xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 4dff9e297606b7a1ac13b822f970692d663d88a3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_MARK,
95 	ITEM_MARK_ID,
96 	ITEM_RAW,
97 	ITEM_RAW_RELATIVE,
98 	ITEM_RAW_SEARCH,
99 	ITEM_RAW_OFFSET,
100 	ITEM_RAW_LIMIT,
101 	ITEM_RAW_PATTERN,
102 	ITEM_ETH,
103 	ITEM_ETH_DST,
104 	ITEM_ETH_SRC,
105 	ITEM_ETH_TYPE,
106 	ITEM_VLAN,
107 	ITEM_VLAN_TCI,
108 	ITEM_VLAN_PCP,
109 	ITEM_VLAN_DEI,
110 	ITEM_VLAN_VID,
111 	ITEM_VLAN_INNER_TYPE,
112 	ITEM_IPV4,
113 	ITEM_IPV4_TOS,
114 	ITEM_IPV4_TTL,
115 	ITEM_IPV4_PROTO,
116 	ITEM_IPV4_SRC,
117 	ITEM_IPV4_DST,
118 	ITEM_IPV6,
119 	ITEM_IPV6_TC,
120 	ITEM_IPV6_FLOW,
121 	ITEM_IPV6_PROTO,
122 	ITEM_IPV6_HOP,
123 	ITEM_IPV6_SRC,
124 	ITEM_IPV6_DST,
125 	ITEM_ICMP,
126 	ITEM_ICMP_TYPE,
127 	ITEM_ICMP_CODE,
128 	ITEM_UDP,
129 	ITEM_UDP_SRC,
130 	ITEM_UDP_DST,
131 	ITEM_TCP,
132 	ITEM_TCP_SRC,
133 	ITEM_TCP_DST,
134 	ITEM_TCP_FLAGS,
135 	ITEM_SCTP,
136 	ITEM_SCTP_SRC,
137 	ITEM_SCTP_DST,
138 	ITEM_SCTP_TAG,
139 	ITEM_SCTP_CKSUM,
140 	ITEM_VXLAN,
141 	ITEM_VXLAN_VNI,
142 	ITEM_E_TAG,
143 	ITEM_E_TAG_GRP_ECID_B,
144 	ITEM_NVGRE,
145 	ITEM_NVGRE_TNI,
146 	ITEM_MPLS,
147 	ITEM_MPLS_LABEL,
148 	ITEM_GRE,
149 	ITEM_GRE_PROTO,
150 	ITEM_FUZZY,
151 	ITEM_FUZZY_THRESH,
152 	ITEM_GTP,
153 	ITEM_GTP_TEID,
154 	ITEM_GTPC,
155 	ITEM_GTPU,
156 	ITEM_GENEVE,
157 	ITEM_GENEVE_VNI,
158 	ITEM_GENEVE_PROTO,
159 	ITEM_VXLAN_GPE,
160 	ITEM_VXLAN_GPE_VNI,
161 	ITEM_ARP_ETH_IPV4,
162 	ITEM_ARP_ETH_IPV4_SHA,
163 	ITEM_ARP_ETH_IPV4_SPA,
164 	ITEM_ARP_ETH_IPV4_THA,
165 	ITEM_ARP_ETH_IPV4_TPA,
166 	ITEM_IPV6_EXT,
167 	ITEM_IPV6_EXT_NEXT_HDR,
168 	ITEM_ICMP6,
169 	ITEM_ICMP6_TYPE,
170 	ITEM_ICMP6_CODE,
171 	ITEM_ICMP6_ND_NS,
172 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
173 	ITEM_ICMP6_ND_NA,
174 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
175 	ITEM_ICMP6_ND_OPT,
176 	ITEM_ICMP6_ND_OPT_TYPE,
177 	ITEM_ICMP6_ND_OPT_SLA_ETH,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
179 	ITEM_ICMP6_ND_OPT_TLA_ETH,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
181 
182 	/* Validate/create actions. */
183 	ACTIONS,
184 	ACTION_NEXT,
185 	ACTION_END,
186 	ACTION_VOID,
187 	ACTION_PASSTHRU,
188 	ACTION_JUMP,
189 	ACTION_JUMP_GROUP,
190 	ACTION_MARK,
191 	ACTION_MARK_ID,
192 	ACTION_FLAG,
193 	ACTION_QUEUE,
194 	ACTION_QUEUE_INDEX,
195 	ACTION_DROP,
196 	ACTION_COUNT,
197 	ACTION_COUNT_SHARED,
198 	ACTION_COUNT_ID,
199 	ACTION_RSS,
200 	ACTION_RSS_FUNC,
201 	ACTION_RSS_LEVEL,
202 	ACTION_RSS_FUNC_DEFAULT,
203 	ACTION_RSS_FUNC_TOEPLITZ,
204 	ACTION_RSS_FUNC_SIMPLE_XOR,
205 	ACTION_RSS_TYPES,
206 	ACTION_RSS_TYPE,
207 	ACTION_RSS_KEY,
208 	ACTION_RSS_KEY_LEN,
209 	ACTION_RSS_QUEUES,
210 	ACTION_RSS_QUEUE,
211 	ACTION_PF,
212 	ACTION_VF,
213 	ACTION_VF_ORIGINAL,
214 	ACTION_VF_ID,
215 	ACTION_PHY_PORT,
216 	ACTION_PHY_PORT_ORIGINAL,
217 	ACTION_PHY_PORT_INDEX,
218 	ACTION_PORT_ID,
219 	ACTION_PORT_ID_ORIGINAL,
220 	ACTION_PORT_ID_ID,
221 	ACTION_METER,
222 	ACTION_METER_ID,
223 	ACTION_OF_SET_MPLS_TTL,
224 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
225 	ACTION_OF_DEC_MPLS_TTL,
226 	ACTION_OF_SET_NW_TTL,
227 	ACTION_OF_SET_NW_TTL_NW_TTL,
228 	ACTION_OF_DEC_NW_TTL,
229 	ACTION_OF_COPY_TTL_OUT,
230 	ACTION_OF_COPY_TTL_IN,
231 	ACTION_OF_POP_VLAN,
232 	ACTION_OF_PUSH_VLAN,
233 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
234 	ACTION_OF_SET_VLAN_VID,
235 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
236 	ACTION_OF_SET_VLAN_PCP,
237 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
238 	ACTION_OF_POP_MPLS,
239 	ACTION_OF_POP_MPLS_ETHERTYPE,
240 	ACTION_OF_PUSH_MPLS,
241 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
242 	ACTION_VXLAN_ENCAP,
243 	ACTION_VXLAN_DECAP,
244 	ACTION_NVGRE_ENCAP,
245 	ACTION_NVGRE_DECAP,
246 	ACTION_SET_IPV4_SRC,
247 	ACTION_SET_IPV4_SRC_IPV4_SRC,
248 	ACTION_SET_IPV4_DST,
249 	ACTION_SET_IPV4_DST_IPV4_DST,
250 	ACTION_SET_IPV6_SRC,
251 	ACTION_SET_IPV6_SRC_IPV6_SRC,
252 	ACTION_SET_IPV6_DST,
253 	ACTION_SET_IPV6_DST_IPV6_DST,
254 	ACTION_SET_TP_SRC,
255 	ACTION_SET_TP_SRC_TP_SRC,
256 	ACTION_SET_TP_DST,
257 	ACTION_SET_TP_DST_TP_DST,
258 	ACTION_MAC_SWAP,
259 	ACTION_DEC_TTL,
260 	ACTION_SET_TTL,
261 	ACTION_SET_TTL_TTL,
262 	ACTION_SET_MAC_SRC,
263 	ACTION_SET_MAC_SRC_MAC_SRC,
264 	ACTION_SET_MAC_DST,
265 	ACTION_SET_MAC_DST_MAC_DST,
266 };
267 
268 /** Maximum size for pattern in struct rte_flow_item_raw. */
269 #define ITEM_RAW_PATTERN_SIZE 40
270 
271 /** Storage size for struct rte_flow_item_raw including pattern. */
272 #define ITEM_RAW_SIZE \
273 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
274 
275 /** Maximum number of queue indices in struct rte_flow_action_rss. */
276 #define ACTION_RSS_QUEUE_NUM 32
277 
278 /** Storage for struct rte_flow_action_rss including external data. */
279 struct action_rss_data {
280 	struct rte_flow_action_rss conf;
281 	uint8_t key[RSS_HASH_KEY_LENGTH];
282 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
283 };
284 
285 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
286 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
287 
288 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
289 struct action_vxlan_encap_data {
290 	struct rte_flow_action_vxlan_encap conf;
291 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
292 	struct rte_flow_item_eth item_eth;
293 	struct rte_flow_item_vlan item_vlan;
294 	union {
295 		struct rte_flow_item_ipv4 item_ipv4;
296 		struct rte_flow_item_ipv6 item_ipv6;
297 	};
298 	struct rte_flow_item_udp item_udp;
299 	struct rte_flow_item_vxlan item_vxlan;
300 };
301 
302 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
303 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
304 
305 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
306 struct action_nvgre_encap_data {
307 	struct rte_flow_action_nvgre_encap conf;
308 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
309 	struct rte_flow_item_eth item_eth;
310 	struct rte_flow_item_vlan item_vlan;
311 	union {
312 		struct rte_flow_item_ipv4 item_ipv4;
313 		struct rte_flow_item_ipv6 item_ipv6;
314 	};
315 	struct rte_flow_item_nvgre item_nvgre;
316 };
317 
318 /** Maximum number of subsequent tokens and arguments on the stack. */
319 #define CTX_STACK_SIZE 16
320 
321 /** Parser context. */
322 struct context {
323 	/** Stack of subsequent token lists to process. */
324 	const enum index *next[CTX_STACK_SIZE];
325 	/** Arguments for stacked tokens. */
326 	const void *args[CTX_STACK_SIZE];
327 	enum index curr; /**< Current token index. */
328 	enum index prev; /**< Index of the last token seen. */
329 	int next_num; /**< Number of entries in next[]. */
330 	int args_num; /**< Number of entries in args[]. */
331 	uint32_t eol:1; /**< EOL has been detected. */
332 	uint32_t last:1; /**< No more arguments. */
333 	portid_t port; /**< Current port ID (for completions). */
334 	uint32_t objdata; /**< Object-specific data. */
335 	void *object; /**< Address of current object for relative offsets. */
336 	void *objmask; /**< Object a full mask must be written to. */
337 };
338 
339 /** Token argument. */
340 struct arg {
341 	uint32_t hton:1; /**< Use network byte ordering. */
342 	uint32_t sign:1; /**< Value is signed. */
343 	uint32_t bounded:1; /**< Value is bounded. */
344 	uintmax_t min; /**< Minimum value if bounded. */
345 	uintmax_t max; /**< Maximum value if bounded. */
346 	uint32_t offset; /**< Relative offset from ctx->object. */
347 	uint32_t size; /**< Field size. */
348 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
349 };
350 
351 /** Parser token definition. */
352 struct token {
353 	/** Type displayed during completion (defaults to "TOKEN"). */
354 	const char *type;
355 	/** Help displayed during completion (defaults to token name). */
356 	const char *help;
357 	/** Private data used by parser functions. */
358 	const void *priv;
359 	/**
360 	 * Lists of subsequent tokens to push on the stack. Each call to the
361 	 * parser consumes the last entry of that stack.
362 	 */
363 	const enum index *const *next;
364 	/** Arguments stack for subsequent tokens that need them. */
365 	const struct arg *const *args;
366 	/**
367 	 * Token-processing callback, returns -1 in case of error, the
368 	 * length of the matched string otherwise. If NULL, attempts to
369 	 * match the token name.
370 	 *
371 	 * If buf is not NULL, the result should be stored in it according
372 	 * to context. An error is returned if not large enough.
373 	 */
374 	int (*call)(struct context *ctx, const struct token *token,
375 		    const char *str, unsigned int len,
376 		    void *buf, unsigned int size);
377 	/**
378 	 * Callback that provides possible values for this token, used for
379 	 * completion. Returns -1 in case of error, the number of possible
380 	 * values otherwise. If NULL, the token name is used.
381 	 *
382 	 * If buf is not NULL, entry index ent is written to buf and the
383 	 * full length of the entry is returned (same behavior as
384 	 * snprintf()).
385 	 */
386 	int (*comp)(struct context *ctx, const struct token *token,
387 		    unsigned int ent, char *buf, unsigned int size);
388 	/** Mandatory token name, no default value. */
389 	const char *name;
390 };
391 
392 /** Static initializer for the next field. */
393 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
394 
395 /** Static initializer for a NEXT() entry. */
396 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
397 
398 /** Static initializer for the args field. */
399 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
400 
401 /** Static initializer for ARGS() to target a field. */
402 #define ARGS_ENTRY(s, f) \
403 	(&(const struct arg){ \
404 		.offset = offsetof(s, f), \
405 		.size = sizeof(((s *)0)->f), \
406 	})
407 
408 /** Static initializer for ARGS() to target a bit-field. */
409 #define ARGS_ENTRY_BF(s, f, b) \
410 	(&(const struct arg){ \
411 		.size = sizeof(s), \
412 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
413 	})
414 
415 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
416 #define ARGS_ENTRY_MASK(s, f, m) \
417 	(&(const struct arg){ \
418 		.offset = offsetof(s, f), \
419 		.size = sizeof(((s *)0)->f), \
420 		.mask = (const void *)(m), \
421 	})
422 
423 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
424 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
425 	(&(const struct arg){ \
426 		.hton = 1, \
427 		.offset = offsetof(s, f), \
428 		.size = sizeof(((s *)0)->f), \
429 		.mask = (const void *)(m), \
430 	})
431 
432 /** Static initializer for ARGS() to target a pointer. */
433 #define ARGS_ENTRY_PTR(s, f) \
434 	(&(const struct arg){ \
435 		.size = sizeof(*((s *)0)->f), \
436 	})
437 
438 /** Static initializer for ARGS() with arbitrary offset and size. */
439 #define ARGS_ENTRY_ARB(o, s) \
440 	(&(const struct arg){ \
441 		.offset = (o), \
442 		.size = (s), \
443 	})
444 
445 /** Same as ARGS_ENTRY_ARB() with bounded values. */
446 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
447 	(&(const struct arg){ \
448 		.bounded = 1, \
449 		.min = (i), \
450 		.max = (a), \
451 		.offset = (o), \
452 		.size = (s), \
453 	})
454 
455 /** Same as ARGS_ENTRY() using network byte ordering. */
456 #define ARGS_ENTRY_HTON(s, f) \
457 	(&(const struct arg){ \
458 		.hton = 1, \
459 		.offset = offsetof(s, f), \
460 		.size = sizeof(((s *)0)->f), \
461 	})
462 
463 /** Parser output buffer layout expected by cmd_flow_parsed(). */
464 struct buffer {
465 	enum index command; /**< Flow command. */
466 	portid_t port; /**< Affected port ID. */
467 	union {
468 		struct {
469 			struct rte_flow_attr attr;
470 			struct rte_flow_item *pattern;
471 			struct rte_flow_action *actions;
472 			uint32_t pattern_n;
473 			uint32_t actions_n;
474 			uint8_t *data;
475 		} vc; /**< Validate/create arguments. */
476 		struct {
477 			uint32_t *rule;
478 			uint32_t rule_n;
479 		} destroy; /**< Destroy arguments. */
480 		struct {
481 			uint32_t rule;
482 			struct rte_flow_action action;
483 		} query; /**< Query arguments. */
484 		struct {
485 			uint32_t *group;
486 			uint32_t group_n;
487 		} list; /**< List arguments. */
488 		struct {
489 			int set;
490 		} isolate; /**< Isolated mode arguments. */
491 	} args; /**< Command arguments. */
492 };
493 
494 /** Private data for pattern items. */
495 struct parse_item_priv {
496 	enum rte_flow_item_type type; /**< Item type. */
497 	uint32_t size; /**< Size of item specification structure. */
498 };
499 
500 #define PRIV_ITEM(t, s) \
501 	(&(const struct parse_item_priv){ \
502 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
503 		.size = s, \
504 	})
505 
506 /** Private data for actions. */
507 struct parse_action_priv {
508 	enum rte_flow_action_type type; /**< Action type. */
509 	uint32_t size; /**< Size of action configuration structure. */
510 };
511 
512 #define PRIV_ACTION(t, s) \
513 	(&(const struct parse_action_priv){ \
514 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
515 		.size = s, \
516 	})
517 
518 static const enum index next_vc_attr[] = {
519 	GROUP,
520 	PRIORITY,
521 	INGRESS,
522 	EGRESS,
523 	TRANSFER,
524 	PATTERN,
525 	ZERO,
526 };
527 
528 static const enum index next_destroy_attr[] = {
529 	DESTROY_RULE,
530 	END,
531 	ZERO,
532 };
533 
534 static const enum index next_list_attr[] = {
535 	LIST_GROUP,
536 	END,
537 	ZERO,
538 };
539 
540 static const enum index item_param[] = {
541 	ITEM_PARAM_IS,
542 	ITEM_PARAM_SPEC,
543 	ITEM_PARAM_LAST,
544 	ITEM_PARAM_MASK,
545 	ITEM_PARAM_PREFIX,
546 	ZERO,
547 };
548 
549 static const enum index next_item[] = {
550 	ITEM_END,
551 	ITEM_VOID,
552 	ITEM_INVERT,
553 	ITEM_ANY,
554 	ITEM_PF,
555 	ITEM_VF,
556 	ITEM_PHY_PORT,
557 	ITEM_PORT_ID,
558 	ITEM_MARK,
559 	ITEM_RAW,
560 	ITEM_ETH,
561 	ITEM_VLAN,
562 	ITEM_IPV4,
563 	ITEM_IPV6,
564 	ITEM_ICMP,
565 	ITEM_UDP,
566 	ITEM_TCP,
567 	ITEM_SCTP,
568 	ITEM_VXLAN,
569 	ITEM_E_TAG,
570 	ITEM_NVGRE,
571 	ITEM_MPLS,
572 	ITEM_GRE,
573 	ITEM_FUZZY,
574 	ITEM_GTP,
575 	ITEM_GTPC,
576 	ITEM_GTPU,
577 	ITEM_GENEVE,
578 	ITEM_VXLAN_GPE,
579 	ITEM_ARP_ETH_IPV4,
580 	ITEM_IPV6_EXT,
581 	ITEM_ICMP6,
582 	ITEM_ICMP6_ND_NS,
583 	ITEM_ICMP6_ND_NA,
584 	ITEM_ICMP6_ND_OPT,
585 	ITEM_ICMP6_ND_OPT_SLA_ETH,
586 	ITEM_ICMP6_ND_OPT_TLA_ETH,
587 	ZERO,
588 };
589 
590 static const enum index item_fuzzy[] = {
591 	ITEM_FUZZY_THRESH,
592 	ITEM_NEXT,
593 	ZERO,
594 };
595 
596 static const enum index item_any[] = {
597 	ITEM_ANY_NUM,
598 	ITEM_NEXT,
599 	ZERO,
600 };
601 
602 static const enum index item_vf[] = {
603 	ITEM_VF_ID,
604 	ITEM_NEXT,
605 	ZERO,
606 };
607 
608 static const enum index item_phy_port[] = {
609 	ITEM_PHY_PORT_INDEX,
610 	ITEM_NEXT,
611 	ZERO,
612 };
613 
614 static const enum index item_port_id[] = {
615 	ITEM_PORT_ID_ID,
616 	ITEM_NEXT,
617 	ZERO,
618 };
619 
620 static const enum index item_mark[] = {
621 	ITEM_MARK_ID,
622 	ITEM_NEXT,
623 	ZERO,
624 };
625 
626 static const enum index item_raw[] = {
627 	ITEM_RAW_RELATIVE,
628 	ITEM_RAW_SEARCH,
629 	ITEM_RAW_OFFSET,
630 	ITEM_RAW_LIMIT,
631 	ITEM_RAW_PATTERN,
632 	ITEM_NEXT,
633 	ZERO,
634 };
635 
636 static const enum index item_eth[] = {
637 	ITEM_ETH_DST,
638 	ITEM_ETH_SRC,
639 	ITEM_ETH_TYPE,
640 	ITEM_NEXT,
641 	ZERO,
642 };
643 
644 static const enum index item_vlan[] = {
645 	ITEM_VLAN_TCI,
646 	ITEM_VLAN_PCP,
647 	ITEM_VLAN_DEI,
648 	ITEM_VLAN_VID,
649 	ITEM_VLAN_INNER_TYPE,
650 	ITEM_NEXT,
651 	ZERO,
652 };
653 
654 static const enum index item_ipv4[] = {
655 	ITEM_IPV4_TOS,
656 	ITEM_IPV4_TTL,
657 	ITEM_IPV4_PROTO,
658 	ITEM_IPV4_SRC,
659 	ITEM_IPV4_DST,
660 	ITEM_NEXT,
661 	ZERO,
662 };
663 
664 static const enum index item_ipv6[] = {
665 	ITEM_IPV6_TC,
666 	ITEM_IPV6_FLOW,
667 	ITEM_IPV6_PROTO,
668 	ITEM_IPV6_HOP,
669 	ITEM_IPV6_SRC,
670 	ITEM_IPV6_DST,
671 	ITEM_NEXT,
672 	ZERO,
673 };
674 
675 static const enum index item_icmp[] = {
676 	ITEM_ICMP_TYPE,
677 	ITEM_ICMP_CODE,
678 	ITEM_NEXT,
679 	ZERO,
680 };
681 
682 static const enum index item_udp[] = {
683 	ITEM_UDP_SRC,
684 	ITEM_UDP_DST,
685 	ITEM_NEXT,
686 	ZERO,
687 };
688 
689 static const enum index item_tcp[] = {
690 	ITEM_TCP_SRC,
691 	ITEM_TCP_DST,
692 	ITEM_TCP_FLAGS,
693 	ITEM_NEXT,
694 	ZERO,
695 };
696 
697 static const enum index item_sctp[] = {
698 	ITEM_SCTP_SRC,
699 	ITEM_SCTP_DST,
700 	ITEM_SCTP_TAG,
701 	ITEM_SCTP_CKSUM,
702 	ITEM_NEXT,
703 	ZERO,
704 };
705 
706 static const enum index item_vxlan[] = {
707 	ITEM_VXLAN_VNI,
708 	ITEM_NEXT,
709 	ZERO,
710 };
711 
712 static const enum index item_e_tag[] = {
713 	ITEM_E_TAG_GRP_ECID_B,
714 	ITEM_NEXT,
715 	ZERO,
716 };
717 
718 static const enum index item_nvgre[] = {
719 	ITEM_NVGRE_TNI,
720 	ITEM_NEXT,
721 	ZERO,
722 };
723 
724 static const enum index item_mpls[] = {
725 	ITEM_MPLS_LABEL,
726 	ITEM_NEXT,
