xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_MARK,
95 	ITEM_MARK_ID,
96 	ITEM_RAW,
97 	ITEM_RAW_RELATIVE,
98 	ITEM_RAW_SEARCH,
99 	ITEM_RAW_OFFSET,
100 	ITEM_RAW_LIMIT,
101 	ITEM_RAW_PATTERN,
102 	ITEM_ETH,
103 	ITEM_ETH_DST,
104 	ITEM_ETH_SRC,
105 	ITEM_ETH_TYPE,
106 	ITEM_VLAN,
107 	ITEM_VLAN_TCI,
108 	ITEM_VLAN_PCP,
109 	ITEM_VLAN_DEI,
110 	ITEM_VLAN_VID,
111 	ITEM_VLAN_INNER_TYPE,
112 	ITEM_IPV4,
113 	ITEM_IPV4_TOS,
114 	ITEM_IPV4_TTL,
115 	ITEM_IPV4_PROTO,
116 	ITEM_IPV4_SRC,
117 	ITEM_IPV4_DST,
118 	ITEM_IPV6,
119 	ITEM_IPV6_TC,
120 	ITEM_IPV6_FLOW,
121 	ITEM_IPV6_PROTO,
122 	ITEM_IPV6_HOP,
123 	ITEM_IPV6_SRC,
124 	ITEM_IPV6_DST,
125 	ITEM_ICMP,
126 	ITEM_ICMP_TYPE,
127 	ITEM_ICMP_CODE,
128 	ITEM_UDP,
129 	ITEM_UDP_SRC,
130 	ITEM_UDP_DST,
131 	ITEM_TCP,
132 	ITEM_TCP_SRC,
133 	ITEM_TCP_DST,
134 	ITEM_TCP_FLAGS,
135 	ITEM_SCTP,
136 	ITEM_SCTP_SRC,
137 	ITEM_SCTP_DST,
138 	ITEM_SCTP_TAG,
139 	ITEM_SCTP_CKSUM,
140 	ITEM_VXLAN,
141 	ITEM_VXLAN_VNI,
142 	ITEM_E_TAG,
143 	ITEM_E_TAG_GRP_ECID_B,
144 	ITEM_NVGRE,
145 	ITEM_NVGRE_TNI,
146 	ITEM_MPLS,
147 	ITEM_MPLS_LABEL,
148 	ITEM_GRE,
149 	ITEM_GRE_PROTO,
150 	ITEM_FUZZY,
151 	ITEM_FUZZY_THRESH,
152 	ITEM_GTP,
153 	ITEM_GTP_TEID,
154 	ITEM_GTPC,
155 	ITEM_GTPU,
156 	ITEM_GENEVE,
157 	ITEM_GENEVE_VNI,
158 	ITEM_GENEVE_PROTO,
159 	ITEM_VXLAN_GPE,
160 	ITEM_VXLAN_GPE_VNI,
161 	ITEM_ARP_ETH_IPV4,
162 	ITEM_ARP_ETH_IPV4_SHA,
163 	ITEM_ARP_ETH_IPV4_SPA,
164 	ITEM_ARP_ETH_IPV4_THA,
165 	ITEM_ARP_ETH_IPV4_TPA,
166 	ITEM_IPV6_EXT,
167 	ITEM_IPV6_EXT_NEXT_HDR,
168 	ITEM_ICMP6,
169 	ITEM_ICMP6_TYPE,
170 	ITEM_ICMP6_CODE,
171 	ITEM_ICMP6_ND_NS,
172 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
173 	ITEM_ICMP6_ND_NA,
174 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
175 	ITEM_ICMP6_ND_OPT,
176 	ITEM_ICMP6_ND_OPT_TYPE,
177 	ITEM_ICMP6_ND_OPT_SLA_ETH,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
179 	ITEM_ICMP6_ND_OPT_TLA_ETH,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
181 	ITEM_META,
182 	ITEM_META_DATA,
183 
184 	/* Validate/create actions. */
185 	ACTIONS,
186 	ACTION_NEXT,
187 	ACTION_END,
188 	ACTION_VOID,
189 	ACTION_PASSTHRU,
190 	ACTION_JUMP,
191 	ACTION_JUMP_GROUP,
192 	ACTION_MARK,
193 	ACTION_MARK_ID,
194 	ACTION_FLAG,
195 	ACTION_QUEUE,
196 	ACTION_QUEUE_INDEX,
197 	ACTION_DROP,
198 	ACTION_COUNT,
199 	ACTION_COUNT_SHARED,
200 	ACTION_COUNT_ID,
201 	ACTION_RSS,
202 	ACTION_RSS_FUNC,
203 	ACTION_RSS_LEVEL,
204 	ACTION_RSS_FUNC_DEFAULT,
205 	ACTION_RSS_FUNC_TOEPLITZ,
206 	ACTION_RSS_FUNC_SIMPLE_XOR,
207 	ACTION_RSS_TYPES,
208 	ACTION_RSS_TYPE,
209 	ACTION_RSS_KEY,
210 	ACTION_RSS_KEY_LEN,
211 	ACTION_RSS_QUEUES,
212 	ACTION_RSS_QUEUE,
213 	ACTION_PF,
214 	ACTION_VF,
215 	ACTION_VF_ORIGINAL,
216 	ACTION_VF_ID,
217 	ACTION_PHY_PORT,
218 	ACTION_PHY_PORT_ORIGINAL,
219 	ACTION_PHY_PORT_INDEX,
220 	ACTION_PORT_ID,
221 	ACTION_PORT_ID_ORIGINAL,
222 	ACTION_PORT_ID_ID,
223 	ACTION_METER,
224 	ACTION_METER_ID,
225 	ACTION_OF_SET_MPLS_TTL,
226 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
