser consumes the last entry of that stack.
388 	 */
389 	const enum index *const *next;
390 	/** Arguments stack for subsequent tokens that need them. */
391 	const struct arg *const *args;
392 	/**
393 	 * Token-processing callback, returns -1 in case of error, the
394 	 * length of the matched string otherwise. If NULL, attempts to
395 	 * match the token name.
396 	 *
397 	 * If buf is not NULL, the result should be stored in it according
398 	 * to context. An error is returned if not large enough.
399 	 */
400 	int (*call)(struct context *ctx, const struct token *token,
401 		    const char *str, unsigned int len,
402 		    void *buf, unsigned int size);
403 	/**
404 	 * Callback that provides possible values for this token, used for
405 	 * completion. Returns -1 in case of error, the number of possible
406 	 * values otherwise. If NULL, the token name is used.
407 	 *
408 	 * If buf is not NULL, entry index ent is written to buf and the
409 	 * full length of the entry is returned (same behavior as
410 	 * snprintf()).
411 	 */
412 	int (*comp)(struct context *ctx, const struct token *token,
413 		    unsigned int ent, char *buf, unsigned int size);
414 	/** Mandatory token name, no default value. */
415 	const char *name;
416 };
417 
418 /** Static initializer for the next field. */
419 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
420 
421 /** Static initializer for a NEXT() entry. */
422 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
423 
424 /** Static initializer for the args field. */
425 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
426 
427 /** Static initializer for ARGS() to target a field. */
428 #define ARGS_ENTRY(s, f) \
429 	(&(const struct arg){ \
430 		.offset = offsetof(s, f), \
431 		.size = sizeof(((s *)0)->f), \
432 	})
433 
434 /** Static initializer for ARGS() to target a bit-field. */
435 #define ARGS_ENTRY_BF(s, f, b) \
436 	(&(const struct arg){ \
437 		.size = sizeof(s), \
438 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
439 	})
440 
441 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
442 #define ARGS_ENTRY_MASK(s, f, m) \
443 	(&(const struct arg){ \
444 		.offset = offsetof(s, f), \
445 		.size = sizeof(((s *)0)->f), \
446 		.mask = (const void *)(m), \
447 	})
448 
449 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
450 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
451 	(&(const struct arg){ \
452 		.hton = 1, \
453 		.offset = offsetof(s, f), \
454 		.size = sizeof(((s *)0)->f), \
455 		.mask = (const void *)(m), \
456 	})
457 
458 /** Static initializer for ARGS() to target a pointer. */
459 #define ARGS_ENTRY_PTR(s, f) \
460 	(&(const struct arg){ \
461 		.size = sizeof(*((s *)0)->f), \
462 	})
463 
464 /** Static initializer for ARGS() with arbitrary offset and size. */
465 #define ARGS_ENTRY_ARB(o, s) \
466 	(&(const struct arg){ \
467 		.offset = (o), \
468 		.size = (s), \
469 	})
470 
471 /** Same as ARGS_ENTRY_ARB() with bounded values. */
472 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
473 	(&(const struct arg){ \
474 		.bounded = 1, \
475 		.min = (i), \
476 		.max = (a), \
477 		.offset = (o), \
478 		.size = (s), \
479 	})
480 
481 /** Same as ARGS_ENTRY() using network byte ordering. */
482 #define ARGS_ENTRY_HTON(s, f) \
483 	(&(const struct arg){ \
484 		.hton = 1, \
485 		.offset = offsetof(s, f), \
486 		.size = sizeof(((s *)0)->f), \
487 	})
488 
489 /** Parser output buffer layout expected by cmd_flow_parsed(). */
490 struct buffer {
491 	enum index command; /**< Flow command. */
492 	portid_t port; /**< Affected port ID. */
493 	union {
494 		struct {
495 			struct rte_flow_attr attr;
496 			struct rte_flow_item *pattern;
497 			struct rte_flow_action *actions;
498 			uint32_t pattern_n;
499 			uint32_t actions_n;
500 			uint8_t *data;
501 		} vc; /**< Validate/create arguments. */
502 		struct {
503 			uint32_t *rule;
504 			uint32_t rule_n;
505 		} destroy; /**< Destroy arguments. */
506 		struct {
507 			uint32_t rule;
508 			struct rte_flow_action action;
509 		} query; /**< Query arguments. */
510 		struct {
511 			uint32_t *group;
512 			uint32_t group_n;
513 		} list; /**< List arguments. */
514 		struct {
515 			int set;
516 		} isolate; /**< Isolated mode arguments. */
517 	} args; /**< Command arguments. */
518 };
519 
520 /** Private data for pattern items. */
521 struct parse_item_priv {
522 	enum rte_flow_item_type type; /**< Item type. */
523 	uint32_t size; /**< Size of item specification structure. */
524 };
525 
526 #define PRIV_ITEM(t, s) \
527 	(&(const struct parse_item_priv){ \
528 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
529 		.size = s, \
530 	})
531 
532 /** Private data for actions. */
533 struct parse_action_priv {
534 	enum rte_flow_action_type type; /**< Action type. */
535 	uint32_t size; /**< Size of action configuration structure. */
536 };
537 
538 #define PRIV_ACTION(t, s) \
539 	(&(const struct parse_action_priv){ \
540 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
541 		.size = s, \
542 	})
543 
544 static const enum index next_vc_attr[] = {
545 	GROUP,
546 	PRIORITY,
547 	INGRESS,
548 	EGRESS,
549 	TRANSFER,
550 	PATTERN,
551 	ZERO,
552 };
553 
554 static const enum index next_destroy_attr[] = {
555 	DESTROY_RULE,
556 	END,
557 	ZERO,
558 };
559 
560 static const enum index next_list_attr[] = {
561 	LIST_GROUP,
562 	END,
563 	ZERO,
564 };
565 
566 static const enum index item_param[] = {
567 	ITEM_PARAM_IS,
568 	ITEM_PARAM_SPEC,
569 	ITEM_PARAM_LAST,
570 	ITEM_PARAM_MASK,
571 	ITEM_PARAM_PREFIX,
572 	ZERO,
573 };
574 
575 static const enum index next_item[] = {
576 	ITEM_END,
577 	ITEM_VOID,
578 	ITEM_INVERT,
579 	ITEM_ANY,
580 	ITEM_PF,
581 	ITEM_VF,
582 	ITEM_PHY_PORT,
583 	ITEM_PORT_ID,
584 	ITEM_MARK,
585 	ITEM_RAW,
586 	ITEM_ETH,
587 	ITEM_VLAN,
588 	ITEM_IPV4,
589 	ITEM_IPV6,
590 	ITEM_ICMP,
591 	ITEM_UDP,
592 	ITEM_TCP,
593 	ITEM_SCTP,
594 	ITEM_VXLAN,
595 	ITEM_E_TAG,
596 	ITEM_NVGRE,
597 	ITEM_MPLS,
598 	ITEM_GRE,
599 	ITEM_FUZZY,
600 	ITEM_GTP,
601 	ITEM_GTPC,
602 	ITEM_GTPU,
603 	ITEM_GENEVE,
604 	ITEM_VXLAN_GPE,
605 	ITEM_ARP_ETH_IPV4,
606 	ITEM_IPV6_EXT,
607 	ITEM_ICMP6,
608 	ITEM_ICMP6_ND_NS,
609 	ITEM_ICMP6_ND_NA,
610 	ITEM_ICMP6_ND_OPT,
611 	ITEM_ICMP6_ND_OPT_SLA_ETH,
612 	ITEM_ICMP6_ND_OPT_TLA_ETH,
613 	ITEM_META,
614 	ZERO,
615 };
616 
617 static const enum index item_fuzzy[] = {
618 	ITEM_FUZZY_THRESH,
619 	ITEM_NEXT,
620 	ZERO,
621 };
622 
623 static const enum index item_any[] = {
624 	ITEM_ANY_NUM,
625 	ITEM_NEXT,
626 	ZERO,
627 };
628 
629 static const enum index item_vf[] = {
630 	ITEM_VF_ID,
631 	ITEM_NEXT,
632 	ZERO,
633 };
634 
635 static const enum index item_phy_port[] = {
636 	ITEM_PHY_PORT_INDEX,
637 	ITEM_NEXT,
638 	ZERO,
639 };
640 
641 static const enum index item_port_id[] = {
642 	ITEM_PORT_ID_ID,
643 	ITEM_NEXT,
644 	ZERO,
645 };
646 
647 static const enum index item_mark[] = {
648 	ITEM_MARK_ID,
649 	ITEM_NEXT,
650 	ZERO,
651 };
652 
653 static const enum index item_raw[] = {
654 	ITEM_RAW_RELATIVE,
655 	ITEM_RAW_SEARCH,
656 	ITEM_RAW_OFFSET,
657 	ITEM_RAW_LIMIT,
658 	ITEM_RAW_PATTERN,
659 	ITEM_NEXT,
660 	ZERO,
661 };
662 
663 static const enum index item_eth[] = {
664 	ITEM_ETH_DST,
665 	ITEM_ETH_SRC,
666 	ITEM_ETH_TYPE,
667 	ITEM_NEXT,
668 	ZERO,
669 };
670 
671 static const enum index item_vlan[] = {
672 	ITEM_VLAN_TCI,
673 	ITEM_VLAN_PCP,
674 	ITEM_VLAN_DEI,
675 	ITEM_VLAN_VID,
676 	ITEM_VLAN_INNER_TYPE,
677 	ITEM_NEXT,
678 	ZERO,
679 };
680 
681 static const enum index item_ipv4[] = {
682 	ITEM_IPV4_TOS,
683 	ITEM_IPV4_TTL,
684 	ITEM_IPV4_PROTO,
685 	ITEM_IPV4_SRC,
686 	ITEM_IPV4_DST,
687 	ITEM_NEXT,
688 	ZERO,
689 };
690 
691 static const enum index item_ipv6[] = {
692 	ITEM_IPV6_TC,
693 	ITEM_IPV6_FLOW,
694 	ITEM_IPV6_PROTO,
695 	ITEM_IPV6_HOP,
696 	ITEM_IPV6_SRC,
697 	ITEM_IPV6_DST,
698 	ITEM_NEXT,
699 	ZERO,
700 };
701 
702 static const enum index item_icmp[] = {
703 	ITEM_ICMP_TYPE,
704 	ITEM_ICMP_CODE,
705 	ITEM_NEXT,
706 	ZERO,
707 };
708 
709 static const enum index item_udp[] = {
710 	ITEM_UDP_SRC,
711 	ITEM_UDP_DST,
712 	ITEM_NEXT,
713 	ZERO,
714 };
715 
716 static const enum index item_tcp[] = {
717 	ITEM_TCP_SRC,
718 	ITEM_TCP_DST,
719 	ITEM_TCP_FLAGS,
720 	ITEM_NEXT,
721 	ZERO,
722 };
723 
724 static const enum index item_sctp[] = {
725 	ITEM_SCTP_SRC,
726 	ITEM_SCTP_DST,
727 	ITEM_SCTP_TAG,
728 	ITEM_SCTP_CKSUM,
729 	ITEM_NEXT,
730 	ZERO,
731 };
732 
733 static const enum index item_vxlan[] = {
734 	ITEM_VXLAN_VNI,
735 	ITEM_NEXT,
736 	ZERO,
737 };
738 
739 static const enum index item_e_tag[] = {
740 	ITEM_E_TAG_GRP_ECID_B,
741 	ITEM_NEXT,
742 	ZERO,
743 };
744 
745 static const enum index item_nvgre[] = {
746 	ITEM_NVGRE_TNI,
747 	ITEM_NEXT,
748 	ZERO,
749 };
750 
751 static const enum index item_mpls[] = {
752 	ITEM_MPLS_LABEL,
753 	ITEM_NEXT,
754 	ZERO,
755 };
756 
757 static const enum index item_gre[] = {
758 	ITEM_GRE_PROTO,
759 	ITEM_NEXT,
760 	ZERO,
761 };
762 
763 static const enum index item_gtp[] = {
764 	ITEM_GTP_TEID,
765 	ITEM_NEXT,
766 	ZERO,
767 };
768 
769 static const enum index item_geneve[] = {
770 	ITEM_GENEVE_VNI,
771 	ITEM_GENEVE_PROTO,
772 	ITEM_NEXT,
773 	ZERO,
774 };
775 
776 static const enum index item_vxlan_gpe[] = {
777 	ITEM_VXLAN_GPE_VNI,
778 	ITEM_NEXT,
779 	ZERO,
780 };
781 
782 static const enum index item_arp_eth_ipv4[] = {
783 	ITEM_ARP_ETH_IPV4_SHA,
784 	ITEM_ARP_ETH_IPV4_SPA,
785 	ITEM_ARP_ETH_IPV4_THA,
786 	ITEM_ARP_ETH_IPV4_TPA,
787 	ITEM_NEXT,
788 	ZERO,
789 };
790 
791 static const enum index item_ipv6_ext[] = {
792 	ITEM_IPV6_EXT_NEXT_HDR,
793 	ITEM_NEXT,
794 	ZERO,
795 };
796 
797 static const enum index item_icmp6[] = {
798 	ITEM_ICMP6_TYPE,
799 	ITEM_ICMP6_CODE,
800 	ITEM_NEXT,
801 	ZERO,
802 };
803 
804 static const enum index item_icmp6_nd_ns[] = {
805 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
806 	ITEM_NEXT,
807 	ZERO,
808 };
809 
810 static const enum index item_icmp6_nd_na[] = {
811 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
812 	ITEM_NEXT,
813 	ZERO,
814 };
815 
816 static const enum index item_icmp6_nd_opt[] = {
817 	ITEM_ICMP6_ND_OPT_TYPE,
818 	ITEM_NEXT,
819 	ZERO,
820 };
821 
822 static const enum index item_icmp6_nd_opt_sla_eth[] = {
823 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
824 	ITEM_NEXT,
825 	ZERO,
826 };
827 
828 static const enum index item_icmp6_nd_opt_tla_eth[] = {
829 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
830 	ITEM_NEXT,
831 	ZERO,
832 };
833 
834 static const enum index item_meta[] = {
835 	ITEM_META_DATA,
836 	ITEM_NEXT,
837 	ZERO,
838 };
839 
840 static const enum index next_action[] = {
841 	ACTION_END,
842 	ACTION_VOID,
843 	ACTION_PASSTHRU,
844 	ACTION_JUMP,
845 	ACTION_MARK,
846 	ACTION_FLAG,
847 	ACTION_QUEUE,
848 	ACTION_DROP,
849 	ACTION_COUNT,
850 	ACTION_RSS,
851 	ACTION_PF,
852 	ACTION_VF,
853 	ACTION_PHY_PORT,
854 	ACTION_PORT_ID,
855 	ACTION_METER,
856 	ACTION_OF_SET_MPLS_TTL,
857 	ACTION_OF_DEC_MPLS_TTL,
858 	ACTION_OF_SET_NW_TTL,
859 	ACTION_OF_DEC_NW_TTL,
860 	ACTION_OF_COPY_TTL_OUT,
861 	ACTION_OF_COPY_TTL_IN,
862 	ACTION_OF_POP_VLAN,
863 	ACTION_OF_PUSH_VLAN,
864 	ACTION_OF_SET_VLAN_VID,
865 	ACTION_OF_SET_VLAN_PCP,
866 	ACTION_OF_POP_MPLS,
867 	ACTION_OF_PUSH_MPLS,
868 	ACTION_VXLAN_ENCAP,
869 	ACTION_VXLAN_DECAP,
870 	ACTION_NVGRE_ENCAP,
871 	ACTION_NVGRE_DECAP,
872 	ACTION_L2_ENCAP,
873 	ACTION_L2_DECAP,
874 	ACTION_MPLSOGRE_ENCAP,
875 	ACTION_MPLSOGRE_DECAP,
876 	ACTION_MPLSOUDP_ENCAP,
877 	ACTION_MPLSOUDP_DECAP,
878 	ACTION_SET_IPV4_SRC,
879 	ACTION_SET_IPV4_DST,
880 	ACTION_SET_IPV6_SRC,
881 	ACTION_SET_IPV6_DST,
882 	ACTION_SET_TP_SRC,
883 	ACTION_SET_TP_DST,
884 	ACTION_MAC_SWAP,
885 	ACTION_DEC_TTL,
886 	ACTION_SET_TTL,
887 	ACTION_SET_MAC_SRC,
888 	ACTION_SET_MAC_DST,
889 	ZERO,
890 };
891 
892 static const enum index action_mark[] = {
893 	ACTION_MARK_ID,
894 	ACTION_NEXT,
895 	ZERO,
896 };
897 
898 static const enum index action_queue[] = {
899 	ACTION_QUEUE_INDEX,
900 	ACTION_NEXT,
901 	ZERO,
902 };
903 
904 static const enum index action_count[] = {
905 	ACTION_COUNT_ID,
906 	ACTION_COUNT_SHARED,
907 	ACTION_NEXT,
908 	ZERO,
909 };
910 
911 static const enum index action_rss[] = {
912 	ACTION_RSS_FUNC,
913 	ACTION_RSS_LEVEL,
914 	ACTION_RSS_TYPES,
915 	ACTION_RSS_KEY,
916 	ACTION_RSS_KEY_LEN,
917 	ACTION_RSS_QUEUES,
918 	ACTION_NEXT,
919 	ZERO,
920 };
921 
922 static const enum index action_vf[] = {
923 	ACTION_VF_ORIGINAL,
924 	ACTION_VF_ID,
925 	ACTION_NEXT,
926 	ZERO,
927 };
928 
929 static const enum index action_phy_port[] = {
930 	ACTION_PHY_PORT_ORIGINAL,
931 	ACTION_PHY_PORT_INDEX,
932 	ACTION_NEXT,
933 	ZERO,
934 };
935 
936 static const enum index action_port_id[] = {
937 	ACTION_PORT_ID_ORIGINAL,
938 	ACTION_PORT_ID_ID,
939 	ACTION_NEXT,
940 	ZERO,
941 };
942 
943 static const enum index action_meter[] = {
944 	ACTION_METER_ID,
945 	ACTION_NEXT,
946 	ZERO,
947 };
948 
949 static const enum index action_of_set_mpls_ttl[] = {
950 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
951 	ACTION_NEXT,
952 	ZERO,
953 };
954 
955 static const enum index action_of_set_nw_ttl[] = {
956 	ACTION_OF_SET_NW_TTL_NW_TTL,
957 	ACTION_NEXT,
958 	ZERO,
959 };
960 
961 static const enum index action_of_push_vlan[] = {
962 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
963 	ACTION_NEXT,
964 	ZERO,
965 };
966 
967 static const enum index action_of_set_vlan_vid[] = {
968 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
969 	ACTION_NEXT,
970 	ZERO,
971 };
972 
973 static const enum index action_of_set_vlan_pcp[] = {
974 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
975 	ACTION_NEXT,
976 	ZERO,
977 };
978 
979 static const enum index action_of_pop_mpls[] = {
980 	ACTION_OF_POP_MPLS_ETHERTYPE,
981 	ACTION_NEXT,
982 	ZERO,
983 };
984 
985 static const enum index action_of_push_mpls[] = {
986 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
987 	ACTION_NEXT,
988 	ZERO,
989 };
990 
991 static const enum index action_set_ipv4_src[] = {
992 	ACTION_SET_IPV4_SRC_IPV4_SRC,
993 	ACTION_NEXT,
994 	ZERO,
995 };
996 
997 static const enum index action_set_mac_src[] = {
998 	ACTION_SET_MAC_SRC_MAC_SRC,
999 	ACTION_NEXT,
1000 	ZERO,
1001 };
1002 
1003 static const enum index action_set_ipv4_dst[] = {
1004 	ACTION_SET_IPV4_DST_IPV4_DST,
1005 	ACTION_NEXT,
1006 	ZERO,
1007 };
1008 
1009 static const enum index action_set_ipv6_src[] = {
1010 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1011 	ACTION_NEXT,
1012 	ZERO,
1013 };
1014 
1015 static const enum index action_set_ipv6_dst[] = {
1016 	ACTION_SET_IPV6_DST_IPV6_DST,
1017 	ACTION_NEXT,
1018 	ZERO,
1019 };
1020 
1021 static const enum index action_set_tp_src[] = {
1022 	ACTION_SET_TP_SRC_TP_SRC,
1023 	ACTION_NEXT,
1024 	ZERO,
1025 };
1026 
1027 static const enum index action_set_tp_dst[] = {
1028 	ACTION_SET_TP_DST_TP_DST,
1029 	ACTION_NEXT,
1030 	ZERO,
1031 };
1032 
1033 static const enum index action_set_ttl[] = {
1034 	ACTION_SET_TTL_TTL,
1035 	ACTION_NEXT,
1036 	ZERO,
1037 };
1038 
1039 static const enum index action_jump[] = {
1040 	ACTION_JUMP_GROUP,
1041 	ACTION_NEXT,
1042 	ZERO,
1043 };
1044 
1045 static const enum index action_set_mac_dst[] = {
1046 	ACTION_SET_MAC_DST_MAC_DST,
1047 	ACTION_NEXT,
1048 	ZERO,
1049 };
1050 
1051 static int parse_init(struct context *, const struct token *,
1052 		      const char *, unsigned int,
1053 		      void *, unsigned int);
1054 static int parse_vc(struct context *, const struct token *,
1055 		    const char *, unsigned int,
1056 		    void *, unsigned int);
1057 static int parse_vc_spec(struct context *, const struct token *,
1058 			 const char *, unsigned int, void *, unsigned int);
1059 static int parse_vc_conf(struct context *, const struct token *,
1060 			 const char *, unsigned int, void *, unsigned int);
1061 static int parse_vc_action_rss(struct context *, const struct token *,
1062 			       const char *, unsigned int, void *,
1063 			       unsigned int);
1064 static int parse_vc_action_rss_func(struct context *, const struct token *,
1065 				    const char *, unsigned int, void *,
1066 				    unsigned int);
1067 static int parse_vc_action_rss_type(struct context *, const struct token *,
1068 				    const char *, unsigned int, void *,
1069 				    unsigned int);
1070 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1071 				     const char *, unsigned int, void *,
1072 				     unsigned int);
1073 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1074 				       const char *, unsigned int, void *,
1075 				       unsigned int);
1076 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1077 				       const char *, unsigned int, void *,
1078 				       unsigned int);
1079 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1080 				    const char *, unsigned int, void *,
1081 				    unsigned int);
1082 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1083 				    const char *, unsigned int, void *,
1084 				    unsigned int);
1085 static int parse_vc_action_mplsogre_encap(struct context *,
1086 					  const struct token *, const char *,
1087 					  unsigned int, void *, unsigned int);
1088 static int parse_vc_action_mplsogre_decap(struct context *,
1089 					  const struct token *, const char *,
1090 					  unsigned int, void *, unsigned int);
1091 static int parse_vc_action_mplsoudp_encap(struct context *,
1092 					  const struct token *, const char *,
1093 					  unsigned int, void *, unsigned int);
1094 static int parse_vc_action_mplsoudp_decap(struct context *,
1095 					  const struct token *, const char *,
1096 					  unsigned int, void *, unsigned int);
1097 static int parse_destroy(struct context *, const struct token *,
1098 			 const char *, unsigned int,
1099 			 void *, unsigned int);
1100 static int parse_flush(struct context *, const struct token *,
1101 		       const char *, unsigned int,
1102 		       void *, unsigned int);
1103 static int parse_query(struct context *, const struct token *,
1104 		       const char *, unsigned int,
1105 		       void *, unsigned int);
1106 static int parse_action(struct context *, const struct token *,
1107 			const char *, unsigned int,
1108 			void *, unsigned int);
1109 static int parse_list(struct context *, const struct token *,
1110 		      const char *, unsigned int,
1111 		      void *, unsigned int);
1112 static int parse_isolate(struct context *, const struct token *,
1113 			 const char *, unsigned int,
1114 			 void *, unsigned int);
1115 static int parse_int(struct context *, const struct token *,
1116 		     const char *, unsigned int,
1117 		     void *, unsigned int);
1118 static int parse_prefix(struct context *, const struct token *,
1119 			const char *, unsigned int,
1120 			void *, unsigned int);
1121 static int parse_boolean(struct context *, const struct token *,
1122 			 const char *, unsigned int,
1123 			 void *, unsigned int);
1124 static int parse_string(struct context *, const struct token *,
1125 			const char *, unsigned int,
1126 			void *, unsigned int);
1127 static int parse_hex(struct context *ctx, const struct token *token,
1128 			const char *str, unsigned int len,
1129 			void *buf, unsigned int size);
1130 static int parse_mac_addr(struct context *, const struct token *,
1131 			  const char *, unsigned int,
1132 			  void *, unsigned int);
1133 static int parse_ipv4_addr(struct context *, const struct token *,
1134 			   const char *, unsigned int,
1135 			   void *, unsigned int);
1136 static int parse_ipv6_addr(struct context *, const struct token *,
1137 			   const char *, unsigned int,
1138 			   void *, unsigned int);
1139 static int parse_port(struct context *, const struct token *,
1140 		      const char *, unsigned int,
1141 		      void *, unsigned int);
1142 static int comp_none(struct context *, const struct token *,
1143 		     unsigned int, char *, unsigned int);
1144 static int comp_boolean(struct context *, const struct token *,
1145 			unsigned int, char *, unsigned int);
1146 static int comp_action(struct context *, const struct token *,
