xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 576f459eb2a900c9868ff868093e06a59fa584ea)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2016 6WIND S.A.
5  *   Copyright 2016 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stddef.h>
35 #include <stdint.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38 #include <errno.h>
39 #include <ctype.h>
40 #include <string.h>
41 #include <arpa/inet.h>
42 #include <sys/socket.h>
43 
44 #include <rte_common.h>
45 #include <rte_ethdev.h>
46 #include <rte_byteorder.h>
47 #include <cmdline_parse.h>
48 #include <cmdline_parse_etheraddr.h>
49 #include <rte_flow.h>
50 
51 #include "testpmd.h"
52 
53 /** Parser token indices. */
54 enum index {
55 	/* Special tokens. */
56 	ZERO = 0,
57 	END,
58 
59 	/* Common tokens. */
60 	INTEGER,
61 	UNSIGNED,
62 	PREFIX,
63 	BOOLEAN,
64 	STRING,
65 	MAC_ADDR,
66 	IPV4_ADDR,
67 	IPV6_ADDR,
68 	RULE_ID,
69 	PORT_ID,
70 	GROUP_ID,
71 	PRIORITY_LEVEL,
72 
73 	/* Top-level command. */
74 	FLOW,
75 
76 	/* Sub-level commands. */
77 	VALIDATE,
78 	CREATE,
79 	DESTROY,
80 	FLUSH,
81 	QUERY,
82 	LIST,
83 	ISOLATE,
84 
85 	/* Destroy arguments. */
86 	DESTROY_RULE,
87 
88 	/* Query arguments. */
89 	QUERY_ACTION,
90 
91 	/* List arguments. */
92 	LIST_GROUP,
93 
94 	/* Validate/create arguments. */
95 	GROUP,
96 	PRIORITY,
97 	INGRESS,
98 	EGRESS,
99 
100 	/* Validate/create pattern. */
101 	PATTERN,
102 	ITEM_PARAM_IS,
103 	ITEM_PARAM_SPEC,
104 	ITEM_PARAM_LAST,
105 	ITEM_PARAM_MASK,
106 	ITEM_PARAM_PREFIX,
107 	ITEM_NEXT,
108 	ITEM_END,
109 	ITEM_VOID,
110 	ITEM_INVERT,
111 	ITEM_ANY,
112 	ITEM_ANY_NUM,
113 	ITEM_PF,
114 	ITEM_VF,
115 	ITEM_VF_ID,
116 	ITEM_PORT,
117 	ITEM_PORT_INDEX,
118 	ITEM_RAW,
119 	ITEM_RAW_RELATIVE,
120 	ITEM_RAW_SEARCH,
121 	ITEM_RAW_OFFSET,
122 	ITEM_RAW_LIMIT,
123 	ITEM_RAW_PATTERN,
124 	ITEM_ETH,
125 	ITEM_ETH_DST,
126 	ITEM_ETH_SRC,
127 	ITEM_ETH_TYPE,
128 	ITEM_VLAN,
129 	ITEM_VLAN_TPID,
130 	ITEM_VLAN_TCI,
131 	ITEM_VLAN_PCP,
132 	ITEM_VLAN_DEI,
133 	ITEM_VLAN_VID,
134 	ITEM_IPV4,
135 	ITEM_IPV4_TOS,
136 	ITEM_IPV4_TTL,
137 	ITEM_IPV4_PROTO,
138 	ITEM_IPV4_SRC,
139 	ITEM_IPV4_DST,
140 	ITEM_IPV6,
141 	ITEM_IPV6_TC,
142 	ITEM_IPV6_FLOW,
143 	ITEM_IPV6_PROTO,
144 	ITEM_IPV6_HOP,
145 	ITEM_IPV6_SRC,
146 	ITEM_IPV6_DST,
147 	ITEM_ICMP,
148 	ITEM_ICMP_TYPE,
149 	ITEM_ICMP_CODE,
150 	ITEM_UDP,
151 	ITEM_UDP_SRC,
152 	ITEM_UDP_DST,
153 	ITEM_TCP,
154 	ITEM_TCP_SRC,
155 	ITEM_TCP_DST,
156 	ITEM_TCP_FLAGS,
157 	ITEM_SCTP,
158 	ITEM_SCTP_SRC,
159 	ITEM_SCTP_DST,
160 	ITEM_SCTP_TAG,
161 	ITEM_SCTP_CKSUM,
162 	ITEM_VXLAN,
163 	ITEM_VXLAN_VNI,
164 	ITEM_E_TAG,
165 	ITEM_E_TAG_GRP_ECID_B,
166 	ITEM_NVGRE,
167 	ITEM_NVGRE_TNI,
168 	ITEM_MPLS,
169 	ITEM_MPLS_LABEL,
170 	ITEM_GRE,
171 	ITEM_GRE_PROTO,
172 	ITEM_FUZZY,
173 	ITEM_FUZZY_THRESH,
174 	ITEM_GTP,
175 	ITEM_GTP_TEID,
176 	ITEM_GTPC,
177 	ITEM_GTPU,
178 
179 	/* Validate/create actions. */
180 	ACTIONS,
181 	ACTION_NEXT,
182 	ACTION_END,
183 	ACTION_VOID,
184 	ACTION_PASSTHRU,
185 	ACTION_MARK,
186 	ACTION_MARK_ID,
187 	ACTION_FLAG,
188 	ACTION_QUEUE,
189 	ACTION_QUEUE_INDEX,
190 	ACTION_DROP,
191 	ACTION_COUNT,
192 	ACTION_DUP,
193 	ACTION_DUP_INDEX,
194 	ACTION_RSS,
195 	ACTION_RSS_QUEUES,
196 	ACTION_RSS_QUEUE,
197 	ACTION_PF,
198 	ACTION_VF,
199 	ACTION_VF_ORIGINAL,
200 	ACTION_VF_ID,
201 };
202 
203 /** Size of pattern[] field in struct rte_flow_item_raw. */
204 #define ITEM_RAW_PATTERN_SIZE 36
205 
206 /** Storage size for struct rte_flow_item_raw including pattern. */
207 #define ITEM_RAW_SIZE \
208 	(offsetof(struct rte_flow_item_raw, pattern) + ITEM_RAW_PATTERN_SIZE)
209 
210 /** Number of queue[] entries in struct rte_flow_action_rss. */
211 #define ACTION_RSS_NUM 32
212 
213 /** Storage size for struct rte_flow_action_rss including queues. */
214 #define ACTION_RSS_SIZE \
215 	(offsetof(struct rte_flow_action_rss, queue) + \
216 	 sizeof(*((struct rte_flow_action_rss *)0)->queue) * ACTION_RSS_NUM)
217 
218 /** Maximum number of subsequent tokens and arguments on the stack. */
219 #define CTX_STACK_SIZE 16
220 
221 /** Parser context. */
222 struct context {
223 	/** Stack of subsequent token lists to process. */
224 	const enum index *next[CTX_STACK_SIZE];
225 	/** Arguments for stacked tokens. */
226 	const void *args[CTX_STACK_SIZE];
227 	enum index curr; /**< Current token index. */
228 	enum index prev; /**< Index of the last token seen. */
229 	int next_num; /**< Number of entries in next[]. */
230 	int args_num; /**< Number of entries in args[]. */
231 	uint32_t eol:1; /**< EOL has been detected. */
232 	uint32_t last:1; /**< No more arguments. */
233 	uint16_t port; /**< Current port ID (for completions). */
234 	uint32_t objdata; /**< Object-specific data. */
235 	void *object; /**< Address of current object for relative offsets. */
236 	void *objmask; /**< Object a full mask must be written to. */
237 };
238 
239 /** Token argument. */
240 struct arg {
241 	uint32_t hton:1; /**< Use network byte ordering. */
242 	uint32_t sign:1; /**< Value is signed. */
243 	uint32_t offset; /**< Relative offset from ctx->object. */
244 	uint32_t size; /**< Field size. */
245 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
246 };
247 
248 /** Parser token definition. */
249 struct token {
250 	/** Type displayed during completion (defaults to "TOKEN"). */
251 	const char *type;
252 	/** Help displayed during completion (defaults to token name). */
253 	const char *help;
254 	/** Private data used by parser functions. */
255 	const void *priv;
256 	/**
257 	 * Lists of subsequent tokens to push on the stack. Each call to the
258 	 * parser consumes the last entry of that stack.
259 	 */
260 	const enum index *const *next;
261 	/** Arguments stack for subsequent tokens that need them. */
262 	const struct arg *const *args;
263 	/**
264 	 * Token-processing callback, returns -1 in case of error, the
265 	 * length of the matched string otherwise. If NULL, attempts to
266 	 * match the token name.
267 	 *
268 	 * If buf is not NULL, the result should be stored in it according
269 	 * to context. An error is returned if not large enough.
270 	 */
271 	int (*call)(struct context *ctx, const struct token *token,
272 		    const char *str, unsigned int len,
273 		    void *buf, unsigned int size);
274 	/**
275 	 * Callback that provides possible values for this token, used for
276 	 * completion. Returns -1 in case of error, the number of possible
277 	 * values otherwise. If NULL, the token name is used.
278 	 *
279 	 * If buf is not NULL, entry index ent is written to buf and the
280 	 * full length of the entry is returned (same behavior as
281 	 * snprintf()).