227 	ACTION_OF_DEC_MPLS_TTL,
228 	ACTION_OF_SET_NW_TTL,
229 	ACTION_OF_SET_NW_TTL_NW_TTL,
230 	ACTION_OF_DEC_NW_TTL,
231 	ACTION_OF_COPY_TTL_OUT,
232 	ACTION_OF_COPY_TTL_IN,
233 	ACTION_OF_POP_VLAN,
234 	ACTION_OF_PUSH_VLAN,
235 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
236 	ACTION_OF_SET_VLAN_VID,
237 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
238 	ACTION_OF_SET_VLAN_PCP,
239 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
240 	ACTION_OF_POP_MPLS,
241 	ACTION_OF_POP_MPLS_ETHERTYPE,
242 	ACTION_OF_PUSH_MPLS,
243 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
244 	ACTION_VXLAN_ENCAP,
245 	ACTION_VXLAN_DECAP,
246 	ACTION_NVGRE_ENCAP,
247 	ACTION_NVGRE_DECAP,
248 	ACTION_L2_ENCAP,
249 	ACTION_L2_DECAP,
250 	ACTION_MPLSOGRE_ENCAP,
251 	ACTION_MPLSOGRE_DECAP,
252 	ACTION_MPLSOUDP_ENCAP,
253 	ACTION_MPLSOUDP_DECAP,
254 	ACTION_SET_IPV4_SRC,
255 	ACTION_SET_IPV4_SRC_IPV4_SRC,
256 	ACTION_SET_IPV4_DST,
257 	ACTION_SET_IPV4_DST_IPV4_DST,
258 	ACTION_SET_IPV6_SRC,
259 	ACTION_SET_IPV6_SRC_IPV6_SRC,
260 	ACTION_SET_IPV6_DST,
261 	ACTION_SET_IPV6_DST_IPV6_DST,
262 	ACTION_SET_TP_SRC,
263 	ACTION_SET_TP_SRC_TP_SRC,
264 	ACTION_SET_TP_DST,
265 	ACTION_SET_TP_DST_TP_DST,
266 	ACTION_MAC_SWAP,
267 	ACTION_DEC_TTL,
268 	ACTION_SET_TTL,
269 	ACTION_SET_TTL_TTL,
270 	ACTION_SET_MAC_SRC,
271 	ACTION_SET_MAC_SRC_MAC_SRC,
272 	ACTION_SET_MAC_DST,
273 	ACTION_SET_MAC_DST_MAC_DST,
274 };
275 
276 /** Maximum size for pattern in struct rte_flow_item_raw. */
277 #define ITEM_RAW_PATTERN_SIZE 40
278 
279 /** Storage size for struct rte_flow_item_raw including pattern. */
280 #define ITEM_RAW_SIZE \
281 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
282 
283 /** Maximum number of queue indices in struct rte_flow_action_rss. */
284 #define ACTION_RSS_QUEUE_NUM 32
285 
286 /** Storage for struct rte_flow_action_rss including external data. */
287 struct action_rss_data {
288 	struct rte_flow_action_rss conf;
289 	uint8_t key[RSS_HASH_KEY_LENGTH];
290 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
291 };
292 
293 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
294 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
295 
296 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
297 struct action_vxlan_encap_data {
298 	struct rte_flow_action_vxlan_encap conf;
299 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
300 	struct rte_flow_item_eth item_eth;
301 	struct rte_flow_item_vlan item_vlan;
302 	union {
303 		struct rte_flow_item_ipv4 item_ipv4;
304 		struct rte_flow_item_ipv6 item_ipv6;
305 	};
306 	struct rte_flow_item_udp item_udp;
307 	struct rte_flow_item_vxlan item_vxlan;
308 };
309 
310 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
311 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
312 
313 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
314 struct action_nvgre_encap_data {
315 	struct rte_flow_action_nvgre_encap conf;
316 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
317 	struct rte_flow_item_eth item_eth;