1147 		       unsigned int, char *, unsigned int);
1148 static int comp_port(struct context *, const struct token *,
1149 		     unsigned int, char *, unsigned int);
1150 static int comp_rule_id(struct context *, const struct token *,
1151 			unsigned int, char *, unsigned int);
1152 static int comp_vc_action_rss_type(struct context *, const struct token *,
1153 				   unsigned int, char *, unsigned int);
1154 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1155 				    unsigned int, char *, unsigned int);
1156 
1157 /** Token definitions. */
1158 static const struct token token_list[] = {
1159 	/* Special tokens. */
1160 	[ZERO] = {
1161 		.name = "ZERO",
1162 		.help = "null entry, abused as the entry point",
1163 		.next = NEXT(NEXT_ENTRY(FLOW)),
1164 	},
1165 	[END] = {
1166 		.name = "",
1167 		.type = "RETURN",
1168 		.help = "command may end here",
1169 	},
1170 	/* Common tokens. */
1171 	[INTEGER] = {
1172 		.name = "{int}",
1173 		.type = "INTEGER",
1174 		.help = "integer value",
1175 		.call = parse_int,
1176 		.comp = comp_none,
1177 	},
1178 	[UNSIGNED] = {
1179 		.name = "{unsigned}",
1180 		.type = "UNSIGNED",
1181 		.help = "unsigned integer value",
1182 		.call = parse_int,
1183 		.comp = comp_none,
1184 	},
1185 	[PREFIX] = {
1186 		.name = "{prefix}",
1187 		.type = "PREFIX",
1188 		.help = "prefix length for bit-mask",
1189 		.call = parse_prefix,
1190 		.comp = comp_none,
1191 	},
1192 	[BOOLEAN] = {
1193 		.name = "{boolean}",
1194 		.type = "BOOLEAN",
1195 		.help = "any boolean value",
1196 		.call = parse_boolean,
1197 		.comp = comp_boolean,
1198 	},
1199 	[STRING] = {
1200 		.name = "{string}",
1201 		.type = "STRING",
1202 		.help = "fixed string",
1203 		.call = parse_string,
1204 		.comp = comp_none,
1205 	},
1206 	[HEX] = {
1207 		.name = "{hex}",
1208 		.type = "HEX",
1209 		.help = "fixed string",
1210 		.call = parse_hex,
1211 		.comp = comp_none,
1212 	},
1213 	[MAC_ADDR] = {
1214 		.name = "{MAC address}",
1215 		.type = "MAC-48",
1216 		.help = "standard MAC address notation",
1217 		.call = parse_mac_addr,
1218 		.comp = comp_none,
1219 	},
1220 	[IPV4_ADDR] = {
1221 		.name = "{IPv4 address}",
1222 		.type = "IPV4 ADDRESS",
1223 		.help = "standard IPv4 address notation",
1224 		.call = parse_ipv4_addr,
1225 		.comp = comp_none,
1226 	},
1227 	[IPV6_ADDR] = {
1228 		.name = "{IPv6 address}",
1229 		.type = "IPV6 ADDRESS",
1230 		.help = "standard IPv6 address notation",
1231 		.call = parse_ipv6_addr,
1232 		.comp = comp_none,
1233 	},
1234 	[RULE_ID] = {
1235 		.name = "{rule id}",
1236 		.type = "RULE ID",
1237 		.help = "rule identifier",
1238 		.call = parse_int,
1239 		.comp = comp_rule_id,
1240 	},
1241 	[PORT_ID] = {
1242 		.name = "{port_id}",
1243 		.type = "PORT ID",
1244 		.help = "port identifier",
1245 		.call = parse_port,
1246 		.comp = comp_port,
1247 	},
1248 	[GROUP_ID] = {
1249 		.name = "{group_id}",
1250 		.type = "GROUP ID",
1251 		.help = "group identifier",
1252 		.call = parse_int,
1253 		.comp = comp_none,
1254 	},
1255 	[PRIORITY_LEVEL] = {
1256 		.name = "{level}",
1257 		.type = "PRIORITY",
1258 		.help = "priority level",
1259 		.call = parse_int,
1260 		.comp = comp_none,
1261 	},
1262 	/* Top-level command. */
1263 	[FLOW] = {
1264 		.name = "flow",
1265 		.type = "{command} {port_id} [{arg} [...]]",
1266 		.help = "manage ingress/egress flow rules",
1267 		.next = NEXT(NEXT_ENTRY
1268 			     (VALIDATE,
1269 			      CREATE,
1270 			      DESTROY,
1271 			      FLUSH,
1272 			      LIST,
1273 			      QUERY,
1274 			      ISOLATE)),
1275 		.call = parse_init,
1276 	},
1277 	/* Sub-level commands. */
1278 	[VALIDATE] = {
1279 		.name = "validate",
1280 		.help = "check whether a flow rule can be created",
1281 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1282 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1283 		.call = parse_vc,
1284 	},
1285 	[CREATE] = {
1286 		.name = "create",
1287 		.help = "create a flow rule",
1288 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1289 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1290 		.call = parse_vc,
1291 	},
1292 	[DESTROY] = {
1293 		.name = "destroy",
1294 		.help = "destroy specific flow rules",
1295 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1296 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1297 		.call = parse_destroy,
1298 	},
1299 	[FLUSH] = {
1300 		.name = "flush",
1301 		.help = "destroy all flow rules",
1302 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1303 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1304 		.call = parse_flush,
1305 	},
1306 	[QUERY] = {
1307 		.name = "query",
1308 		.help = "query an existing flow rule",
1309 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1310 			     NEXT_ENTRY(RULE_ID),
1311 			     NEXT_ENTRY(PORT_ID)),
1312 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1313 			     ARGS_ENTRY(struct buffer, args.query.rule),
1314 			     ARGS_ENTRY(struct buffer, port)),
1315 		.call = parse_query,
1316 	},
1317 	[LIST] = {
1318 		.name = "list",
1319 		.help = "list existing flow rules",
1320 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1321 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1322 		.call = parse_list,
1323 	},
1324 	[ISOLATE] = {
1325 		.name = "isolate",
1326 		.help = "restrict ingress traffic to the defined flow rules",
1327 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1328 			     NEXT_ENTRY(PORT_ID)),
1329 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1330 			     ARGS_ENTRY(struct buffer, port)),
1331 		.call = parse_isolate,
1332 	},
1333 	/* Destroy arguments. */
1334 	[DESTROY_RULE] = {
1335 		.name = "rule",
1336 		.help = "specify a rule identifier",
1337 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1338 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1339 		.call = parse_destroy,
1340 	},
1341 	/* Query arguments. */
1342 	[QUERY_ACTION] = {
1343 		.name = "{action}",
1344 		.type = "ACTION",
1345 		.help = "action to query, must be part of the rule",
1346 		.call = parse_action,
1347 		.comp = comp_action,
1348 	},
1349 	/* List arguments. */
1350 	[LIST_GROUP] = {
1351 		.name = "group",
1352 		.help = "specify a group",
1353 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1354 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1355 		.call = parse_list,
1356 	},
1357 	/* Validate/create attributes. */
1358 	[GROUP] = {
1359 		.name = "group",
1360 		.help = "specify a group",
1361 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1362 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1363 		.call = parse_vc,
1364 	},
1365 	[PRIORITY] = {
1366 		.name = "priority",
1367 		.help = "specify a priority level",
1368 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1369 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1370 		.call = parse_vc,
1371 	},
1372 	[INGRESS] = {
1373 		.name = "ingress",
1374 		.help = "affect rule to ingress",
1375 		.next = NEXT(next_vc_attr),
1376 		.call = parse_vc,
1377 	},
1378 	[EGRESS] = {
1379 		.name = "egress",
1380 		.help = "affect rule to egress",
1381 		.next = NEXT(next_vc_attr),
1382 		.call = parse_vc,
1383 	},
1384 	[TRANSFER] = {
1385 		.name = "transfer",
1386 		.help = "apply rule directly to endpoints found in pattern",
1387 		.next = NEXT(next_vc_attr),
1388 		.call = parse_vc,
1389 	},
1390 	/* Validate/create pattern. */
1391 	[PATTERN] = {
1392 		.name = "pattern",
1393 		.help = "submit a list of pattern items",
1394 		.next = NEXT(next_item),
1395 		.call = parse_vc,
1396 	},
1397 	[ITEM_PARAM_IS] = {
1398 		.name = "is",
1399 		.help = "match value perfectly (with full bit-mask)",
1400 		.call = parse_vc_spec,
1401 	},
1402 	[ITEM_PARAM_SPEC] = {
1403 		.name = "spec",
1404 		.help = "match value according to configured bit-mask",
1405 		.call = parse_vc_spec,
1406 	},
1407 	[ITEM_PARAM_LAST] = {
1408 		.name = "last",
1409 		.help = "specify upper bound to establish a range",
1410 		.call = parse_vc_spec,
1411 	},
1412 	[ITEM_PARAM_MASK] = {
1413 		.name = "mask",
1414 		.help = "specify bit-mask with relevant bits set to one",
1415 		.call = parse_vc_spec,
1416 	},
1417 	[ITEM_PARAM_PREFIX] = {
1418 		.name = "prefix",
1419 		.help = "generate bit-mask from a prefix length",
1420 		.call = parse_vc_spec,
1421 	},
1422 	[ITEM_NEXT] = {
1423 		.name = "/",
1424 		.help = "specify next pattern item",
1425 		.next = NEXT(next_item),
1426 	},
1427 	[ITEM_END] = {
1428 		.name = "end",
1429 		.help = "end list of pattern items",
1430 		.priv = PRIV_ITEM(END, 0),
1431 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1432 		.call = parse_vc,
1433 	},
1434 	[ITEM_VOID] = {
1435 		.name = "void",
1436 		.help = "no-op pattern item",
1437 		.priv = PRIV_ITEM(VOID, 0),
1438 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1439 		.call = parse_vc,
1440 	},
1441 	[ITEM_INVERT] = {
1442 		.name = "invert",
1443 		.help = "perform actions when pattern does not match",
1444 		.priv = PRIV_ITEM(INVERT, 0),
1445 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1446 		.call = parse_vc,
1447 	},
1448 	[ITEM_ANY] = {
1449 		.name = "any",
1450 		.help = "match any protocol for the current layer",
1451 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1452 		.next = NEXT(item_any),
1453 		.call = parse_vc,
1454 	},
1455 	[ITEM_ANY_NUM] = {
1456 		.name = "num",
1457 		.help = "number of layers covered",
1458 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1459 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1460 	},
1461 	[ITEM_PF] = {
1462 		.name = "pf",
1463 		.help = "match traffic from/to the physical function",
1464 		.priv = PRIV_ITEM(PF, 0),
1465 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1466 		.call = parse_vc,
1467 	},
1468 	[ITEM_VF] = {
1469 		.name = "vf",
1470 		.help = "match traffic from/to a virtual function ID",
1471 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1472 		.next = NEXT(item_vf),
1473 		.call = parse_vc,
1474 	},
1475 	[ITEM_VF_ID] = {
1476 		.name = "id",
1477 		.help = "VF ID",
1478 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1479 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1480 	},
1481 	[ITEM_PHY_PORT] = {
1482 		.name = "phy_port",
1483 		.help = "match traffic from/to a specific physical port",
1484 		.priv = PRIV_ITEM(PHY_PORT,
1485 				  sizeof(struct rte_flow_item_phy_port)),
1486 		.next = NEXT(item_phy_port),
1487 		.call = parse_vc,
1488 	},
1489 	[ITEM_PHY_PORT_INDEX] = {
1490 		.name = "index",
1491 		.help = "physical port index",
1492 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1493 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1494 	},
1495 	[ITEM_PORT_ID] = {
1496 		.name = "port_id",
1497 		.help = "match traffic from/to a given DPDK port ID",
1498 		.priv = PRIV_ITEM(PORT_ID,
1499 				  sizeof(struct rte_flow_item_port_id)),
1500 		.next = NEXT(item_port_id),
1501 		.call = parse_vc,
1502 	},
1503 	[ITEM_PORT_ID_ID] = {
1504 		.name = "id",
1505 		.help = "DPDK port ID",
1506 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1507 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1508 	},
1509 	[ITEM_MARK] = {
1510 		.name = "mark",
1511 		.help = "match traffic against value set in previously matched rule",
1512 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1513 		.next = NEXT(item_mark),
1514 		.call = parse_vc,
1515 	},
1516 	[ITEM_MARK_ID] = {
1517 		.name = "id",
1518 		.help = "Integer value to match against",
1519 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1520 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1521 	},
1522 	[ITEM_RAW] = {
1523 		.name = "raw",
1524 		.help = "match an arbitrary byte string",
1525 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1526 		.next = NEXT(item_raw),
1527 		.call = parse_vc,
1528 	},
1529 	[ITEM_RAW_RELATIVE] = {
1530 		.name = "relative",
1531 		.help = "look for pattern after the previous item",
1532 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1533 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1534 					   relative, 1)),
1535 	},
1536 	[ITEM_RAW_SEARCH] = {
1537 		.name = "search",
1538 		.help = "search pattern from offset (see also limit)",
1539 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1540 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1541 					   search, 1)),
1542 	},
1543 	[ITEM_RAW_OFFSET] = {
1544 		.name = "offset",
1545 		.help = "absolute or relative offset for pattern",
1546 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1547 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1548 	},
1549 	[ITEM_RAW_LIMIT] = {
1550 		.name = "limit",
1551 		.help = "search area limit for start of pattern",
1552 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1553 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1554 	},
1555 	[ITEM_RAW_PATTERN] = {
1556 		.name = "pattern",
1557 		.help = "byte string to look for",
1558 		.next = NEXT(item_raw,
1559 			     NEXT_ENTRY(STRING),
1560 			     NEXT_ENTRY(ITEM_PARAM_IS,
1561 					ITEM_PARAM_SPEC,
1562 					ITEM_PARAM_MASK)),
1563 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1564 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1565 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1566 					    ITEM_RAW_PATTERN_SIZE)),
1567 	},
1568 	[ITEM_ETH] = {
1569 		.name = "eth",
1570 		.help = "match Ethernet header",
1571 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1572 		.next = NEXT(item_eth),
1573 		.call = parse_vc,
1574 	},
1575 	[ITEM_ETH_DST] = {
1576 		.name = "dst",
1577 		.help = "destination MAC",
1578 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1579 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1580 	},
1581 	[ITEM_ETH_SRC] = {
1582 		.name = "src",
1583 		.help = "source MAC",
1584 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1585 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1586 	},
1587 	[ITEM_ETH_TYPE] = {
1588 		.name = "type",
1589 		.help = "EtherType",
1590 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1591 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1592 	},
1593 	[ITEM_VLAN] = {
1594 		.name = "vlan",
1595 		.help = "match 802.1Q/ad VLAN tag",
1596 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1597 		.next = NEXT(item_vlan),
1598 		.call = parse_vc,
1599 	},
1600 	[ITEM_VLAN_TCI] = {
1601 		.name = "tci",
1602 		.help = "tag control information",
1603 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1604 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1605 	},
1606 	[ITEM_VLAN_PCP] = {
1607 		.name = "pcp",
1608 		.help = "priority code point",
1609 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1610 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1611 						  tci, "\xe0\x00")),
1612 	},
1613 	[ITEM_VLAN_DEI] = {
1614 		.name = "dei",
1615 		.help = "drop eligible indicator",
1616 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1617 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1618 						  tci, "\x10\x00")),
1619 	},
1620 	[ITEM_VLAN_VID] = {
1621 		.name = "vid",
1622 		.help = "VLAN identifier",
1623 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1624 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1625 						  tci, "\x0f\xff")),
1626 	},
1627 	[ITEM_VLAN_INNER_TYPE] = {
1628 		.name = "inner_type",
1629 		.help = "inner EtherType",
1630 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1631 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1632 					     inner_type)),
1633 	},
1634 	[ITEM_IPV4] = {
1635 		.name = "ipv4",
1636 		.help = "match IPv4 header",
1637 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1638 		.next = NEXT(item_ipv4),
1639 		.call = parse_vc,
1640 	},
1641 	[ITEM_IPV4_TOS] = {
1642 		.name = "tos",
1643 		.help = "type of service",
1644 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1645 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1646 					     hdr.type_of_service)),
1647 	},
1648 	[ITEM_IPV4_TTL] = {
1649 		.name = "ttl",
1650 		.help = "time to live",
1651 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1652 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1653 					     hdr.time_to_live)),
1654 	},
1655 	[ITEM_IPV4_PROTO] = {
1656 		.name = "proto",
1657 		.help = "next protocol ID",
1658 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1659 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1660 					     hdr.next_proto_id)),
1661 	},
1662 	[ITEM_IPV4_SRC] = {
1663 		.name = "src",
1664 		.help = "source address",
1665 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1666 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1667 					     hdr.src_addr)),
1668 	},
1669 	[ITEM_IPV4_DST] = {
1670 		.name = "dst",
1671 		.help = "destination address",
1672 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1673 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1674 					     hdr.dst_addr)),
1675 	},
1676 	[ITEM_IPV6] = {
1677 		.name = "ipv6",
1678 		.help = "match IPv6 header",
1679 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1680 		.next = NEXT(item_ipv6),
1681 		.call = parse_vc,
1682 	},
1683 	[ITEM_IPV6_TC] = {
1684 		.name = "tc",
1685 		.help = "traffic class",
1686 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1687 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1688 						  hdr.vtc_flow,
1689 						  "\x0f\xf0\x00\x00")),
1690 	},
1691 	[ITEM_IPV6_FLOW] = {
1692 		.name = "flow",
1693 		.help = "flow label",
1694 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1695 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1696 						  hdr.vtc_flow,
1697 						  "\x00\x0f\xff\xff")),
1698 	},
1699 	[ITEM_IPV6_PROTO] = {
1700 		.name = "proto",
1701 		.help = "protocol (next header)",
1702 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1703 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1704 					     hdr.proto)),
1705 	},
1706 	[ITEM_IPV6_HOP] = {
1707 		.name = "hop",
1708 		.help = "hop limit",
1709 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1710 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1711 					     hdr.hop_limits)),
1712 	},
1713 	[ITEM_IPV6_SRC] = {
1714 		.name = "src",
1715 		.help = "source address",
1716 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1717 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1718 					     hdr.src_addr)),
1719 	},
1720 	[ITEM_IPV6_DST] = {
1721 		.name = "dst",
1722 		.help = "destination address",
1723 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1724 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1725 					     hdr.dst_addr)),
1726 	},
1727 	[ITEM_ICMP] = {
1728 		.name = "icmp",
1729 		.help = "match ICMP header",
1730 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1731 		.next = NEXT(item_icmp),
1732 		.call = parse_vc,
1733 	},
1734 	[ITEM_ICMP_TYPE] = {
1735 		.name = "type",
1736 		.help = "ICMP packet type",
1737 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1738 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1739 					     hdr.icmp_type)),
1740 	},
1741 	[ITEM_ICMP_CODE] = {
1742 		.name = "code",
1743 		.help = "ICMP packet code",
1744 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1745 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1746 					     hdr.icmp_code)),
1747 	},
1748 	[ITEM_UDP] = {
1749 		.name = "udp",
1750 		.help = "match UDP header",
1751 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1752 		.next = NEXT(item_udp),
1753 		.call = parse_vc,
1754 	},
1755 	[ITEM_UDP_SRC] = {
1756 		.name = "src",
1757 		.help = "UDP source port",
1758 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1759 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1760 					     hdr.src_port)),
1761 	},
1762 	[ITEM_UDP_DST] = {
1763 		.name = "dst",
1764 		.help = "UDP destination port",
1765 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1766 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1767 					     hdr.dst_port)),
1768 	},
1769 	[ITEM_TCP] = {
1770 		.name = "tcp",
