xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 4b61b8774be951c7caeaba2edde27c42f2f4c58a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <cmdline_parse_string.h>
23 #include <cmdline_parse_num.h>
24 #include <rte_flow.h>
25 #include <rte_hexdump.h>
26 #include <rte_vxlan.h>
27 #include <rte_gre.h>
28 #include <rte_mpls.h>
29 #include <rte_gtp.h>
30 #include <rte_geneve.h>
31 
32 #include "testpmd.h"
33 
34 /** Parser token indices. */
35 enum index {
36 	/* Special tokens. */
37 	ZERO = 0,
38 	END,
39 	START_SET,
40 	END_SET,
41 
42 	/* Common tokens. */
43 	INTEGER,
44 	UNSIGNED,
45 	PREFIX,
46 	BOOLEAN,
47 	STRING,
48 	HEX,
49 	FILE_PATH,
50 	MAC_ADDR,
51 	IPV4_ADDR,
52 	IPV6_ADDR,
53 	RULE_ID,
54 	PORT_ID,
55 	GROUP_ID,
56 	PRIORITY_LEVEL,
57 	INDIRECT_ACTION_ID,
58 
59 	/* Top-level command. */
60 	SET,
61 	/* Sub-leve commands. */
62 	SET_RAW_ENCAP,
63 	SET_RAW_DECAP,
64 	SET_RAW_INDEX,
65 	SET_SAMPLE_ACTIONS,
66 	SET_SAMPLE_INDEX,
67 
68 	/* Top-level command. */
69 	FLOW,
70 	/* Sub-level commands. */
71 	INDIRECT_ACTION,
72 	VALIDATE,
73 	CREATE,
74 	DESTROY,
75 	FLUSH,
76 	DUMP,
77 	QUERY,
78 	LIST,
79 	AGED,
80 	ISOLATE,
81 	TUNNEL,
82 
83 	/* Tunnel arguments. */
84 	TUNNEL_CREATE,
85 	TUNNEL_CREATE_TYPE,
86 	TUNNEL_LIST,
87 	TUNNEL_DESTROY,
88 	TUNNEL_DESTROY_ID,
89 
90 	/* Destroy arguments. */
91 	DESTROY_RULE,
92 
93 	/* Query arguments. */
94 	QUERY_ACTION,
95 
96 	/* List arguments. */
97 	LIST_GROUP,
98 
99 	/* Destroy aged flow arguments. */
100 	AGED_DESTROY,
101 
102 	/* Validate/create arguments. */
103 	GROUP,
104 	PRIORITY,
105 	INGRESS,
106 	EGRESS,
107 	TRANSFER,
108 	TUNNEL_SET,
109 	TUNNEL_MATCH,
110 
111 	/* Dump arguments */
112 	DUMP_ALL,
113 	DUMP_ONE,
114 
115 	/* Indirect action arguments */
116 	INDIRECT_ACTION_CREATE,
117 	INDIRECT_ACTION_UPDATE,
118 	INDIRECT_ACTION_DESTROY,
119 	INDIRECT_ACTION_QUERY,
120 
121 	/* Indirect action create arguments */
122 	INDIRECT_ACTION_CREATE_ID,
123 	INDIRECT_ACTION_INGRESS,
124 	INDIRECT_ACTION_EGRESS,
125 	INDIRECT_ACTION_TRANSFER,
126 	INDIRECT_ACTION_SPEC,
127 
128 	/* Indirect action destroy arguments */
129 	INDIRECT_ACTION_DESTROY_ID,
130 
131 	/* Validate/create pattern. */
132 	PATTERN,
133 	ITEM_PARAM_IS,
134 	ITEM_PARAM_SPEC,
135 	ITEM_PARAM_LAST,
136 	ITEM_PARAM_MASK,
137 	ITEM_PARAM_PREFIX,
138 	ITEM_NEXT,
139 	ITEM_END,
140 	ITEM_VOID,
141 	ITEM_INVERT,
142 	ITEM_ANY,
143 	ITEM_ANY_NUM,
144 	ITEM_PF,
145 	ITEM_VF,
146 	ITEM_VF_ID,
147 	ITEM_PHY_PORT,
148 	ITEM_PHY_PORT_INDEX,
149 	ITEM_PORT_ID,
150 	ITEM_PORT_ID_ID,
151 	ITEM_MARK,
152 	ITEM_MARK_ID,
153 	ITEM_RAW,
154 	ITEM_RAW_RELATIVE,
155 	ITEM_RAW_SEARCH,
156 	ITEM_RAW_OFFSET,
157 	ITEM_RAW_LIMIT,
158 	ITEM_RAW_PATTERN,
159 	ITEM_ETH,
160 	ITEM_ETH_DST,
161 	ITEM_ETH_SRC,
162 	ITEM_ETH_TYPE,
163 	ITEM_ETH_HAS_VLAN,
164 	ITEM_VLAN,
165 	ITEM_VLAN_TCI,
166 	ITEM_VLAN_PCP,
167 	ITEM_VLAN_DEI,
168 	ITEM_VLAN_VID,
169 	ITEM_VLAN_INNER_TYPE,
170 	ITEM_VLAN_HAS_MORE_VLAN,
171 	ITEM_IPV4,
172 	ITEM_IPV4_TOS,
173 	ITEM_IPV4_FRAGMENT_OFFSET,
174 	ITEM_IPV4_TTL,
175 	ITEM_IPV4_PROTO,
176 	ITEM_IPV4_SRC,
177 	ITEM_IPV4_DST,
178 	ITEM_IPV6,
179 	ITEM_IPV6_TC,
180 	ITEM_IPV6_FLOW,
181 	ITEM_IPV6_PROTO,
182 	ITEM_IPV6_HOP,
183 	ITEM_IPV6_SRC,
184 	ITEM_IPV6_DST,
185 	ITEM_IPV6_HAS_FRAG_EXT,
186 	ITEM_ICMP,
187 	ITEM_ICMP_TYPE,
188 	ITEM_ICMP_CODE,
189 	ITEM_ICMP_IDENT,
190 	ITEM_ICMP_SEQ,
191 	ITEM_UDP,
192 	ITEM_UDP_SRC,
193 	ITEM_UDP_DST,
194 	ITEM_TCP,
195 	ITEM_TCP_SRC,
196 	ITEM_TCP_DST,
197 	ITEM_TCP_FLAGS,
198 	ITEM_SCTP,
199 	ITEM_SCTP_SRC,
200 	ITEM_SCTP_DST,
201 	ITEM_SCTP_TAG,
202 	ITEM_SCTP_CKSUM,
203 	ITEM_VXLAN,
204 	ITEM_VXLAN_VNI,
205 	ITEM_E_TAG,
206 	ITEM_E_TAG_GRP_ECID_B,
207 	ITEM_NVGRE,
208 	ITEM_NVGRE_TNI,
209 	ITEM_MPLS,
210 	ITEM_MPLS_LABEL,
211 	ITEM_MPLS_TC,
212 	ITEM_MPLS_S,
213 	ITEM_GRE,
214 	ITEM_GRE_PROTO,
215 	ITEM_GRE_C_RSVD0_VER,
216 	ITEM_GRE_C_BIT,
217 	ITEM_GRE_K_BIT,
218 	ITEM_GRE_S_BIT,
219 	ITEM_FUZZY,
220 	ITEM_FUZZY_THRESH,
221 	ITEM_GTP,
222 	ITEM_GTP_FLAGS,
223 	ITEM_GTP_MSG_TYPE,
224 	ITEM_GTP_TEID,
225 	ITEM_GTPC,
226 	ITEM_GTPU,
227 	ITEM_GENEVE,
228 	ITEM_GENEVE_VNI,
229 	ITEM_GENEVE_PROTO,
230 	ITEM_GENEVE_OPTLEN,
231 	ITEM_VXLAN_GPE,
232 	ITEM_VXLAN_GPE_VNI,
233 	ITEM_ARP_ETH_IPV4,
234 	ITEM_ARP_ETH_IPV4_SHA,
235 	ITEM_ARP_ETH_IPV4_SPA,
236 	ITEM_ARP_ETH_IPV4_THA,
237 	ITEM_ARP_ETH_IPV4_TPA,
238 	ITEM_IPV6_EXT,
239 	ITEM_IPV6_EXT_NEXT_HDR,
240 	ITEM_IPV6_FRAG_EXT,
241 	ITEM_IPV6_FRAG_EXT_NEXT_HDR,
242 	ITEM_IPV6_FRAG_EXT_FRAG_DATA,
243 	ITEM_ICMP6,
244 	ITEM_ICMP6_TYPE,
245 	ITEM_ICMP6_CODE,
246 	ITEM_ICMP6_ND_NS,
247 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
248 	ITEM_ICMP6_ND_NA,
249 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
250 	ITEM_ICMP6_ND_OPT,
251 	ITEM_ICMP6_ND_OPT_TYPE,
252 	ITEM_ICMP6_ND_OPT_SLA_ETH,
253 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
254 	ITEM_ICMP6_ND_OPT_TLA_ETH,
255 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
256 	ITEM_META,
257 	ITEM_META_DATA,
258 	ITEM_GRE_KEY,
259 	ITEM_GRE_KEY_VALUE,
260 	ITEM_GTP_PSC,
261 	ITEM_GTP_PSC_QFI,
262 	ITEM_GTP_PSC_PDU_T,
263 	ITEM_PPPOES,
264 	ITEM_PPPOED,
265 	ITEM_PPPOE_SEID,
266 	ITEM_PPPOE_PROTO_ID,
267 	ITEM_HIGIG2,
268 	ITEM_HIGIG2_CLASSIFICATION,
269 	ITEM_HIGIG2_VID,
270 	ITEM_TAG,
271 	ITEM_TAG_DATA,
272 	ITEM_TAG_INDEX,
273 	ITEM_L2TPV3OIP,
274 	ITEM_L2TPV3OIP_SESSION_ID,
275 	ITEM_ESP,
276 	ITEM_ESP_SPI,
277 	ITEM_AH,
278 	ITEM_AH_SPI,
279 	ITEM_PFCP,
280 	ITEM_PFCP_S_FIELD,
281 	ITEM_PFCP_SEID,
282 	ITEM_ECPRI,
283 	ITEM_ECPRI_COMMON,
284 	ITEM_ECPRI_COMMON_TYPE,
285 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
286 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
287 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
288 	ITEM_ECPRI_MSG_IQ_DATA_PCID,
289 	ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
290 	ITEM_ECPRI_MSG_DLY_MSR_MSRID,
291 	ITEM_GENEVE_OPT,
292 	ITEM_GENEVE_OPT_CLASS,
293 	ITEM_GENEVE_OPT_TYPE,
294 	ITEM_GENEVE_OPT_LENGTH,
295 	ITEM_GENEVE_OPT_DATA,
296 
297 	/* Validate/create actions. */
298 	ACTIONS,
299 	ACTION_NEXT,
300 	ACTION_END,
301 	ACTION_VOID,
302 	ACTION_PASSTHRU,
303 	ACTION_JUMP,
304 	ACTION_JUMP_GROUP,
305 	ACTION_MARK,
306 	ACTION_MARK_ID,
307 	ACTION_FLAG,
308 	ACTION_QUEUE,
309 	ACTION_QUEUE_INDEX,
310 	ACTION_DROP,
311 	ACTION_COUNT,
312 	ACTION_COUNT_SHARED,
313 	ACTION_COUNT_ID,
314 	ACTION_RSS,
315 	ACTION_RSS_FUNC,
316 	ACTION_RSS_LEVEL,
317 	ACTION_RSS_FUNC_DEFAULT,
318 	ACTION_RSS_FUNC_TOEPLITZ,
319 	ACTION_RSS_FUNC_SIMPLE_XOR,
320 	ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
321 	ACTION_RSS_TYPES,
322 	ACTION_RSS_TYPE,
323 	ACTION_RSS_KEY,
324 	ACTION_RSS_KEY_LEN,
325 	ACTION_RSS_QUEUES,
326 	ACTION_RSS_QUEUE,
327 	ACTION_PF,
328 	ACTION_VF,
329 	ACTION_VF_ORIGINAL,
330 	ACTION_VF_ID,
331 	ACTION_PHY_PORT,
332 	ACTION_PHY_PORT_ORIGINAL,
333 	ACTION_PHY_PORT_INDEX,
334 	ACTION_PORT_ID,
335 	ACTION_PORT_ID_ORIGINAL,
336 	ACTION_PORT_ID_ID,
337 	ACTION_METER,
338 	ACTION_METER_ID,
339 	ACTION_OF_SET_MPLS_TTL,
340 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
341 	ACTION_OF_DEC_MPLS_TTL,
342 	ACTION_OF_SET_NW_TTL,
343 	ACTION_OF_SET_NW_TTL_NW_TTL,
344 	ACTION_OF_DEC_NW_TTL,
345 	ACTION_OF_COPY_TTL_OUT,
346 	ACTION_OF_COPY_TTL_IN,
347 	ACTION_OF_POP_VLAN,
348 	ACTION_OF_PUSH_VLAN,
349 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
350 	ACTION_OF_SET_VLAN_VID,
351 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
352 	ACTION_OF_SET_VLAN_PCP,
353 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
354 	ACTION_OF_POP_MPLS,
355 	ACTION_OF_POP_MPLS_ETHERTYPE,
356 	ACTION_OF_PUSH_MPLS,
357 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
358 	ACTION_VXLAN_ENCAP,
359 	ACTION_VXLAN_DECAP,
360 	ACTION_NVGRE_ENCAP,
361 	ACTION_NVGRE_DECAP,
362 	ACTION_L2_ENCAP,
363 	ACTION_L2_DECAP,
364 	ACTION_MPLSOGRE_ENCAP,
365 	ACTION_MPLSOGRE_DECAP,
366 	ACTION_MPLSOUDP_ENCAP,
367 	ACTION_MPLSOUDP_DECAP,
368 	ACTION_SET_IPV4_SRC,
369 	ACTION_SET_IPV4_SRC_IPV4_SRC,
370 	ACTION_SET_IPV4_DST,
371 	ACTION_SET_IPV4_DST_IPV4_DST,
372 	ACTION_SET_IPV6_SRC,
373 	ACTION_SET_IPV6_SRC_IPV6_SRC,
374 	ACTION_SET_IPV6_DST,
375 	ACTION_SET_IPV6_DST_IPV6_DST,
376 	ACTION_SET_TP_SRC,
377 	ACTION_SET_TP_SRC_TP_SRC,
378 	ACTION_SET_TP_DST,
379 	ACTION_SET_TP_DST_TP_DST,
380 	ACTION_MAC_SWAP,
381 	ACTION_DEC_TTL,
382 	ACTION_SET_TTL,
383 	ACTION_SET_TTL_TTL,
384 	ACTION_SET_MAC_SRC,
385 	ACTION_SET_MAC_SRC_MAC_SRC,
386 	ACTION_SET_MAC_DST,
387 	ACTION_SET_MAC_DST_MAC_DST,
388 	ACTION_INC_TCP_SEQ,
389 	ACTION_INC_TCP_SEQ_VALUE,
390 	ACTION_DEC_TCP_SEQ,
391 	ACTION_DEC_TCP_SEQ_VALUE,
392 	ACTION_INC_TCP_ACK,
393 	ACTION_INC_TCP_ACK_VALUE,
394 	ACTION_DEC_TCP_ACK,
395 	ACTION_DEC_TCP_ACK_VALUE,
396 	ACTION_RAW_ENCAP,
397 	ACTION_RAW_DECAP,
398 	ACTION_RAW_ENCAP_INDEX,
399 	ACTION_RAW_ENCAP_INDEX_VALUE,
400 	ACTION_RAW_DECAP_INDEX,
401 	ACTION_RAW_DECAP_INDEX_VALUE,
402 	ACTION_SET_TAG,
403 	ACTION_SET_TAG_DATA,
404 	ACTION_SET_TAG_INDEX,
405 	ACTION_SET_TAG_MASK,
406 	ACTION_SET_META,
407 	ACTION_SET_META_DATA,
408 	ACTION_SET_META_MASK,
409 	ACTION_SET_IPV4_DSCP,
410 	ACTION_SET_IPV4_DSCP_VALUE,
411 	ACTION_SET_IPV6_DSCP,
412 	ACTION_SET_IPV6_DSCP_VALUE,
413 	ACTION_AGE,
414 	ACTION_AGE_TIMEOUT,
415 	ACTION_SAMPLE,
416 	ACTION_SAMPLE_RATIO,
417 	ACTION_SAMPLE_INDEX,
418 	ACTION_SAMPLE_INDEX_VALUE,
419 	ACTION_INDIRECT,
420 	INDIRECT_ACTION_ID2PTR,
421 	ACTION_MODIFY_FIELD,
422 	ACTION_MODIFY_FIELD_OP,
423 	ACTION_MODIFY_FIELD_OP_VALUE,
424 	ACTION_MODIFY_FIELD_DST_TYPE,
425 	ACTION_MODIFY_FIELD_DST_TYPE_VALUE,
426 	ACTION_MODIFY_FIELD_DST_LEVEL,
427 	ACTION_MODIFY_FIELD_DST_OFFSET,
428 	ACTION_MODIFY_FIELD_SRC_TYPE,
429 	ACTION_MODIFY_FIELD_SRC_TYPE_VALUE,
430 	ACTION_MODIFY_FIELD_SRC_LEVEL,
431 	ACTION_MODIFY_FIELD_SRC_OFFSET,
432 	ACTION_MODIFY_FIELD_SRC_VALUE,
433 	ACTION_MODIFY_FIELD_WIDTH,
434 };
435 
436 /** Maximum size for pattern in struct rte_flow_item_raw. */
437 #define ITEM_RAW_PATTERN_SIZE 40
438 
439 /** Maximum size for GENEVE option data pattern in bytes. */
440 #define ITEM_GENEVE_OPT_DATA_SIZE 124
441 
442 /** Storage size for struct rte_flow_item_raw including pattern. */
443 #define ITEM_RAW_SIZE \
444 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
445 
446 /** Maximum number of queue indices in struct rte_flow_action_rss. */
447 #define ACTION_RSS_QUEUE_NUM 128
448 
449 /** Storage for struct rte_flow_action_rss including external data. */
450 struct action_rss_data {
451 	struct rte_flow_action_rss conf;
452 	uint8_t key[RSS_HASH_KEY_LENGTH];
453 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
454 };
455 
456 /** Maximum data size in struct rte_flow_action_raw_encap. */
457 #define ACTION_RAW_ENCAP_MAX_DATA 512
458 #define RAW_ENCAP_CONFS_MAX_NUM 8
459 
460 /** Storage for struct rte_flow_action_raw_encap. */
461 struct raw_encap_conf {
462 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
463 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
464 	size_t size;
465 };
466 
467 struct raw_encap_conf raw_encap_confs[RAW_ENCAP_CONFS_MAX_NUM];
468 
469 /** Storage for struct rte_flow_action_raw_encap including external data. */
470 struct action_raw_encap_data {
471 	struct rte_flow_action_raw_encap conf;
472 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
473 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
474 	uint16_t idx;
475 };
476 
477 /** Storage for struct rte_flow_action_raw_decap. */
478 struct raw_decap_conf {
479 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
480 	size_t size;
481 };
482 
483 struct raw_decap_conf raw_decap_confs[RAW_ENCAP_CONFS_MAX_NUM];
484 
485 /** Storage for struct rte_flow_action_raw_decap including external data. */
486 struct action_raw_decap_data {
487 	struct rte_flow_action_raw_decap conf;
488 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
489 	uint16_t idx;
490 };
491 
492 struct vxlan_encap_conf vxlan_encap_conf = {
493 	.select_ipv4 = 1,
494 	.select_vlan = 0,
495 	.select_tos_ttl = 0,
496 	.vni = "\x00\x00\x00",
497 	.udp_src = 0,
498 	.udp_dst = RTE_BE16(RTE_VXLAN_DEFAULT_PORT),
499 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
500 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
501 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
502 		"\x00\x00\x00\x00\x00\x00\x00\x01",
503 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
504 		"\x00\x00\x00\x00\x00\x00\x11\x11",
505 	.vlan_tci = 0,
506 	.ip_tos = 0,
507 	.ip_ttl = 255,
508 	.eth_src = "\x00\x00\x00\x00\x00\x00",
509 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
510 };
511 
512 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
513 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
514 
515 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
516 struct action_vxlan_encap_data {
517 	struct rte_flow_action_vxlan_encap conf;
518 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
519 	struct rte_flow_item_eth item_eth;
520 	struct rte_flow_item_vlan item_vlan;
521 	union {
522 		struct rte_flow_item_ipv4 item_ipv4;
523 		struct rte_flow_item_ipv6 item_ipv6;
524 	};
525 	struct rte_flow_item_udp item_udp;
526 	struct rte_flow_item_vxlan item_vxlan;
527 };
528 
529 struct nvgre_encap_conf nvgre_encap_conf = {
530 	.select_ipv4 = 1,
531 	.select_vlan = 0,
532 	.tni = "\x00\x00\x00",
533 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
534 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
535 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
536 		"\x00\x00\x00\x00\x00\x00\x00\x01",
537 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
538 		"\x00\x00\x00\x00\x00\x00\x11\x11",
539 	.vlan_tci = 0,
540 	.eth_src = "\x00\x00\x00\x00\x00\x00",
541 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
542 };
543 
544 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
545 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
546 
547 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
548 struct action_nvgre_encap_data {
549 	struct rte_flow_action_nvgre_encap conf;
550 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
551 	struct rte_flow_item_eth item_eth;
552 	struct rte_flow_item_vlan item_vlan;
553 	union {
554 		struct rte_flow_item_ipv4 item_ipv4;
555 		struct rte_flow_item_ipv6 item_ipv6;
556 	};
557 	struct rte_flow_item_nvgre item_nvgre;
558 };
559 
560 struct l2_encap_conf l2_encap_conf;
561 
562 struct l2_decap_conf l2_decap_conf;
563 
564 struct mplsogre_encap_conf mplsogre_encap_conf;
565 
566 struct mplsogre_decap_conf mplsogre_decap_conf;
567 
568 struct mplsoudp_encap_conf mplsoudp_encap_conf;
569 
570 struct mplsoudp_decap_conf mplsoudp_decap_conf;
571 
572 #define ACTION_SAMPLE_ACTIONS_NUM 10
573 #define RAW_SAMPLE_CONFS_MAX_NUM 8
574 /** Storage for struct rte_flow_action_sample including external data. */
575 struct action_sample_data {
576 	struct rte_flow_action_sample conf;
577 	uint32_t idx;
578 };
579 /** Storage for struct rte_flow_action_sample. */
580 struct raw_sample_conf {
581 	struct rte_flow_action data[ACTION_SAMPLE_ACTIONS_NUM];
582 };
583 struct raw_sample_conf raw_sample_confs[RAW_SAMPLE_CONFS_MAX_NUM];
584 struct rte_flow_action_mark sample_mark[RAW_SAMPLE_CONFS_MAX_NUM];
585 struct rte_flow_action_queue sample_queue[RAW_SAMPLE_CONFS_MAX_NUM];
586 struct rte_flow_action_count sample_count[RAW_SAMPLE_CONFS_MAX_NUM];
587 struct rte_flow_action_port_id sample_port_id[RAW_SAMPLE_CONFS_MAX_NUM];
588 struct rte_flow_action_raw_encap sample_encap[RAW_SAMPLE_CONFS_MAX_NUM];
589 struct action_vxlan_encap_data sample_vxlan_encap[RAW_SAMPLE_CONFS_MAX_NUM];
590 struct action_nvgre_encap_data sample_nvgre_encap[RAW_SAMPLE_CONFS_MAX_NUM];
591 struct action_rss_data sample_rss_data[RAW_SAMPLE_CONFS_MAX_NUM];
592 struct rte_flow_action_vf sample_vf[RAW_SAMPLE_CONFS_MAX_NUM];
593 
594 static const char *const modify_field_ops[] = {
595 	"set", "add", "sub", NULL
596 };
597 
598 static const char *const modify_field_ids[] = {
599 	"start", "mac_dst", "mac_src",
600 	"vlan_type", "vlan_id", "mac_type",
601 	"ipv4_dscp", "ipv4_ttl", "ipv4_src", "ipv4_dst",
602 	"ipv6_dscp", "ipv6_hoplimit", "ipv6_src", "ipv6_dst",
603 	"tcp_port_src", "tcp_port_dst",
604 	"tcp_seq_num", "tcp_ack_num", "tcp_flags",
605 	"udp_port_src", "udp_port_dst",
606 	"vxlan_vni", "geneve_vni", "gtp_teid",
607 	"tag", "mark", "meta", "pointer", "value", NULL
608 };
609 
610 /** Maximum number of subsequent tokens and arguments on the stack. */
611 #define CTX_STACK_SIZE 16
612 
613 /** Parser context. */
614 struct context {
615 	/** Stack of subsequent token lists to process. */
616 	const enum index *next[CTX_STACK_SIZE];
617 	/** Arguments for stacked tokens. */
618 	const void *args[CTX_STACK_SIZE];
619 	enum index curr; /**< Current token index. */
620 	enum index prev; /**< Index of the last token seen. */
621 	int next_num; /**< Number of entries in next[]. */
622 	int args_num; /**< Number of entries in args[]. */
623 	uint32_t eol:1; /**< EOL has been detected. */
624 	uint32_t last:1; /**< No more arguments. */
625 	portid_t port; /**< Current port ID (for completions). */
626 	uint32_t objdata; /**< Object-specific data. */
627 	void *object; /**< Address of current object for relative offsets. */
628 	void *objmask; /**< Object a full mask must be written to. */
629 };
630 
631 /** Token argument. */
632 struct arg {
633 	uint32_t hton:1; /**< Use network byte ordering. */
634 	uint32_t sign:1; /**< Value is signed. */
635 	uint32_t bounded:1; /**< Value is bounded. */
636 	uintmax_t min; /**< Minimum value if bounded. */
637 	uintmax_t max; /**< Maximum value if bounded. */
638 	uint32_t offset; /**< Relative offset from ctx->object. */
639 	uint32_t size; /**< Field size. */
640 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
641 };
642 
643 /** Parser token definition. */
644 struct token {
645 	/** Type displayed during completion (defaults to "TOKEN"). */
646 	const char *type;
647 	/** Help displayed during completion (defaults to token name). */
648 	const char *help;
649 	/** Private data used by parser functions. */
650 	const void *priv;
651 	/**
652 	 * Lists of subsequent tokens to push on the stack. Each call to the
653 	 * parser consumes the last entry of that stack.
654 	 */
655 	const enum index *const *next;
656 	/** Arguments stack for subsequent tokens that need them. */
657 	const struct arg *const *args;
658 	/**
659 	 * Token-processing callback, returns -1 in case of error, the
660 	 * length of the matched string otherwise. If NULL, attempts to
661 	 * match the token name.
662 	 *
663 	 * If buf is not NULL, the result should be stored in it according
664 	 * to context. An error is returned if not large enough.
665 	 */
666 	int (*call)(struct context *ctx, const struct token *token,
667 		    const char *str, unsigned int len,
668 		    void *buf, unsigned int size);
669 	/**
670 	 * Callback that provides possible values for this token, used for
671 	 * completion. Returns -1 in case of error, the number of possible
672 	 * values otherwise. If NULL, the token name is used.
673 	 *
674 	 * If buf is not NULL, entry index ent is written to buf and the
675 	 * full length of the entry is returned (same behavior as
676 	 * snprintf()).