318 	struct rte_flow_item_vlan item_vlan;
319 	union {
320 		struct rte_flow_item_ipv4 item_ipv4;
321 		struct rte_flow_item_ipv6 item_ipv6;
322 	};
323 	struct rte_flow_item_nvgre item_nvgre;
324 };
325 
326 /** Maximum data size in struct rte_flow_action_raw_encap. */
327 #define ACTION_RAW_ENCAP_MAX_DATA 128
328 
329 /** Storage for struct rte_flow_action_raw_encap including external data. */
330 struct action_raw_encap_data {
331 	struct rte_flow_action_raw_encap conf;
332 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
333 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
334 };
335 
336 /** Storage for struct rte_flow_action_raw_decap including external data. */
337 struct action_raw_decap_data {
338 	struct rte_flow_action_raw_decap conf;
339 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
340 };
341 
342 /** Maximum number of subsequent tokens and arguments on the stack. */
343 #define CTX_STACK_SIZE 16
344 
345 /** Parser context. */
346 struct context {
347 	/** Stack of subsequent token lists to process. */
348 	const enum index *next[CTX_STACK_SIZE];
349 	/** Arguments for stacked tokens. */
350 	const void *args[CTX_STACK_SIZE];
351 	enum index curr; /**< Current token index. */
352 	enum index prev; /**< Index of the last token seen. */
353 	int next_num; /**< Number of entries in next[]. */
354 	int args_num; /**< Number of entries in args[]. */
355 	uint32_t eol:1; /**< EOL has been detected. */
356 	uint32_t last:1; /**< No more arguments. */
357 	portid_t port; /**< Current port ID (for completions). */
358 	uint32_t objdata; /**< Object-specific data. */
359 	void *object; /**< Address of current object for relative offsets. */
360 	void *objmask; /**< Object a full mask must be written to. */
361 };
362 
363 /** Token argument. */
364 struct arg {
365 	uint32_t hton:1; /**< Use network byte ordering. */
366 	uint32_t sign:1; /**< Value is signed. */
367 	uint32_t bounded:1; /**< Value is bounded. */
368 	uintmax_t min; /**< Minimum value if bounded. */
369 	uintmax_t max; /**< Maximum value if bounded. */
370 	uint32_t offset; /**< Relative offset from ctx->object. */
371 	uint32_t size; /**< Field size. */
372 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
373 };
374 
375 /** Parser token definition. */
376 struct token {
377 	/** Type displayed during completion (defaults to "TOKEN"). */
378 	const char *type;
379 	/** Help displayed during completion (defaults to token name). */
380 	const char *help;
381 	/** Private data used by parser functions. */
382 	const void *priv;
383 	/**
384 	 * Lists of subsequent tokens to push on the stack. Each call to the
385 	 * parser consumes the last entry of that stack.
386 	 */
387 	const enum index *const *next;
388 	/** Arguments stack for subsequent tokens that need them. */
389 	const struct arg *const *args;
390 	/**
391 	 * Token-processing callback, returns -1 in case of error, the
392 	 * length of the matched string otherwise. If NULL, attempts to
393 	 * match the token name.