282 	 */
283 	int (*comp)(struct context *ctx, const struct token *token,
284 		    unsigned int ent, char *buf, unsigned int size);
285 	/** Mandatory token name, no default value. */
286 	const char *name;
287 };
288 
289 /** Static initializer for the next field. */
290 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
291 
292 /** Static initializer for a NEXT() entry. */
293 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
294 
295 /** Static initializer for the args field. */
296 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
297 
298 /** Static initializer for ARGS() to target a field. */
299 #define ARGS_ENTRY(s, f) \
300 	(&(const struct arg){ \
301 		.offset = offsetof(s, f), \
302 		.size = sizeof(((s *)0)->f), \
303 	})
304 
305 /** Static initializer for ARGS() to target a bit-field. */
306 #define ARGS_ENTRY_BF(s, f, b) \
307 	(&(const struct arg){ \
308 		.size = sizeof(s), \
309 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
310 	})
311 
312 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
313 #define ARGS_ENTRY_MASK(s, f, m) \
314 	(&(const struct arg){ \
315 		.offset = offsetof(s, f), \
316 		.size = sizeof(((s *)0)->f), \
317 		.mask = (const void *)(m), \
318 	})
319 
320 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
321 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
322 	(&(const struct arg){ \
323 		.hton = 1, \
324 		.offset = offsetof(s, f), \
325 		.size = sizeof(((s *)0)->f), \
326 		.mask = (const void *)(m), \
327 	})
328 
329 /** Static initializer for ARGS() to target a pointer. */
330 #define ARGS_ENTRY_PTR(s, f) \
331 	(&(const struct arg){ \
332 		.size = sizeof(*((s *)0)->f), \
333 	})
334 
335 /** Static initializer for ARGS() with arbitrary size. */
336 #define ARGS_ENTRY_USZ(s, f, sz) \
337 	(&(const struct arg){ \
338 		.offset = offsetof(s, f), \
339 		.size = (sz), \
340 	})
341 
342 /** Same as ARGS_ENTRY() using network byte ordering. */
343 #define ARGS_ENTRY_HTON(s, f) \
344 	(&(const struct arg){ \
345 		.hton = 1, \
346 		.offset = offsetof(s, f), \
347 		.size = sizeof(((s *)0)->f), \
348 	})
349 
350 /** Parser output buffer layout expected by cmd_flow_parsed(). */
351 struct buffer {
352 	enum index command; /**< Flow command. */
353 	uint16_t port; /**< Affected port ID. */
354 	union {
355 		struct {
356 			struct rte_flow_attr attr;
357 			struct rte_flow_item *pattern;
358 			struct rte_flow_action *actions;
359 			uint32_t pattern_n;
360 			uint32_t actions_n;
361 			uint8_t *data;
362 		} vc; /**< Validate/create arguments. */
363 		struct {
364 			uint32_t *rule;
365 			uint32_t rule_n;
366 		} destroy; /**< Destroy arguments. */
367 		struct {
368 			uint32_t rule;
369 			enum rte_flow_action_type action;
370 		} query; /**< Query arguments. */
371 		struct {
372 			uint32_t *group;
373 			uint32_t group_n;
374 		} list; /**< List arguments. */
375 		struct {
376 			int set;
377 		} isolate; /**< Isolated mode arguments. */
378 	} args; /**< Command arguments. */
379 };
380 
381 /** Private data for pattern items. */
382 struct parse_item_priv {
383 	enum rte_flow_item_type type; /**< Item type. */
384 	uint32_t size; /**< Size of item specification structure. */
385 };
386 
387 #define PRIV_ITEM(t, s) \
388 	(&(const struct parse_item_priv){ \
389 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
390 		.size = s, \
391 	})
392 
393 /** Private data for actions. */
394 struct parse_action_priv {
395 	enum rte_flow_action_type type; /**< Action type. */
396 	uint32_t size; /**< Size of action configuration structure. */
397 };
398 
399 #define PRIV_ACTION(t, s) \
400 	(&(const struct parse_action_priv){ \
401 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
402 		.size = s, \
403 	})
404 
405 static const enum index next_vc_attr[] = {
406 	GROUP,
407 	PRIORITY,
408 	INGRESS,
409 	EGRESS,
410 	PATTERN,
411 	ZERO,
412 };
413 
414 static const enum index next_destroy_attr[] = {
415 	DESTROY_RULE,
416 	END,
417 	ZERO,
418 };
419 
420 static const enum index next_list_attr[] = {
421 	LIST_GROUP,
422 	END,
423 	ZERO,
424 };
425 
426 static const enum index item_param[] = {
427 	ITEM_PARAM_IS,
428 	ITEM_PARAM_SPEC,
429 	ITEM_PARAM_LAST,
430 	ITEM_PARAM_MASK,
431 	ITEM_PARAM_PREFIX,
432 	ZERO,
433 };
434 
435 static const enum index next_item[] = {
436 	ITEM_END,
437 	ITEM_VOID,
438 	ITEM_INVERT,
439 	ITEM_ANY,
440 	ITEM_PF,
441 	ITEM_VF,
442 	ITEM_PORT,
443 	ITEM_RAW,
444 	ITEM_ETH,
445 	ITEM_VLAN,
446 	ITEM_IPV4,
447 	ITEM_IPV6,
448 	ITEM_ICMP,
449 	ITEM_UDP,
450 	ITEM_TCP,
451 	ITEM_SCTP,
452 	ITEM_VXLAN,
453 	ITEM_E_TAG,
454 	ITEM_NVGRE,
455 	ITEM_MPLS,
456 	ITEM_GRE,
457 	ITEM_FUZZY,
458 	ITEM_GTP,
459 	ITEM_GTPC,
460 	ITEM_GTPU,
461 	ZERO,
462 };
463 
464 static const enum index item_fuzzy[] = {
465 	ITEM_FUZZY_THRESH,
466 	ITEM_NEXT,
467 	ZERO,
468 };
469 
470 static const enum index item_any[] = {
471 	ITEM_ANY_NUM,
472 	ITEM_NEXT,
473 	ZERO,
474 };
475 
476 static const enum index item_vf[] = {
477 	ITEM_VF_ID,
478 	ITEM_NEXT,
479 	ZERO,
480 };
481 
482 static const enum index item_port[] = {
483 	ITEM_PORT_INDEX,
484 	ITEM_NEXT,
485 	ZERO,
486 };
487 
488 static const enum index item_raw[] = {
489 	ITEM_RAW_RELATIVE,
490 	ITEM_RAW_SEARCH,
491 	ITEM_RAW_OFFSET,
492 	ITEM_RAW_LIMIT,
493 	ITEM_RAW_PATTERN,
494 	ITEM_NEXT,
495 	ZERO,
496 };
497 
498 static const enum index item_eth[] = {
499 	ITEM_ETH_DST,
500 	ITEM_ETH_SRC,
501 	ITEM_ETH_TYPE,
502 	ITEM_NEXT,
503 	ZERO,
504 };
505 
506 static const enum index item_vlan[] = {
507 	ITEM_VLAN_TPID,
508 	ITEM_VLAN_TCI,
509 	ITEM_VLAN_PCP,
510 	ITEM_VLAN_DEI,
511 	ITEM_VLAN_VID,
512 	ITEM_NEXT,
513 	ZERO,
514 };
515 
516 static const enum index item_ipv4[] = {
517 	ITEM_IPV4_TOS,
518 	ITEM_IPV4_TTL,
519 	ITEM_IPV4_PROTO,
520 	ITEM_IPV4_SRC,
521 	ITEM_IPV4_DST,
522 	ITEM_NEXT,
523 	ZERO,
524 };
525 
526 static const enum index item_ipv6[] = {
527 	ITEM_IPV6_TC,
528 	ITEM_IPV6_FLOW,
529 	ITEM_IPV6_PROTO,
530 	ITEM_IPV6_HOP,
531 	ITEM_IPV6_SRC,
532 	ITEM_IPV6_DST,
533 	ITEM_NEXT,
534 	ZERO,
535 };
536 
537 static const enum index item_icmp[] = {
538 	ITEM_ICMP_TYPE,
539 	ITEM_ICMP_CODE,
540 	ITEM_NEXT,
541 	ZERO,
542 };
543 
544 static const enum index item_udp[] = {
545 	ITEM_UDP_SRC,
546 	ITEM_UDP_DST,
547 	ITEM_NEXT,
548 	ZERO,
549 };
550 
551 static const enum index item_tcp[] = {
552 	ITEM_TCP_SRC,
553 	ITEM_TCP_DST,
554 	ITEM_TCP_FLAGS,
555 	ITEM_NEXT,
556 	ZERO,
557 };
558 
559 static const enum index item_sctp[] = {
560 	ITEM_SCTP_SRC,
561 	ITEM_SCTP_DST,
562 	ITEM_SCTP_TAG,
563 	ITEM_SCTP_CKSUM,
564 	ITEM_NEXT,
565 	ZERO,
566 };
567 
568 static const enum index item_vxlan[] = {
569 	ITEM_VXLAN_VNI,
570 	ITEM_NEXT,
571 	ZERO,
572 };
573 
574 static const enum index item_e_tag[] = {
575 	ITEM_E_TAG_GRP_ECID_B,
576 	ITEM_NEXT,
577 	ZERO,
578 };
579 
580 static const enum index item_nvgre[] = {
581 	ITEM_NVGRE_TNI,
582 	ITEM_NEXT,
583 	ZERO,
584 };
585 
586 static const enum index item_mpls[] = {
587 	ITEM_MPLS_LABEL,
588 	ITEM_NEXT,
589 	ZERO,
590 };
591 
592 static const enum index item_gre[] = {
593 	ITEM_GRE_PROTO,
594 	ITEM_NEXT,
595 	ZERO,
596 };
597 
598 static const enum index item_gtp[] = {
599 	ITEM_GTP_TEID,
600 	ITEM_NEXT,
601 	ZERO,
602 };
603 
604 static const enum index next_action[] = {
605 	ACTION_END,
606 	ACTION_VOID,
607 	ACTION_PASSTHRU,
608 	ACTION_MARK,
609 	ACTION_FLAG,
610 	ACTION_QUEUE,
611 	ACTION_DROP,
612 	ACTION_COUNT,
613 	ACTION_DUP,
614 	ACTION_RSS,
615 	ACTION_PF,
616 	ACTION_VF,
617 	ZERO,
618 };
619 
620 static const enum index action_mark[] = {
621 	ACTION_MARK_ID,
622 	ACTION_NEXT,
623 	ZERO,
624 };
625 
626 static const enum index action_queue[] = {
627 	ACTION_QUEUE_INDEX,
628 	ACTION_NEXT,
629 	ZERO,
630 };
631 
632 static const enum index action_dup[] = {
633 	ACTION_DUP_INDEX,
634 	ACTION_NEXT,
635 	ZERO,
636 };
637 
638 static const enum index action_rss[] = {
639 	ACTION_RSS_QUEUES,
640 	ACTION_NEXT,
641 	ZERO,
642 };
643 
644 static const enum index action_vf[] = {
645 	ACTION_VF_ORIGINAL,
646 	ACTION_VF_ID,
647 	ACTION_NEXT,
648 	ZERO,
649 };
650 
651 static int parse_init(struct context *, const struct token *,
652 		      const char *, unsigned int,
653 		      void *, unsigned int);
654 static int parse_vc(struct context *, const struct token *,
655 		    const char *, unsigned int,
656 		    void *, unsigned int);
657 static int parse_vc_spec(struct context *, const struct token *,
658 			 const char *, unsigned int, void *, unsigned int);
659 static int parse_vc_conf(struct context *, const struct token *,
660 			 const char *, unsigned int, void *, unsigned int);
661 static int parse_vc_action_rss_queue(struct context *, const struct token *,
662 				     const char *, unsigned int, void *,
663 				     unsigned int);
664 static int parse_destroy(struct context *, const struct token *,
665 			 const char *, unsigned int,
666 			 void *, unsigned int);
667 static int parse_flush(struct context *, const struct token *,
668 		       const char *, unsigned int,
669 		       void *, unsigned int);
670 static int parse_query(struct context *, const struct token *,
671 		       const char *, unsigned int,
672 		       void *, unsigned int);
673 static int parse_action(struct context *, const struct token *,
674 			const char *, unsigned int,
675 			void *, unsigned int);
676 static int parse_list(struct context *, const struct token *,
677 		      const char *, unsigned int,
678 		      void *, unsigned int);
679 static int parse_isolate(struct context *, const struct token *,
680 			 const char *, unsigned int,
681 			 void *, unsigned int);
682 static int parse_int(struct context *, const struct token *,
683 		     const char *, unsigned int,
684 		     void *, unsigned int);
685 static int parse_prefix(struct context *, const struct token *,
686 			const char *, unsigned int,
687 			void *, unsigned int);
688 static int parse_boolean(struct context *, const struct token *,
689 			 const char *, unsigned int,
690 			 void *, unsigned int);
691 static int parse_string(struct context *, const struct token *,
692 			const char *, unsigned int,
693 			void *, unsigned int);
694 static int parse_mac_addr(struct context *, const struct token *,
695 			  const char *, unsigned int,
696 			  void *, unsigned int);
697 static int parse_ipv4_addr(struct context *, const struct token *,
698 			   const char *, unsigned int,
699 			   void *, unsigned int);
700 static int parse_ipv6_addr(struct context *, const struct token *,
701 			   const char *, unsigned int,
702 			   void *, unsigned int);
703 static int parse_port(struct context *, const struct token *,
704 		      const char *, unsigned int,
705 		      void *, unsigned int);
706 static int comp_none(struct context *, const struct token *,
707 		     unsigned int, char *, unsigned int);
708 static int comp_boolean(struct context *, const struct token *,
709 			unsigned int, char *, unsigned int);
710 static int comp_action(struct context *, const struct token *,
711 		       unsigned int, char *, unsigned int);
712 static int comp_port(struct context *, const struct token *,
713 		     unsigned int, char *, unsigned int);
714 static int comp_rule_id(struct context *, const struct token *,
715 			unsigned int, char *, unsigned int);
716 static int comp_vc_action_rss_queue(struct context *, const struct token *,
717 				    unsigned int, char *, unsigned int);
718 
719 /** Token definitions. */