727 	ZERO,
728 };
729 
730 static const enum index item_gre[] = {
731 	ITEM_GRE_PROTO,
732 	ITEM_NEXT,
733 	ZERO,
734 };
735 
736 static const enum index item_gtp[] = {
737 	ITEM_GTP_TEID,
738 	ITEM_NEXT,
739 	ZERO,
740 };
741 
742 static const enum index item_geneve[] = {
743 	ITEM_GENEVE_VNI,
744 	ITEM_GENEVE_PROTO,
745 	ITEM_NEXT,
746 	ZERO,
747 };
748 
749 static const enum index item_vxlan_gpe[] = {
750 	ITEM_VXLAN_GPE_VNI,
751 	ITEM_NEXT,
752 	ZERO,
753 };
754 
755 static const enum index item_arp_eth_ipv4[] = {
756 	ITEM_ARP_ETH_IPV4_SHA,
757 	ITEM_ARP_ETH_IPV4_SPA,
758 	ITEM_ARP_ETH_IPV4_THA,
759 	ITEM_ARP_ETH_IPV4_TPA,
760 	ITEM_NEXT,
761 	ZERO,
762 };
763 
764 static const enum index item_ipv6_ext[] = {
765 	ITEM_IPV6_EXT_NEXT_HDR,
766 	ITEM_NEXT,
767 	ZERO,
768 };
769 
770 static const enum index item_icmp6[] = {
771 	ITEM_ICMP6_TYPE,
772 	ITEM_ICMP6_CODE,
773 	ITEM_NEXT,
774 	ZERO,
775 };
776 
777 static const enum index item_icmp6_nd_ns[] = {
778 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
779 	ITEM_NEXT,
780 	ZERO,
781 };
782 
783 static const enum index item_icmp6_nd_na[] = {
784 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
785 	ITEM_NEXT,
786 	ZERO,
787 };
788 
789 static const enum index item_icmp6_nd_opt[] = {
790 	ITEM_ICMP6_ND_OPT_TYPE,
791 	ITEM_NEXT,
792 	ZERO,
793 };
794 
795 static const enum index item_icmp6_nd_opt_sla_eth[] = {
796 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
797 	ITEM_NEXT,
798 	ZERO,
799 };
800 
801 static const enum index item_icmp6_nd_opt_tla_eth[] = {
802 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
803 	ITEM_NEXT,
804 	ZERO,
805 };
806 
807 static const enum index next_action[] = {
808 	ACTION_END,
809 	ACTION_VOID,
810 	ACTION_PASSTHRU,
811 	ACTION_JUMP,
812 	ACTION_MARK,
813 	ACTION_FLAG,
814 	ACTION_QUEUE,
815 	ACTION_DROP,
816 	ACTION_COUNT,
817 	ACTION_RSS,
818 	ACTION_PF,
819 	ACTION_VF,
820 	ACTION_PHY_PORT,
821 	ACTION_PORT_ID,
822 	ACTION_METER,
823 	ACTION_OF_SET_MPLS_TTL,
824 	ACTION_OF_DEC_MPLS_TTL,
825 	ACTION_OF_SET_NW_TTL,
826 	ACTION_OF_DEC_NW_TTL,
827 	ACTION_OF_COPY_TTL_OUT,
828 	ACTION_OF_COPY_TTL_IN,
829 	ACTION_OF_POP_VLAN,
830 	ACTION_OF_PUSH_VLAN,
831 	ACTION_OF_SET_VLAN_VID,
832 	ACTION_OF_SET_VLAN_PCP,
833 	ACTION_OF_POP_MPLS,
834 	ACTION_OF_PUSH_MPLS,
835 	ACTION_VXLAN_ENCAP,
836 	ACTION_VXLAN_DECAP,
837 	ACTION_NVGRE_ENCAP,
838 	ACTION_NVGRE_DECAP,
839 	ACTION_SET_IPV4_SRC,
840 	ACTION_SET_IPV4_DST,
841 	ACTION_SET_IPV6_SRC,
842 	ACTION_SET_IPV6_DST,
843 	ACTION_SET_TP_SRC,
844 	ACTION_SET_TP_DST,
845 	ACTION_MAC_SWAP,
846 	ACTION_DEC_TTL,
847 	ACTION_SET_TTL,
848 	ACTION_SET_MAC_SRC,
849 	ACTION_SET_MAC_DST,
850 	ZERO,
851 };
852 
853 static const enum index action_mark[] = {
854 	ACTION_MARK_ID,
855 	ACTION_NEXT,
856 	ZERO,
857 };
858 
859 static const enum index action_queue[] = {
860 	ACTION_QUEUE_INDEX,
861 	ACTION_NEXT,
862 	ZERO,
863 };
864 
865 static const enum index action_count[] = {
866 	ACTION_COUNT_ID,
867 	ACTION_COUNT_SHARED,
868 	ACTION_NEXT,
869 	ZERO,
870 };
871 
872 static const enum index action_rss[] = {
873 	ACTION_RSS_FUNC,
874 	ACTION_RSS_LEVEL,
875 	ACTION_RSS_TYPES,
876 	ACTION_RSS_KEY,
877 	ACTION_RSS_KEY_LEN,
878 	ACTION_RSS_QUEUES,
879 	ACTION_NEXT,
880 	ZERO,
881 };
882 
883 static const enum index action_vf[] = {
884 	ACTION_VF_ORIGINAL,
885 	ACTION_VF_ID,
886 	ACTION_NEXT,
887 	ZERO,
888 };
889 
890 static const enum index action_phy_port[] = {
891 	ACTION_PHY_PORT_ORIGINAL,
892 	ACTION_PHY_PORT_INDEX,
893 	ACTION_NEXT,
894 	ZERO,
895 };
896 
897 static const enum index action_port_id[] = {
898 	ACTION_PORT_ID_ORIGINAL,
899 	ACTION_PORT_ID_ID,
900 	ACTION_NEXT,
901 	ZERO,
902 };
903 
904 static const enum index action_meter[] = {
905 	ACTION_METER_ID,
906 	ACTION_NEXT,
907 	ZERO,
908 };
909 
910 static const enum index action_of_set_mpls_ttl[] = {
911 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
912 	ACTION_NEXT,
913 	ZERO,
914 };
915 
916 static const enum index action_of_set_nw_ttl[] = {
917 	ACTION_OF_SET_NW_TTL_NW_TTL,
918 	ACTION_NEXT,
919 	ZERO,
920 };
921 
922 static const enum index action_of_push_vlan[] = {
923 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
924 	ACTION_NEXT,
925 	ZERO,
926 };
927 
928 static const enum index action_of_set_vlan_vid[] = {
929 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
930 	ACTION_NEXT,
931 	ZERO,
932 };
933 
934 static const enum index action_of_set_vlan_pcp[] = {
935 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
936 	ACTION_NEXT,
937 	ZERO,
938 };
939 
940 static const enum index action_of_pop_mpls[] = {
941 	ACTION_OF_POP_MPLS_ETHERTYPE,
942 	ACTION_NEXT,
943 	ZERO,
944 };
945 
946 static const enum index action_of_push_mpls[] = {
947 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
948 	ACTION_NEXT,
949 	ZERO,
950 };
951 
952 static const enum index action_set_ipv4_src[] = {
953 	ACTION_SET_IPV4_SRC_IPV4_SRC,
954 	ACTION_NEXT,
955 	ZERO,
956 };
957 
958 static const enum index action_set_mac_src[] = {
959 	ACTION_SET_MAC_SRC_MAC_SRC,
960 	ACTION_NEXT,
961 	ZERO,
962 };
963 
964 static const enum index action_set_ipv4_dst[] = {
965 	ACTION_SET_IPV4_DST_IPV4_DST,
966 	ACTION_NEXT,
967 	ZERO,
968 };
969 
970 static const enum index action_set_ipv6_src[] = {
971 	ACTION_SET_IPV6_SRC_IPV6_SRC,
972 	ACTION_NEXT,
973 	ZERO,
974 };
975 
976 static const enum index action_set_ipv6_dst[] = {
977 	ACTION_SET_IPV6_DST_IPV6_DST,
978 	ACTION_NEXT,
979 	ZERO,
980 };
981 
982 static const enum index action_set_tp_src[] = {
983 	ACTION_SET_TP_SRC_TP_SRC,
984 	ACTION_NEXT,
985 	ZERO,
986 };
987 
988 static const enum index action_set_tp_dst[] = {
989 	ACTION_SET_TP_DST_TP_DST,
990 	ACTION_NEXT,
991 	ZERO,
992 };
993 
994 static const enum index action_set_ttl[] = {
995 	ACTION_SET_TTL_TTL,
996 	ACTION_NEXT,
997 	ZERO,
998 };
999 
1000 static const enum index action_jump[] = {
1001 	ACTION_JUMP_GROUP,
1002 	ACTION_NEXT,
1003 	ZERO,
1004 };
1005 
1006 static const enum index action_set_mac_dst[] = {
1007 	ACTION_SET_MAC_DST_MAC_DST,
1008 	ACTION_NEXT,
1009 	ZERO,
1010 };
1011 
1012 static int parse_init(struct context *, const struct token *,
1013 		      const char *, unsigned int,
1014 		      void *, unsigned int);
1015 static int parse_vc(struct context *, const struct token *,
1016 		    const char *, unsigned int,
1017 		    void *, unsigned int);
1018 static int parse_vc_spec(struct context *, const struct token *,
1019 			 const char *, unsigned int, void *, unsigned int);
1020 static int parse_vc_conf(struct context *, const struct token *,
1021 			 const char *, unsigned int, void *, unsigned int);
1022 static int parse_vc_action_rss(struct context *, const struct token *,
1023 			       const char *, unsigned int, void *,
1024 			       unsigned int);
1025 static int parse_vc_action_rss_func(struct context *, const struct token *,
1026 				    const char *, unsigned int, void *,
1027 				    unsigned int);
1028 static int parse_vc_action_rss_type(struct context *, const struct token *,
1029 				    const char *, unsigned int, void *,
1030 				    unsigned int);
1031 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1032 				     const char *, unsigned int, void *,
1033 				     unsigned int);
1034 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1035 				       const char *, unsigned int, void *,
1036 				       unsigned int);
1037 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1038 				       const char *, unsigned int, void *,
1039 				       unsigned int);
1040 static int parse_destroy(struct context *, const struct token *,
1041 			 const char *, unsigned int,
1042 			 void *, unsigned int);
1043 static int parse_flush(struct context *, const struct token *,
1044 		       const char *, unsigned int,
1045 		       void *, unsigned int);
1046 static int parse_query(struct context *, const struct token *,
1047 		       const char *, unsigned int,
1048 		       void *, unsigned int);
1049 static int parse_action(struct context *, const struct token *,
1050 			const char *, unsigned int,
1051 			void *, unsigned int);
1052 static int parse_list(struct context *, const struct token *,
1053 		      const char *, unsigned int,
1054 		      void *, unsigned int);
1055 static int parse_isolate(struct context *, const struct token *,
1056 			 const char *, unsigned int,
1057 			 void *, unsigned int);
1058 static int parse_int(struct context *, const struct token *,
1059 		     const char *, unsigned int,
1060 		     void *, unsigned int);
1061 static int parse_prefix(struct context *, const struct token *,
1062 			const char *, unsigned int,
1063 			void *, unsigned int);
1064 static int parse_boolean(struct context *, const struct token *,
1065 			 const char *, unsigned int,
1066 			 void *, unsigned int);
1067 static int parse_string(struct context *, const struct token *,
1068 			const char *, unsigned int,
1069 			void *, unsigned int);
1070 static int parse_mac_addr(struct context *, const struct token *,
1071 			  const char *, unsigned int,
1072 			  void *, unsigned int);
1073 static int parse_ipv4_addr(struct context *, const struct token *,
1074 			   const char *, unsigned int,
1075 			   void *, unsigned int);
1076 static int parse_ipv6_addr(struct context *, const struct token *,
1077 			   const char *, unsigned int,
1078 			   void *, unsigned int);
1079 static int parse_port(struct context *, const struct token *,
1080 		      const char *, unsigned int,
1081 		      void *, unsigned int);
1082 static int comp_none(struct context *, const struct token *,
1083 		     unsigned int, char *, unsigned int);
1084 static int comp_boolean(struct context *, const struct token *,
1085 			unsigned int, char *, unsigned int);
1086 static int comp_action(struct context *, const struct token *,
1087 		       unsigned int, char *, unsigned int);
1088 static int comp_port(struct context *, const struct token *,
1089 		     unsigned int, char *, unsigned int);
1090 static int comp_rule_id(struct context *, const struct token *,
1091 			unsigned int, char *, unsigned int);
1092 static int comp_vc_action_rss_type(struct context *, const struct token *,
1093 				   unsigned int, char *, unsigned int);
1094 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1095 				    unsigned int, char *, unsigned int);
1096 
1097 /** Token definitions. */
1098 static const struct token token_list[] = {
1099 	/* Special tokens. */
1100 	[ZERO] = {
1101 		.name = "ZERO",
1102 		.help = "null entry, abused as the entry point",
1103 		.next = NEXT(NEXT_ENTRY(FLOW)),
1104 	},
1105 	[END] = {
1106 		.name = "",
1107 		.type = "RETURN",
1108 		.help = "command may end here",
1109 	},
1110 	/* Common tokens. */
1111 	[INTEGER] = {
1112 		.name = "{int}",
1113 		.type = "INTEGER",
1114 		.help = "integer value",
1115 		.call = parse_int,
1116 		.comp = comp_none,
1117 	},
1118 	[UNSIGNED] = {
1119 		.name = "{unsigned}",
1120 		.type = "UNSIGNED",
1121 		.help = "unsigned integer value",
1122 		.call = parse_int,
1123 		.comp = comp_none,
1124 	},
1125 	[PREFIX] = {
1126 		.name = "{prefix}",
1127 		.type = "PREFIX",
1128 		.help = "prefix length for bit-mask",
1129 		.call = parse_prefix,
1130 		.comp = comp_none,
1131 	},
1132 	[BOOLEAN] = {
1133 		.name = "{boolean}",
1134 		.type = "BOOLEAN",
1135 		.help = "any boolean value",
1136 		.call = parse_boolean,
1137 		.comp = comp_boolean,
1138 	},
1139 	[STRING] = {
1140 		.name = "{string}",
1141 		.type = "STRING",
1142 		.help = "fixed string",
1143 		.call = parse_string,
1144 		.comp = comp_none,
1145 	},
1146 	[MAC_ADDR] = {
1147 		.name = "{MAC address}",
1148 		.type = "MAC-48",
1149 		.help = "standard MAC address notation",
1150 		.call = parse_mac_addr,
1151 		.comp = comp_none,
1152 	},
1153 	[IPV4_ADDR] = {
1154 		.name = "{IPv4 address}",
1155 		.type = "IPV4 ADDRESS",
1156 		.help = "standard IPv4 address notation",
1157 		.call = parse_ipv4_addr,
1158 		.comp = comp_none,
1159 	},
1160 	[IPV6_ADDR] = {
1161 		.name = "{IPv6 address}",
1162 		.type = "IPV6 ADDRESS",
1163 		.help = "standard IPv6 address notation",
1164 		.call = parse_ipv6_addr,
1165 		.comp = comp_none,
1166 	},
1167 	[RULE_ID] = {
1168 		.name = "{rule id}",
1169 		.type = "RULE ID",
1170 		.help = "rule identifier",
1171 		.call = parse_int,
1172 		.comp = comp_rule_id,
1173 	},
1174 	[PORT_ID] = {
1175 		.name = "{port_id}",
1176 		.type = "PORT ID",
1177 		.help = "port identifier",
1178 		.call = parse_port,
1179 		.comp = comp_port,
1180 	},
1181 	[GROUP_ID] = {
1182 		.name = "{group_id}",
1183 		.type = "GROUP ID",
1184 		.help = "group identifier",
1185 		.call = parse_int,
1186 		.comp = comp_none,
1187 	},
1188 	[PRIORITY_LEVEL] = {
1189 		.name = "{level}",
1190 		.type = "PRIORITY",
1191 		.help = "priority level",
1192 		.call = parse_int,
1193 		.comp = comp_none,
1194 	},
1195 	/* Top-level command. */
1196 	[FLOW] = {
1197 		.name = "flow",
1198 		.type = "{command} {port_id} [{arg} [...]]",
1199 		.help = "manage ingress/egress flow rules",
1200 		.next = NEXT(NEXT_ENTRY
1201 			     (VALIDATE,
1202 			      CREATE,
1203 			      DESTROY,
1204 			      FLUSH,
1205 			      LIST,
1206 			      QUERY,
1207 			      ISOLATE)),
1208 		.call = parse_init,
1209 	},
1210 	/* Sub-level commands. */
1211 	[VALIDATE] = {
1212 		.name = "validate",
1213 		.help = "check whether a flow rule can be created",
1214 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1215 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1216 		.call = parse_vc,
1217 	},
1218 	[CREATE] = {
1219 		.name = "create",
1220 		.help = "create a flow rule",
1221 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1222 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1223 		.call = parse_vc,
1224 	},
1225 	[DESTROY] = {
1226 		.name = "destroy",
1227 		.help = "destroy specific flow rules",
1228 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1229 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1230 		.call = parse_destroy,
1231 	},
1232 	[FLUSH] = {
1233 		.name = "flush",
1234 		.help = "destroy all flow rules",
1235 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1236 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1237 		.call = parse_flush,
1238 	},
1239 	[QUERY] = {
1240 		.name = "query",
1241 		.help = "query an existing flow rule",
1242 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1243 			     NEXT_ENTRY(RULE_ID),
1244 			     NEXT_ENTRY(PORT_ID)),
1245 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1246 			     ARGS_ENTRY(struct buffer, args.query.rule),
1247 			     ARGS_ENTRY(struct buffer, port)),
1248 		.call = parse_query,
1249 	},
1250 	[LIST] = {
1251 		.name = "list",
1252 		.help = "list existing flow rules",
1253 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1254 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1255 		.call = parse_list,
1256 	},
1257 	[ISOLATE] = {
1258 		.name = "isolate",
1259 		.help = "restrict ingress traffic to the defined flow rules",
1260 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1261 			     NEXT_ENTRY(PORT_ID)),
1262 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1263 			     ARGS_ENTRY(struct buffer, port)),
1264 		.call = parse_isolate,
1265 	},
1266 	/* Destroy arguments. */
1267 	[DESTROY_RULE] = {
1268 		.name = "rule",
1269 		.help = "specify a rule identifier",
1270 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1271 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1272 		.call = parse_destroy,
1273 	},
1274 	/* Query arguments. */
1275 	[QUERY_ACTION] = {
1276 		.name = "{action}",
1277 		.type = "ACTION",
1278 		.help = "action to query, must be part of the rule",
1279 		.call = parse_action,
1280 		.comp = comp_action,
1281 	},
1282 	/* List arguments. */
1283 	[LIST_GROUP] = {
1284 		.name = "group",
1285 		.help = "specify a group",
1286 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1287 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1288 		.call = parse_list,
1289 	},
1290 	/* Validate/create attributes. */
1291 	[GROUP] = {
1292 		.name = "group",
1293 		.help = "specify a group",
1294 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1295 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1296 		.call = parse_vc,
1297 	},
1298 	[PRIORITY] = {
1299 		.name = "priority",
1300 		.help = "specify a priority level",
1301 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1302 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1303 		.call = parse_vc,
1304 	},
1305 	[INGRESS] = {
1306 		.name = "ingress",
1307 		.help = "affect rule to ingress",
1308 		.next = NEXT(next_vc_attr),
1309 		.call = parse_vc,
1310 	},
1311 	[EGRESS] = {
1312 		.name = "egress",
1313 		.help = "affect rule to egress",
1314 		.next = NEXT(next_vc_attr),