1771 		.help = "match TCP header",
1772 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1773 		.next = NEXT(item_tcp),
1774 		.call = parse_vc,
1775 	},
1776 	[ITEM_TCP_SRC] = {
1777 		.name = "src",
1778 		.help = "TCP source port",
1779 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1780 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1781 					     hdr.src_port)),
1782 	},
1783 	[ITEM_TCP_DST] = {
1784 		.name = "dst",
1785 		.help = "TCP destination port",
1786 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1787 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1788 					     hdr.dst_port)),
1789 	},
1790 	[ITEM_TCP_FLAGS] = {
1791 		.name = "flags",
1792 		.help = "TCP flags",
1793 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1794 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1795 					     hdr.tcp_flags)),
1796 	},
1797 	[ITEM_SCTP] = {
1798 		.name = "sctp",
1799 		.help = "match SCTP header",
1800 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1801 		.next = NEXT(item_sctp),
1802 		.call = parse_vc,
1803 	},
1804 	[ITEM_SCTP_SRC] = {
1805 		.name = "src",
1806 		.help = "SCTP source port",
1807 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1808 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1809 					     hdr.src_port)),
1810 	},
1811 	[ITEM_SCTP_DST] = {
1812 		.name = "dst",
1813 		.help = "SCTP destination port",
1814 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1815 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1816 					     hdr.dst_port)),
1817 	},
1818 	[ITEM_SCTP_TAG] = {
1819 		.name = "tag",
1820 		.help = "validation tag",
1821 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1822 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1823 					     hdr.tag)),
1824 	},
1825 	[ITEM_SCTP_CKSUM] = {
1826 		.name = "cksum",
1827 		.help = "checksum",
1828 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1829 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1830 					     hdr.cksum)),
1831 	},
1832 	[ITEM_VXLAN] = {
1833 		.name = "vxlan",
1834 		.help = "match VXLAN header",
1835 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1836 		.next = NEXT(item_vxlan),
1837 		.call = parse_vc,
1838 	},
1839 	[ITEM_VXLAN_VNI] = {
1840 		.name = "vni",
1841 		.help = "VXLAN identifier",
1842 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1843 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1844 	},
1845 	[ITEM_E_TAG] = {
1846 		.name = "e_tag",
1847 		.help = "match E-Tag header",
1848 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1849 		.next = NEXT(item_e_tag),
1850 		.call = parse_vc,
1851 	},
1852 	[ITEM_E_TAG_GRP_ECID_B] = {
1853 		.name = "grp_ecid_b",
1854 		.help = "GRP and E-CID base",
1855 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1856 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1857 						  rsvd_grp_ecid_b,
1858 						  "\x3f\xff")),
1859 	},
1860 	[ITEM_NVGRE] = {
1861 		.name = "nvgre",
1862 		.help = "match NVGRE header",
1863 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1864 		.next = NEXT(item_nvgre),
1865 		.call = parse_vc,
1866 	},
1867 	[ITEM_NVGRE_TNI] = {
1868 		.name = "tni",
1869 		.help = "virtual subnet ID",
1870 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1871 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1872 	},
1873 	[ITEM_MPLS] = {
1874 		.name = "mpls",
1875 		.help = "match MPLS header",
1876 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1877 		.next = NEXT(item_mpls),
1878 		.call = parse_vc,
1879 	},
1880 	[ITEM_MPLS_LABEL] = {
1881 		.name = "label",
1882 		.help = "MPLS label",
1883 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1884 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1885 						  label_tc_s,
1886 						  "\xff\xff\xf0")),
1887 	},
1888 	[ITEM_GRE] = {
1889 		.name = "gre",
1890 		.help = "match GRE header",
1891 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1892 		.next = NEXT(item_gre),
1893 		.call = parse_vc,
1894 	},
1895 	[ITEM_GRE_PROTO] = {
1896 		.name = "protocol",
1897 		.help = "GRE protocol type",
1898 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1899 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1900 					     protocol)),
1901 	},
1902 	[ITEM_FUZZY] = {
1903 		.name = "fuzzy",
1904 		.help = "fuzzy pattern match, expect faster than default",
1905 		.priv = PRIV_ITEM(FUZZY,
1906 				sizeof(struct rte_flow_item_fuzzy)),
1907 		.next = NEXT(item_fuzzy),
1908 		.call = parse_vc,
1909 	},
1910 	[ITEM_FUZZY_THRESH] = {
1911 		.name = "thresh",
1912 		.help = "match accuracy threshold",
1913 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1914 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1915 					thresh)),
1916 	},
1917 	[ITEM_GTP] = {
1918 		.name = "gtp",
1919 		.help = "match GTP header",
1920 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1921 		.next = NEXT(item_gtp),
1922 		.call = parse_vc,
1923 	},
1924 	[ITEM_GTP_TEID] = {
1925 		.name = "teid",
1926 		.help = "tunnel endpoint identifier",
1927 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1928 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1929 	},
1930 	[ITEM_GTPC] = {
1931 		.name = "gtpc",
1932 		.help = "match GTP header",
1933 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1934 		.next = NEXT(item_gtp),
1935 		.call = parse_vc,
1936 	},
1937 	[ITEM_GTPU] = {
1938 		.name = "gtpu",
1939 		.help = "match GTP header",
1940 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1941 		.next = NEXT(item_gtp),
1942 		.call = parse_vc,
1943 	},
1944 	[ITEM_GENEVE] = {
1945 		.name = "geneve",
1946 		.help = "match GENEVE header",
1947 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1948 		.next = NEXT(item_geneve),
1949 		.call = parse_vc,
1950 	},
1951 	[ITEM_GENEVE_VNI] = {
1952 		.name = "vni",
1953 		.help = "virtual network identifier",
1954 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1955 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1956 	},
1957 	[ITEM_GENEVE_PROTO] = {
1958 		.name = "protocol",
1959 		.help = "GENEVE protocol type",
1960 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1961 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1962 					     protocol)),
1963 	},
1964 	[ITEM_VXLAN_GPE] = {
1965 		.name = "vxlan-gpe",
1966 		.help = "match VXLAN-GPE header",
1967 		.priv = PRIV_ITEM(VXLAN_GPE,
1968 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1969 		.next = NEXT(item_vxlan_gpe),
1970 		.call = parse_vc,
1971 	},
1972 	[ITEM_VXLAN_GPE_VNI] = {
1973 		.name = "vni",
1974 		.help = "VXLAN-GPE identifier",
1975 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1976 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1977 					     vni)),
1978 	},
1979 	[ITEM_ARP_ETH_IPV4] = {
1980 		.name = "arp_eth_ipv4",
1981 		.help = "match ARP header for Ethernet/IPv4",
1982 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1983 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1984 		.next = NEXT(item_arp_eth_ipv4),
1985 		.call = parse_vc,
1986 	},
1987 	[ITEM_ARP_ETH_IPV4_SHA] = {
1988 		.name = "sha",
1989 		.help = "sender hardware address",
1990 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1991 			     item_param),
1992 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1993 					     sha)),
1994 	},
1995 	[ITEM_ARP_ETH_IPV4_SPA] = {
1996 		.name = "spa",
1997 		.help = "sender IPv4 address",
1998 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1999 			     item_param),
2000 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2001 					     spa)),
2002 	},
2003 	[ITEM_ARP_ETH_IPV4_THA] = {
2004 		.name = "tha",
2005 		.help = "target hardware address",
2006 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2007 			     item_param),
2008 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2009 					     tha)),
2010 	},
2011 	[ITEM_ARP_ETH_IPV4_TPA] = {
2012 		.name = "tpa",
2013 		.help = "target IPv4 address",
2014 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2015 			     item_param),
2016 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2017 					     tpa)),
2018 	},
2019 	[ITEM_IPV6_EXT] = {
2020 		.name = "ipv6_ext",
2021 		.help = "match presence of any IPv6 extension header",
2022 		.priv = PRIV_ITEM(IPV6_EXT,
2023 				  sizeof(struct rte_flow_item_ipv6_ext)),
2024 		.next = NEXT(item_ipv6_ext),
2025 		.call = parse_vc,
2026 	},
2027 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2028 		.name = "next_hdr",
2029 		.help = "next header",
2030 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2031 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2032 					     next_hdr)),
2033 	},
2034 	[ITEM_ICMP6] = {
2035 		.name = "icmp6",
2036 		.help = "match any ICMPv6 header",
2037 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2038 		.next = NEXT(item_icmp6),
2039 		.call = parse_vc,
2040 	},
2041 	[ITEM_ICMP6_TYPE] = {
2042 		.name = "type",
2043 		.help = "ICMPv6 type",
2044 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2045 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2046 					     type)),
2047 	},
2048 	[ITEM_ICMP6_CODE] = {
2049 		.name = "code",
2050 		.help = "ICMPv6 code",
2051 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2052 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2053 					     code)),
2054 	},
2055 	[ITEM_ICMP6_ND_NS] = {
2056 		.name = "icmp6_nd_ns",
2057 		.help = "match ICMPv6 neighbor discovery solicitation",
2058 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2059 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2060 		.next = NEXT(item_icmp6_nd_ns),
2061 		.call = parse_vc,
2062 	},
2063 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2064 		.name = "target_addr",
2065 		.help = "target address",
2066 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2067 			     item_param),
2068 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2069 					     target_addr)),
2070 	},
2071 	[ITEM_ICMP6_ND_NA] = {
2072 		.name = "icmp6_nd_na",
2073 		.help = "match ICMPv6 neighbor discovery advertisement",
2074 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2075 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2076 		.next = NEXT(item_icmp6_nd_na),
2077 		.call = parse_vc,
2078 	},
2079 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2080 		.name = "target_addr",
2081 		.help = "target address",
2082 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2083 			     item_param),
2084 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2085 					     target_addr)),
2086 	},
2087 	[ITEM_ICMP6_ND_OPT] = {
2088 		.name = "icmp6_nd_opt",
2089 		.help = "match presence of any ICMPv6 neighbor discovery"
2090 			" option",
2091 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2092 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2093 		.next = NEXT(item_icmp6_nd_opt),
2094 		.call = parse_vc,
2095 	},
2096 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2097 		.name = "type",
2098 		.help = "ND option type",
2099 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2100 			     item_param),
2101 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2102 					     type)),
2103 	},
2104 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2105 		.name = "icmp6_nd_opt_sla_eth",
2106 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2107 			" link-layer address option",
2108 		.priv = PRIV_ITEM
2109 			(ICMP6_ND_OPT_SLA_ETH,
2110 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2111 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2112 		.call = parse_vc,
2113 	},
2114 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2115 		.name = "sla",
2116 		.help = "source Ethernet LLA",
2117 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2118 			     item_param),
2119 		.args = ARGS(ARGS_ENTRY_HTON
2120 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2121 	},
2122 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2123 		.name = "icmp6_nd_opt_tla_eth",
2124 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2125 			" link-layer address option",
2126 		.priv = PRIV_ITEM
2127 			(ICMP6_ND_OPT_TLA_ETH,
2128 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2129 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2130 		.call = parse_vc,
2131 	},
2132 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2133 		.name = "tla",
2134 		.help = "target Ethernet LLA",
2135 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2136 			     item_param),
2137 		.args = ARGS(ARGS_ENTRY_HTON
2138 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2139 	},
2140 	[ITEM_META] = {
2141 		.name = "meta",
2142 		.help = "match metadata header",
2143 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2144 		.next = NEXT(item_meta),
2145 		.call = parse_vc,
2146 	},
2147 	[ITEM_META_DATA] = {
2148 		.name = "data",
2149 		.help = "metadata value",
2150 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2151 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2152 						  data, "\xff\xff\xff\xff")),
2153 	},
2154 
2155 	/* Validate/create actions. */
2156 	[ACTIONS] = {
2157 		.name = "actions",
2158 		.help = "submit a list of associated actions",
2159 		.next = NEXT(next_action),
2160 		.call = parse_vc,
2161 	},
2162 	[ACTION_NEXT] = {
2163 		.name = "/",
2164 		.help = "specify next action",
2165 		.next = NEXT(next_action),
2166 	},
2167 	[ACTION_END] = {
2168 		.name = "end",
2169 		.help = "end list of actions",
2170 		.priv = PRIV_ACTION(END, 0),
2171 		.call = parse_vc,
2172 	},
2173 	[ACTION_VOID] = {
2174 		.name = "void",
2175 		.help = "no-op action",
2176 		.priv = PRIV_ACTION(VOID, 0),
2177 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2178 		.call = parse_vc,
2179 	},
2180 	[ACTION_PASSTHRU] = {
2181 		.name = "passthru",
2182 		.help = "let subsequent rule process matched packets",
2183 		.priv = PRIV_ACTION(PASSTHRU, 0),
2184 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2185 		.call = parse_vc,
2186 	},
2187 	[ACTION_JUMP] = {
2188 		.name = "jump",
2189 		.help = "redirect traffic to a given group",
2190 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2191 		.next = NEXT(action_jump),
2192 		.call = parse_vc,
2193 	},
2194 	[ACTION_JUMP_GROUP] = {
2195 		.name = "group",
2196 		.help = "group to redirect traffic to",
2197 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2198 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2199 		.call = parse_vc_conf,
2200 	},
2201 	[ACTION_MARK] = {
2202 		.name = "mark",
2203 		.help = "attach 32 bit value to packets",
2204 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2205 		.next = NEXT(action_mark),
2206 		.call = parse_vc,
2207 	},
2208 	[ACTION_MARK_ID] = {
2209 		.name = "id",
2210 		.help = "32 bit value to return with packets",
2211 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2212 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2213 		.call = parse_vc_conf,
2214 	},
2215 	[ACTION_FLAG] = {
2216 		.name = "flag",
2217 		.help = "flag packets",
2218 		.priv = PRIV_ACTION(FLAG, 0),
2219 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2220 		.call = parse_vc,
2221 	},
2222 	[ACTION_QUEUE] = {
2223 		.name = "queue",
2224 		.help = "assign packets to a given queue index",
2225 		.priv = PRIV_ACTION(QUEUE,
2226 				    sizeof(struct rte_flow_action_queue)),
2227 		.next = NEXT(action_queue),
2228 		.call = parse_vc,
2229 	},
2230 	[ACTION_QUEUE_INDEX] = {
2231 		.name = "index",
2232 		.help = "queue index to use",
2233 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2234 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2235 		.call = parse_vc_conf,
2236 	},
2237 	[ACTION_DROP] = {
2238 		.name = "drop",
2239 		.help = "drop packets (note: passthru has priority)",
2240 		.priv = PRIV_ACTION(DROP, 0),
2241 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2242 		.call = parse_vc,
2243 	},
2244 	[ACTION_COUNT] = {
2245 		.name = "count",
2246 		.help = "enable counters for this rule",
2247 		.priv = PRIV_ACTION(COUNT,
2248 				    sizeof(struct rte_flow_action_count)),
2249 		.next = NEXT(action_count),
2250 		.call = parse_vc,
2251 	},
2252 	[ACTION_COUNT_ID] = {
2253 		.name = "identifier",
2254 		.help = "counter identifier to use",
2255 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2256 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2257 		.call = parse_vc_conf,
2258 	},
2259 	[ACTION_COUNT_SHARED] = {
2260 		.name = "shared",
2261 		.help = "shared counter",
2262 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2263 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2264 					   shared, 1)),
2265 		.call = parse_vc_conf,
2266 	},
2267 	[ACTION_RSS] = {
2268 		.name = "rss",
2269 		.help = "spread packets among several queues",
2270 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2271 		.next = NEXT(action_rss),
2272 		.call = parse_vc_action_rss,
2273 	},
2274 	[ACTION_RSS_FUNC] = {
2275 		.name = "func",
2276 		.help = "RSS hash function to apply",
2277 		.next = NEXT(action_rss,
2278 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2279 					ACTION_RSS_FUNC_TOEPLITZ,
2280 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2281 	},
2282 	[ACTION_RSS_FUNC_DEFAULT] = {
2283 		.name = "default",
2284 		.help = "default hash function",
2285 		.call = parse_vc_action_rss_func,
2286 	},
2287 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2288 		.name = "toeplitz",
2289 		.help = "Toeplitz hash function",
2290 		.call = parse_vc_action_rss_func,
2291 	},
2292 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2293 		.name = "simple_xor",
2294 		.help = "simple XOR hash function",
2295 		.call = parse_vc_action_rss_func,
2296 	},
2297 	[ACTION_RSS_LEVEL] = {
2298 		.name = "level",
2299 		.help = "encapsulation level for \"types\"",
2300 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2301 		.args = ARGS(ARGS_ENTRY_ARB
2302 			     (offsetof(struct action_rss_data, conf) +
2303 			      offsetof(struct rte_flow_action_rss, level),
2304 			      sizeof(((struct rte_flow_action_rss *)0)->
2305 				     level))),
2306 	},
2307 	[ACTION_RSS_TYPES] = {
2308 		.name = "types",
2309 		.help = "specific RSS hash types",
2310 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2311 	},
2312 	[ACTION_RSS_TYPE] = {
2313 		.name = "{type}",
2314 		.help = "RSS hash type",
2315 		.call = parse_vc_action_rss_type,
2316 		.comp = comp_vc_action_rss_type,
2317 	},
2318 	[ACTION_RSS_KEY] = {
2319 		.name = "key",
2320 		.help = "RSS hash key",
2321 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2322 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2323 			     ARGS_ENTRY_ARB
2324 			     (offsetof(struct action_rss_data, conf) +
2325 			      offsetof(struct rte_flow_action_rss, key_len),
2326 			      sizeof(((struct rte_flow_action_rss *)0)->
2327 				     key_len)),
2328 			     ARGS_ENTRY(struct action_rss_data, key)),
2329 	},
2330 	[ACTION_RSS_KEY_LEN] = {
2331 		.name = "key_len",
2332 		.help = "RSS hash key length in bytes",
2333 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2334 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2335 			     (offsetof(struct action_rss_data, conf) +
2336 			      offsetof(struct rte_flow_action_rss, key_len),
2337 			      sizeof(((struct rte_flow_action_rss *)0)->
2338 				     key_len),
2339 			      0,
2340 			      RSS_HASH_KEY_LENGTH)),
2341 	},
2342 	[ACTION_RSS_QUEUES] = {
2343 		.name = "queues",
2344 		.help = "queue indices to use",
2345 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2346 		.call = parse_vc_conf,
2347 	},
2348 	[ACTION_RSS_QUEUE] = {
2349 		.name = "{queue}",
2350 		.help = "queue index",
2351 		.call = parse_vc_action_rss_queue,
2352 		.comp = comp_vc_action_rss_queue,
2353 	},
2354 	[ACTION_PF] = {
2355 		.name = "pf",
2356 		.help = "direct traffic to physical function",
2357 		.priv = PRIV_ACTION(PF, 0),
2358 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2359 		.call = parse_vc,
2360 	},
2361 	[ACTION_VF] = {
2362 		.name = "vf",
