xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 3e77031be855e3bc8c70c2eaf219709cfd7426b0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_MARK,
95 	ITEM_MARK_ID,
96 	ITEM_RAW,
97 	ITEM_RAW_RELATIVE,
98 	ITEM_RAW_SEARCH,
99 	ITEM_RAW_OFFSET,
100 	ITEM_RAW_LIMIT,
101 	ITEM_RAW_PATTERN,
102 	ITEM_ETH,
103 	ITEM_ETH_DST,
104 	ITEM_ETH_SRC,
105 	ITEM_ETH_TYPE,
106 	ITEM_VLAN,
107 	ITEM_VLAN_TCI,
108 	ITEM_VLAN_PCP,
109 	ITEM_VLAN_DEI,
110 	ITEM_VLAN_VID,
111 	ITEM_VLAN_INNER_TYPE,
112 	ITEM_IPV4,
113 	ITEM_IPV4_TOS,
114 	ITEM_IPV4_TTL,
115 	ITEM_IPV4_PROTO,
116 	ITEM_IPV4_SRC,
117 	ITEM_IPV4_DST,
118 	ITEM_IPV6,
119 	ITEM_IPV6_TC,
120 	ITEM_IPV6_FLOW,
121 	ITEM_IPV6_PROTO,
122 	ITEM_IPV6_HOP,
123 	ITEM_IPV6_SRC,
124 	ITEM_IPV6_DST,
125 	ITEM_ICMP,
126 	ITEM_ICMP_TYPE,
127 	ITEM_ICMP_CODE,
128 	ITEM_UDP,
129 	ITEM_UDP_SRC,
130 	ITEM_UDP_DST,
131 	ITEM_TCP,
132 	ITEM_TCP_SRC,
133 	ITEM_TCP_DST,
134 	ITEM_TCP_FLAGS,
135 	ITEM_SCTP,
136 	ITEM_SCTP_SRC,
137 	ITEM_SCTP_DST,
138 	ITEM_SCTP_TAG,
139 	ITEM_SCTP_CKSUM,
140 	ITEM_VXLAN,
141 	ITEM_VXLAN_VNI,
142 	ITEM_E_TAG,
143 	ITEM_E_TAG_GRP_ECID_B,
144 	ITEM_NVGRE,
145 	ITEM_NVGRE_TNI,
146 	ITEM_MPLS,
147 	ITEM_MPLS_LABEL,
148 	ITEM_GRE,
149 	ITEM_GRE_PROTO,
150 	ITEM_FUZZY,
151 	ITEM_FUZZY_THRESH,
152 	ITEM_GTP,
153 	ITEM_GTP_TEID,
154 	ITEM_GTPC,
155 	ITEM_GTPU,
156 	ITEM_GENEVE,
157 	ITEM_GENEVE_VNI,
158 	ITEM_GENEVE_PROTO,
159 	ITEM_VXLAN_GPE,
160 	ITEM_VXLAN_GPE_VNI,
161 	ITEM_ARP_ETH_IPV4,
162 	ITEM_ARP_ETH_IPV4_SHA,
163 	ITEM_ARP_ETH_IPV4_SPA,
164 	ITEM_ARP_ETH_IPV4_THA,
165 	ITEM_ARP_ETH_IPV4_TPA,
166 	ITEM_IPV6_EXT,
167 	ITEM_IPV6_EXT_NEXT_HDR,
168 	ITEM_ICMP6,
169 	ITEM_ICMP6_TYPE,
170 	ITEM_ICMP6_CODE,
171 	ITEM_ICMP6_ND_NS,
172 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
173 	ITEM_ICMP6_ND_NA,
174 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
175 	ITEM_ICMP6_ND_OPT,
176 	ITEM_ICMP6_ND_OPT_TYPE,
177 	ITEM_ICMP6_ND_OPT_SLA_ETH,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
179 	ITEM_ICMP6_ND_OPT_TLA_ETH,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
181 	ITEM_META,
182 	ITEM_META_DATA,
183 
184 	/* Validate/create actions. */
185 	ACTIONS,
186 	ACTION_NEXT,
187 	ACTION_END,
188 	ACTION_VOID,
189 	ACTION_PASSTHRU,
190 	ACTION_JUMP,
191 	ACTION_JUMP_GROUP,
192 	ACTION_MARK,
193 	ACTION_MARK_ID,
194 	ACTION_FLAG,
195 	ACTION_QUEUE,
196 	ACTION_QUEUE_INDEX,
197 	ACTION_DROP,
198 	ACTION_COUNT,
199 	ACTION_COUNT_SHARED,
200 	ACTION_COUNT_ID,
201 	ACTION_RSS,
202 	ACTION_RSS_FUNC,
203 	ACTION_RSS_LEVEL,
204 	ACTION_RSS_FUNC_DEFAULT,
205 	ACTION_RSS_FUNC_TOEPLITZ,
206 	ACTION_RSS_FUNC_SIMPLE_XOR,
207 	ACTION_RSS_TYPES,
208 	ACTION_RSS_TYPE,
209 	ACTION_RSS_KEY,
210 	ACTION_RSS_KEY_LEN,
211 	ACTION_RSS_QUEUES,
212 	ACTION_RSS_QUEUE,
213 	ACTION_PF,
214 	ACTION_VF,
215 	ACTION_VF_ORIGINAL,
216 	ACTION_VF_ID,
217 	ACTION_PHY_PORT,
218 	ACTION_PHY_PORT_ORIGINAL,
219 	ACTION_PHY_PORT_INDEX,
220 	ACTION_PORT_ID,
221 	ACTION_PORT_ID_ORIGINAL,
222 	ACTION_PORT_ID_ID,
223 	ACTION_METER,
224 	ACTION_METER_ID,
225 	ACTION_OF_SET_MPLS_TTL,
226 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
227 	ACTION_OF_DEC_MPLS_TTL,
228 	ACTION_OF_SET_NW_TTL,
229 	ACTION_OF_SET_NW_TTL_NW_TTL,
230 	ACTION_OF_DEC_NW_TTL,
231 	ACTION_OF_COPY_TTL_OUT,
232 	ACTION_OF_COPY_TTL_IN,
233 	ACTION_OF_POP_VLAN,
234 	ACTION_OF_PUSH_VLAN,
235 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
236 	ACTION_OF_SET_VLAN_VID,
237 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
238 	ACTION_OF_SET_VLAN_PCP,
239 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
240 	ACTION_OF_POP_MPLS,
241 	ACTION_OF_POP_MPLS_ETHERTYPE,
242 	ACTION_OF_PUSH_MPLS,
243 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
244 	ACTION_VXLAN_ENCAP,
245 	ACTION_VXLAN_DECAP,
246 	ACTION_NVGRE_ENCAP,
247 	ACTION_NVGRE_DECAP,
248 	ACTION_L2_ENCAP,
249 	ACTION_L2_DECAP,
250 	ACTION_MPLSOGRE_ENCAP,
251 	ACTION_MPLSOGRE_DECAP,
252 	ACTION_MPLSOUDP_ENCAP,
253 	ACTION_MPLSOUDP_DECAP,
254 	ACTION_SET_IPV4_SRC,
255 	ACTION_SET_IPV4_SRC_IPV4_SRC,
256 	ACTION_SET_IPV4_DST,
257 	ACTION_SET_IPV4_DST_IPV4_DST,
258 	ACTION_SET_IPV6_SRC,
259 	ACTION_SET_IPV6_SRC_IPV6_SRC,
260 	ACTION_SET_IPV6_DST,
261 	ACTION_SET_IPV6_DST_IPV6_DST,
262 	ACTION_SET_TP_SRC,
263 	ACTION_SET_TP_SRC_TP_SRC,
264 	ACTION_SET_TP_DST,
265 	ACTION_SET_TP_DST_TP_DST,
266 	ACTION_MAC_SWAP,
267 	ACTION_DEC_TTL,
268 	ACTION_SET_TTL,
269 	ACTION_SET_TTL_TTL,
270 	ACTION_SET_MAC_SRC,
271 	ACTION_SET_MAC_SRC_MAC_SRC,
272 	ACTION_SET_MAC_DST,
273 	ACTION_SET_MAC_DST_MAC_DST,
274 };
275 
276 /** Maximum size for pattern in struct rte_flow_item_raw. */
277 #define ITEM_RAW_PATTERN_SIZE 40
278 
279 /** Storage size for struct rte_flow_item_raw including pattern. */
280 #define ITEM_RAW_SIZE \
281 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
282 
283 /** Maximum number of queue indices in struct rte_flow_action_rss. */
284 #define ACTION_RSS_QUEUE_NUM 32
285 
286 /** Storage for struct rte_flow_action_rss including external data. */
287 struct action_rss_data {
288 	struct rte_flow_action_rss conf;
289 	uint8_t key[RSS_HASH_KEY_LENGTH];
290 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
291 };
292 
293 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
294 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
295 
296 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
297 struct action_vxlan_encap_data {
298 	struct rte_flow_action_vxlan_encap conf;
299 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
300 	struct rte_flow_item_eth item_eth;
301 	struct rte_flow_item_vlan item_vlan;
302 	union {
303 		struct rte_flow_item_ipv4 item_ipv4;
304 		struct rte_flow_item_ipv6 item_ipv6;
305 	};
306 	struct rte_flow_item_udp item_udp;
307 	struct rte_flow_item_vxlan item_vxlan;
308 };
309 
310 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
311 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
312 
313 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
314 struct action_nvgre_encap_data {
315 	struct rte_flow_action_nvgre_encap conf;
316 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
317 	struct rte_flow_item_eth item_eth;
318 	struct rte_flow_item_vlan item_vlan;
319 	union {
320 		struct rte_flow_item_ipv4 item_ipv4;
321 		struct rte_flow_item_ipv6 item_ipv6;
322 	};
323 	struct rte_flow_item_nvgre item_nvgre;
324 };
325 
326 /** Maximum data size in struct rte_flow_action_raw_encap. */
327 #define ACTION_RAW_ENCAP_MAX_DATA 128
328 
329 /** Storage for struct rte_flow_action_raw_encap including external data. */
330 struct action_raw_encap_data {
331 	struct rte_flow_action_raw_encap conf;
332 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
333 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
334 };
335 
336 /** Storage for struct rte_flow_action_raw_decap including external data. */
337 struct action_raw_decap_data {
338 	struct rte_flow_action_raw_decap conf;
339 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
340 };
341 
342 /** Maximum number of subsequent tokens and arguments on the stack. */
343 #define CTX_STACK_SIZE 16
344 
345 /** Parser context. */
346 struct context {
347 	/** Stack of subsequent token lists to process. */
348 	const enum index *next[CTX_STACK_SIZE];
349 	/** Arguments for stacked tokens. */
350 	const void *args[CTX_STACK_SIZE];
351 	enum index curr; /**< Current token index. */
352 	enum index prev; /**< Index of the last token seen. */
353 	int next_num; /**< Number of entries in next[]. */
354 	int args_num; /**< Number of entries in args[]. */
355 	uint32_t eol:1; /**< EOL has been detected. */
356 	uint32_t last:1; /**< No more arguments. */
357 	portid_t port; /**< Current port ID (for completions). */
358 	uint32_t objdata; /**< Object-specific data. */
359 	void *object; /**< Address of current object for relative offsets. */
360 	void *objmask; /**< Object a full mask must be written to. */
361 };
362 
363 /** Token argument. */
364 struct arg {
365 	uint32_t hton:1; /**< Use network byte ordering. */
366 	uint32_t sign:1; /**< Value is signed. */
367 	uint32_t bounded:1; /**< Value is bounded. */
368 	uintmax_t min; /**< Minimum value if bounded. */
369 	uintmax_t max; /**< Maximum value if bounded. */
370 	uint32_t offset; /**< Relative offset from ctx->object. */
371 	uint32_t size; /**< Field size. */
372 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
373 };
374 
375 /** Parser token definition. */
376 struct token {
377 	/** Type displayed during completion (defaults to "TOKEN"). */
378 	const char *type;
379 	/** Help displayed during completion (defaults to token name). */
380 	const char *help;
381 	/** Private data used by parser functions. */
382 	const void *priv;
383 	/**
384 	 * Lists of subsequent tokens to push on the stack. Each call to the
385 	 * parser consumes the last entry of that stack.
386 	 */
387 	const enum index *const *next;
388 	/** Arguments stack for subsequent tokens that need them. */
389 	const struct arg *const *args;
390 	/**
391 	 * Token-processing callback, returns -1 in case of error, the
392 	 * length of the matched string otherwise. If NULL, attempts to
393 	 * match the token name.
394 	 *
395 	 * If buf is not NULL, the result should be stored in it according
396 	 * to context. An error is returned if not large enough.
397 	 */
398 	int (*call)(struct context *ctx, const struct token *token,
399 		    const char *str, unsigned int len,
400 		    void *buf, unsigned int size);
401 	/**
402 	 * Callback that provides possible values for this token, used for
403 	 * completion. Returns -1 in case of error, the number of possible
404 	 * values otherwise. If NULL, the token name is used.
405 	 *
406 	 * If buf is not NULL, entry index ent is written to buf and the
407 	 * full length of the entry is returned (same behavior as
408 	 * snprintf()).
409 	 */
410 	int (*comp)(struct context *ctx, const struct token *token,
411 		    unsigned int ent, char *buf, unsigned int size);
412 	/** Mandatory token name, no default value. */
413 	const char *name;
414 };
415 
416 /** Static initializer for the next field. */
417 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
418 
419 /** Static initializer for a NEXT() entry. */
420 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
421 
422 /** Static initializer for the args field. */
423 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
424 
425 /** Static initializer for ARGS() to target a field. */
426 #define ARGS_ENTRY(s, f) \
427 	(&(const struct arg){ \
428 		.offset = offsetof(s, f), \
429 		.size = sizeof(((s *)0)->f), \
430 	})
431 
432 /** Static initializer for ARGS() to target a bit-field. */
433 #define ARGS_ENTRY_BF(s, f, b) \
434 	(&(const struct arg){ \
435 		.size = sizeof(s), \
436 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
437 	})
438 
439 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
440 #define ARGS_ENTRY_MASK(s, f, m) \
441 	(&(const struct arg){ \
442 		.offset = offsetof(s, f), \
443 		.size = sizeof(((s *)0)->f), \
444 		.mask = (const void *)(m), \
445 	})
446 
447 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
448 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
449 	(&(const struct arg){ \
450 		.hton = 1, \
451 		.offset = offsetof(s, f), \
452 		.size = sizeof(((s *)0)->f), \
453 		.mask = (const void *)(m), \
454 	})
455 
456 /** Static initializer for ARGS() to target a pointer. */
457 #define ARGS_ENTRY_PTR(s, f) \
458 	(&(const struct arg){ \
459 		.size = sizeof(*((s *)0)->f), \
460 	})
461 
462 /** Static initializer for ARGS() with arbitrary offset and size. */
463 #define ARGS_ENTRY_ARB(o, s) \
464 	(&(const struct arg){ \
465 		.offset = (o), \
466 		.size = (s), \
467 	})
468 
469 /** Same as ARGS_ENTRY_ARB() with bounded values. */
470 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
471 	(&(const struct arg){ \
472 		.bounded = 1, \
473 		.min = (i), \
474 		.max = (a), \
475 		.offset = (o), \
476 		.size = (s), \
477 	})
478 
479 /** Same as ARGS_ENTRY() using network byte ordering. */
480 #define ARGS_ENTRY_HTON(s, f) \
481 	(&(const struct arg){ \
482 		.hton = 1, \
483 		.offset = offsetof(s, f), \
484 		.size = sizeof(((s *)0)->f), \
485 	})
486 
487 /** Parser output buffer layout expected by cmd_flow_parsed(). */
488 struct buffer {
489 	enum index command; /**< Flow command. */
490 	portid_t port; /**< Affected port ID. */
491 	union {
492 		struct {
493 			struct rte_flow_attr attr;
494 			struct rte_flow_item *pattern;
495 			struct rte_flow_action *actions;
496 			uint32_t pattern_n;
497 			uint32_t actions_n;
498 			uint8_t *data;
499 		} vc; /**< Validate/create arguments. */
500 		struct {
501 			uint32_t *rule;
502 			uint32_t rule_n;
503 		} destroy; /**< Destroy arguments. */
504 		struct {
505 			uint32_t rule;
506 			struct rte_flow_action action;
507 		} query; /**< Query arguments. */
508 		struct {
509 			uint32_t *group;
510 			uint32_t group_n;
511 		} list; /**< List arguments. */
512 		struct {
513 			int set;
514 		} isolate; /**< Isolated mode arguments. */
515 	} args; /**< Command arguments. */
516 };
517 
518 /** Private data for pattern items. */
519 struct parse_item_priv {
520 	enum rte_flow_item_type type; /**< Item type. */
521 	uint32_t size; /**< Size of item specification structure. */
522 };
523 
524 #define PRIV_ITEM(t, s) \
525 	(&(const struct parse_item_priv){ \
526 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
527 		.size = s, \
528 	})
529 
530 /** Private data for actions. */
531 struct parse_action_priv {
532 	enum rte_flow_action_type type; /**< Action type. */
533 	uint32_t size; /**< Size of action configuration structure. */
534 };
535 
536 #define PRIV_ACTION(t, s) \
537 	(&(const struct parse_action_priv){ \
538 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
539 		.size = s, \
540 	})
541 
542 static const enum index next_vc_attr[] = {
543 	GROUP,
544 	PRIORITY,
545 	INGRESS,
546 	EGRESS,
547 	TRANSFER,
548 	PATTERN,
549 	ZERO,
550 };
551 
552 static const enum index next_destroy_attr[] = {
553 	DESTROY_RULE,
554 	END,
555 	ZERO,
556 };
557 
558 static const enum index next_list_attr[] = {
559 	LIST_GROUP,
560 	END,
561 	ZERO,
562 };
563 
564 static const enum index item_param[] = {
565 	ITEM_PARAM_IS,
566 	ITEM_PARAM_SPEC,
567 	ITEM_PARAM_LAST,
568 	ITEM_PARAM_MASK,
569 	ITEM_PARAM_PREFIX,
570 	ZERO,
571 };
572 
573 static const enum index item_param_is[] = {
574 	ITEM_PARAM_IS,
575 	ZERO,
576 };
577 
578 static const enum index next_item[] = {
579 	ITEM_END,
580 	ITEM_VOID,
581 	ITEM_INVERT,
582 	ITEM_ANY,
583 	ITEM_PF,
584 	ITEM_VF,
585 	ITEM_PHY_PORT,
586 	ITEM_PORT_ID,
587 	ITEM_MARK,
588 	ITEM_RAW,
589 	ITEM_ETH,
590 	ITEM_VLAN,
591 	ITEM_IPV4,
592 	ITEM_IPV6,
593 	ITEM_ICMP,
594 	ITEM_UDP,
595 	ITEM_TCP,
596 	ITEM_SCTP,
597 	ITEM_VXLAN,
598 	ITEM_E_TAG,
599 	ITEM_NVGRE,
600 	ITEM_MPLS,
601 	ITEM_GRE,
602 	ITEM_FUZZY,
603 	ITEM_GTP,
604 	ITEM_GTPC,
605 	ITEM_GTPU,
606 	ITEM_GENEVE,
607 	ITEM_VXLAN_GPE,
608 	ITEM_ARP_ETH_IPV4,
609 	ITEM_IPV6_EXT,
610 	ITEM_ICMP6,
611 	ITEM_ICMP6_ND_NS,
612 	ITEM_ICMP6_ND_NA,
613 	ITEM_ICMP6_ND_OPT,
614 	ITEM_ICMP6_ND_OPT_SLA_ETH,
615 	ITEM_ICMP6_ND_OPT_TLA_ETH,
616 	ITEM_META,
617 	ZERO,
618 };
619 
620 static const enum index item_fuzzy[] = {
621 	ITEM_FUZZY_THRESH,
622 	ITEM_NEXT,
623 	ZERO,
624 };
625 
626 static const enum index item_any[] = {
627 	ITEM_ANY_NUM,
628 	ITEM_NEXT,
629 	ZERO,
630 };
631 
632 static const enum index item_vf[] = {
633 	ITEM_VF_ID,
634 	ITEM_NEXT,
635 	ZERO,
636 };
637 
638 static const enum index item_phy_port[] = {
639 	ITEM_PHY_PORT_INDEX,
640 	ITEM_NEXT,
641 	ZERO,
642 };
643 
644 static const enum index item_port_id[] = {
645 	ITEM_PORT_ID_ID,
646 	ITEM_NEXT,
647 	ZERO,
648 };
649 
650 static const enum index item_mark[] = {
651 	ITEM_MARK_ID,
652 	ITEM_NEXT,
653 	ZERO,
654 };
655 
656 static const enum index item_raw[] = {
657 	ITEM_RAW_RELATIVE,
658 	ITEM_RAW_SEARCH,
659 	ITEM_RAW_OFFSET,
660 	ITEM_RAW_LIMIT,
661 	ITEM_RAW_PATTERN,
662 	ITEM_NEXT,
663 	ZERO,
664 };
665 
666 static const enum index item_eth[] = {
667 	ITEM_ETH_DST,
668 	ITEM_ETH_SRC,
669 	ITEM_ETH_TYPE,
670 	ITEM_NEXT,
671 	ZERO,
672 };
673 
674 static const enum index item_vlan[] = {
675 	ITEM_VLAN_TCI,
676 	ITEM_VLAN_PCP,
677 	ITEM_VLAN_DEI,
678 	ITEM_VLAN_VID,
679 	ITEM_VLAN_INNER_TYPE,
680 	ITEM_NEXT,
681 	ZERO,
682 };
683 
684 static const enum index item_ipv4[] = {
685 	ITEM_IPV4_TOS,
686 	ITEM_IPV4_TTL,
687 	ITEM_IPV4_PROTO,
688 	ITEM_IPV4_SRC,
689 	ITEM_IPV4_DST,
690 	ITEM_NEXT,
691 	ZERO,
692 };
693 
694 static const enum index item_ipv6[] = {
695 	ITEM_IPV6_TC,
696 	ITEM_IPV6_FLOW,
697 	ITEM_IPV6_PROTO,
698 	ITEM_IPV6_HOP,
699 	ITEM_IPV6_SRC,
700 	ITEM_IPV6_DST,
701 	ITEM_NEXT,
702 	ZERO,
703 };
704 
705 static const enum index item_icmp[] = {
706 	ITEM_ICMP_TYPE,
707 	ITEM_ICMP_CODE,
708 	ITEM_NEXT,
709 	ZERO,
710 };
711 
712 static const enum index item_udp[] = {
713 	ITEM_UDP_SRC,
714 	ITEM_UDP_DST,
715 	ITEM_NEXT,
716 	ZERO,
717 };
718 
719 static const enum index item_tcp[] = {
720 	ITEM_TCP_SRC,
721 	ITEM_TCP_DST,
722 	ITEM_TCP_FLAGS,
723 	ITEM_NEXT,
724 	ZERO,
725 };
726 
727 static const enum index item_sctp[] = {
728 	ITEM_SCTP_SRC,
729 	ITEM_SCTP_DST,
730 	ITEM_SCTP_TAG,
731 	ITEM_SCTP_CKSUM,
732 	ITEM_NEXT,
733 	ZERO,
734 };
735 
736 static const enum index item_vxlan[] = {
737 	ITEM_VXLAN_VNI,
738 	ITEM_NEXT,
739 	ZERO,
740 };
741 
742 static const enum index item_e_tag[] = {
743 	ITEM_E_TAG_GRP_ECID_B,
744 	ITEM_NEXT,
745 	ZERO,
746 };
747 
748 static const enum index item_nvgre[] = {
749 	ITEM_NVGRE_TNI,
750 	ITEM_NEXT,
751 	ZERO,
752 };
753 
754 static const enum index item_mpls[] = {
755 	ITEM_MPLS_LABEL,
756 	ITEM_NEXT,
757 	ZERO,
758 };
759 
760 static const enum index item_gre[] = {
761 	ITEM_GRE_PROTO,
762 	ITEM_NEXT,
763 	ZERO,
764 };
765 
766 static const enum index item_gtp[] = {
767 	ITEM_GTP_TEID,
768 	ITEM_NEXT,
769 	ZERO,
770 };
771 
772 static const enum index item_geneve[] = {
773 	ITEM_GENEVE_VNI,
774 	ITEM_GENEVE_PROTO,
775 	ITEM_NEXT,
776 	ZERO,
777 };
778 
779 static const enum index item_vxlan_gpe[] = {
780 	ITEM_VXLAN_GPE_VNI,
781 	ITEM_NEXT,
782 	ZERO,
783 };
784 
785 static const enum index item_arp_eth_ipv4[] = {
786 	ITEM_ARP_ETH_IPV4_SHA,
787 	ITEM_ARP_ETH_IPV4_SPA,
788 	ITEM_ARP_ETH_IPV4_THA,
789 	ITEM_ARP_ETH_IPV4_TPA,
790 	ITEM_NEXT,
791 	ZERO,
792 };
793 
794 static const enum index item_ipv6_ext[] = {
795 	ITEM_IPV6_EXT_NEXT_HDR,
796 	ITEM_NEXT,
797 	ZERO,
798 };
799 
800 static const enum index item_icmp6[] = {
801 	ITEM_ICMP6_TYPE,
802 	ITEM_ICMP6_CODE,
803 	ITEM_NEXT,
804 	ZERO,
805 };
806 
807 static const enum index item_icmp6_nd_ns[] = {
808 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
809 	ITEM_NEXT,
810 	ZERO,
811 };
812 
813 static const enum index item_icmp6_nd_na[] = {
814 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
815 	ITEM_NEXT,
816 	ZERO,
817 };
818 
819 static const enum index item_icmp6_nd_opt[] = {
820 	ITEM_ICMP6_ND_OPT_TYPE,
821 	ITEM_NEXT,
822 	ZERO,
823 };
824 
825 static const enum index item_icmp6_nd_opt_sla_eth[] = {
826 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
827 	ITEM_NEXT,
828 	ZERO,
829 };
830 
831 static const enum index item_icmp6_nd_opt_tla_eth[] = {
832 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
833 	ITEM_NEXT,
834 	ZERO,
835 };
836 
837 static const enum index item_meta[] = {
838 	ITEM_META_DATA,
839 	ITEM_NEXT,
840 	ZERO,
841 };
842 
843 static const enum index next_action[] = {
844 	ACTION_END,
845 	ACTION_VOID,
846 	ACTION_PASSTHRU,
847 	ACTION_JUMP,
848 	ACTION_MARK,
849 	ACTION_FLAG,
850 	ACTION_QUEUE,
851 	ACTION_DROP,
852 	ACTION_COUNT,
853 	ACTION_RSS,
854 	ACTION_PF,
855 	ACTION_VF,
856 	ACTION_PHY_PORT,
857 	ACTION_PORT_ID,
858 	ACTION_METER,
859 	ACTION_OF_SET_MPLS_TTL,
860 	ACTION_OF_DEC_MPLS_TTL,
861 	ACTION_OF_SET_NW_TTL,
862 	ACTION_OF_DEC_NW_TTL,
863 	ACTION_OF_COPY_TTL_OUT,