1315 		.call = parse_vc,
1316 	},
1317 	[TRANSFER] = {
1318 		.name = "transfer",
1319 		.help = "apply rule directly to endpoints found in pattern",
1320 		.next = NEXT(next_vc_attr),
1321 		.call = parse_vc,
1322 	},
1323 	/* Validate/create pattern. */
1324 	[PATTERN] = {
1325 		.name = "pattern",
1326 		.help = "submit a list of pattern items",
1327 		.next = NEXT(next_item),
1328 		.call = parse_vc,
1329 	},
1330 	[ITEM_PARAM_IS] = {
1331 		.name = "is",
1332 		.help = "match value perfectly (with full bit-mask)",
1333 		.call = parse_vc_spec,
1334 	},
1335 	[ITEM_PARAM_SPEC] = {
1336 		.name = "spec",
1337 		.help = "match value according to configured bit-mask",
1338 		.call = parse_vc_spec,
1339 	},
1340 	[ITEM_PARAM_LAST] = {
1341 		.name = "last",
1342 		.help = "specify upper bound to establish a range",
1343 		.call = parse_vc_spec,
1344 	},
1345 	[ITEM_PARAM_MASK] = {
1346 		.name = "mask",
1347 		.help = "specify bit-mask with relevant bits set to one",
1348 		.call = parse_vc_spec,
1349 	},
1350 	[ITEM_PARAM_PREFIX] = {
1351 		.name = "prefix",
1352 		.help = "generate bit-mask from a prefix length",
1353 		.call = parse_vc_spec,
1354 	},
1355 	[ITEM_NEXT] = {
1356 		.name = "/",
1357 		.help = "specify next pattern item",
1358 		.next = NEXT(next_item),
1359 	},
1360 	[ITEM_END] = {
1361 		.name = "end",
1362 		.help = "end list of pattern items",
1363 		.priv = PRIV_ITEM(END, 0),
1364 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1365 		.call = parse_vc,
1366 	},
1367 	[ITEM_VOID] = {
1368 		.name = "void",
1369 		.help = "no-op pattern item",
1370 		.priv = PRIV_ITEM(VOID, 0),
1371 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1372 		.call = parse_vc,
1373 	},
1374 	[ITEM_INVERT] = {
1375 		.name = "invert",
1376 		.help = "perform actions when pattern does not match",
1377 		.priv = PRIV_ITEM(INVERT, 0),
1378 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1379 		.call = parse_vc,
1380 	},
1381 	[ITEM_ANY] = {
1382 		.name = "any",
1383 		.help = "match any protocol for the current layer",
1384 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1385 		.next = NEXT(item_any),
1386 		.call = parse_vc,
1387 	},
1388 	[ITEM_ANY_NUM] = {
1389 		.name = "num",
1390 		.help = "number of layers covered",
1391 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1392 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1393 	},
1394 	[ITEM_PF] = {
1395 		.name = "pf",
1396 		.help = "match traffic from/to the physical function",
1397 		.priv = PRIV_ITEM(PF, 0),
1398 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1399 		.call = parse_vc,
1400 	},
1401 	[ITEM_VF] = {
1402 		.name = "vf",
1403 		.help = "match traffic from/to a virtual function ID",
1404 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1405 		.next = NEXT(item_vf),
1406 		.call = parse_vc,
1407 	},
1408 	[ITEM_VF_ID] = {
1409 		.name = "id",
1410 		.help = "VF ID",
1411 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1412 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1413 	},
1414 	[ITEM_PHY_PORT] = {
1415 		.name = "phy_port",
1416 		.help = "match traffic from/to a specific physical port",
1417 		.priv = PRIV_ITEM(PHY_PORT,
1418 				  sizeof(struct rte_flow_item_phy_port)),
1419 		.next = NEXT(item_phy_port),
1420 		.call = parse_vc,
1421 	},
1422 	[ITEM_PHY_PORT_INDEX] = {
1423 		.name = "index",
1424 		.help = "physical port index",
1425 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1426 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1427 	},
1428 	[ITEM_PORT_ID] = {
1429 		.name = "port_id",
1430 		.help = "match traffic from/to a given DPDK port ID",
1431 		.priv = PRIV_ITEM(PORT_ID,
1432 				  sizeof(struct rte_flow_item_port_id)),
1433 		.next = NEXT(item_port_id),
1434 		.call = parse_vc,
1435 	},
1436 	[ITEM_PORT_ID_ID] = {
1437 		.name = "id",
1438 		.help = "DPDK port ID",
1439 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1440 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1441 	},
1442 	[ITEM_MARK] = {
1443 		.name = "mark",
1444 		.help = "match traffic against value set in previously matched rule",
1445 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1446 		.next = NEXT(item_mark),
1447 		.call = parse_vc,
1448 	},
1449 	[ITEM_MARK_ID] = {
1450 		.name = "id",
1451 		.help = "Integer value to match against",
1452 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1453 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1454 	},
1455 	[ITEM_RAW] = {
1456 		.name = "raw",
1457 		.help = "match an arbitrary byte string",
1458 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1459 		.next = NEXT(item_raw),
1460 		.call = parse_vc,
1461 	},
1462 	[ITEM_RAW_RELATIVE] = {
1463 		.name = "relative",
1464 		.help = "look for pattern after the previous item",
1465 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1466 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1467 					   relative, 1)),
1468 	},
1469 	[ITEM_RAW_SEARCH] = {
1470 		.name = "search",
1471 		.help = "search pattern from offset (see also limit)",
1472 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1473 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1474 					   search, 1)),
1475 	},
1476 	[ITEM_RAW_OFFSET] = {
1477 		.name = "offset",
1478 		.help = "absolute or relative offset for pattern",
1479 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1480 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1481 	},
1482 	[ITEM_RAW_LIMIT] = {
1483 		.name = "limit",
1484 		.help = "search area limit for start of pattern",
1485 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1486 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1487 	},
1488 	[ITEM_RAW_PATTERN] = {
1489 		.name = "pattern",
1490 		.help = "byte string to look for",
1491 		.next = NEXT(item_raw,
1492 			     NEXT_ENTRY(STRING),
1493 			     NEXT_ENTRY(ITEM_PARAM_IS,
1494 					ITEM_PARAM_SPEC,
1495 					ITEM_PARAM_MASK)),
1496 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1497 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1498 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1499 					    ITEM_RAW_PATTERN_SIZE)),
1500 	},
1501 	[ITEM_ETH] = {
1502 		.name = "eth",
1503 		.help = "match Ethernet header",
1504 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1505 		.next = NEXT(item_eth),
1506 		.call = parse_vc,
1507 	},
1508 	[ITEM_ETH_DST] = {
1509 		.name = "dst",
1510 		.help = "destination MAC",
1511 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1512 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1513 	},
1514 	[ITEM_ETH_SRC] = {
1515 		.name = "src",
1516 		.help = "source MAC",
1517 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1518 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1519 	},
1520 	[ITEM_ETH_TYPE] = {
1521 		.name = "type",
1522 		.help = "EtherType",
1523 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1524 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1525 	},
1526 	[ITEM_VLAN] = {
1527 		.name = "vlan",
1528 		.help = "match 802.1Q/ad VLAN tag",
1529 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1530 		.next = NEXT(item_vlan),
1531 		.call = parse_vc,
1532 	},
1533 	[ITEM_VLAN_TCI] = {
1534 		.name = "tci",
1535 		.help = "tag control information",
1536 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1537 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1538 	},
1539 	[ITEM_VLAN_PCP] = {
1540 		.name = "pcp",
1541 		.help = "priority code point",
1542 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1543 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1544 						  tci, "\xe0\x00")),
1545 	},
1546 	[ITEM_VLAN_DEI] = {
1547 		.name = "dei",
1548 		.help = "drop eligible indicator",
1549 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1550 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1551 						  tci, "\x10\x00")),
1552 	},
1553 	[ITEM_VLAN_VID] = {
1554 		.name = "vid",
1555 		.help = "VLAN identifier",
1556 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1557 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1558 						  tci, "\x0f\xff")),
1559 	},
1560 	[ITEM_VLAN_INNER_TYPE] = {
1561 		.name = "inner_type",
1562 		.help = "inner EtherType",
1563 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1564 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1565 					     inner_type)),
1566 	},
1567 	[ITEM_IPV4] = {
1568 		.name = "ipv4",
1569 		.help = "match IPv4 header",
1570 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1571 		.next = NEXT(item_ipv4),
1572 		.call = parse_vc,
1573 	},
1574 	[ITEM_IPV4_TOS] = {
1575 		.name = "tos",
1576 		.help = "type of service",
1577 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1578 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1579 					     hdr.type_of_service)),
1580 	},
1581 	[ITEM_IPV4_TTL] = {
1582 		.name = "ttl",
1583 		.help = "time to live",
1584 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1585 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1586 					     hdr.time_to_live)),
1587 	},
1588 	[ITEM_IPV4_PROTO] = {
1589 		.name = "proto",
1590 		.help = "next protocol ID",
1591 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1592 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1593 					     hdr.next_proto_id)),
1594 	},
1595 	[ITEM_IPV4_SRC] = {
1596 		.name = "src",
1597 		.help = "source address",
1598 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1599 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1600 					     hdr.src_addr)),
1601 	},
1602 	[ITEM_IPV4_DST] = {
1603 		.name = "dst",
1604 		.help = "destination address",
1605 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1606 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1607 					     hdr.dst_addr)),
1608 	},
1609 	[ITEM_IPV6] = {
1610 		.name = "ipv6",
1611 		.help = "match IPv6 header",
1612 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1613 		.next = NEXT(item_ipv6),
1614 		.call = parse_vc,
1615 	},
1616 	[ITEM_IPV6_TC] = {
1617 		.name = "tc",
1618 		.help = "traffic class",
1619 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1620 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1621 						  hdr.vtc_flow,
1622 						  "\x0f\xf0\x00\x00")),
1623 	},
1624 	[ITEM_IPV6_FLOW] = {
1625 		.name = "flow",
1626 		.help = "flow label",
1627 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1628 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1629 						  hdr.vtc_flow,
1630 						  "\x00\x0f\xff\xff")),
1631 	},
1632 	[ITEM_IPV6_PROTO] = {
1633 		.name = "proto",
1634 		.help = "protocol (next header)",
1635 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1636 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1637 					     hdr.proto)),
1638 	},
1639 	[ITEM_IPV6_HOP] = {
1640 		.name = "hop",
1641 		.help = "hop limit",
1642 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1643 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1644 					     hdr.hop_limits)),
1645 	},
1646 	[ITEM_IPV6_SRC] = {
1647 		.name = "src",
1648 		.help = "source address",
1649 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1650 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1651 					     hdr.src_addr)),
1652 	},
1653 	[ITEM_IPV6_DST] = {
1654 		.name = "dst",
1655 		.help = "destination address",
1656 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1657 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1658 					     hdr.dst_addr)),
1659 	},
1660 	[ITEM_ICMP] = {
1661 		.name = "icmp",
1662 		.help = "match ICMP header",
1663 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1664 		.next = NEXT(item_icmp),
1665 		.call = parse_vc,
1666 	},
1667 	[ITEM_ICMP_TYPE] = {
1668 		.name = "type",
1669 		.help = "ICMP packet type",
1670 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1671 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1672 					     hdr.icmp_type)),
1673 	},
1674 	[ITEM_ICMP_CODE] = {
1675 		.name = "code",
1676 		.help = "ICMP packet code",
1677 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1678 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1679 					     hdr.icmp_code)),
1680 	},
1681 	[ITEM_UDP] = {
1682 		.name = "udp",
1683 		.help = "match UDP header",
1684 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1685 		.next = NEXT(item_udp),
1686 		.call = parse_vc,
1687 	},
1688 	[ITEM_UDP_SRC] = {
1689 		.name = "src",
1690 		.help = "UDP source port",
1691 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1692 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1693 					     hdr.src_port)),
1694 	},
1695 	[ITEM_UDP_DST] = {
1696 		.name = "dst",
1697 		.help = "UDP destination port",
1698 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1699 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1700 					     hdr.dst_port)),
1701 	},
1702 	[ITEM_TCP] = {
1703 		.name = "tcp",
1704 		.help = "match TCP header",
1705 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1706 		.next = NEXT(item_tcp),
1707 		.call = parse_vc,
1708 	},
1709 	[ITEM_TCP_SRC] = {
1710 		.name = "src",
1711 		.help = "TCP source port",
1712 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1713 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1714 					     hdr.src_port)),
1715 	},
1716 	[ITEM_TCP_DST] = {
1717 		.name = "dst",
1718 		.help = "TCP destination port",
1719 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1720 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1721 					     hdr.dst_port)),
1722 	},
1723 	[ITEM_TCP_FLAGS] = {
1724 		.name = "flags",
1725 		.help = "TCP flags",
1726 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1727 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1728 					     hdr.tcp_flags)),
1729 	},
1730 	[ITEM_SCTP] = {
1731 		.name = "sctp",
1732 		.help = "match SCTP header",
1733 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1734 		.next = NEXT(item_sctp),
1735 		.call = parse_vc,
1736 	},
1737 	[ITEM_SCTP_SRC] = {
1738 		.name = "src",
1739 		.help = "SCTP source port",
1740 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1741 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1742 					     hdr.src_port)),
1743 	},
1744 	[ITEM_SCTP_DST] = {
1745 		.name = "dst",
1746 		.help = "SCTP destination port",
1747 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1748 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1749 					     hdr.dst_port)),
1750 	},
1751 	[ITEM_SCTP_TAG] = {
1752 		.name = "tag",
1753 		.help = "validation tag",
1754 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1755 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1756 					     hdr.tag)),
1757 	},
1758 	[ITEM_SCTP_CKSUM] = {
1759 		.name = "cksum",
1760 		.help = "checksum",
1761 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1762 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1763 					     hdr.cksum)),
1764 	},
1765 	[ITEM_VXLAN] = {
1766 		.name = "vxlan",
1767 		.help = "match VXLAN header",
1768 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1769 		.next = NEXT(item_vxlan),
1770 		.call = parse_vc,
1771 	},
1772 	[ITEM_VXLAN_VNI] = {
1773 		.name = "vni",
1774 		.help = "VXLAN identifier",
1775 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1776 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1777 	},
1778 	[ITEM_E_TAG] = {
1779 		.name = "e_tag",
1780 		.help = "match E-Tag header",
1781 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1782 		.next = NEXT(item_e_tag),
1783 		.call = parse_vc,
1784 	},
1785 	[ITEM_E_TAG_GRP_ECID_B] = {
1786 		.name = "grp_ecid_b",
1787 		.help = "GRP and E-CID base",
1788 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1789 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1790 						  rsvd_grp_ecid_b,
1791 						  "\x3f\xff")),
1792 	},
1793 	[ITEM_NVGRE] = {
1794 		.name = "nvgre",
1795 		.help = "match NVGRE header",
1796 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1797 		.next = NEXT(item_nvgre),
1798 		.call = parse_vc,
1799 	},
1800 	[ITEM_NVGRE_TNI] = {
1801 		.name = "tni",
1802 		.help = "virtual subnet ID",
1803 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1804 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1805 	},
1806 	[ITEM_MPLS] = {
1807 		.name = "mpls",
1808 		.help = "match MPLS header",
1809 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1810 		.next = NEXT(item_mpls),
1811 		.call = parse_vc,
1812 	},
1813 	[ITEM_MPLS_LABEL] = {
1814 		.name = "label",
1815 		.help = "MPLS label",
1816 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1817 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1818 						  label_tc_s,
1819 						  "\xff\xff\xf0")),
1820 	},
1821 	[ITEM_GRE] = {
1822 		.name = "gre",
1823 		.help = "match GRE header",