720 static const struct token token_list[] = {
721 	/* Special tokens. */
722 	[ZERO] = {
723 		.name = "ZERO",
724 		.help = "null entry, abused as the entry point",
725 		.next = NEXT(NEXT_ENTRY(FLOW)),
726 	},
727 	[END] = {
728 		.name = "",
729 		.type = "RETURN",
730 		.help = "command may end here",
731 	},
732 	/* Common tokens. */
733 	[INTEGER] = {
734 		.name = "{int}",
735 		.type = "INTEGER",
736 		.help = "integer value",
737 		.call = parse_int,
738 		.comp = comp_none,
739 	},
740 	[UNSIGNED] = {
741 		.name = "{unsigned}",
742 		.type = "UNSIGNED",
743 		.help = "unsigned integer value",
744 		.call = parse_int,
745 		.comp = comp_none,
746 	},
747 	[PREFIX] = {
748 		.name = "{prefix}",
749 		.type = "PREFIX",
750 		.help = "prefix length for bit-mask",
751 		.call = parse_prefix,
752 		.comp = comp_none,
753 	},
754 	[BOOLEAN] = {
755 		.name = "{boolean}",
756 		.type = "BOOLEAN",
757 		.help = "any boolean value",
758 		.call = parse_boolean,
759 		.comp = comp_boolean,
760 	},
761 	[STRING] = {
762 		.name = "{string}",
763 		.type = "STRING",
764 		.help = "fixed string",
765 		.call = parse_string,
766 		.comp = comp_none,
767 	},
768 	[MAC_ADDR] = {
769 		.name = "{MAC address}",
770 		.type = "MAC-48",
771 		.help = "standard MAC address notation",
772 		.call = parse_mac_addr,
773 		.comp = comp_none,
774 	},
775 	[IPV4_ADDR] = {
776 		.name = "{IPv4 address}",
777 		.type = "IPV4 ADDRESS",
778 		.help = "standard IPv4 address notation",
779 		.call = parse_ipv4_addr,
780 		.comp = comp_none,
781 	},
782 	[IPV6_ADDR] = {
783 		.name = "{IPv6 address}",
784 		.type = "IPV6 ADDRESS",
785 		.help = "standard IPv6 address notation",
786 		.call = parse_ipv6_addr,
787 		.comp = comp_none,
788 	},
789 	[RULE_ID] = {
790 		.name = "{rule id}",
791 		.type = "RULE ID",
792 		.help = "rule identifier",
793 		.call = parse_int,
794 		.comp = comp_rule_id,
795 	},
796 	[PORT_ID] = {
797 		.name = "{port_id}",
798 		.type = "PORT ID",
799 		.help = "port identifier",
800 		.call = parse_port,
801 		.comp = comp_port,
802 	},
803 	[GROUP_ID] = {
804 		.name = "{group_id}",
805 		.type = "GROUP ID",
806 		.help = "group identifier",
807 		.call = parse_int,
808 		.comp = comp_none,
809 	},
810 	[PRIORITY_LEVEL] = {
811 		.name = "{level}",
812 		.type = "PRIORITY",
813 		.help = "priority level",
814 		.call = parse_int,
815 		.comp = comp_none,
816 	},
817 	/* Top-level command. */
818 	[FLOW] = {
819 		.name = "flow",
820 		.type = "{command} {port_id} [{arg} [...]]",
821 		.help = "manage ingress/egress flow rules",
822 		.next = NEXT(NEXT_ENTRY
823 			     (VALIDATE,
824 			      CREATE,
825 			      DESTROY,
826 			      FLUSH,
827 			      LIST,
828 			      QUERY,
829 			      ISOLATE)),
830 		.call = parse_init,
831 	},
832 	/* Sub-level commands. */
833 	[VALIDATE] = {
834 		.name = "validate",
835 		.help = "check whether a flow rule can be created",
836 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
837 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
838 		.call = parse_vc,
839 	},
840 	[CREATE] = {
841 		.name = "create",
842 		.help = "create a flow rule",
843 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
844 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
845 		.call = parse_vc,
846 	},
847 	[DESTROY] = {
848 		.name = "destroy",
849 		.help = "destroy specific flow rules",
850 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
851 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
852 		.call = parse_destroy,
853 	},
854 	[FLUSH] = {
855 		.name = "flush",
856 		.help = "destroy all flow rules",
857 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
858 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
859 		.call = parse_flush,
860 	},
861 	[QUERY] = {
862 		.name = "query",
863 		.help = "query an existing flow rule",
864 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
865 			     NEXT_ENTRY(RULE_ID),
866 			     NEXT_ENTRY(PORT_ID)),
867 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
868 			     ARGS_ENTRY(struct buffer, args.query.rule),
869 			     ARGS_ENTRY(struct buffer, port)),
870 		.call = parse_query,
871 	},
872 	[LIST] = {
873 		.name = "list",
874 		.help = "list existing flow rules",
875 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
876 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
877 		.call = parse_list,
878 	},
879 	[ISOLATE] = {
880 		.name = "isolate",
881 		.help = "restrict ingress traffic to the defined flow rules",
882 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
883 			     NEXT_ENTRY(PORT_ID)),
884 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
885 			     ARGS_ENTRY(struct buffer, port)),
886 		.call = parse_isolate,
887 	},
888 	/* Destroy arguments. */
889 	[DESTROY_RULE] = {
890 		.name = "rule",
891 		.help = "specify a rule identifier",
892 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
893 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
894 		.call = parse_destroy,
895 	},
896 	/* Query arguments. */
897 	[QUERY_ACTION] = {
898 		.name = "{action}",
899 		.type = "ACTION",
900 		.help = "action to query, must be part of the rule",
901 		.call = parse_action,
902 		.comp = comp_action,
903 	},
904 	/* List arguments. */
905 	[LIST_GROUP] = {
906 		.name = "group",
907 		.help = "specify a group",
908 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
909 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
910 		.call = parse_list,
911 	},
912 	/* Validate/create attributes. */
913 	[GROUP] = {
914 		.name = "group",
915 		.help = "specify a group",
916 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
917 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
918 		.call = parse_vc,
919 	},
920 	[PRIORITY] = {
921 		.name = "priority",
922 		.help = "specify a priority level",
923 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
924 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
925 		.call = parse_vc,
926 	},
927 	[INGRESS] = {
928 		.name = "ingress",
929 		.help = "affect rule to ingress",
930 		.next = NEXT(next_vc_attr),
931 		.call = parse_vc,
932 	},
933 	[EGRESS] = {
934 		.name = "egress",
935 		.help = "affect rule to egress",
936 		.next = NEXT(next_vc_attr),
937 		.call = parse_vc,
938 	},
939 	/* Validate/create pattern. */
940 	[PATTERN] = {
941 		.name = "pattern",
942 		.help = "submit a list of pattern items",
943 		.next = NEXT(next_item),
944 		.call = parse_vc,
945 	},
946 	[ITEM_PARAM_IS] = {
947 		.name = "is",
948 		.help = "match value perfectly (with full bit-mask)",
949 		.call = parse_vc_spec,
950 	},
951 	[ITEM_PARAM_SPEC] = {
952 		.name = "spec",
953 		.help = "match value according to configured bit-mask",
954 		.call = parse_vc_spec,
955 	},
956 	[ITEM_PARAM_LAST] = {
957 		.name = "last",
958 		.help = "specify upper bound to establish a range",
959 		.call = parse_vc_spec,
960 	},
961 	[ITEM_PARAM_MASK] = {
962 		.name = "mask",
963 		.help = "specify bit-mask with relevant bits set to one",
964 		.call = parse_vc_spec,
965 	},
966 	[ITEM_PARAM_PREFIX] = {
967 		.name = "prefix",
968 		.help = "generate bit-mask from a prefix length",
969 		.call = parse_vc_spec,
970 	},
971 	[ITEM_NEXT] = {
972 		.name = "/",
973 		.help = "specify next pattern item",
974 		.next = NEXT(next_item),
975 	},
976 	[ITEM_END] = {
977 		.name = "end",
978 		.help = "end list of pattern items",
979 		.priv = PRIV_ITEM(END, 0),
980 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
981 		.call = parse_vc,
982 	},
983 	[ITEM_VOID] = {
984 		.name = "void",
985 		.help = "no-op pattern item",
986 		.priv = PRIV_ITEM(VOID, 0),
987 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
988 		.call = parse_vc,
989 	},
990 	[ITEM_INVERT] = {
991 		.name = "invert",
992 		.help = "perform actions when pattern does not match",
993 		.priv = PRIV_ITEM(INVERT, 0),
994 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
995 		.call = parse_vc,
996 	},
997 	[ITEM_ANY] = {
998 		.name = "any",
999 		.help = "match any protocol for the current layer",
1000 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1001 		.next = NEXT(item_any),
1002 		.call = parse_vc,
1003 	},
1004 	[ITEM_ANY_NUM] = {
1005 		.name = "num",
1006 		.help = "number of layers covered",
1007 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1008 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1009 	},
1010 	[ITEM_PF] = {
1011 		.name = "pf",
1012 		.help = "match packets addressed to the physical function",
1013 		.priv = PRIV_ITEM(PF, 0),
1014 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1015 		.call = parse_vc,
1016 	},
1017 	[ITEM_VF] = {
1018 		.name = "vf",
1019 		.help = "match packets addressed to a virtual function ID",
1020 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1021 		.next = NEXT(item_vf),
1022 		.call = parse_vc,
1023 	},
1024 	[ITEM_VF_ID] = {
1025 		.name = "id",
1026 		.help = "destination VF ID",
1027 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1028 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1029 	},
1030 	[ITEM_PORT] = {
1031 		.name = "port",
1032 		.help = "device-specific physical port index to use",
1033 		.priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
1034 		.next = NEXT(item_port),
1035 		.call = parse_vc,
1036 	},
1037 	[ITEM_PORT_INDEX] = {
1038 		.name = "index",
1039 		.help = "physical port index",
1040 		.next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
1041 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
1042 	},
1043 	[ITEM_RAW] = {
1044 		.name = "raw",
1045 		.help = "match an arbitrary byte string",
1046 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1047 		.next = NEXT(item_raw),
1048 		.call = parse_vc,
1049 	},
1050 	[ITEM_RAW_RELATIVE] = {
1051 		.name = "relative",
1052 		.help = "look for pattern after the previous item",
1053 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1054 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1055 					   relative, 1)),
1056 	},
1057 	[ITEM_RAW_SEARCH] = {
1058 		.name = "search",
1059 		.help = "search pattern from offset (see also limit)",
1060 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1061 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1062 					   search, 1)),
1063 	},
1064 	[ITEM_RAW_OFFSET] = {
1065 		.name = "offset",
1066 		.help = "absolute or relative offset for pattern",
1067 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1068 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1069 	},
1070 	[ITEM_RAW_LIMIT] = {
1071 		.name = "limit",
1072 		.help = "search area limit for start of pattern",
1073 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1074 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1075 	},
1076 	[ITEM_RAW_PATTERN] = {
1077 		.name = "pattern",
1078 		.help = "byte string to look for",
1079 		.next = NEXT(item_raw,
1080 			     NEXT_ENTRY(STRING),
1081 			     NEXT_ENTRY(ITEM_PARAM_IS,
1082 					ITEM_PARAM_SPEC,
1083 					ITEM_PARAM_MASK)),
1084 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, length),
1085 			     ARGS_ENTRY_USZ(struct rte_flow_item_raw,
1086 					    pattern,
1087 					    ITEM_RAW_PATTERN_SIZE)),
1088 	},
1089 	[ITEM_ETH] = {
1090 		.name = "eth",
1091 		.help = "match Ethernet header",
1092 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1093 		.next = NEXT(item_eth),
1094 		.call = parse_vc,
1095 	},
1096 	[ITEM_ETH_DST] = {