2363 		.help = "direct traffic to a virtual function ID",
2364 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2365 		.next = NEXT(action_vf),
2366 		.call = parse_vc,
2367 	},
2368 	[ACTION_VF_ORIGINAL] = {
2369 		.name = "original",
2370 		.help = "use original VF ID if possible",
2371 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2372 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2373 					   original, 1)),
2374 		.call = parse_vc_conf,
2375 	},
2376 	[ACTION_VF_ID] = {
2377 		.name = "id",
2378 		.help = "VF ID",
2379 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2380 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2381 		.call = parse_vc_conf,
2382 	},
2383 	[ACTION_PHY_PORT] = {
2384 		.name = "phy_port",
2385 		.help = "direct packets to physical port index",
2386 		.priv = PRIV_ACTION(PHY_PORT,
2387 				    sizeof(struct rte_flow_action_phy_port)),
2388 		.next = NEXT(action_phy_port),
2389 		.call = parse_vc,
2390 	},
2391 	[ACTION_PHY_PORT_ORIGINAL] = {
2392 		.name = "original",
2393 		.help = "use original port index if possible",
2394 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2395 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2396 					   original, 1)),
2397 		.call = parse_vc_conf,
2398 	},
2399 	[ACTION_PHY_PORT_INDEX] = {
2400 		.name = "index",
2401 		.help = "physical port index",
2402 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2403 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2404 					index)),
2405 		.call = parse_vc_conf,
2406 	},
2407 	[ACTION_PORT_ID] = {
2408 		.name = "port_id",
2409 		.help = "direct matching traffic to a given DPDK port ID",
2410 		.priv = PRIV_ACTION(PORT_ID,
2411 				    sizeof(struct rte_flow_action_port_id)),
2412 		.next = NEXT(action_port_id),
2413 		.call = parse_vc,
2414 	},
2415 	[ACTION_PORT_ID_ORIGINAL] = {
2416 		.name = "original",
2417 		.help = "use original DPDK port ID if possible",
2418 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2419 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2420 					   original, 1)),
2421 		.call = parse_vc_conf,
2422 	},
2423 	[ACTION_PORT_ID_ID] = {
2424 		.name = "id",
2425 		.help = "DPDK port ID",
2426 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2427 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2428 		.call = parse_vc_conf,
2429 	},
2430 	[ACTION_METER] = {
2431 		.name = "meter",
2432 		.help = "meter the directed packets at given id",
2433 		.priv = PRIV_ACTION(METER,
2434 				    sizeof(struct rte_flow_action_meter)),
2435 		.next = NEXT(action_meter),
2436 		.call = parse_vc,
2437 	},
2438 	[ACTION_METER_ID] = {
2439 		.name = "mtr_id",
2440 		.help = "meter id to use",
2441 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2442 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2443 		.call = parse_vc_conf,
2444 	},
2445 	[ACTION_OF_SET_MPLS_TTL] = {
2446 		.name = "of_set_mpls_ttl",
2447 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2448 		.priv = PRIV_ACTION
2449 			(OF_SET_MPLS_TTL,
2450 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2451 		.next = NEXT(action_of_set_mpls_ttl),
2452 		.call = parse_vc,
2453 	},
2454 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2455 		.name = "mpls_ttl",
2456 		.help = "MPLS TTL",
2457 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2458 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2459 					mpls_ttl)),
2460 		.call = parse_vc_conf,
2461 	},
2462 	[ACTION_OF_DEC_MPLS_TTL] = {
2463 		.name = "of_dec_mpls_ttl",
2464 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2465 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2466 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2467 		.call = parse_vc,
2468 	},
2469 	[ACTION_OF_SET_NW_TTL] = {
2470 		.name = "of_set_nw_ttl",
2471 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2472 		.priv = PRIV_ACTION
2473 			(OF_SET_NW_TTL,
2474 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2475 		.next = NEXT(action_of_set_nw_ttl),
2476 		.call = parse_vc,
2477 	},
2478 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2479 		.name = "nw_ttl",
2480 		.help = "IP TTL",
2481 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2482 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2483 					nw_ttl)),
2484 		.call = parse_vc_conf,
2485 	},
2486 	[ACTION_OF_DEC_NW_TTL] = {
2487 		.name = "of_dec_nw_ttl",
2488 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2489 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2490 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2491 		.call = parse_vc,
2492 	},
2493 	[ACTION_OF_COPY_TTL_OUT] = {
2494 		.name = "of_copy_ttl_out",
2495 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2496 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2497 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2498 		.call = parse_vc,
2499 	},
2500 	[ACTION_OF_COPY_TTL_IN] = {
2501 		.name = "of_copy_ttl_in",
2502 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2503 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2504 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2505 		.call = parse_vc,
2506 	},
2507 	[ACTION_OF_POP_VLAN] = {
2508 		.name = "of_pop_vlan",
2509 		.help = "OpenFlow's OFPAT_POP_VLAN",
2510 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2511 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2512 		.call = parse_vc,
2513 	},
2514 	[ACTION_OF_PUSH_VLAN] = {
2515 		.name = "of_push_vlan",
2516 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2517 		.priv = PRIV_ACTION
2518 			(OF_PUSH_VLAN,
2519 			 sizeof(struct rte_flow_action_of_push_vlan)),
2520 		.next = NEXT(action_of_push_vlan),
2521 		.call = parse_vc,
2522 	},
2523 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2524 		.name = "ethertype",
2525 		.help = "EtherType",
2526 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2527 		.args = ARGS(ARGS_ENTRY_HTON
2528 			     (struct rte_flow_action_of_push_vlan,
2529 			      ethertype)),
2530 		.call = parse_vc_conf,
2531 	},
2532 	[ACTION_OF_SET_VLAN_VID] = {
2533 		.name = "of_set_vlan_vid",
2534 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2535 		.priv = PRIV_ACTION
2536 			(OF_SET_VLAN_VID,
2537 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2538 		.next = NEXT(action_of_set_vlan_vid),
2539 		.call = parse_vc,
2540 	},
2541 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2542 		.name = "vlan_vid",
2543 		.help = "VLAN id",
2544 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2545 		.args = ARGS(ARGS_ENTRY_HTON
2546 			     (struct rte_flow_action_of_set_vlan_vid,
2547 			      vlan_vid)),
2548 		.call = parse_vc_conf,
2549 	},
2550 	[ACTION_OF_SET_VLAN_PCP] = {
2551 		.name = "of_set_vlan_pcp",
2552 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2553 		.priv = PRIV_ACTION
2554 			(OF_SET_VLAN_PCP,
2555 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2556 		.next = NEXT(action_of_set_vlan_pcp),
2557 		.call = parse_vc,
2558 	},
2559 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2560 		.name = "vlan_pcp",
2561 		.help = "VLAN priority",
2562 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2563 		.args = ARGS(ARGS_ENTRY_HTON
2564 			     (struct rte_flow_action_of_set_vlan_pcp,
2565 			      vlan_pcp)),
2566 		.call = parse_vc_conf,
2567 	},
2568 	[ACTION_OF_POP_MPLS] = {
2569 		.name = "of_pop_mpls",
2570 		.help = "OpenFlow's OFPAT_POP_MPLS",
2571 		.priv = PRIV_ACTION(OF_POP_MPLS,
2572 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2573 		.next = NEXT(action_of_pop_mpls),
2574 		.call = parse_vc,
2575 	},
2576 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2577 		.name = "ethertype",
2578 		.help = "EtherType",
2579 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2580 		.args = ARGS(ARGS_ENTRY_HTON
2581 			     (struct rte_flow_action_of_pop_mpls,
2582 			      ethertype)),
2583 		.call = parse_vc_conf,
2584 	},
2585 	[ACTION_OF_PUSH_MPLS] = {
2586 		.name = "of_push_mpls",
2587 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2588 		.priv = PRIV_ACTION
2589 			(OF_PUSH_MPLS,
2590 			 sizeof(struct rte_flow_action_of_push_mpls)),
2591 		.next = NEXT(action_of_push_mpls),
2592 		.call = parse_vc,
2593 	},
2594 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2595 		.name = "ethertype",
2596 		.help = "EtherType",
2597 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2598 		.args = ARGS(ARGS_ENTRY_HTON
2599 			     (struct rte_flow_action_of_push_mpls,
2600 			      ethertype)),
2601 		.call = parse_vc_conf,
2602 	},
2603 	[ACTION_VXLAN_ENCAP] = {
2604 		.name = "vxlan_encap",
2605 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2606 			" vxlan\"",
2607 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2608 				    sizeof(struct action_vxlan_encap_data)),
2609 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2610 		.call = parse_vc_action_vxlan_encap,
2611 	},
2612 	[ACTION_VXLAN_DECAP] = {
2613 		.name = "vxlan_decap",
2614 		.help = "Performs a decapsulation action by stripping all"
2615 			" headers of the VXLAN tunnel network overlay from the"
2616 			" matched flow.",
2617 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2618 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2619 		.call = parse_vc,
2620 	},
2621 	[ACTION_NVGRE_ENCAP] = {
2622 		.name = "nvgre_encap",
2623 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2624 			" nvgre\"",
2625 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2626 				    sizeof(struct action_nvgre_encap_data)),
2627 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2628 		.call = parse_vc_action_nvgre_encap,
2629 	},
2630 	[ACTION_NVGRE_DECAP] = {
2631 		.name = "nvgre_decap",
2632 		.help = "Performs a decapsulation action by stripping all"
2633 			" headers of the NVGRE tunnel network overlay from the"
2634 			" matched flow.",
2635 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2636 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2637 		.call = parse_vc,
2638 	},
2639 	[ACTION_L2_ENCAP] = {
2640 		.name = "l2_encap",
2641 		.help = "l2 encap, uses configuration set by"
2642 			" \"set l2_encap\"",
2643 		.priv = PRIV_ACTION(RAW_ENCAP,
2644 				    sizeof(struct action_raw_encap_data)),
2645 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2646 		.call = parse_vc_action_l2_encap,
2647 	},
2648 	[ACTION_L2_DECAP] = {
2649 		.name = "l2_decap",
2650 		.help = "l2 decap, uses configuration set by"
2651 			" \"set l2_decap\"",
2652 		.priv = PRIV_ACTION(RAW_DECAP,
2653 				    sizeof(struct action_raw_decap_data)),
2654 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2655 		.call = parse_vc_action_l2_decap,
2656 	},
2657 	[ACTION_MPLSOGRE_ENCAP] = {
2658 		.name = "mplsogre_encap",
2659 		.help = "mplsogre encapsulation, uses configuration set by"
2660 			" \"set mplsogre_encap\"",
2661 		.priv = PRIV_ACTION(RAW_ENCAP,
2662 				    sizeof(struct action_raw_encap_data)),
2663 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2664 		.call = parse_vc_action_mplsogre_encap,
2665 	},
2666 	[ACTION_MPLSOGRE_DECAP] = {
2667 		.name = "mplsogre_decap",
2668 		.help = "mplsogre decapsulation, uses configuration set by"
2669 			" \"set mplsogre_decap\"",
2670 		.priv = PRIV_ACTION(RAW_DECAP,
2671 				    sizeof(struct action_raw_decap_data)),
2672 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2673 		.call = parse_vc_action_mplsogre_decap,
2674 	},
2675 	[ACTION_MPLSOUDP_ENCAP] = {
2676 		.name = "mplsoudp_encap",
2677 		.help = "mplsoudp encapsulation, uses configuration set by"
2678 			" \"set mplsoudp_encap\"",
2679 		.priv = PRIV_ACTION(RAW_ENCAP,
2680 				    sizeof(struct action_raw_encap_data)),
2681 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2682 		.call = parse_vc_action_mplsoudp_encap,
2683 	},
2684 	[ACTION_MPLSOUDP_DECAP] = {
2685 		.name = "mplsoudp_decap",
2686 		.help = "mplsoudp decapsulation, uses configuration set by"
2687 			" \"set mplsoudp_decap\"",
2688 		.priv = PRIV_ACTION(RAW_DECAP,
2689 				    sizeof(struct action_raw_decap_data)),
2690 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2691 		.call = parse_vc_action_mplsoudp_decap,
2692 	},
2693 	[ACTION_SET_IPV4_SRC] = {
2694 		.name = "set_ipv4_src",
2695 		.help = "Set a new IPv4 source address in the outermost"
2696 			" IPv4 header",
2697 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2698 			sizeof(struct rte_flow_action_set_ipv4)),
2699 		.next = NEXT(action_set_ipv4_src),
2700 		.call = parse_vc,
2701 	},
2702 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2703 		.name = "ipv4_addr",
2704 		.help = "new IPv4 source address to set",
2705 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2706 		.args = ARGS(ARGS_ENTRY_HTON
2707 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2708 		.call = parse_vc_conf,
2709 	},
2710 	[ACTION_SET_IPV4_DST] = {
2711 		.name = "set_ipv4_dst",
2712 		.help = "Set a new IPv4 destination address in the outermost"
2713 			" IPv4 header",
2714 		.priv = PRIV_ACTION(SET_IPV4_DST,
2715 			sizeof(struct rte_flow_action_set_ipv4)),
2716 		.next = NEXT(action_set_ipv4_dst),
2717 		.call = parse_vc,
2718 	},
2719 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2720 		.name = "ipv4_addr",
2721 		.help = "new IPv4 destination address to set",
2722 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2723 		.args = ARGS(ARGS_ENTRY_HTON
2724 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2725 		.call = parse_vc_conf,
2726 	},
2727 	[ACTION_SET_IPV6_SRC] = {
2728 		.name = "set_ipv6_src",
2729 		.help = "Set a new IPv6 source address in the outermost"
2730 			" IPv6 header",
2731 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2732 			sizeof(struct rte_flow_action_set_ipv6)),
2733 		.next = NEXT(action_set_ipv6_src),
2734 		.call = parse_vc,
2735 	},
2736 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2737 		.name = "ipv6_addr",
2738 		.help = "new IPv6 source address to set",
2739 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2740 		.args = ARGS(ARGS_ENTRY_HTON
2741 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2742 		.call = parse_vc_conf,
2743 	},
2744 	[ACTION_SET_IPV6_DST] = {
2745 		.name = "set_ipv6_dst",
2746 		.help = "Set a new IPv6 destination address in the outermost"
2747 			" IPv6 header",
2748 		.priv = PRIV_ACTION(SET_IPV6_DST,
2749 			sizeof(struct rte_flow_action_set_ipv6)),
2750 		.next = NEXT(action_set_ipv6_dst),
2751 		.call = parse_vc,
2752 	},
2753 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2754 		.name = "ipv6_addr",
2755 		.help = "new IPv6 destination address to set",
2756 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2757 		.args = ARGS(ARGS_ENTRY_HTON
2758 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2759 		.call = parse_vc_conf,
2760 	},
2761 	[ACTION_SET_TP_SRC] = {
2762 		.name = "set_tp_src",
2763 		.help = "set a new source port number in the outermost"
2764 			" TCP/UDP header",
2765 		.priv = PRIV_ACTION(SET_TP_SRC,
2766 			sizeof(struct rte_flow_action_set_tp)),
2767 		.next = NEXT(action_set_tp_src),
2768 		.call = parse_vc,
2769 	},
2770 	[ACTION_SET_TP_SRC_TP_SRC] = {
2771 		.name = "port",
2772 		.help = "new source port number to set",
2773 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2774 		.args = ARGS(ARGS_ENTRY_HTON
2775 			     (struct rte_flow_action_set_tp, port)),
2776 		.call = parse_vc_conf,
2777 	},
2778 	[ACTION_SET_TP_DST] = {
2779 		.name = "set_tp_dst",
2780 		.help = "set a new destination port number in the outermost"
2781 			" TCP/UDP header",
2782 		.priv = PRIV_ACTION(SET_TP_DST,
2783 			sizeof(struct rte_flow_action_set_tp)),
2784 		.next = NEXT(action_set_tp_dst),
2785 		.call = parse_vc,
2786 	},
2787 	[ACTION_SET_TP_DST_TP_DST] = {
2788 		.name = "port",
2789 		.help = "new destination port number to set",
2790 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2791 		.args = ARGS(ARGS_ENTRY_HTON
2792 			     (struct rte_flow_action_set_tp, port)),
2793 		.call = parse_vc_conf,
2794 	},
2795 	[ACTION_MAC_SWAP] = {
2796 		.name = "mac_swap",
2797 		.help = "Swap the source and destination MAC addresses"
2798 			" in the outermost Ethernet header",
2799 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2800 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2801 		.call = parse_vc,
2802 	},
2803 	[ACTION_DEC_TTL] = {
2804 		.name = "dec_ttl",
2805 		.help = "decrease network TTL if available",
2806 		.priv = PRIV_ACTION(DEC_TTL, 0),
2807 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2808 		.call = parse_vc,
2809 	},
2810 	[ACTION_SET_TTL] = {
2811 		.name = "set_ttl",
2812 		.help = "set ttl value",
2813 		.priv = PRIV_ACTION(SET_TTL,
2814 			sizeof(struct rte_flow_action_set_ttl)),
2815 		.next = NEXT(action_set_ttl),
2816 		.call = parse_vc,
2817 	},
2818 	[ACTION_SET_TTL_TTL] = {
2819 		.name = "ttl_value",
2820 		.help = "new ttl value to set",
2821 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2822 		.args = ARGS(ARGS_ENTRY_HTON
2823 			     (struct rte_flow_action_set_ttl, ttl_value)),
2824 		.call = parse_vc_conf,
2825 	},
2826 	[ACTION_SET_MAC_SRC] = {
2827 		.name = "set_mac_src",
2828 		.help = "set source mac address",
2829 		.priv = PRIV_ACTION(SET_MAC_SRC,
2830 			sizeof(struct rte_flow_action_set_mac)),
2831 		.next = NEXT(action_set_mac_src),
2832 		.call = parse_vc,
2833 	},
2834 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2835 		.name = "mac_addr",
2836 		.help = "new source mac address",
2837 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2838 		.args = ARGS(ARGS_ENTRY_HTON
2839 			     (struct rte_flow_action_set_mac, mac_addr)),
2840 		.call = parse_vc_conf,
2841 	},
2842 	[ACTION_SET_MAC_DST] = {
2843 		.name = "set_mac_dst",
2844 		.help = "set destination mac address",
2845 		.priv = PRIV_ACTION(SET_MAC_DST,
2846 			sizeof(struct rte_flow_action_set_mac)),
2847 		.next = NEXT(action_set_mac_dst),
2848 		.call = parse_vc,
2849 	},
2850 	[ACTION_SET_MAC_DST_MAC_DST] = {
2851 		.name = "mac_addr",
2852 		.help = "new destination mac address to set",
2853 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2854 		.args = ARGS(ARGS_ENTRY_HTON
2855 			     (struct rte_flow_action_set_mac, mac_addr)),
2856 		.call = parse_vc_conf,
2857 	},
2858 };
2859 
2860 /** Remove and return last entry from argument stack. */
2861 static const struct arg *
2862 pop_args(struct context *ctx)
2863 {
2864 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2865 }
2866 
2867 /** Add entry on top of the argument stack. */
2868 static int
2869 push_args(struct context *ctx, const struct arg *arg)
2870 {
2871 	if (ctx->args_num == CTX_STACK_SIZE)
2872 		return -1;
2873 	ctx->args[ctx->args_num++] = arg;
2874 	return 0;
2875 }
2876 
2877 /** Spread value into buffer according to bit-mask. */
2878 static size_t
2879 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2880 {
2881 	uint32_t i = arg->size;
2882 	uint32_t end = 0;
2883 	int sub = 1;
2884 	int add = 0;
2885 	size_t len = 0;
2886 
2887 	if (!arg->mask)
2888 		return 0;
2889 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2890 	if (!arg->hton) {
2891 		i = 0;
2892 		end = arg->size;
2893 		sub = 0;
2894 		add = 1;
2895 	}
2896 #endif
2897 	while (i != end) {
2898 		unsigned int shift = 0;
2899 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2900 
2901 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2902 			if (!(arg->mask[i] & (1 << shift)))
2903 				continue;
2904 			++len;
2905 			if (!dst)
2906 				continue;
2907 			*buf &= ~(1 << shift);
2908 			*buf |= (val & 1) << shift;
2909 			val >>= 1;
2910 		}
2911 		i += add;
2912 	}
2913 	return len;
2914 }
2915 
2916 /** Compare a string with a partial one of a given length. */
2917 static int
2918 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2919 {
2920 	int r = strncmp(full, partial, partial_len);
2921 
2922 	if (r)
2923 		return r;
2924 	if (strlen(full) <= partial_len)
2925 		return 0;
2926 	return full[partial_len];
2927 }
2928 
2929 /**
2930  * Parse a prefix length and generate a bit-mask.