1824 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1825 		.next = NEXT(item_gre),
1826 		.call = parse_vc,
1827 	},
1828 	[ITEM_GRE_PROTO] = {
1829 		.name = "protocol",
1830 		.help = "GRE protocol type",
1831 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1832 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1833 					     protocol)),
1834 	},
1835 	[ITEM_FUZZY] = {
1836 		.name = "fuzzy",
1837 		.help = "fuzzy pattern match, expect faster than default",
1838 		.priv = PRIV_ITEM(FUZZY,
1839 				sizeof(struct rte_flow_item_fuzzy)),
1840 		.next = NEXT(item_fuzzy),
1841 		.call = parse_vc,
1842 	},
1843 	[ITEM_FUZZY_THRESH] = {
1844 		.name = "thresh",
1845 		.help = "match accuracy threshold",
1846 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1847 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1848 					thresh)),
1849 	},
1850 	[ITEM_GTP] = {
1851 		.name = "gtp",
1852 		.help = "match GTP header",
1853 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1854 		.next = NEXT(item_gtp),
1855 		.call = parse_vc,
1856 	},
1857 	[ITEM_GTP_TEID] = {
1858 		.name = "teid",
1859 		.help = "tunnel endpoint identifier",
1860 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1861 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1862 	},
1863 	[ITEM_GTPC] = {
1864 		.name = "gtpc",
1865 		.help = "match GTP header",
1866 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1867 		.next = NEXT(item_gtp),
1868 		.call = parse_vc,
1869 	},
1870 	[ITEM_GTPU] = {
1871 		.name = "gtpu",
1872 		.help = "match GTP header",
1873 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1874 		.next = NEXT(item_gtp),
1875 		.call = parse_vc,
1876 	},
1877 	[ITEM_GENEVE] = {
1878 		.name = "geneve",
1879 		.help = "match GENEVE header",
1880 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1881 		.next = NEXT(item_geneve),
1882 		.call = parse_vc,
1883 	},
1884 	[ITEM_GENEVE_VNI] = {
1885 		.name = "vni",
1886 		.help = "virtual network identifier",
1887 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1888 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1889 	},
1890 	[ITEM_GENEVE_PROTO] = {
1891 		.name = "protocol",
1892 		.help = "GENEVE protocol type",
1893 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1894 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1895 					     protocol)),
1896 	},
1897 	[ITEM_VXLAN_GPE] = {
1898 		.name = "vxlan-gpe",
1899 		.help = "match VXLAN-GPE header",
1900 		.priv = PRIV_ITEM(VXLAN_GPE,
1901 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1902 		.next = NEXT(item_vxlan_gpe),
1903 		.call = parse_vc,
1904 	},
1905 	[ITEM_VXLAN_GPE_VNI] = {
1906 		.name = "vni",
1907 		.help = "VXLAN-GPE identifier",
1908 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1909 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1910 					     vni)),
1911 	},
1912 	[ITEM_ARP_ETH_IPV4] = {
1913 		.name = "arp_eth_ipv4",
1914 		.help = "match ARP header for Ethernet/IPv4",
1915 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1916 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1917 		.next = NEXT(item_arp_eth_ipv4),
1918 		.call = parse_vc,
1919 	},
1920 	[ITEM_ARP_ETH_IPV4_SHA] = {
1921 		.name = "sha",
1922 		.help = "sender hardware address",
1923 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1924 			     item_param),
1925 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1926 					     sha)),
1927 	},
1928 	[ITEM_ARP_ETH_IPV4_SPA] = {
1929 		.name = "spa",
1930 		.help = "sender IPv4 address",
1931 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1932 			     item_param),
1933 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1934 					     spa)),
1935 	},
1936 	[ITEM_ARP_ETH_IPV4_THA] = {
1937 		.name = "tha",
1938 		.help = "target hardware address",
1939 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1940 			     item_param),
1941 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1942 					     tha)),
1943 	},
1944 	[ITEM_ARP_ETH_IPV4_TPA] = {
1945 		.name = "tpa",
1946 		.help = "target IPv4 address",
1947 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1948 			     item_param),
1949 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1950 					     tpa)),
1951 	},
1952 	[ITEM_IPV6_EXT] = {
1953 		.name = "ipv6_ext",
1954 		.help = "match presence of any IPv6 extension header",
1955 		.priv = PRIV_ITEM(IPV6_EXT,
1956 				  sizeof(struct rte_flow_item_ipv6_ext)),
1957 		.next = NEXT(item_ipv6_ext),
1958 		.call = parse_vc,
1959 	},
1960 	[ITEM_IPV6_EXT_NEXT_HDR] = {
1961 		.name = "next_hdr",
1962 		.help = "next header",
1963 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
1964 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
1965 					     next_hdr)),
1966 	},
1967 	[ITEM_ICMP6] = {
1968 		.name = "icmp6",
1969 		.help = "match any ICMPv6 header",
1970 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1971 		.next = NEXT(item_icmp6),
1972 		.call = parse_vc,
1973 	},
1974 	[ITEM_ICMP6_TYPE] = {
1975 		.name = "type",
1976 		.help = "ICMPv6 type",
1977 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1978 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1979 					     type)),
1980 	},
1981 	[ITEM_ICMP6_CODE] = {
1982 		.name = "code",
1983 		.help = "ICMPv6 code",
1984 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1985 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1986 					     code)),
1987 	},
1988 	[ITEM_ICMP6_ND_NS] = {
1989 		.name = "icmp6_nd_ns",
1990 		.help = "match ICMPv6 neighbor discovery solicitation",
1991 		.priv = PRIV_ITEM(ICMP6_ND_NS,
1992 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
1993 		.next = NEXT(item_icmp6_nd_ns),
1994 		.call = parse_vc,
1995 	},
1996 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
1997 		.name = "target_addr",
1998 		.help = "target address",
1999 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2000 			     item_param),
2001 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2002 					     target_addr)),
2003 	},
2004 	[ITEM_ICMP6_ND_NA] = {
2005 		.name = "icmp6_nd_na",
2006 		.help = "match ICMPv6 neighbor discovery advertisement",
2007 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2008 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2009 		.next = NEXT(item_icmp6_nd_na),
2010 		.call = parse_vc,
2011 	},
2012 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2013 		.name = "target_addr",
2014 		.help = "target address",
2015 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2016 			     item_param),
2017 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2018 					     target_addr)),
2019 	},
2020 	[ITEM_ICMP6_ND_OPT] = {
2021 		.name = "icmp6_nd_opt",
2022 		.help = "match presence of any ICMPv6 neighbor discovery"
2023 			" option",
2024 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2025 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2026 		.next = NEXT(item_icmp6_nd_opt),
2027 		.call = parse_vc,
2028 	},
2029 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2030 		.name = "type",
2031 		.help = "ND option type",
2032 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2033 			     item_param),
2034 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2035 					     type)),
2036 	},
2037 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2038 		.name = "icmp6_nd_opt_sla_eth",
2039 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2040 			" link-layer address option",
2041 		.priv = PRIV_ITEM
2042 			(ICMP6_ND_OPT_SLA_ETH,
2043 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2044 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2045 		.call = parse_vc,
2046 	},
2047 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2048 		.name = "sla",
2049 		.help = "source Ethernet LLA",
2050 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2051 			     item_param),
2052 		.args = ARGS(ARGS_ENTRY_HTON
2053 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2054 	},
2055 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2056 		.name = "icmp6_nd_opt_tla_eth",
2057 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2058 			" link-layer address option",
2059 		.priv = PRIV_ITEM
2060 			(ICMP6_ND_OPT_TLA_ETH,
2061 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2062 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2063 		.call = parse_vc,
2064 	},
2065 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2066 		.name = "tla",
2067 		.help = "target Ethernet LLA",
2068 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2069 			     item_param),
2070 		.args = ARGS(ARGS_ENTRY_HTON
2071 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2072 	},
2073 
2074 	/* Validate/create actions. */
2075 	[ACTIONS] = {
2076 		.name = "actions",
2077 		.help = "submit a list of associated actions",
2078 		.next = NEXT(next_action),
2079 		.call = parse_vc,
2080 	},
2081 	[ACTION_NEXT] = {
2082 		.name = "/",
2083 		.help = "specify next action",
2084 		.next = NEXT(next_action),
2085 	},
2086 	[ACTION_END] = {
2087 		.name = "end",
2088 		.help = "end list of actions",
2089 		.priv = PRIV_ACTION(END, 0),
2090 		.call = parse_vc,
2091 	},
2092 	[ACTION_VOID] = {
2093 		.name = "void",
2094 		.help = "no-op action",
2095 		.priv = PRIV_ACTION(VOID, 0),
2096 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2097 		.call = parse_vc,
2098 	},
2099 	[ACTION_PASSTHRU] = {
2100 		.name = "passthru",
2101 		.help = "let subsequent rule process matched packets",
2102 		.priv = PRIV_ACTION(PASSTHRU, 0),
2103 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2104 		.call = parse_vc,
2105 	},
2106 	[ACTION_JUMP] = {
2107 		.name = "jump",
2108 		.help = "redirect traffic to a given group",
2109 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2110 		.next = NEXT(action_jump),
2111 		.call = parse_vc,
2112 	},
2113 	[ACTION_JUMP_GROUP] = {
2114 		.name = "group",
2115 		.help = "group to redirect traffic to",
2116 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2117 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2118 		.call = parse_vc_conf,
2119 	},
2120 	[ACTION_MARK] = {
2121 		.name = "mark",
2122 		.help = "attach 32 bit value to packets",
2123 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2124 		.next = NEXT(action_mark),
2125 		.call = parse_vc,
2126 	},
2127 	[ACTION_MARK_ID] = {
2128 		.name = "id",
2129 		.help = "32 bit value to return with packets",
2130 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2131 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2132 		.call = parse_vc_conf,
2133 	},
2134 	[ACTION_FLAG] = {
2135 		.name = "flag",
2136 		.help = "flag packets",
2137 		.priv = PRIV_ACTION(FLAG, 0),
2138 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2139 		.call = parse_vc,
2140 	},
2141 	[ACTION_QUEUE] = {
2142 		.name = "queue",
2143 		.help = "assign packets to a given queue index",
2144 		.priv = PRIV_ACTION(QUEUE,
2145 				    sizeof(struct rte_flow_action_queue)),
2146 		.next = NEXT(action_queue),
2147 		.call = parse_vc,
2148 	},
2149 	[ACTION_QUEUE_INDEX] = {
2150 		.name = "index",
2151 		.help = "queue index to use",
2152 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2153 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2154 		.call = parse_vc_conf,
2155 	},
2156 	[ACTION_DROP] = {
2157 		.name = "drop",
2158 		.help = "drop packets (note: passthru has priority)",
2159 		.priv = PRIV_ACTION(DROP, 0),
2160 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2161 		.call = parse_vc,
2162 	},
2163 	[ACTION_COUNT] = {
2164 		.name = "count",
2165 		.help = "enable counters for this rule",
2166 		.priv = PRIV_ACTION(COUNT,
2167 				    sizeof(struct rte_flow_action_count)),
2168 		.next = NEXT(action_count),
2169 		.call = parse_vc,
2170 	},
2171 	[ACTION_COUNT_ID] = {
2172 		.name = "identifier",
2173 		.help = "counter identifier to use",
2174 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2175 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2176 		.call = parse_vc_conf,
2177 	},
2178 	[ACTION_COUNT_SHARED] = {
2179 		.name = "shared",
2180 		.help = "shared counter",
2181 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2182 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2183 					   shared, 1)),
2184 		.call = parse_vc_conf,
2185 	},
2186 	[ACTION_RSS] = {
2187 		.name = "rss",
2188 		.help = "spread packets among several queues",
2189 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2190 		.next = NEXT(action_rss),
2191 		.call = parse_vc_action_rss,
2192 	},
2193 	[ACTION_RSS_FUNC] = {
2194 		.name = "func",
2195 		.help = "RSS hash function to apply",
2196 		.next = NEXT(action_rss,
2197 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2198 					ACTION_RSS_FUNC_TOEPLITZ,
2199 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2200 	},
2201 	[ACTION_RSS_FUNC_DEFAULT] = {
2202 		.name = "default",
2203 		.help = "default hash function",
2204 		.call = parse_vc_action_rss_func,
2205 	},
2206 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2207 		.name = "toeplitz",
2208 		.help = "Toeplitz hash function",
2209 		.call = parse_vc_action_rss_func,
2210 	},
2211 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2212 		.name = "simple_xor",
2213 		.help = "simple XOR hash function",
2214 		.call = parse_vc_action_rss_func,
2215 	},
2216 	[ACTION_RSS_LEVEL] = {
2217 		.name = "level",
2218 		.help = "encapsulation level for \"types\"",
2219 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2220 		.args = ARGS(ARGS_ENTRY_ARB
2221 			     (offsetof(struct action_rss_data, conf) +
2222 			      offsetof(struct rte_flow_action_rss, level),
2223 			      sizeof(((struct rte_flow_action_rss *)0)->
2224 				     level))),
2225 	},
2226 	[ACTION_RSS_TYPES] = {
2227 		.name = "types",
2228 		.help = "specific RSS hash types",
2229 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2230 	},
2231 	[ACTION_RSS_TYPE] = {
2232 		.name = "{type}",
2233 		.help = "RSS hash type",
2234 		.call = parse_vc_action_rss_type,
2235 		.comp = comp_vc_action_rss_type,
2236 	},
2237 	[ACTION_RSS_KEY] = {
2238 		.name = "key",
2239 		.help = "RSS hash key",
2240 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
2241 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2242 			     ARGS_ENTRY_ARB
2243 			     (offsetof(struct action_rss_data, conf) +
2244 			      offsetof(struct rte_flow_action_rss, key_len),
2245 			      sizeof(((struct rte_flow_action_rss *)0)->
2246 				     key_len)),
2247 			     ARGS_ENTRY(struct action_rss_data, key)),
2248 	},
2249 	[ACTION_RSS_KEY_LEN] = {
2250 		.name = "key_len",
2251 		.help = "RSS hash key length in bytes",
2252 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2253 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2254 			     (offsetof(struct action_rss_data, conf) +
2255 			      offsetof(struct rte_flow_action_rss, key_len),
2256 			      sizeof(((struct rte_flow_action_rss *)0)->
2257 				     key_len),
2258 			      0,
2259 			      RSS_HASH_KEY_LENGTH)),
2260 	},
2261 	[ACTION_RSS_QUEUES] = {
2262 		.name = "queues",
2263 		.help = "queue indices to use",
2264 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2265 		.call = parse_vc_conf,
2266 	},
2267 	[ACTION_RSS_QUEUE] = {
2268 		.name = "{queue}",
2269 		.help = "queue index",
2270 		.call = parse_vc_action_rss_queue,
2271 		.comp = comp_vc_action_rss_queue,
2272 	},
2273 	[ACTION_PF] = {
2274 		.name = "pf",
2275 		.help = "direct traffic to physical function",
2276 		.priv = PRIV_ACTION(PF, 0),
2277 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2278 		.call = parse_vc,
2279 	},
2280 	[ACTION_VF] = {
2281 		.name = "vf",
2282 		.help = "direct traffic to a virtual function ID",
2283 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2284 		.next = NEXT(action_vf),
2285 		.call = parse_vc,
2286 	},
2287 	[ACTION_VF_ORIGINAL] = {
2288 		.name = "original",
2289 		.help = "use original VF ID if possible",
2290 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2291 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2292 					   original, 1)),
2293 		.call = parse_vc_conf,
2294 	},
2295 	[ACTION_VF_ID] = {
2296 		.name = "id",
2297 		.help = "VF ID",
2298 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2299 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2300 		.call = parse_vc_conf,
2301 	},
2302 	[ACTION_PHY_PORT] = {
2303 		.name = "phy_port",
2304 		.help = "direct packets to physical port index",
2305 		.priv = PRIV_ACTION(PHY_PORT,
2306 				    sizeof(struct rte_flow_action_phy_port)),
2307 		.next = NEXT(action_phy_port),
2308 		.call = parse_vc,
2309 	},
2310 	[ACTION_PHY_PORT_ORIGINAL] = {
2311 		.name = "original",
2312 		.help = "use original port index if possible",