864 	ACTION_OF_COPY_TTL_IN,
865 	ACTION_OF_POP_VLAN,
866 	ACTION_OF_PUSH_VLAN,
867 	ACTION_OF_SET_VLAN_VID,
868 	ACTION_OF_SET_VLAN_PCP,
869 	ACTION_OF_POP_MPLS,
870 	ACTION_OF_PUSH_MPLS,
871 	ACTION_VXLAN_ENCAP,
872 	ACTION_VXLAN_DECAP,
873 	ACTION_NVGRE_ENCAP,
874 	ACTION_NVGRE_DECAP,
875 	ACTION_L2_ENCAP,
876 	ACTION_L2_DECAP,
877 	ACTION_MPLSOGRE_ENCAP,
878 	ACTION_MPLSOGRE_DECAP,
879 	ACTION_MPLSOUDP_ENCAP,
880 	ACTION_MPLSOUDP_DECAP,
881 	ACTION_SET_IPV4_SRC,
882 	ACTION_SET_IPV4_DST,
883 	ACTION_SET_IPV6_SRC,
884 	ACTION_SET_IPV6_DST,
885 	ACTION_SET_TP_SRC,
886 	ACTION_SET_TP_DST,
887 	ACTION_MAC_SWAP,
888 	ACTION_DEC_TTL,
889 	ACTION_SET_TTL,
890 	ACTION_SET_MAC_SRC,
891 	ACTION_SET_MAC_DST,
892 	ZERO,
893 };
894 
895 static const enum index action_mark[] = {
896 	ACTION_MARK_ID,
897 	ACTION_NEXT,
898 	ZERO,
899 };
900 
901 static const enum index action_queue[] = {
902 	ACTION_QUEUE_INDEX,
903 	ACTION_NEXT,
904 	ZERO,
905 };
906 
907 static const enum index action_count[] = {
908 	ACTION_COUNT_ID,
909 	ACTION_COUNT_SHARED,
910 	ACTION_NEXT,
911 	ZERO,
912 };
913 
914 static const enum index action_rss[] = {
915 	ACTION_RSS_FUNC,
916 	ACTION_RSS_LEVEL,
917 	ACTION_RSS_TYPES,
918 	ACTION_RSS_KEY,
919 	ACTION_RSS_KEY_LEN,
920 	ACTION_RSS_QUEUES,
921 	ACTION_NEXT,
922 	ZERO,
923 };
924 
925 static const enum index action_vf[] = {
926 	ACTION_VF_ORIGINAL,
927 	ACTION_VF_ID,
928 	ACTION_NEXT,
929 	ZERO,
930 };
931 
932 static const enum index action_phy_port[] = {
933 	ACTION_PHY_PORT_ORIGINAL,
934 	ACTION_PHY_PORT_INDEX,
935 	ACTION_NEXT,
936 	ZERO,
937 };
938 
939 static const enum index action_port_id[] = {
940 	ACTION_PORT_ID_ORIGINAL,
941 	ACTION_PORT_ID_ID,
942 	ACTION_NEXT,
943 	ZERO,
944 };
945 
946 static const enum index action_meter[] = {
947 	ACTION_METER_ID,
948 	ACTION_NEXT,
949 	ZERO,
950 };
951 
952 static const enum index action_of_set_mpls_ttl[] = {
953 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
954 	ACTION_NEXT,
955 	ZERO,
956 };
957 
958 static const enum index action_of_set_nw_ttl[] = {
959 	ACTION_OF_SET_NW_TTL_NW_TTL,
960 	ACTION_NEXT,
961 	ZERO,
962 };
963 
964 static const enum index action_of_push_vlan[] = {
965 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
966 	ACTION_NEXT,
967 	ZERO,
968 };
969 
970 static const enum index action_of_set_vlan_vid[] = {
971 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
972 	ACTION_NEXT,
973 	ZERO,
974 };
975 
976 static const enum index action_of_set_vlan_pcp[] = {
977 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
978 	ACTION_NEXT,
979 	ZERO,
980 };
981 
982 static const enum index action_of_pop_mpls[] = {
983 	ACTION_OF_POP_MPLS_ETHERTYPE,
984 	ACTION_NEXT,
985 	ZERO,
986 };
987 
988 static const enum index action_of_push_mpls[] = {
989 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
990 	ACTION_NEXT,
991 	ZERO,
992 };
993 
994 static const enum index action_set_ipv4_src[] = {
995 	ACTION_SET_IPV4_SRC_IPV4_SRC,
996 	ACTION_NEXT,
997 	ZERO,
998 };
999 
1000 static const enum index action_set_mac_src[] = {
1001 	ACTION_SET_MAC_SRC_MAC_SRC,
1002 	ACTION_NEXT,
1003 	ZERO,
1004 };
1005 
1006 static const enum index action_set_ipv4_dst[] = {
1007 	ACTION_SET_IPV4_DST_IPV4_DST,
1008 	ACTION_NEXT,
1009 	ZERO,
1010 };
1011 
1012 static const enum index action_set_ipv6_src[] = {
1013 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1014 	ACTION_NEXT,
1015 	ZERO,
1016 };
1017 
1018 static const enum index action_set_ipv6_dst[] = {
1019 	ACTION_SET_IPV6_DST_IPV6_DST,
1020 	ACTION_NEXT,
1021 	ZERO,
1022 };
1023 
1024 static const enum index action_set_tp_src[] = {
1025 	ACTION_SET_TP_SRC_TP_SRC,
1026 	ACTION_NEXT,
1027 	ZERO,
1028 };
1029 
1030 static const enum index action_set_tp_dst[] = {
1031 	ACTION_SET_TP_DST_TP_DST,
1032 	ACTION_NEXT,
1033 	ZERO,
1034 };
1035 
1036 static const enum index action_set_ttl[] = {
1037 	ACTION_SET_TTL_TTL,
1038 	ACTION_NEXT,
1039 	ZERO,
1040 };
1041 
1042 static const enum index action_jump[] = {
1043 	ACTION_JUMP_GROUP,
1044 	ACTION_NEXT,
1045 	ZERO,
1046 };
1047 
1048 static const enum index action_set_mac_dst[] = {
1049 	ACTION_SET_MAC_DST_MAC_DST,
1050 	ACTION_NEXT,
1051 	ZERO,
1052 };
1053 
1054 static int parse_init(struct context *, const struct token *,
1055 		      const char *, unsigned int,
1056 		      void *, unsigned int);
1057 static int parse_vc(struct context *, const struct token *,
1058 		    const char *, unsigned int,
1059 		    void *, unsigned int);
1060 static int parse_vc_spec(struct context *, const struct token *,
1061 			 const char *, unsigned int, void *, unsigned int);
1062 static int parse_vc_conf(struct context *, const struct token *,
1063 			 const char *, unsigned int, void *, unsigned int);
1064 static int parse_vc_action_rss(struct context *, const struct token *,
1065 			       const char *, unsigned int, void *,
1066 			       unsigned int);
1067 static int parse_vc_action_rss_func(struct context *, const struct token *,
1068 				    const char *, unsigned int, void *,
1069 				    unsigned int);
1070 static int parse_vc_action_rss_type(struct context *, const struct token *,
1071 				    const char *, unsigned int, void *,
1072 				    unsigned int);
1073 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1074 				     const char *, unsigned int, void *,
1075 				     unsigned int);
1076 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1077 				       const char *, unsigned int, void *,
1078 				       unsigned int);
1079 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1080 				       const char *, unsigned int, void *,
1081 				       unsigned int);
1082 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1083 				    const char *, unsigned int, void *,
1084 				    unsigned int);
1085 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1086 				    const char *, unsigned int, void *,
1087 				    unsigned int);
1088 static int parse_vc_action_mplsogre_encap(struct context *,
1089 					  const struct token *, const char *,
1090 					  unsigned int, void *, unsigned int);
1091 static int parse_vc_action_mplsogre_decap(struct context *,
1092 					  const struct token *, const char *,
1093 					  unsigned int, void *, unsigned int);
1094 static int parse_vc_action_mplsoudp_encap(struct context *,
1095 					  const struct token *, const char *,
1096 					  unsigned int, void *, unsigned int);
1097 static int parse_vc_action_mplsoudp_decap(struct context *,
1098 					  const struct token *, const char *,
1099 					  unsigned int, void *, unsigned int);
1100 static int parse_destroy(struct context *, const struct token *,
1101 			 const char *, unsigned int,
1102 			 void *, unsigned int);
1103 static int parse_flush(struct context *, const struct token *,
1104 		       const char *, unsigned int,
1105 		       void *, unsigned int);
1106 static int parse_query(struct context *, const struct token *,
1107 		       const char *, unsigned int,
1108 		       void *, unsigned int);
1109 static int parse_action(struct context *, const struct token *,
1110 			const char *, unsigned int,
1111 			void *, unsigned int);
1112 static int parse_list(struct context *, const struct token *,
1113 		      const char *, unsigned int,
1114 		      void *, unsigned int);
1115 static int parse_isolate(struct context *, const struct token *,
1116 			 const char *, unsigned int,
1117 			 void *, unsigned int);
1118 static int parse_int(struct context *, const struct token *,
1119 		     const char *, unsigned int,
1120 		     void *, unsigned int);
1121 static int parse_prefix(struct context *, const struct token *,
1122 			const char *, unsigned int,
1123 			void *, unsigned int);
1124 static int parse_boolean(struct context *, const struct token *,
1125 			 const char *, unsigned int,
1126 			 void *, unsigned int);
1127 static int parse_string(struct context *, const struct token *,
1128 			const char *, unsigned int,
1129 			void *, unsigned int);
1130 static int parse_mac_addr(struct context *, const struct token *,
1131 			  const char *, unsigned int,
1132 			  void *, unsigned int);
1133 static int parse_ipv4_addr(struct context *, const struct token *,
1134 			   const char *, unsigned int,
1135 			   void *, unsigned int);
1136 static int parse_ipv6_addr(struct context *, const struct token *,
1137 			   const char *, unsigned int,
1138 			   void *, unsigned int);
1139 static int parse_port(struct context *, const struct token *,
1140 		      const char *, unsigned int,
1141 		      void *, unsigned int);
1142 static int comp_none(struct context *, const struct token *,
1143 		     unsigned int, char *, unsigned int);
1144 static int comp_boolean(struct context *, const struct token *,
1145 			unsigned int, char *, unsigned int);
1146 static int comp_action(struct context *, const struct token *,
1147 		       unsigned int, char *, unsigned int);
1148 static int comp_port(struct context *, const struct token *,
1149 		     unsigned int, char *, unsigned int);
1150 static int comp_rule_id(struct context *, const struct token *,
1151 			unsigned int, char *, unsigned int);
1152 static int comp_vc_action_rss_type(struct context *, const struct token *,
1153 				   unsigned int, char *, unsigned int);
1154 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1155 				    unsigned int, char *, unsigned int);
1156 
1157 /** Token definitions. */
1158 static const struct token token_list[] = {
1159 	/* Special tokens. */
1160 	[ZERO] = {
1161 		.name = "ZERO",
1162 		.help = "null entry, abused as the entry point",
1163 		.next = NEXT(NEXT_ENTRY(FLOW)),
1164 	},
1165 	[END] = {
1166 		.name = "",
1167 		.type = "RETURN",
1168 		.help = "command may end here",
1169 	},
1170 	/* Common tokens. */
1171 	[INTEGER] = {
1172 		.name = "{int}",
1173 		.type = "INTEGER",
1174 		.help = "integer value",
1175 		.call = parse_int,
1176 		.comp = comp_none,
1177 	},
1178 	[UNSIGNED] = {
1179 		.name = "{unsigned}",
1180 		.type = "UNSIGNED",
1181 		.help = "unsigned integer value",
1182 		.call = parse_int,
1183 		.comp = comp_none,
1184 	},
1185 	[PREFIX] = {
1186 		.name = "{prefix}",
1187 		.type = "PREFIX",
1188 		.help = "prefix length for bit-mask",
1189 		.call = parse_prefix,
1190 		.comp = comp_none,
1191 	},
1192 	[BOOLEAN] = {
1193 		.name = "{boolean}",
1194 		.type = "BOOLEAN",
1195 		.help = "any boolean value",
1196 		.call = parse_boolean,
1197 		.comp = comp_boolean,
1198 	},
1199 	[STRING] = {
1200 		.name = "{string}",
1201 		.type = "STRING",
1202 		.help = "fixed string",
1203 		.call = parse_string,
1204 		.comp = comp_none,
1205 	},
1206 	[MAC_ADDR] = {
1207 		.name = "{MAC address}",
1208 		.type = "MAC-48",
1209 		.help = "standard MAC address notation",
1210 		.call = parse_mac_addr,
1211 		.comp = comp_none,
1212 	},
1213 	[IPV4_ADDR] = {
1214 		.name = "{IPv4 address}",
1215 		.type = "IPV4 ADDRESS",
1216 		.help = "standard IPv4 address notation",
1217 		.call = parse_ipv4_addr,
1218 		.comp = comp_none,
1219 	},
1220 	[IPV6_ADDR] = {
1221 		.name = "{IPv6 address}",
1222 		.type = "IPV6 ADDRESS",
1223 		.help = "standard IPv6 address notation",
1224 		.call = parse_ipv6_addr,
1225 		.comp = comp_none,
1226 	},
1227 	[RULE_ID] = {
1228 		.name = "{rule id}",
1229 		.type = "RULE ID",
1230 		.help = "rule identifier",
1231 		.call = parse_int,
1232 		.comp = comp_rule_id,
1233 	},
1234 	[PORT_ID] = {
1235 		.name = "{port_id}",
1236 		.type = "PORT ID",
1237 		.help = "port identifier",
1238 		.call = parse_port,
1239 		.comp = comp_port,
1240 	},
1241 	[GROUP_ID] = {
1242 		.name = "{group_id}",
1243 		.type = "GROUP ID",
1244 		.help = "group identifier",
1245 		.call = parse_int,
1246 		.comp = comp_none,
1247 	},
1248 	[PRIORITY_LEVEL] = {
1249 		.name = "{level}",
1250 		.type = "PRIORITY",
1251 		.help = "priority level",
1252 		.call = parse_int,
1253 		.comp = comp_none,
1254 	},
1255 	/* Top-level command. */
1256 	[FLOW] = {
1257 		.name = "flow",
1258 		.type = "{command} {port_id} [{arg} [...]]",
1259 		.help = "manage ingress/egress flow rules",
1260 		.next = NEXT(NEXT_ENTRY
1261 			     (VALIDATE,
1262 			      CREATE,
1263 			      DESTROY,
1264 			      FLUSH,
1265 			      LIST,
1266 			      QUERY,
1267 			      ISOLATE)),
1268 		.call = parse_init,
1269 	},
1270 	/* Sub-level commands. */
1271 	[VALIDATE] = {
1272 		.name = "validate",
1273 		.help = "check whether a flow rule can be created",
1274 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1275 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1276 		.call = parse_vc,
1277 	},
1278 	[CREATE] = {
1279 		.name = "create",
1280 		.help = "create a flow rule",
1281 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1282 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1283 		.call = parse_vc,
1284 	},
1285 	[DESTROY] = {
1286 		.name = "destroy",
1287 		.help = "destroy specific flow rules",
1288 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1289 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1290 		.call = parse_destroy,
1291 	},
1292 	[FLUSH] = {
1293 		.name = "flush",
1294 		.help = "destroy all flow rules",
1295 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1296 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1297 		.call = parse_flush,
1298 	},
1299 	[QUERY] = {
1300 		.name = "query",
1301 		.help = "query an existing flow rule",
1302 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1303 			     NEXT_ENTRY(RULE_ID),
1304 			     NEXT_ENTRY(PORT_ID)),
1305 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1306 			     ARGS_ENTRY(struct buffer, args.query.rule),
1307 			     ARGS_ENTRY(struct buffer, port)),
1308 		.call = parse_query,
1309 	},
1310 	[LIST] = {
1311 		.name = "list",
1312 		.help = "list existing flow rules",
1313 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1314 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1315 		.call = parse_list,
1316 	},
1317 	[ISOLATE] = {
1318 		.name = "isolate",
1319 		.help = "restrict ingress traffic to the defined flow rules",
1320 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1321 			     NEXT_ENTRY(PORT_ID)),
1322 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1323 			     ARGS_ENTRY(struct buffer, port)),
1324 		.call = parse_isolate,
1325 	},
1326 	/* Destroy arguments. */
1327 	[DESTROY_RULE] = {
1328 		.name = "rule",
1329 		.help = "specify a rule identifier",
1330 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1331 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1332 		.call = parse_destroy,
1333 	},
1334 	/* Query arguments. */
1335 	[QUERY_ACTION] = {
1336 		.name = "{action}",
1337 		.type = "ACTION",
1338 		.help = "action to query, must be part of the rule",
1339 		.call = parse_action,
1340 		.comp = comp_action,
1341 	},
1342 	/* List arguments. */
1343 	[LIST_GROUP] = {
1344 		.name = "group",
1345 		.help = "specify a group",
1346 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1347 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1348 		.call = parse_list,
1349 	},
1350 	/* Validate/create attributes. */
1351 	[GROUP] = {
1352 		.name = "group",
1353 		.help = "specify a group",
1354 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1355 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1356 		.call = parse_vc,
1357 	},
1358 	[PRIORITY] = {
1359 		.name = "priority",
1360 		.help = "specify a priority level",
1361 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1362 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1363 		.call = parse_vc,
1364 	},
1365 	[INGRESS] = {
1366 		.name = "ingress",
1367 		.help = "affect rule to ingress",
1368 		.next = NEXT(next_vc_attr),
1369 		.call = parse_vc,
1370 	},
1371 	[EGRESS] = {
1372 		.name = "egress",
1373 		.help = "affect rule to egress",
1374 		.next = NEXT(next_vc_attr),
1375 		.call = parse_vc,
1376 	},
1377 	[TRANSFER] = {
1378 		.name = "transfer",
1379 		.help = "apply rule directly to endpoints found in pattern",
1380 		.next = NEXT(next_vc_attr),
1381 		.call = parse_vc,
1382 	},
1383 	/* Validate/create pattern. */
1384 	[PATTERN] = {
1385 		.name = "pattern",
1386 		.help = "submit a list of pattern items",
1387 		.next = NEXT(next_item),
1388 		.call = parse_vc,
1389 	},
1390 	[ITEM_PARAM_IS] = {
1391 		.name = "is",
1392 		.help = "match value perfectly (with full bit-mask)",
1393 		.call = parse_vc_spec,
1394 	},
1395 	[ITEM_PARAM_SPEC] = {
1396 		.name = "spec",
1397 		.help = "match value according to configured bit-mask",
1398 		.call = parse_vc_spec,
1399 	},
1400 	[ITEM_PARAM_LAST] = {
1401 		.name = "last",
1402 		.help = "specify upper bound to establish a range",
1403 		.call = parse_vc_spec,
1404 	},
1405 	[ITEM_PARAM_MASK] = {
1406 		.name = "mask",
1407 		.help = "specify bit-mask with relevant bits set to one",
1408 		.call = parse_vc_spec,
1409 	},
1410 	[ITEM_PARAM_PREFIX] = {
1411 		.name = "prefix",
1412 		.help = "generate bit-mask from a prefix length",
1413 		.call = parse_vc_spec,
1414 	},
1415 	[ITEM_NEXT] = {
1416 		.name = "/",
1417 		.help = "specify next pattern item",
1418 		.next = NEXT(next_item),
1419 	},
1420 	[ITEM_END] = {
1421 		.name = "end",
1422 		.help = "end list of pattern items",
1423 		.priv = PRIV_ITEM(END, 0),
1424 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1425 		.call = parse_vc,
1426 	},
1427 	[ITEM_VOID] = {
1428 		.name = "void",
1429 		.help = "no-op pattern item",
1430 		.priv = PRIV_ITEM(VOID, 0),
1431 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1432 		.call = parse_vc,
1433 	},
1434 	[ITEM_INVERT] = {
1435 		.name = "invert",
1436 		.help = "perform actions when pattern does not match",
1437 		.priv = PRIV_ITEM(INVERT, 0),
1438 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1439 		.call = parse_vc,
1440 	},
1441 	[ITEM_ANY] = {
1442 		.name = "any",
1443 		.help = "match any protocol for the current layer",
1444 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1445 		.next = NEXT(item_any),
1446 		.call = parse_vc,
1447 	},
1448 	[ITEM_ANY_NUM] = {
1449 		.name = "num",
1450 		.help = "number of layers covered",
1451 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1452 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1453 	},
1454 	[ITEM_PF] = {
1455 		.name = "pf",
1456 		.help = "match traffic from/to the physical function",
1457 		.priv = PRIV_ITEM(PF, 0),
1458 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1459 		.call = parse_vc,
1460 	},
1461 	[ITEM_VF] = {
1462 		.name = "vf",
1463 		.help = "match traffic from/to a virtual function ID",
1464 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1465 		.next = NEXT(item_vf),
1466 		.call = parse_vc,
1467 	},
1468 	[ITEM_VF_ID] = {
1469 		.name = "id",
1470 		.help = "VF ID",
1471 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1472 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1473 	},
1474 	[ITEM_PHY_PORT] = {
1475 		.name = "phy_port",
1476 		.help = "match traffic from/to a specific physical port",
1477 		.priv = PRIV_ITEM(PHY_PORT,
1478 				  sizeof(struct rte_flow_item_phy_port)),
1479 		.next = NEXT(item_phy_port),
1480 		.call = parse_vc,
1481 	},
1482 	[ITEM_PHY_PORT_INDEX] = {
1483 		.name = "index",
1484 		.help = "physical port index",
1485 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1486 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1487 	},
1488 	[ITEM_PORT_ID] = {
1489 		.name = "port_id",
1490 		.help = "match traffic from/to a given DPDK port ID",
1491 		.priv = PRIV_ITEM(PORT_ID,
1492 				  sizeof(struct rte_flow_item_port_id)),
1493 		.next = NEXT(item_port_id),
1494 		.call = parse_vc,
1495 	},
1496 	[ITEM_PORT_ID_ID] = {
1497 		.name = "id",
1498 		.help = "DPDK port ID",
1499 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1500 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1501 	},
1502 	[ITEM_MARK] = {
1503 		.name = "mark",