2931  *
2932  * Last argument (ctx->args) is retrieved to determine mask size, storage
2933  * location and whether the result must use network byte ordering.
2934  */
2935 static int
2936 parse_prefix(struct context *ctx, const struct token *token,
2937 	     const char *str, unsigned int len,
2938 	     void *buf, unsigned int size)
2939 {
2940 	const struct arg *arg = pop_args(ctx);
2941 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2942 	char *end;
2943 	uintmax_t u;
2944 	unsigned int bytes;
2945 	unsigned int extra;
2946 
2947 	(void)token;
2948 	/* Argument is expected. */
2949 	if (!arg)
2950 		return -1;
2951 	errno = 0;
2952 	u = strtoumax(str, &end, 0);
2953 	if (errno || (size_t)(end - str) != len)
2954 		goto error;
2955 	if (arg->mask) {
2956 		uintmax_t v = 0;
2957 
2958 		extra = arg_entry_bf_fill(NULL, 0, arg);
2959 		if (u > extra)
2960 			goto error;
2961 		if (!ctx->object)
2962 			return len;
2963 		extra -= u;
2964 		while (u--)
2965 			(v <<= 1, v |= 1);
2966 		v <<= extra;
2967 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2968 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2969 			goto error;
2970 		return len;
2971 	}
2972 	bytes = u / 8;
2973 	extra = u % 8;
2974 	size = arg->size;
2975 	if (bytes > size || bytes + !!extra > size)
2976 		goto error;
2977 	if (!ctx->object)
2978 		return len;
2979 	buf = (uint8_t *)ctx->object + arg->offset;
2980 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2981 	if (!arg->hton) {
2982 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2983 		memset(buf, 0x00, size - bytes);
2984 		if (extra)
2985 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2986 	} else
2987 #endif
2988 	{
2989 		memset(buf, 0xff, bytes);
2990 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2991 		if (extra)
2992 			((uint8_t *)buf)[bytes] = conv[extra];
2993 	}
2994 	if (ctx->objmask)
2995 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2996 	return len;
2997 error:
2998 	push_args(ctx, arg);
2999 	return -1;
3000 }
3001 
3002 /** Default parsing function for token name matching. */
3003 static int
3004 parse_default(struct context *ctx, const struct token *token,
3005 	      const char *str, unsigned int len,
3006 	      void *buf, unsigned int size)
3007 {
3008 	(void)ctx;
3009 	(void)buf;
3010 	(void)size;
3011 	if (strcmp_partial(token->name, str, len))
3012 		return -1;
3013 	return len;
3014 }
3015 
3016 /** Parse flow command, initialize output buffer for subsequent tokens. */
3017 static int
3018 parse_init(struct context *ctx, const struct token *token,
3019 	   const char *str, unsigned int len,
3020 	   void *buf, unsigned int size)
3021 {
3022 	struct buffer *out = buf;
3023 
3024 	/* Token name must match. */
3025 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3026 		return -1;
3027 	/* Nothing else to do if there is no buffer. */
3028 	if (!out)
3029 		return len;
3030 	/* Make sure buffer is large enough. */
3031 	if (size < sizeof(*out))
3032 		return -1;
3033 	/* Initialize buffer. */
3034 	memset(out, 0x00, sizeof(*out));
3035 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3036 	ctx->objdata = 0;
3037 	ctx->object = out;
3038 	ctx->objmask = NULL;
3039 	return len;
3040 }
3041 
3042 /** Parse tokens for validate/create commands. */
3043 static int
3044 parse_vc(struct context *ctx, const struct token *token,
3045 	 const char *str, unsigned int len,
3046 	 void *buf, unsigned int size)
3047 {
3048 	struct buffer *out = buf;
3049 	uint8_t *data;
3050 	uint32_t data_size;
3051 
3052 	/* Token name must match. */
3053 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3054 		return -1;
3055 	/* Nothing else to do if there is no buffer. */
3056 	if (!out)
3057 		return len;
3058 	if (!out->command) {
3059 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3060 			return -1;
3061 		if (sizeof(*out) > size)
3062 			return -1;
3063 		out->command = ctx->curr;
3064 		ctx->objdata = 0;
3065 		ctx->object = out;
3066 		ctx->objmask = NULL;
3067 		out->args.vc.data = (uint8_t *)out + size;
3068 		return len;
3069 	}
3070 	ctx->objdata = 0;
3071 	ctx->object = &out->args.vc.attr;
3072 	ctx->objmask = NULL;
3073 	switch (ctx->curr) {
3074 	case GROUP:
3075 	case PRIORITY:
3076 		return len;
3077 	case INGRESS:
3078 		out->args.vc.attr.ingress = 1;
3079 		return len;
3080 	case EGRESS:
3081 		out->args.vc.attr.egress = 1;
3082 		return len;
3083 	case TRANSFER:
3084 		out->args.vc.attr.transfer = 1;
3085 		return len;
3086 	case PATTERN:
3087 		out->args.vc.pattern =
3088 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3089 					       sizeof(double));
3090 		ctx->object = out->args.vc.pattern;
3091 		ctx->objmask = NULL;
3092 		return len;
3093 	case ACTIONS:
3094 		out->args.vc.actions =
3095 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3096 					       (out->args.vc.pattern +
3097 						out->args.vc.pattern_n),
3098 					       sizeof(double));
3099 		ctx->object = out->args.vc.actions;
3100 		ctx->objmask = NULL;
3101 		return len;
3102 	default:
3103 		if (!token->priv)
3104 			return -1;
3105 		break;
3106 	}
3107 	if (!out->args.vc.actions) {
3108 		const struct parse_item_priv *priv = token->priv;
3109 		struct rte_flow_item *item =
3110 			out->args.vc.pattern + out->args.vc.pattern_n;
3111 
3112 		data_size = priv->size * 3; /* spec, last, mask */
3113 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3114 					       (out->args.vc.data - data_size),
3115 					       sizeof(double));
3116 		if ((uint8_t *)item + sizeof(*item) > data)
3117 			return -1;
3118 		*item = (struct rte_flow_item){
3119 			.type = priv->type,
3120 		};
3121 		++out->args.vc.pattern_n;
3122 		ctx->object = item;
3123 		ctx->objmask = NULL;
3124 	} else {
3125 		const struct parse_action_priv *priv = token->priv;
3126 		struct rte_flow_action *action =
3127 			out->args.vc.actions + out->args.vc.actions_n;
3128 
3129 		data_size = priv->size; /* configuration */
3130 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3131 					       (out->args.vc.data - data_size),
3132 					       sizeof(double));
3133 		if ((uint8_t *)action + sizeof(*action) > data)
3134 			return -1;
3135 		*action = (struct rte_flow_action){
3136 			.type = priv->type,
3137 			.conf = data_size ? data : NULL,
3138 		};
3139 		++out->args.vc.actions_n;
3140 		ctx->object = action;
3141 		ctx->objmask = NULL;
3142 	}
3143 	memset(data, 0, data_size);
3144 	out->args.vc.data = data;
3145 	ctx->objdata = data_size;
3146 	return len;
3147 }
3148 
3149 /** Parse pattern item parameter type. */
3150 static int
3151 parse_vc_spec(struct context *ctx, const struct token *token,
3152 	      const char *str, unsigned int len,
3153 	      void *buf, unsigned int size)
3154 {
3155 	struct buffer *out = buf;
3156 	struct rte_flow_item *item;
3157 	uint32_t data_size;
3158 	int index;
3159 	int objmask = 0;
3160 
3161 	(void)size;
3162 	/* Token name must match. */
3163 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3164 		return -1;
3165 	/* Parse parameter types. */
3166 	switch (ctx->curr) {
3167 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3168 
3169 	case ITEM_PARAM_IS:
3170 		index = 0;
3171 		objmask = 1;
3172 		break;
3173 	case ITEM_PARAM_SPEC:
3174 		index = 0;
3175 		break;
3176 	case ITEM_PARAM_LAST:
3177 		index = 1;
3178 		break;
3179 	case ITEM_PARAM_PREFIX:
3180 		/* Modify next token to expect a prefix. */
3181 		if (ctx->next_num < 2)
3182 			return -1;
3183 		ctx->next[ctx->next_num - 2] = prefix;
3184 		/* Fall through. */
3185 	case ITEM_PARAM_MASK:
3186 		index = 2;
3187 		break;
3188 	default:
3189 		return -1;
3190 	}
3191 	/* Nothing else to do if there is no buffer. */
3192 	if (!out)
3193 		return len;
3194 	if (!out->args.vc.pattern_n)
3195 		return -1;
3196 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3197 	data_size = ctx->objdata / 3; /* spec, last, mask */
3198 	/* Point to selected object. */
3199 	ctx->object = out->args.vc.data + (data_size * index);
3200 	if (objmask) {
3201 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3202 		item->mask = ctx->objmask;
3203 	} else
3204 		ctx->objmask = NULL;
3205 	/* Update relevant item pointer. */
3206 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3207 		ctx->object;
3208 	return len;
3209 }
3210 
3211 /** Parse action configuration field. */
3212 static int
3213 parse_vc_conf(struct context *ctx, const struct token *token,
3214 	      const char *str, unsigned int len,
3215 	      void *buf, unsigned int size)
3216 {
3217 	struct buffer *out = buf;
3218 
3219 	(void)size;
3220 	/* Token name must match. */
3221 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3222 		return -1;
3223 	/* Nothing else to do if there is no buffer. */
3224 	if (!out)
3225 		return len;
3226 	/* Point to selected object. */
3227 	ctx->object = out->args.vc.data;
3228 	ctx->objmask = NULL;
3229 	return len;
3230 }
3231 
3232 /** Parse RSS action. */
3233 static int
3234 parse_vc_action_rss(struct context *ctx, const struct token *token,
3235 		    const char *str, unsigned int len,
3236 		    void *buf, unsigned int size)
3237 {
3238 	struct buffer *out = buf;
3239 	struct rte_flow_action *action;
3240 	struct action_rss_data *action_rss_data;
3241 	unsigned int i;
3242 	int ret;
3243 
3244 	ret = parse_vc(ctx, token, str, len, buf, size);
3245 	if (ret < 0)
3246 		return ret;
3247 	/* Nothing else to do if there is no buffer. */
3248 	if (!out)
3249 		return ret;
3250 	if (!out->args.vc.actions_n)
3251 		return -1;
3252 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3253 	/* Point to selected object. */
3254 	ctx->object = out->args.vc.data;
3255 	ctx->objmask = NULL;
3256 	/* Set up default configuration. */
3257 	action_rss_data = ctx->object;
3258 	*action_rss_data = (struct action_rss_data){
3259 		.conf = (struct rte_flow_action_rss){
3260 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3261 			.level = 0,
3262 			.types = rss_hf,
3263 			.key_len = sizeof(action_rss_data->key),
3264 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3265 			.key = action_rss_data->key,
3266 			.queue = action_rss_data->queue,
3267 		},
3268 		.key = "testpmd's default RSS hash key, "
3269 			"override it for better balancing",
3270 		.queue = { 0 },
3271 	};
3272 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3273 		action_rss_data->queue[i] = i;
3274 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3275 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3276 		struct rte_eth_dev_info info;
3277 
3278 		rte_eth_dev_info_get(ctx->port, &info);
3279 		action_rss_data->conf.key_len =
3280 			RTE_MIN(sizeof(action_rss_data->key),
3281 				info.hash_key_size);
3282 	}
3283 	action->conf = &action_rss_data->conf;
3284 	return ret;
3285 }
3286 
3287 /**
3288  * Parse func field for RSS action.
3289  *
3290  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3291  * ACTION_RSS_FUNC_* index that called this function.
3292  */
3293 static int
3294 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3295 			 const char *str, unsigned int len,
3296 			 void *buf, unsigned int size)
3297 {
3298 	struct action_rss_data *action_rss_data;
3299 	enum rte_eth_hash_function func;
3300 
3301 	(void)buf;
3302 	(void)size;
3303 	/* Token name must match. */
3304 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3305 		return -1;
3306 	switch (ctx->curr) {
3307 	case ACTION_RSS_FUNC_DEFAULT:
3308 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3309 		break;
3310 	case ACTION_RSS_FUNC_TOEPLITZ:
3311 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3312 		break;
3313 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3314 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3315 		break;
3316 	default:
3317 		return -1;
3318 	}
3319 	if (!ctx->object)
3320 		return len;
3321 	action_rss_data = ctx->object;
3322 	action_rss_data->conf.func = func;
3323 	return len;
3324 }
3325 
3326 /**
3327  * Parse type field for RSS action.
3328  *
3329  * Valid tokens are type field names and the "end" token.
3330  */
3331 static int
3332 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3333 			  const char *str, unsigned int len,
3334 			  void *buf, unsigned int size)
3335 {
3336 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3337 	struct action_rss_data *action_rss_data;
3338 	unsigned int i;
3339 
3340 	(void)token;
3341 	(void)buf;
3342 	(void)size;
3343 	if (ctx->curr != ACTION_RSS_TYPE)
3344 		return -1;
3345 	if (!(ctx->objdata >> 16) && ctx->object) {
3346 		action_rss_data = ctx->object;
3347 		action_rss_data->conf.types = 0;
3348 	}
3349 	if (!strcmp_partial("end", str, len)) {
3350 		ctx->objdata &= 0xffff;
3351 		return len;
3352 	}
3353 	for (i = 0; rss_type_table[i].str; ++i)
3354 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3355 			break;
3356 	if (!rss_type_table[i].str)
3357 		return -1;
3358 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3359 	/* Repeat token. */
3360 	if (ctx->next_num == RTE_DIM(ctx->next))
3361 		return -1;
3362 	ctx->next[ctx->next_num++] = next;
3363 	if (!ctx->object)
3364 		return len;
3365 	action_rss_data = ctx->object;
3366 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3367 	return len;
3368 }
3369 
3370 /**
3371  * Parse queue field for RSS action.
3372  *
3373  * Valid tokens are queue indices and the "end" token.