1097 		.name = "dst",
1098 		.help = "destination MAC",
1099 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1100 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1101 	},
1102 	[ITEM_ETH_SRC] = {
1103 		.name = "src",
1104 		.help = "source MAC",
1105 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1106 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1107 	},
1108 	[ITEM_ETH_TYPE] = {
1109 		.name = "type",
1110 		.help = "EtherType",
1111 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1112 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1113 	},
1114 	[ITEM_VLAN] = {
1115 		.name = "vlan",
1116 		.help = "match 802.1Q/ad VLAN tag",
1117 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1118 		.next = NEXT(item_vlan),
1119 		.call = parse_vc,
1120 	},
1121 	[ITEM_VLAN_TPID] = {
1122 		.name = "tpid",
1123 		.help = "tag protocol identifier",
1124 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1125 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
1126 	},
1127 	[ITEM_VLAN_TCI] = {
1128 		.name = "tci",
1129 		.help = "tag control information",
1130 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1131 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1132 	},
1133 	[ITEM_VLAN_PCP] = {
1134 		.name = "pcp",
1135 		.help = "priority code point",
1136 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1137 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1138 						  tci, "\xe0\x00")),
1139 	},
1140 	[ITEM_VLAN_DEI] = {
1141 		.name = "dei",
1142 		.help = "drop eligible indicator",
1143 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1144 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1145 						  tci, "\x10\x00")),
1146 	},
1147 	[ITEM_VLAN_VID] = {
1148 		.name = "vid",
1149 		.help = "VLAN identifier",
1150 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1151 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1152 						  tci, "\x0f\xff")),
1153 	},
1154 	[ITEM_IPV4] = {
1155 		.name = "ipv4",
1156 		.help = "match IPv4 header",
1157 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1158 		.next = NEXT(item_ipv4),
1159 		.call = parse_vc,
1160 	},
1161 	[ITEM_IPV4_TOS] = {
1162 		.name = "tos",
1163 		.help = "type of service",
1164 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1165 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1166 					     hdr.type_of_service)),
1167 	},
1168 	[ITEM_IPV4_TTL] = {
1169 		.name = "ttl",
1170 		.help = "time to live",
1171 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1172 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1173 					     hdr.time_to_live)),
1174 	},
1175 	[ITEM_IPV4_PROTO] = {
1176 		.name = "proto",
1177 		.help = "next protocol ID",
1178 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1179 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1180 					     hdr.next_proto_id)),
1181 	},
1182 	[ITEM_IPV4_SRC] = {
1183 		.name = "src",
1184 		.help = "source address",
1185 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1186 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1187 					     hdr.src_addr)),
1188 	},
1189 	[ITEM_IPV4_DST] = {
1190 		.name = "dst",
1191 		.help = "destination address",
1192 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1193 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1194 					     hdr.dst_addr)),
1195 	},
1196 	[ITEM_IPV6] = {
1197 		.name = "ipv6",
1198 		.help = "match IPv6 header",
1199 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1200 		.next = NEXT(item_ipv6),
1201 		.call = parse_vc,
1202 	},
1203 	[ITEM_IPV6_TC] = {
1204 		.name = "tc",
1205 		.help = "traffic class",
1206 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1207 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1208 						  hdr.vtc_flow,
1209 						  "\x0f\xf0\x00\x00")),
1210 	},
1211 	[ITEM_IPV6_FLOW] = {
1212 		.name = "flow",
1213 		.help = "flow label",
1214 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1215 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1216 						  hdr.vtc_flow,
1217 						  "\x00\x0f\xff\xff")),
1218 	},
1219 	[ITEM_IPV6_PROTO] = {
1220 		.name = "proto",
1221 		.help = "protocol (next header)",
1222 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1223 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1224 					     hdr.proto)),
1225 	},
1226 	[ITEM_IPV6_HOP] = {
1227 		.name = "hop",
1228 		.help = "hop limit",
1229 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1230 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1231 					     hdr.hop_limits)),
1232 	},
1233 	[ITEM_IPV6_SRC] = {
1234 		.name = "src",
1235 		.help = "source address",
1236 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1237 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1238 					     hdr.src_addr)),
1239 	},
1240 	[ITEM_IPV6_DST] = {
1241 		.name = "dst",
1242 		.help = "destination address",
1243 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1244 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1245 					     hdr.dst_addr)),
1246 	},
1247 	[ITEM_ICMP] = {
1248 		.name = "icmp",
1249 		.help = "match ICMP header",
1250 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1251 		.next = NEXT(item_icmp),
1252 		.call = parse_vc,
1253 	},
1254 	[ITEM_ICMP_TYPE] = {
1255 		.name = "type",
1256 		.help = "ICMP packet type",
1257 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1258 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1259 					     hdr.icmp_type)),
1260 	},
1261 	[ITEM_ICMP_CODE] = {
1262 		.name = "code",
1263 		.help = "ICMP packet code",
1264 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1265 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1266 					     hdr.icmp_code)),
1267 	},
1268 	[ITEM_UDP] = {
1269 		.name = "udp",
1270 		.help = "match UDP header",
1271 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1272 		.next = NEXT(item_udp),
1273 		.call = parse_vc,
1274 	},
1275 	[ITEM_UDP_SRC] = {
1276 		.name = "src",
1277 		.help = "UDP source port",
1278 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1279 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1280 					     hdr.src_port)),
1281 	},
1282 	[ITEM_UDP_DST] = {
1283 		.name = "dst",
1284 		.help = "UDP destination port",
1285 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1286 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1287 					     hdr.dst_port)),
1288 	},
1289 	[ITEM_TCP] = {
1290 		.name = "tcp",
1291 		.help = "match TCP header",
1292 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1293 		.next = NEXT(item_tcp),
1294 		.call = parse_vc,
1295 	},
1296 	[ITEM_TCP_SRC] = {
1297 		.name = "src",
1298 		.help = "TCP source port",
1299 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1300 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1301 					     hdr.src_port)),
1302 	},
1303 	[ITEM_TCP_DST] = {
1304 		.name = "dst",
1305 		.help = "TCP destination port",
1306 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1307 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1308 					     hdr.dst_port)),
1309 	},
1310 	[ITEM_TCP_FLAGS] = {
1311 		.name = "flags",
1312 		.help = "TCP flags",
1313 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1314 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1315 					     hdr.tcp_flags)),
1316 	},
1317 	[ITEM_SCTP] = {
1318 		.name = "sctp",
1319 		.help = "match SCTP header",
1320 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1321 		.next = NEXT(item_sctp),
1322 		.call = parse_vc,
1323 	},
1324 	[ITEM_SCTP_SRC] = {
1325 		.name = "src",
1326 		.help = "SCTP source port",
1327 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1328 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1329 					     hdr.src_port)),
1330 	},
1331 	[ITEM_SCTP_DST] = {
1332 		.name = "dst",
1333 		.help = "SCTP destination port",
1334 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1335 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1336 					     hdr.dst_port)),
1337 	},
1338 	[ITEM_SCTP_TAG] = {
1339 		.name = "tag",
1340 		.help = "validation tag",
1341 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1342 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1343 					     hdr.tag)),
1344 	},
1345 	[ITEM_SCTP_CKSUM] = {
1346 		.name = "cksum",
1347 		.help = "checksum",
1348 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1349 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1350 					     hdr.cksum)),
1351 	},
1352 	[ITEM_VXLAN] = {
1353 		.name = "vxlan",
1354 		.help = "match VXLAN header",
1355 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1356 		.next = NEXT(item_vxlan),
1357 		.call = parse_vc,
1358 	},
1359 	[ITEM_VXLAN_VNI] = {
1360 		.name = "vni",
1361 		.help = "VXLAN identifier",
1362 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1363 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1364 	},
1365 	[ITEM_E_TAG] = {
1366 		.name = "e_tag",
1367 		.help = "match E-Tag header",
1368 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1369 		.next = NEXT(item_e_tag),
1370 		.call = parse_vc,
1371 	},
1372 	[ITEM_E_TAG_GRP_ECID_B] = {
1373 		.name = "grp_ecid_b",
1374 		.help = "GRP and E-CID base",
1375 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1376 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1377 						  rsvd_grp_ecid_b,
1378 						  "\x3f\xff")),
1379 	},
1380 	[ITEM_NVGRE] = {
1381 		.name = "nvgre",
1382 		.help = "match NVGRE header",
1383 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1384 		.next = NEXT(item_nvgre),
1385 		.call = parse_vc,
1386 	},
1387 	[ITEM_NVGRE_TNI] = {
1388 		.name = "tni",
1389 		.help = "virtual subnet ID",
1390 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1391 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1392 	},
1393 	[ITEM_MPLS] = {
1394 		.name = "mpls",
1395 		.help = "match MPLS header",
1396 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1397 		.next = NEXT(item_mpls),
1398 		.call = parse_vc,
1399 	},
1400 	[ITEM_MPLS_LABEL] = {
1401 		.name = "label",
1402 		.help = "MPLS label",
1403 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1404 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1405 						  label_tc_s,
1406 						  "\xff\xff\xf0")),
1407 	},
1408 	[ITEM_GRE] = {
1409 		.name = "gre",
1410 		.help = "match GRE header",
1411 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1412 		.next = NEXT(item_gre),
1413 		.call = parse_vc,
1414 	},
1415 	[ITEM_GRE_PROTO] = {
1416 		.name = "protocol",
1417 		.help = "GRE protocol type",
1418 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1419 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1420 					     protocol)),
1421 	},
1422 	[ITEM_FUZZY] = {
1423 		.name = "fuzzy",
1424 		.help = "fuzzy pattern match, expect faster than default",
1425 		.priv = PRIV_ITEM(FUZZY,
1426 				sizeof(struct rte_flow_item_fuzzy)),
1427 		.next = NEXT(item_fuzzy),
1428 		.call = parse_vc,
1429 	},
1430 	[ITEM_FUZZY_THRESH] = {
1431 		.name = "thresh",
1432 		.help = "match accuracy threshold",
1433 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1434 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1435 					thresh)),
1436 	},
1437 	[ITEM_GTP] = {
1438 		.name = "gtp",
1439 		.help = "match GTP header",
1440 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1441 		.next = NEXT(item_gtp),
1442 		.call = parse_vc,