2313 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2314 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2315 					   original, 1)),
2316 		.call = parse_vc_conf,
2317 	},
2318 	[ACTION_PHY_PORT_INDEX] = {
2319 		.name = "index",
2320 		.help = "physical port index",
2321 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2322 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2323 					index)),
2324 		.call = parse_vc_conf,
2325 	},
2326 	[ACTION_PORT_ID] = {
2327 		.name = "port_id",
2328 		.help = "direct matching traffic to a given DPDK port ID",
2329 		.priv = PRIV_ACTION(PORT_ID,
2330 				    sizeof(struct rte_flow_action_port_id)),
2331 		.next = NEXT(action_port_id),
2332 		.call = parse_vc,
2333 	},
2334 	[ACTION_PORT_ID_ORIGINAL] = {
2335 		.name = "original",
2336 		.help = "use original DPDK port ID if possible",
2337 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2338 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2339 					   original, 1)),
2340 		.call = parse_vc_conf,
2341 	},
2342 	[ACTION_PORT_ID_ID] = {
2343 		.name = "id",
2344 		.help = "DPDK port ID",
2345 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2346 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2347 		.call = parse_vc_conf,
2348 	},
2349 	[ACTION_METER] = {
2350 		.name = "meter",
2351 		.help = "meter the directed packets at given id",
2352 		.priv = PRIV_ACTION(METER,
2353 				    sizeof(struct rte_flow_action_meter)),
2354 		.next = NEXT(action_meter),
2355 		.call = parse_vc,
2356 	},
2357 	[ACTION_METER_ID] = {
2358 		.name = "mtr_id",
2359 		.help = "meter id to use",
2360 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2361 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2362 		.call = parse_vc_conf,
2363 	},
2364 	[ACTION_OF_SET_MPLS_TTL] = {
2365 		.name = "of_set_mpls_ttl",
2366 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2367 		.priv = PRIV_ACTION
2368 			(OF_SET_MPLS_TTL,
2369 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2370 		.next = NEXT(action_of_set_mpls_ttl),
2371 		.call = parse_vc,
2372 	},
2373 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2374 		.name = "mpls_ttl",
2375 		.help = "MPLS TTL",
2376 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2377 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2378 					mpls_ttl)),
2379 		.call = parse_vc_conf,
2380 	},
2381 	[ACTION_OF_DEC_MPLS_TTL] = {
2382 		.name = "of_dec_mpls_ttl",
2383 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2384 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2385 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2386 		.call = parse_vc,
2387 	},
2388 	[ACTION_OF_SET_NW_TTL] = {
2389 		.name = "of_set_nw_ttl",
2390 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2391 		.priv = PRIV_ACTION
2392 			(OF_SET_NW_TTL,
2393 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2394 		.next = NEXT(action_of_set_nw_ttl),
2395 		.call = parse_vc,
2396 	},
2397 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2398 		.name = "nw_ttl",
2399 		.help = "IP TTL",
2400 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2401 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2402 					nw_ttl)),
2403 		.call = parse_vc_conf,
2404 	},
2405 	[ACTION_OF_DEC_NW_TTL] = {
2406 		.name = "of_dec_nw_ttl",
2407 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2408 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2409 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2410 		.call = parse_vc,
2411 	},
2412 	[ACTION_OF_COPY_TTL_OUT] = {
2413 		.name = "of_copy_ttl_out",
2414 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2415 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2416 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2417 		.call = parse_vc,
2418 	},
2419 	[ACTION_OF_COPY_TTL_IN] = {
2420 		.name = "of_copy_ttl_in",
2421 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2422 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2423 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2424 		.call = parse_vc,
2425 	},
2426 	[ACTION_OF_POP_VLAN] = {
2427 		.name = "of_pop_vlan",
2428 		.help = "OpenFlow's OFPAT_POP_VLAN",
2429 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2430 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2431 		.call = parse_vc,
2432 	},
2433 	[ACTION_OF_PUSH_VLAN] = {
2434 		.name = "of_push_vlan",
2435 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2436 		.priv = PRIV_ACTION
2437 			(OF_PUSH_VLAN,
2438 			 sizeof(struct rte_flow_action_of_push_vlan)),
2439 		.next = NEXT(action_of_push_vlan),
2440 		.call = parse_vc,
2441 	},
2442 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2443 		.name = "ethertype",
2444 		.help = "EtherType",
2445 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2446 		.args = ARGS(ARGS_ENTRY_HTON
2447 			     (struct rte_flow_action_of_push_vlan,
2448 			      ethertype)),
2449 		.call = parse_vc_conf,
2450 	},
2451 	[ACTION_OF_SET_VLAN_VID] = {
2452 		.name = "of_set_vlan_vid",
2453 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2454 		.priv = PRIV_ACTION
2455 			(OF_SET_VLAN_VID,
2456 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2457 		.next = NEXT(action_of_set_vlan_vid),
2458 		.call = parse_vc,
2459 	},
2460 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2461 		.name = "vlan_vid",
2462 		.help = "VLAN id",
2463 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2464 		.args = ARGS(ARGS_ENTRY_HTON
2465 			     (struct rte_flow_action_of_set_vlan_vid,
2466 			      vlan_vid)),
2467 		.call = parse_vc_conf,
2468 	},
2469 	[ACTION_OF_SET_VLAN_PCP] = {
2470 		.name = "of_set_vlan_pcp",
2471 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2472 		.priv = PRIV_ACTION
2473 			(OF_SET_VLAN_PCP,
2474 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2475 		.next = NEXT(action_of_set_vlan_pcp),
2476 		.call = parse_vc,
2477 	},
2478 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2479 		.name = "vlan_pcp",
2480 		.help = "VLAN priority",
2481 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2482 		.args = ARGS(ARGS_ENTRY_HTON
2483 			     (struct rte_flow_action_of_set_vlan_pcp,
2484 			      vlan_pcp)),
2485 		.call = parse_vc_conf,
2486 	},
2487 	[ACTION_OF_POP_MPLS] = {
2488 		.name = "of_pop_mpls",
2489 		.help = "OpenFlow's OFPAT_POP_MPLS",
2490 		.priv = PRIV_ACTION(OF_POP_MPLS,
2491 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2492 		.next = NEXT(action_of_pop_mpls),
2493 		.call = parse_vc,
2494 	},
2495 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2496 		.name = "ethertype",
2497 		.help = "EtherType",
2498 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2499 		.args = ARGS(ARGS_ENTRY_HTON
2500 			     (struct rte_flow_action_of_pop_mpls,
2501 			      ethertype)),
2502 		.call = parse_vc_conf,
2503 	},
2504 	[ACTION_OF_PUSH_MPLS] = {
2505 		.name = "of_push_mpls",
2506 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2507 		.priv = PRIV_ACTION
2508 			(OF_PUSH_MPLS,
2509 			 sizeof(struct rte_flow_action_of_push_mpls)),
2510 		.next = NEXT(action_of_push_mpls),
2511 		.call = parse_vc,
2512 	},
2513 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2514 		.name = "ethertype",
2515 		.help = "EtherType",
2516 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2517 		.args = ARGS(ARGS_ENTRY_HTON
2518 			     (struct rte_flow_action_of_push_mpls,
2519 			      ethertype)),
2520 		.call = parse_vc_conf,
2521 	},
2522 	[ACTION_VXLAN_ENCAP] = {
2523 		.name = "vxlan_encap",
2524 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2525 			" vxlan\"",
2526 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2527 				    sizeof(struct action_vxlan_encap_data)),
2528 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2529 		.call = parse_vc_action_vxlan_encap,
2530 	},
2531 	[ACTION_VXLAN_DECAP] = {
2532 		.name = "vxlan_decap",
2533 		.help = "Performs a decapsulation action by stripping all"
2534 			" headers of the VXLAN tunnel network overlay from the"
2535 			" matched flow.",
2536 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2537 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2538 		.call = parse_vc,
2539 	},
2540 	[ACTION_NVGRE_ENCAP] = {
2541 		.name = "nvgre_encap",
2542 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2543 			" nvgre\"",
2544 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2545 				    sizeof(struct action_nvgre_encap_data)),
2546 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2547 		.call = parse_vc_action_nvgre_encap,
2548 	},
2549 	[ACTION_NVGRE_DECAP] = {
2550 		.name = "nvgre_decap",
2551 		.help = "Performs a decapsulation action by stripping all"
2552 			" headers of the NVGRE tunnel network overlay from the"
2553 			" matched flow.",
2554 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2555 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2556 		.call = parse_vc,
2557 	},
2558 	[ACTION_SET_IPV4_SRC] = {
2559 		.name = "set_ipv4_src",
2560 		.help = "Set a new IPv4 source address in the outermost"
2561 			" IPv4 header",
2562 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2563 			sizeof(struct rte_flow_action_set_ipv4)),
2564 		.next = NEXT(action_set_ipv4_src),
2565 		.call = parse_vc,
2566 	},
2567 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2568 		.name = "ipv4_addr",
2569 		.help = "new IPv4 source address to set",
2570 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2571 		.args = ARGS(ARGS_ENTRY_HTON
2572 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2573 		.call = parse_vc_conf,
2574 	},
2575 	[ACTION_SET_IPV4_DST] = {
2576 		.name = "set_ipv4_dst",
2577 		.help = "Set a new IPv4 destination address in the outermost"
2578 			" IPv4 header",
2579 		.priv = PRIV_ACTION(SET_IPV4_DST,
2580 			sizeof(struct rte_flow_action_set_ipv4)),
2581 		.next = NEXT(action_set_ipv4_dst),
2582 		.call = parse_vc,
2583 	},
2584 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2585 		.name = "ipv4_addr",
2586 		.help = "new IPv4 destination address to set",
2587 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2588 		.args = ARGS(ARGS_ENTRY_HTON
2589 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2590 		.call = parse_vc_conf,
2591 	},
2592 	[ACTION_SET_IPV6_SRC] = {
2593 		.name = "set_ipv6_src",
2594 		.help = "Set a new IPv6 source address in the outermost"
2595 			" IPv6 header",
2596 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2597 			sizeof(struct rte_flow_action_set_ipv6)),
2598 		.next = NEXT(action_set_ipv6_src),
2599 		.call = parse_vc,
2600 	},
2601 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2602 		.name = "ipv6_addr",
2603 		.help = "new IPv6 source address to set",
2604 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2605 		.args = ARGS(ARGS_ENTRY_HTON
2606 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2607 		.call = parse_vc_conf,
2608 	},
2609 	[ACTION_SET_IPV6_DST] = {
2610 		.name = "set_ipv6_dst",
2611 		.help = "Set a new IPv6 destination address in the outermost"
2612 			" IPv6 header",
2613 		.priv = PRIV_ACTION(SET_IPV6_DST,
2614 			sizeof(struct rte_flow_action_set_ipv6)),
2615 		.next = NEXT(action_set_ipv6_dst),
2616 		.call = parse_vc,
2617 	},
2618 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2619 		.name = "ipv6_addr",
2620 		.help = "new IPv6 destination address to set",
2621 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2622 		.args = ARGS(ARGS_ENTRY_HTON
2623 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2624 		.call = parse_vc_conf,
2625 	},
2626 	[ACTION_SET_TP_SRC] = {
2627 		.name = "set_tp_src",
2628 		.help = "set a new source port number in the outermost"
2629 			" TCP/UDP header",
2630 		.priv = PRIV_ACTION(SET_TP_SRC,
2631 			sizeof(struct rte_flow_action_set_tp)),
2632 		.next = NEXT(action_set_tp_src),
2633 		.call = parse_vc,
2634 	},
2635 	[ACTION_SET_TP_SRC_TP_SRC] = {
2636 		.name = "port",
2637 		.help = "new source port number to set",
2638 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2639 		.args = ARGS(ARGS_ENTRY_HTON
2640 			     (struct rte_flow_action_set_tp, port)),
2641 		.call = parse_vc_conf,
2642 	},
2643 	[ACTION_SET_TP_DST] = {
2644 		.name = "set_tp_dst",
2645 		.help = "set a new destination port number in the outermost"
2646 			" TCP/UDP header",
2647 		.priv = PRIV_ACTION(SET_TP_DST,
2648 			sizeof(struct rte_flow_action_set_tp)),
2649 		.next = NEXT(action_set_tp_dst),
2650 		.call = parse_vc,
2651 	},
2652 	[ACTION_SET_TP_DST_TP_DST] = {
2653 		.name = "port",
2654 		.help = "new destination port number to set",
2655 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2656 		.args = ARGS(ARGS_ENTRY_HTON
2657 			     (struct rte_flow_action_set_tp, port)),
2658 		.call = parse_vc_conf,
2659 	},
2660 	[ACTION_MAC_SWAP] = {
2661 		.name = "mac_swap",
2662 		.help = "Swap the source and destination MAC addresses"
2663 			" in the outermost Ethernet header",
2664 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2665 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2666 		.call = parse_vc,
2667 	},
2668 	[ACTION_DEC_TTL] = {
2669 		.name = "dec_ttl",
2670 		.help = "decrease network TTL if available",
2671 		.priv = PRIV_ACTION(DEC_TTL, 0),
2672 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2673 		.call = parse_vc,
2674 	},
2675 	[ACTION_SET_TTL] = {
2676 		.name = "set_ttl",
2677 		.help = "set ttl value",
2678 		.priv = PRIV_ACTION(SET_TTL,
2679 			sizeof(struct rte_flow_action_set_ttl)),
2680 		.next = NEXT(action_set_ttl),
2681 		.call = parse_vc,
2682 	},
2683 	[ACTION_SET_TTL_TTL] = {
2684 		.name = "ttl_value",
2685 		.help = "new ttl value to set",
2686 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2687 		.args = ARGS(ARGS_ENTRY_HTON
2688 			     (struct rte_flow_action_set_ttl, ttl_value)),
2689 		.call = parse_vc_conf,
2690 	},
2691 	[ACTION_SET_MAC_SRC] = {
2692 		.name = "set_mac_src",
2693 		.help = "set source mac address",
2694 		.priv = PRIV_ACTION(SET_MAC_SRC,
2695 			sizeof(struct rte_flow_action_set_mac)),
2696 		.next = NEXT(action_set_mac_src),
2697 		.call = parse_vc,
2698 	},
2699 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2700 		.name = "mac_addr",
2701 		.help = "new source mac address",
2702 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2703 		.args = ARGS(ARGS_ENTRY_HTON
2704 			     (struct rte_flow_action_set_mac, mac_addr)),
2705 		.call = parse_vc_conf,
2706 	},
2707 	[ACTION_SET_MAC_DST] = {
2708 		.name = "set_mac_dst",
2709 		.help = "set destination mac address",
2710 		.priv = PRIV_ACTION(SET_MAC_DST,
2711 			sizeof(struct rte_flow_action_set_mac)),
2712 		.next = NEXT(action_set_mac_dst),
2713 		.call = parse_vc,
2714 	},
2715 	[ACTION_SET_MAC_DST_MAC_DST] = {
2716 		.name = "mac_addr",
2717 		.help = "new destination mac address to set",
2718 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2719 		.args = ARGS(ARGS_ENTRY_HTON
2720 			     (struct rte_flow_action_set_mac, mac_addr)),
2721 		.call = parse_vc_conf,
2722 	},
2723 };
2724 
2725 /** Remove and return last entry from argument stack. */
2726 static const struct arg *
2727 pop_args(struct context *ctx)
2728 {
2729 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2730 }
2731 
2732 /** Add entry on top of the argument stack. */
2733 static int
2734 push_args(struct context *ctx, const struct arg *arg)
2735 {
2736 	if (ctx->args_num == CTX_STACK_SIZE)
2737 		return -1;
2738 	ctx->args[ctx->args_num++] = arg;
2739 	return 0;
2740 }
2741 
2742 /** Spread value into buffer according to bit-mask. */
2743 static size_t
2744 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2745 {
2746 	uint32_t i = arg->size;
2747 	uint32_t end = 0;
2748 	int sub = 1;
2749 	int add = 0;
2750 	size_t len = 0;
2751 
2752 	if (!arg->mask)
2753 		return 0;
2754 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2755 	if (!arg->hton) {
2756 		i = 0;
2757 		end = arg->size;
2758 		sub = 0;
2759 		add = 1;
2760 	}
2761 #endif
2762 	while (i != end) {
2763 		unsigned int shift = 0;
2764 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2765 
2766 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2767 			if (!(arg->mask[i] & (1 << shift)))
2768 				continue;
2769 			++len;
2770 			if (!dst)
2771 				continue;
2772 			*buf &= ~(1 << shift);
2773 			*buf |= (val & 1) << shift;
2774 			val >>= 1;
2775 		}
2776 		i += add;
2777 	}
2778 	return len;
2779 }
2780 
2781 /** Compare a string with a partial one of a given length. */
2782 static int
2783 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2784 {
2785 	int r = strncmp(full, partial, partial_len);
2786 
2787 	if (r)
2788 		return r;
2789 	if (strlen(full) <= partial_len)
2790 		return 0;
2791 	return full[partial_len];
2792 }
2793 
2794 /**
2795  * Parse a prefix length and generate a bit-mask.