394 	 *
395 	 * If buf is not NULL, the result should be stored in it according
396 	 * to context. An error is returned if not large enough.
397 	 */
398 	int (*call)(struct context *ctx, const struct token *token,
399 		    const char *str, unsigned int len,
400 		    void *buf, unsigned int size);
401 	/**
402 	 * Callback that provides possible values for this token, used for
403 	 * completion. Returns -1 in case of error, the number of possible
404 	 * values otherwise. If NULL, the token name is used.
405 	 *
406 	 * If buf is not NULL, entry index ent is written to buf and the
407 	 * full length of the entry is returned (same behavior as
408 	 * snprintf()).
409 	 */
410 	int (*comp)(struct context *ctx, const struct token *token,
411 		    unsigned int ent, char *buf, unsigned int size);
412 	/** Mandatory token name, no default value. */
413 	const char *name;
414 };
415 
416 /** Static initializer for the next field. */
417 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
418 
419 /** Static initializer for a NEXT() entry. */
420 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
421 
422 /** Static initializer for the args field. */
423 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
424 
425 /** Static initializer for ARGS() to target a field. */
426 #define ARGS_ENTRY(s, f) \
427 	(&(const struct arg){ \
428 		.offset = offsetof(s, f), \
429 		.size = sizeof(((s *)0)->f), \
430 	})
431 
432 /** Static initializer for ARGS() to target a bit-field. */
433 #define ARGS_ENTRY_BF(s, f, b) \
434 	(&(const struct arg){ \
435 		.size = sizeof(s), \
436 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
437 	})
438 
439 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
440 #define ARGS_ENTRY_MASK(s, f, m) \
441 	(&(const struct arg){ \
442 		.offset = offsetof(s, f), \
443 		.size = sizeof(((s *)0)->f), \
444 		.mask = (const void *)(m), \
445 	})
446 
447 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
448 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
449 	(&(const struct arg){ \
450 		.hton = 1, \
451 		.offset = offsetof(s, f), \
452 		.size = sizeof(((s *)0)->f), \
453 		.mask = (const void *)(m), \
454 	})
455 
456 /** Static initializer for ARGS() to target a pointer. */
457 #define ARGS_ENTRY_PTR(s, f) \
458 	(&(const struct arg){ \
459 		.size = sizeof(*((s *)0)->f), \
460 	})
461 
462 /** Static initializer for ARGS() with arbitrary offset and size. */
463 #define ARGS_ENTRY_ARB(o, s) \
464 	(&(const struct arg){ \
465 		.offset = (o), \
466 		.size = (s), \
467 	})
468 
469 /** Same as ARGS_ENTRY_ARB() with bounded values. */
470 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
471 	(&(const struct arg){ \
472 		.bounded = 1, \
473 		.min = (i), \
474 		.max = (a), \
475 		.offset = (o), \
476 		.size = (s), \
477 	})
478 
479 /** Same as ARGS_ENTRY() using network byte ordering. */