677 	 */
678 	int (*comp)(struct context *ctx, const struct token *token,
679 		    unsigned int ent, char *buf, unsigned int size);
680 	/** Mandatory token name, no default value. */
681 	const char *name;
682 };
683 
684 /** Static initializer for the next field. */
685 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
686 
687 /** Static initializer for a NEXT() entry. */
688 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
689 
690 /** Static initializer for the args field. */
691 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
692 
693 /** Static initializer for ARGS() to target a field. */
694 #define ARGS_ENTRY(s, f) \
695 	(&(const struct arg){ \
696 		.offset = offsetof(s, f), \
697 		.size = sizeof(((s *)0)->f), \
698 	})
699 
700 /** Static initializer for ARGS() to target a bit-field. */
701 #define ARGS_ENTRY_BF(s, f, b) \
702 	(&(const struct arg){ \
703 		.size = sizeof(s), \
704 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
705 	})
706 
707 /** Static initializer for ARGS() to target a field with limits. */
708 #define ARGS_ENTRY_BOUNDED(s, f, i, a) \
709 	(&(const struct arg){ \
710 		.bounded = 1, \
711 		.min = (i), \
712 		.max = (a), \
713 		.offset = offsetof(s, f), \
714 		.size = sizeof(((s *)0)->f), \
715 	})
716 
717 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
718 #define ARGS_ENTRY_MASK(s, f, m) \
719 	(&(const struct arg){ \
720 		.offset = offsetof(s, f), \
721 		.size = sizeof(((s *)0)->f), \
722 		.mask = (const void *)(m), \
723 	})
724 
725 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
726 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
727 	(&(const struct arg){ \
728 		.hton = 1, \
729 		.offset = offsetof(s, f), \
730 		.size = sizeof(((s *)0)->f), \
731 		.mask = (const void *)(m), \
732 	})
733 
734 /** Static initializer for ARGS() to target a pointer. */
735 #define ARGS_ENTRY_PTR(s, f) \
736 	(&(const struct arg){ \
737 		.size = sizeof(*((s *)0)->f), \
738 	})
739 
740 /** Static initializer for ARGS() with arbitrary offset and size. */
741 #define ARGS_ENTRY_ARB(o, s) \
742 	(&(const struct arg){ \
743 		.offset = (o), \
744 		.size = (s), \
745 	})
746 
747 /** Same as ARGS_ENTRY_ARB() with bounded values. */
748 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
749 	(&(const struct arg){ \
750 		.bounded = 1, \
751 		.min = (i), \
752 		.max = (a), \
753 		.offset = (o), \
754 		.size = (s), \
755 	})
756 
757 /** Same as ARGS_ENTRY() using network byte ordering. */
758 #define ARGS_ENTRY_HTON(s, f) \
759 	(&(const struct arg){ \
760 		.hton = 1, \
761 		.offset = offsetof(s, f), \
762 		.size = sizeof(((s *)0)->f), \
763 	})
764 
765 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
766 #define ARG_ENTRY_HTON(s) \
767 	(&(const struct arg){ \
768 		.hton = 1, \
769 		.offset = 0, \
770 		.size = sizeof(s), \
771 	})
772 
773 /** Parser output buffer layout expected by cmd_flow_parsed(). */
774 struct buffer {
775 	enum index command; /**< Flow command. */
776 	portid_t port; /**< Affected port ID. */
777 	union {
778 		struct {
779 			uint32_t *action_id;
780 			uint32_t action_id_n;
781 		} ia_destroy; /**< Indirect action destroy arguments. */
782 		struct {
783 			uint32_t action_id;
784 		} ia; /* Indirect action query arguments */
785 		struct {
786 			struct rte_flow_attr attr;
787 			struct tunnel_ops tunnel_ops;
788 			struct rte_flow_item *pattern;
789 			struct rte_flow_action *actions;
790 			uint32_t pattern_n;
791 			uint32_t actions_n;
792 			uint8_t *data;
793 		} vc; /**< Validate/create arguments. */
794 		struct {
795 			uint32_t *rule;
796 			uint32_t rule_n;
797 		} destroy; /**< Destroy arguments. */
798 		struct {
799 			char file[128];
800 			bool mode;
801 			uint32_t rule;
802 		} dump; /**< Dump arguments. */
803 		struct {
804 			uint32_t rule;
805 			struct rte_flow_action action;
806 		} query; /**< Query arguments. */
807 		struct {
808 			uint32_t *group;
809 			uint32_t group_n;
810 		} list; /**< List arguments. */
811 		struct {
812 			int set;
813 		} isolate; /**< Isolated mode arguments. */
814 		struct {
815 			int destroy;
816 		} aged; /**< Aged arguments. */
817 	} args; /**< Command arguments. */
818 };
819 
820 /** Private data for pattern items. */
821 struct parse_item_priv {
822 	enum rte_flow_item_type type; /**< Item type. */
823 	uint32_t size; /**< Size of item specification structure. */
824 };
825 
826 #define PRIV_ITEM(t, s) \
827 	(&(const struct parse_item_priv){ \
828 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
829 		.size = s, \
830 	})
831 
832 /** Private data for actions. */
833 struct parse_action_priv {
834 	enum rte_flow_action_type type; /**< Action type. */
835 	uint32_t size; /**< Size of action configuration structure. */
836 };
837 
838 #define PRIV_ACTION(t, s) \
839 	(&(const struct parse_action_priv){ \
840 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
841 		.size = s, \
842 	})
843 
844 static const enum index next_ia_create_attr[] = {
845 	INDIRECT_ACTION_CREATE_ID,
846 	INDIRECT_ACTION_INGRESS,
847 	INDIRECT_ACTION_EGRESS,
848 	INDIRECT_ACTION_TRANSFER,
849 	INDIRECT_ACTION_SPEC,
850 	ZERO,
851 };
852 
853 static const enum index next_dump_subcmd[] = {
854 	DUMP_ALL,
855 	DUMP_ONE,
856 	ZERO,
857 };
858 
859 static const enum index next_ia_subcmd[] = {
860 	INDIRECT_ACTION_CREATE,
861 	INDIRECT_ACTION_UPDATE,
862 	INDIRECT_ACTION_DESTROY,
863 	INDIRECT_ACTION_QUERY,
864 	ZERO,
865 };
866 
867 static const enum index next_vc_attr[] = {
868 	GROUP,
869 	PRIORITY,
870 	INGRESS,
871 	EGRESS,
872 	TRANSFER,
873 	TUNNEL_SET,
874 	TUNNEL_MATCH,
875 	PATTERN,
876 	ZERO,
877 };
878 
879 static const enum index next_destroy_attr[] = {
880 	DESTROY_RULE,
881 	END,
882 	ZERO,
883 };
884 
885 static const enum index next_dump_attr[] = {
886 	FILE_PATH,
887 	END,
888 	ZERO,
889 };
890 
891 static const enum index next_list_attr[] = {
892 	LIST_GROUP,
893 	END,
894 	ZERO,
895 };
896 
897 static const enum index next_aged_attr[] = {
898 	AGED_DESTROY,
899 	END,
900 	ZERO,
901 };
902 
903 static const enum index next_ia_destroy_attr[] = {
904 	INDIRECT_ACTION_DESTROY_ID,
905 	END,
906 	ZERO,
907 };
908 
909 static const enum index item_param[] = {
910 	ITEM_PARAM_IS,
911 	ITEM_PARAM_SPEC,
912 	ITEM_PARAM_LAST,
913 	ITEM_PARAM_MASK,
914 	ITEM_PARAM_PREFIX,
915 	ZERO,
916 };
917 
918 static const enum index next_item[] = {
919 	ITEM_END,
920 	ITEM_VOID,
921 	ITEM_INVERT,
922 	ITEM_ANY,
923 	ITEM_PF,
924 	ITEM_VF,
925 	ITEM_PHY_PORT,
926 	ITEM_PORT_ID,
927 	ITEM_MARK,
928 	ITEM_RAW,
929 	ITEM_ETH,
930 	ITEM_VLAN,
931 	ITEM_IPV4,
932 	ITEM_IPV6,
933 	ITEM_ICMP,
934 	ITEM_UDP,
935 	ITEM_TCP,
936 	ITEM_SCTP,
937 	ITEM_VXLAN,
938 	ITEM_E_TAG,
939 	ITEM_NVGRE,
940 	ITEM_MPLS,
941 	ITEM_GRE,
942 	ITEM_FUZZY,
943 	ITEM_GTP,
944 	ITEM_GTPC,
945 	ITEM_GTPU,
946 	ITEM_GENEVE,
947 	ITEM_VXLAN_GPE,
948 	ITEM_ARP_ETH_IPV4,
949 	ITEM_IPV6_EXT,
950 	ITEM_IPV6_FRAG_EXT,
951 	ITEM_ICMP6,
952 	ITEM_ICMP6_ND_NS,
953 	ITEM_ICMP6_ND_NA,
954 	ITEM_ICMP6_ND_OPT,
955 	ITEM_ICMP6_ND_OPT_SLA_ETH,
956 	ITEM_ICMP6_ND_OPT_TLA_ETH,
957 	ITEM_META,
958 	ITEM_GRE_KEY,
959 	ITEM_GTP_PSC,
960 	ITEM_PPPOES,
961 	ITEM_PPPOED,
962 	ITEM_PPPOE_PROTO_ID,
963 	ITEM_HIGIG2,
964 	ITEM_TAG,
965 	ITEM_L2TPV3OIP,
966 	ITEM_ESP,
967 	ITEM_AH,
968 	ITEM_PFCP,
969 	ITEM_ECPRI,
970 	ITEM_GENEVE_OPT,
971 	END_SET,
972 	ZERO,
973 };
974 
975 static const enum index item_fuzzy[] = {
976 	ITEM_FUZZY_THRESH,
977 	ITEM_NEXT,
978 	ZERO,
979 };
980 
981 static const enum index item_any[] = {
982 	ITEM_ANY_NUM,
983 	ITEM_NEXT,
984 	ZERO,
985 };
986 
987 static const enum index item_vf[] = {
988 	ITEM_VF_ID,
989 	ITEM_NEXT,
990 	ZERO,
991 };
992 
993 static const enum index item_phy_port[] = {
994 	ITEM_PHY_PORT_INDEX,
995 	ITEM_NEXT,
996 	ZERO,
997 };
998 
999 static const enum index item_port_id[] = {
1000 	ITEM_PORT_ID_ID,
1001 	ITEM_NEXT,
1002 	ZERO,
1003 };
1004 
1005 static const enum index item_mark[] = {
1006 	ITEM_MARK_ID,
1007 	ITEM_NEXT,
1008 	ZERO,
1009 };
1010 
1011 static const enum index item_raw[] = {
1012 	ITEM_RAW_RELATIVE,
1013 	ITEM_RAW_SEARCH,
1014 	ITEM_RAW_OFFSET,
1015 	ITEM_RAW_LIMIT,
1016 	ITEM_RAW_PATTERN,
1017 	ITEM_NEXT,
1018 	ZERO,
1019 };
1020 
1021 static const enum index item_eth[] = {
1022 	ITEM_ETH_DST,
1023 	ITEM_ETH_SRC,
1024 	ITEM_ETH_TYPE,
1025 	ITEM_ETH_HAS_VLAN,
1026 	ITEM_NEXT,
1027 	ZERO,
1028 };
1029 
1030 static const enum index item_vlan[] = {
1031 	ITEM_VLAN_TCI,
1032 	ITEM_VLAN_PCP,
1033 	ITEM_VLAN_DEI,
1034 	ITEM_VLAN_VID,
1035 	ITEM_VLAN_INNER_TYPE,
1036 	ITEM_VLAN_HAS_MORE_VLAN,
1037 	ITEM_NEXT,
1038 	ZERO,
1039 };
1040 
1041 static const enum index item_ipv4[] = {
1042 	ITEM_IPV4_TOS,
1043 	ITEM_IPV4_FRAGMENT_OFFSET,
1044 	ITEM_IPV4_TTL,
1045 	ITEM_IPV4_PROTO,
1046 	ITEM_IPV4_SRC,
1047 	ITEM_IPV4_DST,
1048 	ITEM_NEXT,
1049 	ZERO,
1050 };
1051 
1052 static const enum index item_ipv6[] = {
1053 	ITEM_IPV6_TC,
1054 	ITEM_IPV6_FLOW,
1055 	ITEM_IPV6_PROTO,
1056 	ITEM_IPV6_HOP,
1057 	ITEM_IPV6_SRC,
1058 	ITEM_IPV6_DST,
1059 	ITEM_IPV6_HAS_FRAG_EXT,
1060 	ITEM_NEXT,
1061 	ZERO,
1062 };
1063 
1064 static const enum index item_icmp[] = {
1065 	ITEM_ICMP_TYPE,
1066 	ITEM_ICMP_CODE,
1067 	ITEM_ICMP_IDENT,
1068 	ITEM_ICMP_SEQ,
1069 	ITEM_NEXT,
1070 	ZERO,
1071 };
1072 
1073 static const enum index item_udp[] = {
1074 	ITEM_UDP_SRC,
1075 	ITEM_UDP_DST,
1076 	ITEM_NEXT,
1077 	ZERO,
1078 };
1079 
1080 static const enum index item_tcp[] = {
1081 	ITEM_TCP_SRC,
1082 	ITEM_TCP_DST,
1083 	ITEM_TCP_FLAGS,
1084 	ITEM_NEXT,
1085 	ZERO,
1086 };
1087 
1088 static const enum index item_sctp[] = {
1089 	ITEM_SCTP_SRC,
1090 	ITEM_SCTP_DST,
1091 	ITEM_SCTP_TAG,
1092 	ITEM_SCTP_CKSUM,
1093 	ITEM_NEXT,
1094 	ZERO,
1095 };
1096 
1097 static const enum index item_vxlan[] = {
1098 	ITEM_VXLAN_VNI,
1099 	ITEM_NEXT,
1100 	ZERO,
1101 };
1102 
1103 static const enum index item_e_tag[] = {
1104 	ITEM_E_TAG_GRP_ECID_B,
1105 	ITEM_NEXT,
1106 	ZERO,
1107 };
1108 
1109 static const enum index item_nvgre[] = {
1110 	ITEM_NVGRE_TNI,
1111 	ITEM_NEXT,
1112 	ZERO,
1113 };
1114 
1115 static const enum index item_mpls[] = {
1116 	ITEM_MPLS_LABEL,
1117 	ITEM_MPLS_TC,
1118 	ITEM_MPLS_S,
1119 	ITEM_NEXT,
1120 	ZERO,
1121 };
1122 
1123 static const enum index item_gre[] = {
1124 	ITEM_GRE_PROTO,
1125 	ITEM_GRE_C_RSVD0_VER,
1126 	ITEM_GRE_C_BIT,
1127 	ITEM_GRE_K_BIT,
1128 	ITEM_GRE_S_BIT,
1129 	ITEM_NEXT,
1130 	ZERO,
1131 };
1132 
1133 static const enum index item_gre_key[] = {
1134 	ITEM_GRE_KEY_VALUE,
1135 	ITEM_NEXT,
1136 	ZERO,
1137 };
1138 
1139 static const enum index item_gtp[] = {
1140 	ITEM_GTP_FLAGS,
1141 	ITEM_GTP_MSG_TYPE,
1142 	ITEM_GTP_TEID,
1143 	ITEM_NEXT,
1144 	ZERO,
1145 };
1146 
1147 static const enum index item_geneve[] = {
1148 	ITEM_GENEVE_VNI,
1149 	ITEM_GENEVE_PROTO,
1150 	ITEM_GENEVE_OPTLEN,
1151 	ITEM_NEXT,
1152 	ZERO,
1153 };
1154 
1155 static const enum index item_vxlan_gpe[] = {
1156 	ITEM_VXLAN_GPE_VNI,
1157 	ITEM_NEXT,
1158 	ZERO,
1159 };
1160 
1161 static const enum index item_arp_eth_ipv4[] = {
1162 	ITEM_ARP_ETH_IPV4_SHA,
1163 	ITEM_ARP_ETH_IPV4_SPA,
1164 	ITEM_ARP_ETH_IPV4_THA,
1165 	ITEM_ARP_ETH_IPV4_TPA,
1166 	ITEM_NEXT,
1167 	ZERO,
1168 };
1169 
1170 static const enum index item_ipv6_ext[] = {
1171 	ITEM_IPV6_EXT_NEXT_HDR,
1172 	ITEM_NEXT,
1173 	ZERO,
1174 };
1175 
1176 static const enum index item_ipv6_frag_ext[] = {
1177 	ITEM_IPV6_FRAG_EXT_NEXT_HDR,
1178 	ITEM_IPV6_FRAG_EXT_FRAG_DATA,
1179 	ITEM_NEXT,
1180 	ZERO,
1181 };
1182 
1183 static const enum index item_icmp6[] = {
1184 	ITEM_ICMP6_TYPE,
1185 	ITEM_ICMP6_CODE,
1186 	ITEM_NEXT,
1187 	ZERO,
1188 };
1189 
1190 static const enum index item_icmp6_nd_ns[] = {
1191 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
1192 	ITEM_NEXT,
1193 	ZERO,
1194 };
1195 
1196 static const enum index item_icmp6_nd_na[] = {
1197 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
1198 	ITEM_NEXT,
1199 	ZERO,
1200 };
1201 
1202 static const enum index item_icmp6_nd_opt[] = {
1203 	ITEM_ICMP6_ND_OPT_TYPE,
1204 	ITEM_NEXT,
1205 	ZERO,
1206 };
1207 
1208 static const enum index item_icmp6_nd_opt_sla_eth[] = {
1209 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
1210 	ITEM_NEXT,
1211 	ZERO,
1212 };
1213 
1214 static const enum index item_icmp6_nd_opt_tla_eth[] = {
1215 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
1216 	ITEM_NEXT,
1217 	ZERO,
1218 };
1219 
1220 static const enum index item_meta[] = {
1221 	ITEM_META_DATA,
1222 	ITEM_NEXT,
1223 	ZERO,
1224 };
1225 
1226 static const enum index item_gtp_psc[] = {
1227 	ITEM_GTP_PSC_QFI,
1228 	ITEM_GTP_PSC_PDU_T,
1229 	ITEM_NEXT,
1230 	ZERO,
1231 };
1232 
1233 static const enum index item_pppoed[] = {
1234 	ITEM_PPPOE_SEID,
1235 	ITEM_NEXT,
1236 	ZERO,
1237 };
1238 
1239 static const enum index item_pppoes[] = {
1240 	ITEM_PPPOE_SEID,
1241 	ITEM_NEXT,
1242 	ZERO,
1243 };
1244 
1245 static const enum index item_pppoe_proto_id[] = {
1246 	ITEM_NEXT,
1247 	ZERO,
1248 };
1249 
1250 static const enum index item_higig2[] = {
1251 	ITEM_HIGIG2_CLASSIFICATION,
1252 	ITEM_HIGIG2_VID,
1253 	ITEM_NEXT,
1254 	ZERO,
1255 };
1256 
1257 static const enum index item_esp[] = {
1258 	ITEM_ESP_SPI,
1259 	ITEM_NEXT,
1260 	ZERO,
1261 };
1262 
1263 static const enum index item_ah[] = {
1264 	ITEM_AH_SPI,
1265 	ITEM_NEXT,
1266 	ZERO,
1267 };
1268 
1269 static const enum index item_pfcp[] = {
1270 	ITEM_PFCP_S_FIELD,
1271 	ITEM_PFCP_SEID,
1272 	ITEM_NEXT,
1273 	ZERO,
1274 };
1275 
1276 static const enum index next_set_raw[] = {
1277 	SET_RAW_INDEX,
1278 	ITEM_ETH,
1279 	ZERO,
1280 };
1281 
1282 static const enum index item_tag[] = {
1283 	ITEM_TAG_DATA,
1284 	ITEM_TAG_INDEX,
1285 	ITEM_NEXT,
1286 	ZERO,
1287 };
1288 
1289 static const enum index item_l2tpv3oip[] = {
1290 	ITEM_L2TPV3OIP_SESSION_ID,
1291 	ITEM_NEXT,
1292 	ZERO,
1293 };
1294 
1295 static const enum index item_ecpri[] = {
1296 	ITEM_ECPRI_COMMON,
1297 	ITEM_NEXT,
1298 	ZERO,
1299 };
1300 
1301 static const enum index item_ecpri_common[] = {
1302 	ITEM_ECPRI_COMMON_TYPE,
1303 	ZERO,
1304 };
1305 
1306 static const enum index item_ecpri_common_type[] = {
1307 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
1308 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
1309 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
1310 	ZERO,
1311 };
1312 
1313 static const enum index item_geneve_opt[] = {
1314 	ITEM_GENEVE_OPT_CLASS,
1315 	ITEM_GENEVE_OPT_TYPE,
1316 	ITEM_GENEVE_OPT_LENGTH,
1317 	ITEM_GENEVE_OPT_DATA,
1318 	ITEM_NEXT,
1319 	ZERO,
1320 };
1321 
1322 static const enum index next_action[] = {
1323 	ACTION_END,
1324 	ACTION_VOID,
1325 	ACTION_PASSTHRU,
1326 	ACTION_JUMP,
1327 	ACTION_MARK,
1328 	ACTION_FLAG,
1329 	ACTION_QUEUE,
1330 	ACTION_DROP,
1331 	ACTION_COUNT,
1332 	ACTION_RSS,
1333 	ACTION_PF,
1334 	ACTION_VF,
1335 	ACTION_PHY_PORT,
1336 	ACTION_PORT_ID,
1337 	ACTION_METER,
1338 	ACTION_OF_SET_MPLS_TTL,
1339 	ACTION_OF_DEC_MPLS_TTL,
1340 	ACTION_OF_SET_NW_TTL,
1341 	ACTION_OF_DEC_NW_TTL,
1342 	ACTION_OF_COPY_TTL_OUT,
1343 	ACTION_OF_COPY_TTL_IN,
1344 	ACTION_OF_POP_VLAN,
1345 	ACTION_OF_PUSH_VLAN,
1346 	ACTION_OF_SET_VLAN_VID,
1347 	ACTION_OF_SET_VLAN_PCP,
1348 	ACTION_OF_POP_MPLS,
1349 	ACTION_OF_PUSH_MPLS,
1350 	ACTION_VXLAN_ENCAP,
1351 	ACTION_VXLAN_DECAP,
1352 	ACTION_NVGRE_ENCAP,
1353 	ACTION_NVGRE_DECAP,
1354 	ACTION_L2_ENCAP,
1355 	ACTION_L2_DECAP,
1356 	ACTION_MPLSOGRE_ENCAP,
1357 	ACTION_MPLSOGRE_DECAP,
1358 	ACTION_MPLSOUDP_ENCAP,
1359 	ACTION_MPLSOUDP_DECAP,
1360 	ACTION_SET_IPV4_SRC,
1361 	ACTION_SET_IPV4_DST,
1362 	ACTION_SET_IPV6_SRC,
1363 	ACTION_SET_IPV6_DST,
1364 	ACTION_SET_TP_SRC,
1365 	ACTION_SET_TP_DST,
1366 	ACTION_MAC_SWAP,
1367 	ACTION_DEC_TTL,
1368 	ACTION_SET_TTL,
1369 	ACTION_SET_MAC_SRC,
1370 	ACTION_SET_MAC_DST,
1371 	ACTION_INC_TCP_SEQ,
1372 	ACTION_DEC_TCP_SEQ,
1373 	ACTION_INC_TCP_ACK,
1374 	ACTION_DEC_TCP_ACK,
1375 	ACTION_RAW_ENCAP,
1376 	ACTION_RAW_DECAP,
1377 	ACTION_SET_TAG,
1378 	ACTION_SET_META,
1379 	ACTION_SET_IPV4_DSCP,
1380 	ACTION_SET_IPV6_DSCP,
1381 	ACTION_AGE,
1382 	ACTION_SAMPLE,
1383 	ACTION_INDIRECT,
1384 	ACTION_MODIFY_FIELD,
1385 	ZERO,
1386 };
1387 
1388 static const enum index action_mark[] = {
1389 	ACTION_MARK_ID,
1390 	ACTION_NEXT,
1391 	ZERO,
1392 };
1393 
1394 static const enum index action_queue[] = {
1395 	ACTION_QUEUE_INDEX,
1396 	ACTION_NEXT,
1397 	ZERO,
1398 };
1399 
1400 static const enum index action_count[] = {
1401 	ACTION_COUNT_ID,
1402 	ACTION_COUNT_SHARED,
1403 	ACTION_NEXT,
1404 	ZERO,
1405 };
1406 
1407 static const enum index action_rss[] = {
1408 	ACTION_RSS_FUNC,
1409 	ACTION_RSS_LEVEL,
1410 	ACTION_RSS_TYPES,
1411 	ACTION_RSS_KEY,
1412 	ACTION_RSS_KEY_LEN,
1413 	ACTION_RSS_QUEUES,
1414 	ACTION_NEXT,
1415 	ZERO,
1416 };
1417 
1418 static const enum index action_vf[] = {
1419 	ACTION_VF_ORIGINAL,
1420 	ACTION_VF_ID,
1421 	ACTION_NEXT,
1422 	ZERO,
1423 };
1424 
1425 static const enum index action_phy_port[] = {
1426 	ACTION_PHY_PORT_ORIGINAL,
1427 	ACTION_PHY_PORT_INDEX,
1428 	ACTION_NEXT,
1429 	ZERO,
1430 };
1431 
1432 static const enum index action_port_id[] = {
1433 	ACTION_PORT_ID_ORIGINAL,
1434 	ACTION_PORT_ID_ID,
1435 	ACTION_NEXT,
1436 	ZERO,
1437 };
1438 
1439 static const enum index action_meter[] = {
1440 	ACTION_METER_ID,
1441 	ACTION_NEXT,
1442 	ZERO,
1443 };
1444 
1445 static const enum index action_of_set_mpls_ttl[] = {
1446 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1447 	ACTION_NEXT,
1448 	ZERO,
1449 };
1450 
1451 static const enum index action_of_set_nw_ttl[] = {
1452 	ACTION_OF_SET_NW_TTL_NW_TTL,
1453 	ACTION_NEXT,
1454 	ZERO,
1455 };
1456 
1457 static const enum index action_of_push_vlan[] = {
1458 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1459 	ACTION_NEXT,
1460 	ZERO,
1461 };
1462 
1463 static const enum index action_of_set_vlan_vid[] = {
1464 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1465 	ACTION_NEXT,
1466 	ZERO,
1467 };
1468 
1469 static const enum index action_of_set_vlan_pcp[] = {
1470 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1471 	ACTION_NEXT,
1472 	ZERO,
1473 };
1474 
1475 static const enum index action_of_pop_mpls[] = {
1476 	ACTION_OF_POP_MPLS_ETHERTYPE,
1477 	ACTION_NEXT,
1478 	ZERO,
1479 };
1480 
1481 static const enum index action_of_push_mpls[] = {
1482 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1483 	ACTION_NEXT,
1484 	ZERO,
1485 };
1486 
1487 static const enum index action_set_ipv4_src[] = {
1488 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1489 	ACTION_NEXT,
1490 	ZERO,
1491 };
1492 
1493 static const enum index action_set_mac_src[] = {
1494 	ACTION_SET_MAC_SRC_MAC_SRC,
1495 	ACTION_NEXT,
1496 	ZERO,
1497 };
1498 
1499 static const enum index action_set_ipv4_dst[] = {
1500 	ACTION_SET_IPV4_DST_IPV4_DST,
1501 	ACTION_NEXT,
1502 	ZERO,
1503 };
1504 
1505 static const enum index action_set_ipv6_src[] = {
1506 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1507 	ACTION_NEXT,
1508 	ZERO,
1509 };
1510 
1511 static const enum index action_set_ipv6_dst[] = {
1512 	ACTION_SET_IPV6_DST_IPV6_DST,
1513 	ACTION_NEXT,
1514 	ZERO,
1515 };
1516 
1517 static const enum index action_set_tp_src[] = {
1518 	ACTION_SET_TP_SRC_TP_SRC,
1519 	ACTION_NEXT,
1520 	ZERO,
1521 };
1522 
1523 static const enum index action_set_tp_dst[] = {
1524 	ACTION_SET_TP_DST_TP_DST,
1525 	ACTION_NEXT,
1526 	ZERO,
1527 };
1528 
1529 static const enum index action_set_ttl[] = {
1530 	ACTION_SET_TTL_TTL,
1531 	ACTION_NEXT,
1532 	ZERO,
1533 };
1534 
1535 static const enum index action_jump[] = {
1536 	ACTION_JUMP_GROUP,
1537 	ACTION_NEXT,
1538 	ZERO,
1539 };
1540 
1541 static const enum index action_set_mac_dst[] = {
1542 	ACTION_SET_MAC_DST_MAC_DST,
1543 	ACTION_NEXT,
1544 	ZERO,
1545 };
1546 
1547 static const enum index action_inc_tcp_seq[] = {
1548 	ACTION_INC_TCP_SEQ_VALUE,
1549 	ACTION_NEXT,
1550 	ZERO,
1551 };
1552 
1553 static const enum index action_dec_tcp_seq[] = {
1554 	ACTION_DEC_TCP_SEQ_VALUE,
1555 	ACTION_NEXT,
1556 	ZERO,
1557 };
1558 
1559 static const enum index action_inc_tcp_ack[] = {
1560 	ACTION_INC_TCP_ACK_VALUE,
1561 	ACTION_NEXT,
1562 	ZERO,
1563 };
1564 
1565 static const enum index action_dec_tcp_ack[] = {
1566 	ACTION_DEC_TCP_ACK_VALUE,
1567 	ACTION_NEXT,
1568 	ZERO,
1569 };
1570 
1571 static const enum index action_raw_encap[] = {
1572 	ACTION_RAW_ENCAP_INDEX,
1573 	ACTION_NEXT,
1574 	ZERO,
1575 };
1576 
1577 static const enum index action_raw_decap[] = {
1578 	ACTION_RAW_DECAP_INDEX,
1579 	ACTION_NEXT,
1580 	ZERO,
1581 };
1582 
1583 static const enum index action_set_tag[] = {
1584 	ACTION_SET_TAG_DATA,
1585 	ACTION_SET_TAG_INDEX,
1586 	ACTION_SET_TAG_MASK,
1587 	ACTION_NEXT,
1588 	ZERO,
1589 };
1590 
1591 static const enum index action_set_meta[] = {
1592 	ACTION_SET_META_DATA,
1593 	ACTION_SET_META_MASK,
1594 	ACTION_NEXT,
1595 	ZERO,
1596 };
1597 
1598 static const enum index action_set_ipv4_dscp[] = {
1599 	ACTION_SET_IPV4_DSCP_VALUE,
1600 	ACTION_NEXT,
1601 	ZERO,
1602 };
1603 
1604 static const enum index action_set_ipv6_dscp[] = {
1605 	ACTION_SET_IPV6_DSCP_VALUE,
1606 	ACTION_NEXT,
1607 	ZERO,
1608 };
1609 
1610 static const enum index action_age[] = {
1611 	ACTION_AGE,
1612 	ACTION_AGE_TIMEOUT,
1613 	ACTION_NEXT,
1614 	ZERO,
1615 };
1616 
1617 static const enum index action_sample[] = {
1618 	ACTION_SAMPLE,
1619 	ACTION_SAMPLE_RATIO,
1620 	ACTION_SAMPLE_INDEX,
1621 	ACTION_NEXT,
1622 	ZERO,
1623 };
1624 
1625 static const enum index next_action_sample[] = {
1626 	ACTION_QUEUE,
1627 	ACTION_RSS,
1628 	ACTION_MARK,
1629 	ACTION_COUNT,
1630 	ACTION_PORT_ID,
1631 	ACTION_RAW_ENCAP,
1632 	ACTION_VXLAN_ENCAP,
1633 	ACTION_NVGRE_ENCAP,
1634 	ACTION_NEXT,
1635 	ZERO,
1636 };
1637 
1638 static const enum index action_modify_field_dst[] = {
1639 	ACTION_MODIFY_FIELD_DST_LEVEL,
1640 	ACTION_MODIFY_FIELD_DST_OFFSET,
1641 	ACTION_MODIFY_FIELD_SRC_TYPE,
1642 	ZERO,
1643 };
1644 
1645 static const enum index action_modify_field_src[] = {
1646 	ACTION_MODIFY_FIELD_SRC_LEVEL,
1647 	ACTION_MODIFY_FIELD_SRC_OFFSET,
1648 	ACTION_MODIFY_FIELD_SRC_VALUE,
1649 	ACTION_MODIFY_FIELD_WIDTH,
1650 	ZERO,
1651 };
1652 
1653 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1654 				     const char *, unsigned int,
1655 				     void *, unsigned int);
1656 static int parse_set_sample_action(struct context *, const struct token *,
1657 				   const char *, unsigned int,
1658 				   void *, unsigned int);
1659 static int parse_set_init(struct context *, const struct token *,
1660 			  const char *, unsigned int,
1661 			  void *, unsigned int);
1662 static int parse_init(struct context *, const struct token *,
1663 		      const char *, unsigned int,
1664 		      void *, unsigned int);
1665 static int parse_vc(struct context *, const struct token *,
1666 		    const char *, unsigned int,
1667 		    void *, unsigned int);
1668 static int parse_vc_spec(struct context *, const struct token *,
1669 			 const char *, unsigned int, void *, unsigned int);
1670 static int parse_vc_conf(struct context *, const struct token *,
1671 			 const char *, unsigned int, void *, unsigned int);
1672 static int parse_vc_item_ecpri_type(struct context *, const struct token *,
1673 				    const char *, unsigned int,
1674 				    void *, unsigned int);
1675 static int parse_vc_action_rss(struct context *, const struct token *,
1676 			       const char *, unsigned int, void *,
1677 			       unsigned int);
1678 static int parse_vc_action_rss_func(struct context *, const struct token *,
1679 				    const char *, unsigned int, void *,
1680 				    unsigned int);
1681 static int parse_vc_action_rss_type(struct context *, const struct token *,
1682 				    const char *, unsigned int, void *,
1683 				    unsigned int);
1684 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1685 				     const char *, unsigned int, void *,
1686 				     unsigned int);
1687 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1688 				       const char *, unsigned int, void *,
1689 				       unsigned int);
1690 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1691 				       const char *, unsigned int, void *,
1692 				       unsigned int);
1693 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1694 				    const char *, unsigned int, void *,
1695 				    unsigned int);
1696 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1697 				    const char *, unsigned int, void *,
1698 				    unsigned int);
1699 static int parse_vc_action_mplsogre_encap(struct context *,
1700 					  const struct token *, const char *,
1701 					  unsigned int, void *, unsigned int);
1702 static int parse_vc_action_mplsogre_decap(struct context *,
1703 					  const struct token *, const char *,
1704 					  unsigned int, void *, unsigned int);
1705 static int parse_vc_action_mplsoudp_encap(struct context *,
1706 					  const struct token *, const char *,
1707 					  unsigned int, void *, unsigned int);
1708 static int parse_vc_action_mplsoudp_decap(struct context *,
1709 					  const struct token *, const char *,
1710 					  unsigned int, void *, unsigned int);
1711 static int parse_vc_action_raw_encap(struct context *,
1712 				     const struct token *, const char *,
1713 				     unsigned int, void *, unsigned int);
1714 static int parse_vc_action_raw_decap(struct context *,
1715 				     const struct token *, const char *,
1716 				     unsigned int, void *, unsigned int);
1717 static int parse_vc_action_raw_encap_index(struct context *,
1718 					   const struct token *, const char *,
1719 					   unsigned int, void *, unsigned int);
1720 static int parse_vc_action_raw_decap_index(struct context *,
1721 					   const struct token *, const char *,
1722 					   unsigned int, void *, unsigned int);
1723 static int parse_vc_action_set_meta(struct context *ctx,
1724 				    const struct token *token, const char *str,
1725 				    unsigned int len, void *buf,
1726 					unsigned int size);
1727 static int parse_vc_action_sample(struct context *ctx,
1728 				    const struct token *token, const char *str,
1729 				    unsigned int len, void *buf,
1730 				    unsigned int size);
1731 static int
1732 parse_vc_action_sample_index(struct context *ctx, const struct token *token,
1733 				const char *str, unsigned int len, void *buf,
1734 				unsigned int size);
1735 static int
1736 parse_vc_modify_field_op(struct context *ctx, const struct token *token,
1737 				const char *str, unsigned int len, void *buf,
1738 				unsigned int size);
1739 static int
1740 parse_vc_modify_field_id(struct context *ctx, const struct token *token,
1741 				const char *str, unsigned int len, void *buf,
1742 				unsigned int size);
1743 static int parse_destroy(struct context *, const struct token *,
1744 			 const char *, unsigned int,
1745 			 void *, unsigned int);
1746 static int parse_flush(struct context *, const struct token *,
1747 		       const char *, unsigned int,
1748 		       void *, unsigned int);
1749 static int parse_dump(struct context *, const struct token *,
1750 		      const char *, unsigned int,
1751 		      void *, unsigned int);
1752 static int parse_query(struct context *, const struct token *,
1753 		       const char *, unsigned int,
1754 		       void *, unsigned int);
1755 static int parse_action(struct context *, const struct token *,
1756 			const char *, unsigned int,
1757 			void *, unsigned int);
1758 static int parse_list(struct context *, const struct token *,
1759 		      const char *, unsigned int,
1760 		      void *, unsigned int);
1761 static int parse_aged(struct context *, const struct token *,
1762 		      const char *, unsigned int,
1763 		      void *, unsigned int);
1764 static int parse_isolate(struct context *, const struct token *,
1765 			 const char *, unsigned int,
1766 			 void *, unsigned int);
1767 static int parse_tunnel(struct context *, const struct token *,
1768 			const char *, unsigned int,
1769 			void *, unsigned int);
1770 static int parse_int(struct context *, const struct token *,
1771 		     const char *, unsigned int,
1772 		     void *, unsigned int);
1773 static int parse_prefix(struct context *, const struct token *,
1774 			const char *, unsigned int,
1775 			void *, unsigned int);
1776 static int parse_boolean(struct context *, const struct token *,
1777 			 const char *, unsigned int,
1778 			 void *, unsigned int);
1779 static int parse_string(struct context *, const struct token *,
1780 			const char *, unsigned int,
1781 			void *, unsigned int);
1782 static int parse_hex(struct context *ctx, const struct token *token,
1783 			const char *str, unsigned int len,
1784 			void *buf, unsigned int size);
1785 static int parse_string0(struct context *, const struct token *,
1786 			const char *, unsigned int,
1787 			void *, unsigned int);
1788 static int parse_mac_addr(struct context *, const struct token *,
1789 			  const char *, unsigned int,
1790 			  void *, unsigned int);
1791 static int parse_ipv4_addr(struct context *, const struct token *,
1792 			   const char *, unsigned int,
1793 			   void *, unsigned int);
1794 static int parse_ipv6_addr(struct context *, const struct token *,
1795 			   const char *, unsigned int,
1796 			   void *, unsigned int);
1797 static int parse_port(struct context *, const struct token *,
1798 		      const char *, unsigned int,
1799 		      void *, unsigned int);
1800 static int parse_ia(struct context *, const struct token *,
1801 		    const char *, unsigned int,
1802 		    void *, unsigned int);
1803 static int parse_ia_destroy(struct context *ctx, const struct token *token,
1804 			    const char *str, unsigned int len,
1805 			    void *buf, unsigned int size);
1806 static int parse_ia_id2ptr(struct context *ctx, const struct token *token,
1807 			   const char *str, unsigned int len, void *buf,
1808 			   unsigned int size);
1809 static int comp_none(struct context *, const struct token *,
1810 		     unsigned int, char *, unsigned int);
1811 static int comp_boolean(struct context *, const struct token *,
1812 			unsigned int, char *, unsigned int);
1813 static int comp_action(struct context *, const struct token *,
1814 		       unsigned int, char *, unsigned int);
1815 static int comp_port(struct context *, const struct token *,
1816 		     unsigned int, char *, unsigned int);
1817 static int comp_rule_id(struct context *, const struct token *,
1818 			unsigned int, char *, unsigned int);
1819 static int comp_vc_action_rss_type(struct context *, const struct token *,
1820 				   unsigned int, char *, unsigned int);
1821 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1822 				    unsigned int, char *, unsigned int);
1823 static int comp_set_raw_index(struct context *, const struct token *,
1824 			      unsigned int, char *, unsigned int);
1825 static int comp_set_sample_index(struct context *, const struct token *,
1826 			      unsigned int, char *, unsigned int);
1827 static int comp_set_modify_field_op(struct context *, const struct token *,
1828 			      unsigned int, char *, unsigned int);
1829 static int comp_set_modify_field_id(struct context *, const struct token *,
1830 			      unsigned int, char *, unsigned int);
1831 
1832 /** Token definitions. */
1833 static const struct token token_list[] = {
1834 	/* Special tokens. */
1835 	[ZERO] = {
1836 		.name = "ZERO",
1837 		.help = "null entry, abused as the entry point",
1838 		.next = NEXT(NEXT_ENTRY(FLOW)),
1839 	},
1840 	[END] = {
1841 		.name = "",
1842 		.type = "RETURN",
1843 		.help = "command may end here",
1844 	},
1845 	[START_SET] = {
1846 		.name = "START_SET",
1847 		.help = "null entry, abused as the entry point for set",
1848 		.next = NEXT(NEXT_ENTRY(SET)),
1849 	},
1850 	[END_SET] = {
1851 		.name = "end_set",
1852 		.type = "RETURN",
1853 		.help = "set command may end here",
1854 	},
1855 	/* Common tokens. */
1856 	[INTEGER] = {
1857 		.name = "{int}",
1858 		.type = "INTEGER",
1859 		.help = "integer value",
1860 		.call = parse_int,
1861 		.comp = comp_none,
1862 	},
1863 	[UNSIGNED] = {
1864 		.name = "{unsigned}",
1865 		.type = "UNSIGNED",
1866 		.help = "unsigned integer value",
1867 		.call = parse_int,
1868 		.comp = comp_none,
1869 	},
1870 	[PREFIX] = {
1871 		.name = "{prefix}",
1872 		.type = "PREFIX",
1873 		.help = "prefix length for bit-mask",
1874 		.call = parse_prefix,
1875 		.comp = comp_none,
1876 	},
1877 	[BOOLEAN] = {
1878 		.name = "{boolean}",
1879 		.type = "BOOLEAN",
1880 		.help = "any boolean value",
1881 		.call = parse_boolean,
1882 		.comp = comp_boolean,
1883 	},
1884 	[STRING] = {
1885 		.name = "{string}",
1886 		.type = "STRING",
1887 		.help = "fixed string",
1888 		.call = parse_string,
1889 		.comp = comp_none,
1890 	},
1891 	[HEX] = {
1892 		.name = "{hex}",
1893 		.type = "HEX",
1894 		.help = "fixed string",
1895 		.call = parse_hex,
1896 	},
1897 	[FILE_PATH] = {
1898 		.name = "{file path}",
1899 		.type = "STRING",
1900 		.help = "file path",
1901 		.call = parse_string0,
1902 		.comp = comp_none,
1903 	},
1904 	[MAC_ADDR] = {
1905 		.name = "{MAC address}",
1906 		.type = "MAC-48",
1907 		.help = "standard MAC address notation",
1908 		.call = parse_mac_addr,
1909 		.comp = comp_none,
1910 	},
1911 	[IPV4_ADDR] = {
1912 		.name = "{IPv4 address}",
1913 		.type = "IPV4 ADDRESS",
1914 		.help = "standard IPv4 address notation",
1915 		.call = parse_ipv4_addr,
1916 		.comp = comp_none,
1917 	},
1918 	[IPV6_ADDR] = {
1919 		.name = "{IPv6 address}",
1920 		.type = "IPV6 ADDRESS",
1921 		.help = "standard IPv6 address notation",
1922 		.call = parse_ipv6_addr,
1923 		.comp = comp_none,
1924 	},
1925 	[RULE_ID] = {
1926 		.name = "{rule id}",
1927 		.type = "RULE ID",
1928 		.help = "rule identifier",
1929 		.call = parse_int,
1930 		.comp = comp_rule_id,
1931 	},
1932 	[PORT_ID] = {
1933 		.name = "{port_id}",
1934 		.type = "PORT ID",
1935 		.help = "port identifier",
1936 		.call = parse_port,
1937 		.comp = comp_port,
1938 	},
1939 	[GROUP_ID] = {
1940 		.name = "{group_id}",
1941 		.type = "GROUP ID",
1942 		.help = "group identifier",
1943 		.call = parse_int,
1944 		.comp = comp_none,
1945 	},
1946 	[PRIORITY_LEVEL] = {
1947 		.name = "{level}",
1948 		.type = "PRIORITY",
1949 		.help = "priority level",
1950 		.call = parse_int,
1951 		.comp = comp_none,
1952 	},
1953 	[INDIRECT_ACTION_ID] = {
1954 		.name = "{indirect_action_id}",
1955 		.type = "INDIRECT_ACTION_ID",
1956 		.help = "indirect action id",
1957 		.call = parse_int,
1958 		.comp = comp_none,
1959 	},
1960 	/* Top-level command. */
1961 	[FLOW] = {
1962 		.name = "flow",
1963 		.type = "{command} {port_id} [{arg} [...]]",
1964 		.help = "manage ingress/egress flow rules",
1965 		.next = NEXT(NEXT_ENTRY
1966 			     (INDIRECT_ACTION,
1967 			      VALIDATE,
1968 			      CREATE,
1969 			      DESTROY,
1970 			      FLUSH,
1971 			      DUMP,
1972 			      LIST,
1973 			      AGED,
1974 			      QUERY,
1975 			      ISOLATE,
1976 			      TUNNEL)),
1977 		.call = parse_init,
1978 	},
1979 	/* Top-level command. */
1980 	[INDIRECT_ACTION] = {
1981 		.name = "indirect_action",
1982 		.type = "{command} {port_id} [{arg} [...]]",
1983 		.help = "manage indirect actions",
1984 		.next = NEXT(next_ia_subcmd, NEXT_ENTRY(PORT_ID)),
1985 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1986 		.call = parse_ia,
1987 	},
1988 	/* Sub-level commands. */
1989 	[INDIRECT_ACTION_CREATE] = {
1990 		.name = "create",
1991 		.help = "create indirect action",
1992 		.next = NEXT(next_ia_create_attr),
1993 		.call = parse_ia,
1994 	},
1995 	[INDIRECT_ACTION_UPDATE] = {
1996 		.name = "update",
1997 		.help = "update indirect action",
1998 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_SPEC),
1999 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
2000 		.args = ARGS(ARGS_ENTRY(struct buffer, args.vc.attr.group)),
2001 		.call = parse_ia,
2002 	},
2003 	[INDIRECT_ACTION_DESTROY] = {
2004 		.name = "destroy",
2005 		.help = "destroy indirect action",
2006 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_DESTROY_ID)),
2007 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2008 		.call = parse_ia_destroy,
2009 	},
2010 	[INDIRECT_ACTION_QUERY] = {
2011 		.name = "query",
2012 		.help = "query indirect action",
2013 		.next = NEXT(NEXT_ENTRY(END), NEXT_ENTRY(INDIRECT_ACTION_ID)),
2014 		.args = ARGS(ARGS_ENTRY(struct buffer, args.ia.action_id)),