2796  *
2797  * Last argument (ctx->args) is retrieved to determine mask size, storage
2798  * location and whether the result must use network byte ordering.
2799  */
2800 static int
2801 parse_prefix(struct context *ctx, const struct token *token,
2802 	     const char *str, unsigned int len,
2803 	     void *buf, unsigned int size)
2804 {
2805 	const struct arg *arg = pop_args(ctx);
2806 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2807 	char *end;
2808 	uintmax_t u;
2809 	unsigned int bytes;
2810 	unsigned int extra;
2811 
2812 	(void)token;
2813 	/* Argument is expected. */
2814 	if (!arg)
2815 		return -1;
2816 	errno = 0;
2817 	u = strtoumax(str, &end, 0);
2818 	if (errno || (size_t)(end - str) != len)
2819 		goto error;
2820 	if (arg->mask) {
2821 		uintmax_t v = 0;
2822 
2823 		extra = arg_entry_bf_fill(NULL, 0, arg);
2824 		if (u > extra)
2825 			goto error;
2826 		if (!ctx->object)
2827 			return len;
2828 		extra -= u;
2829 		while (u--)
2830 			(v <<= 1, v |= 1);
2831 		v <<= extra;
2832 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2833 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2834 			goto error;
2835 		return len;
2836 	}
2837 	bytes = u / 8;
2838 	extra = u % 8;
2839 	size = arg->size;
2840 	if (bytes > size || bytes + !!extra > size)
2841 		goto error;
2842 	if (!ctx->object)
2843 		return len;
2844 	buf = (uint8_t *)ctx->object + arg->offset;
2845 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2846 	if (!arg->hton) {
2847 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2848 		memset(buf, 0x00, size - bytes);
2849 		if (extra)
2850 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2851 	} else
2852 #endif
2853 	{
2854 		memset(buf, 0xff, bytes);
2855 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2856 		if (extra)
2857 			((uint8_t *)buf)[bytes] = conv[extra];
2858 	}
2859 	if (ctx->objmask)
2860 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2861 	return len;
2862 error:
2863 	push_args(ctx, arg);
2864 	return -1;
2865 }
2866 
2867 /** Default parsing function for token name matching. */
2868 static int
2869 parse_default(struct context *ctx, const struct token *token,
2870 	      const char *str, unsigned int len,
2871 	      void *buf, unsigned int size)
2872 {
2873 	(void)ctx;
2874 	(void)buf;
2875 	(void)size;
2876 	if (strcmp_partial(token->name, str, len))
2877 		return -1;
2878 	return len;
2879 }
2880 
2881 /** Parse flow command, initialize output buffer for subsequent tokens. */
2882 static int
2883 parse_init(struct context *ctx, const struct token *token,
2884 	   const char *str, unsigned int len,
2885 	   void *buf, unsigned int size)
2886 {
2887 	struct buffer *out = buf;
2888 
2889 	/* Token name must match. */
2890 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2891 		return -1;
2892 	/* Nothing else to do if there is no buffer. */
2893 	if (!out)
2894 		return len;
2895 	/* Make sure buffer is large enough. */
2896 	if (size < sizeof(*out))
2897 		return -1;
2898 	/* Initialize buffer. */
2899 	memset(out, 0x00, sizeof(*out));
2900 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
2901 	ctx->objdata = 0;
2902 	ctx->object = out;
2903 	ctx->objmask = NULL;
2904 	return len;
2905 }
2906 
2907 /** Parse tokens for validate/create commands. */
2908 static int
2909 parse_vc(struct context *ctx, const struct token *token,
2910 	 const char *str, unsigned int len,
2911 	 void *buf, unsigned int size)
2912 {
2913 	struct buffer *out = buf;
2914 	uint8_t *data;
2915 	uint32_t data_size;
2916 
2917 	/* Token name must match. */
2918 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2919 		return -1;
2920 	/* Nothing else to do if there is no buffer. */
2921 	if (!out)
2922 		return len;
2923 	if (!out->command) {
2924 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
2925 			return -1;
2926 		if (sizeof(*out) > size)
2927 			return -1;
2928 		out->command = ctx->curr;
2929 		ctx->objdata = 0;
2930 		ctx->object = out;
2931 		ctx->objmask = NULL;
2932 		out->args.vc.data = (uint8_t *)out + size;
2933 		return len;
2934 	}
2935 	ctx->objdata = 0;
2936 	ctx->object = &out->args.vc.attr;
2937 	ctx->objmask = NULL;
2938 	switch (ctx->curr) {
2939 	case GROUP:
2940 	case PRIORITY:
2941 		return len;
2942 	case INGRESS:
2943 		out->args.vc.attr.ingress = 1;
2944 		return len;
2945 	case EGRESS:
2946 		out->args.vc.attr.egress = 1;
2947 		return len;
2948 	case TRANSFER:
2949 		out->args.vc.attr.transfer = 1;
2950 		return len;
2951 	case PATTERN:
2952 		out->args.vc.pattern =
2953 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2954 					       sizeof(double));
2955 		ctx->object = out->args.vc.pattern;
2956 		ctx->objmask = NULL;
2957 		return len;
2958 	case ACTIONS:
2959 		out->args.vc.actions =
2960 			(void *)RTE_ALIGN_CEIL((uintptr_t)
2961 					       (out->args.vc.pattern +
2962 						out->args.vc.pattern_n),
2963 					       sizeof(double));
2964 		ctx->object = out->args.vc.actions;
2965 		ctx->objmask = NULL;
2966 		return len;
2967 	default:
2968 		if (!token->priv)
2969 			return -1;
2970 		break;
2971 	}
2972 	if (!out->args.vc.actions) {
2973 		const struct parse_item_priv *priv = token->priv;
2974 		struct rte_flow_item *item =
2975 			out->args.vc.pattern + out->args.vc.pattern_n;
2976 
2977 		data_size = priv->size * 3; /* spec, last, mask */
2978 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2979 					       (out->args.vc.data - data_size),
2980 					       sizeof(double));
2981 		if ((uint8_t *)item + sizeof(*item) > data)
2982 			return -1;
2983 		*item = (struct rte_flow_item){
2984 			.type = priv->type,
2985 		};
2986 		++out->args.vc.pattern_n;
2987 		ctx->object = item;
2988 		ctx->objmask = NULL;
2989 	} else {
2990 		const struct parse_action_priv *priv = token->priv;
2991 		struct rte_flow_action *action =
2992 			out->args.vc.actions + out->args.vc.actions_n;
2993 
2994 		data_size = priv->size; /* configuration */
2995 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2996 					       (out->args.vc.data - data_size),
2997 					       sizeof(double));
2998 		if ((uint8_t *)action + sizeof(*action) > data)
2999 			return -1;
3000 		*action = (struct rte_flow_action){
3001 			.type = priv->type,
3002 			.conf = data_size ? data : NULL,
3003 		};
3004 		++out->args.vc.actions_n;
3005 		ctx->object = action;
3006 		ctx->objmask = NULL;
3007 	}
3008 	memset(data, 0, data_size);
3009 	out->args.vc.data = data;
3010 	ctx->objdata = data_size;
3011 	return len;
3012 }
3013 
3014 /** Parse pattern item parameter type. */
3015 static int
3016 parse_vc_spec(struct context *ctx, const struct token *token,
3017 	      const char *str, unsigned int len,
3018 	      void *buf, unsigned int size)
3019 {
3020 	struct buffer *out = buf;
3021 	struct rte_flow_item *item;
3022 	uint32_t data_size;
3023 	int index;
3024 	int objmask = 0;
3025 
3026 	(void)size;
3027 	/* Token name must match. */
3028 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3029 		return -1;
3030 	/* Parse parameter types. */
3031 	switch (ctx->curr) {
3032 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3033 
3034 	case ITEM_PARAM_IS:
3035 		index = 0;
3036 		objmask = 1;
3037 		break;
3038 	case ITEM_PARAM_SPEC:
3039 		index = 0;
3040 		break;
3041 	case ITEM_PARAM_LAST:
3042 		index = 1;
3043 		break;
3044 	case ITEM_PARAM_PREFIX:
3045 		/* Modify next token to expect a prefix. */
3046 		if (ctx->next_num < 2)
3047 			return -1;
3048 		ctx->next[ctx->next_num - 2] = prefix;
3049 		/* Fall through. */
3050 	case ITEM_PARAM_MASK:
3051 		index = 2;
3052 		break;
3053 	default:
3054 		return -1;
3055 	}
3056 	/* Nothing else to do if there is no buffer. */
3057 	if (!out)
3058 		return len;
3059 	if (!out->args.vc.pattern_n)
3060 		return -1;
3061 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3062 	data_size = ctx->objdata / 3; /* spec, last, mask */
3063 	/* Point to selected object. */
3064 	ctx->object = out->args.vc.data + (data_size * index);
3065 	if (objmask) {
3066 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3067 		item->mask = ctx->objmask;
3068 	} else
3069 		ctx->objmask = NULL;
3070 	/* Update relevant item pointer. */
3071 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3072 		ctx->object;
3073 	return len;
3074 }
3075 
3076 /** Parse action configuration field. */
3077 static int
3078 parse_vc_conf(struct context *ctx, const struct token *token,
3079 	      const char *str, unsigned int len,
3080 	      void *buf, unsigned int size)
3081 {
3082 	struct buffer *out = buf;
3083 
3084 	(void)size;
3085 	/* Token name must match. */
3086 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3087 		return -1;
3088 	/* Nothing else to do if there is no buffer. */
3089 	if (!out)
3090 		return len;
3091 	/* Point to selected object. */
3092 	ctx->object = out->args.vc.data;
3093 	ctx->objmask = NULL;
3094 	return len;
3095 }
3096 
3097 /** Parse RSS action. */
3098 static int
3099 parse_vc_action_rss(struct context *ctx, const struct token *token,
3100 		    const char *str, unsigned int len,
3101 		    void *buf, unsigned int size)
3102 {
3103 	struct buffer *out = buf;
3104 	struct rte_flow_action *action;
3105 	struct action_rss_data *action_rss_data;
3106 	unsigned int i;
3107 	int ret;
3108 
3109 	ret = parse_vc(ctx, token, str, len, buf, size);
3110 	if (ret < 0)
3111 		return ret;
3112 	/* Nothing else to do if there is no buffer. */
3113 	if (!out)
3114 		return ret;
3115 	if (!out->args.vc.actions_n)
3116 		return -1;
3117 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3118 	/* Point to selected object. */
3119 	ctx->object = out->args.vc.data;
3120 	ctx->objmask = NULL;
3121 	/* Set up default configuration. */
3122 	action_rss_data = ctx->object;
3123 	*action_rss_data = (struct action_rss_data){
3124 		.conf = (struct rte_flow_action_rss){
3125 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3126 			.level = 0,
3127 			.types = rss_hf,
3128 			.key_len = sizeof(action_rss_data->key),
3129 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3130 			.key = action_rss_data->key,
3131 			.queue = action_rss_data->queue,
3132 		},
3133 		.key = "testpmd's default RSS hash key, "
3134 			"override it for better balancing",
3135 		.queue = { 0 },
3136 	};
3137 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3138 		action_rss_data->queue[i] = i;
3139 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3140 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3141 		struct rte_eth_dev_info info;
3142 
3143 		rte_eth_dev_info_get(ctx->port, &info);
3144 		action_rss_data->conf.key_len =
3145 			RTE_MIN(sizeof(action_rss_data->key),
3146 				info.hash_key_size);
3147 	}
3148 	action->conf = &action_rss_data->conf;
3149 	return ret;
3150 }
3151 
3152 /**
3153  * Parse func field for RSS action.
3154  *
3155  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3156  * ACTION_RSS_FUNC_* index that called this function.
3157  */
3158 static int
3159 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3160 			 const char *str, unsigned int len,
3161 			 void *buf, unsigned int size)
3162 {
3163 	struct action_rss_data *action_rss_data;
3164 	enum rte_eth_hash_function func;
3165 
3166 	(void)buf;
3167 	(void)size;
3168 	/* Token name must match. */
3169 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3170 		return -1;
3171 	switch (ctx->curr) {
3172 	case ACTION_RSS_FUNC_DEFAULT:
3173 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3174 		break;
3175 	case ACTION_RSS_FUNC_TOEPLITZ:
3176 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3177 		break;
3178 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3179 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3180 		break;
3181 	default:
3182 		return -1;
3183 	}
3184 	if (!ctx->object)
3185 		return len;
3186 	action_rss_data = ctx->object;
3187 	action_rss_data->conf.func = func;
3188 	return len;
3189 }
3190 
3191 /**
3192  * Parse type field for RSS action.
3193  *
3194  * Valid tokens are type field names and the "end" token.
3195  */
3196 static int
3197 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3198 			  const char *str, unsigned int len,
3199 			  void *buf, unsigned int size)
3200 {
3201 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3202 	struct action_rss_data *action_rss_data;
3203 	unsigned int i;
3204 
3205 	(void)token;
3206 	(void)buf;
3207 	(void)size;
3208 	if (ctx->curr != ACTION_RSS_TYPE)
3209 		return -1;
3210 	if (!(ctx->objdata >> 16) && ctx->object) {
3211 		action_rss_data = ctx->object;
3212 		action_rss_data->conf.types = 0;
3213 	}
3214 	if (!strcmp_partial("end", str, len)) {
3215 		ctx->objdata &= 0xffff;
3216 		return len;
3217 	}
3218 	for (i = 0; rss_type_table[i].str; ++i)
3219 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3220 			break;
3221 	if (!rss_type_table[i].str)
3222 		return -1;
3223 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3224 	/* Repeat token. */
3225 	if (ctx->next_num == RTE_DIM(ctx->next))
3226 		return -1;
3227 	ctx->next[ctx->next_num++] = next;
3228 	if (!ctx->object)
3229 		return len;
3230 	action_rss_data = ctx->object;
3231 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3232 	return len;
3233 }
3234 
3235 /**
3236  * Parse queue field for RSS action.
3237  *
3238  * Valid tokens are queue indices and the "end" token.