1443 	},
1444 	[ITEM_GTP_TEID] = {
1445 		.name = "teid",
1446 		.help = "tunnel endpoint identifier",
1447 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1448 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1449 	},
1450 	[ITEM_GTPC] = {
1451 		.name = "gtpc",
1452 		.help = "match GTP header",
1453 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1454 		.next = NEXT(item_gtp),
1455 		.call = parse_vc,
1456 	},
1457 	[ITEM_GTPU] = {
1458 		.name = "gtpu",
1459 		.help = "match GTP header",
1460 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1461 		.next = NEXT(item_gtp),
1462 		.call = parse_vc,
1463 	},
1464 
1465 	/* Validate/create actions. */
1466 	[ACTIONS] = {
1467 		.name = "actions",
1468 		.help = "submit a list of associated actions",
1469 		.next = NEXT(next_action),
1470 		.call = parse_vc,
1471 	},
1472 	[ACTION_NEXT] = {
1473 		.name = "/",
1474 		.help = "specify next action",
1475 		.next = NEXT(next_action),
1476 	},
1477 	[ACTION_END] = {
1478 		.name = "end",
1479 		.help = "end list of actions",
1480 		.priv = PRIV_ACTION(END, 0),
1481 		.call = parse_vc,
1482 	},
1483 	[ACTION_VOID] = {
1484 		.name = "void",
1485 		.help = "no-op action",
1486 		.priv = PRIV_ACTION(VOID, 0),
1487 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1488 		.call = parse_vc,
1489 	},
1490 	[ACTION_PASSTHRU] = {
1491 		.name = "passthru",
1492 		.help = "let subsequent rule process matched packets",
1493 		.priv = PRIV_ACTION(PASSTHRU, 0),
1494 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1495 		.call = parse_vc,
1496 	},
1497 	[ACTION_MARK] = {
1498 		.name = "mark",
1499 		.help = "attach 32 bit value to packets",
1500 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1501 		.next = NEXT(action_mark),
1502 		.call = parse_vc,
1503 	},
1504 	[ACTION_MARK_ID] = {
1505 		.name = "id",
1506 		.help = "32 bit value to return with packets",
1507 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1508 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1509 		.call = parse_vc_conf,
1510 	},
1511 	[ACTION_FLAG] = {
1512 		.name = "flag",
1513 		.help = "flag packets",
1514 		.priv = PRIV_ACTION(FLAG, 0),
1515 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1516 		.call = parse_vc,
1517 	},
1518 	[ACTION_QUEUE] = {
1519 		.name = "queue",
1520 		.help = "assign packets to a given queue index",
1521 		.priv = PRIV_ACTION(QUEUE,
1522 				    sizeof(struct rte_flow_action_queue)),
1523 		.next = NEXT(action_queue),
1524 		.call = parse_vc,
1525 	},
1526 	[ACTION_QUEUE_INDEX] = {
1527 		.name = "index",
1528 		.help = "queue index to use",
1529 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1530 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1531 		.call = parse_vc_conf,
1532 	},
1533 	[ACTION_DROP] = {
1534 		.name = "drop",
1535 		.help = "drop packets (note: passthru has priority)",
1536 		.priv = PRIV_ACTION(DROP, 0),
1537 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1538 		.call = parse_vc,
1539 	},
1540 	[ACTION_COUNT] = {
1541 		.name = "count",
1542 		.help = "enable counters for this rule",
1543 		.priv = PRIV_ACTION(COUNT, 0),
1544 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1545 		.call = parse_vc,
1546 	},
1547 	[ACTION_DUP] = {
1548 		.name = "dup",
1549 		.help = "duplicate packets to a given queue index",
1550 		.priv = PRIV_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1551 		.next = NEXT(action_dup),
1552 		.call = parse_vc,
1553 	},
1554 	[ACTION_DUP_INDEX] = {
1555 		.name = "index",
1556 		.help = "queue index to duplicate packets to",
1557 		.next = NEXT(action_dup, NEXT_ENTRY(UNSIGNED)),
1558 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_dup, index)),
1559 		.call = parse_vc_conf,
1560 	},
1561 	[ACTION_RSS] = {
1562 		.name = "rss",
1563 		.help = "spread packets among several queues",
1564 		.priv = PRIV_ACTION(RSS, ACTION_RSS_SIZE),
1565 		.next = NEXT(action_rss),
1566 		.call = parse_vc,
1567 	},
1568 	[ACTION_RSS_QUEUES] = {
1569 		.name = "queues",
1570 		.help = "queue indices to use",
1571 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1572 		.call = parse_vc_conf,
1573 	},
1574 	[ACTION_RSS_QUEUE] = {
1575 		.name = "{queue}",
1576 		.help = "queue index",
1577 		.call = parse_vc_action_rss_queue,
1578 		.comp = comp_vc_action_rss_queue,
1579 	},
1580 	[ACTION_PF] = {
1581 		.name = "pf",
1582 		.help = "redirect packets to physical device function",
1583 		.priv = PRIV_ACTION(PF, 0),
1584 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1585 		.call = parse_vc,
1586 	},
1587 	[ACTION_VF] = {
1588 		.name = "vf",
1589 		.help = "redirect packets to virtual device function",
1590 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1591 		.next = NEXT(action_vf),
1592 		.call = parse_vc,
1593 	},
1594 	[ACTION_VF_ORIGINAL] = {
1595 		.name = "original",
1596 		.help = "use original VF ID if possible",
1597 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
1598 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
1599 					   original, 1)),
1600 		.call = parse_vc_conf,
1601 	},
1602 	[ACTION_VF_ID] = {
1603 		.name = "id",
1604 		.help = "VF ID to redirect packets to",
1605 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
1606 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
1607 		.call = parse_vc_conf,
1608 	},
1609 };
1610 
1611 /** Remove and return last entry from argument stack. */
1612 static const struct arg *
1613 pop_args(struct context *ctx)
1614 {
1615 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
1616 }
1617 
1618 /** Add entry on top of the argument stack. */
1619 static int
1620 push_args(struct context *ctx, const struct arg *arg)
1621 {
1622 	if (ctx->args_num == CTX_STACK_SIZE)
1623 		return -1;
1624 	ctx->args[ctx->args_num++] = arg;
1625 	return 0;
1626 }
1627 
1628 /** Spread value into buffer according to bit-mask. */
1629 static size_t
1630 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
1631 {
1632 	uint32_t i = arg->size;
1633 	uint32_t end = 0;
1634 	int sub = 1;
1635 	int add = 0;
1636 	size_t len = 0;
1637 
1638 	if (!arg->mask)
1639 		return 0;
1640 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1641 	if (!arg->hton) {
1642 		i = 0;
1643 		end = arg->size;
1644 		sub = 0;
1645 		add = 1;
1646 	}
1647 #endif
1648 	while (i != end) {
1649 		unsigned int shift = 0;
1650 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
1651 
1652 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
1653 			if (!(arg->mask[i] & (1 << shift)))
1654 				continue;
1655 			++len;
1656 			if (!dst)
1657 				continue;
1658 			*buf &= ~(1 << shift);
1659 			*buf |= (val & 1) << shift;
1660 			val >>= 1;
1661 		}
1662 		i += add;
1663 	}
1664 	return len;
1665 }
1666 
1667 /** Compare a string with a partial one of a given length. */
1668 static int
1669 strcmp_partial(const char *full, const char *partial, size_t partial_len)
1670 {
1671 	int r = strncmp(full, partial, partial_len);
1672 
1673 	if (r)
1674 		return r;
1675 	if (strlen(full) <= partial_len)
1676 		return 0;
1677 	return full[partial_len];
1678 }
1679 
1680 /**
1681  * Parse a prefix length and generate a bit-mask.
1682  *
1683  * Last argument (ctx->args) is retrieved to determine mask size, storage
1684  * location and whether the result must use network byte ordering.
1685  */
1686 static int
1687 parse_prefix(struct context *ctx, const struct token *token,
1688 	     const char *str, unsigned int len,
1689 	     void *buf, unsigned int size)
1690 {
1691 	const struct arg *arg = pop_args(ctx);
1692 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
1693 	char *end;
1694 	uintmax_t u;
1695 	unsigned int bytes;
1696 	unsigned int extra;
1697 
1698 	(void)token;
1699 	/* Argument is expected. */
1700 	if (!arg)
1701 		return -1;
1702 	errno = 0;
1703 	u = strtoumax(str, &end, 0);
1704 	if (errno || (size_t)(end - str) != len)
1705 		goto error;
1706 	if (arg->mask) {
1707 		uintmax_t v = 0;
1708 
1709 		extra = arg_entry_bf_fill(NULL, 0, arg);
1710 		if (u > extra)
1711 			goto error;
1712 		if (!ctx->object)
1713 			return len;
1714 		extra -= u;
1715 		while (u--)
1716 			(v <<= 1, v |= 1);
1717 		v <<= extra;
1718 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
1719 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
1720 			goto error;
1721 		return len;
1722 	}
1723 	bytes = u / 8;
1724 	extra = u % 8;
1725 	size = arg->size;
1726 	if (bytes > size || bytes + !!extra > size)
1727 		goto error;
1728 	if (!ctx->object)
1729 		return len;
1730 	buf = (uint8_t *)ctx->object + arg->offset;
1731 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1732 	if (!arg->hton) {
1733 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
1734 		memset(buf, 0x00, size - bytes);
1735 		if (extra)
1736 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
1737 	} else
1738 #endif
1739 	{
1740 		memset(buf, 0xff, bytes);
1741 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
1742 		if (extra)
1743 			((uint8_t *)buf)[bytes] = conv[extra];
1744 	}
1745 	if (ctx->objmask)
1746 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
1747 	return len;
1748 error:
1749 	push_args(ctx, arg);
1750 	return -1;
1751 }
1752 
1753 /** Default parsing function for token name matching. */
1754 static int
1755 parse_default(struct context *ctx, const struct token *token,
1756 	      const char *str, unsigned int len,
1757 	      void *buf, unsigned int size)
1758 {
1759 	(void)ctx;
1760 	(void)buf;
1761 	(void)size;
1762 	if (strcmp_partial(token->name, str, len))
1763 		return -1;
1764 	return len;
1765 }
1766 
1767 /** Parse flow command, initialize output buffer for subsequent tokens. */
1768 static int
1769 parse_init(struct context *ctx, const struct token *token,
1770 	   const char *str, unsigned int len,
1771 	   void *buf, unsigned int size)
1772 {
1773 	struct buffer *out = buf;
1774 
1775 	/* Token name must match. */
1776 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1777 		return -1;
1778 	/* Nothing else to do if there is no buffer. */
1779 	if (!out)
1780 		return len;
1781 	/* Make sure buffer is large enough. */
1782 	if (size < sizeof(*out))
1783 		return -1;
1784 	/* Initialize buffer. */
1785 	memset(out, 0x00, sizeof(*out));
1786 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
1787 	ctx->objdata = 0;
1788 	ctx->object = out;
1789 	ctx->objmask = NULL;
1790 	return len;
1791 }
1792 
1793 /** Parse tokens for validate/create commands. */
1794 static int
1795 parse_vc(struct context *ctx, const struct token *token,
1796 	 const char *str, unsigned int len,
1797 	 void *buf, unsigned int size)
1798 {
1799 	struct buffer *out = buf;
1800 	uint8_t *data;
1801 	uint32_t data_size;
1802 
1803 	/* Token name must match. */
1804 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1805 		return -1;
1806 	/* Nothing else to do if there is no buffer. */
1807 	if (!out)
1808 		return len;
1809 	if (!out->command) {
1810 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
1811 			return -1;
1812 		if (sizeof(*out) > size)
1813 			return -1;
1814 		out->command = ctx->curr;
1815 		ctx->objdata = 0;
1816 		ctx->object = out;
1817 		ctx->objmask = NULL;
1818 		out->args.vc.data = (uint8_t *)out + size;
1819 		return len;
1820 	}
1821 	ctx->objdata = 0;
1822 	ctx->object = &out->args.vc.attr;
1823 	ctx->objmask = NULL;
1824 	switch (ctx->curr) {
1825 	case GROUP:
1826 	case PRIORITY:
1827 		return len;