2015 		.call = parse_ia,
2016 	},
2017 	[VALIDATE] = {
2018 		.name = "validate",
2019 		.help = "check whether a flow rule can be created",
2020 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
2021 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2022 		.call = parse_vc,
2023 	},
2024 	[CREATE] = {
2025 		.name = "create",
2026 		.help = "create a flow rule",
2027 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
2028 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2029 		.call = parse_vc,
2030 	},
2031 	[DESTROY] = {
2032 		.name = "destroy",
2033 		.help = "destroy specific flow rules",
2034 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
2035 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2036 		.call = parse_destroy,
2037 	},
2038 	[FLUSH] = {
2039 		.name = "flush",
2040 		.help = "destroy all flow rules",
2041 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
2042 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2043 		.call = parse_flush,
2044 	},
2045 	[DUMP] = {
2046 		.name = "dump",
2047 		.help = "dump single/all flow rules to file",
2048 		.next = NEXT(next_dump_subcmd, NEXT_ENTRY(PORT_ID)),
2049 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2050 		.call = parse_dump,
2051 	},
2052 	[QUERY] = {
2053 		.name = "query",
2054 		.help = "query an existing flow rule",
2055 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
2056 			     NEXT_ENTRY(RULE_ID),
2057 			     NEXT_ENTRY(PORT_ID)),
2058 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
2059 			     ARGS_ENTRY(struct buffer, args.query.rule),
2060 			     ARGS_ENTRY(struct buffer, port)),
2061 		.call = parse_query,
2062 	},
2063 	[LIST] = {
2064 		.name = "list",
2065 		.help = "list existing flow rules",
2066 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
2067 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2068 		.call = parse_list,
2069 	},
2070 	[AGED] = {
2071 		.name = "aged",
2072 		.help = "list and destroy aged flows",
2073 		.next = NEXT(next_aged_attr, NEXT_ENTRY(PORT_ID)),
2074 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2075 		.call = parse_aged,
2076 	},
2077 	[ISOLATE] = {
2078 		.name = "isolate",
2079 		.help = "restrict ingress traffic to the defined flow rules",
2080 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
2081 			     NEXT_ENTRY(PORT_ID)),
2082 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
2083 			     ARGS_ENTRY(struct buffer, port)),
2084 		.call = parse_isolate,
2085 	},
2086 	[TUNNEL] = {
2087 		.name = "tunnel",
2088 		.help = "new tunnel API",
2089 		.next = NEXT(NEXT_ENTRY
2090 			     (TUNNEL_CREATE, TUNNEL_LIST, TUNNEL_DESTROY)),
2091 		.call = parse_tunnel,
2092 	},
2093 	/* Tunnel arguments. */
2094 	[TUNNEL_CREATE] = {
2095 		.name = "create",
2096 		.help = "create new tunnel object",
2097 		.next = NEXT(NEXT_ENTRY(TUNNEL_CREATE_TYPE),
2098 			     NEXT_ENTRY(PORT_ID)),
2099 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2100 		.call = parse_tunnel,
2101 	},
2102 	[TUNNEL_CREATE_TYPE] = {
2103 		.name = "type",
2104 		.help = "create new tunnel",
2105 		.next = NEXT(NEXT_ENTRY(FILE_PATH)),
2106 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, type)),
2107 		.call = parse_tunnel,
2108 	},
2109 	[TUNNEL_DESTROY] = {
2110 		.name = "destroy",
2111 		.help = "destroy tunel",
2112 		.next = NEXT(NEXT_ENTRY(TUNNEL_DESTROY_ID),
2113 			     NEXT_ENTRY(PORT_ID)),
2114 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2115 		.call = parse_tunnel,
2116 	},
2117 	[TUNNEL_DESTROY_ID] = {
2118 		.name = "id",
2119 		.help = "tunnel identifier to testroy",
2120 		.next = NEXT(NEXT_ENTRY(UNSIGNED)),
2121 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2122 		.call = parse_tunnel,
2123 	},
2124 	[TUNNEL_LIST] = {
2125 		.name = "list",
2126 		.help = "list existing tunnels",
2127 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
2128 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2129 		.call = parse_tunnel,
2130 	},
2131 	/* Destroy arguments. */
2132 	[DESTROY_RULE] = {
2133 		.name = "rule",
2134 		.help = "specify a rule identifier",
2135 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
2136 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
2137 		.call = parse_destroy,
2138 	},
2139 	/* Dump arguments. */
2140 	[DUMP_ALL] = {
2141 		.name = "all",
2142 		.help = "dump all",
2143 		.next = NEXT(next_dump_attr),
2144 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file)),
2145 		.call = parse_dump,
2146 	},
2147 	[DUMP_ONE] = {
2148 		.name = "rule",
2149 		.help = "dump one rule",
2150 		.next = NEXT(next_dump_attr, NEXT_ENTRY(RULE_ID)),
2151 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file),
2152 				ARGS_ENTRY(struct buffer, args.dump.rule)),
2153 		.call = parse_dump,
2154 	},
2155 	/* Query arguments. */
2156 	[QUERY_ACTION] = {
2157 		.name = "{action}",
2158 		.type = "ACTION",
2159 		.help = "action to query, must be part of the rule",
2160 		.call = parse_action,
2161 		.comp = comp_action,
2162 	},
2163 	/* List arguments. */
2164 	[LIST_GROUP] = {
2165 		.name = "group",
2166 		.help = "specify a group",
2167 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
2168 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
2169 		.call = parse_list,
2170 	},
2171 	[AGED_DESTROY] = {
2172 		.name = "destroy",
2173 		.help = "specify aged flows need be destroyed",
2174 		.call = parse_aged,
2175 		.comp = comp_none,
2176 	},
2177 	/* Validate/create attributes. */
2178 	[GROUP] = {
2179 		.name = "group",
2180 		.help = "specify a group",
2181 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
2182 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
2183 		.call = parse_vc,
2184 	},
2185 	[PRIORITY] = {
2186 		.name = "priority",
2187 		.help = "specify a priority level",
2188 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
2189 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
2190 		.call = parse_vc,
2191 	},
2192 	[INGRESS] = {
2193 		.name = "ingress",
2194 		.help = "affect rule to ingress",
2195 		.next = NEXT(next_vc_attr),
2196 		.call = parse_vc,
2197 	},
2198 	[EGRESS] = {
2199 		.name = "egress",
2200 		.help = "affect rule to egress",
2201 		.next = NEXT(next_vc_attr),
2202 		.call = parse_vc,
2203 	},
2204 	[TRANSFER] = {
2205 		.name = "transfer",
2206 		.help = "apply rule directly to endpoints found in pattern",
2207 		.next = NEXT(next_vc_attr),
2208 		.call = parse_vc,
2209 	},
2210 	[TUNNEL_SET] = {
2211 		.name = "tunnel_set",
2212 		.help = "tunnel steer rule",
2213 		.next = NEXT(next_vc_attr, NEXT_ENTRY(UNSIGNED)),
2214 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2215 		.call = parse_vc,
2216 	},
2217 	[TUNNEL_MATCH] = {
2218 		.name = "tunnel_match",
2219 		.help = "tunnel match rule",
2220 		.next = NEXT(next_vc_attr, NEXT_ENTRY(UNSIGNED)),
2221 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2222 		.call = parse_vc,
2223 	},
2224 	/* Validate/create pattern. */
2225 	[PATTERN] = {
2226 		.name = "pattern",
2227 		.help = "submit a list of pattern items",
2228 		.next = NEXT(next_item),
2229 		.call = parse_vc,
2230 	},
2231 	[ITEM_PARAM_IS] = {
2232 		.name = "is",
2233 		.help = "match value perfectly (with full bit-mask)",
2234 		.call = parse_vc_spec,
2235 	},
2236 	[ITEM_PARAM_SPEC] = {
2237 		.name = "spec",
2238 		.help = "match value according to configured bit-mask",
2239 		.call = parse_vc_spec,
2240 	},
2241 	[ITEM_PARAM_LAST] = {
2242 		.name = "last",
2243 		.help = "specify upper bound to establish a range",
2244 		.call = parse_vc_spec,
2245 	},
2246 	[ITEM_PARAM_MASK] = {
2247 		.name = "mask",
2248 		.help = "specify bit-mask with relevant bits set to one",
2249 		.call = parse_vc_spec,
2250 	},
2251 	[ITEM_PARAM_PREFIX] = {
2252 		.name = "prefix",
2253 		.help = "generate bit-mask from a prefix length",
2254 		.call = parse_vc_spec,
2255 	},
2256 	[ITEM_NEXT] = {
2257 		.name = "/",
2258 		.help = "specify next pattern item",
2259 		.next = NEXT(next_item),
2260 	},
2261 	[ITEM_END] = {
2262 		.name = "end",
2263 		.help = "end list of pattern items",
2264 		.priv = PRIV_ITEM(END, 0),
2265 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
2266 		.call = parse_vc,
2267 	},
2268 	[ITEM_VOID] = {
2269 		.name = "void",
2270 		.help = "no-op pattern item",
2271 		.priv = PRIV_ITEM(VOID, 0),
2272 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2273 		.call = parse_vc,
2274 	},
2275 	[ITEM_INVERT] = {
2276 		.name = "invert",
2277 		.help = "perform actions when pattern does not match",
2278 		.priv = PRIV_ITEM(INVERT, 0),
2279 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2280 		.call = parse_vc,
2281 	},
2282 	[ITEM_ANY] = {
2283 		.name = "any",
2284 		.help = "match any protocol for the current layer",
2285 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
2286 		.next = NEXT(item_any),
2287 		.call = parse_vc,
2288 	},
2289 	[ITEM_ANY_NUM] = {
2290 		.name = "num",
2291 		.help = "number of layers covered",
2292 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
2293 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
2294 	},
2295 	[ITEM_PF] = {
2296 		.name = "pf",
2297 		.help = "match traffic from/to the physical function",
2298 		.priv = PRIV_ITEM(PF, 0),
2299 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2300 		.call = parse_vc,
2301 	},
2302 	[ITEM_VF] = {
2303 		.name = "vf",
2304 		.help = "match traffic from/to a virtual function ID",
2305 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
2306 		.next = NEXT(item_vf),
2307 		.call = parse_vc,
2308 	},
2309 	[ITEM_VF_ID] = {
2310 		.name = "id",
2311 		.help = "VF ID",
2312 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
2313 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
2314 	},
2315 	[ITEM_PHY_PORT] = {
2316 		.name = "phy_port",
2317 		.help = "match traffic from/to a specific physical port",
2318 		.priv = PRIV_ITEM(PHY_PORT,
2319 				  sizeof(struct rte_flow_item_phy_port)),
2320 		.next = NEXT(item_phy_port),
2321 		.call = parse_vc,
2322 	},
2323 	[ITEM_PHY_PORT_INDEX] = {
2324 		.name = "index",
2325 		.help = "physical port index",
2326 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
2327 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
2328 	},
2329 	[ITEM_PORT_ID] = {
2330 		.name = "port_id",
2331 		.help = "match traffic from/to a given DPDK port ID",
2332 		.priv = PRIV_ITEM(PORT_ID,
2333 				  sizeof(struct rte_flow_item_port_id)),
2334 		.next = NEXT(item_port_id),
2335 		.call = parse_vc,
2336 	},
2337 	[ITEM_PORT_ID_ID] = {
2338 		.name = "id",
2339 		.help = "DPDK port ID",
2340 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
2341 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
2342 	},
2343 	[ITEM_MARK] = {
2344 		.name = "mark",
2345 		.help = "match traffic against value set in previously matched rule",
2346 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
2347 		.next = NEXT(item_mark),
2348 		.call = parse_vc,
2349 	},
2350 	[ITEM_MARK_ID] = {
2351 		.name = "id",
2352 		.help = "Integer value to match against",
2353 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
2354 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
2355 	},
2356 	[ITEM_RAW] = {
2357 		.name = "raw",
2358 		.help = "match an arbitrary byte string",
2359 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
2360 		.next = NEXT(item_raw),
2361 		.call = parse_vc,
2362 	},
2363 	[ITEM_RAW_RELATIVE] = {
2364 		.name = "relative",
2365 		.help = "look for pattern after the previous item",
2366 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
2367 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
2368 					   relative, 1)),
2369 	},
2370 	[ITEM_RAW_SEARCH] = {
2371 		.name = "search",
2372 		.help = "search pattern from offset (see also limit)",
2373 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
2374 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
2375 					   search, 1)),
2376 	},
2377 	[ITEM_RAW_OFFSET] = {
2378 		.name = "offset",
2379 		.help = "absolute or relative offset for pattern",
2380 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
2381 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
2382 	},
2383 	[ITEM_RAW_LIMIT] = {
2384 		.name = "limit",
2385 		.help = "search area limit for start of pattern",
2386 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
2387 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
2388 	},
2389 	[ITEM_RAW_PATTERN] = {
2390 		.name = "pattern",
2391 		.help = "byte string to look for",
2392 		.next = NEXT(item_raw,
2393 			     NEXT_ENTRY(STRING),
2394 			     NEXT_ENTRY(ITEM_PARAM_IS,
2395 					ITEM_PARAM_SPEC,
2396 					ITEM_PARAM_MASK)),
2397 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
2398 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
2399 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
2400 					    ITEM_RAW_PATTERN_SIZE)),
2401 	},
2402 	[ITEM_ETH] = {
2403 		.name = "eth",
2404 		.help = "match Ethernet header",
2405 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
2406 		.next = NEXT(item_eth),
2407 		.call = parse_vc,
2408 	},
2409 	[ITEM_ETH_DST] = {
2410 		.name = "dst",
2411 		.help = "destination MAC",
2412 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2413 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
2414 	},
2415 	[ITEM_ETH_SRC] = {
2416 		.name = "src",
2417 		.help = "source MAC",
2418 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2419 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
2420 	},
2421 	[ITEM_ETH_TYPE] = {
2422 		.name = "type",
2423 		.help = "EtherType",
2424 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2425 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
2426 	},
2427 	[ITEM_ETH_HAS_VLAN] = {
2428 		.name = "has_vlan",
2429 		.help = "packet header contains VLAN",
2430 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2431 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_eth,
2432 					   has_vlan, 1)),
2433 	},
2434 	[ITEM_VLAN] = {
2435 		.name = "vlan",
2436 		.help = "match 802.1Q/ad VLAN tag",
2437 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
2438 		.next = NEXT(item_vlan),
2439 		.call = parse_vc,
2440 	},
2441 	[ITEM_VLAN_TCI] = {
2442 		.name = "tci",
2443 		.help = "tag control information",
2444 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2445 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
2446 	},
2447 	[ITEM_VLAN_PCP] = {
2448 		.name = "pcp",
2449 		.help = "priority code point",
2450 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2451 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2452 						  tci, "\xe0\x00")),
2453 	},
2454 	[ITEM_VLAN_DEI] = {
2455 		.name = "dei",
2456 		.help = "drop eligible indicator",
2457 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2458 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2459 						  tci, "\x10\x00")),
2460 	},
2461 	[ITEM_VLAN_VID] = {
2462 		.name = "vid",
2463 		.help = "VLAN identifier",
2464 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2465 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2466 						  tci, "\x0f\xff")),
2467 	},
2468 	[ITEM_VLAN_INNER_TYPE] = {
2469 		.name = "inner_type",
2470 		.help = "inner EtherType",
2471 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2472 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
2473 					     inner_type)),
2474 	},
2475 	[ITEM_VLAN_HAS_MORE_VLAN] = {
2476 		.name = "has_more_vlan",
2477 		.help = "packet header contains another VLAN",
2478 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2479 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_vlan,
2480 					   has_more_vlan, 1)),
2481 	},
2482 	[ITEM_IPV4] = {
2483 		.name = "ipv4",
2484 		.help = "match IPv4 header",
2485 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
2486 		.next = NEXT(item_ipv4),
2487 		.call = parse_vc,
2488 	},
2489 	[ITEM_IPV4_TOS] = {
2490 		.name = "tos",
2491 		.help = "type of service",
2492 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2493 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2494 					     hdr.type_of_service)),
2495 	},
2496 	[ITEM_IPV4_FRAGMENT_OFFSET] = {
2497 		.name = "fragment_offset",
2498 		.help = "fragmentation flags and fragment offset",
2499 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2500 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2501 					     hdr.fragment_offset)),
2502 	},
2503 	[ITEM_IPV4_TTL] = {
2504 		.name = "ttl",
2505 		.help = "time to live",
2506 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2507 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2508 					     hdr.time_to_live)),
2509 	},
2510 	[ITEM_IPV4_PROTO] = {
2511 		.name = "proto",
2512 		.help = "next protocol ID",
2513 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2514 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2515 					     hdr.next_proto_id)),
2516 	},
2517 	[ITEM_IPV4_SRC] = {
2518 		.name = "src",
2519 		.help = "source address",
2520 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2521 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2522 					     hdr.src_addr)),
2523 	},
2524 	[ITEM_IPV4_DST] = {
2525 		.name = "dst",
2526 		.help = "destination address",
2527 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2528 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2529 					     hdr.dst_addr)),
2530 	},
2531 	[ITEM_IPV6] = {
2532 		.name = "ipv6",
2533 		.help = "match IPv6 header",
2534 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
2535 		.next = NEXT(item_ipv6),
2536 		.call = parse_vc,
2537 	},
2538 	[ITEM_IPV6_TC] = {
2539 		.name = "tc",
2540 		.help = "traffic class",
2541 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2542 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2543 						  hdr.vtc_flow,
2544 						  "\x0f\xf0\x00\x00")),
2545 	},
2546 	[ITEM_IPV6_FLOW] = {
2547 		.name = "flow",
2548 		.help = "flow label",
2549 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2550 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2551 						  hdr.vtc_flow,
2552 						  "\x00\x0f\xff\xff")),
2553 	},
2554 	[ITEM_IPV6_PROTO] = {
2555 		.name = "proto",
2556 		.help = "protocol (next header)",
2557 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2558 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2559 					     hdr.proto)),
2560 	},
2561 	[ITEM_IPV6_HOP] = {
2562 		.name = "hop",
2563 		.help = "hop limit",
2564 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2565 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2566 					     hdr.hop_limits)),
2567 	},
2568 	[ITEM_IPV6_SRC] = {
2569 		.name = "src",
2570 		.help = "source address",
2571 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2572 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2573 					     hdr.src_addr)),
2574 	},
2575 	[ITEM_IPV6_DST] = {
2576 		.name = "dst",
2577 		.help = "destination address",
2578 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2579 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2580 					     hdr.dst_addr)),
2581 	},
2582 	[ITEM_IPV6_HAS_FRAG_EXT] = {
2583 		.name = "has_frag_ext",
2584 		.help = "fragment packet attribute",
2585 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2586 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_ipv6,
2587 					   has_frag_ext, 1)),
2588 	},
2589 	[ITEM_ICMP] = {
2590 		.name = "icmp",
2591 		.help = "match ICMP header",
2592 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
2593 		.next = NEXT(item_icmp),
2594 		.call = parse_vc,
2595 	},
2596 	[ITEM_ICMP_TYPE] = {
2597 		.name = "type",
2598 		.help = "ICMP packet type",
2599 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2600 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2601 					     hdr.icmp_type)),
2602 	},
2603 	[ITEM_ICMP_CODE] = {
2604 		.name = "code",
2605 		.help = "ICMP packet code",
2606 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2607 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2608 					     hdr.icmp_code)),
2609 	},
2610 	[ITEM_ICMP_IDENT] = {
2611 		.name = "ident",
2612 		.help = "ICMP packet identifier",
2613 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2614 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2615 					     hdr.icmp_ident)),
2616 	},
2617 	[ITEM_ICMP_SEQ] = {
2618 		.name = "seq",
2619 		.help = "ICMP packet sequence number",
2620 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2621 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2622 					     hdr.icmp_seq_nb)),
2623 	},
2624 	[ITEM_UDP] = {
2625 		.name = "udp",
2626 		.help = "match UDP header",
2627 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
2628 		.next = NEXT(item_udp),
2629 		.call = parse_vc,
2630 	},
2631 	[ITEM_UDP_SRC] = {
2632 		.name = "src",
2633 		.help = "UDP source port",
2634 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2635 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2636 					     hdr.src_port)),
2637 	},
2638 	[ITEM_UDP_DST] = {
2639 		.name = "dst",
2640 		.help = "UDP destination port",
2641 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2642 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2643 					     hdr.dst_port)),
2644 	},
2645 	[ITEM_TCP] = {
2646 		.name = "tcp",
2647 		.help = "match TCP header",
2648 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
2649 		.next = NEXT(item_tcp),
2650 		.call = parse_vc,
2651 	},
2652 	[ITEM_TCP_SRC] = {
2653 		.name = "src",
2654 		.help = "TCP source port",
2655 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2656 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2657 					     hdr.src_port)),
2658 	},
2659 	[ITEM_TCP_DST] = {
2660 		.name = "dst",
2661 		.help = "TCP destination port",
2662 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2663 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2664 					     hdr.dst_port)),
2665 	},
2666 	[ITEM_TCP_FLAGS] = {
2667 		.name = "flags",
2668 		.help = "TCP flags",
2669 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2670 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2671 					     hdr.tcp_flags)),
2672 	},
2673 	[ITEM_SCTP] = {
2674 		.name = "sctp",
2675 		.help = "match SCTP header",
2676 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
2677 		.next = NEXT(item_sctp),
2678 		.call = parse_vc,
2679 	},
2680 	[ITEM_SCTP_SRC] = {
2681 		.name = "src",
2682 		.help = "SCTP source port",
2683 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2684 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2685 					     hdr.src_port)),
2686 	},
2687 	[ITEM_SCTP_DST] = {
2688 		.name = "dst",
2689 		.help = "SCTP destination port",
2690 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2691 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2692 					     hdr.dst_port)),
2693 	},
2694 	[ITEM_SCTP_TAG] = {
2695 		.name = "tag",
2696 		.help = "validation tag",
2697 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2698 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2699 					     hdr.tag)),
2700 	},
2701 	[ITEM_SCTP_CKSUM] = {
2702 		.name = "cksum",
2703 		.help = "checksum",
2704 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2705 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2706 					     hdr.cksum)),
2707 	},
2708 	[ITEM_VXLAN] = {
2709 		.name = "vxlan",
2710 		.help = "match VXLAN header",
2711 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
2712 		.next = NEXT(item_vxlan),
2713 		.call = parse_vc,
2714 	},
2715 	[ITEM_VXLAN_VNI] = {
2716 		.name = "vni",
2717 		.help = "VXLAN identifier",
2718 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
2719 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
2720 	},
2721 	[ITEM_E_TAG] = {
2722 		.name = "e_tag",
2723 		.help = "match E-Tag header",
2724 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2725 		.next = NEXT(item_e_tag),
2726 		.call = parse_vc,
2727 	},
2728 	[ITEM_E_TAG_GRP_ECID_B] = {
2729 		.name = "grp_ecid_b",
2730 		.help = "GRP and E-CID base",
2731 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2732 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2733 						  rsvd_grp_ecid_b,
2734 						  "\x3f\xff")),
2735 	},
2736 	[ITEM_NVGRE] = {
2737 		.name = "nvgre",
2738 		.help = "match NVGRE header",
2739 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2740 		.next = NEXT(item_nvgre),
2741 		.call = parse_vc,
2742 	},
2743 	[ITEM_NVGRE_TNI] = {
2744 		.name = "tni",
2745 		.help = "virtual subnet ID",
2746 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2747 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2748 	},
2749 	[ITEM_MPLS] = {
2750 		.name = "mpls",
2751 		.help = "match MPLS header",
2752 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2753 		.next = NEXT(item_mpls),
2754 		.call = parse_vc,
2755 	},
2756 	[ITEM_MPLS_LABEL] = {
2757 		.name = "label",
2758 		.help = "MPLS label",
2759 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2760 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2761 						  label_tc_s,
2762 						  "\xff\xff\xf0")),
2763 	},
2764 	[ITEM_MPLS_TC] = {
2765 		.name = "tc",
2766 		.help = "MPLS Traffic Class",
2767 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2768 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2769 						  label_tc_s,
2770 						  "\x00\x00\x0e")),
2771 	},
2772 	[ITEM_MPLS_S] = {
2773 		.name = "s",
2774 		.help = "MPLS Bottom-of-Stack",
2775 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2776 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2777 						  label_tc_s,
2778 						  "\x00\x00\x01")),
2779 	},
2780 	[ITEM_GRE] = {
2781 		.name = "gre",
2782 		.help = "match GRE header",
2783 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2784 		.next = NEXT(item_gre),
2785 		.call = parse_vc,
2786 	},
2787 	[ITEM_GRE_PROTO] = {
2788 		.name = "protocol",
2789 		.help = "GRE protocol type",
2790 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2791 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2792 					     protocol)),
2793 	},
2794 	[ITEM_GRE_C_RSVD0_VER] = {
2795 		.name = "c_rsvd0_ver",
2796 		.help =
2797 			"checksum (1b), undefined (1b), key bit (1b),"
2798 			" sequence number (1b), reserved 0 (9b),"
2799 			" version (3b)",
2800 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2801 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2802 					     c_rsvd0_ver)),
2803 	},
2804 	[ITEM_GRE_C_BIT] = {
2805 		.name = "c_bit",
2806 		.help = "checksum bit (C)",
2807 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2808 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2809 						  c_rsvd0_ver,
2810 						  "\x80\x00\x00\x00")),
2811 	},
2812 	[ITEM_GRE_S_BIT] = {
2813 		.name = "s_bit",
2814 		.help = "sequence number bit (S)",
2815 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2816 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2817 						  c_rsvd0_ver,
2818 						  "\x10\x00\x00\x00")),
2819 	},
2820 	[ITEM_GRE_K_BIT] = {
2821 		.name = "k_bit",
2822 		.help = "key bit (K)",
2823 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2824 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2825 						  c_rsvd0_ver,
2826 						  "\x20\x00\x00\x00")),
2827 	},
2828 	[ITEM_FUZZY] = {
2829 		.name = "fuzzy",
2830 		.help = "fuzzy pattern match, expect faster than default",
2831 		.priv = PRIV_ITEM(FUZZY,
2832 				sizeof(struct rte_flow_item_fuzzy)),
2833 		.next = NEXT(item_fuzzy),
2834 		.call = parse_vc,
2835 	},
2836 	[ITEM_FUZZY_THRESH] = {
2837 		.name = "thresh",
2838 		.help = "match accuracy threshold",
2839 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2840 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2841 					thresh)),
2842 	},
2843 	[ITEM_GTP] = {
2844 		.name = "gtp",
2845 		.help = "match GTP header",
2846 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2847 		.next = NEXT(item_gtp),
2848 		.call = parse_vc,
2849 	},
2850 	[ITEM_GTP_FLAGS] = {
2851 		.name = "v_pt_rsv_flags",
2852 		.help = "GTP flags",
2853 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2854 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp,
2855 					v_pt_rsv_flags)),
2856 	},
2857 	[ITEM_GTP_MSG_TYPE] = {
2858 		.name = "msg_type",
2859 		.help = "GTP message type",
2860 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2861 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp, msg_type)),
2862 	},
2863 	[ITEM_GTP_TEID] = {
2864 		.name = "teid",
2865 		.help = "tunnel endpoint identifier",
2866 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2867 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2868 	},
2869 	[ITEM_GTPC] = {
2870 		.name = "gtpc",
2871 		.help = "match GTP header",
2872 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2873 		.next = NEXT(item_gtp),
2874 		.call = parse_vc,
2875 	},
2876 	[ITEM_GTPU] = {
2877 		.name = "gtpu",
2878 		.help = "match GTP header",
2879 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2880 		.next = NEXT(item_gtp),
2881 		.call = parse_vc,
2882 	},
2883 	[ITEM_GENEVE] = {
2884 		.name = "geneve",
2885 		.help = "match GENEVE header",
2886 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2887 		.next = NEXT(item_geneve),
2888 		.call = parse_vc,
2889 	},
2890 	[ITEM_GENEVE_VNI] = {
2891 		.name = "vni",
2892 		.help = "virtual network identifier",
2893 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2894 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2895 	},
2896 	[ITEM_GENEVE_PROTO] = {
2897 		.name = "protocol",
2898 		.help = "GENEVE protocol type",
2899 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2900 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2901 					     protocol)),
2902 	},
2903 	[ITEM_GENEVE_OPTLEN] = {
2904 		.name = "optlen",
2905 		.help = "GENEVE options length in dwords",
2906 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2907 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_geneve,
2908 						  ver_opt_len_o_c_rsvd0,
2909 						  "\x3f\x00")),
2910 	},
2911 	[ITEM_VXLAN_GPE] = {
2912 		.name = "vxlan-gpe",
2913 		.help = "match VXLAN-GPE header",
2914 		.priv = PRIV_ITEM(VXLAN_GPE,
2915 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2916 		.next = NEXT(item_vxlan_gpe),
2917 		.call = parse_vc,
2918 	},
2919 	[ITEM_VXLAN_GPE_VNI] = {
2920 		.name = "vni",
2921 		.help = "VXLAN-GPE identifier",
2922 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2923 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2924 					     vni)),
2925 	},
2926 	[ITEM_ARP_ETH_IPV4] = {
2927 		.name = "arp_eth_ipv4",
2928 		.help = "match ARP header for Ethernet/IPv4",
2929 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2930 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2931 		.next = NEXT(item_arp_eth_ipv4),
2932 		.call = parse_vc,
2933 	},
2934 	[ITEM_ARP_ETH_IPV4_SHA] = {
2935 		.name = "sha",
2936 		.help = "sender hardware address",
2937 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2938 			     item_param),
2939 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2940 					     sha)),
2941 	},
2942 	[ITEM_ARP_ETH_IPV4_SPA] = {
2943 		.name = "spa",
2944 		.help = "sender IPv4 address",
2945 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2946 			     item_param),
2947 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2948 					     spa)),
2949 	},
2950 	[ITEM_ARP_ETH_IPV4_THA] = {
2951 		.name = "tha",
2952 		.help = "target hardware address",
2953 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2954 			     item_param),
2955 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2956 					     tha)),
2957 	},
2958 	[ITEM_ARP_ETH_IPV4_TPA] = {
2959 		.name = "tpa",
2960 		.help = "target IPv4 address",
2961 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2962 			     item_param),
2963 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2964 					     tpa)),
2965 	},
2966 	[ITEM_IPV6_EXT] = {
2967 		.name = "ipv6_ext",
2968 		.help = "match presence of any IPv6 extension header",
2969 		.priv = PRIV_ITEM(IPV6_EXT,
2970 				  sizeof(struct rte_flow_item_ipv6_ext)),
2971 		.next = NEXT(item_ipv6_ext),
2972 		.call = parse_vc,
2973 	},
2974 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2975 		.name = "next_hdr",
2976 		.help = "next header",
2977 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2978 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2979 					     next_hdr)),
2980 	},
2981 	[ITEM_IPV6_FRAG_EXT] = {
2982 		.name = "ipv6_frag_ext",
2983 		.help = "match presence of IPv6 fragment extension header",
2984 		.priv = PRIV_ITEM(IPV6_FRAG_EXT,
2985 				sizeof(struct rte_flow_item_ipv6_frag_ext)),
2986 		.next = NEXT(item_ipv6_frag_ext),
2987 		.call = parse_vc,
2988 	},
2989 	[ITEM_IPV6_FRAG_EXT_NEXT_HDR] = {
2990 		.name = "next_hdr",
2991 		.help = "next header",
2992 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
2993 			     item_param),
2994 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_ipv6_frag_ext,
2995 					hdr.next_header)),
2996 	},
2997 	[ITEM_IPV6_FRAG_EXT_FRAG_DATA] = {
2998 		.name = "frag_data",
2999 		.help = "Fragment flags and offset",
3000 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
3001 			     item_param),
3002 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_frag_ext,
3003 					     hdr.frag_data)),
3004 	},
3005 	[ITEM_ICMP6] = {
3006 		.name = "icmp6",
3007 		.help = "match any ICMPv6 header",
3008 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
3009 		.next = NEXT(item_icmp6),
3010 		.call = parse_vc,
3011 	},
3012 	[ITEM_ICMP6_TYPE] = {
3013 		.name = "type",
3014 		.help = "ICMPv6 type",
3015 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
3016 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
3017 					     type)),
3018 	},
3019 	[ITEM_ICMP6_CODE] = {
3020 		.name = "code",
3021 		.help = "ICMPv6 code",
3022 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
3023 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
3024 					     code)),
3025 	},
3026 	[ITEM_ICMP6_ND_NS] = {
3027 		.name = "icmp6_nd_ns",
3028 		.help = "match ICMPv6 neighbor discovery solicitation",
3029 		.priv = PRIV_ITEM(ICMP6_ND_NS,
3030 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
3031 		.next = NEXT(item_icmp6_nd_ns),
3032 		.call = parse_vc,
3033 	},
3034 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
3035 		.name = "target_addr",
3036 		.help = "target address",
3037 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
3038 			     item_param),
3039 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
3040 					     target_addr)),
3041 	},
3042 	[ITEM_ICMP6_ND_NA] = {
3043 		.name = "icmp6_nd_na",
3044 		.help = "match ICMPv6 neighbor discovery advertisement",
3045 		.priv = PRIV_ITEM(ICMP6_ND_NA,
3046 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
3047 		.next = NEXT(item_icmp6_nd_na),
3048 		.call = parse_vc,
3049 	},
3050 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
3051 		.name = "target_addr",
3052 		.help = "target address",
3053 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
3054 			     item_param),
3055 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
3056 					     target_addr)),
3057 	},
3058 	[ITEM_ICMP6_ND_OPT] = {
3059 		.name = "icmp6_nd_opt",
3060 		.help = "match presence of any ICMPv6 neighbor discovery"
3061 			" option",
3062 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
3063 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
3064 		.next = NEXT(item_icmp6_nd_opt),
3065 		.call = parse_vc,
3066 	},
3067 	[ITEM_ICMP6_ND_OPT_TYPE] = {
3068 		.name = "type",
3069 		.help = "ND option type",
3070 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
3071 			     item_param),
3072 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
3073 					     type)),
3074 	},
3075 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
3076 		.name = "icmp6_nd_opt_sla_eth",
3077 		.help = "match ICMPv6 neighbor discovery source Ethernet"
3078 			" link-layer address option",
3079 		.priv = PRIV_ITEM
3080 			(ICMP6_ND_OPT_SLA_ETH,
3081 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
3082 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
3083 		.call = parse_vc,
3084 	},
3085 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