3374  */
3375 static int
3376 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3377 			  const char *str, unsigned int len,
3378 			  void *buf, unsigned int size)
3379 {
3380 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3381 	struct action_rss_data *action_rss_data;
3382 	int ret;
3383 	int i;
3384 
3385 	(void)token;
3386 	(void)buf;
3387 	(void)size;
3388 	if (ctx->curr != ACTION_RSS_QUEUE)
3389 		return -1;
3390 	i = ctx->objdata >> 16;
3391 	if (!strcmp_partial("end", str, len)) {
3392 		ctx->objdata &= 0xffff;
3393 		goto end;
3394 	}
3395 	if (i >= ACTION_RSS_QUEUE_NUM)
3396 		return -1;
3397 	if (push_args(ctx,
3398 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3399 				     i * sizeof(action_rss_data->queue[i]),
3400 				     sizeof(action_rss_data->queue[i]))))
3401 		return -1;
3402 	ret = parse_int(ctx, token, str, len, NULL, 0);
3403 	if (ret < 0) {
3404 		pop_args(ctx);
3405 		return -1;
3406 	}
3407 	++i;
3408 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3409 	/* Repeat token. */
3410 	if (ctx->next_num == RTE_DIM(ctx->next))
3411 		return -1;
3412 	ctx->next[ctx->next_num++] = next;
3413 end:
3414 	if (!ctx->object)
3415 		return len;
3416 	action_rss_data = ctx->object;
3417 	action_rss_data->conf.queue_num = i;
3418 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3419 	return len;
3420 }
3421 
3422 /** Parse VXLAN encap action. */
3423 static int
3424 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3425 			    const char *str, unsigned int len,
3426 			    void *buf, unsigned int size)
3427 {
3428 	struct buffer *out = buf;
3429 	struct rte_flow_action *action;
3430 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3431 	int ret;
3432 
3433 	ret = parse_vc(ctx, token, str, len, buf, size);
3434 	if (ret < 0)
3435 		return ret;
3436 	/* Nothing else to do if there is no buffer. */
3437 	if (!out)
3438 		return ret;
3439 	if (!out->args.vc.actions_n)
3440 		return -1;
3441 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3442 	/* Point to selected object. */
3443 	ctx->object = out->args.vc.data;
3444 	ctx->objmask = NULL;
3445 	/* Set up default configuration. */
3446 	action_vxlan_encap_data = ctx->object;
3447 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3448 		.conf = (struct rte_flow_action_vxlan_encap){
3449 			.definition = action_vxlan_encap_data->items,
3450 		},
3451 		.items = {
3452 			{
3453 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3454 				.spec = &action_vxlan_encap_data->item_eth,
3455 				.mask = &rte_flow_item_eth_mask,
3456 			},
3457 			{
3458 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3459 				.spec = &action_vxlan_encap_data->item_vlan,
3460 				.mask = &rte_flow_item_vlan_mask,
3461 			},
3462 			{
3463 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3464 				.spec = &action_vxlan_encap_data->item_ipv4,
3465 				.mask = &rte_flow_item_ipv4_mask,
3466 			},
3467 			{
3468 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3469 				.spec = &action_vxlan_encap_data->item_udp,
3470 				.mask = &rte_flow_item_udp_mask,
3471 			},
3472 			{
3473 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3474 				.spec = &action_vxlan_encap_data->item_vxlan,
3475 				.mask = &rte_flow_item_vxlan_mask,
3476 			},
3477 			{
3478 				.type = RTE_FLOW_ITEM_TYPE_END,
3479 			},
3480 		},
3481 		.item_eth.type = 0,
3482 		.item_vlan = {
3483 			.tci = vxlan_encap_conf.vlan_tci,
3484 			.inner_type = 0,
3485 		},
3486 		.item_ipv4.hdr = {
3487 			.src_addr = vxlan_encap_conf.ipv4_src,
3488 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3489 		},
3490 		.item_udp.hdr = {
3491 			.src_port = vxlan_encap_conf.udp_src,
3492 			.dst_port = vxlan_encap_conf.udp_dst,
3493 		},
3494 		.item_vxlan.flags = 0,
3495 	};
3496 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3497 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3498 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3499 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3500 	if (!vxlan_encap_conf.select_ipv4) {
3501 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3502 		       &vxlan_encap_conf.ipv6_src,
3503 		       sizeof(vxlan_encap_conf.ipv6_src));
3504 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3505 		       &vxlan_encap_conf.ipv6_dst,
3506 		       sizeof(vxlan_encap_conf.ipv6_dst));
3507 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3508 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3509 			.spec = &action_vxlan_encap_data->item_ipv6,
3510 			.mask = &rte_flow_item_ipv6_mask,
3511 		};
3512 	}
3513 	if (!vxlan_encap_conf.select_vlan)
3514 		action_vxlan_encap_data->items[1].type =
3515 			RTE_FLOW_ITEM_TYPE_VOID;
3516 	if (vxlan_encap_conf.select_tos_ttl) {
3517 		if (vxlan_encap_conf.select_ipv4) {
3518 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3519 
3520 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3521 			       sizeof(ipv4_mask_tos));
3522 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3523 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3524 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3525 					vxlan_encap_conf.ip_tos;
3526 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3527 					vxlan_encap_conf.ip_ttl;
3528 			action_vxlan_encap_data->items[2].mask =
3529 							&ipv4_mask_tos;
3530 		} else {
3531 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3532 
3533 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3534 			       sizeof(ipv6_mask_tos));
3535 			ipv6_mask_tos.hdr.vtc_flow |=
3536 				RTE_BE32(0xfful << IPV6_HDR_TC_SHIFT);
3537 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3538 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3539 				rte_cpu_to_be_32
3540 					((uint32_t)vxlan_encap_conf.ip_tos <<
3541 					 IPV6_HDR_TC_SHIFT);
3542 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3543 					vxlan_encap_conf.ip_ttl;
3544 			action_vxlan_encap_data->items[2].mask =
3545 							&ipv6_mask_tos;
3546 		}
3547 	}
3548 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3549 	       RTE_DIM(vxlan_encap_conf.vni));
3550 	action->conf = &action_vxlan_encap_data->conf;
3551 	return ret;
3552 }
3553 
3554 /** Parse NVGRE encap action. */
3555 static int
3556 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3557 			    const char *str, unsigned int len,
3558 			    void *buf, unsigned int size)
3559 {
3560 	struct buffer *out = buf;
3561 	struct rte_flow_action *action;
3562 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3563 	int ret;
3564 
3565 	ret = parse_vc(ctx, token, str, len, buf, size);
3566 	if (ret < 0)
3567 		return ret;
3568 	/* Nothing else to do if there is no buffer. */
3569 	if (!out)
3570 		return ret;
3571 	if (!out->args.vc.actions_n)
3572 		return -1;
3573 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3574 	/* Point to selected object. */
3575 	ctx->object = out->args.vc.data;
3576 	ctx->objmask = NULL;
3577 	/* Set up default configuration. */
3578 	action_nvgre_encap_data = ctx->object;
3579 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3580 		.conf = (struct rte_flow_action_nvgre_encap){
3581 			.definition = action_nvgre_encap_data->items,
3582 		},
3583 		.items = {
3584 			{
3585 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3586 				.spec = &action_nvgre_encap_data->item_eth,
3587 				.mask = &rte_flow_item_eth_mask,
3588 			},
3589 			{
3590 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3591 				.spec = &action_nvgre_encap_data->item_vlan,
3592 				.mask = &rte_flow_item_vlan_mask,
3593 			},
3594 			{
3595 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3596 				.spec = &action_nvgre_encap_data->item_ipv4,
3597 				.mask = &rte_flow_item_ipv4_mask,
3598 			},
3599 			{
3600 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3601 				.spec = &action_nvgre_encap_data->item_nvgre,
3602 				.mask = &rte_flow_item_nvgre_mask,
3603 			},
3604 			{
3605 				.type = RTE_FLOW_ITEM_TYPE_END,
3606 			},
3607 		},
3608 		.item_eth.type = 0,
3609 		.item_vlan = {
3610 			.tci = nvgre_encap_conf.vlan_tci,
3611 			.inner_type = 0,
3612 		},
3613 		.item_ipv4.hdr = {
3614 		       .src_addr = nvgre_encap_conf.ipv4_src,
3615 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3616 		},
3617 		.item_nvgre.flow_id = 0,
3618 	};
3619 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3620 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3621 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3622 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3623 	if (!nvgre_encap_conf.select_ipv4) {
3624 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3625 		       &nvgre_encap_conf.ipv6_src,
3626 		       sizeof(nvgre_encap_conf.ipv6_src));
3627 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3628 		       &nvgre_encap_conf.ipv6_dst,
3629 		       sizeof(nvgre_encap_conf.ipv6_dst));
3630 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3631 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3632 			.spec = &action_nvgre_encap_data->item_ipv6,
3633 			.mask = &rte_flow_item_ipv6_mask,
3634 		};
3635 	}
3636 	if (!nvgre_encap_conf.select_vlan)
3637 		action_nvgre_encap_data->items[1].type =
3638 			RTE_FLOW_ITEM_TYPE_VOID;
3639 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3640 	       RTE_DIM(nvgre_encap_conf.tni));
3641 	action->conf = &action_nvgre_encap_data->conf;
3642 	return ret;
3643 }
3644 
3645 /** Parse l2 encap action. */
3646 static int
3647 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3648 			 const char *str, unsigned int len,
3649 			 void *buf, unsigned int size)
3650 {
3651 	struct buffer *out = buf;
3652 	struct rte_flow_action *action;
3653 	struct action_raw_encap_data *action_encap_data;
3654 	struct rte_flow_item_eth eth = { .type = 0, };
3655 	struct rte_flow_item_vlan vlan = {
3656 		.tci = mplsoudp_encap_conf.vlan_tci,
3657 		.inner_type = 0,
3658 	};
3659 	uint8_t *header;
3660 	int ret;
3661 
3662 	ret = parse_vc(ctx, token, str, len, buf, size);
3663 	if (ret < 0)
3664 		return ret;
3665 	/* Nothing else to do if there is no buffer. */
3666 	if (!out)
3667 		return ret;
3668 	if (!out->args.vc.actions_n)
3669 		return -1;
3670 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3671 	/* Point to selected object. */
3672 	ctx->object = out->args.vc.data;
3673 	ctx->objmask = NULL;
3674 	/* Copy the headers to the buffer. */
3675 	action_encap_data = ctx->object;
3676 	*action_encap_data = (struct action_raw_encap_data) {
3677 		.conf = (struct rte_flow_action_raw_encap){
3678 			.data = action_encap_data->data,
3679 		},
3680 		.data = {},
3681 	};
3682 	header = action_encap_data->data;
3683 	if (l2_encap_conf.select_vlan)
3684 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3685 	else if (l2_encap_conf.select_ipv4)
3686 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3687 	else
3688 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3689 	memcpy(eth.dst.addr_bytes,
3690 	       l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
3691 	memcpy(eth.src.addr_bytes,
3692 	       l2_encap_conf.eth_src, ETHER_ADDR_LEN);
3693 	memcpy(header, &eth, sizeof(eth));
3694 	header += sizeof(eth);
3695 	if (l2_encap_conf.select_vlan) {
3696 		if (l2_encap_conf.select_ipv4)
3697 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3698 		else
3699 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3700 		memcpy(header, &vlan, sizeof(vlan));
3701 		header += sizeof(vlan);
3702 	}
3703 	action_encap_data->conf.size = header -
3704 		action_encap_data->data;
3705 	action->conf = &action_encap_data->conf;
3706 	return ret;
3707 }
3708 
3709 /** Parse l2 decap action. */
3710 static int
3711 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3712 			 const char *str, unsigned int len,
3713 			 void *buf, unsigned int size)
3714 {
3715 	struct buffer *out = buf;
3716 	struct rte_flow_action *action;
3717 	struct action_raw_decap_data *action_decap_data;
3718 	struct rte_flow_item_eth eth = { .type = 0, };
3719 	struct rte_flow_item_vlan vlan = {
3720 		.tci = mplsoudp_encap_conf.vlan_tci,
3721 		.inner_type = 0,
3722 	};
3723 	uint8_t *header;
3724 	int ret;
3725 
3726 	ret = parse_vc(ctx, token, str, len, buf, size);
3727 	if (ret < 0)
3728 		return ret;
3729 	/* Nothing else to do if there is no buffer. */
3730 	if (!out)
3731 		return ret;
3732 	if (!out->args.vc.actions_n)
3733 		return -1;
3734 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3735 	/* Point to selected object. */
3736 	ctx->object = out->args.vc.data;
3737 	ctx->objmask = NULL;
3738 	/* Copy the headers to the buffer. */
3739 	action_decap_data = ctx->object;
3740 	*action_decap_data = (struct action_raw_decap_data) {
3741 		.conf = (struct rte_flow_action_raw_decap){
3742 			.data = action_decap_data->data,
3743 		},
3744 		.data = {},
3745 	};
3746 	header = action_decap_data->data;
3747 	if (l2_decap_conf.select_vlan)
3748 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3749 	memcpy(header, &eth, sizeof(eth));
3750 	header += sizeof(eth);
3751 	if (l2_decap_conf.select_vlan) {
3752 		memcpy(header, &vlan, sizeof(vlan));
3753 		header += sizeof(vlan);
3754 	}
3755 	action_decap_data->conf.size = header -
3756 		action_decap_data->data;
3757 	action->conf = &action_decap_data->conf;
3758 	return ret;
3759 }
3760 
3761 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3762 
3763 /** Parse MPLSOGRE encap action. */
3764 static int
3765 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3766 			       const char *str, unsigned int len,
3767 			       void *buf, unsigned int size)
3768 {
3769 	struct buffer *out = buf;
3770 	struct rte_flow_action *action;
3771 	struct action_raw_encap_data *action_encap_data;
3772 	struct rte_flow_item_eth eth = { .type = 0, };
3773 	struct rte_flow_item_vlan vlan = {
3774 		.tci = mplsogre_encap_conf.vlan_tci,
3775 		.inner_type = 0,
3776 	};
3777 	struct rte_flow_item_ipv4 ipv4 = {
3778 		.hdr =  {
3779 			.src_addr = mplsogre_encap_conf.ipv4_src,
3780 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3781 			.next_proto_id = IPPROTO_GRE,
3782 		},
3783 	};
3784 	struct rte_flow_item_ipv6 ipv6 = {
3785 		.hdr =  {
3786 			.proto = IPPROTO_GRE,
3787 		},
3788 	};
3789 	struct rte_flow_item_gre gre = {
3790 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3791 	};
3792 	struct rte_flow_item_mpls mpls;
3793 	uint8_t *header;
3794 	int ret;
3795 
3796 	ret = parse_vc(ctx, token, str, len, buf, size);
3797 	if (ret < 0)
3798 		return ret;
3799 	/* Nothing else to do if there is no buffer. */
3800 	if (!out)
3801 		return ret;
3802 	if (!out->args.vc.actions_n)
3803 		return -1;
3804 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3805 	/* Point to selected object. */
3806 	ctx->object = out->args.vc.data;
3807 	ctx->objmask = NULL;
3808 	/* Copy the headers to the buffer. */
3809 	action_encap_data = ctx->object;
3810 	*action_encap_data = (struct action_raw_encap_data) {
3811 		.conf = (struct rte_flow_action_raw_encap){
3812 			.data = action_encap_data->data,
3813 		},
3814 		.data = {},
3815 		.preserve = {},
3816 	};
3817 	header = action_encap_data->data;
3818 	if (mplsogre_encap_conf.select_vlan)
3819 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3820 	else if (mplsogre_encap_conf.select_ipv4)
3821 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3822 	else
3823 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3824 	memcpy(eth.dst.addr_bytes,
3825 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3826 	memcpy(eth.src.addr_bytes,
3827 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3828 	memcpy(header, &eth, sizeof(eth));
3829 	header += sizeof(eth);
3830 	if (mplsogre_encap_conf.select_vlan) {
3831 		if (mplsogre_encap_conf.select_ipv4)
3832 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3833 		else
3834 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3835 		memcpy(header, &vlan, sizeof(vlan));
3836 		header += sizeof(vlan);
3837 	}
3838 	if (mplsogre_encap_conf.select_ipv4) {
3839 		memcpy(header, &ipv4, sizeof(ipv4));
3840 		header += sizeof(ipv4);
3841 	} else {
3842 		memcpy(&ipv6.hdr.src_addr,
3843 		       &mplsogre_encap_conf.ipv6_src,
3844 		       sizeof(mplsogre_encap_conf.ipv6_src));
3845 		memcpy(&ipv6.hdr.dst_addr,
3846 		       &mplsogre_encap_conf.ipv6_dst,
3847 		       sizeof(mplsogre_encap_conf.ipv6_dst));
3848 		memcpy(header, &ipv6, sizeof(ipv6));
3849 		header += sizeof(ipv6);
3850 	}
3851 	memcpy(header, &gre, sizeof(gre));
3852 	header += sizeof(gre);
3853 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3854 	       RTE_DIM(mplsogre_encap_conf.label));
3855 	mpls.label_tc_s[2] |= 0x1;
3856 	memcpy(header, &mpls, sizeof(mpls));
3857 	header += sizeof(mpls);
3858 	action_encap_data->conf.size = header -
3859 		action_encap_data->data;
3860 	action->conf = &action_encap_data->conf;
3861 	return ret;
3862 }
3863 
3864 /** Parse MPLSOGRE decap action. */
3865 static int
3866 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3867 			       const char *str, unsigned int len,
3868 			       void *buf, unsigned int size)
3869 {
3870 	struct buffer *out = buf;
3871 	struct rte_flow_action *action;
3872 	struct action_raw_decap_data *action_decap_data;
3873 	struct rte_flow_item_eth eth = { .type = 0, };
3874 	struct rte_flow_item_vlan vlan = {.tci = 0};
3875 	struct rte_flow_item_ipv4 ipv4 = {
3876 		.hdr =  {
3877 			.next_proto_id = IPPROTO_GRE,
3878 		},
3879 	};
3880 	struct rte_flow_item_ipv6 ipv6 = {
3881 		.hdr =  {
3882 			.proto = IPPROTO_GRE,
3883 		},
3884 	};
3885 	struct rte_flow_item_gre gre = {
3886 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3887 	};
3888 	struct rte_flow_item_mpls mpls;
3889 	uint8_t *header;
3890 	int ret;
3891 
3892 	ret = parse_vc(ctx, token, str, len, buf, size);
3893 	if (ret < 0)
3894 		return ret;
3895 	/* Nothing else to do if there is no buffer. */
3896 	if (!out)
3897 		return ret;
3898 	if (!out->args.vc.actions_n)
3899 		return -1;
3900 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3901 	/* Point to selected object. */
3902 	ctx->object = out->args.vc.data;
3903 	ctx->objmask = NULL;
3904 	/* Copy the headers to the buffer. */
3905 	action_decap_data = ctx->object;
3906 	*action_decap_data = (struct action_raw_decap_data) {
3907 		.conf = (struct rte_flow_action_raw_decap){
3908 			.data = action_decap_data->data,
3909 		},
3910 		.data = {},
3911 	};
3912 	header = action_decap_data->data;
3913 	if (mplsogre_decap_conf.select_vlan)
3914 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3915 	else if (mplsogre_encap_conf.select_ipv4)
3916 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3917 	else
3918 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3919 	memcpy(eth.dst.addr_bytes,
3920 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3921 	memcpy(eth.src.addr_bytes,
3922 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3923 	memcpy(header, &eth, sizeof(eth));
3924 	header += sizeof(eth);
3925 	if (mplsogre_encap_conf.select_vlan) {
3926 		if (mplsogre_encap_conf.select_ipv4)
3927 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3928 		else
3929 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3930 		memcpy(header, &vlan, sizeof(vlan));
3931 		header += sizeof(vlan);
3932 	}
3933 	if (mplsogre_encap_conf.select_ipv4) {
3934 		memcpy(header, &ipv4, sizeof(ipv4));
3935 		header += sizeof(ipv4);
3936 	} else {
3937 		memcpy(header, &ipv6, sizeof(ipv6));
3938 		header += sizeof(ipv6);
3939 	}
3940 	memcpy(header, &gre, sizeof(gre));
3941 	header += sizeof(gre);
3942 	memset(&mpls, 0, sizeof(mpls));
3943 	memcpy(header, &mpls, sizeof(mpls));
3944 	header += sizeof(mpls);
3945 	action_decap_data->conf.size = header -
3946 		action_decap_data->data;