1504 		.help = "match traffic against value set in previously matched rule",
1505 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1506 		.next = NEXT(item_mark),
1507 		.call = parse_vc,
1508 	},
1509 	[ITEM_MARK_ID] = {
1510 		.name = "id",
1511 		.help = "Integer value to match against",
1512 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1513 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1514 	},
1515 	[ITEM_RAW] = {
1516 		.name = "raw",
1517 		.help = "match an arbitrary byte string",
1518 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1519 		.next = NEXT(item_raw),
1520 		.call = parse_vc,
1521 	},
1522 	[ITEM_RAW_RELATIVE] = {
1523 		.name = "relative",
1524 		.help = "look for pattern after the previous item",
1525 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1526 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1527 					   relative, 1)),
1528 	},
1529 	[ITEM_RAW_SEARCH] = {
1530 		.name = "search",
1531 		.help = "search pattern from offset (see also limit)",
1532 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1533 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1534 					   search, 1)),
1535 	},
1536 	[ITEM_RAW_OFFSET] = {
1537 		.name = "offset",
1538 		.help = "absolute or relative offset for pattern",
1539 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1540 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1541 	},
1542 	[ITEM_RAW_LIMIT] = {
1543 		.name = "limit",
1544 		.help = "search area limit for start of pattern",
1545 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1546 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1547 	},
1548 	[ITEM_RAW_PATTERN] = {
1549 		.name = "pattern",
1550 		.help = "byte string to look for",
1551 		.next = NEXT(item_raw,
1552 			     NEXT_ENTRY(STRING),
1553 			     NEXT_ENTRY(ITEM_PARAM_IS,
1554 					ITEM_PARAM_SPEC,
1555 					ITEM_PARAM_MASK)),
1556 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1557 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1558 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1559 					    ITEM_RAW_PATTERN_SIZE)),
1560 	},
1561 	[ITEM_ETH] = {
1562 		.name = "eth",
1563 		.help = "match Ethernet header",
1564 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1565 		.next = NEXT(item_eth),
1566 		.call = parse_vc,
1567 	},
1568 	[ITEM_ETH_DST] = {
1569 		.name = "dst",
1570 		.help = "destination MAC",
1571 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1572 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1573 	},
1574 	[ITEM_ETH_SRC] = {
1575 		.name = "src",
1576 		.help = "source MAC",
1577 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1578 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1579 	},
1580 	[ITEM_ETH_TYPE] = {
1581 		.name = "type",
1582 		.help = "EtherType",
1583 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1584 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1585 	},
1586 	[ITEM_VLAN] = {
1587 		.name = "vlan",
1588 		.help = "match 802.1Q/ad VLAN tag",
1589 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1590 		.next = NEXT(item_vlan),
1591 		.call = parse_vc,
1592 	},
1593 	[ITEM_VLAN_TCI] = {
1594 		.name = "tci",
1595 		.help = "tag control information",
1596 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1597 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1598 	},
1599 	[ITEM_VLAN_PCP] = {
1600 		.name = "pcp",
1601 		.help = "priority code point",
1602 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1603 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1604 						  tci, "\xe0\x00")),
1605 	},
1606 	[ITEM_VLAN_DEI] = {
1607 		.name = "dei",
1608 		.help = "drop eligible indicator",
1609 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1610 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1611 						  tci, "\x10\x00")),
1612 	},
1613 	[ITEM_VLAN_VID] = {
1614 		.name = "vid",
1615 		.help = "VLAN identifier",
1616 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1617 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1618 						  tci, "\x0f\xff")),
1619 	},
1620 	[ITEM_VLAN_INNER_TYPE] = {
1621 		.name = "inner_type",
1622 		.help = "inner EtherType",
1623 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1624 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1625 					     inner_type)),
1626 	},
1627 	[ITEM_IPV4] = {
1628 		.name = "ipv4",
1629 		.help = "match IPv4 header",
1630 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1631 		.next = NEXT(item_ipv4),
1632 		.call = parse_vc,
1633 	},
1634 	[ITEM_IPV4_TOS] = {
1635 		.name = "tos",
1636 		.help = "type of service",
1637 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1638 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1639 					     hdr.type_of_service)),
1640 	},
1641 	[ITEM_IPV4_TTL] = {
1642 		.name = "ttl",
1643 		.help = "time to live",
1644 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1645 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1646 					     hdr.time_to_live)),
1647 	},
1648 	[ITEM_IPV4_PROTO] = {
1649 		.name = "proto",
1650 		.help = "next protocol ID",
1651 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1652 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1653 					     hdr.next_proto_id)),
1654 	},
1655 	[ITEM_IPV4_SRC] = {
1656 		.name = "src",
1657 		.help = "source address",
1658 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1659 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1660 					     hdr.src_addr)),
1661 	},
1662 	[ITEM_IPV4_DST] = {
1663 		.name = "dst",
1664 		.help = "destination address",
1665 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1666 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1667 					     hdr.dst_addr)),
1668 	},
1669 	[ITEM_IPV6] = {
1670 		.name = "ipv6",
1671 		.help = "match IPv6 header",
1672 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1673 		.next = NEXT(item_ipv6),
1674 		.call = parse_vc,
1675 	},
1676 	[ITEM_IPV6_TC] = {
1677 		.name = "tc",
1678 		.help = "traffic class",
1679 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1680 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1681 						  hdr.vtc_flow,
1682 						  "\x0f\xf0\x00\x00")),
1683 	},
1684 	[ITEM_IPV6_FLOW] = {
1685 		.name = "flow",
1686 		.help = "flow label",
1687 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1688 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1689 						  hdr.vtc_flow,
1690 						  "\x00\x0f\xff\xff")),
1691 	},
1692 	[ITEM_IPV6_PROTO] = {
1693 		.name = "proto",
1694 		.help = "protocol (next header)",
1695 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1696 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1697 					     hdr.proto)),
1698 	},
1699 	[ITEM_IPV6_HOP] = {
1700 		.name = "hop",
1701 		.help = "hop limit",
1702 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1703 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1704 					     hdr.hop_limits)),
1705 	},
1706 	[ITEM_IPV6_SRC] = {
1707 		.name = "src",
1708 		.help = "source address",
1709 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1710 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1711 					     hdr.src_addr)),
1712 	},
1713 	[ITEM_IPV6_DST] = {
1714 		.name = "dst",
1715 		.help = "destination address",
1716 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1717 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1718 					     hdr.dst_addr)),
1719 	},
1720 	[ITEM_ICMP] = {
1721 		.name = "icmp",
1722 		.help = "match ICMP header",
1723 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1724 		.next = NEXT(item_icmp),
1725 		.call = parse_vc,
1726 	},
1727 	[ITEM_ICMP_TYPE] = {
1728 		.name = "type",
1729 		.help = "ICMP packet type",
1730 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1731 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1732 					     hdr.icmp_type)),
1733 	},
1734 	[ITEM_ICMP_CODE] = {
1735 		.name = "code",
1736 		.help = "ICMP packet code",
1737 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1738 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1739 					     hdr.icmp_code)),
1740 	},
1741 	[ITEM_UDP] = {
1742 		.name = "udp",
1743 		.help = "match UDP header",
1744 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1745 		.next = NEXT(item_udp),
1746 		.call = parse_vc,
1747 	},
1748 	[ITEM_UDP_SRC] = {
1749 		.name = "src",
1750 		.help = "UDP source port",
1751 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1752 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1753 					     hdr.src_port)),
1754 	},
1755 	[ITEM_UDP_DST] = {
1756 		.name = "dst",
1757 		.help = "UDP destination port",
1758 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1759 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1760 					     hdr.dst_port)),
1761 	},
1762 	[ITEM_TCP] = {
1763 		.name = "tcp",
1764 		.help = "match TCP header",
1765 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1766 		.next = NEXT(item_tcp),
1767 		.call = parse_vc,
1768 	},
1769 	[ITEM_TCP_SRC] = {
1770 		.name = "src",
1771 		.help = "TCP source port",
1772 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1773 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1774 					     hdr.src_port)),
1775 	},
1776 	[ITEM_TCP_DST] = {
1777 		.name = "dst",
1778 		.help = "TCP destination port",
1779 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1780 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1781 					     hdr.dst_port)),
1782 	},
1783 	[ITEM_TCP_FLAGS] = {
1784 		.name = "flags",
1785 		.help = "TCP flags",
1786 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1787 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1788 					     hdr.tcp_flags)),
1789 	},
1790 	[ITEM_SCTP] = {
1791 		.name = "sctp",
1792 		.help = "match SCTP header",
1793 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1794 		.next = NEXT(item_sctp),
1795 		.call = parse_vc,
1796 	},
1797 	[ITEM_SCTP_SRC] = {
1798 		.name = "src",
1799 		.help = "SCTP source port",
1800 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1801 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1802 					     hdr.src_port)),
1803 	},
1804 	[ITEM_SCTP_DST] = {
1805 		.name = "dst",
1806 		.help = "SCTP destination port",
1807 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1808 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1809 					     hdr.dst_port)),
1810 	},
1811 	[ITEM_SCTP_TAG] = {
1812 		.name = "tag",
1813 		.help = "validation tag",
1814 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1815 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1816 					     hdr.tag)),
1817 	},
1818 	[ITEM_SCTP_CKSUM] = {
1819 		.name = "cksum",
1820 		.help = "checksum",
1821 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1822 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1823 					     hdr.cksum)),
1824 	},
1825 	[ITEM_VXLAN] = {
1826 		.name = "vxlan",
1827 		.help = "match VXLAN header",
1828 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1829 		.next = NEXT(item_vxlan),
1830 		.call = parse_vc,
1831 	},
1832 	[ITEM_VXLAN_VNI] = {
1833 		.name = "vni",
1834 		.help = "VXLAN identifier",
1835 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1836 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1837 	},
1838 	[ITEM_E_TAG] = {
1839 		.name = "e_tag",
1840 		.help = "match E-Tag header",
1841 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1842 		.next = NEXT(item_e_tag),
1843 		.call = parse_vc,
1844 	},
1845 	[ITEM_E_TAG_GRP_ECID_B] = {
1846 		.name = "grp_ecid_b",
1847 		.help = "GRP and E-CID base",
1848 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1849 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1850 						  rsvd_grp_ecid_b,
1851 						  "\x3f\xff")),
1852 	},
1853 	[ITEM_NVGRE] = {
1854 		.name = "nvgre",
1855 		.help = "match NVGRE header",
1856 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1857 		.next = NEXT(item_nvgre),
1858 		.call = parse_vc,
1859 	},
1860 	[ITEM_NVGRE_TNI] = {
1861 		.name = "tni",
1862 		.help = "virtual subnet ID",
1863 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1864 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1865 	},
1866 	[ITEM_MPLS] = {
1867 		.name = "mpls",
1868 		.help = "match MPLS header",
1869 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1870 		.next = NEXT(item_mpls),
1871 		.call = parse_vc,
1872 	},
1873 	[ITEM_MPLS_LABEL] = {
1874 		.name = "label",
1875 		.help = "MPLS label",
1876 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1877 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1878 						  label_tc_s,
1879 						  "\xff\xff\xf0")),
1880 	},
1881 	[ITEM_GRE] = {
1882 		.name = "gre",
1883 		.help = "match GRE header",
1884 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1885 		.next = NEXT(item_gre),
1886 		.call = parse_vc,
1887 	},
1888 	[ITEM_GRE_PROTO] = {
1889 		.name = "protocol",
1890 		.help = "GRE protocol type",
1891 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1892 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1893 					     protocol)),
1894 	},
1895 	[ITEM_FUZZY] = {
1896 		.name = "fuzzy",
1897 		.help = "fuzzy pattern match, expect faster than default",
1898 		.priv = PRIV_ITEM(FUZZY,
1899 				sizeof(struct rte_flow_item_fuzzy)),
1900 		.next = NEXT(item_fuzzy),
1901 		.call = parse_vc,
1902 	},
1903 	[ITEM_FUZZY_THRESH] = {
1904 		.name = "thresh",
1905 		.help = "match accuracy threshold",
1906 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1907 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1908 					thresh)),
1909 	},
1910 	[ITEM_GTP] = {
1911 		.name = "gtp",
1912 		.help = "match GTP header",
1913 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1914 		.next = NEXT(item_gtp),
1915 		.call = parse_vc,
1916 	},
1917 	[ITEM_GTP_TEID] = {
1918 		.name = "teid",
1919 		.help = "tunnel endpoint identifier",
1920 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1921 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1922 	},
1923 	[ITEM_GTPC] = {
1924 		.name = "gtpc",
1925 		.help = "match GTP header",
1926 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1927 		.next = NEXT(item_gtp),
1928 		.call = parse_vc,
1929 	},
1930 	[ITEM_GTPU] = {
1931 		.name = "gtpu",
1932 		.help = "match GTP header",
1933 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1934 		.next = NEXT(item_gtp),
1935 		.call = parse_vc,
1936 	},
1937 	[ITEM_GENEVE] = {
1938 		.name = "geneve",
1939 		.help = "match GENEVE header",
1940 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1941 		.next = NEXT(item_geneve),
1942 		.call = parse_vc,
1943 	},
1944 	[ITEM_GENEVE_VNI] = {
1945 		.name = "vni",
1946 		.help = "virtual network identifier",
1947 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1948 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1949 	},
1950 	[ITEM_GENEVE_PROTO] = {
1951 		.name = "protocol",
1952 		.help = "GENEVE protocol type",
1953 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1954 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1955 					     protocol)),
1956 	},
1957 	[ITEM_VXLAN_GPE] = {
1958 		.name = "vxlan-gpe",
1959 		.help = "match VXLAN-GPE header",
1960 		.priv = PRIV_ITEM(VXLAN_GPE,
1961 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1962 		.next = NEXT(item_vxlan_gpe),
1963 		.call = parse_vc,
1964 	},
1965 	[ITEM_VXLAN_GPE_VNI] = {
1966 		.name = "vni",
1967 		.help = "VXLAN-GPE identifier",
1968 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1969 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1970 					     vni)),
1971 	},
1972 	[ITEM_ARP_ETH_IPV4] = {
1973 		.name = "arp_eth_ipv4",
1974 		.help = "match ARP header for Ethernet/IPv4",
1975 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1976 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1977 		.next = NEXT(item_arp_eth_ipv4),
1978 		.call = parse_vc,
1979 	},
1980 	[ITEM_ARP_ETH_IPV4_SHA] = {
1981 		.name = "sha",
1982 		.help = "sender hardware address",
1983 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1984 			     item_param),
1985 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1986 					     sha)),
1987 	},
1988 	[ITEM_ARP_ETH_IPV4_SPA] = {
1989 		.name = "spa",
1990 		.help = "sender IPv4 address",
1991 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1992 			     item_param),
1993 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1994 					     spa)),
1995 	},
1996 	[ITEM_ARP_ETH_IPV4_THA] = {
1997 		.name = "tha",
1998 		.help = "target hardware address",
1999 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2000 			     item_param),
2001 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2002 					     tha)),
2003 	},
2004 	[ITEM_ARP_ETH_IPV4_TPA] = {
2005 		.name = "tpa",
2006 		.help = "target IPv4 address",
2007 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2008 			     item_param),
2009 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2010 					     tpa)),
2011 	},
2012 	[ITEM_IPV6_EXT] = {
2013 		.name = "ipv6_ext",
2014 		.help = "match presence of any IPv6 extension header",
2015 		.priv = PRIV_ITEM(IPV6_EXT,
2016 				  sizeof(struct rte_flow_item_ipv6_ext)),
2017 		.next = NEXT(item_ipv6_ext),
2018 		.call = parse_vc,
2019 	},
2020 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2021 		.name = "next_hdr",
2022 		.help = "next header",
2023 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2024 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2025 					     next_hdr)),
2026 	},
2027 	[ITEM_ICMP6] = {
2028 		.name = "icmp6",
2029 		.help = "match any ICMPv6 header",
2030 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2031 		.next = NEXT(item_icmp6),
2032 		.call = parse_vc,
2033 	},
2034 	[ITEM_ICMP6_TYPE] = {
2035 		.name = "type",
2036 		.help = "ICMPv6 type",
2037 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2038 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2039 					     type)),
2040 	},
2041 	[ITEM_ICMP6_CODE] = {
2042 		.name = "code",
2043 		.help = "ICMPv6 code",
2044 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2045 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2046 					     code)),
2047 	},
2048 	[ITEM_ICMP6_ND_NS] = {
2049 		.name = "icmp6_nd_ns",
2050 		.help = "match ICMPv6 neighbor discovery solicitation",
2051 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2052 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2053 		.next = NEXT(item_icmp6_nd_ns),
2054 		.call = parse_vc,
2055 	},
2056 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2057 		.name = "target_addr",
2058 		.help = "target address",
2059 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2060 			     item_param),
2061 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2062 					     target_addr)),
2063 	},
2064 	[ITEM_ICMP6_ND_NA] = {
2065 		.name = "icmp6_nd_na",
2066 		.help = "match ICMPv6 neighbor discovery advertisement",
2067 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2068 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2069 		.next = NEXT(item_icmp6_nd_na),
2070 		.call = parse_vc,
2071 	},
2072 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2073 		.name = "target_addr",
2074 		.help = "target address",
2075 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2076 			     item_param),
2077 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2078 					     target_addr)),
2079 	},
2080 	[ITEM_ICMP6_ND_OPT] = {
2081 		.name = "icmp6_nd_opt",
2082 		.help = "match presence of any ICMPv6 neighbor discovery"
2083 			" option",
2084 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2085 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2086 		.next = NEXT(item_icmp6_nd_opt),
2087 		.call = parse_vc,
2088 	},
2089 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2090 		.name = "type",
2091 		.help = "ND option type",
2092 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2093 			     item_param),