3086 		.name = "sla",
3087 		.help = "source Ethernet LLA",
3088 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
3089 			     item_param),
3090 		.args = ARGS(ARGS_ENTRY_HTON
3091 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
3092 	},
3093 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
3094 		.name = "icmp6_nd_opt_tla_eth",
3095 		.help = "match ICMPv6 neighbor discovery target Ethernet"
3096 			" link-layer address option",
3097 		.priv = PRIV_ITEM
3098 			(ICMP6_ND_OPT_TLA_ETH,
3099 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
3100 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
3101 		.call = parse_vc,
3102 	},
3103 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
3104 		.name = "tla",
3105 		.help = "target Ethernet LLA",
3106 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
3107 			     item_param),
3108 		.args = ARGS(ARGS_ENTRY_HTON
3109 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
3110 	},
3111 	[ITEM_META] = {
3112 		.name = "meta",
3113 		.help = "match metadata header",
3114 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
3115 		.next = NEXT(item_meta),
3116 		.call = parse_vc,
3117 	},
3118 	[ITEM_META_DATA] = {
3119 		.name = "data",
3120 		.help = "metadata value",
3121 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
3122 		.args = ARGS(ARGS_ENTRY_MASK(struct rte_flow_item_meta,
3123 					     data, "\xff\xff\xff\xff")),
3124 	},
3125 	[ITEM_GRE_KEY] = {
3126 		.name = "gre_key",
3127 		.help = "match GRE key",
3128 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
3129 		.next = NEXT(item_gre_key),
3130 		.call = parse_vc,
3131 	},
3132 	[ITEM_GRE_KEY_VALUE] = {
3133 		.name = "value",
3134 		.help = "key value",
3135 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
3136 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3137 	},
3138 	[ITEM_GTP_PSC] = {
3139 		.name = "gtp_psc",
3140 		.help = "match GTP extension header with type 0x85",
3141 		.priv = PRIV_ITEM(GTP_PSC,
3142 				sizeof(struct rte_flow_item_gtp_psc)),
3143 		.next = NEXT(item_gtp_psc),
3144 		.call = parse_vc,
3145 	},
3146 	[ITEM_GTP_PSC_QFI] = {
3147 		.name = "qfi",
3148 		.help = "QoS flow identifier",
3149 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
3150 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
3151 					qfi)),
3152 	},
3153 	[ITEM_GTP_PSC_PDU_T] = {
3154 		.name = "pdu_t",
3155 		.help = "PDU type",
3156 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
3157 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
3158 					pdu_type)),
3159 	},
3160 	[ITEM_PPPOES] = {
3161 		.name = "pppoes",
3162 		.help = "match PPPoE session header",
3163 		.priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
3164 		.next = NEXT(item_pppoes),
3165 		.call = parse_vc,
3166 	},
3167 	[ITEM_PPPOED] = {
3168 		.name = "pppoed",
3169 		.help = "match PPPoE discovery header",
3170 		.priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
3171 		.next = NEXT(item_pppoed),
3172 		.call = parse_vc,
3173 	},
3174 	[ITEM_PPPOE_SEID] = {
3175 		.name = "seid",
3176 		.help = "session identifier",
3177 		.next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
3178 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
3179 					session_id)),
3180 	},
3181 	[ITEM_PPPOE_PROTO_ID] = {
3182 		.name = "pppoe_proto_id",
3183 		.help = "match PPPoE session protocol identifier",
3184 		.priv = PRIV_ITEM(PPPOE_PROTO_ID,
3185 				sizeof(struct rte_flow_item_pppoe_proto_id)),
3186 		.next = NEXT(item_pppoe_proto_id, NEXT_ENTRY(UNSIGNED),
3187 			     item_param),
3188 		.args = ARGS(ARGS_ENTRY_HTON
3189 			     (struct rte_flow_item_pppoe_proto_id, proto_id)),
3190 		.call = parse_vc,
3191 	},
3192 	[ITEM_HIGIG2] = {
3193 		.name = "higig2",
3194 		.help = "matches higig2 header",
3195 		.priv = PRIV_ITEM(HIGIG2,
3196 				sizeof(struct rte_flow_item_higig2_hdr)),
3197 		.next = NEXT(item_higig2),
3198 		.call = parse_vc,
3199 	},
3200 	[ITEM_HIGIG2_CLASSIFICATION] = {
3201 		.name = "classification",
3202 		.help = "matches classification of higig2 header",
3203 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
3204 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
3205 					hdr.ppt1.classification)),
3206 	},
3207 	[ITEM_HIGIG2_VID] = {
3208 		.name = "vid",
3209 		.help = "matches vid of higig2 header",
3210 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
3211 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
3212 					hdr.ppt1.vid)),
3213 	},
3214 	[ITEM_TAG] = {
3215 		.name = "tag",
3216 		.help = "match tag value",
3217 		.priv = PRIV_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
3218 		.next = NEXT(item_tag),
3219 		.call = parse_vc,
3220 	},
3221 	[ITEM_TAG_DATA] = {
3222 		.name = "data",
3223 		.help = "tag value to match",
3224 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED), item_param),
3225 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, data)),
3226 	},
3227 	[ITEM_TAG_INDEX] = {
3228 		.name = "index",
3229 		.help = "index of tag array to match",
3230 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED),
3231 			     NEXT_ENTRY(ITEM_PARAM_IS)),
3232 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, index)),
3233 	},
3234 	[ITEM_L2TPV3OIP] = {
3235 		.name = "l2tpv3oip",
3236 		.help = "match L2TPv3 over IP header",
3237 		.priv = PRIV_ITEM(L2TPV3OIP,
3238 				  sizeof(struct rte_flow_item_l2tpv3oip)),
3239 		.next = NEXT(item_l2tpv3oip),
3240 		.call = parse_vc,
3241 	},
3242 	[ITEM_L2TPV3OIP_SESSION_ID] = {
3243 		.name = "session_id",
3244 		.help = "session identifier",
3245 		.next = NEXT(item_l2tpv3oip, NEXT_ENTRY(UNSIGNED), item_param),
3246 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_l2tpv3oip,
3247 					     session_id)),
3248 	},
3249 	[ITEM_ESP] = {
3250 		.name = "esp",
3251 		.help = "match ESP header",
3252 		.priv = PRIV_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
3253 		.next = NEXT(item_esp),
3254 		.call = parse_vc,
3255 	},
3256 	[ITEM_ESP_SPI] = {
3257 		.name = "spi",
3258 		.help = "security policy index",
3259 		.next = NEXT(item_esp, NEXT_ENTRY(UNSIGNED), item_param),
3260 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_esp,
3261 				hdr.spi)),
3262 	},
3263 	[ITEM_AH] = {
3264 		.name = "ah",
3265 		.help = "match AH header",
3266 		.priv = PRIV_ITEM(AH, sizeof(struct rte_flow_item_ah)),
3267 		.next = NEXT(item_ah),
3268 		.call = parse_vc,
3269 	},
3270 	[ITEM_AH_SPI] = {
3271 		.name = "spi",
3272 		.help = "security parameters index",
3273 		.next = NEXT(item_ah, NEXT_ENTRY(UNSIGNED), item_param),
3274 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ah, spi)),
3275 	},
3276 	[ITEM_PFCP] = {
3277 		.name = "pfcp",
3278 		.help = "match pfcp header",
3279 		.priv = PRIV_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
3280 		.next = NEXT(item_pfcp),
3281 		.call = parse_vc,
3282 	},
3283 	[ITEM_PFCP_S_FIELD] = {
3284 		.name = "s_field",
3285 		.help = "S field",
3286 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
3287 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp,
3288 				s_field)),
3289 	},
3290 	[ITEM_PFCP_SEID] = {
3291 		.name = "seid",
3292 		.help = "session endpoint identifier",
3293 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
3294 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp, seid)),
3295 	},
3296 	[ITEM_ECPRI] = {
3297 		.name = "ecpri",
3298 		.help = "match eCPRI header",
3299 		.priv = PRIV_ITEM(ECPRI, sizeof(struct rte_flow_item_ecpri)),
3300 		.next = NEXT(item_ecpri),
3301 		.call = parse_vc,
3302 	},
3303 	[ITEM_ECPRI_COMMON] = {
3304 		.name = "common",
3305 		.help = "eCPRI common header",
3306 		.next = NEXT(item_ecpri_common),
3307 	},
3308 	[ITEM_ECPRI_COMMON_TYPE] = {
3309 		.name = "type",
3310 		.help = "type of common header",
3311 		.next = NEXT(item_ecpri_common_type),
3312 		.args = ARGS(ARG_ENTRY_HTON(struct rte_flow_item_ecpri)),
3313 	},
3314 	[ITEM_ECPRI_COMMON_TYPE_IQ_DATA] = {
3315 		.name = "iq_data",
3316 		.help = "Type #0: IQ Data",
3317 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
3318 					ITEM_NEXT)),
3319 		.call = parse_vc_item_ecpri_type,
3320 	},
3321 	[ITEM_ECPRI_MSG_IQ_DATA_PCID] = {
3322 		.name = "pc_id",
3323 		.help = "Physical Channel ID",
3324 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
3325 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3326 				NEXT_ENTRY(UNSIGNED), item_param),
3327 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3328 				hdr.type0.pc_id)),
3329 	},
3330 	[ITEM_ECPRI_COMMON_TYPE_RTC_CTRL] = {
3331 		.name = "rtc_ctrl",
3332 		.help = "Type #2: Real-Time Control Data",
3333 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
3334 					ITEM_NEXT)),
3335 		.call = parse_vc_item_ecpri_type,
3336 	},
3337 	[ITEM_ECPRI_MSG_RTC_CTRL_RTCID] = {
3338 		.name = "rtc_id",
3339 		.help = "Real-Time Control Data ID",
3340 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
3341 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3342 				NEXT_ENTRY(UNSIGNED), item_param),
3343 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3344 				hdr.type2.rtc_id)),
3345 	},
3346 	[ITEM_ECPRI_COMMON_TYPE_DLY_MSR] = {
3347 		.name = "delay_measure",
3348 		.help = "Type #5: One-Way Delay Measurement",
3349 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
3350 					ITEM_NEXT)),
3351 		.call = parse_vc_item_ecpri_type,
3352 	},
3353 	[ITEM_ECPRI_MSG_DLY_MSR_MSRID] = {
3354 		.name = "msr_id",
3355 		.help = "Measurement ID",
3356 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
3357 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3358 				NEXT_ENTRY(UNSIGNED), item_param),
3359 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3360 				hdr.type5.msr_id)),
3361 	},
3362 	[ITEM_GENEVE_OPT] = {
3363 		.name = "geneve-opt",
3364 		.help = "GENEVE header option",
3365 		.priv = PRIV_ITEM(GENEVE_OPT,
3366 				  sizeof(struct rte_flow_item_geneve_opt) +
3367 				  ITEM_GENEVE_OPT_DATA_SIZE),
3368 		.next = NEXT(item_geneve_opt),
3369 		.call = parse_vc,
3370 	},
3371 	[ITEM_GENEVE_OPT_CLASS]	= {
3372 		.name = "class",
3373 		.help = "GENEVE option class",
3374 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3375 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve_opt,
3376 					     option_class)),
3377 	},
3378 	[ITEM_GENEVE_OPT_TYPE] = {
3379 		.name = "type",
3380 		.help = "GENEVE option type",
3381 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3382 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_geneve_opt,
3383 					option_type)),
3384 	},
3385 	[ITEM_GENEVE_OPT_LENGTH] = {
3386 		.name = "length",
3387 		.help = "GENEVE option data length (in 32b words)",
3388 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3389 		.args = ARGS(ARGS_ENTRY_BOUNDED(
3390 				struct rte_flow_item_geneve_opt, option_len,
3391 				0, 31)),
3392 	},
3393 	[ITEM_GENEVE_OPT_DATA] = {
3394 		.name = "data",
3395 		.help = "GENEVE option data pattern",
3396 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(HEX), item_param),
3397 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_geneve_opt, data),
3398 			     ARGS_ENTRY_ARB(0, 0),
3399 			     ARGS_ENTRY_ARB
3400 				(sizeof(struct rte_flow_item_geneve_opt),
3401 				ITEM_GENEVE_OPT_DATA_SIZE)),
3402 	},
3403 	/* Validate/create actions. */
3404 	[ACTIONS] = {
3405 		.name = "actions",
3406 		.help = "submit a list of associated actions",
3407 		.next = NEXT(next_action),
3408 		.call = parse_vc,
3409 	},
3410 	[ACTION_NEXT] = {
3411 		.name = "/",
3412 		.help = "specify next action",
3413 		.next = NEXT(next_action),
3414 	},
3415 	[ACTION_END] = {
3416 		.name = "end",
3417 		.help = "end list of actions",
3418 		.priv = PRIV_ACTION(END, 0),
3419 		.call = parse_vc,
3420 	},
3421 	[ACTION_VOID] = {
3422 		.name = "void",
3423 		.help = "no-op action",
3424 		.priv = PRIV_ACTION(VOID, 0),
3425 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3426 		.call = parse_vc,
3427 	},
3428 	[ACTION_PASSTHRU] = {
3429 		.name = "passthru",
3430 		.help = "let subsequent rule process matched packets",
3431 		.priv = PRIV_ACTION(PASSTHRU, 0),
3432 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3433 		.call = parse_vc,
3434 	},
3435 	[ACTION_JUMP] = {
3436 		.name = "jump",
3437 		.help = "redirect traffic to a given group",
3438 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
3439 		.next = NEXT(action_jump),
3440 		.call = parse_vc,
3441 	},
3442 	[ACTION_JUMP_GROUP] = {
3443 		.name = "group",
3444 		.help = "group to redirect traffic to",
3445 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
3446 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
3447 		.call = parse_vc_conf,
3448 	},
3449 	[ACTION_MARK] = {
3450 		.name = "mark",
3451 		.help = "attach 32 bit value to packets",
3452 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
3453 		.next = NEXT(action_mark),
3454 		.call = parse_vc,
3455 	},
3456 	[ACTION_MARK_ID] = {
3457 		.name = "id",
3458 		.help = "32 bit value to return with packets",
3459 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
3460 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
3461 		.call = parse_vc_conf,
3462 	},
3463 	[ACTION_FLAG] = {
3464 		.name = "flag",
3465 		.help = "flag packets",
3466 		.priv = PRIV_ACTION(FLAG, 0),
3467 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3468 		.call = parse_vc,
3469 	},
3470 	[ACTION_QUEUE] = {
3471 		.name = "queue",
3472 		.help = "assign packets to a given queue index",
3473 		.priv = PRIV_ACTION(QUEUE,
3474 				    sizeof(struct rte_flow_action_queue)),
3475 		.next = NEXT(action_queue),
3476 		.call = parse_vc,
3477 	},
3478 	[ACTION_QUEUE_INDEX] = {
3479 		.name = "index",
3480 		.help = "queue index to use",
3481 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
3482 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
3483 		.call = parse_vc_conf,
3484 	},
3485 	[ACTION_DROP] = {
3486 		.name = "drop",
3487 		.help = "drop packets (note: passthru has priority)",
3488 		.priv = PRIV_ACTION(DROP, 0),
3489 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3490 		.call = parse_vc,
3491 	},
3492 	[ACTION_COUNT] = {
3493 		.name = "count",
3494 		.help = "enable counters for this rule",
3495 		.priv = PRIV_ACTION(COUNT,
3496 				    sizeof(struct rte_flow_action_count)),
3497 		.next = NEXT(action_count),
3498 		.call = parse_vc,
3499 	},
3500 	[ACTION_COUNT_ID] = {
3501 		.name = "identifier",
3502 		.help = "counter identifier to use",
3503 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
3504 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
3505 		.call = parse_vc_conf,
3506 	},
3507 	[ACTION_COUNT_SHARED] = {
3508 		.name = "shared",
3509 		.help = "shared counter",
3510 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
3511 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
3512 					   shared, 1)),
3513 		.call = parse_vc_conf,
3514 	},
3515 	[ACTION_RSS] = {
3516 		.name = "rss",
3517 		.help = "spread packets among several queues",
3518 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
3519 		.next = NEXT(action_rss),
3520 		.call = parse_vc_action_rss,
3521 	},
3522 	[ACTION_RSS_FUNC] = {
3523 		.name = "func",
3524 		.help = "RSS hash function to apply",
3525 		.next = NEXT(action_rss,
3526 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
3527 					ACTION_RSS_FUNC_TOEPLITZ,
3528 					ACTION_RSS_FUNC_SIMPLE_XOR,
3529 					ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
3530 	},
3531 	[ACTION_RSS_FUNC_DEFAULT] = {
3532 		.name = "default",
3533 		.help = "default hash function",
3534 		.call = parse_vc_action_rss_func,
3535 	},
3536 	[ACTION_RSS_FUNC_TOEPLITZ] = {
3537 		.name = "toeplitz",
3538 		.help = "Toeplitz hash function",
3539 		.call = parse_vc_action_rss_func,
3540 	},
3541 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
3542 		.name = "simple_xor",
3543 		.help = "simple XOR hash function",
3544 		.call = parse_vc_action_rss_func,
3545 	},
3546 	[ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
3547 		.name = "symmetric_toeplitz",
3548 		.help = "Symmetric Toeplitz hash function",
3549 		.call = parse_vc_action_rss_func,
3550 	},
3551 	[ACTION_RSS_LEVEL] = {
3552 		.name = "level",
3553 		.help = "encapsulation level for \"types\"",
3554 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3555 		.args = ARGS(ARGS_ENTRY_ARB
3556 			     (offsetof(struct action_rss_data, conf) +
3557 			      offsetof(struct rte_flow_action_rss, level),
3558 			      sizeof(((struct rte_flow_action_rss *)0)->
3559 				     level))),
3560 	},
3561 	[ACTION_RSS_TYPES] = {
3562 		.name = "types",
3563 		.help = "specific RSS hash types",
3564 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
3565 	},
3566 	[ACTION_RSS_TYPE] = {
3567 		.name = "{type}",
3568 		.help = "RSS hash type",
3569 		.call = parse_vc_action_rss_type,
3570 		.comp = comp_vc_action_rss_type,
3571 	},
3572 	[ACTION_RSS_KEY] = {
3573 		.name = "key",
3574 		.help = "RSS hash key",
3575 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
3576 		.args = ARGS(ARGS_ENTRY_ARB
3577 			     (offsetof(struct action_rss_data, conf) +
3578 			      offsetof(struct rte_flow_action_rss, key),
3579 			      sizeof(((struct rte_flow_action_rss *)0)->key)),
3580 			     ARGS_ENTRY_ARB
3581 			     (offsetof(struct action_rss_data, conf) +
3582 			      offsetof(struct rte_flow_action_rss, key_len),
3583 			      sizeof(((struct rte_flow_action_rss *)0)->
3584 				     key_len)),
3585 			     ARGS_ENTRY(struct action_rss_data, key)),
3586 	},
3587 	[ACTION_RSS_KEY_LEN] = {
3588 		.name = "key_len",
3589 		.help = "RSS hash key length in bytes",
3590 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3591 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3592 			     (offsetof(struct action_rss_data, conf) +
3593 			      offsetof(struct rte_flow_action_rss, key_len),
3594 			      sizeof(((struct rte_flow_action_rss *)0)->
3595 				     key_len),
3596 			      0,
3597 			      RSS_HASH_KEY_LENGTH)),
3598 	},
3599 	[ACTION_RSS_QUEUES] = {
3600 		.name = "queues",
3601 		.help = "queue indices to use",
3602 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
3603 		.call = parse_vc_conf,
3604 	},
3605 	[ACTION_RSS_QUEUE] = {
3606 		.name = "{queue}",
3607 		.help = "queue index",
3608 		.call = parse_vc_action_rss_queue,
3609 		.comp = comp_vc_action_rss_queue,
3610 	},
3611 	[ACTION_PF] = {
3612 		.name = "pf",
3613 		.help = "direct traffic to physical function",
3614 		.priv = PRIV_ACTION(PF, 0),
3615 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3616 		.call = parse_vc,
3617 	},
3618 	[ACTION_VF] = {
3619 		.name = "vf",
3620 		.help = "direct traffic to a virtual function ID",
3621 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
3622 		.next = NEXT(action_vf),
3623 		.call = parse_vc,
3624 	},
3625 	[ACTION_VF_ORIGINAL] = {
3626 		.name = "original",
3627 		.help = "use original VF ID if possible",
3628 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
3629 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
3630 					   original, 1)),
3631 		.call = parse_vc_conf,
3632 	},
3633 	[ACTION_VF_ID] = {
3634 		.name = "id",
3635 		.help = "VF ID",
3636 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
3637 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
3638 		.call = parse_vc_conf,
3639 	},
3640 	[ACTION_PHY_PORT] = {
3641 		.name = "phy_port",
3642 		.help = "direct packets to physical port index",
3643 		.priv = PRIV_ACTION(PHY_PORT,
3644 				    sizeof(struct rte_flow_action_phy_port)),
3645 		.next = NEXT(action_phy_port),
3646 		.call = parse_vc,
3647 	},
3648 	[ACTION_PHY_PORT_ORIGINAL] = {
3649 		.name = "original",
3650 		.help = "use original port index if possible",
3651 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
3652 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
3653 					   original, 1)),
3654 		.call = parse_vc_conf,
3655 	},
3656 	[ACTION_PHY_PORT_INDEX] = {
3657 		.name = "index",
3658 		.help = "physical port index",
3659 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
3660 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
3661 					index)),
3662 		.call = parse_vc_conf,
3663 	},
3664 	[ACTION_PORT_ID] = {
3665 		.name = "port_id",
3666 		.help = "direct matching traffic to a given DPDK port ID",
3667 		.priv = PRIV_ACTION(PORT_ID,
3668 				    sizeof(struct rte_flow_action_port_id)),
3669 		.next = NEXT(action_port_id),
3670 		.call = parse_vc,
3671 	},
3672 	[ACTION_PORT_ID_ORIGINAL] = {
3673 		.name = "original",
3674 		.help = "use original DPDK port ID if possible",
3675 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
3676 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
3677 					   original, 1)),
3678 		.call = parse_vc_conf,
3679 	},
3680 	[ACTION_PORT_ID_ID] = {
3681 		.name = "id",
3682 		.help = "DPDK port ID",
3683 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
3684 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
3685 		.call = parse_vc_conf,
3686 	},
3687 	[ACTION_METER] = {
3688 		.name = "meter",
3689 		.help = "meter the directed packets at given id",
3690 		.priv = PRIV_ACTION(METER,
3691 				    sizeof(struct rte_flow_action_meter)),
3692 		.next = NEXT(action_meter),
3693 		.call = parse_vc,
3694 	},
3695 	[ACTION_METER_ID] = {
3696 		.name = "mtr_id",
3697 		.help = "meter id to use",
3698 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
3699 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
3700 		.call = parse_vc_conf,
3701 	},
3702 	[ACTION_OF_SET_MPLS_TTL] = {
3703 		.name = "of_set_mpls_ttl",
3704 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
3705 		.priv = PRIV_ACTION
3706 			(OF_SET_MPLS_TTL,
3707 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
3708 		.next = NEXT(action_of_set_mpls_ttl),
3709 		.call = parse_vc,
3710 	},
3711 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
3712 		.name = "mpls_ttl",
3713 		.help = "MPLS TTL",
3714 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
3715 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
3716 					mpls_ttl)),
3717 		.call = parse_vc_conf,
3718 	},
3719 	[ACTION_OF_DEC_MPLS_TTL] = {
3720 		.name = "of_dec_mpls_ttl",
3721 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
3722 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
3723 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3724 		.call = parse_vc,
3725 	},
3726 	[ACTION_OF_SET_NW_TTL] = {
3727 		.name = "of_set_nw_ttl",
3728 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
3729 		.priv = PRIV_ACTION
3730 			(OF_SET_NW_TTL,
3731 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
3732 		.next = NEXT(action_of_set_nw_ttl),
3733 		.call = parse_vc,
3734 	},
3735 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
3736 		.name = "nw_ttl",
3737 		.help = "IP TTL",
3738 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
3739 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
3740 					nw_ttl)),
3741 		.call = parse_vc_conf,
3742 	},
3743 	[ACTION_OF_DEC_NW_TTL] = {
3744 		.name = "of_dec_nw_ttl",
3745 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
3746 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
3747 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3748 		.call = parse_vc,
3749 	},
3750 	[ACTION_OF_COPY_TTL_OUT] = {
3751 		.name = "of_copy_ttl_out",
3752 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
3753 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
3754 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3755 		.call = parse_vc,
3756 	},
3757 	[ACTION_OF_COPY_TTL_IN] = {
3758 		.name = "of_copy_ttl_in",
3759 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
3760 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
3761 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3762 		.call = parse_vc,
3763 	},
3764 	[ACTION_OF_POP_VLAN] = {
3765 		.name = "of_pop_vlan",
3766 		.help = "OpenFlow's OFPAT_POP_VLAN",
3767 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
3768 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3769 		.call = parse_vc,
3770 	},
3771 	[ACTION_OF_PUSH_VLAN] = {
3772 		.name = "of_push_vlan",
3773 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
3774 		.priv = PRIV_ACTION
3775 			(OF_PUSH_VLAN,
3776 			 sizeof(struct rte_flow_action_of_push_vlan)),
3777 		.next = NEXT(action_of_push_vlan),
3778 		.call = parse_vc,
3779 	},
3780 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
3781 		.name = "ethertype",
3782 		.help = "EtherType",
3783 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
3784 		.args = ARGS(ARGS_ENTRY_HTON
3785 			     (struct rte_flow_action_of_push_vlan,
3786 			      ethertype)),
3787 		.call = parse_vc_conf,
3788 	},
3789 	[ACTION_OF_SET_VLAN_VID] = {
3790 		.name = "of_set_vlan_vid",
3791 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
3792 		.priv = PRIV_ACTION
3793 			(OF_SET_VLAN_VID,
3794 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
3795 		.next = NEXT(action_of_set_vlan_vid),
3796 		.call = parse_vc,
3797 	},
3798 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
3799 		.name = "vlan_vid",
3800 		.help = "VLAN id",
3801 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
3802 		.args = ARGS(ARGS_ENTRY_HTON
3803 			     (struct rte_flow_action_of_set_vlan_vid,
3804 			      vlan_vid)),
3805 		.call = parse_vc_conf,
3806 	},
3807 	[ACTION_OF_SET_VLAN_PCP] = {
3808 		.name = "of_set_vlan_pcp",
3809 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
3810 		.priv = PRIV_ACTION
3811 			(OF_SET_VLAN_PCP,
3812 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
3813 		.next = NEXT(action_of_set_vlan_pcp),
3814 		.call = parse_vc,
3815 	},
3816 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
3817 		.name = "vlan_pcp",
3818 		.help = "VLAN priority",
3819 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
3820 		.args = ARGS(ARGS_ENTRY_HTON
3821 			     (struct rte_flow_action_of_set_vlan_pcp,
3822 			      vlan_pcp)),
3823 		.call = parse_vc_conf,
3824 	},
3825 	[ACTION_OF_POP_MPLS] = {
3826 		.name = "of_pop_mpls",
3827 		.help = "OpenFlow's OFPAT_POP_MPLS",
3828 		.priv = PRIV_ACTION(OF_POP_MPLS,
3829 				    sizeof(struct rte_flow_action_of_pop_mpls)),
3830 		.next = NEXT(action_of_pop_mpls),
3831 		.call = parse_vc,
3832 	},
3833 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
3834 		.name = "ethertype",
3835 		.help = "EtherType",
3836 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
3837 		.args = ARGS(ARGS_ENTRY_HTON
3838 			     (struct rte_flow_action_of_pop_mpls,
3839 			      ethertype)),
3840 		.call = parse_vc_conf,
3841 	},
3842 	[ACTION_OF_PUSH_MPLS] = {
3843 		.name = "of_push_mpls",
3844 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
3845 		.priv = PRIV_ACTION
3846 			(OF_PUSH_MPLS,
3847 			 sizeof(struct rte_flow_action_of_push_mpls)),
3848 		.next = NEXT(action_of_push_mpls),
3849 		.call = parse_vc,
3850 	},
3851 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
3852 		.name = "ethertype",
3853 		.help = "EtherType",
3854 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
3855 		.args = ARGS(ARGS_ENTRY_HTON
3856 			     (struct rte_flow_action_of_push_mpls,
3857 			      ethertype)),
3858 		.call = parse_vc_conf,
3859 	},
3860 	[ACTION_VXLAN_ENCAP] = {
3861 		.name = "vxlan_encap",
3862 		.help = "VXLAN encapsulation, uses configuration set by \"set"
3863 			" vxlan\"",
3864 		.priv = PRIV_ACTION(VXLAN_ENCAP,
3865 				    sizeof(struct action_vxlan_encap_data)),
3866 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3867 		.call = parse_vc_action_vxlan_encap,
3868 	},
3869 	[ACTION_VXLAN_DECAP] = {
3870 		.name = "vxlan_decap",
3871 		.help = "Performs a decapsulation action by stripping all"
3872 			" headers of the VXLAN tunnel network overlay from the"
3873 			" matched flow.",
3874 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
3875 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3876 		.call = parse_vc,
3877 	},
3878 	[ACTION_NVGRE_ENCAP] = {
3879 		.name = "nvgre_encap",
3880 		.help = "NVGRE encapsulation, uses configuration set by \"set"
3881 			" nvgre\"",
3882 		.priv = PRIV_ACTION(NVGRE_ENCAP,
3883 				    sizeof(struct action_nvgre_encap_data)),
3884 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3885 		.call = parse_vc_action_nvgre_encap,
3886 	},
3887 	[ACTION_NVGRE_DECAP] = {
3888 		.name = "nvgre_decap",
3889 		.help = "Performs a decapsulation action by stripping all"
3890 			" headers of the NVGRE tunnel network overlay from the"
3891 			" matched flow.",
3892 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
3893 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3894 		.call = parse_vc,
3895 	},
3896 	[ACTION_L2_ENCAP] = {
3897 		.name = "l2_encap",
3898 		.help = "l2 encap, uses configuration set by"
3899 			" \"set l2_encap\"",
3900 		.priv = PRIV_ACTION(RAW_ENCAP,
3901 				    sizeof(struct action_raw_encap_data)),
3902 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3903 		.call = parse_vc_action_l2_encap,
3904 	},
3905 	[ACTION_L2_DECAP] = {
3906 		.name = "l2_decap",
3907 		.help = "l2 decap, uses configuration set by"
3908 			" \"set l2_decap\"",
3909 		.priv = PRIV_ACTION(RAW_DECAP,
3910 				    sizeof(struct action_raw_decap_data)),
3911 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3912 		.call = parse_vc_action_l2_decap,
3913 	},
3914 	[ACTION_MPLSOGRE_ENCAP] = {
3915 		.name = "mplsogre_encap",
3916 		.help = "mplsogre encapsulation, uses configuration set by"
3917 			" \"set mplsogre_encap\"",
3918 		.priv = PRIV_ACTION(RAW_ENCAP,
3919 				    sizeof(struct action_raw_encap_data)),
3920 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3921 		.call = parse_vc_action_mplsogre_encap,
3922 	},
3923 	[ACTION_MPLSOGRE_DECAP] = {
3924 		.name = "mplsogre_decap",
3925 		.help = "mplsogre decapsulation, uses configuration set by"
3926 			" \"set mplsogre_decap\"",
3927 		.priv = PRIV_ACTION(RAW_DECAP,
3928 				    sizeof(struct action_raw_decap_data)),
3929 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3930 		.call = parse_vc_action_mplsogre_decap,
3931 	},
3932 	[ACTION_MPLSOUDP_ENCAP] = {
3933 		.name = "mplsoudp_encap",
3934 		.help = "mplsoudp encapsulation, uses configuration set by"
3935 			" \"set mplsoudp_encap\"",
3936 		.priv = PRIV_ACTION(RAW_ENCAP,
3937 				    sizeof(struct action_raw_encap_data)),
3938 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3939 		.call = parse_vc_action_mplsoudp_encap,
3940 	},
3941 	[ACTION_MPLSOUDP_DECAP] = {
3942 		.name = "mplsoudp_decap",
3943 		.help = "mplsoudp decapsulation, uses configuration set by"
3944 			" \"set mplsoudp_decap\"",
3945 		.priv = PRIV_ACTION(RAW_DECAP,
3946 				    sizeof(struct action_raw_decap_data)),
3947 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3948 		.call = parse_vc_action_mplsoudp_decap,
3949 	},
3950 	[ACTION_SET_IPV4_SRC] = {
3951 		.name = "set_ipv4_src",
3952 		.help = "Set a new IPv4 source address in the outermost"
3953 			" IPv4 header",
3954 		.priv = PRIV_ACTION(SET_IPV4_SRC,
3955 			sizeof(struct rte_flow_action_set_ipv4)),
3956 		.next = NEXT(action_set_ipv4_src),
3957 		.call = parse_vc,
3958 	},
3959 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
3960 		.name = "ipv4_addr",
3961 		.help = "new IPv4 source address to set",
3962 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
3963 		.args = ARGS(ARGS_ENTRY_HTON
3964 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
3965 		.call = parse_vc_conf,
3966 	},
3967 	[ACTION_SET_IPV4_DST] = {
3968 		.name = "set_ipv4_dst",
3969 		.help = "Set a new IPv4 destination address in the outermost"
3970 			" IPv4 header",
3971 		.priv = PRIV_ACTION(SET_IPV4_DST,
3972 			sizeof(struct rte_flow_action_set_ipv4)),
3973 		.next = NEXT(action_set_ipv4_dst),
3974 		.call = parse_vc,
3975 	},
3976 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
3977 		.name = "ipv4_addr",
3978 		.help = "new IPv4 destination address to set",
3979 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
3980 		.args = ARGS(ARGS_ENTRY_HTON
3981 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
3982 		.call = parse_vc_conf,
3983 	},
3984 	[ACTION_SET_IPV6_SRC] = {
3985 		.name = "set_ipv6_src",
3986 		.help = "Set a new IPv6 source address in the outermost"
3987 			" IPv6 header",
3988 		.priv = PRIV_ACTION(SET_IPV6_SRC,
3989 			sizeof(struct rte_flow_action_set_ipv6)),
3990 		.next = NEXT(action_set_ipv6_src),
3991 		.call = parse_vc,
3992 	},
3993 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3994 		.name = "ipv6_addr",
3995 		.help = "new IPv6 source address to set",
3996 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3997 		.args = ARGS(ARGS_ENTRY_HTON
3998 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3999 		.call = parse_vc_conf,
4000 	},
4001 	[ACTION_SET_IPV6_DST] = {
4002 		.name = "set_ipv6_dst",
4003 		.help = "Set a new IPv6 destination address in the outermost"
4004 			" IPv6 header",
4005 		.priv = PRIV_ACTION(SET_IPV6_DST,
4006 			sizeof(struct rte_flow_action_set_ipv6)),
4007 		.next = NEXT(action_set_ipv6_dst),
4008 		.call = parse_vc,
4009 	},
4010 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
4011 		.name = "ipv6_addr",
4012 		.help = "new IPv6 destination address to set",
4013 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
4014 		.args = ARGS(ARGS_ENTRY_HTON
4015 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
4016 		.call = parse_vc_conf,
4017 	},
4018 	[ACTION_SET_TP_SRC] = {
4019 		.name = "set_tp_src",
4020 		.help = "set a new source port number in the outermost"
4021 			" TCP/UDP header",
4022 		.priv = PRIV_ACTION(SET_TP_SRC,
4023 			sizeof(struct rte_flow_action_set_tp)),
4024 		.next = NEXT(action_set_tp_src),
4025 		.call = parse_vc,
4026 	},
4027 	[ACTION_SET_TP_SRC_TP_SRC] = {
4028 		.name = "port",
4029 		.help = "new source port number to set",
4030 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
4031 		.args = ARGS(ARGS_ENTRY_HTON
4032 			     (struct rte_flow_action_set_tp, port)),
4033 		.call = parse_vc_conf,
4034 	},
4035 	[ACTION_SET_TP_DST] = {
4036 		.name = "set_tp_dst",
4037 		.help = "set a new destination port number in the outermost"
4038 			" TCP/UDP header",
4039 		.priv = PRIV_ACTION(SET_TP_DST,
4040 			sizeof(struct rte_flow_action_set_tp)),
4041 		.next = NEXT(action_set_tp_dst),
4042 		.call = parse_vc,
4043 	},
4044 	[ACTION_SET_TP_DST_TP_DST] = {
4045 		.name = "port",
4046 		.help = "new destination port number to set",
4047 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
4048 		.args = ARGS(ARGS_ENTRY_HTON
4049 			     (struct rte_flow_action_set_tp, port)),
4050 		.call = parse_vc_conf,
4051 	},
4052 	[ACTION_MAC_SWAP] = {
4053 		.name = "mac_swap",
4054 		.help = "Swap the source and destination MAC addresses"
4055 			" in the outermost Ethernet header",
4056 		.priv = PRIV_ACTION(MAC_SWAP, 0),
4057 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4058 		.call = parse_vc,
4059 	},
4060 	[ACTION_DEC_TTL] = {
4061 		.name = "dec_ttl",
4062 		.help = "decrease network TTL if available",
4063 		.priv = PRIV_ACTION(DEC_TTL, 0),
4064 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4065 		.call = parse_vc,
4066 	},
4067 	[ACTION_SET_TTL] = {
4068 		.name = "set_ttl",
4069 		.help = "set ttl value",
4070 		.priv = PRIV_ACTION(SET_TTL,
4071 			sizeof(struct rte_flow_action_set_ttl)),
4072 		.next = NEXT(action_set_ttl),
4073 		.call = parse_vc,
4074 	},
4075 	[ACTION_SET_TTL_TTL] = {
4076 		.name = "ttl_value",
4077 		.help = "new ttl value to set",
4078 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
4079 		.args = ARGS(ARGS_ENTRY_HTON
4080 			     (struct rte_flow_action_set_ttl, ttl_value)),
4081 		.call = parse_vc_conf,
4082 	},
4083 	[ACTION_SET_MAC_SRC] = {
4084 		.name = "set_mac_src",
4085 		.help = "set source mac address",
4086 		.priv = PRIV_ACTION(SET_MAC_SRC,
4087 			sizeof(struct rte_flow_action_set_mac)),
4088 		.next = NEXT(action_set_mac_src),
4089 		.call = parse_vc,
4090 	},
4091 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
4092 		.name = "mac_addr",
4093 		.help = "new source mac address",
4094 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
4095 		.args = ARGS(ARGS_ENTRY_HTON