1828 	case INGRESS:
1829 		out->args.vc.attr.ingress = 1;
1830 		return len;
1831 	case EGRESS:
1832 		out->args.vc.attr.egress = 1;
1833 		return len;
1834 	case PATTERN:
1835 		out->args.vc.pattern =
1836 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1837 					       sizeof(double));
1838 		ctx->object = out->args.vc.pattern;
1839 		ctx->objmask = NULL;
1840 		return len;
1841 	case ACTIONS:
1842 		out->args.vc.actions =
1843 			(void *)RTE_ALIGN_CEIL((uintptr_t)
1844 					       (out->args.vc.pattern +
1845 						out->args.vc.pattern_n),
1846 					       sizeof(double));
1847 		ctx->object = out->args.vc.actions;
1848 		ctx->objmask = NULL;
1849 		return len;
1850 	default:
1851 		if (!token->priv)
1852 			return -1;
1853 		break;
1854 	}
1855 	if (!out->args.vc.actions) {
1856 		const struct parse_item_priv *priv = token->priv;
1857 		struct rte_flow_item *item =
1858 			out->args.vc.pattern + out->args.vc.pattern_n;
1859 
1860 		data_size = priv->size * 3; /* spec, last, mask */
1861 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1862 					       (out->args.vc.data - data_size),
1863 					       sizeof(double));
1864 		if ((uint8_t *)item + sizeof(*item) > data)
1865 			return -1;
1866 		*item = (struct rte_flow_item){
1867 			.type = priv->type,
1868 		};
1869 		++out->args.vc.pattern_n;
1870 		ctx->object = item;
1871 		ctx->objmask = NULL;
1872 	} else {
1873 		const struct parse_action_priv *priv = token->priv;
1874 		struct rte_flow_action *action =
1875 			out->args.vc.actions + out->args.vc.actions_n;
1876 
1877 		data_size = priv->size; /* configuration */
1878 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1879 					       (out->args.vc.data - data_size),
1880 					       sizeof(double));
1881 		if ((uint8_t *)action + sizeof(*action) > data)
1882 			return -1;
1883 		*action = (struct rte_flow_action){
1884 			.type = priv->type,
1885 		};
1886 		++out->args.vc.actions_n;
1887 		ctx->object = action;
1888 		ctx->objmask = NULL;
1889 	}
1890 	memset(data, 0, data_size);
1891 	out->args.vc.data = data;
1892 	ctx->objdata = data_size;
1893 	return len;
1894 }
1895 
1896 /** Parse pattern item parameter type. */
1897 static int
1898 parse_vc_spec(struct context *ctx, const struct token *token,
1899 	      const char *str, unsigned int len,
1900 	      void *buf, unsigned int size)
1901 {
1902 	struct buffer *out = buf;
1903 	struct rte_flow_item *item;
1904 	uint32_t data_size;
1905 	int index;
1906 	int objmask = 0;
1907 
1908 	(void)size;
1909 	/* Token name must match. */
1910 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1911 		return -1;
1912 	/* Parse parameter types. */
1913 	switch (ctx->curr) {
1914 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
1915 
1916 	case ITEM_PARAM_IS:
1917 		index = 0;
1918 		objmask = 1;
1919 		break;
1920 	case ITEM_PARAM_SPEC:
1921 		index = 0;
1922 		break;
1923 	case ITEM_PARAM_LAST:
1924 		index = 1;
1925 		break;
1926 	case ITEM_PARAM_PREFIX:
1927 		/* Modify next token to expect a prefix. */
1928 		if (ctx->next_num < 2)
1929 			return -1;
1930 		ctx->next[ctx->next_num - 2] = prefix;
1931 		/* Fall through. */
1932 	case ITEM_PARAM_MASK:
1933 		index = 2;
1934 		break;
1935 	default:
1936 		return -1;
1937 	}
1938 	/* Nothing else to do if there is no buffer. */
1939 	if (!out)
1940 		return len;
1941 	if (!out->args.vc.pattern_n)
1942 		return -1;
1943 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
1944 	data_size = ctx->objdata / 3; /* spec, last, mask */
1945 	/* Point to selected object. */
1946 	ctx->object = out->args.vc.data + (data_size * index);
1947 	if (objmask) {
1948 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
1949 		item->mask = ctx->objmask;
1950 	} else
1951 		ctx->objmask = NULL;
1952 	/* Update relevant item pointer. */
1953 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
1954 		ctx->object;
1955 	return len;
1956 }
1957 
1958 /** Parse action configuration field. */
1959 static int
1960 parse_vc_conf(struct context *ctx, const struct token *token,
1961 	      const char *str, unsigned int len,
1962 	      void *buf, unsigned int size)
1963 {
1964 	struct buffer *out = buf;
1965 	struct rte_flow_action *action;
1966 
1967 	(void)size;
1968 	/* Token name must match. */
1969 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1970 		return -1;
1971 	/* Nothing else to do if there is no buffer. */
1972 	if (!out)
1973 		return len;
1974 	if (!out->args.vc.actions_n)
1975 		return -1;
1976 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
1977 	/* Point to selected object. */
1978 	ctx->object = out->args.vc.data;
1979 	ctx->objmask = NULL;
1980 	/* Update configuration pointer. */
1981 	action->conf = ctx->object;
1982 	return len;
1983 }
1984 
1985 /**
1986  * Parse queue field for RSS action.
1987  *
1988  * Valid tokens are queue indices and the "end" token.
1989  */
1990 static int
1991 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
1992 			  const char *str, unsigned int len,
1993 			  void *buf, unsigned int size)
1994 {
1995 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
1996 	int ret;
1997 	int i;
1998 
1999 	(void)token;
2000 	(void)buf;
2001 	(void)size;
2002 	if (ctx->curr != ACTION_RSS_QUEUE)
2003 		return -1;
2004 	i = ctx->objdata >> 16;
2005 	if (!strcmp_partial("end", str, len)) {
2006 		ctx->objdata &= 0xffff;
2007 		return len;
2008 	}
2009 	if (i >= ACTION_RSS_NUM)
2010 		return -1;
2011 	if (push_args(ctx, ARGS_ENTRY(struct rte_flow_action_rss, queue[i])))
2012 		return -1;
2013 	ret = parse_int(ctx, token, str, len, NULL, 0);
2014 	if (ret < 0) {
2015 		pop_args(ctx);
2016 		return -1;
2017 	}
2018 	++i;
2019 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
2020 	/* Repeat token. */
2021 	if (ctx->next_num == RTE_DIM(ctx->next))
2022 		return -1;
2023 	ctx->next[ctx->next_num++] = next;
2024 	if (!ctx->object)
2025 		return len;
2026 	((struct rte_flow_action_rss *)ctx->object)->num = i;
2027 	return len;
2028 }
2029 
2030 /** Parse tokens for destroy command. */
2031 static int
2032 parse_destroy(struct context *ctx, const struct token *token,
2033 	      const char *str, unsigned int len,
2034 	      void *buf, unsigned int size)
2035 {
2036 	struct buffer *out = buf;
2037 
2038 	/* Token name must match. */
2039 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2040 		return -1;
2041 	/* Nothing else to do if there is no buffer. */
2042 	if (!out)
2043 		return len;
2044 	if (!out->command) {
2045 		if (ctx->curr != DESTROY)
2046 			return -1;
2047 		if (sizeof(*out) > size)
2048 			return -1;
2049 		out->command = ctx->curr;
2050 		ctx->objdata = 0;
2051 		ctx->object = out;
2052 		ctx->objmask = NULL;
2053 		out->args.destroy.rule =
2054 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2055 					       sizeof(double));
2056 		return len;
2057 	}
2058 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
2059 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
2060 		return -1;
2061 	ctx->objdata = 0;
2062 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
2063 	ctx->objmask = NULL;
2064 	return len;
2065 }
2066 
2067 /** Parse tokens for flush command. */
2068 static int
2069 parse_flush(struct context *ctx, const struct token *token,
2070 	    const char *str, unsigned int len,
2071 	    void *buf, unsigned int size)
2072 {
2073 	struct buffer *out = buf;
2074 
2075 	/* Token name must match. */
2076 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2077 		return -1;
2078 	/* Nothing else to do if there is no buffer. */
2079 	if (!out)
2080 		return len;
2081 	if (!out->command) {
2082 		if (ctx->curr != FLUSH)
2083 			return -1;
2084 		if (sizeof(*out) > size)
2085 			return -1;
2086 		out->command = ctx->curr;
2087 		ctx->objdata = 0;
2088 		ctx->object = out;
2089 		ctx->objmask = NULL;
2090 	}
2091 	return len;
2092 }
2093 
2094 /** Parse tokens for query command. */
2095 static int
2096 parse_query(struct context *ctx, const struct token *token,
2097 	    const char *str, unsigned int len,
2098 	    void *buf, unsigned int size)
2099 {
2100 	struct buffer *out = buf;
2101 
2102 	/* Token name must match. */
2103 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2104 		return -1;
2105 	/* Nothing else to do if there is no buffer. */
2106 	if (!out)
2107 		return len;
2108 	if (!out->command) {
2109 		if (ctx->curr != QUERY)
2110 			return -1;
2111 		if (sizeof(*out) > size)
2112 			return -1;
2113 		out->command = ctx->curr;
2114 		ctx->objdata = 0;
2115 		ctx->object = out;
2116 		ctx->objmask = NULL;
2117 	}
2118 	return len;
2119 }
2120 
2121 /** Parse action names. */
2122 static int
2123 parse_action(struct context *ctx, const struct token *token,
2124 	     const char *str, unsigned int len,
2125 	     void *buf, unsigned int size)
2126 {
2127 	struct buffer *out = buf;
2128 	const struct arg *arg = pop_args(ctx);
2129 	unsigned int i;
2130 
2131 	(void)size;
2132 	/* Argument is expected. */
2133 	if (!arg)
2134 		return -1;
2135 	/* Parse action name. */
2136 	for (i = 0; next_action[i]; ++i) {
2137 		const struct parse_action_priv *priv;
2138 
2139 		token = &token_list[next_action[i]];
2140 		if (strcmp_partial(token->name, str, len))
2141 			continue;
2142 		priv = token->priv;
2143 		if (!priv)
2144 			goto error;
2145 		if (out)
2146 			memcpy((uint8_t *)ctx->object + arg->offset,
2147 			       &priv->type,
2148 			       arg->size);
2149 		return len;
2150 	}
2151 error:
2152 	push_args(ctx, arg);
2153 	return -1;
2154 }
2155 
2156 /** Parse tokens for list command. */
2157 static int
2158 parse_list(struct context *ctx, const struct token *token,
2159 	   const char *str, unsigned int len,
2160 	   void *buf, unsigned int size)
2161 {
2162 	struct buffer *out = buf;
2163 
2164 	/* Token name must match. */
2165 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2166 		return -1;
2167 	/* Nothing else to do if there is no buffer. */
2168 	if (!out)
2169 		return len;
2170 	if (!out->command) {
2171 		if (ctx->curr != LIST)
2172 			return -1;
2173 		if (sizeof(*out) > size)
2174 			return -1;
2175 		out->command = ctx->curr;
2176 		ctx->objdata = 0;
2177 		ctx->object = out;
2178 		ctx->objmask = NULL;
2179 		out->args.list.group =
2180 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2181 					       sizeof(double));
2182 		return len;
2183 	}
2184 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
2185 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
2186 		return -1;
2187 	ctx->objdata = 0;
2188 	ctx->object = out->args.list.group + out->args.list.group_n++;
2189 	ctx->objmask = NULL;
2190 	return len;
2191 }
2192 
2193 /** Parse tokens for isolate command. */
2194 static int
2195 parse_isolate(struct context *ctx, const struct token *token,
2196 	      const char *str, unsigned int len,
2197 	      void *buf, unsigned int size)
2198 {
2199 	struct buffer *out = buf;
2200 
2201 	/* Token name must match. */
2202 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2203 		return -1;
2204 	/* Nothing else to do if there is no buffer. */
2205 	if (!out)
2206 		return len;
2207 	if (!out->command) {
2208 		if (ctx->curr != ISOLATE)
2209 			return -1;
2210 		if (sizeof(*out) > size)
2211 			return -1;
2212 		out->command = ctx->curr;
2213 		ctx->objdata = 0;
2214 		ctx->object = out;
2215 		ctx->objmask = NULL;
2216 	}
2217 	return len;
2218 }
2219 
2220 /**
2221  * Parse signed/unsigned integers 8 to 64-bit long.