3239  */
3240 static int
3241 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3242 			  const char *str, unsigned int len,
3243 			  void *buf, unsigned int size)
3244 {
3245 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3246 	struct action_rss_data *action_rss_data;
3247 	int ret;
3248 	int i;
3249 
3250 	(void)token;
3251 	(void)buf;
3252 	(void)size;
3253 	if (ctx->curr != ACTION_RSS_QUEUE)
3254 		return -1;
3255 	i = ctx->objdata >> 16;
3256 	if (!strcmp_partial("end", str, len)) {
3257 		ctx->objdata &= 0xffff;
3258 		goto end;
3259 	}
3260 	if (i >= ACTION_RSS_QUEUE_NUM)
3261 		return -1;
3262 	if (push_args(ctx,
3263 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3264 				     i * sizeof(action_rss_data->queue[i]),
3265 				     sizeof(action_rss_data->queue[i]))))
3266 		return -1;
3267 	ret = parse_int(ctx, token, str, len, NULL, 0);
3268 	if (ret < 0) {
3269 		pop_args(ctx);
3270 		return -1;
3271 	}
3272 	++i;
3273 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3274 	/* Repeat token. */
3275 	if (ctx->next_num == RTE_DIM(ctx->next))
3276 		return -1;
3277 	ctx->next[ctx->next_num++] = next;
3278 end:
3279 	if (!ctx->object)
3280 		return len;
3281 	action_rss_data = ctx->object;
3282 	action_rss_data->conf.queue_num = i;
3283 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3284 	return len;
3285 }
3286 
3287 /** Parse VXLAN encap action. */
3288 static int
3289 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3290 			    const char *str, unsigned int len,
3291 			    void *buf, unsigned int size)
3292 {
3293 	struct buffer *out = buf;
3294 	struct rte_flow_action *action;
3295 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3296 	int ret;
3297 
3298 	ret = parse_vc(ctx, token, str, len, buf, size);
3299 	if (ret < 0)
3300 		return ret;
3301 	/* Nothing else to do if there is no buffer. */
3302 	if (!out)
3303 		return ret;
3304 	if (!out->args.vc.actions_n)
3305 		return -1;
3306 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3307 	/* Point to selected object. */
3308 	ctx->object = out->args.vc.data;
3309 	ctx->objmask = NULL;
3310 	/* Set up default configuration. */
3311 	action_vxlan_encap_data = ctx->object;
3312 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3313 		.conf = (struct rte_flow_action_vxlan_encap){
3314 			.definition = action_vxlan_encap_data->items,
3315 		},
3316 		.items = {
3317 			{
3318 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3319 				.spec = &action_vxlan_encap_data->item_eth,
3320 				.mask = &rte_flow_item_eth_mask,
3321 			},
3322 			{
3323 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3324 				.spec = &action_vxlan_encap_data->item_vlan,
3325 				.mask = &rte_flow_item_vlan_mask,
3326 			},
3327 			{
3328 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3329 				.spec = &action_vxlan_encap_data->item_ipv4,
3330 				.mask = &rte_flow_item_ipv4_mask,
3331 			},
3332 			{
3333 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3334 				.spec = &action_vxlan_encap_data->item_udp,
3335 				.mask = &rte_flow_item_udp_mask,
3336 			},
3337 			{
3338 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3339 				.spec = &action_vxlan_encap_data->item_vxlan,
3340 				.mask = &rte_flow_item_vxlan_mask,
3341 			},
3342 			{
3343 				.type = RTE_FLOW_ITEM_TYPE_END,
3344 			},
3345 		},
3346 		.item_eth.type = 0,
3347 		.item_vlan = {
3348 			.tci = vxlan_encap_conf.vlan_tci,
3349 			.inner_type = 0,
3350 		},
3351 		.item_ipv4.hdr = {
3352 			.src_addr = vxlan_encap_conf.ipv4_src,
3353 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3354 		},
3355 		.item_udp.hdr = {
3356 			.src_port = vxlan_encap_conf.udp_src,
3357 			.dst_port = vxlan_encap_conf.udp_dst,
3358 		},
3359 		.item_vxlan.flags = 0,
3360 	};
3361 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3362 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3363 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3364 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3365 	if (!vxlan_encap_conf.select_ipv4) {
3366 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3367 		       &vxlan_encap_conf.ipv6_src,
3368 		       sizeof(vxlan_encap_conf.ipv6_src));
3369 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3370 		       &vxlan_encap_conf.ipv6_dst,
3371 		       sizeof(vxlan_encap_conf.ipv6_dst));
3372 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3373 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3374 			.spec = &action_vxlan_encap_data->item_ipv6,
3375 			.mask = &rte_flow_item_ipv6_mask,
3376 		};
3377 	}
3378 	if (!vxlan_encap_conf.select_vlan)
3379 		action_vxlan_encap_data->items[1].type =
3380 			RTE_FLOW_ITEM_TYPE_VOID;
3381 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3382 	       RTE_DIM(vxlan_encap_conf.vni));
3383 	action->conf = &action_vxlan_encap_data->conf;
3384 	return ret;
3385 }
3386 
3387 /** Parse NVGRE encap action. */
3388 static int
3389 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3390 			    const char *str, unsigned int len,
3391 			    void *buf, unsigned int size)
3392 {
3393 	struct buffer *out = buf;
3394 	struct rte_flow_action *action;
3395 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3396 	int ret;
3397 
3398 	ret = parse_vc(ctx, token, str, len, buf, size);
3399 	if (ret < 0)
3400 		return ret;
3401 	/* Nothing else to do if there is no buffer. */
3402 	if (!out)
3403 		return ret;
3404 	if (!out->args.vc.actions_n)
3405 		return -1;
3406 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3407 	/* Point to selected object. */
3408 	ctx->object = out->args.vc.data;
3409 	ctx->objmask = NULL;
3410 	/* Set up default configuration. */
3411 	action_nvgre_encap_data = ctx->object;
3412 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3413 		.conf = (struct rte_flow_action_nvgre_encap){
3414 			.definition = action_nvgre_encap_data->items,
3415 		},
3416 		.items = {
3417 			{
3418 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3419 				.spec = &action_nvgre_encap_data->item_eth,
3420 				.mask = &rte_flow_item_eth_mask,
3421 			},
3422 			{
3423 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3424 				.spec = &action_nvgre_encap_data->item_vlan,
3425 				.mask = &rte_flow_item_vlan_mask,
3426 			},
3427 			{
3428 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3429 				.spec = &action_nvgre_encap_data->item_ipv4,
3430 				.mask = &rte_flow_item_ipv4_mask,
3431 			},
3432 			{
3433 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3434 				.spec = &action_nvgre_encap_data->item_nvgre,
3435 				.mask = &rte_flow_item_nvgre_mask,
3436 			},
3437 			{
3438 				.type = RTE_FLOW_ITEM_TYPE_END,
3439 			},
3440 		},
3441 		.item_eth.type = 0,
3442 		.item_vlan = {
3443 			.tci = nvgre_encap_conf.vlan_tci,
3444 			.inner_type = 0,
3445 		},
3446 		.item_ipv4.hdr = {
3447 		       .src_addr = nvgre_encap_conf.ipv4_src,
3448 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3449 		},
3450 		.item_nvgre.flow_id = 0,
3451 	};
3452 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3453 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3454 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3455 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3456 	if (!nvgre_encap_conf.select_ipv4) {
3457 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3458 		       &nvgre_encap_conf.ipv6_src,
3459 		       sizeof(nvgre_encap_conf.ipv6_src));
3460 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3461 		       &nvgre_encap_conf.ipv6_dst,
3462 		       sizeof(nvgre_encap_conf.ipv6_dst));
3463 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3464 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3465 			.spec = &action_nvgre_encap_data->item_ipv6,
3466 			.mask = &rte_flow_item_ipv6_mask,
3467 		};
3468 	}
3469 	if (!nvgre_encap_conf.select_vlan)
3470 		action_nvgre_encap_data->items[1].type =
3471 			RTE_FLOW_ITEM_TYPE_VOID;
3472 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3473 	       RTE_DIM(nvgre_encap_conf.tni));
3474 	action->conf = &action_nvgre_encap_data->conf;
3475 	return ret;
3476 }
3477 
3478 /** Parse tokens for destroy command. */
3479 static int
3480 parse_destroy(struct context *ctx, const struct token *token,
3481 	      const char *str, unsigned int len,
3482 	      void *buf, unsigned int size)
3483 {
3484 	struct buffer *out = buf;
3485 
3486 	/* Token name must match. */
3487 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3488 		return -1;
3489 	/* Nothing else to do if there is no buffer. */
3490 	if (!out)
3491 		return len;
3492 	if (!out->command) {
3493 		if (ctx->curr != DESTROY)
3494 			return -1;
3495 		if (sizeof(*out) > size)
3496 			return -1;
3497 		out->command = ctx->curr;
3498 		ctx->objdata = 0;
3499 		ctx->object = out;
3500 		ctx->objmask = NULL;
3501 		out->args.destroy.rule =
3502 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3503 					       sizeof(double));
3504 		return len;
3505 	}
3506 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
3507 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
3508 		return -1;
3509 	ctx->objdata = 0;
3510 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
3511 	ctx->objmask = NULL;
3512 	return len;
3513 }
3514 
3515 /** Parse tokens for flush command. */
3516 static int
3517 parse_flush(struct context *ctx, const struct token *token,
3518 	    const char *str, unsigned int len,
3519 	    void *buf, unsigned int size)
3520 {
3521 	struct buffer *out = buf;
3522 
3523 	/* Token name must match. */
3524 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3525 		return -1;
3526 	/* Nothing else to do if there is no buffer. */
3527 	if (!out)
3528 		return len;
3529 	if (!out->command) {
3530 		if (ctx->curr != FLUSH)
3531 			return -1;
3532 		if (sizeof(*out) > size)
3533 			return -1;
3534 		out->command = ctx->curr;
3535 		ctx->objdata = 0;
3536 		ctx->object = out;
3537 		ctx->objmask = NULL;
3538 	}
3539 	return len;
3540 }
3541 
3542 /** Parse tokens for query command. */
3543 static int
3544 parse_query(struct context *ctx, const struct token *token,
3545 	    const char *str, unsigned int len,
3546 	    void *buf, unsigned int size)
3547 {
3548 	struct buffer *out = buf;
3549 
3550 	/* Token name must match. */
3551 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3552 		return -1;
3553 	/* Nothing else to do if there is no buffer. */
3554 	if (!out)
3555 		return len;
3556 	if (!out->command) {
3557 		if (ctx->curr != QUERY)
3558 			return -1;
3559 		if (sizeof(*out) > size)
3560 			return -1;
3561 		out->command = ctx->curr;
3562 		ctx->objdata = 0;
3563 		ctx->object = out;
3564 		ctx->objmask = NULL;
3565 	}
3566 	return len;
3567 }
3568 
3569 /** Parse action names. */
3570 static int
3571 parse_action(struct context *ctx, const struct token *token,
3572 	     const char *str, unsigned int len,
3573 	     void *buf, unsigned int size)
3574 {
3575 	struct buffer *out = buf;
3576 	const struct arg *arg = pop_args(ctx);
3577 	unsigned int i;
3578 
3579 	(void)size;
3580 	/* Argument is expected. */
3581 	if (!arg)
3582 		return -1;
3583 	/* Parse action name. */
3584 	for (i = 0; next_action[i]; ++i) {
3585 		const struct parse_action_priv *priv;
3586 
3587 		token = &token_list[next_action[i]];
3588 		if (strcmp_partial(token->name, str, len))
3589 			continue;
3590 		priv = token->priv;
3591 		if (!priv)
3592 			goto error;
3593 		if (out)
3594 			memcpy((uint8_t *)ctx->object + arg->offset,
3595 			       &priv->type,
3596 			       arg->size);
3597 		return len;
3598 	}
3599 error:
3600 	push_args(ctx, arg);
3601 	return -1;
3602 }
3603 
3604 /** Parse tokens for list command. */
3605 static int
3606 parse_list(struct context *ctx, const struct token *token,
3607 	   const char *str, unsigned int len,
3608 	   void *buf, unsigned int size)
3609 {
3610 	struct buffer *out = buf;
3611 
3612 	/* Token name must match. */
3613 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3614 		return -1;
3615 	/* Nothing else to do if there is no buffer. */
3616 	if (!out)
3617 		return len;
3618 	if (!out->command) {
3619 		if (ctx->curr != LIST)
3620 			return -1;
3621 		if (sizeof(*out) > size)
3622 			return -1;
3623 		out->command = ctx->curr;
3624 		ctx->objdata = 0;
3625 		ctx->object = out;
3626 		ctx->objmask = NULL;
3627 		out->args.list.group =
3628 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3629 					       sizeof(double));
3630 		return len;
3631 	}
3632 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
3633 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
3634 		return -1;
3635 	ctx->objdata = 0;
3636 	ctx->object = out->args.list.group + out->args.list.group_n++;
3637 	ctx->objmask = NULL;
3638 	return len;
3639 }
3640 
3641 /** Parse tokens for isolate command. */
3642 static int
3643 parse_isolate(struct context *ctx, const struct token *token,
3644 	      const char *str, unsigned int len,
3645 	      void *buf, unsigned int size)
3646 {
3647 	struct buffer *out = buf;
3648 
3649 	/* Token name must match. */
3650 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3651 		return -1;
3652 	/* Nothing else to do if there is no buffer. */
3653 	if (!out)
3654 		return len;
3655 	if (!out->command) {
3656 		if (ctx->curr != ISOLATE)
3657 			return -1;
3658 		if (sizeof(*out) > size)
3659 			return -1;
3660 		out->command = ctx->curr;
3661 		ctx->objdata = 0;
3662 		ctx->object = out;
3663 		ctx->objmask = NULL;
3664 	}
3665 	return len;
3666 }
3667 
3668 /**
3669  * Parse signed/unsigned integers 8 to 64-bit long.
3670  *
3671  * Last argument (ctx->args) is retrieved to determine integer type and
3672  * storage location.
3673  */
3674 static int
3675 parse_int(struct context *ctx, const struct token *token,
3676 	  const char *str, unsigned int len,
3677 	  void *buf, unsigned int size)
3678 {
3679 	const struct arg *arg = pop_args(ctx);
3680 	uintmax_t u;
3681 	char *end;
3682 
3683 	(void)token;
3684 	/* Argument is expected. */
3685 	if (!arg)
3686 		return -1;
3687 	errno = 0;
3688 	u = arg->sign ?
3689 		(uintmax_t)strtoimax(str, &end, 0) :
3690 		strtoumax(str, &end, 0);
3691 	if (errno || (size_t)(end - str) != len)
3692 		goto error;
3693 	if (arg->bounded &&
3694 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
3695 			    (intmax_t)u > (intmax_t)arg->max)) ||
3696 	     (!arg->sign && (u < arg->min || u > arg->max))))
3697 		goto error;
3698 	if (!ctx->object)
3699 		return len;
3700 	if (arg->mask) {
3701 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
3702 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3703 			goto error;
3704 		return len;
3705 	}
3706 	buf = (uint8_t *)ctx->object + arg->offset;
3707 	size = arg->size;
3708 objmask:
3709 	switch (size) {
3710 	case sizeof(uint8_t):
3711 		*(uint8_t *)buf = u;
3712 		break;
3713 	case sizeof(uint16_t):
3714 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
3715 		break;
3716 	case sizeof(uint8_t [3]):
3717 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3718 		if (!arg->hton) {
3719 			((uint8_t *)buf)[0] = u;
3720 			((uint8_t *)buf)[1] = u >> 8;
3721 			((uint8_t *)buf)[2] = u >> 16;
3722 			break;
3723 		}
3724 #endif
3725 		((uint8_t *)buf)[0] = u >> 16;
3726 		((uint8_t *)buf)[1] = u >> 8;
3727 		((uint8_t *)buf)[2] = u;
3728 		break;
3729 	case sizeof(uint32_t):
3730 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
3731 		break;
3732 	case sizeof(uint64_t):
3733 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
3734 		break;
3735 	default:
3736 		goto error;
3737 	}
3738 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
3739 		u = -1;
3740 		buf = (uint8_t *)ctx->objmask + arg->offset;
3741 		goto objmask;
3742 	}
3743 	return len;
3744 error:
3745 	push_args(ctx, arg);
3746 	return -1;
3747 }
3748 
3749 /**
3750  * Parse a string.
3751  *
3752  * Three arguments (ctx->args) are retrieved from the stack to store data,
3753  * its actual length and address (in that order).
3754  */
3755 static int
3756 parse_string(struct context *ctx, const struct token *token,
3757 	     const char *str, unsigned int len,
3758 	     void *buf, unsigned int size)
3759 {
3760 	const struct arg *arg_data = pop_args(ctx);
3761 	const struct arg *arg_len = pop_args(ctx);
3762 	const struct arg *arg_addr = pop_args(ctx);
3763 	char tmp[16]; /* Ought to be enough. */
3764 	int ret;
3765 
3766 	/* Arguments are expected. */
3767 	if (!arg_data)
3768 		return -1;
3769 	if (!arg_len) {
3770 		push_args(ctx, arg_data);
3771 		return -1;
3772 	}
3773 	if (!arg_addr) {
3774 		push_args(ctx, arg_len);
3775 		push_args(ctx, arg_data);
3776 		return -1;
3777 	}
3778 	size = arg_data->size;
3779 	/* Bit-mask fill is not supported. */
3780 	if (arg_data->mask || size < len)
3781 		goto error;
3782 	if (!ctx->object)
3783 		return len;
3784 	/* Let parse_int() fill length information first. */
3785 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
3786 	if (ret < 0)
3787 		goto error;
3788 	push_args(ctx, arg_len);
3789 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
3790 	if (ret < 0) {
3791 		pop_args(ctx);
3792 		goto error;
3793 	}
3794 	buf = (uint8_t *)ctx->object + arg_data->offset;
3795 	/* Output buffer is not necessarily NUL-terminated. */
3796 	memcpy(buf, str, len);
3797 	memset((uint8_t *)buf + len, 0x00, size - len);
3798 	if (ctx->objmask)
3799 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
3800 	/* Save address if requested. */
3801 	if (arg_addr->size) {
3802 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
3803 		       (void *[]){
3804 			(uint8_t *)ctx->object + arg_data->offset
3805 		       },
3806 		       arg_addr->size);
3807 		if (ctx->objmask)
3808 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
3809 			       (void *[]){
3810 				(uint8_t *)ctx->objmask + arg_data->offset
3811 			       },
3812 			       arg_addr->size);
3813 	}
3814 	return len;
3815 error:
3816 	push_args(ctx, arg_addr);
3817 	push_args(ctx, arg_len);
3818 	push_args(ctx, arg_data);
3819 	return -1;
3820 }
3821 
3822 /**
3823  * Parse a MAC address.
3824  *
3825  * Last argument (ctx->args) is retrieved to determine storage size and
3826  * location.
3827  */
3828 static int
3829 parse_mac_addr(struct context *ctx, const struct token *token,
3830 	       const char *str, unsigned int len,
3831 	       void *buf, unsigned int size)
3832 {
3833 	const struct arg *arg = pop_args(ctx);
3834 	struct ether_addr tmp;
3835 	int ret;
3836 
3837 	(void)token;
3838 	/* Argument is expected. */
3839 	if (!arg)
3840 		return -1;
3841 	size = arg->size;
3842 	/* Bit-mask fill is not supported. */
3843 	if (arg->mask || size != sizeof(tmp))
3844 		goto error;
3845 	/* Only network endian is supported. */
3846 	if (!arg->hton)
3847 		goto error;
3848 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
3849 	if (ret < 0 || (unsigned int)ret != len)
3850 		goto error;
3851 	if (!ctx->object)
3852 		return len;
3853 	buf = (uint8_t *)ctx->object + arg->offset;
3854 	memcpy(buf, &tmp, size);
3855 	if (ctx->objmask)
3856 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3857 	return len;
3858 error:
3859 	push_args(ctx, arg);
3860 	return -1;
3861 }
3862 
3863 /**
3864  * Parse an IPv4 address.
3865  *
3866  * Last argument (ctx->args) is retrieved to determine storage size and
3867  * location.