4096 			     (struct rte_flow_action_set_mac, mac_addr)),
4097 		.call = parse_vc_conf,
4098 	},
4099 	[ACTION_SET_MAC_DST] = {
4100 		.name = "set_mac_dst",
4101 		.help = "set destination mac address",
4102 		.priv = PRIV_ACTION(SET_MAC_DST,
4103 			sizeof(struct rte_flow_action_set_mac)),
4104 		.next = NEXT(action_set_mac_dst),
4105 		.call = parse_vc,
4106 	},
4107 	[ACTION_SET_MAC_DST_MAC_DST] = {
4108 		.name = "mac_addr",
4109 		.help = "new destination mac address to set",
4110 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
4111 		.args = ARGS(ARGS_ENTRY_HTON
4112 			     (struct rte_flow_action_set_mac, mac_addr)),
4113 		.call = parse_vc_conf,
4114 	},
4115 	[ACTION_INC_TCP_SEQ] = {
4116 		.name = "inc_tcp_seq",
4117 		.help = "increase TCP sequence number",
4118 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
4119 		.next = NEXT(action_inc_tcp_seq),
4120 		.call = parse_vc,
4121 	},
4122 	[ACTION_INC_TCP_SEQ_VALUE] = {
4123 		.name = "value",
4124 		.help = "the value to increase TCP sequence number by",
4125 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
4126 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4127 		.call = parse_vc_conf,
4128 	},
4129 	[ACTION_DEC_TCP_SEQ] = {
4130 		.name = "dec_tcp_seq",
4131 		.help = "decrease TCP sequence number",
4132 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
4133 		.next = NEXT(action_dec_tcp_seq),
4134 		.call = parse_vc,
4135 	},
4136 	[ACTION_DEC_TCP_SEQ_VALUE] = {
4137 		.name = "value",
4138 		.help = "the value to decrease TCP sequence number by",
4139 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
4140 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4141 		.call = parse_vc_conf,
4142 	},
4143 	[ACTION_INC_TCP_ACK] = {
4144 		.name = "inc_tcp_ack",
4145 		.help = "increase TCP acknowledgment number",
4146 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
4147 		.next = NEXT(action_inc_tcp_ack),
4148 		.call = parse_vc,
4149 	},
4150 	[ACTION_INC_TCP_ACK_VALUE] = {
4151 		.name = "value",
4152 		.help = "the value to increase TCP acknowledgment number by",
4153 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
4154 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4155 		.call = parse_vc_conf,
4156 	},
4157 	[ACTION_DEC_TCP_ACK] = {
4158 		.name = "dec_tcp_ack",
4159 		.help = "decrease TCP acknowledgment number",
4160 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
4161 		.next = NEXT(action_dec_tcp_ack),
4162 		.call = parse_vc,
4163 	},
4164 	[ACTION_DEC_TCP_ACK_VALUE] = {
4165 		.name = "value",
4166 		.help = "the value to decrease TCP acknowledgment number by",
4167 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
4168 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4169 		.call = parse_vc_conf,
4170 	},
4171 	[ACTION_RAW_ENCAP] = {
4172 		.name = "raw_encap",
4173 		.help = "encapsulation data, defined by set raw_encap",
4174 		.priv = PRIV_ACTION(RAW_ENCAP,
4175 			sizeof(struct action_raw_encap_data)),
4176 		.next = NEXT(action_raw_encap),
4177 		.call = parse_vc_action_raw_encap,
4178 	},
4179 	[ACTION_RAW_ENCAP_INDEX] = {
4180 		.name = "index",
4181 		.help = "the index of raw_encap_confs",
4182 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_ENCAP_INDEX_VALUE)),
4183 	},
4184 	[ACTION_RAW_ENCAP_INDEX_VALUE] = {
4185 		.name = "{index}",
4186 		.type = "UNSIGNED",
4187 		.help = "unsigned integer value",
4188 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4189 		.call = parse_vc_action_raw_encap_index,
4190 		.comp = comp_set_raw_index,
4191 	},
4192 	[ACTION_RAW_DECAP] = {
4193 		.name = "raw_decap",
4194 		.help = "decapsulation data, defined by set raw_encap",
4195 		.priv = PRIV_ACTION(RAW_DECAP,
4196 			sizeof(struct action_raw_decap_data)),
4197 		.next = NEXT(action_raw_decap),
4198 		.call = parse_vc_action_raw_decap,
4199 	},
4200 	[ACTION_RAW_DECAP_INDEX] = {
4201 		.name = "index",
4202 		.help = "the index of raw_encap_confs",
4203 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_DECAP_INDEX_VALUE)),
4204 	},
4205 	[ACTION_RAW_DECAP_INDEX_VALUE] = {
4206 		.name = "{index}",
4207 		.type = "UNSIGNED",
4208 		.help = "unsigned integer value",
4209 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4210 		.call = parse_vc_action_raw_decap_index,
4211 		.comp = comp_set_raw_index,
4212 	},
4213 	[ACTION_MODIFY_FIELD] = {
4214 		.name = "modify_field",
4215 		.help = "modify destination field with data from source field",
4216 		.priv = PRIV_ACTION(MODIFY_FIELD,
4217 			sizeof(struct rte_flow_action_modify_field)),
4218 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_OP)),
4219 		.call = parse_vc,
4220 	},
4221 	[ACTION_MODIFY_FIELD_OP] = {
4222 		.name = "op",
4223 		.help = "operation type",
4224 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_DST_TYPE),
4225 			NEXT_ENTRY(ACTION_MODIFY_FIELD_OP_VALUE)),
4226 		.call = parse_vc_conf,
4227 	},
4228 	[ACTION_MODIFY_FIELD_OP_VALUE] = {
4229 		.name = "{operation}",
4230 		.help = "operation type value",
4231 		.call = parse_vc_modify_field_op,
4232 		.comp = comp_set_modify_field_op,
4233 	},
4234 	[ACTION_MODIFY_FIELD_DST_TYPE] = {
4235 		.name = "dst_type",
4236 		.help = "destination field type",
4237 		.next = NEXT(action_modify_field_dst,
4238 			NEXT_ENTRY(ACTION_MODIFY_FIELD_DST_TYPE_VALUE)),
4239 		.call = parse_vc_conf,
4240 	},
4241 	[ACTION_MODIFY_FIELD_DST_TYPE_VALUE] = {
4242 		.name = "{dst_type}",
4243 		.help = "destination field type value",
4244 		.call = parse_vc_modify_field_id,
4245 		.comp = comp_set_modify_field_id,
4246 	},
4247 	[ACTION_MODIFY_FIELD_DST_LEVEL] = {
4248 		.name = "dst_level",
4249 		.help = "destination field level",
4250 		.next = NEXT(action_modify_field_dst, NEXT_ENTRY(UNSIGNED)),
4251 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4252 					dst.level)),
4253 		.call = parse_vc_conf,
4254 	},
4255 	[ACTION_MODIFY_FIELD_DST_OFFSET] = {
4256 		.name = "dst_offset",
4257 		.help = "destination field bit offset",
4258 		.next = NEXT(action_modify_field_dst, NEXT_ENTRY(UNSIGNED)),
4259 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4260 					dst.offset)),
4261 		.call = parse_vc_conf,
4262 	},
4263 	[ACTION_MODIFY_FIELD_SRC_TYPE] = {
4264 		.name = "src_type",
4265 		.help = "source field type",
4266 		.next = NEXT(action_modify_field_src,
4267 			NEXT_ENTRY(ACTION_MODIFY_FIELD_SRC_TYPE_VALUE)),
4268 		.call = parse_vc_conf,
4269 	},
4270 	[ACTION_MODIFY_FIELD_SRC_TYPE_VALUE] = {
4271 		.name = "{src_type}",
4272 		.help = "source field type value",
4273 		.call = parse_vc_modify_field_id,
4274 		.comp = comp_set_modify_field_id,
4275 	},
4276 	[ACTION_MODIFY_FIELD_SRC_LEVEL] = {
4277 		.name = "src_level",
4278 		.help = "source field level",
4279 		.next = NEXT(action_modify_field_src, NEXT_ENTRY(UNSIGNED)),
4280 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4281 					src.level)),
4282 		.call = parse_vc_conf,
4283 	},
4284 	[ACTION_MODIFY_FIELD_SRC_OFFSET] = {
4285 		.name = "src_offset",
4286 		.help = "source field bit offset",
4287 		.next = NEXT(action_modify_field_src, NEXT_ENTRY(UNSIGNED)),
4288 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4289 					src.offset)),
4290 		.call = parse_vc_conf,
4291 	},
4292 	[ACTION_MODIFY_FIELD_SRC_VALUE] = {
4293 		.name = "src_value",
4294 		.help = "source immediate value",
4295 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_WIDTH),
4296 			NEXT_ENTRY(UNSIGNED)),
4297 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4298 					src.value)),
4299 		.call = parse_vc_conf,
4300 	},
4301 	[ACTION_MODIFY_FIELD_WIDTH] = {
4302 		.name = "width",
4303 		.help = "number of bits to copy",
4304 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT),
4305 			NEXT_ENTRY(UNSIGNED)),
4306 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4307 					width)),
4308 		.call = parse_vc_conf,
4309 	},
4310 	/* Top level command. */
4311 	[SET] = {
4312 		.name = "set",
4313 		.help = "set raw encap/decap/sample data",
4314 		.type = "set raw_encap|raw_decap <index> <pattern>"
4315 				" or set sample_actions <index> <action>",
4316 		.next = NEXT(NEXT_ENTRY
4317 			     (SET_RAW_ENCAP,
4318 			      SET_RAW_DECAP,
4319 			      SET_SAMPLE_ACTIONS)),
4320 		.call = parse_set_init,
4321 	},
4322 	/* Sub-level commands. */
4323 	[SET_RAW_ENCAP] = {
4324 		.name = "raw_encap",
4325 		.help = "set raw encap data",
4326 		.next = NEXT(next_set_raw),
4327 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4328 				(offsetof(struct buffer, port),
4329 				 sizeof(((struct buffer *)0)->port),
4330 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
4331 		.call = parse_set_raw_encap_decap,
4332 	},
4333 	[SET_RAW_DECAP] = {
4334 		.name = "raw_decap",
4335 		.help = "set raw decap data",
4336 		.next = NEXT(next_set_raw),
4337 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4338 				(offsetof(struct buffer, port),
4339 				 sizeof(((struct buffer *)0)->port),
4340 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
4341 		.call = parse_set_raw_encap_decap,
4342 	},
4343 	[SET_RAW_INDEX] = {
4344 		.name = "{index}",
4345 		.type = "UNSIGNED",
4346 		.help = "index of raw_encap/raw_decap data",
4347 		.next = NEXT(next_item),
4348 		.call = parse_port,
4349 	},
4350 	[SET_SAMPLE_INDEX] = {
4351 		.name = "{index}",
4352 		.type = "UNSIGNED",
4353 		.help = "index of sample actions",
4354 		.next = NEXT(next_action_sample),
4355 		.call = parse_port,
4356 	},
4357 	[SET_SAMPLE_ACTIONS] = {
4358 		.name = "sample_actions",
4359 		.help = "set sample actions list",
4360 		.next = NEXT(NEXT_ENTRY(SET_SAMPLE_INDEX)),
4361 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4362 				(offsetof(struct buffer, port),
4363 				 sizeof(((struct buffer *)0)->port),
4364 				 0, RAW_SAMPLE_CONFS_MAX_NUM - 1)),
4365 		.call = parse_set_sample_action,
4366 	},
4367 	[ACTION_SET_TAG] = {
4368 		.name = "set_tag",
4369 		.help = "set tag",
4370 		.priv = PRIV_ACTION(SET_TAG,
4371 			sizeof(struct rte_flow_action_set_tag)),
4372 		.next = NEXT(action_set_tag),
4373 		.call = parse_vc,
4374 	},
4375 	[ACTION_SET_TAG_INDEX] = {
4376 		.name = "index",
4377 		.help = "index of tag array",
4378 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4379 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_set_tag, index)),
4380 		.call = parse_vc_conf,
4381 	},
4382 	[ACTION_SET_TAG_DATA] = {
4383 		.name = "data",
4384 		.help = "tag value",
4385 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4386 		.args = ARGS(ARGS_ENTRY
4387 			     (struct rte_flow_action_set_tag, data)),
4388 		.call = parse_vc_conf,
4389 	},
4390 	[ACTION_SET_TAG_MASK] = {
4391 		.name = "mask",
4392 		.help = "mask for tag value",
4393 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4394 		.args = ARGS(ARGS_ENTRY
4395 			     (struct rte_flow_action_set_tag, mask)),
4396 		.call = parse_vc_conf,
4397 	},
4398 	[ACTION_SET_META] = {
4399 		.name = "set_meta",
4400 		.help = "set metadata",
4401 		.priv = PRIV_ACTION(SET_META,
4402 			sizeof(struct rte_flow_action_set_meta)),
4403 		.next = NEXT(action_set_meta),
4404 		.call = parse_vc_action_set_meta,
4405 	},
4406 	[ACTION_SET_META_DATA] = {
4407 		.name = "data",
4408 		.help = "metadata value",
4409 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
4410 		.args = ARGS(ARGS_ENTRY
4411 			     (struct rte_flow_action_set_meta, data)),
4412 		.call = parse_vc_conf,
4413 	},
4414 	[ACTION_SET_META_MASK] = {
4415 		.name = "mask",
4416 		.help = "mask for metadata value",
4417 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
4418 		.args = ARGS(ARGS_ENTRY
4419 			     (struct rte_flow_action_set_meta, mask)),
4420 		.call = parse_vc_conf,
4421 	},
4422 	[ACTION_SET_IPV4_DSCP] = {
4423 		.name = "set_ipv4_dscp",
4424 		.help = "set DSCP value",
4425 		.priv = PRIV_ACTION(SET_IPV4_DSCP,
4426 			sizeof(struct rte_flow_action_set_dscp)),
4427 		.next = NEXT(action_set_ipv4_dscp),
4428 		.call = parse_vc,
4429 	},
4430 	[ACTION_SET_IPV4_DSCP_VALUE] = {
4431 		.name = "dscp_value",
4432 		.help = "new IPv4 DSCP value to set",
4433 		.next = NEXT(action_set_ipv4_dscp, NEXT_ENTRY(UNSIGNED)),
4434 		.args = ARGS(ARGS_ENTRY
4435 			     (struct rte_flow_action_set_dscp, dscp)),
4436 		.call = parse_vc_conf,
4437 	},
4438 	[ACTION_SET_IPV6_DSCP] = {
4439 		.name = "set_ipv6_dscp",
4440 		.help = "set DSCP value",
4441 		.priv = PRIV_ACTION(SET_IPV6_DSCP,
4442 			sizeof(struct rte_flow_action_set_dscp)),
4443 		.next = NEXT(action_set_ipv6_dscp),
4444 		.call = parse_vc,
4445 	},
4446 	[ACTION_SET_IPV6_DSCP_VALUE] = {
4447 		.name = "dscp_value",
4448 		.help = "new IPv6 DSCP value to set",
4449 		.next = NEXT(action_set_ipv6_dscp, NEXT_ENTRY(UNSIGNED)),
4450 		.args = ARGS(ARGS_ENTRY
4451 			     (struct rte_flow_action_set_dscp, dscp)),
4452 		.call = parse_vc_conf,
4453 	},
4454 	[ACTION_AGE] = {
4455 		.name = "age",
4456 		.help = "set a specific metadata header",
4457 		.next = NEXT(action_age),
4458 		.priv = PRIV_ACTION(AGE,
4459 			sizeof(struct rte_flow_action_age)),
4460 		.call = parse_vc,
4461 	},
4462 	[ACTION_AGE_TIMEOUT] = {
4463 		.name = "timeout",
4464 		.help = "flow age timeout value",
4465 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_age,
4466 					   timeout, 24)),
4467 		.next = NEXT(action_age, NEXT_ENTRY(UNSIGNED)),
4468 		.call = parse_vc_conf,
4469 	},
4470 	[ACTION_SAMPLE] = {
4471 		.name = "sample",
4472 		.help = "set a sample action",
4473 		.next = NEXT(action_sample),
4474 		.priv = PRIV_ACTION(SAMPLE,
4475 			sizeof(struct action_sample_data)),
4476 		.call = parse_vc_action_sample,
4477 	},
4478 	[ACTION_SAMPLE_RATIO] = {
4479 		.name = "ratio",
4480 		.help = "flow sample ratio value",
4481 		.next = NEXT(action_sample, NEXT_ENTRY(UNSIGNED)),
4482 		.args = ARGS(ARGS_ENTRY_ARB
4483 			     (offsetof(struct action_sample_data, conf) +
4484 			      offsetof(struct rte_flow_action_sample, ratio),
4485 			      sizeof(((struct rte_flow_action_sample *)0)->
4486 				     ratio))),
4487 	},
4488 	[ACTION_SAMPLE_INDEX] = {
4489 		.name = "index",
4490 		.help = "the index of sample actions list",
4491 		.next = NEXT(NEXT_ENTRY(ACTION_SAMPLE_INDEX_VALUE)),
4492 	},
4493 	[ACTION_SAMPLE_INDEX_VALUE] = {
4494 		.name = "{index}",
4495 		.type = "UNSIGNED",
4496 		.help = "unsigned integer value",
4497 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4498 		.call = parse_vc_action_sample_index,
4499 		.comp = comp_set_sample_index,
4500 	},
4501 	/* Indirect action destroy arguments. */
4502 	[INDIRECT_ACTION_DESTROY_ID] = {
4503 		.name = "action_id",
4504 		.help = "specify a indirect action id to destroy",
4505 		.next = NEXT(next_ia_destroy_attr,
4506 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
4507 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer,
4508 					    args.ia_destroy.action_id)),
4509 		.call = parse_ia_destroy,
4510 	},
4511 	/* Indirect action create arguments. */
4512 	[INDIRECT_ACTION_CREATE_ID] = {
4513 		.name = "action_id",
4514 		.help = "specify a indirect action id to create",
4515 		.next = NEXT(next_ia_create_attr,
4516 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
4517 		.args = ARGS(ARGS_ENTRY(struct buffer, args.vc.attr.group)),
4518 	},
4519 	[ACTION_INDIRECT] = {
4520 		.name = "indirect",
4521 		.help = "apply indirect action by id",
4522 		.priv = PRIV_ACTION(INDIRECT, 0),
4523 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_ID2PTR)),
4524 		.args = ARGS(ARGS_ENTRY_ARB(0, sizeof(uint32_t))),
4525 		.call = parse_vc,
4526 	},
4527 	[INDIRECT_ACTION_ID2PTR] = {
4528 		.name = "{action_id}",
4529 		.type = "INDIRECT_ACTION_ID",
4530 		.help = "indirect action id",
4531 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4532 		.call = parse_ia_id2ptr,
4533 		.comp = comp_none,
4534 	},
4535 	[INDIRECT_ACTION_INGRESS] = {
4536 		.name = "ingress",
4537 		.help = "affect rule to ingress",
4538 		.next = NEXT(next_ia_create_attr),
4539 		.call = parse_ia,
4540 	},
4541 	[INDIRECT_ACTION_EGRESS] = {
4542 		.name = "egress",
4543 		.help = "affect rule to egress",
4544 		.next = NEXT(next_ia_create_attr),
4545 		.call = parse_ia,
4546 	},
4547 	[INDIRECT_ACTION_TRANSFER] = {
4548 		.name = "transfer",
4549 		.help = "affect rule to transfer",
4550 		.next = NEXT(next_ia_create_attr),
4551 		.call = parse_ia,
4552 	},
4553 	[INDIRECT_ACTION_SPEC] = {
4554 		.name = "action",
4555 		.help = "specify action to create indirect handle",
4556 		.next = NEXT(next_action),
4557 	},
4558 };
4559 
4560 /** Remove and return last entry from argument stack. */
4561 static const struct arg *
4562 pop_args(struct context *ctx)
4563 {
4564 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
4565 }
4566 
4567 /** Add entry on top of the argument stack. */
4568 static int
4569 push_args(struct context *ctx, const struct arg *arg)
4570 {
4571 	if (ctx->args_num == CTX_STACK_SIZE)
4572 		return -1;
4573 	ctx->args[ctx->args_num++] = arg;
4574 	return 0;
4575 }
4576 
4577 /** Spread value into buffer according to bit-mask. */
4578 static size_t
4579 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
4580 {
4581 	uint32_t i = arg->size;
4582 	uint32_t end = 0;
4583 	int sub = 1;
4584 	int add = 0;
4585 	size_t len = 0;
4586 
4587 	if (!arg->mask)
4588 		return 0;
4589 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4590 	if (!arg->hton) {
4591 		i = 0;
4592 		end = arg->size;
4593 		sub = 0;
4594 		add = 1;
4595 	}
4596 #endif
4597 	while (i != end) {
4598 		unsigned int shift = 0;
4599 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
4600 
4601 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
4602 			if (!(arg->mask[i] & (1 << shift)))
4603 				continue;
4604 			++len;
4605 			if (!dst)
4606 				continue;
4607 			*buf &= ~(1 << shift);
4608 			*buf |= (val & 1) << shift;
4609 			val >>= 1;
4610 		}
4611 		i += add;
4612 	}
4613 	return len;
4614 }
4615 
4616 /** Compare a string with a partial one of a given length. */
4617 static int
4618 strcmp_partial(const char *full, const char *partial, size_t partial_len)
4619 {
4620 	int r = strncmp(full, partial, partial_len);
4621 
4622 	if (r)
4623 		return r;
4624 	if (strlen(full) <= partial_len)
4625 		return 0;
4626 	return full[partial_len];
4627 }
4628 
4629 /**
4630  * Parse a prefix length and generate a bit-mask.
4631  *
4632  * Last argument (ctx->args) is retrieved to determine mask size, storage
4633  * location and whether the result must use network byte ordering.
4634  */
4635 static int
4636 parse_prefix(struct context *ctx, const struct token *token,
4637 	     const char *str, unsigned int len,
4638 	     void *buf, unsigned int size)
4639 {
4640 	const struct arg *arg = pop_args(ctx);
4641 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
4642 	char *end;
4643 	uintmax_t u;
4644 	unsigned int bytes;
4645 	unsigned int extra;
4646 
4647 	(void)token;
4648 	/* Argument is expected. */
4649 	if (!arg)
4650 		return -1;
4651 	errno = 0;
4652 	u = strtoumax(str, &end, 0);
4653 	if (errno || (size_t)(end - str) != len)
4654 		goto error;
4655 	if (arg->mask) {
4656 		uintmax_t v = 0;
4657 
4658 		extra = arg_entry_bf_fill(NULL, 0, arg);
4659 		if (u > extra)
4660 			goto error;
4661 		if (!ctx->object)
4662 			return len;
4663 		extra -= u;
4664 		while (u--)
4665 			(v <<= 1, v |= 1);
4666 		v <<= extra;
4667 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
4668 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4669 			goto error;
4670 		return len;
4671 	}
4672 	bytes = u / 8;
4673 	extra = u % 8;
4674 	size = arg->size;
4675 	if (bytes > size || bytes + !!extra > size)
4676 		goto error;
4677 	if (!ctx->object)
4678 		return len;
4679 	buf = (uint8_t *)ctx->object + arg->offset;
4680 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4681 	if (!arg->hton) {
4682 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
4683 		memset(buf, 0x00, size - bytes);
4684 		if (extra)
4685 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
4686 	} else
4687 #endif
4688 	{
4689 		memset(buf, 0xff, bytes);
4690 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
4691 		if (extra)
4692 			((uint8_t *)buf)[bytes] = conv[extra];
4693 	}
4694 	if (ctx->objmask)
4695 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4696 	return len;
4697 error:
4698 	push_args(ctx, arg);
4699 	return -1;
4700 }
4701 
4702 /** Default parsing function for token name matching. */
4703 static int
4704 parse_default(struct context *ctx, const struct token *token,
4705 	      const char *str, unsigned int len,
4706 	      void *buf, unsigned int size)
4707 {
4708 	(void)ctx;
4709 	(void)buf;
4710 	(void)size;
4711 	if (strcmp_partial(token->name, str, len))
4712 		return -1;
4713 	return len;
4714 }
4715 
4716 /** Parse flow command, initialize output buffer for subsequent tokens. */
4717 static int
4718 parse_init(struct context *ctx, const struct token *token,
4719 	   const char *str, unsigned int len,
4720 	   void *buf, unsigned int size)
4721 {
4722 	struct buffer *out = buf;
4723 
4724 	/* Token name must match. */
4725 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4726 		return -1;
4727 	/* Nothing else to do if there is no buffer. */
4728 	if (!out)
4729 		return len;
4730 	/* Make sure buffer is large enough. */
4731 	if (size < sizeof(*out))
4732 		return -1;
4733 	/* Initialize buffer. */
4734 	memset(out, 0x00, sizeof(*out));
4735 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
4736 	ctx->objdata = 0;
4737 	ctx->object = out;
4738 	ctx->objmask = NULL;
4739 	return len;
4740 }
4741 
4742 /** Parse tokens for indirect action commands. */
4743 static int
4744 parse_ia(struct context *ctx, const struct token *token,
4745 	 const char *str, unsigned int len,
4746 	 void *buf, unsigned int size)
4747 {
4748 	struct buffer *out = buf;
4749 
4750 	/* Token name must match. */
4751 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4752 		return -1;
4753 	/* Nothing else to do if there is no buffer. */
4754 	if (!out)
4755 		return len;
4756 	if (!out->command) {
4757 		if (ctx->curr != INDIRECT_ACTION)
4758 			return -1;
4759 		if (sizeof(*out) > size)
4760 			return -1;
4761 		out->command = ctx->curr;
4762 		ctx->objdata = 0;
4763 		ctx->object = out;
4764 		ctx->objmask = NULL;
4765 		out->args.vc.data = (uint8_t *)out + size;
4766 		return len;
4767 	}
4768 	switch (ctx->curr) {
4769 	case INDIRECT_ACTION_CREATE:
4770 	case INDIRECT_ACTION_UPDATE:
4771 		out->args.vc.actions =
4772 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4773 					       sizeof(double));
4774 		out->args.vc.attr.group = UINT32_MAX;
4775 		/* fallthrough */
4776 	case INDIRECT_ACTION_QUERY:
4777 		out->command = ctx->curr;
4778 		ctx->objdata = 0;
4779 		ctx->object = out;
4780 		ctx->objmask = NULL;
4781 		return len;
4782 	case INDIRECT_ACTION_EGRESS:
4783 		out->args.vc.attr.egress = 1;
4784 		return len;
4785 	case INDIRECT_ACTION_INGRESS:
4786 		out->args.vc.attr.ingress = 1;
4787 		return len;
4788 	case INDIRECT_ACTION_TRANSFER:
4789 		out->args.vc.attr.transfer = 1;
4790 		return len;
4791 	default:
4792 		return -1;
4793 	}
4794 }
4795 
4796 
4797 /** Parse tokens for indirect action destroy command. */
4798 static int
4799 parse_ia_destroy(struct context *ctx, const struct token *token,
4800 		 const char *str, unsigned int len,
4801 		 void *buf, unsigned int size)
4802 {
4803 	struct buffer *out = buf;
4804 	uint32_t *action_id;
4805 
4806 	/* Token name must match. */
4807 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4808 		return -1;
4809 	/* Nothing else to do if there is no buffer. */
4810 	if (!out)
4811 		return len;
4812 	if (!out->command || out->command == INDIRECT_ACTION) {
4813 		if (ctx->curr != INDIRECT_ACTION_DESTROY)
4814 			return -1;
4815 		if (sizeof(*out) > size)
4816 			return -1;
4817 		out->command = ctx->curr;
4818 		ctx->objdata = 0;
4819 		ctx->object = out;
4820 		ctx->objmask = NULL;
4821 		out->args.ia_destroy.action_id =
4822 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4823 					       sizeof(double));
4824 		return len;
4825 	}
4826 	action_id = out->args.ia_destroy.action_id
4827 		    + out->args.ia_destroy.action_id_n++;
4828 	if ((uint8_t *)action_id > (uint8_t *)out + size)
4829 		return -1;
4830 	ctx->objdata = 0;
4831 	ctx->object = action_id;
4832 	ctx->objmask = NULL;
4833 	return len;
4834 }
4835 
4836 /** Parse tokens for validate/create commands. */
4837 static int
4838 parse_vc(struct context *ctx, const struct token *token,
4839 	 const char *str, unsigned int len,
4840 	 void *buf, unsigned int size)
4841 {
4842 	struct buffer *out = buf;
4843 	uint8_t *data;
4844 	uint32_t data_size;
4845 
4846 	/* Token name must match. */
4847 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4848 		return -1;
4849 	/* Nothing else to do if there is no buffer. */
4850 	if (!out)
4851 		return len;
4852 	if (!out->command) {
4853 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
4854 			return -1;
4855 		if (sizeof(*out) > size)
4856 			return -1;
4857 		out->command = ctx->curr;
4858 		ctx->objdata = 0;
4859 		ctx->object = out;
4860 		ctx->objmask = NULL;
4861 		out->args.vc.data = (uint8_t *)out + size;
4862 		return len;
4863 	}
4864 	ctx->objdata = 0;
4865 	switch (ctx->curr) {
4866 	default:
4867 		ctx->object = &out->args.vc.attr;
4868 		break;
4869 	case TUNNEL_SET:
4870 	case TUNNEL_MATCH:
4871 		ctx->object = &out->args.vc.tunnel_ops;
4872 		break;
4873 	}
4874 	ctx->objmask = NULL;
4875 	switch (ctx->curr) {
4876 	case GROUP:
4877 	case PRIORITY:
4878 		return len;
4879 	case TUNNEL_SET:
4880 		out->args.vc.tunnel_ops.enabled = 1;
4881 		out->args.vc.tunnel_ops.actions = 1;
4882 		return len;
4883 	case TUNNEL_MATCH:
4884 		out->args.vc.tunnel_ops.enabled = 1;
4885 		out->args.vc.tunnel_ops.items = 1;
4886 		return len;
4887 	case INGRESS:
4888 		out->args.vc.attr.ingress = 1;
4889 		return len;
4890 	case EGRESS:
4891 		out->args.vc.attr.egress = 1;
4892 		return len;
4893 	case TRANSFER:
4894 		out->args.vc.attr.transfer = 1;
4895 		return len;
4896 	case PATTERN:
4897 		out->args.vc.pattern =
4898 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4899 					       sizeof(double));
4900 		ctx->object = out->args.vc.pattern;
4901 		ctx->objmask = NULL;
4902 		return len;
4903 	case ACTIONS:
4904 		out->args.vc.actions =
4905 			(void *)RTE_ALIGN_CEIL((uintptr_t)
4906 					       (out->args.vc.pattern +
4907 						out->args.vc.pattern_n),
4908 					       sizeof(double));
4909 		ctx->object = out->args.vc.actions;
4910 		ctx->objmask = NULL;
4911 		return len;
4912 	default:
4913 		if (!token->priv)
4914 			return -1;
4915 		break;
4916 	}
4917 	if (!out->args.vc.actions) {
4918 		const struct parse_item_priv *priv = token->priv;
4919 		struct rte_flow_item *item =
4920 			out->args.vc.pattern + out->args.vc.pattern_n;
4921 
4922 		data_size = priv->size * 3; /* spec, last, mask */
4923 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
4924 					       (out->args.vc.data - data_size),
4925 					       sizeof(double));
4926 		if ((uint8_t *)item + sizeof(*item) > data)
4927 			return -1;
4928 		*item = (struct rte_flow_item){
4929 			.type = priv->type,
4930 		};
4931 		++out->args.vc.pattern_n;
4932 		ctx->object = item;
4933 		ctx->objmask = NULL;
4934 	} else {
4935 		const struct parse_action_priv *priv = token->priv;
4936 		struct rte_flow_action *action =
4937 			out->args.vc.actions + out->args.vc.actions_n;
4938 
4939 		data_size = priv->size; /* configuration */
4940 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
4941 					       (out->args.vc.data - data_size),
4942 					       sizeof(double));
4943 		if ((uint8_t *)action + sizeof(*action) > data)
4944 			return -1;
4945 		*action = (struct rte_flow_action){
4946 			.type = priv->type,
4947 			.conf = data_size ? data : NULL,
4948 		};
4949 		++out->args.vc.actions_n;
4950 		ctx->object = action;
4951 		ctx->objmask = NULL;
4952 	}
4953 	memset(data, 0, data_size);
4954 	out->args.vc.data = data;
4955 	ctx->objdata = data_size;
4956 	return len;
4957 }
4958 
4959 /** Parse pattern item parameter type. */
4960 static int
4961 parse_vc_spec(struct context *ctx, const struct token *token,
4962 	      const char *str, unsigned int len,
4963 	      void *buf, unsigned int size)
4964 {
4965 	struct buffer *out = buf;
4966 	struct rte_flow_item *item;
4967 	uint32_t data_size;
4968 	int index;
4969 	int objmask = 0;
4970 
4971 	(void)size;
4972 	/* Token name must match. */
4973 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4974 		return -1;
4975 	/* Parse parameter types. */
4976 	switch (ctx->curr) {
4977 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
4978 
4979 	case ITEM_PARAM_IS:
4980 		index = 0;
4981 		objmask = 1;
4982 		break;
4983 	case ITEM_PARAM_SPEC:
4984 		index = 0;
4985 		break;
4986 	case ITEM_PARAM_LAST:
4987 		index = 1;
4988 		break;
4989 	case ITEM_PARAM_PREFIX:
4990 		/* Modify next token to expect a prefix. */
4991 		if (ctx->next_num < 2)
4992 			return -1;
4993 		ctx->next[ctx->next_num - 2] = prefix;
4994 		/* Fall through. */
4995 	case ITEM_PARAM_MASK:
4996 		index = 2;
4997 		break;
4998 	default:
4999 		return -1;
5000 	}
5001 	/* Nothing else to do if there is no buffer. */
5002 	if (!out)
5003 		return len;
5004 	if (!out->args.vc.pattern_n)
5005 		return -1;
5006 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
5007 	data_size = ctx->objdata / 3; /* spec, last, mask */
5008 	/* Point to selected object. */
5009 	ctx->object = out->args.vc.data + (data_size * index);
5010 	if (objmask) {
5011 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
5012 		item->mask = ctx->objmask;
5013 	} else
5014 		ctx->objmask = NULL;
5015 	/* Update relevant item pointer. */
5016 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
5017 		ctx->object;
5018 	return len;
5019 }
5020 
5021 /** Parse action configuration field. */
5022 static int
5023 parse_vc_conf(struct context *ctx, const struct token *token,
5024 	      const char *str, unsigned int len,
5025 	      void *buf, unsigned int size)
5026 {
5027 	struct buffer *out = buf;
5028 
5029 	(void)size;
5030 	/* Token name must match. */
5031 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5032 		return -1;
5033 	/* Nothing else to do if there is no buffer. */
5034 	if (!out)
5035 		return len;
5036 	/* Point to selected object. */
5037 	ctx->object = out->args.vc.data;
5038 	ctx->objmask = NULL;
5039 	return len;
5040 }
5041 
5042 /** Parse eCPRI common header type field. */
5043 static int
5044 parse_vc_item_ecpri_type(struct context *ctx, const struct token *token,
5045 			 const char *str, unsigned int len,
5046 			 void *buf, unsigned int size)
5047 {
5048 	struct rte_flow_item_ecpri *ecpri;
5049 	struct rte_flow_item_ecpri *ecpri_mask;
5050 	struct rte_flow_item *item;
5051 	uint32_t data_size;
5052 	uint8_t msg_type;
5053 	struct buffer *out = buf;
5054 	const struct arg *arg;
5055 
5056 	(void)size;
5057 	/* Token name must match. */
5058 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5059 		return -1;
5060 	switch (ctx->curr) {
5061 	case ITEM_ECPRI_COMMON_TYPE_IQ_DATA:
5062 		msg_type = RTE_ECPRI_MSG_TYPE_IQ_DATA;
5063 		break;
5064 	case ITEM_ECPRI_COMMON_TYPE_RTC_CTRL:
5065 		msg_type = RTE_ECPRI_MSG_TYPE_RTC_CTRL;
5066 		break;
5067 	case ITEM_ECPRI_COMMON_TYPE_DLY_MSR:
5068 		msg_type = RTE_ECPRI_MSG_TYPE_DLY_MSR;
5069 		break;
5070 	default:
5071 		return -1;
5072 	}
5073 	if (!ctx->object)
5074 		return len;
5075 	arg = pop_args(ctx);
5076 	if (!arg)
5077 		return -1;
5078 	ecpri = (struct rte_flow_item_ecpri *)out->args.vc.data;
5079 	ecpri->hdr.common.type = msg_type;
5080 	data_size = ctx->objdata / 3; /* spec, last, mask */
5081 	ecpri_mask = (struct rte_flow_item_ecpri *)(out->args.vc.data +
5082 						    (data_size * 2));
5083 	ecpri_mask->hdr.common.type = 0xFF;
5084 	if (arg->hton) {
5085 		ecpri->hdr.common.u32 = rte_cpu_to_be_32(ecpri->hdr.common.u32);
5086 		ecpri_mask->hdr.common.u32 =
5087 				rte_cpu_to_be_32(ecpri_mask->hdr.common.u32);
5088 	}
5089 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
5090 	item->spec = ecpri;
5091 	item->mask = ecpri_mask;
5092 	return len;
5093 }
5094 
5095 /** Parse RSS action. */
5096 static int
5097 parse_vc_action_rss(struct context *ctx, const struct token *token,
5098 		    const char *str, unsigned int len,
5099 		    void *buf, unsigned int size)
5100 {
5101 	struct buffer *out = buf;
5102 	struct rte_flow_action *action;
5103 	struct action_rss_data *action_rss_data;
5104 	unsigned int i;
5105 	int ret;
5106 
5107 	ret = parse_vc(ctx, token, str, len, buf, size);
5108 	if (ret < 0)
5109 		return ret;
5110 	/* Nothing else to do if there is no buffer. */
5111 	if (!out)
5112 		return ret;
5113 	if (!out->args.vc.actions_n)
5114 		return -1;
5115 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5116 	/* Point to selected object. */
5117 	ctx->object = out->args.vc.data;
5118 	ctx->objmask = NULL;
5119 	/* Set up default configuration. */
5120 	action_rss_data = ctx->object;
5121 	*action_rss_data = (struct action_rss_data){
5122 		.conf = (struct rte_flow_action_rss){
5123 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5124 			.level = 0,
5125 			.types = rss_hf,
5126 			.key_len = 0,
5127 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
5128 			.key = NULL,
5129 			.queue = action_rss_data->queue,
5130 		},
5131 		.queue = { 0 },
5132 	};
5133 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
5134 		action_rss_data->queue[i] = i;
5135 	action->conf = &action_rss_data->conf;
5136 	return ret;
5137 }
5138 
5139 /**
5140  * Parse func field for RSS action.
5141  *
5142  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
5143  * ACTION_RSS_FUNC_* index that called this function.
5144  */
5145 static int
5146 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
5147 			 const char *str, unsigned int len,
5148 			 void *buf, unsigned int size)
5149 {
5150 	struct action_rss_data *action_rss_data;
5151 	enum rte_eth_hash_function func;
5152 
5153 	(void)buf;
5154 	(void)size;
5155 	/* Token name must match. */
5156 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5157 		return -1;
5158 	switch (ctx->curr) {
5159 	case ACTION_RSS_FUNC_DEFAULT:
5160 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
5161 		break;
5162 	case ACTION_RSS_FUNC_TOEPLITZ:
5163 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
5164 		break;
5165 	case ACTION_RSS_FUNC_SIMPLE_XOR:
5166 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
5167 		break;
5168 	case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
5169 		func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
5170 		break;
5171 	default:
5172 		return -1;
5173 	}
5174 	if (!ctx->object)
5175 		return len;
5176 	action_rss_data = ctx->object;
5177 	action_rss_data->conf.func = func;
5178 	return len;
5179 }
5180 
5181 /**
5182  * Parse type field for RSS action.
5183  *
5184  * Valid tokens are type field names and the "end" token.
5185  */
5186 static int
5187 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
5188 			  const char *str, unsigned int len,
5189 			  void *buf, unsigned int size)
5190 {
5191 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
5192 	struct action_rss_data *action_rss_data;
5193 	unsigned int i;
5194 
5195 	(void)token;
5196 	(void)buf;
5197 	(void)size;
5198 	if (ctx->curr != ACTION_RSS_TYPE)
5199 		return -1;
5200 	if (!(ctx->objdata >> 16) && ctx->object) {
5201 		action_rss_data = ctx->object;
5202 		action_rss_data->conf.types = 0;
5203 	}
5204 	if (!strcmp_partial("end", str, len)) {
5205 		ctx->objdata &= 0xffff;
5206 		return len;
5207 	}
5208 	for (i = 0; rss_type_table[i].str; ++i)
5209 		if (!strcmp_partial(rss_type_table[i].str, str, len))
5210 			break;
5211 	if (!rss_type_table[i].str)
5212 		return -1;
5213 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
5214 	/* Repeat token. */
5215 	if (ctx->next_num == RTE_DIM(ctx->next))
5216 		return -1;
5217 	ctx->next[ctx->next_num++] = next;
5218 	if (!ctx->object)
5219 		return len;
5220 	action_rss_data = ctx->object;
5221 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
5222 	return len;
5223 }
5224 
5225 /**
5226  * Parse queue field for RSS action.