2094 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2095 					     type)),
2096 	},
2097 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2098 		.name = "icmp6_nd_opt_sla_eth",
2099 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2100 			" link-layer address option",
2101 		.priv = PRIV_ITEM
2102 			(ICMP6_ND_OPT_SLA_ETH,
2103 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2104 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2105 		.call = parse_vc,
2106 	},
2107 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2108 		.name = "sla",
2109 		.help = "source Ethernet LLA",
2110 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2111 			     item_param),
2112 		.args = ARGS(ARGS_ENTRY_HTON
2113 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2114 	},
2115 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2116 		.name = "icmp6_nd_opt_tla_eth",
2117 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2118 			" link-layer address option",
2119 		.priv = PRIV_ITEM
2120 			(ICMP6_ND_OPT_TLA_ETH,
2121 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2122 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2123 		.call = parse_vc,
2124 	},
2125 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2126 		.name = "tla",
2127 		.help = "target Ethernet LLA",
2128 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2129 			     item_param),
2130 		.args = ARGS(ARGS_ENTRY_HTON
2131 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2132 	},
2133 	[ITEM_META] = {
2134 		.name = "meta",
2135 		.help = "match metadata header",
2136 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2137 		.next = NEXT(item_meta),
2138 		.call = parse_vc,
2139 	},
2140 	[ITEM_META_DATA] = {
2141 		.name = "data",
2142 		.help = "metadata value",
2143 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param_is),
2144 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2145 						  data, "\xff\xff\xff\xff")),
2146 	},
2147 
2148 	/* Validate/create actions. */
2149 	[ACTIONS] = {
2150 		.name = "actions",
2151 		.help = "submit a list of associated actions",
2152 		.next = NEXT(next_action),
2153 		.call = parse_vc,
2154 	},
2155 	[ACTION_NEXT] = {
2156 		.name = "/",
2157 		.help = "specify next action",
2158 		.next = NEXT(next_action),
2159 	},
2160 	[ACTION_END] = {
2161 		.name = "end",
2162 		.help = "end list of actions",
2163 		.priv = PRIV_ACTION(END, 0),
2164 		.call = parse_vc,
2165 	},
2166 	[ACTION_VOID] = {
2167 		.name = "void",
2168 		.help = "no-op action",
2169 		.priv = PRIV_ACTION(VOID, 0),
2170 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2171 		.call = parse_vc,
2172 	},
2173 	[ACTION_PASSTHRU] = {
2174 		.name = "passthru",
2175 		.help = "let subsequent rule process matched packets",
2176 		.priv = PRIV_ACTION(PASSTHRU, 0),
2177 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2178 		.call = parse_vc,
2179 	},
2180 	[ACTION_JUMP] = {
2181 		.name = "jump",
2182 		.help = "redirect traffic to a given group",
2183 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2184 		.next = NEXT(action_jump),
2185 		.call = parse_vc,
2186 	},
2187 	[ACTION_JUMP_GROUP] = {
2188 		.name = "group",
2189 		.help = "group to redirect traffic to",
2190 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2191 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2192 		.call = parse_vc_conf,
2193 	},
2194 	[ACTION_MARK] = {
2195 		.name = "mark",
2196 		.help = "attach 32 bit value to packets",
2197 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2198 		.next = NEXT(action_mark),
2199 		.call = parse_vc,
2200 	},
2201 	[ACTION_MARK_ID] = {
2202 		.name = "id",
2203 		.help = "32 bit value to return with packets",
2204 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2205 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2206 		.call = parse_vc_conf,
2207 	},
2208 	[ACTION_FLAG] = {
2209 		.name = "flag",
2210 		.help = "flag packets",
2211 		.priv = PRIV_ACTION(FLAG, 0),
2212 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2213 		.call = parse_vc,
2214 	},
2215 	[ACTION_QUEUE] = {
2216 		.name = "queue",
2217 		.help = "assign packets to a given queue index",
2218 		.priv = PRIV_ACTION(QUEUE,
2219 				    sizeof(struct rte_flow_action_queue)),
2220 		.next = NEXT(action_queue),
2221 		.call = parse_vc,
2222 	},
2223 	[ACTION_QUEUE_INDEX] = {
2224 		.name = "index",
2225 		.help = "queue index to use",
2226 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2227 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2228 		.call = parse_vc_conf,
2229 	},
2230 	[ACTION_DROP] = {
2231 		.name = "drop",
2232 		.help = "drop packets (note: passthru has priority)",
2233 		.priv = PRIV_ACTION(DROP, 0),
2234 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2235 		.call = parse_vc,
2236 	},
2237 	[ACTION_COUNT] = {
2238 		.name = "count",
2239 		.help = "enable counters for this rule",
2240 		.priv = PRIV_ACTION(COUNT,
2241 				    sizeof(struct rte_flow_action_count)),
2242 		.next = NEXT(action_count),
2243 		.call = parse_vc,
2244 	},
2245 	[ACTION_COUNT_ID] = {
2246 		.name = "identifier",
2247 		.help = "counter identifier to use",
2248 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2249 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2250 		.call = parse_vc_conf,
2251 	},
2252 	[ACTION_COUNT_SHARED] = {
2253 		.name = "shared",
2254 		.help = "shared counter",
2255 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2256 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2257 					   shared, 1)),
2258 		.call = parse_vc_conf,
2259 	},
2260 	[ACTION_RSS] = {
2261 		.name = "rss",
2262 		.help = "spread packets among several queues",
2263 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2264 		.next = NEXT(action_rss),
2265 		.call = parse_vc_action_rss,
2266 	},
2267 	[ACTION_RSS_FUNC] = {
2268 		.name = "func",
2269 		.help = "RSS hash function to apply",
2270 		.next = NEXT(action_rss,
2271 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2272 					ACTION_RSS_FUNC_TOEPLITZ,
2273 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2274 	},
2275 	[ACTION_RSS_FUNC_DEFAULT] = {
2276 		.name = "default",
2277 		.help = "default hash function",
2278 		.call = parse_vc_action_rss_func,
2279 	},
2280 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2281 		.name = "toeplitz",
2282 		.help = "Toeplitz hash function",
2283 		.call = parse_vc_action_rss_func,
2284 	},
2285 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2286 		.name = "simple_xor",
2287 		.help = "simple XOR hash function",
2288 		.call = parse_vc_action_rss_func,
2289 	},
2290 	[ACTION_RSS_LEVEL] = {
2291 		.name = "level",
2292 		.help = "encapsulation level for \"types\"",
2293 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2294 		.args = ARGS(ARGS_ENTRY_ARB
2295 			     (offsetof(struct action_rss_data, conf) +
2296 			      offsetof(struct rte_flow_action_rss, level),
2297 			      sizeof(((struct rte_flow_action_rss *)0)->
2298 				     level))),
2299 	},
2300 	[ACTION_RSS_TYPES] = {
2301 		.name = "types",
2302 		.help = "specific RSS hash types",
2303 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2304 	},
2305 	[ACTION_RSS_TYPE] = {
2306 		.name = "{type}",
2307 		.help = "RSS hash type",
2308 		.call = parse_vc_action_rss_type,
2309 		.comp = comp_vc_action_rss_type,
2310 	},
2311 	[ACTION_RSS_KEY] = {
2312 		.name = "key",
2313 		.help = "RSS hash key",
2314 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
2315 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2316 			     ARGS_ENTRY_ARB
2317 			     (offsetof(struct action_rss_data, conf) +
2318 			      offsetof(struct rte_flow_action_rss, key_len),
2319 			      sizeof(((struct rte_flow_action_rss *)0)->
2320 				     key_len)),
2321 			     ARGS_ENTRY(struct action_rss_data, key)),
2322 	},
2323 	[ACTION_RSS_KEY_LEN] = {
2324 		.name = "key_len",
2325 		.help = "RSS hash key length in bytes",
2326 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2327 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2328 			     (offsetof(struct action_rss_data, conf) +
2329 			      offsetof(struct rte_flow_action_rss, key_len),
2330 			      sizeof(((struct rte_flow_action_rss *)0)->
2331 				     key_len),
2332 			      0,
2333 			      RSS_HASH_KEY_LENGTH)),
2334 	},
2335 	[ACTION_RSS_QUEUES] = {
2336 		.name = "queues",
2337 		.help = "queue indices to use",
2338 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2339 		.call = parse_vc_conf,
2340 	},
2341 	[ACTION_RSS_QUEUE] = {
2342 		.name = "{queue}",
2343 		.help = "queue index",
2344 		.call = parse_vc_action_rss_queue,
2345 		.comp = comp_vc_action_rss_queue,
2346 	},
2347 	[ACTION_PF] = {
2348 		.name = "pf",
2349 		.help = "direct traffic to physical function",
2350 		.priv = PRIV_ACTION(PF, 0),
2351 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2352 		.call = parse_vc,
2353 	},
2354 	[ACTION_VF] = {
2355 		.name = "vf",
2356 		.help = "direct traffic to a virtual function ID",
2357 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2358 		.next = NEXT(action_vf),
2359 		.call = parse_vc,
2360 	},
2361 	[ACTION_VF_ORIGINAL] = {
2362 		.name = "original",
2363 		.help = "use original VF ID if possible",
2364 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2365 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2366 					   original, 1)),
2367 		.call = parse_vc_conf,
2368 	},
2369 	[ACTION_VF_ID] = {
2370 		.name = "id",
2371 		.help = "VF ID",
2372 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2373 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2374 		.call = parse_vc_conf,
2375 	},
2376 	[ACTION_PHY_PORT] = {
2377 		.name = "phy_port",
2378 		.help = "direct packets to physical port index",
2379 		.priv = PRIV_ACTION(PHY_PORT,
2380 				    sizeof(struct rte_flow_action_phy_port)),
2381 		.next = NEXT(action_phy_port),
2382 		.call = parse_vc,
2383 	},
2384 	[ACTION_PHY_PORT_ORIGINAL] = {
2385 		.name = "original",
2386 		.help = "use original port index if possible",
2387 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2388 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2389 					   original, 1)),
2390 		.call = parse_vc_conf,
2391 	},
2392 	[ACTION_PHY_PORT_INDEX] = {
2393 		.name = "index",
2394 		.help = "physical port index",
2395 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2396 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2397 					index)),
2398 		.call = parse_vc_conf,
2399 	},
2400 	[ACTION_PORT_ID] = {
2401 		.name = "port_id",
2402 		.help = "direct matching traffic to a given DPDK port ID",
2403 		.priv = PRIV_ACTION(PORT_ID,
2404 				    sizeof(struct rte_flow_action_port_id)),
2405 		.next = NEXT(action_port_id),
2406 		.call = parse_vc,
2407 	},
2408 	[ACTION_PORT_ID_ORIGINAL] = {
2409 		.name = "original",
2410 		.help = "use original DPDK port ID if possible",
2411 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2412 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2413 					   original, 1)),
2414 		.call = parse_vc_conf,
2415 	},
2416 	[ACTION_PORT_ID_ID] = {
2417 		.name = "id",
2418 		.help = "DPDK port ID",
2419 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2420 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2421 		.call = parse_vc_conf,
2422 	},
2423 	[ACTION_METER] = {
2424 		.name = "meter",
2425 		.help = "meter the directed packets at given id",
2426 		.priv = PRIV_ACTION(METER,
2427 				    sizeof(struct rte_flow_action_meter)),
2428 		.next = NEXT(action_meter),
2429 		.call = parse_vc,
2430 	},
2431 	[ACTION_METER_ID] = {
2432 		.name = "mtr_id",
2433 		.help = "meter id to use",
2434 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2435 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2436 		.call = parse_vc_conf,
2437 	},
2438 	[ACTION_OF_SET_MPLS_TTL] = {
2439 		.name = "of_set_mpls_ttl",
2440 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2441 		.priv = PRIV_ACTION
2442 			(OF_SET_MPLS_TTL,
2443 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2444 		.next = NEXT(action_of_set_mpls_ttl),
2445 		.call = parse_vc,
2446 	},
2447 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2448 		.name = "mpls_ttl",
2449 		.help = "MPLS TTL",
2450 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2451 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2452 					mpls_ttl)),
2453 		.call = parse_vc_conf,
2454 	},
2455 	[ACTION_OF_DEC_MPLS_TTL] = {
2456 		.name = "of_dec_mpls_ttl",
2457 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2458 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2459 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2460 		.call = parse_vc,
2461 	},
2462 	[ACTION_OF_SET_NW_TTL] = {
2463 		.name = "of_set_nw_ttl",
2464 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2465 		.priv = PRIV_ACTION
2466 			(OF_SET_NW_TTL,
2467 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2468 		.next = NEXT(action_of_set_nw_ttl),
2469 		.call = parse_vc,
2470 	},
2471 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2472 		.name = "nw_ttl",
2473 		.help = "IP TTL",
2474 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2475 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2476 					nw_ttl)),
2477 		.call = parse_vc_conf,
2478 	},
2479 	[ACTION_OF_DEC_NW_TTL] = {
2480 		.name = "of_dec_nw_ttl",
2481 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2482 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2483 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2484 		.call = parse_vc,
2485 	},
2486 	[ACTION_OF_COPY_TTL_OUT] = {
2487 		.name = "of_copy_ttl_out",
2488 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2489 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2490 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2491 		.call = parse_vc,
2492 	},
2493 	[ACTION_OF_COPY_TTL_IN] = {
2494 		.name = "of_copy_ttl_in",
2495 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2496 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2497 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2498 		.call = parse_vc,
2499 	},
2500 	[ACTION_OF_POP_VLAN] = {
2501 		.name = "of_pop_vlan",
2502 		.help = "OpenFlow's OFPAT_POP_VLAN",
2503 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2504 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2505 		.call = parse_vc,
2506 	},
2507 	[ACTION_OF_PUSH_VLAN] = {
2508 		.name = "of_push_vlan",
2509 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2510 		.priv = PRIV_ACTION
2511 			(OF_PUSH_VLAN,
2512 			 sizeof(struct rte_flow_action_of_push_vlan)),
2513 		.next = NEXT(action_of_push_vlan),
2514 		.call = parse_vc,
2515 	},
2516 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2517 		.name = "ethertype",
2518 		.help = "EtherType",
2519 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2520 		.args = ARGS(ARGS_ENTRY_HTON
2521 			     (struct rte_flow_action_of_push_vlan,
2522 			      ethertype)),
2523 		.call = parse_vc_conf,
2524 	},
2525 	[ACTION_OF_SET_VLAN_VID] = {
2526 		.name = "of_set_vlan_vid",
2527 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2528 		.priv = PRIV_ACTION
2529 			(OF_SET_VLAN_VID,
2530 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2531 		.next = NEXT(action_of_set_vlan_vid),
2532 		.call = parse_vc,
2533 	},
2534 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2535 		.name = "vlan_vid",
2536 		.help = "VLAN id",
2537 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2538 		.args = ARGS(ARGS_ENTRY_HTON
2539 			     (struct rte_flow_action_of_set_vlan_vid,
2540 			      vlan_vid)),
2541 		.call = parse_vc_conf,
2542 	},
2543 	[ACTION_OF_SET_VLAN_PCP] = {
2544 		.name = "of_set_vlan_pcp",
2545 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2546 		.priv = PRIV_ACTION
2547 			(OF_SET_VLAN_PCP,
2548 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2549 		.next = NEXT(action_of_set_vlan_pcp),
2550 		.call = parse_vc,
2551 	},
2552 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2553 		.name = "vlan_pcp",
2554 		.help = "VLAN priority",
2555 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2556 		.args = ARGS(ARGS_ENTRY_HTON
2557 			     (struct rte_flow_action_of_set_vlan_pcp,
2558 			      vlan_pcp)),
2559 		.call = parse_vc_conf,
2560 	},
2561 	[ACTION_OF_POP_MPLS] = {
2562 		.name = "of_pop_mpls",
2563 		.help = "OpenFlow's OFPAT_POP_MPLS",
2564 		.priv = PRIV_ACTION(OF_POP_MPLS,
2565 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2566 		.next = NEXT(action_of_pop_mpls),
2567 		.call = parse_vc,
2568 	},
2569 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2570 		.name = "ethertype",
2571 		.help = "EtherType",
2572 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2573 		.args = ARGS(ARGS_ENTRY_HTON
2574 			     (struct rte_flow_action_of_pop_mpls,
2575 			      ethertype)),
2576 		.call = parse_vc_conf,
2577 	},
2578 	[ACTION_OF_PUSH_MPLS] = {
2579 		.name = "of_push_mpls",
2580 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2581 		.priv = PRIV_ACTION
2582 			(OF_PUSH_MPLS,
2583 			 sizeof(struct rte_flow_action_of_push_mpls)),
2584 		.next = NEXT(action_of_push_mpls),
2585 		.call = parse_vc,
2586 	},
2587 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2588 		.name = "ethertype",
2589 		.help = "EtherType",
2590 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2591 		.args = ARGS(ARGS_ENTRY_HTON
2592 			     (struct rte_flow_action_of_push_mpls,
2593 			      ethertype)),
2594 		.call = parse_vc_conf,
2595 	},
2596 	[ACTION_VXLAN_ENCAP] = {
2597 		.name = "vxlan_encap",
2598 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2599 			" vxlan\"",
2600 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2601 				    sizeof(struct action_vxlan_encap_data)),
2602 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2603 		.call = parse_vc_action_vxlan_encap,
2604 	},
2605 	[ACTION_VXLAN_DECAP] = {
2606 		.name = "vxlan_decap",
2607 		.help = "Performs a decapsulation action by stripping all"
2608 			" headers of the VXLAN tunnel network overlay from the"
2609 			" matched flow.",
2610 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2611 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2612 		.call = parse_vc,
2613 	},
2614 	[ACTION_NVGRE_ENCAP] = {
2615 		.name = "nvgre_encap",
2616 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2617 			" nvgre\"",
2618 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2619 				    sizeof(struct action_nvgre_encap_data)),
2620 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2621 		.call = parse_vc_action_nvgre_encap,
2622 	},
2623 	[ACTION_NVGRE_DECAP] = {
2624 		.name = "nvgre_decap",
2625 		.help = "Performs a decapsulation action by stripping all"
2626 			" headers of the NVGRE tunnel network overlay from the"
2627 			" matched flow.",
2628 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2629 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2630 		.call = parse_vc,
2631 	},
2632 	[ACTION_L2_ENCAP] = {
2633 		.name = "l2_encap",
2634 		.help = "l2 encap, uses configuration set by"
2635 			" \"set l2_encap\"",
2636 		.priv = PRIV_ACTION(RAW_ENCAP,
2637 				    sizeof(struct action_raw_encap_data)),
2638 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2639 		.call = parse_vc_action_l2_encap,
2640 	},
2641 	[ACTION_L2_DECAP] = {
2642 		.name = "l2_decap",
2643 		.help = "l2 decap, uses configuration set by"
2644 			" \"set l2_decap\"",
2645 		.priv = PRIV_ACTION(RAW_DECAP,
2646 				    sizeof(struct action_raw_decap_data)),
2647 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2648 		.call = parse_vc_action_l2_decap,
2649 	},
2650 	[ACTION_MPLSOGRE_ENCAP] = {
2651 		.name = "mplsogre_encap",
2652 		.help = "mplsogre encapsulation, uses configuration set by"
2653 			" \"set mplsogre_encap\"",
2654 		.priv = PRIV_ACTION(RAW_ENCAP,
2655 				    sizeof(struct action_raw_encap_data)),