3868  */
3869 static int
3870 parse_ipv4_addr(struct context *ctx, const struct token *token,
3871 		const char *str, unsigned int len,
3872 		void *buf, unsigned int size)
3873 {
3874 	const struct arg *arg = pop_args(ctx);
3875 	char str2[len + 1];
3876 	struct in_addr tmp;
3877 	int ret;
3878 
3879 	/* Argument is expected. */
3880 	if (!arg)
3881 		return -1;
3882 	size = arg->size;
3883 	/* Bit-mask fill is not supported. */
3884 	if (arg->mask || size != sizeof(tmp))
3885 		goto error;
3886 	/* Only network endian is supported. */
3887 	if (!arg->hton)
3888 		goto error;
3889 	memcpy(str2, str, len);
3890 	str2[len] = '\0';
3891 	ret = inet_pton(AF_INET, str2, &tmp);
3892 	if (ret != 1) {
3893 		/* Attempt integer parsing. */
3894 		push_args(ctx, arg);
3895 		return parse_int(ctx, token, str, len, buf, size);
3896 	}
3897 	if (!ctx->object)
3898 		return len;
3899 	buf = (uint8_t *)ctx->object + arg->offset;
3900 	memcpy(buf, &tmp, size);
3901 	if (ctx->objmask)
3902 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3903 	return len;
3904 error:
3905 	push_args(ctx, arg);
3906 	return -1;
3907 }
3908 
3909 /**
3910  * Parse an IPv6 address.
3911  *
3912  * Last argument (ctx->args) is retrieved to determine storage size and
3913  * location.
3914  */
3915 static int
3916 parse_ipv6_addr(struct context *ctx, const struct token *token,
3917 		const char *str, unsigned int len,
3918 		void *buf, unsigned int size)
3919 {
3920 	const struct arg *arg = pop_args(ctx);
3921 	char str2[len + 1];
3922 	struct in6_addr tmp;
3923 	int ret;
3924 
3925 	(void)token;
3926 	/* Argument is expected. */
3927 	if (!arg)
3928 		return -1;
3929 	size = arg->size;
3930 	/* Bit-mask fill is not supported. */
3931 	if (arg->mask || size != sizeof(tmp))
3932 		goto error;
3933 	/* Only network endian is supported. */
3934 	if (!arg->hton)
3935 		goto error;
3936 	memcpy(str2, str, len);
3937 	str2[len] = '\0';
3938 	ret = inet_pton(AF_INET6, str2, &tmp);
3939 	if (ret != 1)
3940 		goto error;
3941 	if (!ctx->object)
3942 		return len;
3943 	buf = (uint8_t *)ctx->object + arg->offset;
3944 	memcpy(buf, &tmp, size);
3945 	if (ctx->objmask)
3946 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3947 	return len;
3948 error:
3949 	push_args(ctx, arg);
3950 	return -1;
3951 }
3952 
3953 /** Boolean values (even indices stand for false). */
3954 static const char *const boolean_name[] = {
3955 	"0", "1",
3956 	"false", "true",
3957 	"no", "yes",
3958 	"N", "Y",
3959 	"off", "on",
3960 	NULL,
3961 };
3962 
3963 /**
3964  * Parse a boolean value.
3965  *
3966  * Last argument (ctx->args) is retrieved to determine storage size and
3967  * location.
3968  */
3969 static int
3970 parse_boolean(struct context *ctx, const struct token *token,
3971 	      const char *str, unsigned int len,
3972 	      void *buf, unsigned int size)
3973 {
3974 	const struct arg *arg = pop_args(ctx);
3975 	unsigned int i;
3976 	int ret;
3977 
3978 	/* Argument is expected. */
3979 	if (!arg)
3980 		return -1;
3981 	for (i = 0; boolean_name[i]; ++i)
3982 		if (!strcmp_partial(boolean_name[i], str, len))
3983 			break;
3984 	/* Process token as integer. */
3985 	if (boolean_name[i])
3986 		str = i & 1 ? "1" : "0";
3987 	push_args(ctx, arg);
3988 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
3989 	return ret > 0 ? (int)len : ret;
3990 }
3991 
3992 /** Parse port and update context. */
3993 static int
3994 parse_port(struct context *ctx, const struct token *token,
3995 	   const char *str, unsigned int len,
3996 	   void *buf, unsigned int size)
3997 {
3998 	struct buffer *out = &(struct buffer){ .port = 0 };
3999 	int ret;
4000 
4001 	if (buf)
4002 		out = buf;
4003 	else {
4004 		ctx->objdata = 0;
4005 		ctx->object = out;
4006 		ctx->objmask = NULL;
4007 		size = sizeof(*out);
4008 	}
4009 	ret = parse_int(ctx, token, str, len, out, size);
4010 	if (ret >= 0)
4011 		ctx->port = out->port;
4012 	if (!buf)
4013 		ctx->object = NULL;
4014 	return ret;
4015 }
4016 
4017 /** No completion. */
4018 static int
4019 comp_none(struct context *ctx, const struct token *token,
4020 	  unsigned int ent, char *buf, unsigned int size)
4021 {
4022 	(void)ctx;
4023 	(void)token;
4024 	(void)ent;
4025 	(void)buf;
4026 	(void)size;
4027 	return 0;
4028 }
4029 
4030 /** Complete boolean values. */
4031 static int
4032 comp_boolean(struct context *ctx, const struct token *token,
4033 	     unsigned int ent, char *buf, unsigned int size)
4034 {
4035 	unsigned int i;
4036 
4037 	(void)ctx;
4038 	(void)token;
4039 	for (i = 0; boolean_name[i]; ++i)
4040 		if (buf && i == ent)
4041 			return snprintf(buf, size, "%s", boolean_name[i]);
4042 	if (buf)
4043 		return -1;
4044 	return i;
4045 }
4046 
4047 /** Complete action names. */
4048 static int
4049 comp_action(struct context *ctx, const struct token *token,
4050 	    unsigned int ent, char *buf, unsigned int size)
4051 {
4052 	unsigned int i;
4053 
4054 	(void)ctx;
4055 	(void)token;
4056 	for (i = 0; next_action[i]; ++i)
4057 		if (buf && i == ent)
4058 			return snprintf(buf, size, "%s",
4059 					token_list[next_action[i]].name);
4060 	if (buf)
4061 		return -1;
4062 	return i;
4063 }
4064 
4065 /** Complete available ports. */
4066 static int
4067 comp_port(struct context *ctx, const struct token *token,
4068 	  unsigned int ent, char *buf, unsigned int size)
4069 {
4070 	unsigned int i = 0;
4071 	portid_t p;
4072 
4073 	(void)ctx;
4074 	(void)token;
4075 	RTE_ETH_FOREACH_DEV(p) {
4076 		if (buf && i == ent)
4077 			return snprintf(buf, size, "%u", p);
4078 		++i;
4079 	}
4080 	if (buf)
4081 		return -1;
4082 	return i;
4083 }
4084 
4085 /** Complete available rule IDs. */
4086 static int
4087 comp_rule_id(struct context *ctx, const struct token *token,
4088 	     unsigned int ent, char *buf, unsigned int size)
4089 {
4090 	unsigned int i = 0;
4091 	struct rte_port *port;
4092 	struct port_flow *pf;
4093 
4094 	(void)token;
4095 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4096 	    ctx->port == (portid_t)RTE_PORT_ALL)
4097 		return -1;
4098 	port = &ports[ctx->port];
4099 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4100 		if (buf && i == ent)
4101 			return snprintf(buf, size, "%u", pf->id);
4102 		++i;
4103 	}
4104 	if (buf)
4105 		return -1;
4106 	return i;
4107 }
4108 
4109 /** Complete type field for RSS action. */
4110 static int
4111 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4112 			unsigned int ent, char *buf, unsigned int size)
4113 {
4114 	unsigned int i;
4115 
4116 	(void)ctx;
4117 	(void)token;
4118 	for (i = 0; rss_type_table[i].str; ++i)
4119 		;
4120 	if (!buf)
4121 		return i + 1;
4122 	if (ent < i)
4123 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
4124 	if (ent == i)
4125 		return snprintf(buf, size, "end");
4126 	return -1;
4127 }
4128 
4129 /** Complete queue field for RSS action. */
4130 static int
4131 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4132 			 unsigned int ent, char *buf, unsigned int size)
4133 {
4134 	(void)ctx;
4135 	(void)token;
4136 	if (!buf)
4137 		return nb_rxq + 1;
4138 	if (ent < nb_rxq)
4139 		return snprintf(buf, size, "%u", ent);
4140 	if (ent == nb_rxq)
4141 		return snprintf(buf, size, "end");
4142 	return -1;
4143 }
4144 
4145 /** Internal context. */
4146 static struct context cmd_flow_context;
4147 
4148 /** Global parser instance (cmdline API). */
4149 cmdline_parse_inst_t cmd_flow;
4150 
4151 /** Initialize context. */
4152 static void
4153 cmd_flow_context_init(struct context *ctx)
4154 {
4155 	/* A full memset() is not necessary. */
4156 	ctx->curr = ZERO;
4157 	ctx->prev = ZERO;
4158 	ctx->next_num = 0;
4159 	ctx->args_num = 0;
4160 	ctx->eol = 0;
4161 	ctx->last = 0;
4162 	ctx->port = 0;
4163 	ctx->objdata = 0;
4164 	ctx->object = NULL;
4165 	ctx->objmask = NULL;
4166 }
4167 
4168 /** Parse a token (cmdline API). */
4169 static int
4170 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4171 	       unsigned int size)
4172 {
4173 	struct context *ctx = &cmd_flow_context;
4174 	const struct token *token;
4175 	const enum index *list;
4176 	int len;
4177 	int i;
4178 
4179 	(void)hdr;
4180 	token = &token_list[ctx->curr];
4181 	/* Check argument length. */
4182 	ctx->eol = 0;
4183 	ctx->last = 1;
4184 	for (len = 0; src[len]; ++len)
4185 		if (src[len] == '#' || isspace(src[len]))
4186 			break;
4187 	if (!len)
4188 		return -1;
4189 	/* Last argument and EOL detection. */
4190 	for (i = len; src[i]; ++i)
4191 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4192 			break;
4193 		else if (!isspace(src[i])) {
4194 			ctx->last = 0;
4195 			break;
4196 		}
4197 	for (; src[i]; ++i)
4198 		if (src[i] == '\r' || src[i] == '\n') {
4199 			ctx->eol = 1;
4200 			break;
4201 		}
4202 	/* Initialize context if necessary. */
4203 	if (!ctx->next_num) {
4204 		if (!token->next)
4205 			return 0;
4206 		ctx->next[ctx->next_num++] = token->next[0];
4207 	}
4208 	/* Process argument through candidates. */
4209 	ctx->prev = ctx->curr;
4210 	list = ctx->next[ctx->next_num - 1];
4211 	for (i = 0; list[i]; ++i) {
4212 		const struct token *next = &token_list[list[i]];
4213 		int tmp;
4214 
4215 		ctx->curr = list[i];
4216 		if (next->call)
4217 			tmp = next->call(ctx, next, src, len, result, size);
4218 		else
4219 			tmp = parse_default(ctx, next, src, len, result, size);
4220 		if (tmp == -1 || tmp != len)
4221 			continue;
4222 		token = next;
4223 		break;
4224 	}
4225 	if (!list[i])
4226 		return -1;
4227 	--ctx->next_num;
4228 	/* Push subsequent tokens if any. */
4229 	if (token->next)
4230 		for (i = 0; token->next[i]; ++i) {
4231 			if (ctx->next_num == RTE_DIM(ctx->next))
4232 				return -1;
4233 			ctx->next[ctx->next_num++] = token->next[i];
4234 		}
4235 	/* Push arguments if any. */
4236 	if (token->args)
4237 		for (i = 0; token->args[i]; ++i) {
4238 			if (ctx->args_num == RTE_DIM(ctx->args))
4239 				return -1;
4240 			ctx->args[ctx->args_num++] = token->args[i];
4241 		}
4242 	return len;
4243 }
4244 
4245 /** Return number of completion entries (cmdline API). */
4246 static int
4247 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
4248 {
4249 	struct context *ctx = &cmd_flow_context;
4250 	const struct token *token = &token_list[ctx->curr];
4251 	const enum index *list;
4252 	int i;
4253 
4254 	(void)hdr;
4255 	/* Count number of tokens in current list. */
4256 	if (ctx->next_num)
4257 		list = ctx->next[ctx->next_num - 1];
4258 	else
4259 		list = token->next[0];
4260 	for (i = 0; list[i]; ++i)
4261 		;
4262 	if (!i)
4263 		return 0;
4264 	/*
4265 	 * If there is a single token, use its completion callback, otherwise
4266 	 * return the number of entries.
4267 	 */
4268 	token = &token_list[list[0]];
4269 	if (i == 1 && token->comp) {
4270 		/* Save index for cmd_flow_get_help(). */
4271 		ctx->prev = list[0];
4272 		return token->comp(ctx, token, 0, NULL, 0);
4273 	}
4274 	return i;
4275 }
4276 
4277 /** Return a completion entry (cmdline API). */
4278 static int
4279 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
4280 			  char *dst, unsigned int size)
4281 {
4282 	struct context *ctx = &cmd_flow_context;
4283 	const struct token *token = &token_list[ctx->curr];
4284 	const enum index *list;
4285 	int i;
4286 
4287 	(void)hdr;
4288 	/* Count number of tokens in current list. */
4289 	if (ctx->next_num)
4290 		list = ctx->next[ctx->next_num - 1];
4291 	else
4292 		list = token->next[0];
4293 	for (i = 0; list[i]; ++i)
4294 		;
4295 	if (!i)
4296 		return -1;
4297 	/* If there is a single token, use its completion callback. */
4298 	token = &token_list[list[0]];
4299 	if (i == 1 && token->comp) {
4300 		/* Save index for cmd_flow_get_help(). */
4301 		ctx->prev = list[0];
4302 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
4303 	}
4304 	/* Otherwise make sure the index is valid and use defaults. */
4305 	if (index >= i)
4306 		return -1;
4307 	token = &token_list[list[index]];
4308 	snprintf(dst, size, "%s", token->name);
4309 	/* Save index for cmd_flow_get_help(). */
4310 	ctx->prev = list[index];
4311 	return 0;
4312 }
4313 
4314 /** Populate help strings for current token (cmdline API). */
4315 static int
4316 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
4317 {
4318 	struct context *ctx = &cmd_flow_context;
4319 	const struct token *token = &token_list[ctx->prev];
4320 
4321 	(void)hdr;
4322 	if (!size)
4323 		return -1;
4324 	/* Set token type and update global help with details. */
4325 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
4326 	if (token->help)
4327 		cmd_flow.help_str = token->help;
4328 	else
4329 		cmd_flow.help_str = token->name;
4330 	return 0;
4331 }
4332 
4333 /** Token definition template (cmdline API). */
4334 static struct cmdline_token_hdr cmd_flow_token_hdr = {
4335 	.ops = &(struct cmdline_token_ops){
4336 		.parse = cmd_flow_parse,
4337 		.complete_get_nb = cmd_flow_complete_get_nb,
4338 		.complete_get_elt = cmd_flow_complete_get_elt,
4339 		.get_help = cmd_flow_get_help,
4340 	},
4341 	.offset = 0,
4342 };
4343 
4344 /** Populate the next dynamic token. */
4345 static void
4346 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
4347 	     cmdline_parse_token_hdr_t **hdr_inst)
4348 {
4349 	struct context *ctx = &cmd_flow_context;
4350 
4351 	/* Always reinitialize context before requesting the first token. */
4352 	if (!(hdr_inst - cmd_flow.tokens))
4353 		cmd_flow_context_init(ctx);
4354 	/* Return NULL when no more tokens are expected. */
4355 	if (!ctx->next_num && ctx->curr) {
4356 		*hdr = NULL;
4357 		return;
4358 	}
4359 	/* Determine if command should end here. */
4360 	if (ctx->eol && ctx->last && ctx->next_num) {
4361 		const enum index *list = ctx->next[ctx->next_num - 1];
4362 		int i;
4363 
4364 		for (i = 0; list[i]; ++i) {
4365 			if (list[i] != END)
4366 				continue;
4367 			*hdr = NULL;
4368 			return;
4369 		}
4370 	}
4371 	*hdr = &cmd_flow_token_hdr;
4372 }
4373 
4374 /** Dispatch parsed buffer to function calls. */
4375 static void
4376 cmd_flow_parsed(const struct buffer *in)
4377 {
4378 	switch (in->command) {
4379 	case VALIDATE:
4380 		port_flow_validate(in->port, &in->args.vc.attr,
4381 				   in->args.vc.pattern, in->args.vc.actions);
4382 		break;
4383 	case CREATE:
4384 		port_flow_create(in->port, &in->args.vc.attr,
4385 				 in->args.vc.pattern, in->args.vc.actions);
4386 		break;
4387 	case DESTROY:
4388 		port_flow_destroy(in->port, in->args.destroy.rule_n,
4389 				  in->args.destroy.rule);
4390 		break;
4391 	case FLUSH:
4392 		port_flow_flush(in->port);
4393 		break;
4394 	case QUERY:
4395 		port_flow_query(in->port, in->args.query.rule,
4396 				&in->args.query.action);
4397 		break;
4398 	case LIST:
4399 		port_flow_list(in->port, in->args.list.group_n,
4400 			       in->args.list.group);
4401 		break;
4402 	case ISOLATE:
4403 		port_flow_isolate(in->port, in->args.isolate.set);
4404 		break;
4405 	default:
4406 		break;
4407 	}
4408 }
4409 
4410 /** Token generator and output processing callback (cmdline API). */
4411 static void
4412 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
4413 {
4414 	if (cl == NULL)
4415 		cmd_flow_tok(arg0, arg2);
4416 	else
4417 		cmd_flow_parsed(arg0);
4418 }
4419 
4420 /** Global parser instance (cmdline API). */
4421 cmdline_parse_inst_t cmd_flow = {
4422 	.f = cmd_flow_cb,
4423 	.data = NULL, /**< Unused. */
4424 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
4425 	.tokens = {
4426 		NULL,
4427 	}, /**< Tokens are returned by cmd_flow_tok(). */
4428 };
4429