480 #define ARGS_ENTRY_HTON(s, f) \
481 	(&(const struct arg){ \
482 		.hton = 1, \
483 		.offset = offsetof(s, f), \
484 		.size = sizeof(((s *)0)->f), \
485 	})
486 
487 /** Parser output buffer layout expected by cmd_flow_parsed(). */
488 struct buffer {
489 	enum index command; /**< Flow command. */
490 	portid_t port; /**< Affected port ID. */
491 	union {
492 		struct {
493 			struct rte_flow_attr attr;
494 			struct rte_flow_item *pattern;
495 			struct rte_flow_action *actions;
496 			uint32_t pattern_n;
497 			uint32_t actions_n;
498 			uint8_t *data;
499 		} vc; /**< Validate/create arguments. */
500 		struct {
501 			uint32_t *rule;
502 			uint32_t rule_n;
503 		} destroy; /**< Destroy arguments. */
504 		struct {
505 			uint32_t rule;
506 			struct rte_flow_action action;
507 		} query; /**< Query arguments. */
508 		struct {
509 			uint32_t *group;
510 			uint32_t group_n;
511 		} list; /**< List arguments. */
512 		struct {
513 			int set;
514 		} isolate; /**< Isolated mode arguments. */
515 	} args; /**< Command arguments. */
516 };
517 
518 /** Private data for pattern items. */
519 struct parse_item_priv {
520 	enum rte_flow_item_type type; /**< Item type. */
521 	uint32_t size; /**< Size of item specification structure. */
522 };
523 
524 #define PRIV_ITEM(t, s) \
525 	(&(const struct parse_item_priv){ \
526 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
527 		.size = s, \
528 	})
529 
530 /** Private data for actions. */
531 struct parse_action_priv {
532 	enum rte_flow_action_type type; /**< Action type. */
533 	uint32_t size; /**< Size of action configuration structure. */
534 };
535 
536 #define PRIV_ACTION(t, s) \
537 	(&(const struct parse_action_priv){ \
538 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
539 		.size = s, \
540 	})
541 
542 static const enum index next_vc_attr[] = {
543 	GROUP,
544 	PRIORITY,
545 	INGRESS,
546 	EGRESS,
547 	TRANSFER,
548 	PATTERN,
549 	ZERO,
550 };
551 
552 static const enum index next_destroy_attr[] = {
553 	DESTROY_RULE,
554 	END,
555 	ZERO,
556 };
557 
558 static const enum index next_list_attr[] = {
559 	LIST_GROUP,
560 	END,
561 	ZERO,
562 };
563 
564 static const enum index item_param[] = {
565 	ITEM_PARAM_IS,
566 	ITEM_PARAM_SPEC,
567 	ITEM_PARAM_LAST,
568 	ITEM_PARAM_MASK,
569 	ITEM_PARAM_PREFIX,
570 	ZERO,
571 };
572 
573 static const enum index next_item[] = {
574 	ITEM_END,
575 	ITEM_VOID,
576 	ITEM_INVERT,
577 	ITEM_ANY,
578 	ITEM_PF,
579 	ITEM_VF,
580 	ITEM_PHY_PORT,
581 	ITEM_PORT_ID,
582 	ITEM_MARK,
583 	ITEM_RAW,
584 	ITEM_ETH,
585 	ITEM_VLAN,
586 	ITEM_IPV4,
587 	ITEM_IPV6,
588 	ITEM_ICMP,
589 	ITEM_UDP,
590 	ITEM_TCP,
591 	ITEM_SCTP,
592 	ITEM_VXLAN,
593 	ITEM_E_TAG,
594 	ITEM_NVGRE,
595 	ITEM_MPLS,
596 	ITEM_GRE,
597 	ITEM_FUZZY,
598 	ITEM_GTP,
599 	ITEM_GTPC,
600 	ITEM_GTPU,
601 	ITEM_GENEVE,
602 	ITEM_VXLAN_GPE,
603 	ITEM_ARP_ETH_IPV4,
604 	ITEM_IPV6_EXT,