2656 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2657 		.call = parse_vc_action_mplsogre_encap,
2658 	},
2659 	[ACTION_MPLSOGRE_DECAP] = {
2660 		.name = "mplsogre_decap",
2661 		.help = "mplsogre decapsulation, uses configuration set by"
2662 			" \"set mplsogre_decap\"",
2663 		.priv = PRIV_ACTION(RAW_DECAP,
2664 				    sizeof(struct action_raw_decap_data)),
2665 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2666 		.call = parse_vc_action_mplsogre_decap,
2667 	},
2668 	[ACTION_MPLSOUDP_ENCAP] = {
2669 		.name = "mplsoudp_encap",
2670 		.help = "mplsoudp encapsulation, uses configuration set by"
2671 			" \"set mplsoudp_encap\"",
2672 		.priv = PRIV_ACTION(RAW_ENCAP,
2673 				    sizeof(struct action_raw_encap_data)),
2674 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2675 		.call = parse_vc_action_mplsoudp_encap,
2676 	},
2677 	[ACTION_MPLSOUDP_DECAP] = {
2678 		.name = "mplsoudp_decap",
2679 		.help = "mplsoudp decapsulation, uses configuration set by"
2680 			" \"set mplsoudp_decap\"",
2681 		.priv = PRIV_ACTION(RAW_DECAP,
2682 				    sizeof(struct action_raw_decap_data)),
2683 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2684 		.call = parse_vc_action_mplsoudp_decap,
2685 	},
2686 	[ACTION_SET_IPV4_SRC] = {
2687 		.name = "set_ipv4_src",
2688 		.help = "Set a new IPv4 source address in the outermost"
2689 			" IPv4 header",
2690 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2691 			sizeof(struct rte_flow_action_set_ipv4)),
2692 		.next = NEXT(action_set_ipv4_src),
2693 		.call = parse_vc,
2694 	},
2695 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2696 		.name = "ipv4_addr",
2697 		.help = "new IPv4 source address to set",
2698 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2699 		.args = ARGS(ARGS_ENTRY_HTON
2700 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2701 		.call = parse_vc_conf,
2702 	},
2703 	[ACTION_SET_IPV4_DST] = {
2704 		.name = "set_ipv4_dst",
2705 		.help = "Set a new IPv4 destination address in the outermost"
2706 			" IPv4 header",
2707 		.priv = PRIV_ACTION(SET_IPV4_DST,
2708 			sizeof(struct rte_flow_action_set_ipv4)),
2709 		.next = NEXT(action_set_ipv4_dst),
2710 		.call = parse_vc,
2711 	},
2712 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2713 		.name = "ipv4_addr",
2714 		.help = "new IPv4 destination address to set",
2715 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2716 		.args = ARGS(ARGS_ENTRY_HTON
2717 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2718 		.call = parse_vc_conf,
2719 	},
2720 	[ACTION_SET_IPV6_SRC] = {
2721 		.name = "set_ipv6_src",
2722 		.help = "Set a new IPv6 source address in the outermost"
2723 			" IPv6 header",
2724 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2725 			sizeof(struct rte_flow_action_set_ipv6)),
2726 		.next = NEXT(action_set_ipv6_src),
2727 		.call = parse_vc,
2728 	},
2729 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2730 		.name = "ipv6_addr",
2731 		.help = "new IPv6 source address to set",
2732 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2733 		.args = ARGS(ARGS_ENTRY_HTON
2734 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2735 		.call = parse_vc_conf,
2736 	},
2737 	[ACTION_SET_IPV6_DST] = {
2738 		.name = "set_ipv6_dst",
2739 		.help = "Set a new IPv6 destination address in the outermost"
2740 			" IPv6 header",
2741 		.priv = PRIV_ACTION(SET_IPV6_DST,
2742 			sizeof(struct rte_flow_action_set_ipv6)),
2743 		.next = NEXT(action_set_ipv6_dst),
2744 		.call = parse_vc,
2745 	},
2746 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2747 		.name = "ipv6_addr",
2748 		.help = "new IPv6 destination address to set",
2749 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2750 		.args = ARGS(ARGS_ENTRY_HTON
2751 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2752 		.call = parse_vc_conf,
2753 	},
2754 	[ACTION_SET_TP_SRC] = {
2755 		.name = "set_tp_src",
2756 		.help = "set a new source port number in the outermost"
2757 			" TCP/UDP header",
2758 		.priv = PRIV_ACTION(SET_TP_SRC,
2759 			sizeof(struct rte_flow_action_set_tp)),
2760 		.next = NEXT(action_set_tp_src),
2761 		.call = parse_vc,
2762 	},
2763 	[ACTION_SET_TP_SRC_TP_SRC] = {
2764 		.name = "port",
2765 		.help = "new source port number to set",
2766 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2767 		.args = ARGS(ARGS_ENTRY_HTON
2768 			     (struct rte_flow_action_set_tp, port)),
2769 		.call = parse_vc_conf,
2770 	},
2771 	[ACTION_SET_TP_DST] = {
2772 		.name = "set_tp_dst",
2773 		.help = "set a new destination port number in the outermost"
2774 			" TCP/UDP header",
2775 		.priv = PRIV_ACTION(SET_TP_DST,
2776 			sizeof(struct rte_flow_action_set_tp)),
2777 		.next = NEXT(action_set_tp_dst),
2778 		.call = parse_vc,
2779 	},
2780 	[ACTION_SET_TP_DST_TP_DST] = {
2781 		.name = "port",
2782 		.help = "new destination port number to set",
2783 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2784 		.args = ARGS(ARGS_ENTRY_HTON
2785 			     (struct rte_flow_action_set_tp, port)),
2786 		.call = parse_vc_conf,
2787 	},
2788 	[ACTION_MAC_SWAP] = {
2789 		.name = "mac_swap",
2790 		.help = "Swap the source and destination MAC addresses"
2791 			" in the outermost Ethernet header",
2792 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2793 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2794 		.call = parse_vc,
2795 	},
2796 	[ACTION_DEC_TTL] = {
2797 		.name = "dec_ttl",
2798 		.help = "decrease network TTL if available",
2799 		.priv = PRIV_ACTION(DEC_TTL, 0),
2800 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2801 		.call = parse_vc,
2802 	},
2803 	[ACTION_SET_TTL] = {
2804 		.name = "set_ttl",
2805 		.help = "set ttl value",
2806 		.priv = PRIV_ACTION(SET_TTL,
2807 			sizeof(struct rte_flow_action_set_ttl)),
2808 		.next = NEXT(action_set_ttl),
2809 		.call = parse_vc,
2810 	},
2811 	[ACTION_SET_TTL_TTL] = {
2812 		.name = "ttl_value",
2813 		.help = "new ttl value to set",
2814 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2815 		.args = ARGS(ARGS_ENTRY_HTON
2816 			     (struct rte_flow_action_set_ttl, ttl_value)),
2817 		.call = parse_vc_conf,
2818 	},
2819 	[ACTION_SET_MAC_SRC] = {
2820 		.name = "set_mac_src",
2821 		.help = "set source mac address",
2822 		.priv = PRIV_ACTION(SET_MAC_SRC,
2823 			sizeof(struct rte_flow_action_set_mac)),
2824 		.next = NEXT(action_set_mac_src),
2825 		.call = parse_vc,
2826 	},
2827 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2828 		.name = "mac_addr",
2829 		.help = "new source mac address",
2830 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2831 		.args = ARGS(ARGS_ENTRY_HTON
2832 			     (struct rte_flow_action_set_mac, mac_addr)),
2833 		.call = parse_vc_conf,
2834 	},
2835 	[ACTION_SET_MAC_DST] = {
2836 		.name = "set_mac_dst",
2837 		.help = "set destination mac address",
2838 		.priv = PRIV_ACTION(SET_MAC_DST,
2839 			sizeof(struct rte_flow_action_set_mac)),
2840 		.next = NEXT(action_set_mac_dst),
2841 		.call = parse_vc,
2842 	},
2843 	[ACTION_SET_MAC_DST_MAC_DST] = {
2844 		.name = "mac_addr",
2845 		.help = "new destination mac address to set",
2846 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2847 		.args = ARGS(ARGS_ENTRY_HTON
2848 			     (struct rte_flow_action_set_mac, mac_addr)),
2849 		.call = parse_vc_conf,
2850 	},
2851 };
2852 
2853 /** Remove and return last entry from argument stack. */
2854 static const struct arg *
2855 pop_args(struct context *ctx)
2856 {
2857 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2858 }
2859 
2860 /** Add entry on top of the argument stack. */
2861 static int
2862 push_args(struct context *ctx, const struct arg *arg)
2863 {
2864 	if (ctx->args_num == CTX_STACK_SIZE)
2865 		return -1;
2866 	ctx->args[ctx->args_num++] = arg;
2867 	return 0;
2868 }
2869 
2870 /** Spread value into buffer according to bit-mask. */
2871 static size_t
2872 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2873 {
2874 	uint32_t i = arg->size;
2875 	uint32_t end = 0;
2876 	int sub = 1;
2877 	int add = 0;
2878 	size_t len = 0;
2879 
2880 	if (!arg->mask)
2881 		return 0;
2882 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2883 	if (!arg->hton) {
2884 		i = 0;
2885 		end = arg->size;
2886 		sub = 0;
2887 		add = 1;
2888 	}
2889 #endif
2890 	while (i != end) {
2891 		unsigned int shift = 0;
2892 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2893 
2894 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2895 			if (!(arg->mask[i] & (1 << shift)))
2896 				continue;
2897 			++len;
2898 			if (!dst)
2899 				continue;
2900 			*buf &= ~(1 << shift);
2901 			*buf |= (val & 1) << shift;
2902 			val >>= 1;
2903 		}
2904 		i += add;
2905 	}
2906 	return len;
2907 }
2908 
2909 /** Compare a string with a partial one of a given length. */
2910 static int
2911 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2912 {
2913 	int r = strncmp(full, partial, partial_len);
2914 
2915 	if (r)
2916 		return r;
2917 	if (strlen(full) <= partial_len)
2918 		return 0;
2919 	return full[partial_len];
2920 }
2921 
2922 /**
2923  * Parse a prefix length and generate a bit-mask.
2924  *
2925  * Last argument (ctx->args) is retrieved to determine mask size, storage
2926  * location and whether the result must use network byte ordering.
2927  */
2928 static int
2929 parse_prefix(struct context *ctx, const struct token *token,
2930 	     const char *str, unsigned int len,
2931 	     void *buf, unsigned int size)
2932 {
2933 	const struct arg *arg = pop_args(ctx);
2934 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2935 	char *end;
2936 	uintmax_t u;
2937 	unsigned int bytes;
2938 	unsigned int extra;
2939 
2940 	(void)token;
2941 	/* Argument is expected. */
2942 	if (!arg)
2943 		return -1;
2944 	errno = 0;
2945 	u = strtoumax(str, &end, 0);
2946 	if (errno || (size_t)(end - str) != len)
2947 		goto error;
2948 	if (arg->mask) {
2949 		uintmax_t v = 0;
2950 
2951 		extra = arg_entry_bf_fill(NULL, 0, arg);
2952 		if (u > extra)
2953 			goto error;
2954 		if (!ctx->object)
2955 			return len;
2956 		extra -= u;
2957 		while (u--)
2958 			(v <<= 1, v |= 1);
2959 		v <<= extra;
2960 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2961 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2962 			goto error;
2963 		return len;
2964 	}
2965 	bytes = u / 8;
2966 	extra = u % 8;
2967 	size = arg->size;
2968 	if (bytes > size || bytes + !!extra > size)
2969 		goto error;
2970 	if (!ctx->object)
2971 		return len;
2972 	buf = (uint8_t *)ctx->object + arg->offset;
2973 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2974 	if (!arg->hton) {
2975 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2976 		memset(buf, 0x00, size - bytes);
2977 		if (extra)
2978 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2979 	} else
2980 #endif
2981 	{
2982 		memset(buf, 0xff, bytes);
2983 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2984 		if (extra)
2985 			((uint8_t *)buf)[bytes] = conv[extra];
2986 	}
2987 	if (ctx->objmask)
2988 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2989 	return len;
2990 error:
2991 	push_args(ctx, arg);
2992 	return -1;
2993 }
2994 
2995 /** Default parsing function for token name matching. */
2996 static int
2997 parse_default(struct context *ctx, const struct token *token,
2998 	      const char *str, unsigned int len,
2999 	      void *buf, unsigned int size)
3000 {
3001 	(void)ctx;
3002 	(void)buf;
3003 	(void)size;
3004 	if (strcmp_partial(token->name, str, len))
3005 		return -1;
3006 	return len;
3007 }
3008 
3009 /** Parse flow command, initialize output buffer for subsequent tokens. */
3010 static int
3011 parse_init(struct context *ctx, const struct token *token,
3012 	   const char *str, unsigned int len,
3013 	   void *buf, unsigned int size)
3014 {
3015 	struct buffer *out = buf;
3016 
3017 	/* Token name must match. */
3018 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3019 		return -1;
3020 	/* Nothing else to do if there is no buffer. */
3021 	if (!out)
3022 		return len;
3023 	/* Make sure buffer is large enough. */
3024 	if (size < sizeof(*out))
3025 		return -1;
3026 	/* Initialize buffer. */
3027 	memset(out, 0x00, sizeof(*out));
3028 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3029 	ctx->objdata = 0;
3030 	ctx->object = out;
3031 	ctx->objmask = NULL;
3032 	return len;
3033 }
3034 
3035 /** Parse tokens for validate/create commands. */
3036 static int
3037 parse_vc(struct context *ctx, const struct token *token,
3038 	 const char *str, unsigned int len,
3039 	 void *buf, unsigned int size)
3040 {
3041 	struct buffer *out = buf;
3042 	uint8_t *data;
3043 	uint32_t data_size;
3044 
3045 	/* Token name must match. */
3046 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3047 		return -1;
3048 	/* Nothing else to do if there is no buffer. */
3049 	if (!out)
3050 		return len;
3051 	if (!out->command) {
3052 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3053 			return -1;
3054 		if (sizeof(*out) > size)
3055 			return -1;
3056 		out->command = ctx->curr;
3057 		ctx->objdata = 0;
3058 		ctx->object = out;
3059 		ctx->objmask = NULL;
3060 		out->args.vc.data = (uint8_t *)out + size;
3061 		return len;
3062 	}
3063 	ctx->objdata = 0;
3064 	ctx->object = &out->args.vc.attr;
3065 	ctx->objmask = NULL;
3066 	switch (ctx->curr) {
3067 	case GROUP:
3068 	case PRIORITY:
3069 		return len;
3070 	case INGRESS:
3071 		out->args.vc.attr.ingress = 1;
3072 		return len;
3073 	case EGRESS:
3074 		out->args.vc.attr.egress = 1;
3075 		return len;
3076 	case TRANSFER:
3077 		out->args.vc.attr.transfer = 1;
3078 		return len;
3079 	case PATTERN:
3080 		out->args.vc.pattern =
3081 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3082 					       sizeof(double));
3083 		ctx->object = out->args.vc.pattern;
3084 		ctx->objmask = NULL;
3085 		return len;
3086 	case ACTIONS:
3087 		out->args.vc.actions =
3088 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3089 					       (out->args.vc.pattern +
3090 						out->args.vc.pattern_n),
3091 					       sizeof(double));
3092 		ctx->object = out->args.vc.actions;
3093 		ctx->objmask = NULL;
3094 		return len;
3095 	default:
3096 		if (!token->priv)
3097 			return -1;
3098 		break;
3099 	}
3100 	if (!out->args.vc.actions) {
3101 		const struct parse_item_priv *priv = token->priv;
3102 		struct rte_flow_item *item =
3103 			out->args.vc.pattern + out->args.vc.pattern_n;
3104 
3105 		data_size = priv->size * 3; /* spec, last, mask */
3106 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3107 					       (out->args.vc.data - data_size),
3108 					       sizeof(double));
3109 		if ((uint8_t *)item + sizeof(*item) > data)
3110 			return -1;
3111 		*item = (struct rte_flow_item){
3112 			.type = priv->type,
3113 		};
3114 		++out->args.vc.pattern_n;
3115 		ctx->object = item;
3116 		ctx->objmask = NULL;
3117 	} else {
3118 		const struct parse_action_priv *priv = token->priv;
3119 		struct rte_flow_action *action =
3120 			out->args.vc.actions + out->args.vc.actions_n;
3121 
3122 		data_size = priv->size; /* configuration */
3123 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3124 					       (out->args.vc.data - data_size),
3125 					       sizeof(double));
3126 		if ((uint8_t *)action + sizeof(*action) > data)
3127 			return -1;
3128 		*action = (struct rte_flow_action){
3129 			.type = priv->type,
3130 			.conf = data_size ? data : NULL,
3131 		};
3132 		++out->args.vc.actions_n;
3133 		ctx->object = action;
3134 		ctx->objmask = NULL;
3135 	}
3136 	memset(data, 0, data_size);
3137 	out->args.vc.data = data;
3138 	ctx->objdata = data_size;
3139 	return len;
3140 }
3141 
3142 /** Parse pattern item parameter type. */
3143 static int
3144 parse_vc_spec(struct context *ctx, const struct token *token,
3145 	      const char *str, unsigned int len,
3146 	      void *buf, unsigned int size)
3147 {
3148 	struct buffer *out = buf;
3149 	struct rte_flow_item *item;
3150 	uint32_t data_size;
3151 	int index;
3152 	int objmask = 0;
3153 
3154 	(void)size;
3155 	/* Token name must match. */
3156 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3157 		return -1;
3158 	/* Parse parameter types. */
3159 	switch (ctx->curr) {
3160 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3161 
3162 	case ITEM_PARAM_IS:
3163 		index = 0;
3164 		objmask = 1;
3165 		break;
3166 	case ITEM_PARAM_SPEC:
3167 		index = 0;
3168 		break;
3169 	case ITEM_PARAM_LAST:
3170 		index = 1;
3171 		break;
3172 	case ITEM_PARAM_PREFIX:
3173 		/* Modify next token to expect a prefix. */
3174 		if (ctx->next_num < 2)
3175 			return -1;
3176 		ctx->next[ctx->next_num - 2] = prefix;
3177 		/* Fall through. */
3178 	case ITEM_PARAM_MASK:
3179 		index = 2;
3180 		break;
3181 	default:
3182 		return -1;
3183 	}
3184 	/* Nothing else to do if there is no buffer. */
3185 	if (!out)
3186 		return len;
3187 	if (!out->args.vc.pattern_n)
3188 		return -1;
3189 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3190 	data_size = ctx->objdata / 3; /* spec, last, mask */
3191 	/* Point to selected object. */
3192 	ctx->object = out->args.vc.data + (data_size * index);
3193 	if (objmask) {
3194 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3195 		item->mask = ctx->objmask;
3196 	} else
3197 		ctx->objmask = NULL;
3198 	/* Update relevant item pointer. */
3199 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3200 		ctx->object;
3201 	return len;
3202 }
3203 
3204 /** Parse action configuration field. */
3205 static int
3206 parse_vc_conf(struct context *ctx, const struct token *token,
3207 	      const char *str, unsigned int len,
3208 	      void *buf, unsigned int size)
3209 {
3210 	struct buffer *out = buf;
3211 
3212 	(void)size;
3213 	/* Token name must match. */
3214 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3215 		return -1;
3216 	/* Nothing else to do if there is no buffer. */
3217 	if (!out)
3218 		return len;
3219 	/* Point to selected object. */
3220 	ctx->object = out->args.vc.data;
3221 	ctx->objmask = NULL;
3222 	return len;
3223 }
3224 
3225 /** Parse RSS action. */
3226 static int
3227 parse_vc_action_rss(struct context *ctx, const struct token *token,
3228 		    const char *str, unsigned int len,
3229 		    void *buf, unsigned int size)
3230 {
3231 	struct buffer *out = buf;
3232 	struct rte_flow_action *action;
3233 	struct action_rss_data *action_rss_data;
3234 	unsigned int i;
3235 	int ret;
3236 
3237 	ret = parse_vc(ctx, token, str, len, buf, size);
3238 	if (ret < 0)
3239 		return ret;
3240 	/* Nothing else to do if there is no buffer. */
3241 	if (!out)
3242 		return ret;
3243 	if (!out->args.vc.actions_n)
3244 		return -1;
3245 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3246 	/* Point to selected object. */
3247 	ctx->object = out->args.vc.data;
3248 	ctx->objmask = NULL;
3249 	/* Set up default configuration. */
3250 	action_rss_data = ctx->object;
3251 	*action_rss_data = (struct action_rss_data){
3252 		.conf = (struct rte_flow_action_rss){
3253 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3254 			.level = 0,
3255 			.types = rss_hf,
3256 			.key_len = sizeof(action_rss_data->key),
3257 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3258 			.key = action_rss_data->key,
3259 			.queue = action_rss_data->queue,
3260 		},
3261 		.key = "testpmd's default RSS hash key, "
3262 			"override it for better balancing",
3263 		.queue = { 0 },
3264 	};
3265 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3266 		action_rss_data->queue[i] = i;
3267 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3268 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3269 		struct rte_eth_dev_info info;
3270 
3271 		rte_eth_dev_info_get(ctx->port, &info);
3272 		action_rss_data->conf.key_len =
3273 			RTE_MIN(sizeof(action_rss_data->key),
3274 				info.hash_key_size);
3275 	}
3276 	action->conf = &action_rss_data->conf;
3277 	return ret;
3278 }
3279 
3280 /**
3281  * Parse func field for RSS action.