2222  *
2223  * Last argument (ctx->args) is retrieved to determine integer type and
2224  * storage location.
2225  */
2226 static int
2227 parse_int(struct context *ctx, const struct token *token,
2228 	  const char *str, unsigned int len,
2229 	  void *buf, unsigned int size)
2230 {
2231 	const struct arg *arg = pop_args(ctx);
2232 	uintmax_t u;
2233 	char *end;
2234 
2235 	(void)token;
2236 	/* Argument is expected. */
2237 	if (!arg)
2238 		return -1;
2239 	errno = 0;
2240 	u = arg->sign ?
2241 		(uintmax_t)strtoimax(str, &end, 0) :
2242 		strtoumax(str, &end, 0);
2243 	if (errno || (size_t)(end - str) != len)
2244 		goto error;
2245 	if (!ctx->object)
2246 		return len;
2247 	if (arg->mask) {
2248 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2249 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2250 			goto error;
2251 		return len;
2252 	}
2253 	buf = (uint8_t *)ctx->object + arg->offset;
2254 	size = arg->size;
2255 objmask:
2256 	switch (size) {
2257 	case sizeof(uint8_t):
2258 		*(uint8_t *)buf = u;
2259 		break;
2260 	case sizeof(uint16_t):
2261 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2262 		break;
2263 	case sizeof(uint8_t [3]):
2264 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2265 		if (!arg->hton) {
2266 			((uint8_t *)buf)[0] = u;
2267 			((uint8_t *)buf)[1] = u >> 8;
2268 			((uint8_t *)buf)[2] = u >> 16;
2269 			break;
2270 		}
2271 #endif
2272 		((uint8_t *)buf)[0] = u >> 16;
2273 		((uint8_t *)buf)[1] = u >> 8;
2274 		((uint8_t *)buf)[2] = u;
2275 		break;
2276 	case sizeof(uint32_t):
2277 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2278 		break;
2279 	case sizeof(uint64_t):
2280 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2281 		break;
2282 	default:
2283 		goto error;
2284 	}
2285 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2286 		u = -1;
2287 		buf = (uint8_t *)ctx->objmask + arg->offset;
2288 		goto objmask;
2289 	}
2290 	return len;
2291 error:
2292 	push_args(ctx, arg);
2293 	return -1;
2294 }
2295 
2296 /**
2297  * Parse a string.
2298  *
2299  * Two arguments (ctx->args) are retrieved from the stack to store data and
2300  * its length (in that order).
2301  */
2302 static int
2303 parse_string(struct context *ctx, const struct token *token,
2304 	     const char *str, unsigned int len,
2305 	     void *buf, unsigned int size)
2306 {
2307 	const struct arg *arg_data = pop_args(ctx);
2308 	const struct arg *arg_len = pop_args(ctx);
2309 	char tmp[16]; /* Ought to be enough. */
2310 	int ret;
2311 
2312 	/* Arguments are expected. */
2313 	if (!arg_data)
2314 		return -1;
2315 	if (!arg_len) {
2316 		push_args(ctx, arg_data);
2317 		return -1;
2318 	}
2319 	size = arg_data->size;
2320 	/* Bit-mask fill is not supported. */
2321 	if (arg_data->mask || size < len)
2322 		goto error;
2323 	if (!ctx->object)
2324 		return len;
2325 	/* Let parse_int() fill length information first. */
2326 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
2327 	if (ret < 0)
2328 		goto error;
2329 	push_args(ctx, arg_len);
2330 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2331 	if (ret < 0) {
2332 		pop_args(ctx);
2333 		goto error;
2334 	}
2335 	buf = (uint8_t *)ctx->object + arg_data->offset;
2336 	/* Output buffer is not necessarily NUL-terminated. */
2337 	memcpy(buf, str, len);
2338 	memset((uint8_t *)buf + len, 0x55, size - len);
2339 	if (ctx->objmask)
2340 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2341 	return len;
2342 error:
2343 	push_args(ctx, arg_len);
2344 	push_args(ctx, arg_data);
2345 	return -1;
2346 }
2347 
2348 /**
2349  * Parse a MAC address.
2350  *
2351  * Last argument (ctx->args) is retrieved to determine storage size and
2352  * location.
2353  */
2354 static int
2355 parse_mac_addr(struct context *ctx, const struct token *token,
2356 	       const char *str, unsigned int len,
2357 	       void *buf, unsigned int size)
2358 {
2359 	const struct arg *arg = pop_args(ctx);
2360 	struct ether_addr tmp;
2361 	int ret;
2362 
2363 	(void)token;
2364 	/* Argument is expected. */
2365 	if (!arg)
2366 		return -1;
2367 	size = arg->size;
2368 	/* Bit-mask fill is not supported. */
2369 	if (arg->mask || size != sizeof(tmp))
2370 		goto error;
2371 	/* Only network endian is supported. */
2372 	if (!arg->hton)
2373 		goto error;
2374 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
2375 	if (ret < 0 || (unsigned int)ret != len)
2376 		goto error;
2377 	if (!ctx->object)
2378 		return len;
2379 	buf = (uint8_t *)ctx->object + arg->offset;
2380 	memcpy(buf, &tmp, size);
2381 	if (ctx->objmask)
2382 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2383 	return len;
2384 error:
2385 	push_args(ctx, arg);
2386 	return -1;
2387 }
2388 
2389 /**
2390  * Parse an IPv4 address.
2391  *
2392  * Last argument (ctx->args) is retrieved to determine storage size and
2393  * location.
2394  */
2395 static int
2396 parse_ipv4_addr(struct context *ctx, const struct token *token,
2397 		const char *str, unsigned int len,
2398 		void *buf, unsigned int size)
2399 {
2400 	const struct arg *arg = pop_args(ctx);
2401 	char str2[len + 1];
2402 	struct in_addr tmp;
2403 	int ret;
2404 
2405 	/* Argument is expected. */
2406 	if (!arg)
2407 		return -1;
2408 	size = arg->size;
2409 	/* Bit-mask fill is not supported. */
2410 	if (arg->mask || size != sizeof(tmp))
2411 		goto error;
2412 	/* Only network endian is supported. */
2413 	if (!arg->hton)
2414 		goto error;
2415 	memcpy(str2, str, len);
2416 	str2[len] = '\0';
2417 	ret = inet_pton(AF_INET, str2, &tmp);
2418 	if (ret != 1) {
2419 		/* Attempt integer parsing. */
2420 		push_args(ctx, arg);
2421 		return parse_int(ctx, token, str, len, buf, size);
2422 	}
2423 	if (!ctx->object)
2424 		return len;
2425 	buf = (uint8_t *)ctx->object + arg->offset;
2426 	memcpy(buf, &tmp, size);
2427 	if (ctx->objmask)
2428 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2429 	return len;
2430 error:
2431 	push_args(ctx, arg);
2432 	return -1;
2433 }
2434 
2435 /**
2436  * Parse an IPv6 address.
2437  *
2438  * Last argument (ctx->args) is retrieved to determine storage size and
2439  * location.
2440  */
2441 static int
2442 parse_ipv6_addr(struct context *ctx, const struct token *token,
2443 		const char *str, unsigned int len,
2444 		void *buf, unsigned int size)
2445 {
2446 	const struct arg *arg = pop_args(ctx);
2447 	char str2[len + 1];
2448 	struct in6_addr tmp;
2449 	int ret;
2450 
2451 	(void)token;
2452 	/* Argument is expected. */
2453 	if (!arg)
2454 		return -1;
2455 	size = arg->size;
2456 	/* Bit-mask fill is not supported. */
2457 	if (arg->mask || size != sizeof(tmp))
2458 		goto error;
2459 	/* Only network endian is supported. */
2460 	if (!arg->hton)
2461 		goto error;
2462 	memcpy(str2, str, len);
2463 	str2[len] = '\0';
2464 	ret = inet_pton(AF_INET6, str2, &tmp);
2465 	if (ret != 1)
2466 		goto error;
2467 	if (!ctx->object)
2468 		return len;
2469 	buf = (uint8_t *)ctx->object + arg->offset;
2470 	memcpy(buf, &tmp, size);
2471 	if (ctx->objmask)
2472 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2473 	return len;
2474 error:
2475 	push_args(ctx, arg);
2476 	return -1;
2477 }
2478 
2479 /** Boolean values (even indices stand for false). */
2480 static const char *const boolean_name[] = {
2481 	"0", "1",
2482 	"false", "true",
2483 	"no", "yes",
2484 	"N", "Y",
2485 	NULL,
2486 };
2487 
2488 /**
2489  * Parse a boolean value.
2490  *
2491  * Last argument (ctx->args) is retrieved to determine storage size and
2492  * location.