3947 	action->conf = &action_decap_data->conf;
3948 	return ret;
3949 }
3950 
3951 /** Parse MPLSOUDP encap action. */
3952 static int
3953 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
3954 			       const char *str, unsigned int len,
3955 			       void *buf, unsigned int size)
3956 {
3957 	struct buffer *out = buf;
3958 	struct rte_flow_action *action;
3959 	struct action_raw_encap_data *action_encap_data;
3960 	struct rte_flow_item_eth eth = { .type = 0, };
3961 	struct rte_flow_item_vlan vlan = {
3962 		.tci = mplsoudp_encap_conf.vlan_tci,
3963 		.inner_type = 0,
3964 	};
3965 	struct rte_flow_item_ipv4 ipv4 = {
3966 		.hdr =  {
3967 			.src_addr = mplsoudp_encap_conf.ipv4_src,
3968 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
3969 			.next_proto_id = IPPROTO_UDP,
3970 		},
3971 	};
3972 	struct rte_flow_item_ipv6 ipv6 = {
3973 		.hdr =  {
3974 			.proto = IPPROTO_UDP,
3975 		},
3976 	};
3977 	struct rte_flow_item_udp udp = {
3978 		.hdr = {
3979 			.src_port = mplsoudp_encap_conf.udp_src,
3980 			.dst_port = mplsoudp_encap_conf.udp_dst,
3981 		},
3982 	};
3983 	struct rte_flow_item_mpls mpls;
3984 	uint8_t *header;
3985 	int ret;
3986 
3987 	ret = parse_vc(ctx, token, str, len, buf, size);
3988 	if (ret < 0)
3989 		return ret;
3990 	/* Nothing else to do if there is no buffer. */
3991 	if (!out)
3992 		return ret;
3993 	if (!out->args.vc.actions_n)
3994 		return -1;
3995 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3996 	/* Point to selected object. */
3997 	ctx->object = out->args.vc.data;
3998 	ctx->objmask = NULL;
3999 	/* Copy the headers to the buffer. */
4000 	action_encap_data = ctx->object;
4001 	*action_encap_data = (struct action_raw_encap_data) {
4002 		.conf = (struct rte_flow_action_raw_encap){
4003 			.data = action_encap_data->data,
4004 		},
4005 		.data = {},
4006 		.preserve = {},
4007 	};
4008 	header = action_encap_data->data;
4009 	if (mplsoudp_encap_conf.select_vlan)
4010 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4011 	else if (mplsoudp_encap_conf.select_ipv4)
4012 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4013 	else
4014 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4015 	memcpy(eth.dst.addr_bytes,
4016 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4017 	memcpy(eth.src.addr_bytes,
4018 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4019 	memcpy(header, &eth, sizeof(eth));
4020 	header += sizeof(eth);
4021 	if (mplsoudp_encap_conf.select_vlan) {
4022 		if (mplsoudp_encap_conf.select_ipv4)
4023 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4024 		else
4025 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4026 		memcpy(header, &vlan, sizeof(vlan));
4027 		header += sizeof(vlan);
4028 	}
4029 	if (mplsoudp_encap_conf.select_ipv4) {
4030 		memcpy(header, &ipv4, sizeof(ipv4));
4031 		header += sizeof(ipv4);
4032 	} else {
4033 		memcpy(&ipv6.hdr.src_addr,
4034 		       &mplsoudp_encap_conf.ipv6_src,
4035 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4036 		memcpy(&ipv6.hdr.dst_addr,
4037 		       &mplsoudp_encap_conf.ipv6_dst,
4038 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4039 		memcpy(header, &ipv6, sizeof(ipv6));
4040 		header += sizeof(ipv6);
4041 	}
4042 	memcpy(header, &udp, sizeof(udp));
4043 	header += sizeof(udp);
4044 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4045 	       RTE_DIM(mplsoudp_encap_conf.label));
4046 	mpls.label_tc_s[2] |= 0x1;
4047 	memcpy(header, &mpls, sizeof(mpls));
4048 	header += sizeof(mpls);
4049 	action_encap_data->conf.size = header -
4050 		action_encap_data->data;
4051 	action->conf = &action_encap_data->conf;
4052 	return ret;
4053 }
4054 
4055 /** Parse MPLSOUDP decap action. */
4056 static int
4057 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4058 			       const char *str, unsigned int len,
4059 			       void *buf, unsigned int size)
4060 {
4061 	struct buffer *out = buf;
4062 	struct rte_flow_action *action;
4063 	struct action_raw_decap_data *action_decap_data;
4064 	struct rte_flow_item_eth eth = { .type = 0, };
4065 	struct rte_flow_item_vlan vlan = {.tci = 0};
4066 	struct rte_flow_item_ipv4 ipv4 = {
4067 		.hdr =  {
4068 			.next_proto_id = IPPROTO_UDP,
4069 		},
4070 	};
4071 	struct rte_flow_item_ipv6 ipv6 = {
4072 		.hdr =  {
4073 			.proto = IPPROTO_UDP,
4074 		},
4075 	};
4076 	struct rte_flow_item_udp udp = {
4077 		.hdr = {
4078 			.dst_port = rte_cpu_to_be_16(6635),
4079 		},
4080 	};
4081 	struct rte_flow_item_mpls mpls;
4082 	uint8_t *header;
4083 	int ret;
4084 
4085 	ret = parse_vc(ctx, token, str, len, buf, size);
4086 	if (ret < 0)
4087 		return ret;
4088 	/* Nothing else to do if there is no buffer. */
4089 	if (!out)
4090 		return ret;
4091 	if (!out->args.vc.actions_n)
4092 		return -1;
4093 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4094 	/* Point to selected object. */
4095 	ctx->object = out->args.vc.data;
4096 	ctx->objmask = NULL;
4097 	/* Copy the headers to the buffer. */
4098 	action_decap_data = ctx->object;
4099 	*action_decap_data = (struct action_raw_decap_data) {
4100 		.conf = (struct rte_flow_action_raw_decap){
4101 			.data = action_decap_data->data,
4102 		},
4103 		.data = {},
4104 	};
4105 	header = action_decap_data->data;
4106 	if (mplsoudp_decap_conf.select_vlan)
4107 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4108 	else if (mplsoudp_encap_conf.select_ipv4)
4109 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4110 	else
4111 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4112 	memcpy(eth.dst.addr_bytes,
4113 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4114 	memcpy(eth.src.addr_bytes,
4115 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4116 	memcpy(header, &eth, sizeof(eth));
4117 	header += sizeof(eth);
4118 	if (mplsoudp_encap_conf.select_vlan) {
4119 		if (mplsoudp_encap_conf.select_ipv4)
4120 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4121 		else
4122 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4123 		memcpy(header, &vlan, sizeof(vlan));
4124 		header += sizeof(vlan);
4125 	}
4126 	if (mplsoudp_encap_conf.select_ipv4) {
4127 		memcpy(header, &ipv4, sizeof(ipv4));
4128 		header += sizeof(ipv4);
4129 	} else {
4130 		memcpy(header, &ipv6, sizeof(ipv6));
4131 		header += sizeof(ipv6);
4132 	}
4133 	memcpy(header, &udp, sizeof(udp));
4134 	header += sizeof(udp);
4135 	memset(&mpls, 0, sizeof(mpls));
4136 	memcpy(header, &mpls, sizeof(mpls));
4137 	header += sizeof(mpls);
4138 	action_decap_data->conf.size = header -
4139 		action_decap_data->data;
4140 	action->conf = &action_decap_data->conf;
4141 	return ret;
4142 }
4143 
4144 /** Parse tokens for destroy command. */
4145 static int
4146 parse_destroy(struct context *ctx, const struct token *token,
4147 	      const char *str, unsigned int len,
4148 	      void *buf, unsigned int size)
4149 {
4150 	struct buffer *out = buf;
4151 
4152 	/* Token name must match. */
4153 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4154 		return -1;
4155 	/* Nothing else to do if there is no buffer. */
4156 	if (!out)
4157 		return len;
4158 	if (!out->command) {
4159 		if (ctx->curr != DESTROY)
4160 			return -1;
4161 		if (sizeof(*out) > size)
4162 			return -1;
4163 		out->command = ctx->curr;
4164 		ctx->objdata = 0;
4165 		ctx->object = out;
4166 		ctx->objmask = NULL;
4167 		out->args.destroy.rule =
4168 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4169 					       sizeof(double));
4170 		return len;
4171 	}
4172 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4173 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4174 		return -1;
4175 	ctx->objdata = 0;
4176 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4177 	ctx->objmask = NULL;
4178 	return len;
4179 }
4180 
4181 /** Parse tokens for flush command. */
4182 static int
4183 parse_flush(struct context *ctx, const struct token *token,
4184 	    const char *str, unsigned int len,
4185 	    void *buf, unsigned int size)
4186 {
4187 	struct buffer *out = buf;
4188 
4189 	/* Token name must match. */
4190 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4191 		return -1;
4192 	/* Nothing else to do if there is no buffer. */
4193 	if (!out)
4194 		return len;
4195 	if (!out->command) {
4196 		if (ctx->curr != FLUSH)
4197 			return -1;
4198 		if (sizeof(*out) > size)
4199 			return -1;
4200 		out->command = ctx->curr;
4201 		ctx->objdata = 0;
4202 		ctx->object = out;
4203 		ctx->objmask = NULL;
4204 	}
4205 	return len;
4206 }
4207 
4208 /** Parse tokens for query command. */
4209 static int
4210 parse_query(struct context *ctx, const struct token *token,
4211 	    const char *str, unsigned int len,
4212 	    void *buf, unsigned int size)
4213 {
4214 	struct buffer *out = buf;
4215 
4216 	/* Token name must match. */
4217 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4218 		return -1;
4219 	/* Nothing else to do if there is no buffer. */
4220 	if (!out)
4221 		return len;
4222 	if (!out->command) {
4223 		if (ctx->curr != QUERY)
4224 			return -1;
4225 		if (sizeof(*out) > size)
4226 			return -1;
4227 		out->command = ctx->curr;
4228 		ctx->objdata = 0;
4229 		ctx->object = out;
4230 		ctx->objmask = NULL;
4231 	}
4232 	return len;
4233 }
4234 
4235 /** Parse action names. */
4236 static int
4237 parse_action(struct context *ctx, const struct token *token,
4238 	     const char *str, unsigned int len,
4239 	     void *buf, unsigned int size)
4240 {
4241 	struct buffer *out = buf;
4242 	const struct arg *arg = pop_args(ctx);
4243 	unsigned int i;
4244 
4245 	(void)size;
4246 	/* Argument is expected. */
4247 	if (!arg)
4248 		return -1;
4249 	/* Parse action name. */
4250 	for (i = 0; next_action[i]; ++i) {
4251 		const struct parse_action_priv *priv;
4252 
4253 		token = &token_list[next_action[i]];
4254 		if (strcmp_partial(token->name, str, len))
4255 			continue;
4256 		priv = token->priv;
4257 		if (!priv)
4258 			goto error;
4259 		if (out)
4260 			memcpy((uint8_t *)ctx->object + arg->offset,
4261 			       &priv->type,
4262 			       arg->size);
4263 		return len;
4264 	}
4265 error:
4266 	push_args(ctx, arg);
4267 	return -1;
4268 }
4269 
4270 /** Parse tokens for list command. */
4271 static int
4272 parse_list(struct context *ctx, const struct token *token,
4273 	   const char *str, unsigned int len,
4274 	   void *buf, unsigned int size)
4275 {
4276 	struct buffer *out = buf;
4277 
4278 	/* Token name must match. */
4279 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4280 		return -1;
4281 	/* Nothing else to do if there is no buffer. */
4282 	if (!out)
4283 		return len;
4284 	if (!out->command) {
4285 		if (ctx->curr != LIST)
4286 			return -1;
4287 		if (sizeof(*out) > size)
4288 			return -1;
4289 		out->command = ctx->curr;
4290 		ctx->objdata = 0;
4291 		ctx->object = out;
4292 		ctx->objmask = NULL;
4293 		out->args.list.group =
4294 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4295 					       sizeof(double));
4296 		return len;
4297 	}
4298 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4299 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4300 		return -1;
4301 	ctx->objdata = 0;
4302 	ctx->object = out->args.list.group + out->args.list.group_n++;
4303 	ctx->objmask = NULL;
4304 	return len;
4305 }
4306 
4307 /** Parse tokens for isolate command. */
4308 static int
4309 parse_isolate(struct context *ctx, const struct token *token,
4310 	      const char *str, unsigned int len,
4311 	      void *buf, unsigned int size)
4312 {
4313 	struct buffer *out = buf;
4314 
4315 	/* Token name must match. */
4316 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4317 		return -1;
4318 	/* Nothing else to do if there is no buffer. */
4319 	if (!out)
4320 		return len;
4321 	if (!out->command) {
4322 		if (ctx->curr != ISOLATE)
4323 			return -1;
4324 		if (sizeof(*out) > size)
4325 			return -1;
4326 		out->command = ctx->curr;
4327 		ctx->objdata = 0;
4328 		ctx->object = out;
4329 		ctx->objmask = NULL;
4330 	}
4331 	return len;
4332 }
4333 
4334 /**
4335  * Parse signed/unsigned integers 8 to 64-bit long.
4336  *
4337  * Last argument (ctx->args) is retrieved to determine integer type and
4338  * storage location.
4339  */
4340 static int
4341 parse_int(struct context *ctx, const struct token *token,
4342 	  const char *str, unsigned int len,
4343 	  void *buf, unsigned int size)
4344 {
4345 	const struct arg *arg = pop_args(ctx);
4346 	uintmax_t u;
4347 	char *end;
4348 
4349 	(void)token;
4350 	/* Argument is expected. */
4351 	if (!arg)
4352 		return -1;
4353 	errno = 0;
4354 	u = arg->sign ?
4355 		(uintmax_t)strtoimax(str, &end, 0) :
4356 		strtoumax(str, &end, 0);
4357 	if (errno || (size_t)(end - str) != len)
4358 		goto error;
4359 	if (arg->bounded &&
4360 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4361 			    (intmax_t)u > (intmax_t)arg->max)) ||
4362 	     (!arg->sign && (u < arg->min || u > arg->max))))
4363 		goto error;
4364 	if (!ctx->object)
4365 		return len;
4366 	if (arg->mask) {
4367 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4368 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4369 			goto error;
4370 		return len;
4371 	}
4372 	buf = (uint8_t *)ctx->object + arg->offset;
4373 	size = arg->size;
4374 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4375 		return -1;
4376 objmask:
4377 	switch (size) {
4378 	case sizeof(uint8_t):
4379 		*(uint8_t *)buf = u;
4380 		break;
4381 	case sizeof(uint16_t):
4382 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4383 		break;
4384 	case sizeof(uint8_t [3]):
4385 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4386 		if (!arg->hton) {
4387 			((uint8_t *)buf)[0] = u;
4388 			((uint8_t *)buf)[1] = u >> 8;
4389 			((uint8_t *)buf)[2] = u >> 16;
4390 			break;
4391 		}
4392 #endif
4393 		((uint8_t *)buf)[0] = u >> 16;
4394 		((uint8_t *)buf)[1] = u >> 8;
4395 		((uint8_t *)buf)[2] = u;
4396 		break;
4397 	case sizeof(uint32_t):
4398 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4399 		break;
4400 	case sizeof(uint64_t):
4401 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4402 		break;
4403 	default:
4404 		goto error;
4405 	}
4406 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4407 		u = -1;
4408 		buf = (uint8_t *)ctx->objmask + arg->offset;
4409 		goto objmask;
4410 	}
4411 	return len;
4412 error:
4413 	push_args(ctx, arg);
4414 	return -1;
4415 }
4416 
4417 /**
4418  * Parse a string.
4419  *
4420  * Three arguments (ctx->args) are retrieved from the stack to store data,
4421  * its actual length and address (in that order).
4422  */
4423 static int
4424 parse_string(struct context *ctx, const struct token *token,
4425 	     const char *str, unsigned int len,
4426 	     void *buf, unsigned int size)
4427 {
4428 	const struct arg *arg_data = pop_args(ctx);
4429 	const struct arg *arg_len = pop_args(ctx);
4430 	const struct arg *arg_addr = pop_args(ctx);
4431 	char tmp[16]; /* Ought to be enough. */
4432 	int ret;
4433 
4434 	/* Arguments are expected. */
4435 	if (!arg_data)
4436 		return -1;
4437 	if (!arg_len) {
4438 		push_args(ctx, arg_data);
4439 		return -1;
4440 	}
4441 	if (!arg_addr) {
4442 		push_args(ctx, arg_len);
4443 		push_args(ctx, arg_data);
4444 		return -1;
4445 	}
4446 	size = arg_data->size;
4447 	/* Bit-mask fill is not supported. */
4448 	if (arg_data->mask || size < len)
4449 		goto error;
4450 	if (!ctx->object)
4451 		return len;
4452 	/* Let parse_int() fill length information first. */
4453 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4454 	if (ret < 0)
4455 		goto error;
4456 	push_args(ctx, arg_len);
4457 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4458 	if (ret < 0) {
4459 		pop_args(ctx);
4460 		goto error;
4461 	}
4462 	buf = (uint8_t *)ctx->object + arg_data->offset;
4463 	/* Output buffer is not necessarily NUL-terminated. */
4464 	memcpy(buf, str, len);
4465 	memset((uint8_t *)buf + len, 0x00, size - len);
4466 	if (ctx->objmask)
4467 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4468 	/* Save address if requested. */
4469 	if (arg_addr->size) {
4470 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4471 		       (void *[]){
4472 			(uint8_t *)ctx->object + arg_data->offset
4473 		       },
4474 		       arg_addr->size);
4475 		if (ctx->objmask)
4476 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4477 			       (void *[]){
4478 				(uint8_t *)ctx->objmask + arg_data->offset
4479 			       },
4480 			       arg_addr->size);
4481 	}
4482 	return len;
4483 error:
4484 	push_args(ctx, arg_addr);
4485 	push_args(ctx, arg_len);
4486 	push_args(ctx, arg_data);
4487 	return -1;
4488 }
4489 
4490 static int
4491 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4492 {
4493 	char *c = NULL;
4494 	uint32_t i, len;
4495 	char tmp[3];
4496 
4497 	/* Check input parameters */
4498 	if ((src == NULL) ||
4499 		(dst == NULL) ||
4500 		(size == NULL) ||
4501 		(*size == 0))
4502 		return -1;
4503 
4504 	/* Convert chars to bytes */
4505 	for (i = 0, len = 0; i < *size; i += 2) {
4506 		snprintf(tmp, 3, "%s", src + i);
4507 		dst[len++] = strtoul(tmp, &c, 16);
4508 		if (*c != 0) {
4509 			len--;
4510 			dst[len] = 0;
4511 			*size = len;
4512 			return -1;
4513 		}
4514 	}
4515 	dst[len] = 0;
4516 	*size = len;
4517 
4518 	return 0;
4519 }
4520 
4521 static int
4522 parse_hex(struct context *ctx, const struct token *token,
4523 		const char *str, unsigned int len,
4524 		void *buf, unsigned int size)
4525 {
4526 	const struct arg *arg_data = pop_args(ctx);
4527 	const struct arg *arg_len = pop_args(ctx);
4528 	const struct arg *arg_addr = pop_args(ctx);
4529 	char tmp[16]; /* Ought to be enough. */
4530 	int ret;
4531 	unsigned int hexlen = len;
4532 	unsigned int length = 256;
4533 	uint8_t hex_tmp[length];
4534 
4535 	/* Arguments are expected. */
4536 	if (!arg_data)
4537 		return -1;
4538 	if (!arg_len) {
4539 		push_args(ctx, arg_data);
4540 		return -1;
4541 	}
4542 	if (!arg_addr) {
4543 		push_args(ctx, arg_len);
4544 		push_args(ctx, arg_data);
4545 		return -1;
4546 	}
4547 	size = arg_data->size;
4548 	/* Bit-mask fill is not supported. */
4549 	if (arg_data->mask)
4550 		goto error;
4551 	if (!ctx->object)
4552 		return len;
4553 
4554 	/* translate bytes string to array. */
4555 	if (str[0] == '0' && ((str[1] == 'x') ||
4556 			(str[1] == 'X'))) {
4557 		str += 2;
4558 		hexlen -= 2;
4559 	}
4560 	if (hexlen > length)
4561 		return -1;
4562 	ret = parse_hex_string(str, hex_tmp, &hexlen);
4563 	if (ret < 0)
4564 		goto error;
4565 	/* Let parse_int() fill length information first. */
4566 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4567 	if (ret < 0)
4568 		goto error;
4569 	push_args(ctx, arg_len);
4570 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4571 	if (ret < 0) {
4572 		pop_args(ctx);
4573 		goto error;
4574 	}
4575 	buf = (uint8_t *)ctx->object + arg_data->offset;
4576 	/* Output buffer is not necessarily NUL-terminated. */
4577 	memcpy(buf, hex_tmp, hexlen);
4578 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4579 	if (ctx->objmask)
4580 		memset((uint8_t *)ctx->objmask + arg_data->offset,
4581 					0xff, hexlen);
4582 	/* Save address if requested. */
4583 	if (arg_addr->size) {
4584 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4585 		       (void *[]){
4586 			(uint8_t *)ctx->object + arg_data->offset
4587 		       },
4588 		       arg_addr->size);
4589 		if (ctx->objmask)
4590 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4591 			       (void *[]){
4592 				(uint8_t *)ctx->objmask + arg_data->offset
4593 			       },
4594 			       arg_addr->size);
4595 	}
4596 	return len;
4597 error:
4598 	push_args(ctx, arg_addr);
4599 	push_args(ctx, arg_len);
4600 	push_args(ctx, arg_data);
4601 	return -1;
4602 
4603 }
4604 
4605 /**
4606  * Parse a MAC address.