3282  *
3283  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3284  * ACTION_RSS_FUNC_* index that called this function.
3285  */
3286 static int
3287 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3288 			 const char *str, unsigned int len,
3289 			 void *buf, unsigned int size)
3290 {
3291 	struct action_rss_data *action_rss_data;
3292 	enum rte_eth_hash_function func;
3293 
3294 	(void)buf;
3295 	(void)size;
3296 	/* Token name must match. */
3297 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3298 		return -1;
3299 	switch (ctx->curr) {
3300 	case ACTION_RSS_FUNC_DEFAULT:
3301 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3302 		break;
3303 	case ACTION_RSS_FUNC_TOEPLITZ:
3304 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3305 		break;
3306 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3307 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3308 		break;
3309 	default:
3310 		return -1;
3311 	}
3312 	if (!ctx->object)
3313 		return len;
3314 	action_rss_data = ctx->object;
3315 	action_rss_data->conf.func = func;
3316 	return len;
3317 }
3318 
3319 /**
3320  * Parse type field for RSS action.
3321  *
3322  * Valid tokens are type field names and the "end" token.
3323  */
3324 static int
3325 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3326 			  const char *str, unsigned int len,
3327 			  void *buf, unsigned int size)
3328 {
3329 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3330 	struct action_rss_data *action_rss_data;
3331 	unsigned int i;
3332 
3333 	(void)token;
3334 	(void)buf;
3335 	(void)size;
3336 	if (ctx->curr != ACTION_RSS_TYPE)
3337 		return -1;
3338 	if (!(ctx->objdata >> 16) && ctx->object) {
3339 		action_rss_data = ctx->object;
3340 		action_rss_data->conf.types = 0;
3341 	}
3342 	if (!strcmp_partial("end", str, len)) {
3343 		ctx->objdata &= 0xffff;
3344 		return len;
3345 	}
3346 	for (i = 0; rss_type_table[i].str; ++i)
3347 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3348 			break;
3349 	if (!rss_type_table[i].str)
3350 		return -1;
3351 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3352 	/* Repeat token. */
3353 	if (ctx->next_num == RTE_DIM(ctx->next))
3354 		return -1;
3355 	ctx->next[ctx->next_num++] = next;
3356 	if (!ctx->object)
3357 		return len;
3358 	action_rss_data = ctx->object;
3359 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3360 	return len;
3361 }
3362 
3363 /**
3364  * Parse queue field for RSS action.
3365  *
3366  * Valid tokens are queue indices and the "end" token.
3367  */
3368 static int
3369 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3370 			  const char *str, unsigned int len,
3371 			  void *buf, unsigned int size)
3372 {
3373 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3374 	struct action_rss_data *action_rss_data;
3375 	int ret;
3376 	int i;
3377 
3378 	(void)token;
3379 	(void)buf;
3380 	(void)size;
3381 	if (ctx->curr != ACTION_RSS_QUEUE)
3382 		return -1;
3383 	i = ctx->objdata >> 16;
3384 	if (!strcmp_partial("end", str, len)) {
3385 		ctx->objdata &= 0xffff;
3386 		goto end;
3387 	}
3388 	if (i >= ACTION_RSS_QUEUE_NUM)
3389 		return -1;
3390 	if (push_args(ctx,
3391 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3392 				     i * sizeof(action_rss_data->queue[i]),
3393 				     sizeof(action_rss_data->queue[i]))))
3394 		return -1;
3395 	ret = parse_int(ctx, token, str, len, NULL, 0);
3396 	if (ret < 0) {
3397 		pop_args(ctx);
3398 		return -1;
3399 	}
3400 	++i;
3401 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3402 	/* Repeat token. */
3403 	if (ctx->next_num == RTE_DIM(ctx->next))
3404 		return -1;
3405 	ctx->next[ctx->next_num++] = next;
3406 end:
3407 	if (!ctx->object)
3408 		return len;
3409 	action_rss_data = ctx->object;
3410 	action_rss_data->conf.queue_num = i;
3411 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3412 	return len;
3413 }
3414 
3415 /** Parse VXLAN encap action. */
3416 static int
3417 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3418 			    const char *str, unsigned int len,
3419 			    void *buf, unsigned int size)
3420 {
3421 	struct buffer *out = buf;
3422 	struct rte_flow_action *action;
3423 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3424 	int ret;
3425 
3426 	ret = parse_vc(ctx, token, str, len, buf, size);
3427 	if (ret < 0)
3428 		return ret;
3429 	/* Nothing else to do if there is no buffer. */
3430 	if (!out)
3431 		return ret;
3432 	if (!out->args.vc.actions_n)
3433 		return -1;
3434 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3435 	/* Point to selected object. */
3436 	ctx->object = out->args.vc.data;
3437 	ctx->objmask = NULL;
3438 	/* Set up default configuration. */
3439 	action_vxlan_encap_data = ctx->object;
3440 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3441 		.conf = (struct rte_flow_action_vxlan_encap){
3442 			.definition = action_vxlan_encap_data->items,
3443 		},
3444 		.items = {
3445 			{
3446 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3447 				.spec = &action_vxlan_encap_data->item_eth,
3448 				.mask = &rte_flow_item_eth_mask,
3449 			},
3450 			{
3451 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3452 				.spec = &action_vxlan_encap_data->item_vlan,
3453 				.mask = &rte_flow_item_vlan_mask,
3454 			},
3455 			{
3456 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3457 				.spec = &action_vxlan_encap_data->item_ipv4,
3458 				.mask = &rte_flow_item_ipv4_mask,
3459 			},
3460 			{
3461 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3462 				.spec = &action_vxlan_encap_data->item_udp,
3463 				.mask = &rte_flow_item_udp_mask,
3464 			},
3465 			{
3466 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3467 				.spec = &action_vxlan_encap_data->item_vxlan,
3468 				.mask = &rte_flow_item_vxlan_mask,
3469 			},
3470 			{
3471 				.type = RTE_FLOW_ITEM_TYPE_END,
3472 			},
3473 		},
3474 		.item_eth.type = 0,
3475 		.item_vlan = {
3476 			.tci = vxlan_encap_conf.vlan_tci,
3477 			.inner_type = 0,
3478 		},
3479 		.item_ipv4.hdr = {
3480 			.src_addr = vxlan_encap_conf.ipv4_src,
3481 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3482 		},
3483 		.item_udp.hdr = {
3484 			.src_port = vxlan_encap_conf.udp_src,
3485 			.dst_port = vxlan_encap_conf.udp_dst,
3486 		},
3487 		.item_vxlan.flags = 0,
3488 	};
3489 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3490 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3491 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3492 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3493 	if (!vxlan_encap_conf.select_ipv4) {
3494 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3495 		       &vxlan_encap_conf.ipv6_src,
3496 		       sizeof(vxlan_encap_conf.ipv6_src));
3497 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3498 		       &vxlan_encap_conf.ipv6_dst,
3499 		       sizeof(vxlan_encap_conf.ipv6_dst));
3500 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3501 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3502 			.spec = &action_vxlan_encap_data->item_ipv6,
3503 			.mask = &rte_flow_item_ipv6_mask,
3504 		};
3505 	}
3506 	if (!vxlan_encap_conf.select_vlan)
3507 		action_vxlan_encap_data->items[1].type =
3508 			RTE_FLOW_ITEM_TYPE_VOID;
3509 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3510 	       RTE_DIM(vxlan_encap_conf.vni));
3511 	action->conf = &action_vxlan_encap_data->conf;
3512 	return ret;
3513 }
3514 
3515 /** Parse NVGRE encap action. */
3516 static int
3517 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3518 			    const char *str, unsigned int len,
3519 			    void *buf, unsigned int size)
3520 {
3521 	struct buffer *out = buf;
3522 	struct rte_flow_action *action;
3523 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3524 	int ret;
3525 
3526 	ret = parse_vc(ctx, token, str, len, buf, size);
3527 	if (ret < 0)
3528 		return ret;
3529 	/* Nothing else to do if there is no buffer. */
3530 	if (!out)
3531 		return ret;
3532 	if (!out->args.vc.actions_n)
3533 		return -1;
3534 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3535 	/* Point to selected object. */
3536 	ctx->object = out->args.vc.data;
3537 	ctx->objmask = NULL;
3538 	/* Set up default configuration. */
3539 	action_nvgre_encap_data = ctx->object;
3540 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3541 		.conf = (struct rte_flow_action_nvgre_encap){
3542 			.definition = action_nvgre_encap_data->items,
3543 		},
3544 		.items = {
3545 			{
3546 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3547 				.spec = &action_nvgre_encap_data->item_eth,
3548 				.mask = &rte_flow_item_eth_mask,
3549 			},
3550 			{
3551 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3552 				.spec = &action_nvgre_encap_data->item_vlan,
3553 				.mask = &rte_flow_item_vlan_mask,
3554 			},
3555 			{
3556 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3557 				.spec = &action_nvgre_encap_data->item_ipv4,
3558 				.mask = &rte_flow_item_ipv4_mask,
3559 			},
3560 			{
3561 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3562 				.spec = &action_nvgre_encap_data->item_nvgre,
3563 				.mask = &rte_flow_item_nvgre_mask,
3564 			},
3565 			{
3566 				.type = RTE_FLOW_ITEM_TYPE_END,
3567 			},
3568 		},
3569 		.item_eth.type = 0,
3570 		.item_vlan = {
3571 			.tci = nvgre_encap_conf.vlan_tci,
3572 			.inner_type = 0,
3573 		},
3574 		.item_ipv4.hdr = {
3575 		       .src_addr = nvgre_encap_conf.ipv4_src,
3576 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3577 		},
3578 		.item_nvgre.flow_id = 0,
3579 	};
3580 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3581 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3582 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3583 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3584 	if (!nvgre_encap_conf.select_ipv4) {
3585 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3586 		       &nvgre_encap_conf.ipv6_src,
3587 		       sizeof(nvgre_encap_conf.ipv6_src));
3588 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3589 		       &nvgre_encap_conf.ipv6_dst,
3590 		       sizeof(nvgre_encap_conf.ipv6_dst));
3591 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3592 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3593 			.spec = &action_nvgre_encap_data->item_ipv6,
3594 			.mask = &rte_flow_item_ipv6_mask,
3595 		};
3596 	}
3597 	if (!nvgre_encap_conf.select_vlan)
3598 		action_nvgre_encap_data->items[1].type =
3599 			RTE_FLOW_ITEM_TYPE_VOID;
3600 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3601 	       RTE_DIM(nvgre_encap_conf.tni));
3602 	action->conf = &action_nvgre_encap_data->conf;
3603 	return ret;
3604 }
3605 
3606 /** Parse l2 encap action. */
3607 static int
3608 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3609 			 const char *str, unsigned int len,
3610 			 void *buf, unsigned int size)
3611 {
3612 	struct buffer *out = buf;
3613 	struct rte_flow_action *action;
3614 	struct action_raw_encap_data *action_encap_data;
3615 	struct rte_flow_item_eth eth = { .type = 0, };
3616 	struct rte_flow_item_vlan vlan = {
3617 		.tci = mplsoudp_encap_conf.vlan_tci,
3618 		.inner_type = 0,
3619 	};
3620 	uint8_t *header;
3621 	int ret;
3622 
3623 	ret = parse_vc(ctx, token, str, len, buf, size);
3624 	if (ret < 0)
3625 		return ret;
3626 	/* Nothing else to do if there is no buffer. */
3627 	if (!out)
3628 		return ret;
3629 	if (!out->args.vc.actions_n)
3630 		return -1;
3631 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3632 	/* Point to selected object. */
3633 	ctx->object = out->args.vc.data;
3634 	ctx->objmask = NULL;
3635 	/* Copy the headers to the buffer. */
3636 	action_encap_data = ctx->object;
3637 	*action_encap_data = (struct action_raw_encap_data) {
3638 		.conf = (struct rte_flow_action_raw_encap){
3639 			.data = action_encap_data->data,
3640 		},
3641 		.data = {},
3642 	};
3643 	header = action_encap_data->data;
3644 	if (l2_encap_conf.select_vlan)
3645 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3646 	else if (l2_encap_conf.select_ipv4)
3647 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3648 	else
3649 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3650 	memcpy(eth.dst.addr_bytes,
3651 	       l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
3652 	memcpy(eth.src.addr_bytes,
3653 	       l2_encap_conf.eth_src, ETHER_ADDR_LEN);
3654 	memcpy(header, &eth, sizeof(eth));
3655 	header += sizeof(eth);
3656 	if (l2_encap_conf.select_vlan) {
3657 		if (l2_encap_conf.select_ipv4)
3658 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3659 		else
3660 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3661 		memcpy(header, &vlan, sizeof(vlan));
3662 		header += sizeof(vlan);
3663 	}
3664 	action_encap_data->conf.size = header -
3665 		action_encap_data->data;
3666 	action->conf = &action_encap_data->conf;
3667 	return ret;
3668 }
3669 
3670 /** Parse l2 decap action. */
3671 static int
3672 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3673 			 const char *str, unsigned int len,
3674 			 void *buf, unsigned int size)
3675 {
3676 	struct buffer *out = buf;
3677 	struct rte_flow_action *action;
3678 	struct action_raw_decap_data *action_decap_data;
3679 	struct rte_flow_item_eth eth = { .type = 0, };
3680 	struct rte_flow_item_vlan vlan = {
3681 		.tci = mplsoudp_encap_conf.vlan_tci,
3682 		.inner_type = 0,
3683 	};
3684 	uint8_t *header;
3685 	int ret;
3686 
3687 	ret = parse_vc(ctx, token, str, len, buf, size);
3688 	if (ret < 0)
3689 		return ret;
3690 	/* Nothing else to do if there is no buffer. */
3691 	if (!out)
3692 		return ret;
3693 	if (!out->args.vc.actions_n)
3694 		return -1;
3695 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3696 	/* Point to selected object. */
3697 	ctx->object = out->args.vc.data;
3698 	ctx->objmask = NULL;
3699 	/* Copy the headers to the buffer. */
3700 	action_decap_data = ctx->object;
3701 	*action_decap_data = (struct action_raw_decap_data) {
3702 		.conf = (struct rte_flow_action_raw_decap){
3703 			.data = action_decap_data->data,
3704 		},
3705 		.data = {},
3706 	};
3707 	header = action_decap_data->data;
3708 	if (l2_decap_conf.select_vlan)
3709 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3710 	memcpy(header, &eth, sizeof(eth));
3711 	header += sizeof(eth);
3712 	if (l2_decap_conf.select_vlan) {
3713 		memcpy(header, &vlan, sizeof(vlan));
3714 		header += sizeof(vlan);
3715 	}
3716 	action_decap_data->conf.size = header -
3717 		action_decap_data->data;
3718 	action->conf = &action_decap_data->conf;
3719 	return ret;
3720 }
3721 
3722 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3723 
3724 /** Parse MPLSOGRE encap action. */
3725 static int
3726 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3727 			       const char *str, unsigned int len,
3728 			       void *buf, unsigned int size)
3729 {
3730 	struct buffer *out = buf;
3731 	struct rte_flow_action *action;
3732 	struct action_raw_encap_data *action_encap_data;
3733 	struct rte_flow_item_eth eth = { .type = 0, };
3734 	struct rte_flow_item_vlan vlan = {
3735 		.tci = mplsogre_encap_conf.vlan_tci,
3736 		.inner_type = 0,
3737 	};
3738 	struct rte_flow_item_ipv4 ipv4 = {
3739 		.hdr =  {
3740 			.src_addr = mplsogre_encap_conf.ipv4_src,
3741 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3742 			.next_proto_id = IPPROTO_GRE,
3743 		},
3744 	};
3745 	struct rte_flow_item_ipv6 ipv6 = {
3746 		.hdr =  {
3747 			.proto = IPPROTO_GRE,
3748 		},
3749 	};
3750 	struct rte_flow_item_gre gre = {
3751 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3752 	};
3753 	struct rte_flow_item_mpls mpls;
3754 	uint8_t *header;
3755 	int ret;
3756 
3757 	ret = parse_vc(ctx, token, str, len, buf, size);
3758 	if (ret < 0)
3759 		return ret;
3760 	/* Nothing else to do if there is no buffer. */
3761 	if (!out)
3762 		return ret;
3763 	if (!out->args.vc.actions_n)
3764 		return -1;
3765 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3766 	/* Point to selected object. */
3767 	ctx->object = out->args.vc.data;
3768 	ctx->objmask = NULL;
3769 	/* Copy the headers to the buffer. */
3770 	action_encap_data = ctx->object;
3771 	*action_encap_data = (struct action_raw_encap_data) {
3772 		.conf = (struct rte_flow_action_raw_encap){
3773 			.data = action_encap_data->data,
3774 		},
3775 		.data = {},
3776 		.preserve = {},
3777 	};
3778 	header = action_encap_data->data;
3779 	if (mplsogre_encap_conf.select_vlan)
3780 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3781 	else if (mplsogre_encap_conf.select_ipv4)
3782 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3783 	else
3784 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3785 	memcpy(eth.dst.addr_bytes,
3786 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3787 	memcpy(eth.src.addr_bytes,
3788 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3789 	memcpy(header, &eth, sizeof(eth));
3790 	header += sizeof(eth);
3791 	if (mplsogre_encap_conf.select_vlan) {
3792 		if (mplsogre_encap_conf.select_ipv4)
3793 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3794 		else
3795 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3796 		memcpy(header, &vlan, sizeof(vlan));
3797 		header += sizeof(vlan);
3798 	}
3799 	if (mplsogre_encap_conf.select_ipv4) {
3800 		memcpy(header, &ipv4, sizeof(ipv4));
3801 		header += sizeof(ipv4);
3802 	} else {
3803 		memcpy(&ipv6.hdr.src_addr,
3804 		       &mplsogre_encap_conf.ipv6_src,
3805 		       sizeof(mplsogre_encap_conf.ipv6_src));
3806 		memcpy(&ipv6.hdr.dst_addr,
3807 		       &mplsogre_encap_conf.ipv6_dst,
3808 		       sizeof(mplsogre_encap_conf.ipv6_dst));
3809 		memcpy(header, &ipv6, sizeof(ipv6));
3810 		header += sizeof(ipv6);
3811 	}