605 	ITEM_ICMP6,
606 	ITEM_ICMP6_ND_NS,
607 	ITEM_ICMP6_ND_NA,
608 	ITEM_ICMP6_ND_OPT,
609 	ITEM_ICMP6_ND_OPT_SLA_ETH,
610 	ITEM_ICMP6_ND_OPT_TLA_ETH,
611 	ITEM_META,
612 	ZERO,
613 };
614 
615 static const enum index item_fuzzy[] = {
616 	ITEM_FUZZY_THRESH,
617 	ITEM_NEXT,
618 	ZERO,
619 };
620 
621 static const enum index item_any[] = {
622 	ITEM_ANY_NUM,
623 	ITEM_NEXT,
624 	ZERO,
625 };
626 
627 static const enum index item_vf[] = {
628 	ITEM_VF_ID,
629 	ITEM_NEXT,
630 	ZERO,
631 };
632 
633 static const enum index item_phy_port[] = {
634 	ITEM_PHY_PORT_INDEX,
635 	ITEM_NEXT,
636 	ZERO,
637 };
638 
639 static const enum index item_port_id[] = {
640 	ITEM_PORT_ID_ID,
641 	ITEM_NEXT,
642 	ZERO,
643 };
644 
645 static const enum index item_mark[] = {
646 	ITEM_MARK_ID,
647 	ITEM_NEXT,
648 	ZERO,
649 };
650 
651 static const enum index item_raw[] = {
652 	ITEM_RAW_RELATIVE,
653 	ITEM_RAW_SEARCH,
654 	ITEM_RAW_OFFSET,
655 	ITEM_RAW_LIMIT,
656 	ITEM_RAW_PATTERN,
657 	ITEM_NEXT,
658 	ZERO,
659 };
660 
661 static const enum index item_eth[] = {
662 	ITEM_ETH_DST,
663 	ITEM_ETH_SRC,
664 	ITEM_ETH_TYPE,
665 	ITEM_NEXT,
666 	ZERO,
667 };
668 
669 static const enum index item_vlan[] = {
670 	ITEM_VLAN_TCI,
671 	ITEM_VLAN_PCP,
672 	ITEM_VLAN_DEI,
673 	ITEM_VLAN_VID,
674 	ITEM_VLAN_INNER_TYPE,
675 	ITEM_NEXT,
676 	ZERO,
677 };
678 
679 static const enum index item_ipv4[] = {
680 	ITEM_IPV4_TOS,
681 	ITEM_IPV4_TTL,
682 	ITEM_IPV4_PROTO,
683 	ITEM_IPV4_SRC,
684 	ITEM_IPV4_DST,
685 	ITEM_NEXT,
686 	ZERO,
687 };
688 
689 static const enum index item_ipv6[] = {
690 	ITEM_IPV6_TC,
691 	ITEM_IPV6_FLOW,
692 	ITEM_IPV6_PROTO,
693 	ITEM_IPV6_HOP,
694 	ITEM_IPV6_SRC,
695 	ITEM_IPV6_DST,
696 	ITEM_NEXT,
697 	ZERO,
698 };
699 
700 static const enum index item_icmp[] = {
701 	ITEM_ICMP_TYPE,
702 	ITEM_ICMP_CODE,
703 	ITEM_NEXT,
704 	ZERO,
705 };
706 
707 static const enum index item_udp[] = {
708 	ITEM_UDP_SRC,
709 	ITEM_UDP_DST,
710 	ITEM_NEXT,
711 	ZERO,
712 };
713 
714 static const enum index item_tcp[] = {
715 	ITEM_TCP_SRC,
716 	ITEM_TCP_DST,
717 	ITEM_TCP_FLAGS,
718 	ITEM_NEXT,
719 	ZERO,
720 };
721 
722 static const enum index item_sctp[] = {
723 	ITEM_SCTP_SRC,
724 	ITEM_SCTP_DST,
725 	ITEM_SCTP_TAG,
726 	ITEM_SCTP_CKSUM,
727 	ITEM_NEXT,
728 	ZERO,
729 };
730 
731 static const enum index item_vxlan[] = {
732 	ITEM_VXLAN_VNI,
733 	ITEM_NEXT,
734 	ZERO,
735 };
736 
737 static const enum index item_e_tag[] = {
738 	ITEM_E_TAG_GRP_ECID_B,
739 	ITEM_NEXT,
740 	ZERO,
741 };
742 
743 static const enum index item_nvgre[] = {
744 	ITEM_NVGRE_TNI,
745 	ITEM_NEXT,
746 	ZERO,
747 };
748 
749 static const enum index item_mpls[] = {
750 	ITEM_MPLS_LABEL,
751 	ITEM_NEXT,
752 	ZERO,
753 };
754 
755 static const enum index item_gre[] = {
756 	ITEM_GRE_PROTO,
757 	ITEM_NEXT,
758 	ZERO,
759 };
760 
761 static const enum index item_gtp[] = {
762 	ITEM_GTP_TEID,
763 	ITEM_NEXT,
764 	ZERO,