2493  */
2494 static int
2495 parse_boolean(struct context *ctx, const struct token *token,
2496 	      const char *str, unsigned int len,
2497 	      void *buf, unsigned int size)
2498 {
2499 	const struct arg *arg = pop_args(ctx);
2500 	unsigned int i;
2501 	int ret;
2502 
2503 	/* Argument is expected. */
2504 	if (!arg)
2505 		return -1;
2506 	for (i = 0; boolean_name[i]; ++i)
2507 		if (!strcmp_partial(boolean_name[i], str, len))
2508 			break;
2509 	/* Process token as integer. */
2510 	if (boolean_name[i])
2511 		str = i & 1 ? "1" : "0";
2512 	push_args(ctx, arg);
2513 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
2514 	return ret > 0 ? (int)len : ret;
2515 }
2516 
2517 /** Parse port and update context. */
2518 static int
2519 parse_port(struct context *ctx, const struct token *token,
2520 	   const char *str, unsigned int len,
2521 	   void *buf, unsigned int size)
2522 {
2523 	struct buffer *out = &(struct buffer){ .port = 0 };
2524 	int ret;
2525 
2526 	if (buf)
2527 		out = buf;
2528 	else {
2529 		ctx->objdata = 0;
2530 		ctx->object = out;
2531 		ctx->objmask = NULL;
2532 		size = sizeof(*out);
2533 	}
2534 	ret = parse_int(ctx, token, str, len, out, size);
2535 	if (ret >= 0)
2536 		ctx->port = out->port;
2537 	if (!buf)
2538 		ctx->object = NULL;
2539 	return ret;
2540 }
2541 
2542 /** No completion. */
2543 static int
2544 comp_none(struct context *ctx, const struct token *token,
2545 	  unsigned int ent, char *buf, unsigned int size)
2546 {
2547 	(void)ctx;
2548 	(void)token;
2549 	(void)ent;
2550 	(void)buf;
2551 	(void)size;
2552 	return 0;
2553 }
2554 
2555 /** Complete boolean values. */
2556 static int
2557 comp_boolean(struct context *ctx, const struct token *token,
2558 	     unsigned int ent, char *buf, unsigned int size)
2559 {
2560 	unsigned int i;
2561 
2562 	(void)ctx;
2563 	(void)token;
2564 	for (i = 0; boolean_name[i]; ++i)
2565 		if (buf && i == ent)
2566 			return snprintf(buf, size, "%s", boolean_name[i]);
2567 	if (buf)
2568 		return -1;
2569 	return i;
2570 }
2571 
2572 /** Complete action names. */
2573 static int
2574 comp_action(struct context *ctx, const struct token *token,
2575 	    unsigned int ent, char *buf, unsigned int size)
2576 {
2577 	unsigned int i;
2578 
2579 	(void)ctx;
2580 	(void)token;
2581 	for (i = 0; next_action[i]; ++i)
2582 		if (buf && i == ent)
2583 			return snprintf(buf, size, "%s",
2584 					token_list[next_action[i]].name);
2585 	if (buf)
2586 		return -1;
2587 	return i;
2588 }
2589 
2590 /** Complete available ports. */
2591 static int
2592 comp_port(struct context *ctx, const struct token *token,
2593 	  unsigned int ent, char *buf, unsigned int size)
2594 {
2595 	unsigned int i = 0;
2596 	portid_t p;
2597 
2598 	(void)ctx;
2599 	(void)token;
2600 	RTE_ETH_FOREACH_DEV(p) {
2601 		if (buf && i == ent)
2602 			return snprintf(buf, size, "%u", p);
2603 		++i;
2604 	}
2605 	if (buf)
2606 		return -1;
2607 	return i;
2608 }
2609 
2610 /** Complete available rule IDs. */
2611 static int
2612 comp_rule_id(struct context *ctx, const struct token *token,
2613 	     unsigned int ent, char *buf, unsigned int size)
2614 {
2615 	unsigned int i = 0;
2616 	struct rte_port *port;
2617 	struct port_flow *pf;
2618 
2619 	(void)token;
2620 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
2621 	    ctx->port == (uint16_t)RTE_PORT_ALL)
2622 		return -1;
2623 	port = &ports[ctx->port];
2624 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2625 		if (buf && i == ent)
2626 			return snprintf(buf, size, "%u", pf->id);
2627 		++i;
2628 	}
2629 	if (buf)
2630 		return -1;
2631 	return i;
2632 }
2633 
2634 /** Complete queue field for RSS action. */
2635 static int
2636 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
2637 			 unsigned int ent, char *buf, unsigned int size)
2638 {
2639 	static const char *const str[] = { "", "end", NULL };
2640 	unsigned int i;
2641 
2642 	(void)ctx;
2643 	(void)token;
2644 	for (i = 0; str[i] != NULL; ++i)
2645 		if (buf && i == ent)
2646 			return snprintf(buf, size, "%s", str[i]);
2647 	if (buf)
2648 		return -1;
2649 	return i;
2650 }
2651 
2652 /** Internal context. */
2653 static struct context cmd_flow_context;
2654 
2655 /** Global parser instance (cmdline API). */
2656 cmdline_parse_inst_t cmd_flow;
2657 
2658 /** Initialize context. */
2659 static void
2660 cmd_flow_context_init(struct context *ctx)
2661 {
2662 	/* A full memset() is not necessary. */
2663 	ctx->curr = ZERO;
2664 	ctx->prev = ZERO;
2665 	ctx->next_num = 0;
2666 	ctx->args_num = 0;
2667 	ctx->eol = 0;
2668 	ctx->last = 0;
2669 	ctx->port = 0;
2670 	ctx->objdata = 0;
2671 	ctx->object = NULL;
2672 	ctx->objmask = NULL;
2673 }
2674 
2675 /** Parse a token (cmdline API). */
2676 static int
2677 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
2678 	       unsigned int size)
2679 {
2680 	struct context *ctx = &cmd_flow_context;
2681 	const struct token *token;
2682 	const enum index *list;
2683 	int len;
2684 	int i;
2685 
2686 	(void)hdr;
2687 	token = &token_list[ctx->curr];
2688 	/* Check argument length. */
2689 	ctx->eol = 0;
2690 	ctx->last = 1;
2691 	for (len = 0; src[len]; ++len)
2692 		if (src[len] == '#' || isspace(src[len]))
2693 			break;
2694 	if (!len)
2695 		return -1;
2696 	/* Last argument and EOL detection. */
2697 	for (i = len; src[i]; ++i)
2698 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
2699 			break;
2700 		else if (!isspace(src[i])) {
2701 			ctx->last = 0;
2702 			break;
2703 		}
2704 	for (; src[i]; ++i)
2705 		if (src[i] == '\r' || src[i] == '\n') {
2706 			ctx->eol = 1;
2707 			break;
2708 		}
2709 	/* Initialize context if necessary. */
2710 	if (!ctx->next_num) {
2711 		if (!token->next)
2712 			return 0;
2713 		ctx->next[ctx->next_num++] = token->next[0];
2714 	}
2715 	/* Process argument through candidates. */
2716 	ctx->prev = ctx->curr;
2717 	list = ctx->next[ctx->next_num - 1];
2718 	for (i = 0; list[i]; ++i) {
2719 		const struct token *next = &token_list[list[i]];
2720 		int tmp;
2721 
2722 		ctx->curr = list[i];
2723 		if (next->call)
2724 			tmp = next->call(ctx, next, src, len, result, size);
2725 		else
2726 			tmp = parse_default(ctx, next, src, len, result, size);
2727 		if (tmp == -1 || tmp != len)
2728 			continue;
2729 		token = next;
2730 		break;
2731 	}
2732 	if (!list[i])
2733 		return -1;
2734 	--ctx->next_num;
2735 	/* Push subsequent tokens if any. */
2736 	if (token->next)
2737 		for (i = 0; token->next[i]; ++i) {
2738 			if (ctx->next_num == RTE_DIM(ctx->next))
2739 				return -1;
2740 			ctx->next[ctx->next_num++] = token->next[i];
2741 		}
2742 	/* Push arguments if any. */
2743 	if (token->args)
2744 		for (i = 0; token->args[i]; ++i) {
2745 			if (ctx->args_num == RTE_DIM(ctx->args))
2746 				return -1;
2747 			ctx->args[ctx->args_num++] = token->args[i];
2748 		}
2749 	return len;
2750 }
2751 
2752 /** Return number of completion entries (cmdline API). */
2753 static int
2754 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
2755 {
2756 	struct context *ctx = &cmd_flow_context;
2757 	const struct token *token = &token_list[ctx->curr];
2758 	const enum index *list;
2759 	int i;
2760 
2761 	(void)hdr;
2762 	/* Count number of tokens in current list. */
2763 	if (ctx->next_num)
2764 		list = ctx->next[ctx->next_num - 1];
2765 	else
2766 		list = token->next[0];
2767 	for (i = 0; list[i]; ++i)
2768 		;
2769 	if (!i)
2770 		return 0;
2771 	/*
2772 	 * If there is a single token, use its completion callback, otherwise
2773 	 * return the number of entries.
2774 	 */
2775 	token = &token_list[list[0]];
2776 	if (i == 1 && token->comp) {
2777 		/* Save index for cmd_flow_get_help(). */
2778 		ctx->prev = list[0];
2779 		return token->comp(ctx, token, 0, NULL, 0);
2780 	}
2781 	return i;
2782 }
2783 
2784 /** Return a completion entry (cmdline API). */
2785 static int
2786 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
2787 			  char *dst, unsigned int size)
2788 {
2789 	struct context *ctx = &cmd_flow_context;
2790 	const struct token *token = &token_list[ctx->curr];
2791 	const enum index *list;
2792 	int i;
2793 
2794 	(void)hdr;
2795 	/* Count number of tokens in current list. */
2796 	if (ctx->next_num)
2797 		list = ctx->next[ctx->next_num - 1];
2798 	else
2799 		list = token->next[0];
2800 	for (i = 0; list[i]; ++i)
2801 		;
2802 	if (!i)
2803 		return -1;
2804 	/* If there is a single token, use its completion callback. */
2805 	token = &token_list[list[0]];
2806 	if (i == 1 && token->comp) {
2807 		/* Save index for cmd_flow_get_help(). */
2808 		ctx->prev = list[0];
2809 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
2810 	}
2811 	/* Otherwise make sure the index is valid and use defaults. */
2812 	if (index >= i)
2813 		return -1;
2814 	token = &token_list[list[index]];
2815 	snprintf(dst, size, "%s", token->name);
2816 	/* Save index for cmd_flow_get_help(). */
2817 	ctx->prev = list[index];
2818 	return 0;
2819 }
2820 
2821 /** Populate help strings for current token (cmdline API). */
2822 static int
2823 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
2824 {
2825 	struct context *ctx = &cmd_flow_context;
2826 	const struct token *token = &token_list[ctx->prev];
2827 
2828 	(void)hdr;
2829 	if (!size)
2830 		return -1;
2831 	/* Set token type and update global help with details. */
2832 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
2833 	if (token->help)
2834 		cmd_flow.help_str = token->help;
2835 	else
2836 		cmd_flow.help_str = token->name;
2837 	return 0;
2838 }
2839 
2840 /** Token definition template (cmdline API). */
2841 static struct cmdline_token_hdr cmd_flow_token_hdr = {
2842 	.ops = &(struct cmdline_token_ops){
2843 		.parse = cmd_flow_parse,
2844 		.complete_get_nb = cmd_flow_complete_get_nb,
2845 		.complete_get_elt = cmd_flow_complete_get_elt,
2846 		.get_help = cmd_flow_get_help,
2847 	},
2848 	.offset = 0,
2849 };
2850 
2851 /** Populate the next dynamic token. */
2852 static void
2853 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
2854 	     cmdline_parse_token_hdr_t **hdr_inst)
2855 {
2856 	struct context *ctx = &cmd_flow_context;
2857 
2858 	/* Always reinitialize context before requesting the first token. */
2859 	if (!(hdr_inst - cmd_flow.tokens))
2860 		cmd_flow_context_init(ctx);
2861 	/* Return NULL when no more tokens are expected. */
2862 	if (!ctx->next_num && ctx->curr) {
2863 		*hdr = NULL;
2864 		return;
2865 	}
2866 	/* Determine if command should end here. */
2867 	if (ctx->eol && ctx->last && ctx->next_num) {
2868 		const enum index *list = ctx->next[ctx->next_num - 1];
2869 		int i;
2870 
2871 		for (i = 0; list[i]; ++i) {
2872 			if (list[i] != END)
2873 				continue;
2874 			*hdr = NULL;
2875 			return;
2876 		}
2877 	}
2878 	*hdr = &cmd_flow_token_hdr;
2879 }
2880 
2881 /** Dispatch parsed buffer to function calls. */
2882 static void
2883 cmd_flow_parsed(const struct buffer *in)
2884 {
2885 	switch (in->command) {
2886 	case VALIDATE:
2887 		port_flow_validate(in->port, &in->args.vc.attr,
2888 				   in->args.vc.pattern, in->args.vc.actions);
2889 		break;
2890 	case CREATE:
2891 		port_flow_create(in->port, &in->args.vc.attr,
2892 				 in->args.vc.pattern, in->args.vc.actions);
2893 		break;
2894 	case DESTROY:
2895 		port_flow_destroy(in->port, in->args.destroy.rule_n,
2896 				  in->args.destroy.rule);
2897 		break;
2898 	case FLUSH:
2899 		port_flow_flush(in->port);
2900 		break;
2901 	case QUERY:
2902 		port_flow_query(in->port, in->args.query.rule,
2903 				in->args.query.action);
2904 		break;
2905 	case LIST:
2906 		port_flow_list(in->port, in->args.list.group_n,
2907 			       in->args.list.group);
2908 		break;
2909 	case ISOLATE:
2910 		port_flow_isolate(in->port, in->args.isolate.set);
2911 		break;
2912 	default:
2913 		break;
2914 	}
2915 }
2916 
2917 /** Token generator and output processing callback (cmdline API). */
2918 static void
2919 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
2920 {
2921 	if (cl == NULL)
2922 		cmd_flow_tok(arg0, arg2);
2923 	else
2924 		cmd_flow_parsed(arg0);
2925 }
2926 
2927 /** Global parser instance (cmdline API). */
2928 cmdline_parse_inst_t cmd_flow = {
2929 	.f = cmd_flow_cb,
2930 	.data = NULL, /**< Unused. */
2931 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
2932 	.tokens = {
2933 		NULL,
2934 	}, /**< Tokens are returned by cmd_flow_tok(). */
2935 };
2936