5227  *
5228  * Valid tokens are queue indices and the "end" token.
5229  */
5230 static int
5231 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
5232 			  const char *str, unsigned int len,
5233 			  void *buf, unsigned int size)
5234 {
5235 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
5236 	struct action_rss_data *action_rss_data;
5237 	const struct arg *arg;
5238 	int ret;
5239 	int i;
5240 
5241 	(void)token;
5242 	(void)buf;
5243 	(void)size;
5244 	if (ctx->curr != ACTION_RSS_QUEUE)
5245 		return -1;
5246 	i = ctx->objdata >> 16;
5247 	if (!strcmp_partial("end", str, len)) {
5248 		ctx->objdata &= 0xffff;
5249 		goto end;
5250 	}
5251 	if (i >= ACTION_RSS_QUEUE_NUM)
5252 		return -1;
5253 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
5254 			     i * sizeof(action_rss_data->queue[i]),
5255 			     sizeof(action_rss_data->queue[i]));
5256 	if (push_args(ctx, arg))
5257 		return -1;
5258 	ret = parse_int(ctx, token, str, len, NULL, 0);
5259 	if (ret < 0) {
5260 		pop_args(ctx);
5261 		return -1;
5262 	}
5263 	++i;
5264 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
5265 	/* Repeat token. */
5266 	if (ctx->next_num == RTE_DIM(ctx->next))
5267 		return -1;
5268 	ctx->next[ctx->next_num++] = next;
5269 end:
5270 	if (!ctx->object)
5271 		return len;
5272 	action_rss_data = ctx->object;
5273 	action_rss_data->conf.queue_num = i;
5274 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
5275 	return len;
5276 }
5277 
5278 /** Setup VXLAN encap configuration. */
5279 static int
5280 parse_setup_vxlan_encap_data(struct action_vxlan_encap_data *action_vxlan_encap_data)
5281 {
5282 	/* Set up default configuration. */
5283 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
5284 		.conf = (struct rte_flow_action_vxlan_encap){
5285 			.definition = action_vxlan_encap_data->items,
5286 		},
5287 		.items = {
5288 			{
5289 				.type = RTE_FLOW_ITEM_TYPE_ETH,
5290 				.spec = &action_vxlan_encap_data->item_eth,
5291 				.mask = &rte_flow_item_eth_mask,
5292 			},
5293 			{
5294 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
5295 				.spec = &action_vxlan_encap_data->item_vlan,
5296 				.mask = &rte_flow_item_vlan_mask,
5297 			},
5298 			{
5299 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
5300 				.spec = &action_vxlan_encap_data->item_ipv4,
5301 				.mask = &rte_flow_item_ipv4_mask,
5302 			},
5303 			{
5304 				.type = RTE_FLOW_ITEM_TYPE_UDP,
5305 				.spec = &action_vxlan_encap_data->item_udp,
5306 				.mask = &rte_flow_item_udp_mask,
5307 			},
5308 			{
5309 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
5310 				.spec = &action_vxlan_encap_data->item_vxlan,
5311 				.mask = &rte_flow_item_vxlan_mask,
5312 			},
5313 			{
5314 				.type = RTE_FLOW_ITEM_TYPE_END,
5315 			},
5316 		},
5317 		.item_eth.type = 0,
5318 		.item_vlan = {
5319 			.tci = vxlan_encap_conf.vlan_tci,
5320 			.inner_type = 0,
5321 		},
5322 		.item_ipv4.hdr = {
5323 			.src_addr = vxlan_encap_conf.ipv4_src,
5324 			.dst_addr = vxlan_encap_conf.ipv4_dst,
5325 		},
5326 		.item_udp.hdr = {
5327 			.src_port = vxlan_encap_conf.udp_src,
5328 			.dst_port = vxlan_encap_conf.udp_dst,
5329 		},
5330 		.item_vxlan.flags = 0,
5331 	};
5332 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
5333 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5334 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
5335 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5336 	if (!vxlan_encap_conf.select_ipv4) {
5337 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
5338 		       &vxlan_encap_conf.ipv6_src,
5339 		       sizeof(vxlan_encap_conf.ipv6_src));
5340 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
5341 		       &vxlan_encap_conf.ipv6_dst,
5342 		       sizeof(vxlan_encap_conf.ipv6_dst));
5343 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
5344 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
5345 			.spec = &action_vxlan_encap_data->item_ipv6,
5346 			.mask = &rte_flow_item_ipv6_mask,
5347 		};
5348 	}
5349 	if (!vxlan_encap_conf.select_vlan)
5350 		action_vxlan_encap_data->items[1].type =
5351 			RTE_FLOW_ITEM_TYPE_VOID;
5352 	if (vxlan_encap_conf.select_tos_ttl) {
5353 		if (vxlan_encap_conf.select_ipv4) {
5354 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
5355 
5356 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
5357 			       sizeof(ipv4_mask_tos));
5358 			ipv4_mask_tos.hdr.type_of_service = 0xff;
5359 			ipv4_mask_tos.hdr.time_to_live = 0xff;
5360 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
5361 					vxlan_encap_conf.ip_tos;
5362 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
5363 					vxlan_encap_conf.ip_ttl;
5364 			action_vxlan_encap_data->items[2].mask =
5365 							&ipv4_mask_tos;
5366 		} else {
5367 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
5368 
5369 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
5370 			       sizeof(ipv6_mask_tos));
5371 			ipv6_mask_tos.hdr.vtc_flow |=
5372 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
5373 			ipv6_mask_tos.hdr.hop_limits = 0xff;
5374 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
5375 				rte_cpu_to_be_32
5376 					((uint32_t)vxlan_encap_conf.ip_tos <<
5377 					 RTE_IPV6_HDR_TC_SHIFT);
5378 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
5379 					vxlan_encap_conf.ip_ttl;
5380 			action_vxlan_encap_data->items[2].mask =
5381 							&ipv6_mask_tos;
5382 		}
5383 	}
5384 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
5385 	       RTE_DIM(vxlan_encap_conf.vni));
5386 	return 0;
5387 }
5388 
5389 /** Parse VXLAN encap action. */
5390 static int
5391 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
5392 			    const char *str, unsigned int len,
5393 			    void *buf, unsigned int size)
5394 {
5395 	struct buffer *out = buf;
5396 	struct rte_flow_action *action;
5397 	struct action_vxlan_encap_data *action_vxlan_encap_data;
5398 	int ret;
5399 
5400 	ret = parse_vc(ctx, token, str, len, buf, size);
5401 	if (ret < 0)
5402 		return ret;
5403 	/* Nothing else to do if there is no buffer. */
5404 	if (!out)
5405 		return ret;
5406 	if (!out->args.vc.actions_n)
5407 		return -1;
5408 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5409 	/* Point to selected object. */
5410 	ctx->object = out->args.vc.data;
5411 	ctx->objmask = NULL;
5412 	action_vxlan_encap_data = ctx->object;
5413 	parse_setup_vxlan_encap_data(action_vxlan_encap_data);
5414 	action->conf = &action_vxlan_encap_data->conf;
5415 	return ret;
5416 }
5417 
5418 /** Setup NVGRE encap configuration. */
5419 static int
5420 parse_setup_nvgre_encap_data(struct action_nvgre_encap_data *action_nvgre_encap_data)
5421 {
5422 	/* Set up default configuration. */
5423 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
5424 		.conf = (struct rte_flow_action_nvgre_encap){
5425 			.definition = action_nvgre_encap_data->items,
5426 		},
5427 		.items = {
5428 			{
5429 				.type = RTE_FLOW_ITEM_TYPE_ETH,
5430 				.spec = &action_nvgre_encap_data->item_eth,
5431 				.mask = &rte_flow_item_eth_mask,
5432 			},
5433 			{
5434 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
5435 				.spec = &action_nvgre_encap_data->item_vlan,
5436 				.mask = &rte_flow_item_vlan_mask,
5437 			},
5438 			{
5439 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
5440 				.spec = &action_nvgre_encap_data->item_ipv4,
5441 				.mask = &rte_flow_item_ipv4_mask,
5442 			},
5443 			{
5444 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
5445 				.spec = &action_nvgre_encap_data->item_nvgre,
5446 				.mask = &rte_flow_item_nvgre_mask,
5447 			},
5448 			{
5449 				.type = RTE_FLOW_ITEM_TYPE_END,
5450 			},
5451 		},
5452 		.item_eth.type = 0,
5453 		.item_vlan = {
5454 			.tci = nvgre_encap_conf.vlan_tci,
5455 			.inner_type = 0,
5456 		},
5457 		.item_ipv4.hdr = {
5458 		       .src_addr = nvgre_encap_conf.ipv4_src,
5459 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
5460 		},
5461 		.item_nvgre.c_k_s_rsvd0_ver = RTE_BE16(0x2000),
5462 		.item_nvgre.protocol = RTE_BE16(RTE_ETHER_TYPE_TEB),
5463 		.item_nvgre.flow_id = 0,
5464 	};
5465 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
5466 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5467 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
5468 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5469 	if (!nvgre_encap_conf.select_ipv4) {
5470 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
5471 		       &nvgre_encap_conf.ipv6_src,
5472 		       sizeof(nvgre_encap_conf.ipv6_src));
5473 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
5474 		       &nvgre_encap_conf.ipv6_dst,
5475 		       sizeof(nvgre_encap_conf.ipv6_dst));
5476 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
5477 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
5478 			.spec = &action_nvgre_encap_data->item_ipv6,
5479 			.mask = &rte_flow_item_ipv6_mask,
5480 		};
5481 	}
5482 	if (!nvgre_encap_conf.select_vlan)
5483 		action_nvgre_encap_data->items[1].type =
5484 			RTE_FLOW_ITEM_TYPE_VOID;
5485 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
5486 	       RTE_DIM(nvgre_encap_conf.tni));
5487 	return 0;
5488 }
5489 
5490 /** Parse NVGRE encap action. */
5491 static int
5492 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
5493 			    const char *str, unsigned int len,
5494 			    void *buf, unsigned int size)
5495 {
5496 	struct buffer *out = buf;
5497 	struct rte_flow_action *action;
5498 	struct action_nvgre_encap_data *action_nvgre_encap_data;
5499 	int ret;
5500 
5501 	ret = parse_vc(ctx, token, str, len, buf, size);
5502 	if (ret < 0)
5503 		return ret;
5504 	/* Nothing else to do if there is no buffer. */
5505 	if (!out)
5506 		return ret;
5507 	if (!out->args.vc.actions_n)
5508 		return -1;
5509 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5510 	/* Point to selected object. */
5511 	ctx->object = out->args.vc.data;
5512 	ctx->objmask = NULL;
5513 	action_nvgre_encap_data = ctx->object;
5514 	parse_setup_nvgre_encap_data(action_nvgre_encap_data);
5515 	action->conf = &action_nvgre_encap_data->conf;
5516 	return ret;
5517 }
5518 
5519 /** Parse l2 encap action. */
5520 static int
5521 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
5522 			 const char *str, unsigned int len,
5523 			 void *buf, unsigned int size)
5524 {
5525 	struct buffer *out = buf;
5526 	struct rte_flow_action *action;
5527 	struct action_raw_encap_data *action_encap_data;
5528 	struct rte_flow_item_eth eth = { .type = 0, };
5529 	struct rte_flow_item_vlan vlan = {
5530 		.tci = mplsoudp_encap_conf.vlan_tci,
5531 		.inner_type = 0,
5532 	};
5533 	uint8_t *header;
5534 	int ret;
5535 
5536 	ret = parse_vc(ctx, token, str, len, buf, size);
5537 	if (ret < 0)
5538 		return ret;
5539 	/* Nothing else to do if there is no buffer. */
5540 	if (!out)
5541 		return ret;
5542 	if (!out->args.vc.actions_n)
5543 		return -1;
5544 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5545 	/* Point to selected object. */
5546 	ctx->object = out->args.vc.data;
5547 	ctx->objmask = NULL;
5548 	/* Copy the headers to the buffer. */
5549 	action_encap_data = ctx->object;
5550 	*action_encap_data = (struct action_raw_encap_data) {
5551 		.conf = (struct rte_flow_action_raw_encap){
5552 			.data = action_encap_data->data,
5553 		},
5554 		.data = {},
5555 	};
5556 	header = action_encap_data->data;
5557 	if (l2_encap_conf.select_vlan)
5558 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5559 	else if (l2_encap_conf.select_ipv4)
5560 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5561 	else
5562 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5563 	memcpy(eth.dst.addr_bytes,
5564 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5565 	memcpy(eth.src.addr_bytes,
5566 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5567 	memcpy(header, &eth, sizeof(eth));
5568 	header += sizeof(eth);
5569 	if (l2_encap_conf.select_vlan) {
5570 		if (l2_encap_conf.select_ipv4)
5571 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5572 		else
5573 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5574 		memcpy(header, &vlan, sizeof(vlan));
5575 		header += sizeof(vlan);
5576 	}
5577 	action_encap_data->conf.size = header -
5578 		action_encap_data->data;
5579 	action->conf = &action_encap_data->conf;
5580 	return ret;
5581 }
5582 
5583 /** Parse l2 decap action. */
5584 static int
5585 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
5586 			 const char *str, unsigned int len,
5587 			 void *buf, unsigned int size)
5588 {
5589 	struct buffer *out = buf;
5590 	struct rte_flow_action *action;
5591 	struct action_raw_decap_data *action_decap_data;
5592 	struct rte_flow_item_eth eth = { .type = 0, };
5593 	struct rte_flow_item_vlan vlan = {
5594 		.tci = mplsoudp_encap_conf.vlan_tci,
5595 		.inner_type = 0,
5596 	};
5597 	uint8_t *header;
5598 	int ret;
5599 
5600 	ret = parse_vc(ctx, token, str, len, buf, size);
5601 	if (ret < 0)
5602 		return ret;
5603 	/* Nothing else to do if there is no buffer. */
5604 	if (!out)
5605 		return ret;
5606 	if (!out->args.vc.actions_n)
5607 		return -1;
5608 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5609 	/* Point to selected object. */
5610 	ctx->object = out->args.vc.data;
5611 	ctx->objmask = NULL;
5612 	/* Copy the headers to the buffer. */
5613 	action_decap_data = ctx->object;
5614 	*action_decap_data = (struct action_raw_decap_data) {
5615 		.conf = (struct rte_flow_action_raw_decap){
5616 			.data = action_decap_data->data,
5617 		},
5618 		.data = {},
5619 	};
5620 	header = action_decap_data->data;
5621 	if (l2_decap_conf.select_vlan)
5622 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5623 	memcpy(header, &eth, sizeof(eth));
5624 	header += sizeof(eth);
5625 	if (l2_decap_conf.select_vlan) {
5626 		memcpy(header, &vlan, sizeof(vlan));
5627 		header += sizeof(vlan);
5628 	}
5629 	action_decap_data->conf.size = header -
5630 		action_decap_data->data;
5631 	action->conf = &action_decap_data->conf;
5632 	return ret;
5633 }
5634 
5635 #define ETHER_TYPE_MPLS_UNICAST 0x8847
5636 
5637 /** Parse MPLSOGRE encap action. */
5638 static int
5639 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
5640 			       const char *str, unsigned int len,
5641 			       void *buf, unsigned int size)
5642 {
5643 	struct buffer *out = buf;
5644 	struct rte_flow_action *action;
5645 	struct action_raw_encap_data *action_encap_data;
5646 	struct rte_flow_item_eth eth = { .type = 0, };
5647 	struct rte_flow_item_vlan vlan = {
5648 		.tci = mplsogre_encap_conf.vlan_tci,
5649 		.inner_type = 0,
5650 	};
5651 	struct rte_flow_item_ipv4 ipv4 = {
5652 		.hdr =  {
5653 			.src_addr = mplsogre_encap_conf.ipv4_src,
5654 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
5655 			.next_proto_id = IPPROTO_GRE,
5656 			.version_ihl = RTE_IPV4_VHL_DEF,
5657 			.time_to_live = IPDEFTTL,
5658 		},
5659 	};
5660 	struct rte_flow_item_ipv6 ipv6 = {
5661 		.hdr =  {
5662 			.proto = IPPROTO_GRE,
5663 			.hop_limits = IPDEFTTL,
5664 		},
5665 	};
5666 	struct rte_flow_item_gre gre = {
5667 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
5668 	};
5669 	struct rte_flow_item_mpls mpls = {
5670 		.ttl = 0,
5671 	};
5672 	uint8_t *header;
5673 	int ret;
5674 
5675 	ret = parse_vc(ctx, token, str, len, buf, size);
5676 	if (ret < 0)
5677 		return ret;
5678 	/* Nothing else to do if there is no buffer. */
5679 	if (!out)
5680 		return ret;
5681 	if (!out->args.vc.actions_n)
5682 		return -1;
5683 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5684 	/* Point to selected object. */
5685 	ctx->object = out->args.vc.data;
5686 	ctx->objmask = NULL;
5687 	/* Copy the headers to the buffer. */
5688 	action_encap_data = ctx->object;
5689 	*action_encap_data = (struct action_raw_encap_data) {
5690 		.conf = (struct rte_flow_action_raw_encap){
5691 			.data = action_encap_data->data,
5692 		},
5693 		.data = {},
5694 		.preserve = {},
5695 	};
5696 	header = action_encap_data->data;
5697 	if (mplsogre_encap_conf.select_vlan)
5698 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5699 	else if (mplsogre_encap_conf.select_ipv4)
5700 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5701 	else
5702 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5703 	memcpy(eth.dst.addr_bytes,
5704 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5705 	memcpy(eth.src.addr_bytes,
5706 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5707 	memcpy(header, &eth, sizeof(eth));
5708 	header += sizeof(eth);
5709 	if (mplsogre_encap_conf.select_vlan) {
5710 		if (mplsogre_encap_conf.select_ipv4)
5711 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5712 		else
5713 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5714 		memcpy(header, &vlan, sizeof(vlan));
5715 		header += sizeof(vlan);
5716 	}
5717 	if (mplsogre_encap_conf.select_ipv4) {
5718 		memcpy(header, &ipv4, sizeof(ipv4));
5719 		header += sizeof(ipv4);
5720 	} else {
5721 		memcpy(&ipv6.hdr.src_addr,
5722 		       &mplsogre_encap_conf.ipv6_src,
5723 		       sizeof(mplsogre_encap_conf.ipv6_src));
5724 		memcpy(&ipv6.hdr.dst_addr,
5725 		       &mplsogre_encap_conf.ipv6_dst,
5726 		       sizeof(mplsogre_encap_conf.ipv6_dst));
5727 		memcpy(header, &ipv6, sizeof(ipv6));
5728 		header += sizeof(ipv6);
5729 	}
5730 	memcpy(header, &gre, sizeof(gre));
5731 	header += sizeof(gre);
5732 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
5733 	       RTE_DIM(mplsogre_encap_conf.label));
5734 	mpls.label_tc_s[2] |= 0x1;
5735 	memcpy(header, &mpls, sizeof(mpls));
5736 	header += sizeof(mpls);
5737 	action_encap_data->conf.size = header -
5738 		action_encap_data->data;
5739 	action->conf = &action_encap_data->conf;
5740 	return ret;
5741 }
5742 
5743 /** Parse MPLSOGRE decap action. */
5744 static int
5745 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
5746 			       const char *str, unsigned int len,
5747 			       void *buf, unsigned int size)
5748 {
5749 	struct buffer *out = buf;
5750 	struct rte_flow_action *action;
5751 	struct action_raw_decap_data *action_decap_data;
5752 	struct rte_flow_item_eth eth = { .type = 0, };
5753 	struct rte_flow_item_vlan vlan = {.tci = 0};
5754 	struct rte_flow_item_ipv4 ipv4 = {
5755 		.hdr =  {
5756 			.next_proto_id = IPPROTO_GRE,
5757 		},
5758 	};
5759 	struct rte_flow_item_ipv6 ipv6 = {
5760 		.hdr =  {
5761 			.proto = IPPROTO_GRE,
5762 		},
5763 	};
5764 	struct rte_flow_item_gre gre = {
5765 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
5766 	};
5767 	struct rte_flow_item_mpls mpls;
5768 	uint8_t *header;
5769 	int ret;
5770 
5771 	ret = parse_vc(ctx, token, str, len, buf, size);
5772 	if (ret < 0)
5773 		return ret;
5774 	/* Nothing else to do if there is no buffer. */
5775 	if (!out)
5776 		return ret;
5777 	if (!out->args.vc.actions_n)
5778 		return -1;
5779 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5780 	/* Point to selected object. */
5781 	ctx->object = out->args.vc.data;
5782 	ctx->objmask = NULL;
5783 	/* Copy the headers to the buffer. */
5784 	action_decap_data = ctx->object;
5785 	*action_decap_data = (struct action_raw_decap_data) {
5786 		.conf = (struct rte_flow_action_raw_decap){
5787 			.data = action_decap_data->data,
5788 		},
5789 		.data = {},
5790 	};
5791 	header = action_decap_data->data;
5792 	if (mplsogre_decap_conf.select_vlan)
5793 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5794 	else if (mplsogre_encap_conf.select_ipv4)
5795 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5796 	else
5797 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5798 	memcpy(eth.dst.addr_bytes,
5799 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5800 	memcpy(eth.src.addr_bytes,
5801 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5802 	memcpy(header, &eth, sizeof(eth));
5803 	header += sizeof(eth);
5804 	if (mplsogre_encap_conf.select_vlan) {
5805 		if (mplsogre_encap_conf.select_ipv4)
5806 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5807 		else
5808 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5809 		memcpy(header, &vlan, sizeof(vlan));
5810 		header += sizeof(vlan);
5811 	}
5812 	if (mplsogre_encap_conf.select_ipv4) {
5813 		memcpy(header, &ipv4, sizeof(ipv4));
5814 		header += sizeof(ipv4);
5815 	} else {
5816 		memcpy(header, &ipv6, sizeof(ipv6));
5817 		header += sizeof(ipv6);
5818 	}
5819 	memcpy(header, &gre, sizeof(gre));
5820 	header += sizeof(gre);
5821 	memset(&mpls, 0, sizeof(mpls));
5822 	memcpy(header, &mpls, sizeof(mpls));
5823 	header += sizeof(mpls);
5824 	action_decap_data->conf.size = header -
5825 		action_decap_data->data;
5826 	action->conf = &action_decap_data->conf;
5827 	return ret;
5828 }
5829 
5830 /** Parse MPLSOUDP encap action. */
5831 static int
5832 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
5833 			       const char *str, unsigned int len,
5834 			       void *buf, unsigned int size)
5835 {
5836 	struct buffer *out = buf;
5837 	struct rte_flow_action *action;
5838 	struct action_raw_encap_data *action_encap_data;
5839 	struct rte_flow_item_eth eth = { .type = 0, };
5840 	struct rte_flow_item_vlan vlan = {
5841 		.tci = mplsoudp_encap_conf.vlan_tci,
5842 		.inner_type = 0,
5843 	};
5844 	struct rte_flow_item_ipv4 ipv4 = {
5845 		.hdr =  {
5846 			.src_addr = mplsoudp_encap_conf.ipv4_src,
5847 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
5848 			.next_proto_id = IPPROTO_UDP,
5849 			.version_ihl = RTE_IPV4_VHL_DEF,
5850 			.time_to_live = IPDEFTTL,
5851 		},
5852 	};
5853 	struct rte_flow_item_ipv6 ipv6 = {
5854 		.hdr =  {
5855 			.proto = IPPROTO_UDP,
5856 			.hop_limits = IPDEFTTL,
5857 		},
5858 	};
5859 	struct rte_flow_item_udp udp = {
5860 		.hdr = {
5861 			.src_port = mplsoudp_encap_conf.udp_src,
5862 			.dst_port = mplsoudp_encap_conf.udp_dst,
5863 		},
5864 	};
5865 	struct rte_flow_item_mpls mpls;
5866 	uint8_t *header;
5867 	int ret;
5868 
5869 	ret = parse_vc(ctx, token, str, len, buf, size);
5870 	if (ret < 0)
5871 		return ret;
5872 	/* Nothing else to do if there is no buffer. */
5873 	if (!out)
5874 		return ret;
5875 	if (!out->args.vc.actions_n)
5876 		return -1;
5877 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5878 	/* Point to selected object. */
5879 	ctx->object = out->args.vc.data;
5880 	ctx->objmask = NULL;
5881 	/* Copy the headers to the buffer. */
5882 	action_encap_data = ctx->object;
5883 	*action_encap_data = (struct action_raw_encap_data) {
5884 		.conf = (struct rte_flow_action_raw_encap){
5885 			.data = action_encap_data->data,
5886 		},
5887 		.data = {},
5888 		.preserve = {},
5889 	};
5890 	header = action_encap_data->data;
5891 	if (mplsoudp_encap_conf.select_vlan)
5892 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5893 	else if (mplsoudp_encap_conf.select_ipv4)
5894 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5895 	else
5896 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5897 	memcpy(eth.dst.addr_bytes,
5898 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5899 	memcpy(eth.src.addr_bytes,
5900 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5901 	memcpy(header, &eth, sizeof(eth));
5902 	header += sizeof(eth);
5903 	if (mplsoudp_encap_conf.select_vlan) {
5904 		if (mplsoudp_encap_conf.select_ipv4)
5905 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5906 		else
5907 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5908 		memcpy(header, &vlan, sizeof(vlan));
5909 		header += sizeof(vlan);
5910 	}
5911 	if (mplsoudp_encap_conf.select_ipv4) {
5912 		memcpy(header, &ipv4, sizeof(ipv4));
5913 		header += sizeof(ipv4);
5914 	} else {
5915 		memcpy(&ipv6.hdr.src_addr,
5916 		       &mplsoudp_encap_conf.ipv6_src,
5917 		       sizeof(mplsoudp_encap_conf.ipv6_src));
5918 		memcpy(&ipv6.hdr.dst_addr,
5919 		       &mplsoudp_encap_conf.ipv6_dst,
5920 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
5921 		memcpy(header, &ipv6, sizeof(ipv6));
5922 		header += sizeof(ipv6);
5923 	}
5924 	memcpy(header, &udp, sizeof(udp));
5925 	header += sizeof(udp);
5926 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
5927 	       RTE_DIM(mplsoudp_encap_conf.label));
5928 	mpls.label_tc_s[2] |= 0x1;
5929 	memcpy(header, &mpls, sizeof(mpls));
5930 	header += sizeof(mpls);
5931 	action_encap_data->conf.size = header -
5932 		action_encap_data->data;
5933 	action->conf = &action_encap_data->conf;
5934 	return ret;
5935 }
5936 
5937 /** Parse MPLSOUDP decap action. */
5938 static int
5939 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
5940 			       const char *str, unsigned int len,
5941 			       void *buf, unsigned int size)
5942 {
5943 	struct buffer *out = buf;
5944 	struct rte_flow_action *action;
5945 	struct action_raw_decap_data *action_decap_data;
5946 	struct rte_flow_item_eth eth = { .type = 0, };
5947 	struct rte_flow_item_vlan vlan = {.tci = 0};
5948 	struct rte_flow_item_ipv4 ipv4 = {
5949 		.hdr =  {
5950 			.next_proto_id = IPPROTO_UDP,
5951 		},
5952 	};
5953 	struct rte_flow_item_ipv6 ipv6 = {
5954 		.hdr =  {
5955 			.proto = IPPROTO_UDP,
5956 		},
5957 	};
5958 	struct rte_flow_item_udp udp = {
5959 		.hdr = {
5960 			.dst_port = rte_cpu_to_be_16(6635),
5961 		},
5962 	};
5963 	struct rte_flow_item_mpls mpls;
5964 	uint8_t *header;
5965 	int ret;
5966 
5967 	ret = parse_vc(ctx, token, str, len, buf, size);
5968 	if (ret < 0)
5969 		return ret;
5970 	/* Nothing else to do if there is no buffer. */
5971 	if (!out)
5972 		return ret;
5973 	if (!out->args.vc.actions_n)
5974 		return -1;
5975 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5976 	/* Point to selected object. */
5977 	ctx->object = out->args.vc.data;
5978 	ctx->objmask = NULL;
5979 	/* Copy the headers to the buffer. */
5980 	action_decap_data = ctx->object;
5981 	*action_decap_data = (struct action_raw_decap_data) {
5982 		.conf = (struct rte_flow_action_raw_decap){
5983 			.data = action_decap_data->data,
5984 		},
5985 		.data = {},
5986 	};
5987 	header = action_decap_data->data;
5988 	if (mplsoudp_decap_conf.select_vlan)
5989 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5990 	else if (mplsoudp_encap_conf.select_ipv4)
5991 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5992 	else
5993 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5994 	memcpy(eth.dst.addr_bytes,
5995 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5996 	memcpy(eth.src.addr_bytes,
5997 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5998 	memcpy(header, &eth, sizeof(eth));
5999 	header += sizeof(eth);
6000 	if (mplsoudp_encap_conf.select_vlan) {
6001 		if (mplsoudp_encap_conf.select_ipv4)
6002 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6003 		else
6004 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6005 		memcpy(header, &vlan, sizeof(vlan));
6006 		header += sizeof(vlan);
6007 	}
6008 	if (mplsoudp_encap_conf.select_ipv4) {
6009 		memcpy(header, &ipv4, sizeof(ipv4));
6010 		header += sizeof(ipv4);
6011 	} else {
6012 		memcpy(header, &ipv6, sizeof(ipv6));
6013 		header += sizeof(ipv6);
6014 	}
6015 	memcpy(header, &udp, sizeof(udp));
6016 	header += sizeof(udp);
6017 	memset(&mpls, 0, sizeof(mpls));
6018 	memcpy(header, &mpls, sizeof(mpls));
6019 	header += sizeof(mpls);
6020 	action_decap_data->conf.size = header -
6021 		action_decap_data->data;
6022 	action->conf = &action_decap_data->conf;
6023 	return ret;
6024 }
6025 
6026 static int
6027 parse_vc_action_raw_decap_index(struct context *ctx, const struct token *token,
6028 				const char *str, unsigned int len, void *buf,
6029 				unsigned int size)
6030 {
6031 	struct action_raw_decap_data *action_raw_decap_data;
6032 	struct rte_flow_action *action;
6033 	const struct arg *arg;
6034 	struct buffer *out = buf;
6035 	int ret;
6036 	uint16_t idx;
6037 
6038 	RTE_SET_USED(token);
6039 	RTE_SET_USED(buf);
6040 	RTE_SET_USED(size);
6041 	arg = ARGS_ENTRY_ARB_BOUNDED
6042 		(offsetof(struct action_raw_decap_data, idx),
6043 		 sizeof(((struct action_raw_decap_data *)0)->idx),
6044 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
6045 	if (push_args(ctx, arg))
6046 		return -1;
6047 	ret = parse_int(ctx, token, str, len, NULL, 0);
6048 	if (ret < 0) {
6049 		pop_args(ctx);
6050 		return -1;
6051 	}
6052 	if (!ctx->object)
6053 		return len;
6054 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6055 	action_raw_decap_data = ctx->object;
6056 	idx = action_raw_decap_data->idx;
6057 	action_raw_decap_data->conf.data = raw_decap_confs[idx].data;
6058 	action_raw_decap_data->conf.size = raw_decap_confs[idx].size;
6059 	action->conf = &action_raw_decap_data->conf;
6060 	return len;
6061 }
6062 
6063 
6064 static int
6065 parse_vc_action_raw_encap_index(struct context *ctx, const struct token *token,
6066 				const char *str, unsigned int len, void *buf,
6067 				unsigned int size)
6068 {
6069 	struct action_raw_encap_data *action_raw_encap_data;
6070 	struct rte_flow_action *action;
6071 	const struct arg *arg;
6072 	struct buffer *out = buf;
6073 	int ret;
6074 	uint16_t idx;
6075 
6076 	RTE_SET_USED(token);
6077 	RTE_SET_USED(buf);
6078 	RTE_SET_USED(size);
6079 	if (ctx->curr != ACTION_RAW_ENCAP_INDEX_VALUE)
6080 		return -1;
6081 	arg = ARGS_ENTRY_ARB_BOUNDED
6082 		(offsetof(struct action_raw_encap_data, idx),
6083 		 sizeof(((struct action_raw_encap_data *)0)->idx),
6084 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
6085 	if (push_args(ctx, arg))
6086 		return -1;
6087 	ret = parse_int(ctx, token, str, len, NULL, 0);
6088 	if (ret < 0) {
6089 		pop_args(ctx);
6090 		return -1;
6091 	}
6092 	if (!ctx->object)
6093 		return len;
6094 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6095 	action_raw_encap_data = ctx->object;
6096 	idx = action_raw_encap_data->idx;
6097 	action_raw_encap_data->conf.data = raw_encap_confs[idx].data;
6098 	action_raw_encap_data->conf.size = raw_encap_confs[idx].size;
6099 	action_raw_encap_data->conf.preserve = NULL;
6100 	action->conf = &action_raw_encap_data->conf;
6101 	return len;
6102 }
6103 
6104 static int
6105 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
6106 			  const char *str, unsigned int len, void *buf,
6107 			  unsigned int size)
6108 {
6109 	struct buffer *out = buf;
6110 	struct rte_flow_action *action;
6111 	struct action_raw_encap_data *action_raw_encap_data = NULL;
6112 	int ret;
6113 
6114 	ret = parse_vc(ctx, token, str, len, buf, size);
6115 	if (ret < 0)
6116 		return ret;
6117 	/* Nothing else to do if there is no buffer. */
6118 	if (!out)
6119 		return ret;
6120 	if (!out->args.vc.actions_n)
6121 		return -1;
6122 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6123 	/* Point to selected object. */
6124 	ctx->object = out->args.vc.data;
6125 	ctx->objmask = NULL;
6126 	/* Copy the headers to the buffer. */
6127 	action_raw_encap_data = ctx->object;
6128 	action_raw_encap_data->conf.data = raw_encap_confs[0].data;
6129 	action_raw_encap_data->conf.preserve = NULL;
6130 	action_raw_encap_data->conf.size = raw_encap_confs[0].size;
6131 	action->conf = &action_raw_encap_data->conf;
6132 	return ret;
6133 }
6134 
6135 static int
6136 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
6137 			  const char *str, unsigned int len, void *buf,
6138 			  unsigned int size)
6139 {
6140 	struct buffer *out = buf;
6141 	struct rte_flow_action *action;
6142 	struct action_raw_decap_data *action_raw_decap_data = NULL;
6143 	int ret;
6144 
6145 	ret = parse_vc(ctx, token, str, len, buf, size);
6146 	if (ret < 0)
6147 		return ret;
6148 	/* Nothing else to do if there is no buffer. */
6149 	if (!out)
6150 		return ret;
6151 	if (!out->args.vc.actions_n)
6152 		return -1;
6153 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6154 	/* Point to selected object. */
6155 	ctx->object = out->args.vc.data;
6156 	ctx->objmask = NULL;
6157 	/* Copy the headers to the buffer. */
6158 	action_raw_decap_data = ctx->object;
6159 	action_raw_decap_data->conf.data = raw_decap_confs[0].data;
6160 	action_raw_decap_data->conf.size = raw_decap_confs[0].size;
6161 	action->conf = &action_raw_decap_data->conf;
6162 	return ret;
6163 }
6164 
6165 static int
6166 parse_vc_action_set_meta(struct context *ctx, const struct token *token,
6167 			 const char *str, unsigned int len, void *buf,
6168 			 unsigned int size)
6169 {
6170 	int ret;
6171 
6172 	ret = parse_vc(ctx, token, str, len, buf, size);
6173 	if (ret < 0)
6174 		return ret;
6175 	ret = rte_flow_dynf_metadata_register();
6176 	if (ret < 0)
6177 		return -1;
6178 	return len;
6179 }
6180 
6181 static int
6182 parse_vc_action_sample(struct context *ctx, const struct token *token,
6183 			 const char *str, unsigned int len, void *buf,
6184 			 unsigned int size)
6185 {
6186 	struct buffer *out = buf;
6187 	struct rte_flow_action *action;
6188 	struct action_sample_data *action_sample_data = NULL;
6189 	static struct rte_flow_action end_action = {
6190 		RTE_FLOW_ACTION_TYPE_END, 0
6191 	};
6192 	int ret;
6193 
6194 	ret = parse_vc(ctx, token, str, len, buf, size);
6195 	if (ret < 0)
6196 		return ret;
6197 	/* Nothing else to do if there is no buffer. */
6198 	if (!out)
6199 		return ret;
6200 	if (!out->args.vc.actions_n)
6201 		return -1;
6202 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6203 	/* Point to selected object. */
6204 	ctx->object = out->args.vc.data;
6205 	ctx->objmask = NULL;
6206 	/* Copy the headers to the buffer. */
6207 	action_sample_data = ctx->object;
6208 	action_sample_data->conf.actions = &end_action;
6209 	action->conf = &action_sample_data->conf;
6210 	return ret;
6211 }
6212 
6213 static int
6214 parse_vc_action_sample_index(struct context *ctx, const struct token *token,
6215 				const char *str, unsigned int len, void *buf,
6216 				unsigned int size)
6217 {
6218 	struct action_sample_data *action_sample_data;
6219 	struct rte_flow_action *action;
6220 	const struct arg *arg;
6221 	struct buffer *out = buf;
6222 	int ret;
6223 	uint16_t idx;
6224 
6225 	RTE_SET_USED(token);
6226 	RTE_SET_USED(buf);
6227 	RTE_SET_USED(size);
6228 	if (ctx->curr != ACTION_SAMPLE_INDEX_VALUE)
6229 		return -1;
6230 	arg = ARGS_ENTRY_ARB_BOUNDED
6231 		(offsetof(struct action_sample_data, idx),
6232 		 sizeof(((struct action_sample_data *)0)->idx),
6233 		 0, RAW_SAMPLE_CONFS_MAX_NUM - 1);
6234 	if (push_args(ctx, arg))
6235 		return -1;
6236 	ret = parse_int(ctx, token, str, len, NULL, 0);
6237 	if (ret < 0) {
6238 		pop_args(ctx);
6239 		return -1;
6240 	}
6241 	if (!ctx->object)
6242 		return len;
6243 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6244 	action_sample_data = ctx->object;
6245 	idx = action_sample_data->idx;
6246 	action_sample_data->conf.actions = raw_sample_confs[idx].data;
6247 	action->conf = &action_sample_data->conf;
6248 	return len;
6249 }
6250 
6251 /** Parse operation for modify_field command. */
6252 static int
6253 parse_vc_modify_field_op(struct context *ctx, const struct token *token,
6254 			 const char *str, unsigned int len, void *buf,
6255 			 unsigned int size)
6256 {
6257 	struct rte_flow_action_modify_field *action_modify_field;
6258 	unsigned int i;
6259 
6260 	(void)token;
6261 	(void)buf;
6262 	(void)size;
6263 	if (ctx->curr != ACTION_MODIFY_FIELD_OP_VALUE)
6264 		return -1;
6265 	for (i = 0; modify_field_ops[i]; ++i)
6266 		if (!strcmp_partial(modify_field_ops[i], str, len))
6267 			break;
6268 	if (!modify_field_ops[i])
6269 		return -1;
6270 	if (!ctx->object)
6271 		return len;
6272 	action_modify_field = ctx->object;
6273 	action_modify_field->operation = (enum rte_flow_modify_op)i;
6274 	return len;
6275 }
6276 
6277 /** Parse id for modify_field command. */
6278 static int
6279 parse_vc_modify_field_id(struct context *ctx, const struct token *token,