4607  *
4608  * Last argument (ctx->args) is retrieved to determine storage size and
4609  * location.
4610  */
4611 static int
4612 parse_mac_addr(struct context *ctx, const struct token *token,
4613 	       const char *str, unsigned int len,
4614 	       void *buf, unsigned int size)
4615 {
4616 	const struct arg *arg = pop_args(ctx);
4617 	struct ether_addr tmp;
4618 	int ret;
4619 
4620 	(void)token;
4621 	/* Argument is expected. */
4622 	if (!arg)
4623 		return -1;
4624 	size = arg->size;
4625 	/* Bit-mask fill is not supported. */
4626 	if (arg->mask || size != sizeof(tmp))
4627 		goto error;
4628 	/* Only network endian is supported. */
4629 	if (!arg->hton)
4630 		goto error;
4631 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4632 	if (ret < 0 || (unsigned int)ret != len)
4633 		goto error;
4634 	if (!ctx->object)
4635 		return len;
4636 	buf = (uint8_t *)ctx->object + arg->offset;
4637 	memcpy(buf, &tmp, size);
4638 	if (ctx->objmask)
4639 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4640 	return len;
4641 error:
4642 	push_args(ctx, arg);
4643 	return -1;
4644 }
4645 
4646 /**
4647  * Parse an IPv4 address.
4648  *
4649  * Last argument (ctx->args) is retrieved to determine storage size and
4650  * location.
4651  */
4652 static int
4653 parse_ipv4_addr(struct context *ctx, const struct token *token,
4654 		const char *str, unsigned int len,
4655 		void *buf, unsigned int size)
4656 {
4657 	const struct arg *arg = pop_args(ctx);
4658 	char str2[len + 1];
4659 	struct in_addr tmp;
4660 	int ret;
4661 
4662 	/* Argument is expected. */
4663 	if (!arg)
4664 		return -1;
4665 	size = arg->size;
4666 	/* Bit-mask fill is not supported. */
4667 	if (arg->mask || size != sizeof(tmp))
4668 		goto error;
4669 	/* Only network endian is supported. */
4670 	if (!arg->hton)
4671 		goto error;
4672 	memcpy(str2, str, len);
4673 	str2[len] = '\0';
4674 	ret = inet_pton(AF_INET, str2, &tmp);
4675 	if (ret != 1) {
4676 		/* Attempt integer parsing. */
4677 		push_args(ctx, arg);
4678 		return parse_int(ctx, token, str, len, buf, size);
4679 	}
4680 	if (!ctx->object)
4681 		return len;
4682 	buf = (uint8_t *)ctx->object + arg->offset;
4683 	memcpy(buf, &tmp, size);
4684 	if (ctx->objmask)
4685 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4686 	return len;
4687 error:
4688 	push_args(ctx, arg);
4689 	return -1;
4690 }
4691 
4692 /**
4693  * Parse an IPv6 address.
4694  *
4695  * Last argument (ctx->args) is retrieved to determine storage size and
4696  * location.
4697  */
4698 static int
4699 parse_ipv6_addr(struct context *ctx, const struct token *token,
4700 		const char *str, unsigned int len,
4701 		void *buf, unsigned int size)
4702 {
4703 	const struct arg *arg = pop_args(ctx);
4704 	char str2[len + 1];
4705 	struct in6_addr tmp;
4706 	int ret;
4707 
4708 	(void)token;
4709 	/* Argument is expected. */
4710 	if (!arg)
4711 		return -1;
4712 	size = arg->size;
4713 	/* Bit-mask fill is not supported. */
4714 	if (arg->mask || size != sizeof(tmp))
4715 		goto error;
4716 	/* Only network endian is supported. */
4717 	if (!arg->hton)
4718 		goto error;
4719 	memcpy(str2, str, len);
4720 	str2[len] = '\0';
4721 	ret = inet_pton(AF_INET6, str2, &tmp);
4722 	if (ret != 1)
4723 		goto error;
4724 	if (!ctx->object)
4725 		return len;
4726 	buf = (uint8_t *)ctx->object + arg->offset;
4727 	memcpy(buf, &tmp, size);
4728 	if (ctx->objmask)
4729 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4730 	return len;
4731 error:
4732 	push_args(ctx, arg);
4733 	return -1;
4734 }
4735 
4736 /** Boolean values (even indices stand for false). */
4737 static const char *const boolean_name[] = {
4738 	"0", "1",
4739 	"false", "true",
4740 	"no", "yes",
4741 	"N", "Y",
4742 	"off", "on",
4743 	NULL,
4744 };
4745 
4746 /**
4747  * Parse a boolean value.
4748  *
4749  * Last argument (ctx->args) is retrieved to determine storage size and
4750  * location.
4751  */
4752 static int
4753 parse_boolean(struct context *ctx, const struct token *token,
4754 	      const char *str, unsigned int len,
4755 	      void *buf, unsigned int size)
4756 {
4757 	const struct arg *arg = pop_args(ctx);
4758 	unsigned int i;
4759 	int ret;
4760 
4761 	/* Argument is expected. */
4762 	if (!arg)
4763 		return -1;
4764 	for (i = 0; boolean_name[i]; ++i)
4765 		if (!strcmp_partial(boolean_name[i], str, len))
4766 			break;
4767 	/* Process token as integer. */
4768 	if (boolean_name[i])
4769 		str = i & 1 ? "1" : "0";
4770 	push_args(ctx, arg);
4771 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4772 	return ret > 0 ? (int)len : ret;
4773 }
4774 
4775 /** Parse port and update context. */
4776 static int
4777 parse_port(struct context *ctx, const struct token *token,
4778 	   const char *str, unsigned int len,
4779 	   void *buf, unsigned int size)
4780 {
4781 	struct buffer *out = &(struct buffer){ .port = 0 };
4782 	int ret;
4783 
4784 	if (buf)
4785 		out = buf;
4786 	else {
4787 		ctx->objdata = 0;
4788 		ctx->object = out;
4789 		ctx->objmask = NULL;
4790 		size = sizeof(*out);
4791 	}
4792 	ret = parse_int(ctx, token, str, len, out, size);
4793 	if (ret >= 0)
4794 		ctx->port = out->port;
4795 	if (!buf)
4796 		ctx->object = NULL;
4797 	return ret;
4798 }
4799 
4800 /** No completion. */
4801 static int
4802 comp_none(struct context *ctx, const struct token *token,
4803 	  unsigned int ent, char *buf, unsigned int size)
4804 {
4805 	(void)ctx;
4806 	(void)token;
4807 	(void)ent;
4808 	(void)buf;
4809 	(void)size;
4810 	return 0;
4811 }
4812 
4813 /** Complete boolean values. */
4814 static int
4815 comp_boolean(struct context *ctx, const struct token *token,
4816 	     unsigned int ent, char *buf, unsigned int size)
4817 {
4818 	unsigned int i;
4819 
4820 	(void)ctx;
4821 	(void)token;
4822 	for (i = 0; boolean_name[i]; ++i)
4823 		if (buf && i == ent)
4824 			return strlcpy(buf, boolean_name[i], size);
4825 	if (buf)
4826 		return -1;
4827 	return i;
4828 }
4829 
4830 /** Complete action names. */
4831 static int
4832 comp_action(struct context *ctx, const struct token *token,
4833 	    unsigned int ent, char *buf, unsigned int size)
4834 {
4835 	unsigned int i;
4836 
4837 	(void)ctx;
4838 	(void)token;
4839 	for (i = 0; next_action[i]; ++i)
4840 		if (buf && i == ent)
4841 			return strlcpy(buf, token_list[next_action[i]].name,
4842 				       size);
4843 	if (buf)
4844 		return -1;
4845 	return i;
4846 }
4847 
4848 /** Complete available ports. */
4849 static int
4850 comp_port(struct context *ctx, const struct token *token,
4851 	  unsigned int ent, char *buf, unsigned int size)
4852 {
4853 	unsigned int i = 0;
4854 	portid_t p;
4855 
4856 	(void)ctx;
4857 	(void)token;
4858 	RTE_ETH_FOREACH_DEV(p) {
4859 		if (buf && i == ent)
4860 			return snprintf(buf, size, "%u", p);
4861 		++i;
4862 	}
4863 	if (buf)
4864 		return -1;
4865 	return i;
4866 }
4867 
4868 /** Complete available rule IDs. */
4869 static int
4870 comp_rule_id(struct context *ctx, const struct token *token,
4871 	     unsigned int ent, char *buf, unsigned int size)
4872 {
4873 	unsigned int i = 0;
4874 	struct rte_port *port;
4875 	struct port_flow *pf;
4876 
4877 	(void)token;
4878 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4879 	    ctx->port == (portid_t)RTE_PORT_ALL)
4880 		return -1;
4881 	port = &ports[ctx->port];
4882 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4883 		if (buf && i == ent)
4884 			return snprintf(buf, size, "%u", pf->id);
4885 		++i;
4886 	}
4887 	if (buf)
4888 		return -1;
4889 	return i;
4890 }
4891 
4892 /** Complete type field for RSS action. */
4893 static int
4894 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4895 			unsigned int ent, char *buf, unsigned int size)
4896 {
4897 	unsigned int i;
4898 
4899 	(void)ctx;
4900 	(void)token;
4901 	for (i = 0; rss_type_table[i].str; ++i)
4902 		;
4903 	if (!buf)
4904 		return i + 1;
4905 	if (ent < i)
4906 		return strlcpy(buf, rss_type_table[ent].str, size);
4907 	if (ent == i)
4908 		return snprintf(buf, size, "end");
4909 	return -1;
4910 }
4911 
4912 /** Complete queue field for RSS action. */
4913 static int
4914 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4915 			 unsigned int ent, char *buf, unsigned int size)
4916 {
4917 	(void)ctx;
4918 	(void)token;
4919 	if (!buf)
4920 		return nb_rxq + 1;
4921 	if (ent < nb_rxq)
4922 		return snprintf(buf, size, "%u", ent);
4923 	if (ent == nb_rxq)
4924 		return snprintf(buf, size, "end");
4925 	return -1;
4926 }
4927 
4928 /** Internal context. */
4929 static struct context cmd_flow_context;
4930 
4931 /** Global parser instance (cmdline API). */
4932 cmdline_parse_inst_t cmd_flow;
4933 
4934 /** Initialize context. */
4935 static void
4936 cmd_flow_context_init(struct context *ctx)
4937 {
4938 	/* A full memset() is not necessary. */
4939 	ctx->curr = ZERO;
4940 	ctx->prev = ZERO;
4941 	ctx->next_num = 0;
4942 	ctx->args_num = 0;
4943 	ctx->eol = 0;
4944 	ctx->last = 0;
4945 	ctx->port = 0;
4946 	ctx->objdata = 0;
4947 	ctx->object = NULL;
4948 	ctx->objmask = NULL;
4949 }
4950 
4951 /** Parse a token (cmdline API). */
4952 static int
4953 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4954 	       unsigned int size)
4955 {
4956 	struct context *ctx = &cmd_flow_context;
4957 	const struct token *token;
4958 	const enum index *list;
4959 	int len;
4960 	int i;
4961 
4962 	(void)hdr;
4963 	token = &token_list[ctx->curr];
4964 	/* Check argument length. */
4965 	ctx->eol = 0;
4966 	ctx->last = 1;
4967 	for (len = 0; src[len]; ++len)
4968 		if (src[len] == '#' || isspace(src[len]))
4969 			break;
4970 	if (!len)
4971 		return -1;
4972 	/* Last argument and EOL detection. */
4973 	for (i = len; src[i]; ++i)
4974 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4975 			break;
4976 		else if (!isspace(src[i])) {
4977 			ctx->last = 0;
4978 			break;
4979 		}
4980 	for (; src[i]; ++i)
4981 		if (src[i] == '\r' || src[i] == '\n') {
4982 			ctx->eol = 1;
4983 			break;
4984 		}
4985 	/* Initialize context if necessary. */
4986 	if (!ctx->next_num) {
4987 		if (!token->next)
4988 			return 0;
4989 		ctx->next[ctx->next_num++] = token->next[0];
4990 	}
4991 	/* Process argument through candidates. */
4992 	ctx->prev = ctx->curr;
4993 	list = ctx->next[ctx->next_num - 1];
4994 	for (i = 0; list[i]; ++i) {
4995 		const struct token *next = &token_list[list[i]];
4996 		int tmp;
4997 
4998 		ctx->curr = list[i];
4999 		if (next->call)
5000 			tmp = next->call(ctx, next, src, len, result, size);
5001 		else
5002 			tmp = parse_default(ctx, next, src, len, result, size);
5003 		if (tmp == -1 || tmp != len)
5004 			continue;
5005 		token = next;
5006 		break;
5007 	}
5008 	if (!list[i])
5009 		return -1;
5010 	--ctx->next_num;
5011 	/* Push subsequent tokens if any. */
5012 	if (token->next)
5013 		for (i = 0; token->next[i]; ++i) {
5014 			if (ctx->next_num == RTE_DIM(ctx->next))
5015 				return -1;
5016 			ctx->next[ctx->next_num++] = token->next[i];
5017 		}
5018 	/* Push arguments if any. */
5019 	if (token->args)
5020 		for (i = 0; token->args[i]; ++i) {
5021 			if (ctx->args_num == RTE_DIM(ctx->args))
5022 				return -1;
5023 			ctx->args[ctx->args_num++] = token->args[i];
5024 		}
5025 	return len;
5026 }
5027 
5028 /** Return number of completion entries (cmdline API). */
5029 static int
5030 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5031 {
5032 	struct context *ctx = &cmd_flow_context;
5033 	const struct token *token = &token_list[ctx->curr];
5034 	const enum index *list;
5035 	int i;
5036 
5037 	(void)hdr;
5038 	/* Count number of tokens in current list. */
5039 	if (ctx->next_num)
5040 		list = ctx->next[ctx->next_num - 1];
5041 	else
5042 		list = token->next[0];
5043 	for (i = 0; list[i]; ++i)
5044 		;
5045 	if (!i)
5046 		return 0;
5047 	/*
5048 	 * If there is a single token, use its completion callback, otherwise
5049 	 * return the number of entries.
5050 	 */
5051 	token = &token_list[list[0]];
5052 	if (i == 1 && token->comp) {
5053 		/* Save index for cmd_flow_get_help(). */
5054 		ctx->prev = list[0];
5055 		return token->comp(ctx, token, 0, NULL, 0);
5056 	}
5057 	return i;
5058 }
5059 
5060 /** Return a completion entry (cmdline API). */
5061 static int
5062 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5063 			  char *dst, unsigned int size)
5064 {
5065 	struct context *ctx = &cmd_flow_context;
5066 	const struct token *token = &token_list[ctx->curr];
5067 	const enum index *list;
5068 	int i;
5069 
5070 	(void)hdr;
5071 	/* Count number of tokens in current list. */
5072 	if (ctx->next_num)
5073 		list = ctx->next[ctx->next_num - 1];
5074 	else
5075 		list = token->next[0];
5076 	for (i = 0; list[i]; ++i)
5077 		;
5078 	if (!i)
5079 		return -1;
5080 	/* If there is a single token, use its completion callback. */
5081 	token = &token_list[list[0]];
5082 	if (i == 1 && token->comp) {
5083 		/* Save index for cmd_flow_get_help(). */
5084 		ctx->prev = list[0];
5085 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5086 	}
5087 	/* Otherwise make sure the index is valid and use defaults. */
5088 	if (index >= i)
5089 		return -1;
5090 	token = &token_list[list[index]];
5091 	strlcpy(dst, token->name, size);
5092 	/* Save index for cmd_flow_get_help(). */
5093 	ctx->prev = list[index];
5094 	return 0;
5095 }
5096 
5097 /** Populate help strings for current token (cmdline API). */
5098 static int
5099 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5100 {
5101 	struct context *ctx = &cmd_flow_context;
5102 	const struct token *token = &token_list[ctx->prev];
5103 
5104 	(void)hdr;
5105 	if (!size)
5106 		return -1;
5107 	/* Set token type and update global help with details. */
5108 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5109 	if (token->help)
5110 		cmd_flow.help_str = token->help;
5111 	else
5112 		cmd_flow.help_str = token->name;
5113 	return 0;
5114 }
5115 
5116 /** Token definition template (cmdline API). */
5117 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5118 	.ops = &(struct cmdline_token_ops){
5119 		.parse = cmd_flow_parse,
5120 		.complete_get_nb = cmd_flow_complete_get_nb,
5121 		.complete_get_elt = cmd_flow_complete_get_elt,
5122 		.get_help = cmd_flow_get_help,
5123 	},
5124 	.offset = 0,
5125 };
5126 
5127 /** Populate the next dynamic token. */
5128 static void
5129 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5130 	     cmdline_parse_token_hdr_t **hdr_inst)
5131 {
5132 	struct context *ctx = &cmd_flow_context;
5133 
5134 	/* Always reinitialize context before requesting the first token. */
5135 	if (!(hdr_inst - cmd_flow.tokens))
5136 		cmd_flow_context_init(ctx);
5137 	/* Return NULL when no more tokens are expected. */
5138 	if (!ctx->next_num && ctx->curr) {
5139 		*hdr = NULL;
5140 		return;
5141 	}
5142 	/* Determine if command should end here. */
5143 	if (ctx->eol && ctx->last && ctx->next_num) {
5144 		const enum index *list = ctx->next[ctx->next_num - 1];
5145 		int i;
5146 
5147 		for (i = 0; list[i]; ++i) {
5148 			if (list[i] != END)
5149 				continue;
5150 			*hdr = NULL;
5151 			return;
5152 		}
5153 	}
5154 	*hdr = &cmd_flow_token_hdr;
5155 }
5156 
5157 /** Dispatch parsed buffer to function calls. */
5158 static void
5159 cmd_flow_parsed(const struct buffer *in)
5160 {
5161 	switch (in->command) {
5162 	case VALIDATE:
5163 		port_flow_validate(in->port, &in->args.vc.attr,
5164 				   in->args.vc.pattern, in->args.vc.actions);
5165 		break;
5166 	case CREATE:
5167 		port_flow_create(in->port, &in->args.vc.attr,
5168 				 in->args.vc.pattern, in->args.vc.actions);
5169 		break;
5170 	case DESTROY:
5171 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5172 				  in->args.destroy.rule);
5173 		break;
5174 	case FLUSH:
5175 		port_flow_flush(in->port);
5176 		break;
5177 	case QUERY:
5178 		port_flow_query(in->port, in->args.query.rule,
5179 				&in->args.query.action);
5180 		break;
5181 	case LIST:
5182 		port_flow_list(in->port, in->args.list.group_n,
5183 			       in->args.list.group);
5184 		break;
5185 	case ISOLATE:
5186 		port_flow_isolate(in->port, in->args.isolate.set);
5187 		break;
5188 	default:
5189 		break;
5190 	}
5191 }
5192 
5193 /** Token generator and output processing callback (cmdline API). */
5194 static void
5195 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5196 {
5197 	if (cl == NULL)
5198 		cmd_flow_tok(arg0, arg2);
5199 	else
5200 		cmd_flow_parsed(arg0);
5201 }
5202 
5203 /** Global parser instance (cmdline API). */
5204 cmdline_parse_inst_t cmd_flow = {
5205 	.f = cmd_flow_cb,
5206 	.data = NULL, /**< Unused. */
5207 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5208 	.tokens = {
5209 		NULL,
5210 	}, /**< Tokens are returned by cmd_flow_tok(). */
5211 };
5212