3812 	memcpy(header, &gre, sizeof(gre));
3813 	header += sizeof(gre);
3814 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3815 	       RTE_DIM(mplsogre_encap_conf.label));
3816 	memcpy(header, &mpls, sizeof(mpls));
3817 	header += sizeof(mpls);
3818 	action_encap_data->conf.size = header -
3819 		action_encap_data->data;
3820 	action->conf = &action_encap_data->conf;
3821 	return ret;
3822 }
3823 
3824 /** Parse MPLSOGRE decap action. */
3825 static int
3826 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3827 			       const char *str, unsigned int len,
3828 			       void *buf, unsigned int size)
3829 {
3830 	struct buffer *out = buf;
3831 	struct rte_flow_action *action;
3832 	struct action_raw_decap_data *action_decap_data;
3833 	struct rte_flow_item_eth eth = { .type = 0, };
3834 	struct rte_flow_item_vlan vlan = {.tci = 0};
3835 	struct rte_flow_item_ipv4 ipv4 = {
3836 		.hdr =  {
3837 			.next_proto_id = IPPROTO_GRE,
3838 		},
3839 	};
3840 	struct rte_flow_item_ipv6 ipv6 = {
3841 		.hdr =  {
3842 			.proto = IPPROTO_GRE,
3843 		},
3844 	};
3845 	struct rte_flow_item_gre gre = {
3846 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3847 	};
3848 	struct rte_flow_item_mpls mpls;
3849 	uint8_t *header;
3850 	int ret;
3851 
3852 	ret = parse_vc(ctx, token, str, len, buf, size);
3853 	if (ret < 0)
3854 		return ret;
3855 	/* Nothing else to do if there is no buffer. */
3856 	if (!out)
3857 		return ret;
3858 	if (!out->args.vc.actions_n)
3859 		return -1;
3860 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3861 	/* Point to selected object. */
3862 	ctx->object = out->args.vc.data;
3863 	ctx->objmask = NULL;
3864 	/* Copy the headers to the buffer. */
3865 	action_decap_data = ctx->object;
3866 	*action_decap_data = (struct action_raw_decap_data) {
3867 		.conf = (struct rte_flow_action_raw_decap){
3868 			.data = action_decap_data->data,
3869 		},
3870 		.data = {},
3871 	};
3872 	header = action_decap_data->data;
3873 	if (mplsogre_decap_conf.select_vlan)
3874 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3875 	else if (mplsogre_encap_conf.select_ipv4)
3876 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3877 	else
3878 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3879 	memcpy(eth.dst.addr_bytes,
3880 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3881 	memcpy(eth.src.addr_bytes,
3882 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3883 	memcpy(header, &eth, sizeof(eth));
3884 	header += sizeof(eth);
3885 	if (mplsogre_encap_conf.select_vlan) {
3886 		if (mplsogre_encap_conf.select_ipv4)
3887 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3888 		else
3889 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3890 		memcpy(header, &vlan, sizeof(vlan));
3891 		header += sizeof(vlan);
3892 	}
3893 	if (mplsogre_encap_conf.select_ipv4) {
3894 		memcpy(header, &ipv4, sizeof(ipv4));
3895 		header += sizeof(ipv4);
3896 	} else {
3897 		memcpy(header, &ipv6, sizeof(ipv6));
3898 		header += sizeof(ipv6);
3899 	}
3900 	memcpy(header, &gre, sizeof(gre));
3901 	header += sizeof(gre);
3902 	memset(&mpls, 0, sizeof(mpls));
3903 	memcpy(header, &mpls, sizeof(mpls));
3904 	header += sizeof(mpls);
3905 	action_decap_data->conf.size = header -
3906 		action_decap_data->data;
3907 	action->conf = &action_decap_data->conf;
3908 	return ret;
3909 }
3910 
3911 /** Parse MPLSOUDP encap action. */
3912 static int
3913 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
3914 			       const char *str, unsigned int len,
3915 			       void *buf, unsigned int size)
3916 {
3917 	struct buffer *out = buf;
3918 	struct rte_flow_action *action;
3919 	struct action_raw_encap_data *action_encap_data;
3920 	struct rte_flow_item_eth eth = { .type = 0, };
3921 	struct rte_flow_item_vlan vlan = {
3922 		.tci = mplsoudp_encap_conf.vlan_tci,
3923 		.inner_type = 0,
3924 	};
3925 	struct rte_flow_item_ipv4 ipv4 = {
3926 		.hdr =  {
3927 			.src_addr = mplsoudp_encap_conf.ipv4_src,
3928 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
3929 			.next_proto_id = IPPROTO_UDP,
3930 		},
3931 	};
3932 	struct rte_flow_item_ipv6 ipv6 = {
3933 		.hdr =  {
3934 			.proto = IPPROTO_UDP,
3935 		},
3936 	};
3937 	struct rte_flow_item_udp udp = {
3938 		.hdr = {
3939 			.src_port = mplsoudp_encap_conf.udp_src,
3940 			.dst_port = mplsoudp_encap_conf.udp_dst,
3941 		},
3942 	};
3943 	struct rte_flow_item_mpls mpls;
3944 	uint8_t *header;
3945 	int ret;
3946 
3947 	ret = parse_vc(ctx, token, str, len, buf, size);
3948 	if (ret < 0)
3949 		return ret;
3950 	/* Nothing else to do if there is no buffer. */
3951 	if (!out)
3952 		return ret;
3953 	if (!out->args.vc.actions_n)
3954 		return -1;
3955 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3956 	/* Point to selected object. */
3957 	ctx->object = out->args.vc.data;
3958 	ctx->objmask = NULL;
3959 	/* Copy the headers to the buffer. */
3960 	action_encap_data = ctx->object;
3961 	*action_encap_data = (struct action_raw_encap_data) {
3962 		.conf = (struct rte_flow_action_raw_encap){
3963 			.data = action_encap_data->data,
3964 		},
3965 		.data = {},
3966 		.preserve = {},
3967 	};
3968 	header = action_encap_data->data;
3969 	if (mplsoudp_encap_conf.select_vlan)
3970 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3971 	else if (mplsoudp_encap_conf.select_ipv4)
3972 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3973 	else
3974 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3975 	memcpy(eth.dst.addr_bytes,
3976 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
3977 	memcpy(eth.src.addr_bytes,
3978 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
3979 	memcpy(header, &eth, sizeof(eth));
3980 	header += sizeof(eth);
3981 	if (mplsoudp_encap_conf.select_vlan) {
3982 		if (mplsoudp_encap_conf.select_ipv4)
3983 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3984 		else
3985 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3986 		memcpy(header, &vlan, sizeof(vlan));
3987 		header += sizeof(vlan);
3988 	}
3989 	if (mplsoudp_encap_conf.select_ipv4) {
3990 		memcpy(header, &ipv4, sizeof(ipv4));
3991 		header += sizeof(ipv4);
3992 	} else {
3993 		memcpy(&ipv6.hdr.src_addr,
3994 		       &mplsoudp_encap_conf.ipv6_src,
3995 		       sizeof(mplsoudp_encap_conf.ipv6_src));
3996 		memcpy(&ipv6.hdr.dst_addr,
3997 		       &mplsoudp_encap_conf.ipv6_dst,
3998 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
3999 		memcpy(header, &ipv6, sizeof(ipv6));
4000 		header += sizeof(ipv6);
4001 	}
4002 	memcpy(header, &udp, sizeof(udp));
4003 	header += sizeof(udp);
4004 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4005 	       RTE_DIM(mplsoudp_encap_conf.label));
4006 	memcpy(header, &mpls, sizeof(mpls));
4007 	header += sizeof(mpls);
4008 	action_encap_data->conf.size = header -
4009 		action_encap_data->data;
4010 	action->conf = &action_encap_data->conf;
4011 	return ret;
4012 }
4013 
4014 /** Parse MPLSOUDP decap action. */
4015 static int
4016 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4017 			       const char *str, unsigned int len,
4018 			       void *buf, unsigned int size)
4019 {
4020 	struct buffer *out = buf;
4021 	struct rte_flow_action *action;
4022 	struct action_raw_decap_data *action_decap_data;
4023 	struct rte_flow_item_eth eth = { .type = 0, };
4024 	struct rte_flow_item_vlan vlan = {.tci = 0};
4025 	struct rte_flow_item_ipv4 ipv4 = {
4026 		.hdr =  {
4027 			.next_proto_id = IPPROTO_UDP,
4028 		},
4029 	};
4030 	struct rte_flow_item_ipv6 ipv6 = {
4031 		.hdr =  {
4032 			.proto = IPPROTO_UDP,
4033 		},
4034 	};
4035 	struct rte_flow_item_udp udp = {
4036 		.hdr = {
4037 			.dst_port = rte_cpu_to_be_16(6635),
4038 		},
4039 	};
4040 	struct rte_flow_item_mpls mpls;
4041 	uint8_t *header;
4042 	int ret;
4043 
4044 	ret = parse_vc(ctx, token, str, len, buf, size);
4045 	if (ret < 0)
4046 		return ret;
4047 	/* Nothing else to do if there is no buffer. */
4048 	if (!out)
4049 		return ret;
4050 	if (!out->args.vc.actions_n)
4051 		return -1;
4052 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4053 	/* Point to selected object. */
4054 	ctx->object = out->args.vc.data;
4055 	ctx->objmask = NULL;
4056 	/* Copy the headers to the buffer. */
4057 	action_decap_data = ctx->object;
4058 	*action_decap_data = (struct action_raw_decap_data) {
4059 		.conf = (struct rte_flow_action_raw_decap){
4060 			.data = action_decap_data->data,
4061 		},
4062 		.data = {},
4063 	};
4064 	header = action_decap_data->data;
4065 	if (mplsoudp_decap_conf.select_vlan)
4066 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4067 	else if (mplsoudp_encap_conf.select_ipv4)
4068 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4069 	else
4070 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4071 	memcpy(eth.dst.addr_bytes,
4072 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4073 	memcpy(eth.src.addr_bytes,
4074 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4075 	memcpy(header, &eth, sizeof(eth));
4076 	header += sizeof(eth);
4077 	if (mplsoudp_encap_conf.select_vlan) {
4078 		if (mplsoudp_encap_conf.select_ipv4)
4079 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4080 		else
4081 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4082 		memcpy(header, &vlan, sizeof(vlan));
4083 		header += sizeof(vlan);
4084 	}
4085 	if (mplsoudp_encap_conf.select_ipv4) {
4086 		memcpy(header, &ipv4, sizeof(ipv4));
4087 		header += sizeof(ipv4);
4088 	} else {
4089 		memcpy(header, &ipv6, sizeof(ipv6));
4090 		header += sizeof(ipv6);
4091 	}
4092 	memcpy(header, &udp, sizeof(udp));
4093 	header += sizeof(udp);
4094 	memset(&mpls, 0, sizeof(mpls));
4095 	memcpy(header, &mpls, sizeof(mpls));
4096 	header += sizeof(mpls);
4097 	action_decap_data->conf.size = header -
4098 		action_decap_data->data;
4099 	action->conf = &action_decap_data->conf;
4100 	return ret;
4101 }
4102 
4103 /** Parse tokens for destroy command. */
4104 static int
4105 parse_destroy(struct context *ctx, const struct token *token,
4106 	      const char *str, unsigned int len,
4107 	      void *buf, unsigned int size)
4108 {
4109 	struct buffer *out = buf;
4110 
4111 	/* Token name must match. */
4112 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4113 		return -1;
4114 	/* Nothing else to do if there is no buffer. */
4115 	if (!out)
4116 		return len;
4117 	if (!out->command) {
4118 		if (ctx->curr != DESTROY)
4119 			return -1;
4120 		if (sizeof(*out) > size)
4121 			return -1;
4122 		out->command = ctx->curr;
4123 		ctx->objdata = 0;
4124 		ctx->object = out;
4125 		ctx->objmask = NULL;
4126 		out->args.destroy.rule =
4127 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4128 					       sizeof(double));
4129 		return len;
4130 	}
4131 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4132 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4133 		return -1;
4134 	ctx->objdata = 0;
4135 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4136 	ctx->objmask = NULL;
4137 	return len;
4138 }
4139 
4140 /** Parse tokens for flush command. */
4141 static int
4142 parse_flush(struct context *ctx, const struct token *token,
4143 	    const char *str, unsigned int len,
4144 	    void *buf, unsigned int size)
4145 {
4146 	struct buffer *out = buf;
4147 
4148 	/* Token name must match. */
4149 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4150 		return -1;
4151 	/* Nothing else to do if there is no buffer. */
4152 	if (!out)
4153 		return len;
4154 	if (!out->command) {
4155 		if (ctx->curr != FLUSH)
4156 			return -1;
4157 		if (sizeof(*out) > size)
4158 			return -1;
4159 		out->command = ctx->curr;
4160 		ctx->objdata = 0;
4161 		ctx->object = out;
4162 		ctx->objmask = NULL;
4163 	}
4164 	return len;
4165 }
4166 
4167 /** Parse tokens for query command. */
4168 static int
4169 parse_query(struct context *ctx, const struct token *token,
4170 	    const char *str, unsigned int len,
4171 	    void *buf, unsigned int size)
4172 {
4173 	struct buffer *out = buf;
4174 
4175 	/* Token name must match. */
4176 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4177 		return -1;
4178 	/* Nothing else to do if there is no buffer. */
4179 	if (!out)
4180 		return len;
4181 	if (!out->command) {
4182 		if (ctx->curr != QUERY)
4183 			return -1;
4184 		if (sizeof(*out) > size)
4185 			return -1;
4186 		out->command = ctx->curr;
4187 		ctx->objdata = 0;
4188 		ctx->object = out;
4189 		ctx->objmask = NULL;
4190 	}
4191 	return len;
4192 }
4193 
4194 /** Parse action names. */
4195 static int
4196 parse_action(struct context *ctx, const struct token *token,
4197 	     const char *str, unsigned int len,
4198 	     void *buf, unsigned int size)
4199 {
4200 	struct buffer *out = buf;
4201 	const struct arg *arg = pop_args(ctx);
4202 	unsigned int i;
4203 
4204 	(void)size;
4205 	/* Argument is expected. */
4206 	if (!arg)
4207 		return -1;
4208 	/* Parse action name. */
4209 	for (i = 0; next_action[i]; ++i) {
4210 		const struct parse_action_priv *priv;
4211 
4212 		token = &token_list[next_action[i]];
4213 		if (strcmp_partial(token->name, str, len))
4214 			continue;
4215 		priv = token->priv;
4216 		if (!priv)
4217 			goto error;
4218 		if (out)
4219 			memcpy((uint8_t *)ctx->object + arg->offset,
4220 			       &priv->type,
4221 			       arg->size);
4222 		return len;
4223 	}
4224 error:
4225 	push_args(ctx, arg);
4226 	return -1;
4227 }
4228 
4229 /** Parse tokens for list command. */
4230 static int
4231 parse_list(struct context *ctx, const struct token *token,
4232 	   const char *str, unsigned int len,
4233 	   void *buf, unsigned int size)
4234 {
4235 	struct buffer *out = buf;
4236 
4237 	/* Token name must match. */
4238 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4239 		return -1;
4240 	/* Nothing else to do if there is no buffer. */
4241 	if (!out)
4242 		return len;
4243 	if (!out->command) {
4244 		if (ctx->curr != LIST)
4245 			return -1;
4246 		if (sizeof(*out) > size)
4247 			return -1;
4248 		out->command = ctx->curr;
4249 		ctx->objdata = 0;
4250 		ctx->object = out;
4251 		ctx->objmask = NULL;
4252 		out->args.list.group =
4253 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4254 					       sizeof(double));
4255 		return len;
4256 	}
4257 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4258 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4259 		return -1;
4260 	ctx->objdata = 0;
4261 	ctx->object = out->args.list.group + out->args.list.group_n++;
4262 	ctx->objmask = NULL;
4263 	return len;
4264 }
4265 
4266 /** Parse tokens for isolate command. */
4267 static int
4268 parse_isolate(struct context *ctx, const struct token *token,
4269 	      const char *str, unsigned int len,
4270 	      void *buf, unsigned int size)
4271 {
4272 	struct buffer *out = buf;
4273 
4274 	/* Token name must match. */
4275 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4276 		return -1;
4277 	/* Nothing else to do if there is no buffer. */
4278 	if (!out)
4279 		return len;
4280 	if (!out->command) {
4281 		if (ctx->curr != ISOLATE)
4282 			return -1;
4283 		if (sizeof(*out) > size)
4284 			return -1;
4285 		out->command = ctx->curr;
4286 		ctx->objdata = 0;
4287 		ctx->object = out;
4288 		ctx->objmask = NULL;
4289 	}
4290 	return len;
4291 }
4292 
4293 /**
4294  * Parse signed/unsigned integers 8 to 64-bit long.
4295  *
4296  * Last argument (ctx->args) is retrieved to determine integer type and
4297  * storage location.
4298  */
4299 static int
4300 parse_int(struct context *ctx, const struct token *token,
4301 	  const char *str, unsigned int len,
4302 	  void *buf, unsigned int size)
4303 {
4304 	const struct arg *arg = pop_args(ctx);
4305 	uintmax_t u;
4306 	char *end;
4307 
4308 	(void)token;
4309 	/* Argument is expected. */
4310 	if (!arg)
4311 		return -1;
4312 	errno = 0;
4313 	u = arg->sign ?
4314 		(uintmax_t)strtoimax(str, &end, 0) :
4315 		strtoumax(str, &end, 0);
4316 	if (errno || (size_t)(end - str) != len)
4317 		goto error;
4318 	if (arg->bounded &&
4319 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4320 			    (intmax_t)u > (intmax_t)arg->max)) ||
4321 	     (!arg->sign && (u < arg->min || u > arg->max))))
4322 		goto error;
4323 	if (!ctx->object)
4324 		return len;
4325 	if (arg->mask) {
4326 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4327 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4328 			goto error;
4329 		return len;
4330 	}
4331 	buf = (uint8_t *)ctx->object + arg->offset;
4332 	size = arg->size;
4333 objmask:
4334 	switch (size) {
4335 	case sizeof(uint8_t):
4336 		*(uint8_t *)buf = u;
4337 		break;
4338 	case sizeof(uint16_t):
4339 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4340 		break;
4341 	case sizeof(uint8_t [3]):
4342 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4343 		if (!arg->hton) {
4344 			((uint8_t *)buf)[0] = u;
4345 			((uint8_t *)buf)[1] = u >> 8;
4346 			((uint8_t *)buf)[2] = u >> 16;
4347 			break;
4348 		}
4349 #endif
4350 		((uint8_t *)buf)[0] = u >> 16;
4351 		((uint8_t *)buf)[1] = u >> 8;
4352 		((uint8_t *)buf)[2] = u;
4353 		break;
4354 	case sizeof(uint32_t):
4355 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4356 		break;
4357 	case sizeof(uint64_t):
4358 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4359 		break;
4360 	default:
4361 		goto error;
4362 	}
4363 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4364 		u = -1;
4365 		buf = (uint8_t *)ctx->objmask + arg->offset;
4366 		goto objmask;
4367 	}
4368 	return len;
4369 error:
4370 	push_args(ctx, arg);
4371 	return -1;
4372 }
4373 
4374 /**
4375  * Parse a string.
4376  *
4377  * Three arguments (ctx->args) are retrieved from the stack to store data,
4378  * its actual length and address (in that order).