6280 			 const char *str, unsigned int len, void *buf,
6281 			 unsigned int size)
6282 {
6283 	struct rte_flow_action_modify_field *action_modify_field;
6284 	unsigned int i;
6285 
6286 	(void)token;
6287 	(void)buf;
6288 	(void)size;
6289 	if (ctx->curr != ACTION_MODIFY_FIELD_DST_TYPE_VALUE &&
6290 		ctx->curr != ACTION_MODIFY_FIELD_SRC_TYPE_VALUE)
6291 		return -1;
6292 	for (i = 0; modify_field_ids[i]; ++i)
6293 		if (!strcmp_partial(modify_field_ids[i], str, len))
6294 			break;
6295 	if (!modify_field_ids[i])
6296 		return -1;
6297 	if (!ctx->object)
6298 		return len;
6299 	action_modify_field = ctx->object;
6300 	if (ctx->curr == ACTION_MODIFY_FIELD_DST_TYPE_VALUE)
6301 		action_modify_field->dst.field = (enum rte_flow_field_id)i;
6302 	else
6303 		action_modify_field->src.field = (enum rte_flow_field_id)i;
6304 	return len;
6305 }
6306 
6307 /** Parse tokens for destroy command. */
6308 static int
6309 parse_destroy(struct context *ctx, const struct token *token,
6310 	      const char *str, unsigned int len,
6311 	      void *buf, unsigned int size)
6312 {
6313 	struct buffer *out = buf;
6314 
6315 	/* Token name must match. */
6316 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6317 		return -1;
6318 	/* Nothing else to do if there is no buffer. */
6319 	if (!out)
6320 		return len;
6321 	if (!out->command) {
6322 		if (ctx->curr != DESTROY)
6323 			return -1;
6324 		if (sizeof(*out) > size)
6325 			return -1;
6326 		out->command = ctx->curr;
6327 		ctx->objdata = 0;
6328 		ctx->object = out;
6329 		ctx->objmask = NULL;
6330 		out->args.destroy.rule =
6331 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6332 					       sizeof(double));
6333 		return len;
6334 	}
6335 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
6336 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
6337 		return -1;
6338 	ctx->objdata = 0;
6339 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
6340 	ctx->objmask = NULL;
6341 	return len;
6342 }
6343 
6344 /** Parse tokens for flush command. */
6345 static int
6346 parse_flush(struct context *ctx, const struct token *token,
6347 	    const char *str, unsigned int len,
6348 	    void *buf, unsigned int size)
6349 {
6350 	struct buffer *out = buf;
6351 
6352 	/* Token name must match. */
6353 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6354 		return -1;
6355 	/* Nothing else to do if there is no buffer. */
6356 	if (!out)
6357 		return len;
6358 	if (!out->command) {
6359 		if (ctx->curr != FLUSH)
6360 			return -1;
6361 		if (sizeof(*out) > size)
6362 			return -1;
6363 		out->command = ctx->curr;
6364 		ctx->objdata = 0;
6365 		ctx->object = out;
6366 		ctx->objmask = NULL;
6367 	}
6368 	return len;
6369 }
6370 
6371 /** Parse tokens for dump command. */
6372 static int
6373 parse_dump(struct context *ctx, const struct token *token,
6374 	    const char *str, unsigned int len,
6375 	    void *buf, unsigned int size)
6376 {
6377 	struct buffer *out = buf;
6378 
6379 	/* Token name must match. */
6380 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6381 		return -1;
6382 	/* Nothing else to do if there is no buffer. */
6383 	if (!out)
6384 		return len;
6385 	if (!out->command) {
6386 		if (ctx->curr != DUMP)
6387 			return -1;
6388 		if (sizeof(*out) > size)
6389 			return -1;
6390 		out->command = ctx->curr;
6391 		ctx->objdata = 0;
6392 		ctx->object = out;
6393 		ctx->objmask = NULL;
6394 		return len;
6395 	}
6396 	switch (ctx->curr) {
6397 	case DUMP_ALL:
6398 	case DUMP_ONE:
6399 		out->args.dump.mode = (ctx->curr == DUMP_ALL) ? true : false;
6400 		out->command = ctx->curr;
6401 		ctx->objdata = 0;
6402 		ctx->object = out;
6403 		ctx->objmask = NULL;
6404 		return len;
6405 	default:
6406 		return -1;
6407 	}
6408 }
6409 
6410 /** Parse tokens for query command. */
6411 static int
6412 parse_query(struct context *ctx, const struct token *token,
6413 	    const char *str, unsigned int len,
6414 	    void *buf, unsigned int size)
6415 {
6416 	struct buffer *out = buf;
6417 
6418 	/* Token name must match. */
6419 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6420 		return -1;
6421 	/* Nothing else to do if there is no buffer. */
6422 	if (!out)
6423 		return len;
6424 	if (!out->command) {
6425 		if (ctx->curr != QUERY)
6426 			return -1;
6427 		if (sizeof(*out) > size)
6428 			return -1;
6429 		out->command = ctx->curr;
6430 		ctx->objdata = 0;
6431 		ctx->object = out;
6432 		ctx->objmask = NULL;
6433 	}
6434 	return len;
6435 }
6436 
6437 /** Parse action names. */
6438 static int
6439 parse_action(struct context *ctx, const struct token *token,
6440 	     const char *str, unsigned int len,
6441 	     void *buf, unsigned int size)
6442 {
6443 	struct buffer *out = buf;
6444 	const struct arg *arg = pop_args(ctx);
6445 	unsigned int i;
6446 
6447 	(void)size;
6448 	/* Argument is expected. */
6449 	if (!arg)
6450 		return -1;
6451 	/* Parse action name. */
6452 	for (i = 0; next_action[i]; ++i) {
6453 		const struct parse_action_priv *priv;
6454 
6455 		token = &token_list[next_action[i]];
6456 		if (strcmp_partial(token->name, str, len))
6457 			continue;
6458 		priv = token->priv;
6459 		if (!priv)
6460 			goto error;
6461 		if (out)
6462 			memcpy((uint8_t *)ctx->object + arg->offset,
6463 			       &priv->type,
6464 			       arg->size);
6465 		return len;
6466 	}
6467 error:
6468 	push_args(ctx, arg);
6469 	return -1;
6470 }
6471 
6472 /** Parse tokens for list command. */
6473 static int
6474 parse_list(struct context *ctx, const struct token *token,
6475 	   const char *str, unsigned int len,
6476 	   void *buf, unsigned int size)
6477 {
6478 	struct buffer *out = buf;
6479 
6480 	/* Token name must match. */
6481 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6482 		return -1;
6483 	/* Nothing else to do if there is no buffer. */
6484 	if (!out)
6485 		return len;
6486 	if (!out->command) {
6487 		if (ctx->curr != LIST)
6488 			return -1;
6489 		if (sizeof(*out) > size)
6490 			return -1;
6491 		out->command = ctx->curr;
6492 		ctx->objdata = 0;
6493 		ctx->object = out;
6494 		ctx->objmask = NULL;
6495 		out->args.list.group =
6496 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6497 					       sizeof(double));
6498 		return len;
6499 	}
6500 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
6501 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
6502 		return -1;
6503 	ctx->objdata = 0;
6504 	ctx->object = out->args.list.group + out->args.list.group_n++;
6505 	ctx->objmask = NULL;
6506 	return len;
6507 }
6508 
6509 /** Parse tokens for list all aged flows command. */
6510 static int
6511 parse_aged(struct context *ctx, const struct token *token,
6512 	   const char *str, unsigned int len,
6513 	   void *buf, unsigned int size)
6514 {
6515 	struct buffer *out = buf;
6516 
6517 	/* Token name must match. */
6518 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6519 		return -1;
6520 	/* Nothing else to do if there is no buffer. */
6521 	if (!out)
6522 		return len;
6523 	if (!out->command) {
6524 		if (ctx->curr != AGED)
6525 			return -1;
6526 		if (sizeof(*out) > size)
6527 			return -1;
6528 		out->command = ctx->curr;
6529 		ctx->objdata = 0;
6530 		ctx->object = out;
6531 		ctx->objmask = NULL;
6532 	}
6533 	if (ctx->curr == AGED_DESTROY)
6534 		out->args.aged.destroy = 1;
6535 	return len;
6536 }
6537 
6538 /** Parse tokens for isolate command. */
6539 static int
6540 parse_isolate(struct context *ctx, const struct token *token,
6541 	      const char *str, unsigned int len,
6542 	      void *buf, unsigned int size)
6543 {
6544 	struct buffer *out = buf;
6545 
6546 	/* Token name must match. */
6547 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6548 		return -1;
6549 	/* Nothing else to do if there is no buffer. */
6550 	if (!out)
6551 		return len;
6552 	if (!out->command) {
6553 		if (ctx->curr != ISOLATE)
6554 			return -1;
6555 		if (sizeof(*out) > size)
6556 			return -1;
6557 		out->command = ctx->curr;
6558 		ctx->objdata = 0;
6559 		ctx->object = out;
6560 		ctx->objmask = NULL;
6561 	}
6562 	return len;
6563 }
6564 
6565 static int
6566 parse_tunnel(struct context *ctx, const struct token *token,
6567 	     const char *str, unsigned int len,
6568 	     void *buf, unsigned int size)
6569 {
6570 	struct buffer *out = buf;
6571 
6572 	/* Token name must match. */
6573 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6574 		return -1;
6575 	/* Nothing else to do if there is no buffer. */
6576 	if (!out)
6577 		return len;
6578 	if (!out->command) {
6579 		if (ctx->curr != TUNNEL)
6580 			return -1;
6581 		if (sizeof(*out) > size)
6582 			return -1;
6583 		out->command = ctx->curr;
6584 		ctx->objdata = 0;
6585 		ctx->object = out;
6586 		ctx->objmask = NULL;
6587 	} else {
6588 		switch (ctx->curr) {
6589 		default:
6590 			break;
6591 		case TUNNEL_CREATE:
6592 		case TUNNEL_DESTROY:
6593 		case TUNNEL_LIST:
6594 			out->command = ctx->curr;
6595 			break;
6596 		case TUNNEL_CREATE_TYPE:
6597 		case TUNNEL_DESTROY_ID:
6598 			ctx->object = &out->args.vc.tunnel_ops;
6599 			break;
6600 		}
6601 	}
6602 
6603 	return len;
6604 }
6605 
6606 /**
6607  * Parse signed/unsigned integers 8 to 64-bit long.
6608  *
6609  * Last argument (ctx->args) is retrieved to determine integer type and
6610  * storage location.
6611  */
6612 static int
6613 parse_int(struct context *ctx, const struct token *token,
6614 	  const char *str, unsigned int len,
6615 	  void *buf, unsigned int size)
6616 {
6617 	const struct arg *arg = pop_args(ctx);
6618 	uintmax_t u;
6619 	char *end;
6620 
6621 	(void)token;
6622 	/* Argument is expected. */
6623 	if (!arg)
6624 		return -1;
6625 	errno = 0;
6626 	u = arg->sign ?
6627 		(uintmax_t)strtoimax(str, &end, 0) :
6628 		strtoumax(str, &end, 0);
6629 	if (errno || (size_t)(end - str) != len)
6630 		goto error;
6631 	if (arg->bounded &&
6632 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
6633 			    (intmax_t)u > (intmax_t)arg->max)) ||
6634 	     (!arg->sign && (u < arg->min || u > arg->max))))
6635 		goto error;
6636 	if (!ctx->object)
6637 		return len;
6638 	if (arg->mask) {
6639 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
6640 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
6641 			goto error;
6642 		return len;
6643 	}
6644 	buf = (uint8_t *)ctx->object + arg->offset;
6645 	size = arg->size;
6646 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
6647 		return -1;
6648 objmask:
6649 	switch (size) {
6650 	case sizeof(uint8_t):
6651 		*(uint8_t *)buf = u;
6652 		break;
6653 	case sizeof(uint16_t):
6654 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
6655 		break;
6656 	case sizeof(uint8_t [3]):
6657 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
6658 		if (!arg->hton) {
6659 			((uint8_t *)buf)[0] = u;
6660 			((uint8_t *)buf)[1] = u >> 8;
6661 			((uint8_t *)buf)[2] = u >> 16;
6662 			break;
6663 		}
6664 #endif
6665 		((uint8_t *)buf)[0] = u >> 16;
6666 		((uint8_t *)buf)[1] = u >> 8;
6667 		((uint8_t *)buf)[2] = u;
6668 		break;
6669 	case sizeof(uint32_t):
6670 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
6671 		break;
6672 	case sizeof(uint64_t):
6673 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
6674 		break;
6675 	default:
6676 		goto error;
6677 	}
6678 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
6679 		u = -1;
6680 		buf = (uint8_t *)ctx->objmask + arg->offset;
6681 		goto objmask;
6682 	}
6683 	return len;
6684 error:
6685 	push_args(ctx, arg);
6686 	return -1;
6687 }
6688 
6689 /**
6690  * Parse a string.
6691  *
6692  * Three arguments (ctx->args) are retrieved from the stack to store data,
6693  * its actual length and address (in that order).
6694  */
6695 static int
6696 parse_string(struct context *ctx, const struct token *token,
6697 	     const char *str, unsigned int len,
6698 	     void *buf, unsigned int size)
6699 {
6700 	const struct arg *arg_data = pop_args(ctx);
6701 	const struct arg *arg_len = pop_args(ctx);
6702 	const struct arg *arg_addr = pop_args(ctx);
6703 	char tmp[16]; /* Ought to be enough. */
6704 	int ret;
6705 
6706 	/* Arguments are expected. */
6707 	if (!arg_data)
6708 		return -1;
6709 	if (!arg_len) {
6710 		push_args(ctx, arg_data);
6711 		return -1;
6712 	}
6713 	if (!arg_addr) {
6714 		push_args(ctx, arg_len);
6715 		push_args(ctx, arg_data);
6716 		return -1;
6717 	}
6718 	size = arg_data->size;
6719 	/* Bit-mask fill is not supported. */
6720 	if (arg_data->mask || size < len)
6721 		goto error;
6722 	if (!ctx->object)
6723 		return len;
6724 	/* Let parse_int() fill length information first. */
6725 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
6726 	if (ret < 0)
6727 		goto error;
6728 	push_args(ctx, arg_len);
6729 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
6730 	if (ret < 0) {
6731 		pop_args(ctx);
6732 		goto error;
6733 	}
6734 	buf = (uint8_t *)ctx->object + arg_data->offset;
6735 	/* Output buffer is not necessarily NUL-terminated. */
6736 	memcpy(buf, str, len);
6737 	memset((uint8_t *)buf + len, 0x00, size - len);
6738 	if (ctx->objmask)
6739 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
6740 	/* Save address if requested. */
6741 	if (arg_addr->size) {
6742 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
6743 		       (void *[]){
6744 			(uint8_t *)ctx->object + arg_data->offset
6745 		       },
6746 		       arg_addr->size);
6747 		if (ctx->objmask)
6748 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
6749 			       (void *[]){
6750 				(uint8_t *)ctx->objmask + arg_data->offset
6751 			       },
6752 			       arg_addr->size);
6753 	}
6754 	return len;
6755 error:
6756 	push_args(ctx, arg_addr);
6757 	push_args(ctx, arg_len);
6758 	push_args(ctx, arg_data);
6759 	return -1;
6760 }
6761 
6762 static int
6763 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
6764 {
6765 	char *c = NULL;
6766 	uint32_t i, len;
6767 	char tmp[3];
6768 
6769 	/* Check input parameters */
6770 	if ((src == NULL) ||
6771 		(dst == NULL) ||
6772 		(size == NULL) ||
6773 		(*size == 0))
6774 		return -1;
6775 
6776 	/* Convert chars to bytes */
6777 	for (i = 0, len = 0; i < *size; i += 2) {
6778 		snprintf(tmp, 3, "%s", src + i);
6779 		dst[len++] = strtoul(tmp, &c, 16);
6780 		if (*c != 0) {
6781 			len--;
6782 			dst[len] = 0;
6783 			*size = len;
6784 			return -1;
6785 		}
6786 	}
6787 	dst[len] = 0;
6788 	*size = len;
6789 
6790 	return 0;
6791 }
6792 
6793 static int
6794 parse_hex(struct context *ctx, const struct token *token,
6795 		const char *str, unsigned int len,
6796 		void *buf, unsigned int size)
6797 {
6798 	const struct arg *arg_data = pop_args(ctx);
6799 	const struct arg *arg_len = pop_args(ctx);
6800 	const struct arg *arg_addr = pop_args(ctx);
6801 	char tmp[16]; /* Ought to be enough. */
6802 	int ret;
6803 	unsigned int hexlen = len;
6804 	unsigned int length = 256;
6805 	uint8_t hex_tmp[length];
6806 
6807 	/* Arguments are expected. */
6808 	if (!arg_data)
6809 		return -1;
6810 	if (!arg_len) {
6811 		push_args(ctx, arg_data);
6812 		return -1;
6813 	}
6814 	if (!arg_addr) {
6815 		push_args(ctx, arg_len);
6816 		push_args(ctx, arg_data);
6817 		return -1;
6818 	}
6819 	size = arg_data->size;
6820 	/* Bit-mask fill is not supported. */
6821 	if (arg_data->mask)
6822 		goto error;
6823 	if (!ctx->object)
6824 		return len;
6825 
6826 	/* translate bytes string to array. */
6827 	if (str[0] == '0' && ((str[1] == 'x') ||
6828 			(str[1] == 'X'))) {
6829 		str += 2;
6830 		hexlen -= 2;
6831 	}
6832 	if (hexlen > length)
6833 		return -1;
6834 	ret = parse_hex_string(str, hex_tmp, &hexlen);
6835 	if (ret < 0)
6836 		goto error;
6837 	/* Let parse_int() fill length information first. */
6838 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
6839 	if (ret < 0)
6840 		goto error;
6841 	/* Save length if requested. */
6842 	if (arg_len->size) {
6843 		push_args(ctx, arg_len);
6844 		ret = parse_int(ctx, token, tmp, ret, NULL, 0);
6845 		if (ret < 0) {
6846 			pop_args(ctx);
6847 			goto error;
6848 		}
6849 	}
6850 	buf = (uint8_t *)ctx->object + arg_data->offset;
6851 	/* Output buffer is not necessarily NUL-terminated. */
6852 	memcpy(buf, hex_tmp, hexlen);
6853 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
6854 	if (ctx->objmask)
6855 		memset((uint8_t *)ctx->objmask + arg_data->offset,
6856 					0xff, hexlen);
6857 	/* Save address if requested. */
6858 	if (arg_addr->size) {
6859 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
6860 		       (void *[]){
6861 			(uint8_t *)ctx->object + arg_data->offset
6862 		       },
6863 		       arg_addr->size);
6864 		if (ctx->objmask)
6865 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
6866 			       (void *[]){
6867 				(uint8_t *)ctx->objmask + arg_data->offset
6868 			       },
6869 			       arg_addr->size);
6870 	}
6871 	return len;
6872 error:
6873 	push_args(ctx, arg_addr);
6874 	push_args(ctx, arg_len);
6875 	push_args(ctx, arg_data);
6876 	return -1;
6877 
6878 }
6879 
6880 /**
6881  * Parse a zero-ended string.
6882  */
6883 static int
6884 parse_string0(struct context *ctx, const struct token *token __rte_unused,
6885 	     const char *str, unsigned int len,
6886 	     void *buf, unsigned int size)
6887 {
6888 	const struct arg *arg_data = pop_args(ctx);
6889 
6890 	/* Arguments are expected. */
6891 	if (!arg_data)
6892 		return -1;
6893 	size = arg_data->size;
6894 	/* Bit-mask fill is not supported. */
6895 	if (arg_data->mask || size < len + 1)
6896 		goto error;
6897 	if (!ctx->object)
6898 		return len;
6899 	buf = (uint8_t *)ctx->object + arg_data->offset;
6900 	strncpy(buf, str, len);
6901 	if (ctx->objmask)
6902 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
6903 	return len;
6904 error:
6905 	push_args(ctx, arg_data);
6906 	return -1;
6907 }
6908 
6909 /**
6910  * Parse a MAC address.
6911  *
6912  * Last argument (ctx->args) is retrieved to determine storage size and
6913  * location.
6914  */
6915 static int
6916 parse_mac_addr(struct context *ctx, const struct token *token,
6917 	       const char *str, unsigned int len,
6918 	       void *buf, unsigned int size)
6919 {
6920 	const struct arg *arg = pop_args(ctx);
6921 	struct rte_ether_addr tmp;
6922 	int ret;
6923 
6924 	(void)token;
6925 	/* Argument is expected. */
6926 	if (!arg)
6927 		return -1;
6928 	size = arg->size;
6929 	/* Bit-mask fill is not supported. */
6930 	if (arg->mask || size != sizeof(tmp))
6931 		goto error;
6932 	/* Only network endian is supported. */
6933 	if (!arg->hton)
6934 		goto error;
6935 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
6936 	if (ret < 0 || (unsigned int)ret != len)
6937 		goto error;
6938 	if (!ctx->object)
6939 		return len;
6940 	buf = (uint8_t *)ctx->object + arg->offset;
6941 	memcpy(buf, &tmp, size);
6942 	if (ctx->objmask)
6943 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
6944 	return len;
6945 error:
6946 	push_args(ctx, arg);
6947 	return -1;
6948 }
6949 
6950 /**
6951  * Parse an IPv4 address.
6952  *
6953  * Last argument (ctx->args) is retrieved to determine storage size and
6954  * location.
6955  */
6956 static int
6957 parse_ipv4_addr(struct context *ctx, const struct token *token,
6958 		const char *str, unsigned int len,
6959 		void *buf, unsigned int size)
6960 {
6961 	const struct arg *arg = pop_args(ctx);
6962 	char str2[len + 1];
6963 	struct in_addr tmp;
6964 	int ret;
6965 
6966 	/* Argument is expected. */
6967 	if (!arg)
6968 		return -1;
6969 	size = arg->size;
6970 	/* Bit-mask fill is not supported. */
6971 	if (arg->mask || size != sizeof(tmp))
6972 		goto error;
6973 	/* Only network endian is supported. */
6974 	if (!arg->hton)
6975 		goto error;
6976 	memcpy(str2, str, len);
6977 	str2[len] = '\0';
6978 	ret = inet_pton(AF_INET, str2, &tmp);
6979 	if (ret != 1) {
6980 		/* Attempt integer parsing. */
6981 		push_args(ctx, arg);
6982 		return parse_int(ctx, token, str, len, buf, size);
6983 	}
6984 	if (!ctx->object)
6985 		return len;
6986 	buf = (uint8_t *)ctx->object + arg->offset;
6987 	memcpy(buf, &tmp, size);
6988 	if (ctx->objmask)
6989 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
6990 	return len;
6991 error:
6992 	push_args(ctx, arg);
6993 	return -1;
6994 }
6995 
6996 /**
6997  * Parse an IPv6 address.
6998  *
6999  * Last argument (ctx->args) is retrieved to determine storage size and
7000  * location.
7001  */
7002 static int
7003 parse_ipv6_addr(struct context *ctx, const struct token *token,
7004 		const char *str, unsigned int len,
7005 		void *buf, unsigned int size)
7006 {
7007 	const struct arg *arg = pop_args(ctx);
7008 	char str2[len + 1];
7009 	struct in6_addr tmp;
7010 	int ret;
7011 
7012 	(void)token;
7013 	/* Argument is expected. */
7014 	if (!arg)
7015 		return -1;
7016 	size = arg->size;
7017 	/* Bit-mask fill is not supported. */
7018 	if (arg->mask || size != sizeof(tmp))
7019 		goto error;
7020 	/* Only network endian is supported. */
7021 	if (!arg->hton)
7022 		goto error;
7023 	memcpy(str2, str, len);
7024 	str2[len] = '\0';
7025 	ret = inet_pton(AF_INET6, str2, &tmp);
7026 	if (ret != 1)
7027 		goto error;
7028 	if (!ctx->object)
7029 		return len;
7030 	buf = (uint8_t *)ctx->object + arg->offset;
7031 	memcpy(buf, &tmp, size);
7032 	if (ctx->objmask)
7033 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
7034 	return len;
7035 error:
7036 	push_args(ctx, arg);
7037 	return -1;
7038 }
7039 
7040 /** Boolean values (even indices stand for false). */
7041 static const char *const boolean_name[] = {
7042 	"0", "1",
7043 	"false", "true",
7044 	"no", "yes",
7045 	"N", "Y",
7046 	"off", "on",
7047 	NULL,
7048 };
7049 
7050 /**
7051  * Parse a boolean value.
7052  *
7053  * Last argument (ctx->args) is retrieved to determine storage size and
7054  * location.
7055  */
7056 static int
7057 parse_boolean(struct context *ctx, const struct token *token,
7058 	      const char *str, unsigned int len,
7059 	      void *buf, unsigned int size)
7060 {
7061 	const struct arg *arg = pop_args(ctx);
7062 	unsigned int i;
7063 	int ret;
7064 
7065 	/* Argument is expected. */
7066 	if (!arg)
7067 		return -1;
7068 	for (i = 0; boolean_name[i]; ++i)
7069 		if (!strcmp_partial(boolean_name[i], str, len))
7070 			break;
7071 	/* Process token as integer. */
7072 	if (boolean_name[i])
7073 		str = i & 1 ? "1" : "0";
7074 	push_args(ctx, arg);
7075 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
7076 	return ret > 0 ? (int)len : ret;
7077 }
7078 
7079 /** Parse port and update context. */
7080 static int
7081 parse_port(struct context *ctx, const struct token *token,
7082 	   const char *str, unsigned int len,
7083 	   void *buf, unsigned int size)
7084 {
7085 	struct buffer *out = &(struct buffer){ .port = 0 };
7086 	int ret;
7087 
7088 	if (buf)
7089 		out = buf;
7090 	else {
7091 		ctx->objdata = 0;
7092 		ctx->object = out;
7093 		ctx->objmask = NULL;
7094 		size = sizeof(*out);
7095 	}
7096 	ret = parse_int(ctx, token, str, len, out, size);
7097 	if (ret >= 0)
7098 		ctx->port = out->port;
7099 	if (!buf)
7100 		ctx->object = NULL;
7101 	return ret;
7102 }
7103 
7104 static int
7105 parse_ia_id2ptr(struct context *ctx, const struct token *token,
7106 		const char *str, unsigned int len,
7107 		void *buf, unsigned int size)
7108 {
7109 	struct rte_flow_action *action = ctx->object;
7110 	uint32_t id;
7111 	int ret;
7112 
7113 	(void)buf;
7114 	(void)size;
7115 	ctx->objdata = 0;
7116 	ctx->object = &id;
7117 	ctx->objmask = NULL;
7118 	ret = parse_int(ctx, token, str, len, ctx->object, sizeof(id));
7119 	ctx->object = action;
7120 	if (ret != (int)len)
7121 		return ret;
7122 	/* set indirect action */
7123 	if (action) {
7124 		action->conf = port_action_handle_get_by_id(ctx->port, id);
7125 		ret = (action->conf) ? ret : -1;
7126 	}
7127 	return ret;
7128 }
7129 
7130 /** Parse set command, initialize output buffer for subsequent tokens. */
7131 static int
7132 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
7133 			  const char *str, unsigned int len,
7134 			  void *buf, unsigned int size)
7135 {
7136 	struct buffer *out = buf;
7137 
7138 	/* Token name must match. */
7139 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7140 		return -1;
7141 	/* Nothing else to do if there is no buffer. */
7142 	if (!out)
7143 		return len;
7144 	/* Make sure buffer is large enough. */
7145 	if (size < sizeof(*out))
7146 		return -1;
7147 	ctx->objdata = 0;
7148 	ctx->objmask = NULL;
7149 	ctx->object = out;
7150 	if (!out->command)
7151 		return -1;
7152 	out->command = ctx->curr;
7153 	/* For encap/decap we need is pattern */
7154 	out->args.vc.pattern = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7155 						       sizeof(double));
7156 	return len;
7157 }
7158 
7159 /** Parse set command, initialize output buffer for subsequent tokens. */
7160 static int
7161 parse_set_sample_action(struct context *ctx, const struct token *token,
7162 			  const char *str, unsigned int len,
7163 			  void *buf, unsigned int size)
7164 {
7165 	struct buffer *out = buf;
7166 
7167 	/* Token name must match. */
7168 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7169 		return -1;
7170 	/* Nothing else to do if there is no buffer. */
7171 	if (!out)
7172 		return len;
7173 	/* Make sure buffer is large enough. */
7174 	if (size < sizeof(*out))
7175 		return -1;
7176 	ctx->objdata = 0;
7177 	ctx->objmask = NULL;
7178 	ctx->object = out;
7179 	if (!out->command)
7180 		return -1;
7181 	out->command = ctx->curr;
7182 	/* For sampler we need is actions */
7183 	out->args.vc.actions = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7184 						       sizeof(double));
7185 	return len;
7186 }
7187 
7188 /**
7189  * Parse set raw_encap/raw_decap command,
7190  * initialize output buffer for subsequent tokens.
7191  */
7192 static int
7193 parse_set_init(struct context *ctx, const struct token *token,
7194 	       const char *str, unsigned int len,
7195 	       void *buf, unsigned int size)
7196 {
7197 	struct buffer *out = buf;
7198 
7199 	/* Token name must match. */
7200 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7201 		return -1;
7202 	/* Nothing else to do if there is no buffer. */
7203 	if (!out)
7204 		return len;
7205 	/* Make sure buffer is large enough. */
7206 	if (size < sizeof(*out))
7207 		return -1;
7208 	/* Initialize buffer. */
7209 	memset(out, 0x00, sizeof(*out));
7210 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
7211 	ctx->objdata = 0;
7212 	ctx->object = out;
7213 	ctx->objmask = NULL;
7214 	if (!out->command) {
7215 		if (ctx->curr != SET)
7216 			return -1;
7217 		if (sizeof(*out) > size)
7218 			return -1;
7219 		out->command = ctx->curr;
7220 		out->args.vc.data = (uint8_t *)out + size;
7221 		ctx->object  = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7222 						       sizeof(double));
7223 	}
7224 	return len;
7225 }
7226 
7227 /** No completion. */
7228 static int
7229 comp_none(struct context *ctx, const struct token *token,
7230 	  unsigned int ent, char *buf, unsigned int size)
7231 {
7232 	(void)ctx;
7233 	(void)token;
7234 	(void)ent;
7235 	(void)buf;
7236 	(void)size;
7237 	return 0;
7238 }
7239 
7240 /** Complete boolean values. */
7241 static int
7242 comp_boolean(struct context *ctx, const struct token *token,
7243 	     unsigned int ent, char *buf, unsigned int size)
7244 {
7245 	unsigned int i;
7246 
7247 	(void)ctx;
7248 	(void)token;
7249 	for (i = 0; boolean_name[i]; ++i)
7250 		if (buf && i == ent)
7251 			return strlcpy(buf, boolean_name[i], size);
7252 	if (buf)
7253 		return -1;
7254 	return i;
7255 }
7256 
7257 /** Complete action names. */
7258 static int
7259 comp_action(struct context *ctx, const struct token *token,
7260 	    unsigned int ent, char *buf, unsigned int size)
7261 {
7262 	unsigned int i;
7263 
7264 	(void)ctx;
7265 	(void)token;
7266 	for (i = 0; next_action[i]; ++i)
7267 		if (buf && i == ent)
7268 			return strlcpy(buf, token_list[next_action[i]].name,
7269 				       size);
7270 	if (buf)
7271 		return -1;
7272 	return i;
7273 }
7274 
7275 /** Complete available ports. */
7276 static int
7277 comp_port(struct context *ctx, const struct token *token,
7278 	  unsigned int ent, char *buf, unsigned int size)
7279 {
7280 	unsigned int i = 0;
7281 	portid_t p;
7282 
7283 	(void)ctx;
7284 	(void)token;
7285 	RTE_ETH_FOREACH_DEV(p) {
7286 		if (buf && i == ent)
7287 			return snprintf(buf, size, "%u", p);
7288 		++i;
7289 	}
7290 	if (buf)
7291 		return -1;
7292 	return i;
7293 }
7294 
7295 /** Complete available rule IDs. */
7296 static int
7297 comp_rule_id(struct context *ctx, const struct token *token,
7298 	     unsigned int ent, char *buf, unsigned int size)
7299 {
7300 	unsigned int i = 0;
7301 	struct rte_port *port;
7302 	struct port_flow *pf;
7303 
7304 	(void)token;
7305 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
7306 	    ctx->port == (portid_t)RTE_PORT_ALL)
7307 		return -1;
7308 	port = &ports[ctx->port];
7309 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
7310 		if (buf && i == ent)
7311 			return snprintf(buf, size, "%u", pf->id);
7312 		++i;
7313 	}
7314 	if (buf)
7315 		return -1;
7316 	return i;
7317 }
7318 
7319 /** Complete type field for RSS action. */
7320 static int
7321 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
7322 			unsigned int ent, char *buf, unsigned int size)
7323 {
7324 	unsigned int i;
7325 
7326 	(void)ctx;
7327 	(void)token;
7328 	for (i = 0; rss_type_table[i].str; ++i)
7329 		;
7330 	if (!buf)
7331 		return i + 1;
7332 	if (ent < i)
7333 		return strlcpy(buf, rss_type_table[ent].str, size);
7334 	if (ent == i)
7335 		return snprintf(buf, size, "end");
7336 	return -1;
7337 }
7338 
7339 /** Complete queue field for RSS action. */
7340 static int
7341 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
7342 			 unsigned int ent, char *buf, unsigned int size)
7343 {
7344 	(void)ctx;
7345 	(void)token;
7346 	if (!buf)
7347 		return nb_rxq + 1;
7348 	if (ent < nb_rxq)
7349 		return snprintf(buf, size, "%u", ent);
7350 	if (ent == nb_rxq)
7351 		return snprintf(buf, size, "end");
7352 	return -1;
7353 }
7354 
7355 /** Complete index number for set raw_encap/raw_decap commands. */
7356 static int
7357 comp_set_raw_index(struct context *ctx, const struct token *token,
7358 		   unsigned int ent, char *buf, unsigned int size)
7359 {
7360 	uint16_t idx = 0;
7361 	uint16_t nb = 0;
7362 
7363 	RTE_SET_USED(ctx);
7364 	RTE_SET_USED(token);
7365 	for (idx = 0; idx < RAW_ENCAP_CONFS_MAX_NUM; ++idx) {
7366 		if (buf && idx == ent)
7367 			return snprintf(buf, size, "%u", idx);
7368 		++nb;
7369 	}
7370 	return nb;
7371 }
7372 
7373 /** Complete index number for set raw_encap/raw_decap commands. */
7374 static int
7375 comp_set_sample_index(struct context *ctx, const struct token *token,
7376 		   unsigned int ent, char *buf, unsigned int size)
7377 {
7378 	uint16_t idx = 0;
7379 	uint16_t nb = 0;
7380 
7381 	RTE_SET_USED(ctx);
7382 	RTE_SET_USED(token);
7383 	for (idx = 0; idx < RAW_SAMPLE_CONFS_MAX_NUM; ++idx) {
7384 		if (buf && idx == ent)
7385 			return snprintf(buf, size, "%u", idx);
7386 		++nb;
7387 	}
7388 	return nb;
7389 }
7390 
7391 /** Complete operation for modify_field command. */
7392 static int
7393 comp_set_modify_field_op(struct context *ctx, const struct token *token,
7394 		   unsigned int ent, char *buf, unsigned int size)
7395 {
7396 	uint16_t idx = 0;
7397 
7398 	RTE_SET_USED(ctx);
7399 	RTE_SET_USED(token);
7400 	for (idx = 0; modify_field_ops[idx]; ++idx)
7401 		;
7402 	if (!buf)
7403 		return idx + 1;
7404 	if (ent < idx)
7405 		return strlcpy(buf, modify_field_ops[ent], size);
7406 	return -1;
7407 }
7408 
7409 /** Complete field id for modify_field command. */
7410 static int
7411 comp_set_modify_field_id(struct context *ctx, const struct token *token,
7412 		   unsigned int ent, char *buf, unsigned int size)
7413 {
7414 	uint16_t idx = 0;
7415 
7416 	RTE_SET_USED(ctx);
7417 	RTE_SET_USED(token);
7418 	for (idx = 0; modify_field_ids[idx]; ++idx)
7419 		;
7420 	if (!buf)
7421 		return idx + 1;
7422 	if (ent < idx)
7423 		return strlcpy(buf, modify_field_ids[ent], size);
7424 	return -1;
7425 }
7426 
7427 /** Internal context. */
7428 static struct context cmd_flow_context;
7429 
7430 /** Global parser instance (cmdline API). */
7431 cmdline_parse_inst_t cmd_flow;
7432 cmdline_parse_inst_t cmd_set_raw;
7433 
7434 /** Initialize context. */
7435 static void
7436 cmd_flow_context_init(struct context *ctx)
7437 {
7438 	/* A full memset() is not necessary. */
7439 	ctx->curr = ZERO;
7440 	ctx->prev = ZERO;
7441 	ctx->next_num = 0;
7442 	ctx->args_num = 0;
7443 	ctx->eol = 0;
7444 	ctx->last = 0;
7445 	ctx->port = 0;
7446 	ctx->objdata = 0;
7447 	ctx->object = NULL;
7448 	ctx->objmask = NULL;
7449 }
7450 
7451 /** Parse a token (cmdline API). */
7452 static int
7453 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
7454 	       unsigned int size)
7455 {
7456 	struct context *ctx = &cmd_flow_context;
7457 	const struct token *token;
7458 	const enum index *list;
7459 	int len;
7460 	int i;
7461 
7462 	(void)hdr;
7463 	token = &token_list[ctx->curr];
7464 	/* Check argument length. */
7465 	ctx->eol = 0;
7466 	ctx->last = 1;
7467 	for (len = 0; src[len]; ++len)
7468 		if (src[len] == '#' || isspace(src[len]))
7469 			break;
7470 	if (!len)
7471 		return -1;
7472 	/* Last argument and EOL detection. */
7473 	for (i = len; src[i]; ++i)
7474 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
7475 			break;
7476 		else if (!isspace(src[i])) {
7477 			ctx->last = 0;
7478 			break;
7479 		}
7480 	for (; src[i]; ++i)
7481 		if (src[i] == '\r' || src[i] == '\n') {
7482 			ctx->eol = 1;
7483 			break;
7484 		}
7485 	/* Initialize context if necessary. */
7486 	if (!ctx->next_num) {
7487 		if (!token->next)
7488 			return 0;
7489 		ctx->next[ctx->next_num++] = token->next[0];
7490 	}
7491 	/* Process argument through candidates. */
7492 	ctx->prev = ctx->curr;
7493 	list = ctx->next[ctx->next_num - 1];
7494 	for (i = 0; list[i]; ++i) {
7495 		const struct token *next = &token_list[list[i]];
7496 		int tmp;
7497 
7498 		ctx->curr = list[i];
7499 		if (next->call)
7500 			tmp = next->call(ctx, next, src, len, result, size);
7501 		else
7502 			tmp = parse_default(ctx, next, src, len, result, size);
7503 		if (tmp == -1 || tmp != len)
7504 			continue;
7505 		token = next;
7506 		break;
7507 	}
7508 	if (!list[i])
7509 		return -1;
7510 	--ctx->next_num;
7511 	/* Push subsequent tokens if any. */
7512 	if (token->next)
7513 		for (i = 0; token->next[i]; ++i) {
7514 			if (ctx->next_num == RTE_DIM(ctx->next))
7515 				return -1;
7516 			ctx->next[ctx->next_num++] = token->next[i];
7517 		}
7518 	/* Push arguments if any. */
7519 	if (token->args)
7520 		for (i = 0; token->args[i]; ++i) {
7521 			if (ctx->args_num == RTE_DIM(ctx->args))
7522 				return -1;
7523 			ctx->args[ctx->args_num++] = token->args[i];
7524 		}
7525 	return len;
7526 }
7527 
7528 /** Return number of completion entries (cmdline API). */
7529 static int
7530 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
7531 {
7532 	struct context *ctx = &cmd_flow_context;
7533 	const struct token *token = &token_list[ctx->curr];
7534 	const enum index *list;
7535 	int i;
7536 
7537 	(void)hdr;
7538 	/* Count number of tokens in current list. */
7539 	if (ctx->next_num)
7540 		list = ctx->next[ctx->next_num - 1];
7541 	else
7542 		list = token->next[0];
7543 	for (i = 0; list[i]; ++i)
7544 		;
7545 	if (!i)
7546 		return 0;
7547 	/*
7548 	 * If there is a single token, use its completion callback, otherwise
7549 	 * return the number of entries.