4379  */
4380 static int
4381 parse_string(struct context *ctx, const struct token *token,
4382 	     const char *str, unsigned int len,
4383 	     void *buf, unsigned int size)
4384 {
4385 	const struct arg *arg_data = pop_args(ctx);
4386 	const struct arg *arg_len = pop_args(ctx);
4387 	const struct arg *arg_addr = pop_args(ctx);
4388 	char tmp[16]; /* Ought to be enough. */
4389 	int ret;
4390 
4391 	/* Arguments are expected. */
4392 	if (!arg_data)
4393 		return -1;
4394 	if (!arg_len) {
4395 		push_args(ctx, arg_data);
4396 		return -1;
4397 	}
4398 	if (!arg_addr) {
4399 		push_args(ctx, arg_len);
4400 		push_args(ctx, arg_data);
4401 		return -1;
4402 	}
4403 	size = arg_data->size;
4404 	/* Bit-mask fill is not supported. */
4405 	if (arg_data->mask || size < len)
4406 		goto error;
4407 	if (!ctx->object)
4408 		return len;
4409 	/* Let parse_int() fill length information first. */
4410 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4411 	if (ret < 0)
4412 		goto error;
4413 	push_args(ctx, arg_len);
4414 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4415 	if (ret < 0) {
4416 		pop_args(ctx);
4417 		goto error;
4418 	}
4419 	buf = (uint8_t *)ctx->object + arg_data->offset;
4420 	/* Output buffer is not necessarily NUL-terminated. */
4421 	memcpy(buf, str, len);
4422 	memset((uint8_t *)buf + len, 0x00, size - len);
4423 	if (ctx->objmask)
4424 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4425 	/* Save address if requested. */
4426 	if (arg_addr->size) {
4427 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4428 		       (void *[]){
4429 			(uint8_t *)ctx->object + arg_data->offset
4430 		       },
4431 		       arg_addr->size);
4432 		if (ctx->objmask)
4433 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4434 			       (void *[]){
4435 				(uint8_t *)ctx->objmask + arg_data->offset
4436 			       },
4437 			       arg_addr->size);
4438 	}
4439 	return len;
4440 error:
4441 	push_args(ctx, arg_addr);
4442 	push_args(ctx, arg_len);
4443 	push_args(ctx, arg_data);
4444 	return -1;
4445 }
4446 
4447 /**
4448  * Parse a MAC address.
4449  *
4450  * Last argument (ctx->args) is retrieved to determine storage size and
4451  * location.
4452  */
4453 static int
4454 parse_mac_addr(struct context *ctx, const struct token *token,
4455 	       const char *str, unsigned int len,
4456 	       void *buf, unsigned int size)
4457 {
4458 	const struct arg *arg = pop_args(ctx);
4459 	struct ether_addr tmp;
4460 	int ret;
4461 
4462 	(void)token;
4463 	/* Argument is expected. */
4464 	if (!arg)
4465 		return -1;
4466 	size = arg->size;
4467 	/* Bit-mask fill is not supported. */
4468 	if (arg->mask || size != sizeof(tmp))
4469 		goto error;
4470 	/* Only network endian is supported. */
4471 	if (!arg->hton)
4472 		goto error;
4473 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4474 	if (ret < 0 || (unsigned int)ret != len)
4475 		goto error;
4476 	if (!ctx->object)
4477 		return len;
4478 	buf = (uint8_t *)ctx->object + arg->offset;
4479 	memcpy(buf, &tmp, size);
4480 	if (ctx->objmask)
4481 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4482 	return len;
4483 error:
4484 	push_args(ctx, arg);
4485 	return -1;
4486 }
4487 
4488 /**
4489  * Parse an IPv4 address.
4490  *
4491  * Last argument (ctx->args) is retrieved to determine storage size and
4492  * location.
4493  */
4494 static int
4495 parse_ipv4_addr(struct context *ctx, const struct token *token,
4496 		const char *str, unsigned int len,
4497 		void *buf, unsigned int size)
4498 {
4499 	const struct arg *arg = pop_args(ctx);
4500 	char str2[len + 1];
4501 	struct in_addr tmp;
4502 	int ret;
4503 
4504 	/* Argument is expected. */
4505 	if (!arg)
4506 		return -1;
4507 	size = arg->size;
4508 	/* Bit-mask fill is not supported. */
4509 	if (arg->mask || size != sizeof(tmp))
4510 		goto error;
4511 	/* Only network endian is supported. */
4512 	if (!arg->hton)
4513 		goto error;
4514 	memcpy(str2, str, len);
4515 	str2[len] = '\0';
4516 	ret = inet_pton(AF_INET, str2, &tmp);
4517 	if (ret != 1) {
4518 		/* Attempt integer parsing. */
4519 		push_args(ctx, arg);
4520 		return parse_int(ctx, token, str, len, buf, size);
4521 	}
4522 	if (!ctx->object)
4523 		return len;
4524 	buf = (uint8_t *)ctx->object + arg->offset;
4525 	memcpy(buf, &tmp, size);
4526 	if (ctx->objmask)
4527 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4528 	return len;
4529 error:
4530 	push_args(ctx, arg);
4531 	return -1;
4532 }
4533 
4534 /**
4535  * Parse an IPv6 address.
4536  *
4537  * Last argument (ctx->args) is retrieved to determine storage size and
4538  * location.
4539  */
4540 static int
4541 parse_ipv6_addr(struct context *ctx, const struct token *token,
4542 		const char *str, unsigned int len,
4543 		void *buf, unsigned int size)
4544 {
4545 	const struct arg *arg = pop_args(ctx);
4546 	char str2[len + 1];
4547 	struct in6_addr tmp;
4548 	int ret;
4549 
4550 	(void)token;
4551 	/* Argument is expected. */
4552 	if (!arg)
4553 		return -1;
4554 	size = arg->size;
4555 	/* Bit-mask fill is not supported. */
4556 	if (arg->mask || size != sizeof(tmp))
4557 		goto error;
4558 	/* Only network endian is supported. */
4559 	if (!arg->hton)
4560 		goto error;
4561 	memcpy(str2, str, len);
4562 	str2[len] = '\0';
4563 	ret = inet_pton(AF_INET6, str2, &tmp);
4564 	if (ret != 1)
4565 		goto error;
4566 	if (!ctx->object)
4567 		return len;
4568 	buf = (uint8_t *)ctx->object + arg->offset;
4569 	memcpy(buf, &tmp, size);
4570 	if (ctx->objmask)
4571 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4572 	return len;
4573 error:
4574 	push_args(ctx, arg);
4575 	return -1;
4576 }
4577 
4578 /** Boolean values (even indices stand for false). */
4579 static const char *const boolean_name[] = {
4580 	"0", "1",
4581 	"false", "true",
4582 	"no", "yes",
4583 	"N", "Y",
4584 	"off", "on",
4585 	NULL,
4586 };
4587 
4588 /**
4589  * Parse a boolean value.
4590  *
4591  * Last argument (ctx->args) is retrieved to determine storage size and
4592  * location.
4593  */
4594 static int
4595 parse_boolean(struct context *ctx, const struct token *token,
4596 	      const char *str, unsigned int len,
4597 	      void *buf, unsigned int size)
4598 {
4599 	const struct arg *arg = pop_args(ctx);
4600 	unsigned int i;
4601 	int ret;
4602 
4603 	/* Argument is expected. */
4604 	if (!arg)
4605 		return -1;
4606 	for (i = 0; boolean_name[i]; ++i)
4607 		if (!strcmp_partial(boolean_name[i], str, len))
4608 			break;
4609 	/* Process token as integer. */
4610 	if (boolean_name[i])
4611 		str = i & 1 ? "1" : "0";
4612 	push_args(ctx, arg);
4613 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4614 	return ret > 0 ? (int)len : ret;
4615 }
4616 
4617 /** Parse port and update context. */
4618 static int
4619 parse_port(struct context *ctx, const struct token *token,
4620 	   const char *str, unsigned int len,
4621 	   void *buf, unsigned int size)
4622 {
4623 	struct buffer *out = &(struct buffer){ .port = 0 };
4624 	int ret;
4625 
4626 	if (buf)
4627 		out = buf;
4628 	else {
4629 		ctx->objdata = 0;
4630 		ctx->object = out;
4631 		ctx->objmask = NULL;
4632 		size = sizeof(*out);
4633 	}
4634 	ret = parse_int(ctx, token, str, len, out, size);
4635 	if (ret >= 0)
4636 		ctx->port = out->port;
4637 	if (!buf)
4638 		ctx->object = NULL;
4639 	return ret;
4640 }
4641 
4642 /** No completion. */
4643 static int
4644 comp_none(struct context *ctx, const struct token *token,
4645 	  unsigned int ent, char *buf, unsigned int size)
4646 {
4647 	(void)ctx;
4648 	(void)token;
4649 	(void)ent;
4650 	(void)buf;
4651 	(void)size;
4652 	return 0;
4653 }
4654 
4655 /** Complete boolean values. */
4656 static int
4657 comp_boolean(struct context *ctx, const struct token *token,
4658 	     unsigned int ent, char *buf, unsigned int size)
4659 {
4660 	unsigned int i;
4661 
4662 	(void)ctx;
4663 	(void)token;
4664 	for (i = 0; boolean_name[i]; ++i)
4665 		if (buf && i == ent)
4666 			return snprintf(buf, size, "%s", boolean_name[i]);
4667 	if (buf)
4668 		return -1;
4669 	return i;
4670 }
4671 
4672 /** Complete action names. */
4673 static int
4674 comp_action(struct context *ctx, const struct token *token,
4675 	    unsigned int ent, char *buf, unsigned int size)
4676 {
4677 	unsigned int i;
4678 
4679 	(void)ctx;
4680 	(void)token;
4681 	for (i = 0; next_action[i]; ++i)
4682 		if (buf && i == ent)
4683 			return snprintf(buf, size, "%s",
4684 					token_list[next_action[i]].name);
4685 	if (buf)
4686 		return -1;
4687 	return i;
4688 }
4689 
4690 /** Complete available ports. */
4691 static int
4692 comp_port(struct context *ctx, const struct token *token,
4693 	  unsigned int ent, char *buf, unsigned int size)
4694 {
4695 	unsigned int i = 0;
4696 	portid_t p;
4697 
4698 	(void)ctx;
4699 	(void)token;
4700 	RTE_ETH_FOREACH_DEV(p) {
4701 		if (buf && i == ent)
4702 			return snprintf(buf, size, "%u", p);
4703 		++i;
4704 	}
4705 	if (buf)
4706 		return -1;
4707 	return i;
4708 }
4709 
4710 /** Complete available rule IDs. */
4711 static int
4712 comp_rule_id(struct context *ctx, const struct token *token,
4713 	     unsigned int ent, char *buf, unsigned int size)
4714 {
4715 	unsigned int i = 0;
4716 	struct rte_port *port;
4717 	struct port_flow *pf;
4718 
4719 	(void)token;
4720 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4721 	    ctx->port == (portid_t)RTE_PORT_ALL)
4722 		return -1;
4723 	port = &ports[ctx->port];
4724 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4725 		if (buf && i == ent)
4726 			return snprintf(buf, size, "%u", pf->id);
4727 		++i;
4728 	}
4729 	if (buf)
4730 		return -1;
4731 	return i;
4732 }
4733 
4734 /** Complete type field for RSS action. */
4735 static int
4736 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4737 			unsigned int ent, char *buf, unsigned int size)
4738 {
4739 	unsigned int i;
4740 
4741 	(void)ctx;
4742 	(void)token;
4743 	for (i = 0; rss_type_table[i].str; ++i)
4744 		;
4745 	if (!buf)
4746 		return i + 1;
4747 	if (ent < i)
4748 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
4749 	if (ent == i)
4750 		return snprintf(buf, size, "end");
4751 	return -1;
4752 }
4753 
4754 /** Complete queue field for RSS action. */
4755 static int
4756 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4757 			 unsigned int ent, char *buf, unsigned int size)
4758 {
4759 	(void)ctx;
4760 	(void)token;
4761 	if (!buf)
4762 		return nb_rxq + 1;
4763 	if (ent < nb_rxq)
4764 		return snprintf(buf, size, "%u", ent);
4765 	if (ent == nb_rxq)
4766 		return snprintf(buf, size, "end");
4767 	return -1;
4768 }
4769 
4770 /** Internal context. */
4771 static struct context cmd_flow_context;
4772 
4773 /** Global parser instance (cmdline API). */
4774 cmdline_parse_inst_t cmd_flow;
4775 
4776 /** Initialize context. */
4777 static void
4778 cmd_flow_context_init(struct context *ctx)
4779 {
4780 	/* A full memset() is not necessary. */
4781 	ctx->curr = ZERO;
4782 	ctx->prev = ZERO;
4783 	ctx->next_num = 0;
4784 	ctx->args_num = 0;
4785 	ctx->eol = 0;
4786 	ctx->last = 0;
4787 	ctx->port = 0;
4788 	ctx->objdata = 0;
4789 	ctx->object = NULL;
4790 	ctx->objmask = NULL;
4791 }
4792 
4793 /** Parse a token (cmdline API). */
4794 static int
4795 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4796 	       unsigned int size)
4797 {
4798 	struct context *ctx = &cmd_flow_context;
4799 	const struct token *token;
4800 	const enum index *list;
4801 	int len;
4802 	int i;
4803 
4804 	(void)hdr;
4805 	token = &token_list[ctx->curr];
4806 	/* Check argument length. */
4807 	ctx->eol = 0;
4808 	ctx->last = 1;
4809 	for (len = 0; src[len]; ++len)
4810 		if (src[len] == '#' || isspace(src[len]))
4811 			break;
4812 	if (!len)
4813 		return -1;
4814 	/* Last argument and EOL detection. */
4815 	for (i = len; src[i]; ++i)
4816 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4817 			break;
4818 		else if (!isspace(src[i])) {
4819 			ctx->last = 0;
4820 			break;
4821 		}
4822 	for (; src[i]; ++i)
4823 		if (src[i] == '\r' || src[i] == '\n') {
4824 			ctx->eol = 1;
4825 			break;
4826 		}
4827 	/* Initialize context if necessary. */
4828 	if (!ctx->next_num) {
4829 		if (!token->next)
4830 			return 0;
4831 		ctx->next[ctx->next_num++] = token->next[0];
4832 	}
4833 	/* Process argument through candidates. */
4834 	ctx->prev = ctx->curr;
4835 	list = ctx->next[ctx->next_num - 1];
4836 	for (i = 0; list[i]; ++i) {
4837 		const struct token *next = &token_list[list[i]];
4838 		int tmp;
4839 
4840 		ctx->curr = list[i];
4841 		if (next->call)
4842 			tmp = next->call(ctx, next, src, len, result, size);
4843 		else
4844 			tmp = parse_default(ctx, next, src, len, result, size);
4845 		if (tmp == -1 || tmp != len)
4846 			continue;
4847 		token = next;
4848 		break;
4849 	}
4850 	if (!list[i])
4851 		return -1;
4852 	--ctx->next_num;
4853 	/* Push subsequent tokens if any. */
4854 	if (token->next)
4855 		for (i = 0; token->next[i]; ++i) {
4856 			if (ctx->next_num == RTE_DIM(ctx->next))
4857 				return -1;
4858 			ctx->next[ctx->next_num++] = token->next[i];
4859 		}
4860 	/* Push arguments if any. */
4861 	if (token->args)
4862 		for (i = 0; token->args[i]; ++i) {
4863 			if (ctx->args_num == RTE_DIM(ctx->args))
4864 				return -1;
4865 			ctx->args[ctx->args_num++] = token->args[i];
4866 		}
4867 	return len;
4868 }
4869 
4870 /** Return number of completion entries (cmdline API). */
4871 static int
4872 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
4873 {
4874 	struct context *ctx = &cmd_flow_context;
4875 	const struct token *token = &token_list[ctx->curr];
4876 	const enum index *list;
4877 	int i;
4878 
4879 	(void)hdr;
4880 	/* Count number of tokens in current list. */
4881 	if (ctx->next_num)
4882 		list = ctx->next[ctx->next_num - 1];
4883 	else
4884 		list = token->next[0];
4885 	for (i = 0; list[i]; ++i)
4886 		;
4887 	if (!i)
4888 		return 0;
4889 	/*
4890 	 * If there is a single token, use its completion callback, otherwise
4891 	 * return the number of entries.
4892 	 */
4893 	token = &token_list[list[0]];
4894 	if (i == 1 && token->comp) {
4895 		/* Save index for cmd_flow_get_help(). */
4896 		ctx->prev = list[0];
4897 		return token->comp(ctx, token, 0, NULL, 0);
4898 	}
4899 	return i;
4900 }
4901 
4902 /** Return a completion entry (cmdline API). */
4903 static int
4904 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
4905 			  char *dst, unsigned int size)
4906 {
4907 	struct context *ctx = &cmd_flow_context;
4908 	const struct token *token = &token_list[ctx->curr];
4909 	const enum index *list;
4910 	int i;
4911 
4912 	(void)hdr;
4913 	/* Count number of tokens in current list. */
4914 	if (ctx->next_num)
4915 		list = ctx->next[ctx->next_num - 1];
4916 	else
4917 		list = token->next[0];
4918 	for (i = 0; list[i]; ++i)
4919 		;
4920 	if (!i)
4921 		return -1;
4922 	/* If there is a single token, use its completion callback. */
4923 	token = &token_list[list[0]];
4924 	if (i == 1 && token->comp) {
4925 		/* Save index for cmd_flow_get_help(). */
4926 		ctx->prev = list[0];
4927 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
4928 	}
4929 	/* Otherwise make sure the index is valid and use defaults. */
4930 	if (index >= i)
4931 		return -1;
4932 	token = &token_list[list[index]];
4933 	snprintf(dst, size, "%s", token->name);
4934 	/* Save index for cmd_flow_get_help(). */
4935 	ctx->prev = list[index];
4936 	return 0;
4937 }
4938 
4939 /** Populate help strings for current token (cmdline API). */
4940 static int
4941 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
4942 {
4943 	struct context *ctx = &cmd_flow_context;
4944 	const struct token *token = &token_list[ctx->prev];
4945 
4946 	(void)hdr;
4947 	if (!size)
4948 		return -1;
4949 	/* Set token type and update global help with details. */
4950 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
4951 	if (token->help)
4952 		cmd_flow.help_str = token->help;
4953 	else
4954 		cmd_flow.help_str = token->name;
4955 	return 0;
4956 }
4957 
4958 /** Token definition template (cmdline API). */
4959 static struct cmdline_token_hdr cmd_flow_token_hdr = {
4960 	.ops = &(struct cmdline_token_ops){
4961 		.parse = cmd_flow_parse,
4962 		.complete_get_nb = cmd_flow_complete_get_nb,
4963 		.complete_get_elt = cmd_flow_complete_get_elt,
4964 		.get_help = cmd_flow_get_help,
4965 	},
4966 	.offset = 0,
4967 };
4968 
4969 /** Populate the next dynamic token. */
4970 static void
4971 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
4972 	     cmdline_parse_token_hdr_t **hdr_inst)
4973 {
4974 	struct context *ctx = &cmd_flow_context;
4975 
4976 	/* Always reinitialize context before requesting the first token. */
4977 	if (!(hdr_inst - cmd_flow.tokens))
4978 		cmd_flow_context_init(ctx);
4979 	/* Return NULL when no more tokens are expected. */
4980 	if (!ctx->next_num && ctx->curr) {
4981 		*hdr = NULL;
4982 		return;
4983 	}
4984 	/* Determine if command should end here. */
4985 	if (ctx->eol && ctx->last && ctx->next_num) {
4986 		const enum index *list = ctx->next[ctx->next_num - 1];
4987 		int i;
4988 
4989 		for (i = 0; list[i]; ++i) {
4990 			if (list[i] != END)
4991 				continue;
4992 			*hdr = NULL;
4993 			return;
4994 		}
4995 	}
4996 	*hdr = &cmd_flow_token_hdr;
4997 }
4998 
4999 /** Dispatch parsed buffer to function calls. */
5000 static void
5001 cmd_flow_parsed(const struct buffer *in)
5002 {
5003 	switch (in->command) {
5004 	case VALIDATE:
5005 		port_flow_validate(in->port, &in->args.vc.attr,
5006 				   in->args.vc.pattern, in->args.vc.actions);
5007 		break;
5008 	case CREATE:
5009 		port_flow_create(in->port, &in->args.vc.attr,
5010 				 in->args.vc.pattern, in->args.vc.actions);
5011 		break;
5012 	case DESTROY:
5013 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5014 				  in->args.destroy.rule);
5015 		break;
5016 	case FLUSH:
5017 		port_flow_flush(in->port);
5018 		break;
5019 	case QUERY:
5020 		port_flow_query(in->port, in->args.query.rule,
5021 				&in->args.query.action);
5022 		break;
5023 	case LIST:
5024 		port_flow_list(in->port, in->args.list.group_n,
5025 			       in->args.list.group);
5026 		break;
5027 	case ISOLATE:
5028 		port_flow_isolate(in->port, in->args.isolate.set);
5029 		break;
5030 	default:
5031 		break;
5032 	}
5033 }
5034 
5035 /** Token generator and output processing callback (cmdline API). */
5036 static void
5037 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5038 {
5039 	if (cl == NULL)
5040 		cmd_flow_tok(arg0, arg2);
5041 	else
5042 		cmd_flow_parsed(arg0);
5043 }
5044 
5045 /** Global parser instance (cmdline API). */
5046 cmdline_parse_inst_t cmd_flow = {
5047 	.f = cmd_flow_cb,
5048 	.data = NULL, /**< Unused. */
5049 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5050 	.tokens = {
5051 		NULL,
5052 	}, /**< Tokens are returned by cmd_flow_tok(). */
5053 };
5054