7550 	 */
7551 	token = &token_list[list[0]];
7552 	if (i == 1 && token->comp) {
7553 		/* Save index for cmd_flow_get_help(). */
7554 		ctx->prev = list[0];
7555 		return token->comp(ctx, token, 0, NULL, 0);
7556 	}
7557 	return i;
7558 }
7559 
7560 /** Return a completion entry (cmdline API). */
7561 static int
7562 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
7563 			  char *dst, unsigned int size)
7564 {
7565 	struct context *ctx = &cmd_flow_context;
7566 	const struct token *token = &token_list[ctx->curr];
7567 	const enum index *list;
7568 	int i;
7569 
7570 	(void)hdr;
7571 	/* Count number of tokens in current list. */
7572 	if (ctx->next_num)
7573 		list = ctx->next[ctx->next_num - 1];
7574 	else
7575 		list = token->next[0];
7576 	for (i = 0; list[i]; ++i)
7577 		;
7578 	if (!i)
7579 		return -1;
7580 	/* If there is a single token, use its completion callback. */
7581 	token = &token_list[list[0]];
7582 	if (i == 1 && token->comp) {
7583 		/* Save index for cmd_flow_get_help(). */
7584 		ctx->prev = list[0];
7585 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
7586 	}
7587 	/* Otherwise make sure the index is valid and use defaults. */
7588 	if (index >= i)
7589 		return -1;
7590 	token = &token_list[list[index]];
7591 	strlcpy(dst, token->name, size);
7592 	/* Save index for cmd_flow_get_help(). */
7593 	ctx->prev = list[index];
7594 	return 0;
7595 }
7596 
7597 /** Populate help strings for current token (cmdline API). */
7598 static int
7599 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
7600 {
7601 	struct context *ctx = &cmd_flow_context;
7602 	const struct token *token = &token_list[ctx->prev];
7603 
7604 	(void)hdr;
7605 	if (!size)
7606 		return -1;
7607 	/* Set token type and update global help with details. */
7608 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
7609 	if (token->help)
7610 		cmd_flow.help_str = token->help;
7611 	else
7612 		cmd_flow.help_str = token->name;
7613 	return 0;
7614 }
7615 
7616 /** Token definition template (cmdline API). */
7617 static struct cmdline_token_hdr cmd_flow_token_hdr = {
7618 	.ops = &(struct cmdline_token_ops){
7619 		.parse = cmd_flow_parse,
7620 		.complete_get_nb = cmd_flow_complete_get_nb,
7621 		.complete_get_elt = cmd_flow_complete_get_elt,
7622 		.get_help = cmd_flow_get_help,
7623 	},
7624 	.offset = 0,
7625 };
7626 
7627 /** Populate the next dynamic token. */
7628 static void
7629 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
7630 	     cmdline_parse_token_hdr_t **hdr_inst)
7631 {
7632 	struct context *ctx = &cmd_flow_context;
7633 
7634 	/* Always reinitialize context before requesting the first token. */
7635 	if (!(hdr_inst - cmd_flow.tokens))
7636 		cmd_flow_context_init(ctx);
7637 	/* Return NULL when no more tokens are expected. */
7638 	if (!ctx->next_num && ctx->curr) {
7639 		*hdr = NULL;
7640 		return;
7641 	}
7642 	/* Determine if command should end here. */
7643 	if (ctx->eol && ctx->last && ctx->next_num) {
7644 		const enum index *list = ctx->next[ctx->next_num - 1];
7645 		int i;
7646 
7647 		for (i = 0; list[i]; ++i) {
7648 			if (list[i] != END)
7649 				continue;
7650 			*hdr = NULL;
7651 			return;
7652 		}
7653 	}
7654 	*hdr = &cmd_flow_token_hdr;
7655 }
7656 
7657 /** Dispatch parsed buffer to function calls. */
7658 static void
7659 cmd_flow_parsed(const struct buffer *in)
7660 {
7661 	switch (in->command) {
7662 	case INDIRECT_ACTION_CREATE:
7663 		port_action_handle_create(
7664 				in->port, in->args.vc.attr.group,
7665 				&((const struct rte_flow_indir_action_conf) {
7666 					.ingress = in->args.vc.attr.ingress,
7667 					.egress = in->args.vc.attr.egress,
7668 					.transfer = in->args.vc.attr.transfer,
7669 				}),
7670 				in->args.vc.actions);
7671 		break;
7672 	case INDIRECT_ACTION_DESTROY:
7673 		port_action_handle_destroy(in->port,
7674 					   in->args.ia_destroy.action_id_n,
7675 					   in->args.ia_destroy.action_id);
7676 		break;
7677 	case INDIRECT_ACTION_UPDATE:
7678 		port_action_handle_update(in->port, in->args.vc.attr.group,
7679 					  in->args.vc.actions);
7680 		break;
7681 	case INDIRECT_ACTION_QUERY:
7682 		port_action_handle_query(in->port, in->args.ia.action_id);
7683 		break;
7684 	case VALIDATE:
7685 		port_flow_validate(in->port, &in->args.vc.attr,
7686 				   in->args.vc.pattern, in->args.vc.actions,
7687 				   &in->args.vc.tunnel_ops);
7688 		break;
7689 	case CREATE:
7690 		port_flow_create(in->port, &in->args.vc.attr,
7691 				 in->args.vc.pattern, in->args.vc.actions,
7692 				 &in->args.vc.tunnel_ops);
7693 		break;
7694 	case DESTROY:
7695 		port_flow_destroy(in->port, in->args.destroy.rule_n,
7696 				  in->args.destroy.rule);
7697 		break;
7698 	case FLUSH:
7699 		port_flow_flush(in->port);
7700 		break;
7701 	case DUMP_ONE:
7702 	case DUMP_ALL:
7703 		port_flow_dump(in->port, in->args.dump.mode,
7704 				in->args.dump.rule, in->args.dump.file);
7705 		break;
7706 	case QUERY:
7707 		port_flow_query(in->port, in->args.query.rule,
7708 				&in->args.query.action);
7709 		break;
7710 	case LIST:
7711 		port_flow_list(in->port, in->args.list.group_n,
7712 			       in->args.list.group);
7713 		break;
7714 	case ISOLATE:
7715 		port_flow_isolate(in->port, in->args.isolate.set);
7716 		break;
7717 	case AGED:
7718 		port_flow_aged(in->port, in->args.aged.destroy);
7719 		break;
7720 	case TUNNEL_CREATE:
7721 		port_flow_tunnel_create(in->port, &in->args.vc.tunnel_ops);
7722 		break;
7723 	case TUNNEL_DESTROY:
7724 		port_flow_tunnel_destroy(in->port, in->args.vc.tunnel_ops.id);
7725 		break;
7726 	case TUNNEL_LIST:
7727 		port_flow_tunnel_list(in->port);
7728 		break;
7729 	default:
7730 		break;
7731 	}
7732 }
7733 
7734 /** Token generator and output processing callback (cmdline API). */
7735 static void
7736 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
7737 {
7738 	if (cl == NULL)
7739 		cmd_flow_tok(arg0, arg2);
7740 	else
7741 		cmd_flow_parsed(arg0);
7742 }
7743 
7744 /** Global parser instance (cmdline API). */
7745 cmdline_parse_inst_t cmd_flow = {
7746 	.f = cmd_flow_cb,
7747 	.data = NULL, /**< Unused. */
7748 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
7749 	.tokens = {
7750 		NULL,
7751 	}, /**< Tokens are returned by cmd_flow_tok(). */
7752 };
7753 
7754 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
7755 
7756 static void
7757 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
7758 {
7759 	struct rte_ipv4_hdr *ipv4;
7760 	struct rte_ether_hdr *eth;
7761 	struct rte_ipv6_hdr *ipv6;
7762 	struct rte_vxlan_hdr *vxlan;
7763 	struct rte_vxlan_gpe_hdr *gpe;
7764 	struct rte_flow_item_nvgre *nvgre;
7765 	uint32_t ipv6_vtc_flow;
7766 
7767 	switch (item->type) {
7768 	case RTE_FLOW_ITEM_TYPE_ETH:
7769 		eth = (struct rte_ether_hdr *)buf;
7770 		if (next_proto)
7771 			eth->ether_type = rte_cpu_to_be_16(next_proto);
7772 		break;
7773 	case RTE_FLOW_ITEM_TYPE_IPV4:
7774 		ipv4 = (struct rte_ipv4_hdr *)buf;
7775 		ipv4->version_ihl = 0x45;
7776 		if (next_proto && ipv4->next_proto_id == 0)
7777 			ipv4->next_proto_id = (uint8_t)next_proto;
7778 		break;
7779 	case RTE_FLOW_ITEM_TYPE_IPV6:
7780 		ipv6 = (struct rte_ipv6_hdr *)buf;
7781 		if (next_proto && ipv6->proto == 0)
7782 			ipv6->proto = (uint8_t)next_proto;
7783 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->vtc_flow);
7784 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
7785 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
7786 		ipv6->vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
7787 		break;
7788 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7789 		vxlan = (struct rte_vxlan_hdr *)buf;
7790 		vxlan->vx_flags = 0x08;
7791 		break;
7792 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
7793 		gpe = (struct rte_vxlan_gpe_hdr *)buf;
7794 		gpe->vx_flags = 0x0C;
7795 		break;
7796 	case RTE_FLOW_ITEM_TYPE_NVGRE:
7797 		nvgre = (struct rte_flow_item_nvgre *)buf;
7798 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
7799 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
7800 		break;
7801 	default:
7802 		break;
7803 	}
7804 }
7805 
7806 /** Helper of get item's default mask. */
7807 static const void *
7808 flow_item_default_mask(const struct rte_flow_item *item)
7809 {
7810 	const void *mask = NULL;
7811 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
7812 
7813 	switch (item->type) {
7814 	case RTE_FLOW_ITEM_TYPE_ANY:
7815 		mask = &rte_flow_item_any_mask;
7816 		break;
7817 	case RTE_FLOW_ITEM_TYPE_VF:
7818 		mask = &rte_flow_item_vf_mask;
7819 		break;
7820 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
7821 		mask = &rte_flow_item_port_id_mask;
7822 		break;
7823 	case RTE_FLOW_ITEM_TYPE_RAW:
7824 		mask = &rte_flow_item_raw_mask;
7825 		break;
7826 	case RTE_FLOW_ITEM_TYPE_ETH:
7827 		mask = &rte_flow_item_eth_mask;
7828 		break;
7829 	case RTE_FLOW_ITEM_TYPE_VLAN:
7830 		mask = &rte_flow_item_vlan_mask;
7831 		break;
7832 	case RTE_FLOW_ITEM_TYPE_IPV4:
7833 		mask = &rte_flow_item_ipv4_mask;
7834 		break;
7835 	case RTE_FLOW_ITEM_TYPE_IPV6:
7836 		mask = &rte_flow_item_ipv6_mask;
7837 		break;
7838 	case RTE_FLOW_ITEM_TYPE_ICMP:
7839 		mask = &rte_flow_item_icmp_mask;
7840 		break;
7841 	case RTE_FLOW_ITEM_TYPE_UDP:
7842 		mask = &rte_flow_item_udp_mask;
7843 		break;
7844 	case RTE_FLOW_ITEM_TYPE_TCP:
7845 		mask = &rte_flow_item_tcp_mask;
7846 		break;
7847 	case RTE_FLOW_ITEM_TYPE_SCTP:
7848 		mask = &rte_flow_item_sctp_mask;
7849 		break;
7850 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7851 		mask = &rte_flow_item_vxlan_mask;
7852 		break;
7853 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
7854 		mask = &rte_flow_item_vxlan_gpe_mask;
7855 		break;
7856 	case RTE_FLOW_ITEM_TYPE_E_TAG:
7857 		mask = &rte_flow_item_e_tag_mask;
7858 		break;
7859 	case RTE_FLOW_ITEM_TYPE_NVGRE:
7860 		mask = &rte_flow_item_nvgre_mask;
7861 		break;
7862 	case RTE_FLOW_ITEM_TYPE_MPLS:
7863 		mask = &rte_flow_item_mpls_mask;
7864 		break;
7865 	case RTE_FLOW_ITEM_TYPE_GRE:
7866 		mask = &rte_flow_item_gre_mask;
7867 		break;
7868 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
7869 		mask = &gre_key_default_mask;
7870 		break;
7871 	case RTE_FLOW_ITEM_TYPE_META:
7872 		mask = &rte_flow_item_meta_mask;
7873 		break;
7874 	case RTE_FLOW_ITEM_TYPE_FUZZY:
7875 		mask = &rte_flow_item_fuzzy_mask;
7876 		break;
7877 	case RTE_FLOW_ITEM_TYPE_GTP:
7878 		mask = &rte_flow_item_gtp_mask;
7879 		break;
7880 	case RTE_FLOW_ITEM_TYPE_GTP_PSC:
7881 		mask = &rte_flow_item_gtp_psc_mask;
7882 		break;
7883 	case RTE_FLOW_ITEM_TYPE_GENEVE:
7884 		mask = &rte_flow_item_geneve_mask;
7885 		break;
7886 	case RTE_FLOW_ITEM_TYPE_GENEVE_OPT:
7887 		mask = &rte_flow_item_geneve_opt_mask;
7888 		break;
7889 	case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
7890 		mask = &rte_flow_item_pppoe_proto_id_mask;
7891 		break;
7892 	case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
7893 		mask = &rte_flow_item_l2tpv3oip_mask;
7894 		break;
7895 	case RTE_FLOW_ITEM_TYPE_ESP:
7896 		mask = &rte_flow_item_esp_mask;
7897 		break;
7898 	case RTE_FLOW_ITEM_TYPE_AH:
7899 		mask = &rte_flow_item_ah_mask;
7900 		break;
7901 	case RTE_FLOW_ITEM_TYPE_PFCP:
7902 		mask = &rte_flow_item_pfcp_mask;
7903 		break;
7904 	default:
7905 		break;
7906 	}
7907 	return mask;
7908 }
7909 
7910 /** Dispatch parsed buffer to function calls. */
7911 static void
7912 cmd_set_raw_parsed_sample(const struct buffer *in)
7913 {
7914 	uint32_t n = in->args.vc.actions_n;
7915 	uint32_t i = 0;
7916 	struct rte_flow_action *action = NULL;
7917 	struct rte_flow_action *data = NULL;
7918 	const struct rte_flow_action_rss *rss = NULL;
7919 	size_t size = 0;
7920 	uint16_t idx = in->port; /* We borrow port field as index */
7921 	uint32_t max_size = sizeof(struct rte_flow_action) *
7922 						ACTION_SAMPLE_ACTIONS_NUM;
7923 
7924 	RTE_ASSERT(in->command == SET_SAMPLE_ACTIONS);
7925 	data = (struct rte_flow_action *)&raw_sample_confs[idx].data;
7926 	memset(data, 0x00, max_size);
7927 	for (; i <= n - 1; i++) {
7928 		action = in->args.vc.actions + i;
7929 		if (action->type == RTE_FLOW_ACTION_TYPE_END)
7930 			break;
7931 		switch (action->type) {
7932 		case RTE_FLOW_ACTION_TYPE_MARK:
7933 			size = sizeof(struct rte_flow_action_mark);
7934 			rte_memcpy(&sample_mark[idx],
7935 				(const void *)action->conf, size);
7936 			action->conf = &sample_mark[idx];
7937 			break;
7938 		case RTE_FLOW_ACTION_TYPE_COUNT:
7939 			size = sizeof(struct rte_flow_action_count);
7940 			rte_memcpy(&sample_count[idx],
7941 				(const void *)action->conf, size);
7942 			action->conf = &sample_count[idx];
7943 			break;
7944 		case RTE_FLOW_ACTION_TYPE_QUEUE:
7945 			size = sizeof(struct rte_flow_action_queue);
7946 			rte_memcpy(&sample_queue[idx],
7947 				(const void *)action->conf, size);
7948 			action->conf = &sample_queue[idx];
7949 			break;
7950 		case RTE_FLOW_ACTION_TYPE_RSS:
7951 			size = sizeof(struct rte_flow_action_rss);
7952 			rss = action->conf;
7953 			rte_memcpy(&sample_rss_data[idx].conf,
7954 				   (const void *)rss, size);
7955 			if (rss->key_len && rss->key) {
7956 				sample_rss_data[idx].conf.key =
7957 						sample_rss_data[idx].key;
7958 				rte_memcpy((void *)((uintptr_t)
7959 					   sample_rss_data[idx].conf.key),
7960 					   (const void *)rss->key,
7961 					   sizeof(uint8_t) * rss->key_len);
7962 			}
7963 			if (rss->queue_num && rss->queue) {
7964 				sample_rss_data[idx].conf.queue =
7965 						sample_rss_data[idx].queue;
7966 				rte_memcpy((void *)((uintptr_t)
7967 					   sample_rss_data[idx].conf.queue),
7968 					   (const void *)rss->queue,
7969 					   sizeof(uint16_t) * rss->queue_num);
7970 			}
7971 			action->conf = &sample_rss_data[idx].conf;
7972 			break;
7973 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
7974 			size = sizeof(struct rte_flow_action_raw_encap);
7975 			rte_memcpy(&sample_encap[idx],
7976 				(const void *)action->conf, size);
7977 			action->conf = &sample_encap[idx];
7978 			break;
7979 		case RTE_FLOW_ACTION_TYPE_PORT_ID:
7980 			size = sizeof(struct rte_flow_action_port_id);
7981 			rte_memcpy(&sample_port_id[idx],
7982 				(const void *)action->conf, size);
7983 			action->conf = &sample_port_id[idx];
7984 			break;
7985 		case RTE_FLOW_ACTION_TYPE_PF:
7986 			break;
7987 		case RTE_FLOW_ACTION_TYPE_VF:
7988 			size = sizeof(struct rte_flow_action_vf);
7989 			rte_memcpy(&sample_vf[idx],
7990 					(const void *)action->conf, size);
7991 			action->conf = &sample_vf[idx];
7992 			break;
7993 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
7994 			size = sizeof(struct rte_flow_action_vxlan_encap);
7995 			parse_setup_vxlan_encap_data(&sample_vxlan_encap[idx]);
7996 			action->conf = &sample_vxlan_encap[idx].conf;
7997 			break;
7998 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
7999 			size = sizeof(struct rte_flow_action_nvgre_encap);
8000 			parse_setup_nvgre_encap_data(&sample_nvgre_encap[idx]);
8001 			action->conf = &sample_nvgre_encap[idx];
8002 			break;
8003 		default:
8004 			printf("Error - Not supported action\n");
8005 			return;
8006 		}
8007 		rte_memcpy(data, action, sizeof(struct rte_flow_action));
8008 		data++;
8009 	}
8010 }
8011 
8012 /** Dispatch parsed buffer to function calls. */
8013 static void
8014 cmd_set_raw_parsed(const struct buffer *in)
8015 {
8016 	uint32_t n = in->args.vc.pattern_n;
8017 	int i = 0;
8018 	struct rte_flow_item *item = NULL;
8019 	size_t size = 0;
8020 	uint8_t *data = NULL;
8021 	uint8_t *data_tail = NULL;
8022 	size_t *total_size = NULL;
8023 	uint16_t upper_layer = 0;
8024 	uint16_t proto = 0;
8025 	uint16_t idx = in->port; /* We borrow port field as index */
8026 	int gtp_psc = -1; /* GTP PSC option index. */
8027 
8028 	if (in->command == SET_SAMPLE_ACTIONS)
8029 		return cmd_set_raw_parsed_sample(in);
8030 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
8031 		   in->command == SET_RAW_DECAP);
8032 	if (in->command == SET_RAW_ENCAP) {
8033 		total_size = &raw_encap_confs[idx].size;
8034 		data = (uint8_t *)&raw_encap_confs[idx].data;
8035 	} else {
8036 		total_size = &raw_decap_confs[idx].size;
8037 		data = (uint8_t *)&raw_decap_confs[idx].data;
8038 	}
8039 	*total_size = 0;
8040 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
8041 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
8042 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
8043 	for (i = n - 1 ; i >= 0; --i) {
8044 		const struct rte_flow_item_gtp *gtp;
8045 		const struct rte_flow_item_geneve_opt *opt;
8046 
8047 		item = in->args.vc.pattern + i;
8048 		if (item->spec == NULL)
8049 			item->spec = flow_item_default_mask(item);
8050 		switch (item->type) {
8051 		case RTE_FLOW_ITEM_TYPE_ETH:
8052 			size = sizeof(struct rte_ether_hdr);
8053 			break;
8054 		case RTE_FLOW_ITEM_TYPE_VLAN:
8055 			size = sizeof(struct rte_vlan_hdr);
8056 			proto = RTE_ETHER_TYPE_VLAN;
8057 			break;
8058 		case RTE_FLOW_ITEM_TYPE_IPV4:
8059 			size = sizeof(struct rte_ipv4_hdr);
8060 			proto = RTE_ETHER_TYPE_IPV4;
8061 			break;
8062 		case RTE_FLOW_ITEM_TYPE_IPV6:
8063 			size = sizeof(struct rte_ipv6_hdr);
8064 			proto = RTE_ETHER_TYPE_IPV6;
8065 			break;
8066 		case RTE_FLOW_ITEM_TYPE_UDP:
8067 			size = sizeof(struct rte_udp_hdr);
8068 			proto = 0x11;
8069 			break;
8070 		case RTE_FLOW_ITEM_TYPE_TCP:
8071 			size = sizeof(struct rte_tcp_hdr);
8072 			proto = 0x06;
8073 			break;
8074 		case RTE_FLOW_ITEM_TYPE_VXLAN:
8075 			size = sizeof(struct rte_vxlan_hdr);
8076 			break;
8077 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
8078 			size = sizeof(struct rte_vxlan_gpe_hdr);
8079 			break;
8080 		case RTE_FLOW_ITEM_TYPE_GRE:
8081 			size = sizeof(struct rte_gre_hdr);
8082 			proto = 0x2F;
8083 			break;
8084 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
8085 			size = sizeof(rte_be32_t);
8086 			proto = 0x0;
8087 			break;
8088 		case RTE_FLOW_ITEM_TYPE_MPLS:
8089 			size = sizeof(struct rte_mpls_hdr);
8090 			proto = 0x0;
8091 			break;
8092 		case RTE_FLOW_ITEM_TYPE_NVGRE:
8093 			size = sizeof(struct rte_flow_item_nvgre);
8094 			proto = 0x2F;
8095 			break;
8096 		case RTE_FLOW_ITEM_TYPE_GENEVE:
8097 			size = sizeof(struct rte_geneve_hdr);
8098 			break;
8099 		case RTE_FLOW_ITEM_TYPE_GENEVE_OPT:
8100 			opt = (const struct rte_flow_item_geneve_opt *)
8101 								item->spec;
8102 			size = offsetof(struct rte_flow_item_geneve_opt, data);
8103 			if (opt->option_len && opt->data) {
8104 				*total_size += opt->option_len *
8105 					       sizeof(uint32_t);
8106 				rte_memcpy(data_tail - (*total_size),
8107 					   opt->data,
8108 					   opt->option_len * sizeof(uint32_t));
8109 			}
8110 			break;
8111 		case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
8112 			size = sizeof(rte_be32_t);
8113 			proto = 0x73;
8114 			break;
8115 		case RTE_FLOW_ITEM_TYPE_ESP:
8116 			size = sizeof(struct rte_esp_hdr);
8117 			proto = 0x32;
8118 			break;
8119 		case RTE_FLOW_ITEM_TYPE_AH:
8120 			size = sizeof(struct rte_flow_item_ah);
8121 			proto = 0x33;
8122 			break;
8123 		case RTE_FLOW_ITEM_TYPE_GTP:
8124 			if (gtp_psc < 0) {
8125 				size = sizeof(struct rte_gtp_hdr);
8126 				break;
8127 			}
8128 			if (gtp_psc != i + 1) {
8129 				printf("Error - GTP PSC does not follow GTP\n");
8130 				goto error;
8131 			}
8132 			gtp = item->spec;
8133 			if ((gtp->v_pt_rsv_flags & 0x07) != 0x04) {
8134 				/* Only E flag should be set. */
8135 				printf("Error - GTP unsupported flags\n");
8136 				goto error;
8137 			} else {
8138 				struct rte_gtp_hdr_ext_word ext_word = {
8139 					.next_ext = 0x85
8140 				};
8141 
8142 				/* We have to add GTP header extra word. */
8143 				*total_size += sizeof(ext_word);
8144 				rte_memcpy(data_tail - (*total_size),
8145 					   &ext_word, sizeof(ext_word));
8146 			}
8147 			size = sizeof(struct rte_gtp_hdr);
8148 			break;
8149 		case RTE_FLOW_ITEM_TYPE_GTP_PSC:
8150 			if (gtp_psc >= 0) {
8151 				printf("Error - Multiple GTP PSC items\n");
8152 				goto error;
8153 			} else {
8154 				const struct rte_flow_item_gtp_psc
8155 					*opt = item->spec;
8156 				struct {
8157 					uint8_t len;
8158 					uint8_t pdu_type;
8159 					uint8_t qfi;
8160 					uint8_t next;
8161 				} psc;
8162 
8163 				if (opt->pdu_type & 0x0F) {
8164 					/* Support the minimal option only. */
8165 					printf("Error - GTP PSC option with "
8166 					       "extra fields not supported\n");
8167 					goto error;
8168 				}
8169 				psc.len = sizeof(psc);
8170 				psc.pdu_type = opt->pdu_type;
8171 				psc.qfi = opt->qfi;
8172 				psc.next = 0;
8173 				*total_size += sizeof(psc);
8174 				rte_memcpy(data_tail - (*total_size),
8175 					   &psc, sizeof(psc));
8176 				gtp_psc = i;
8177 				size = 0;
8178 			}
8179 			break;
8180 		case RTE_FLOW_ITEM_TYPE_PFCP:
8181 			size = sizeof(struct rte_flow_item_pfcp);
8182 			break;
8183 		default:
8184 			printf("Error - Not supported item\n");
8185 			goto error;
8186 		}
8187 		*total_size += size;
8188 		rte_memcpy(data_tail - (*total_size), item->spec, size);
8189 		/* update some fields which cannot be set by cmdline */
8190 		update_fields((data_tail - (*total_size)), item,
8191 			      upper_layer);
8192 		upper_layer = proto;
8193 	}
8194 	if (verbose_level & 0x1)
8195 		printf("total data size is %zu\n", (*total_size));
8196 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
8197 	memmove(data, (data_tail - (*total_size)), *total_size);
8198 	return;
8199 
8200 error:
8201 	*total_size = 0;
8202 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
8203 }
8204 
8205 /** Populate help strings for current token (cmdline API). */
8206 static int
8207 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
8208 		     unsigned int size)
8209 {
8210 	struct context *ctx = &cmd_flow_context;
8211 	const struct token *token = &token_list[ctx->prev];
8212 
8213 	(void)hdr;
8214 	if (!size)
8215 		return -1;
8216 	/* Set token type and update global help with details. */
8217 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
8218 	if (token->help)
8219 		cmd_set_raw.help_str = token->help;
8220 	else
8221 		cmd_set_raw.help_str = token->name;
8222 	return 0;
8223 }
8224 
8225 /** Token definition template (cmdline API). */
8226 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
8227 	.ops = &(struct cmdline_token_ops){
8228 		.parse = cmd_flow_parse,
8229 		.complete_get_nb = cmd_flow_complete_get_nb,
8230 		.complete_get_elt = cmd_flow_complete_get_elt,
8231 		.get_help = cmd_set_raw_get_help,
8232 	},
8233 	.offset = 0,
8234 };
8235 
8236 /** Populate the next dynamic token. */
8237 static void
8238 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
8239 	     cmdline_parse_token_hdr_t **hdr_inst)
8240 {
8241 	struct context *ctx = &cmd_flow_context;
8242 
8243 	/* Always reinitialize context before requesting the first token. */
8244 	if (!(hdr_inst - cmd_set_raw.tokens)) {
8245 		cmd_flow_context_init(ctx);
8246 		ctx->curr = START_SET;
8247 	}
8248 	/* Return NULL when no more tokens are expected. */
8249 	if (!ctx->next_num && (ctx->curr != START_SET)) {
8250 		*hdr = NULL;
8251 		return;
8252 	}
8253 	/* Determine if command should end here. */
8254 	if (ctx->eol && ctx->last && ctx->next_num) {
8255 		const enum index *list = ctx->next[ctx->next_num - 1];
8256 		int i;
8257 
8258 		for (i = 0; list[i]; ++i) {
8259 			if (list[i] != END)
8260 				continue;
8261 			*hdr = NULL;
8262 			return;
8263 		}
8264 	}
8265 	*hdr = &cmd_set_raw_token_hdr;
8266 }
8267 
8268 /** Token generator and output processing callback (cmdline API). */
8269 static void
8270 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
8271 {
8272 	if (cl == NULL)
8273 		cmd_set_raw_tok(arg0, arg2);
8274 	else
8275 		cmd_set_raw_parsed(arg0);
8276 }
8277 
8278 /** Global parser instance (cmdline API). */
8279 cmdline_parse_inst_t cmd_set_raw = {
8280 	.f = cmd_set_raw_cb,
8281 	.data = NULL, /**< Unused. */
8282 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
8283 	.tokens = {
8284 		NULL,
8285 	}, /**< Tokens are returned by cmd_flow_tok(). */
8286 };
8287 
8288 /* *** display raw_encap/raw_decap buf */
8289 struct cmd_show_set_raw_result {
8290 	cmdline_fixed_string_t cmd_show;
8291 	cmdline_fixed_string_t cmd_what;
8292 	cmdline_fixed_string_t cmd_all;
8293 	uint16_t cmd_index;
8294 };
8295 
8296 static void
8297 cmd_show_set_raw_parsed(void *parsed_result, struct cmdline *cl, void *data)
8298 {
8299 	struct cmd_show_set_raw_result *res = parsed_result;
8300 	uint16_t index = res->cmd_index;
8301 	uint8_t all = 0;
8302 	uint8_t *raw_data = NULL;
8303 	size_t raw_size = 0;
8304 	char title[16] = {0};
8305 
8306 	RTE_SET_USED(cl);
8307 	RTE_SET_USED(data);
8308 	if (!strcmp(res->cmd_all, "all")) {
8309 		all = 1;
8310 		index = 0;
8311 	} else if (index >= RAW_ENCAP_CONFS_MAX_NUM) {
8312 		printf("index should be 0-%u\n", RAW_ENCAP_CONFS_MAX_NUM - 1);
8313 		return;
8314 	}
8315 	do {
8316 		if (!strcmp(res->cmd_what, "raw_encap")) {
8317 			raw_data = (uint8_t *)&raw_encap_confs[index].data;
8318 			raw_size = raw_encap_confs[index].size;
8319 			snprintf(title, 16, "\nindex: %u", index);
8320 			rte_hexdump(stdout, title, raw_data, raw_size);
8321 		} else {
8322 			raw_data = (uint8_t *)&raw_decap_confs[index].data;
8323 			raw_size = raw_decap_confs[index].size;
8324 			snprintf(title, 16, "\nindex: %u", index);
8325 			rte_hexdump(stdout, title, raw_data, raw_size);
8326 		}
8327 	} while (all && ++index < RAW_ENCAP_CONFS_MAX_NUM);
8328 }
8329 
8330 cmdline_parse_token_string_t cmd_show_set_raw_cmd_show =
8331 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8332 			cmd_show, "show");
8333 cmdline_parse_token_string_t cmd_show_set_raw_cmd_what =
8334 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8335 			cmd_what, "raw_encap#raw_decap");
8336 cmdline_parse_token_num_t cmd_show_set_raw_cmd_index =
8337 	TOKEN_NUM_INITIALIZER(struct cmd_show_set_raw_result,
8338 			cmd_index, RTE_UINT16);
8339 cmdline_parse_token_string_t cmd_show_set_raw_cmd_all =
8340 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8341 			cmd_all, "all");
8342 cmdline_parse_inst_t cmd_show_set_raw = {
8343 	.f = cmd_show_set_raw_parsed,
8344 	.data = NULL,
8345 	.help_str = "show <raw_encap|raw_decap> <index>",
8346 	.tokens = {
8347 		(void *)&cmd_show_set_raw_cmd_show,
8348 		(void *)&cmd_show_set_raw_cmd_what,
8349 		(void *)&cmd_show_set_raw_cmd_index,
8350 		NULL,
8351 	},
8352 };
8353 cmdline_parse_inst_t cmd_show_set_raw_all = {
8354 	.f = cmd_show_set_raw_parsed,
8355 	.data = NULL,
8356 	.help_str = "show <raw_encap|raw_decap> all",
8357 	.tokens = {
8358 		(void *)&cmd_show_set_raw_cmd_show,
8359 		(void *)&cmd_show_set_raw_cmd_what,
8360 		(void *)&cmd_show_set_raw_cmd_all,
8361 		NULL,
8362 	},
8363 };
8364