765 };
766 
767 static const enum index item_geneve[] = {
768 	ITEM_GENEVE_VNI,
769 	ITEM_GENEVE_PROTO,
770 	ITEM_NEXT,
771 	ZERO,
772 };
773 
774 static const enum index item_vxlan_gpe[] = {
775 	ITEM_VXLAN_GPE_VNI,
776 	ITEM_NEXT,
777 	ZERO,
778 };
779 
780 static const enum index item_arp_eth_ipv4[] = {
781 	ITEM_ARP_ETH_IPV4_SHA,
782 	ITEM_ARP_ETH_IPV4_SPA,
783 	ITEM_ARP_ETH_IPV4_THA,
784 	ITEM_ARP_ETH_IPV4_TPA,
785 	ITEM_NEXT,
786 	ZERO,
787 };
788 
789 static const enum index item_ipv6_ext[] = {
790 	ITEM_IPV6_EXT_NEXT_HDR,
791 	ITEM_NEXT,
792 	ZERO,
793 };
794 
795 static const enum index item_icmp6[] = {
796 	ITEM_ICMP6_TYPE,
797 	ITEM_ICMP6_CODE,
798 	ITEM_NEXT,
799 	ZERO,
800 };
801 
802 static const enum index item_icmp6_nd_ns[] = {
803 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
804 	ITEM_NEXT,
805 	ZERO,
806 };
807 
808 static const enum index item_icmp6_nd_na[] = {
809 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
810 	ITEM_NEXT,
811 	ZERO,
812 };
813 
814 static const enum index item_icmp6_nd_opt[] = {
815 	ITEM_ICMP6_ND_OPT_TYPE,
816 	ITEM_NEXT,
817 	ZERO,
818 };
819 
820 static const enum index item_icmp6_nd_opt_sla_eth[] = {
821 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
822 	ITEM_NEXT,
823 	ZERO,
824 };
825 
826 static const enum index item_icmp6_nd_opt_tla_eth[] = {
827 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
828 	ITEM_NEXT,
829 	ZERO,
830 };
831 
832 static const enum index item_meta[] = {
833 	ITEM_META_DATA,
834 	ITEM_NEXT,
835 	ZERO,
836 };
837 
838 static const enum index next_action[] = {
839 	ACTION_END,
840 	ACTION_VOID,
841 	ACTION_PASSTHRU,
842 	ACTION_JUMP,
843 	ACTION_MARK,
844 	ACTION_FLAG,
845 	ACTION_QUEUE,
846 	ACTION_DROP,
847 	ACTION_COUNT,
848 	ACTION_RSS,
849 	ACTION_PF,
850 	ACTION_VF,
851 	ACTION_PHY_PORT,
852 	ACTION_PORT_ID,
853 	ACTION_METER,
854 	ACTION_OF_SET_MPLS_TTL,
855 	ACTION_OF_DEC_MPLS_TTL,
856 	ACTION_OF_SET_NW_TTL,
857 	ACTION_OF_DEC_NW_TTL,
858 	ACTION_OF_COPY_TTL_OUT,
859 	ACTION_OF_COPY_TTL_IN,
860 	ACTION_OF_POP_VLAN,
861 	ACTION_OF_PUSH_VLAN,
862 	ACTION_OF_SET_VLAN_VID,
863 	ACTION_OF_SET_VLAN_PCP,
864 	ACTION_OF_POP_MPLS,
865 	ACTION_OF_PUSH_MPLS,
866 	ACTION_VXLAN_ENCAP,
867 	ACTION_VXLAN_DECAP,
868 	ACTION_NVGRE_ENCAP,
869 	ACTION_NVGRE_DECAP,
870 	ACTION_L2_ENCAP,
871 	ACTION_L2_DECAP,
872 	ACTION_MPLSOGRE_ENCAP,
873 	ACTION_MPLSOGRE_DECAP,
874 	ACTION_MPLSOUDP_ENCAP,
875 	ACTION_MPLSOUDP_DECAP,
876 	ACTION_SET_IPV4_SRC,
877 	ACTION_SET_IPV4_DST,
878 	ACTION_SET_IPV6_SRC,
879 	ACTION_SET_IPV6_DST,
880 	ACTION_SET_TP_SRC,
881 	ACTION_SET_TP_DST,
882 	ACTION_MAC_SWAP,
883 	ACTION_DEC_TTL,
884 	ACTION_SET_TTL,
885 	ACTION_SET_MAC_SRC,
886 	ACTION_SET_MAC_DST,
887 	ZERO,
888 };
889 
890 static const enum index action_mark[] = {
891 	ACTION_MARK_ID,
892 	ACTION_NEXT,
893 	ZERO,
894 };
895 
896 static const enum index action_queue[] = {
897 	ACTION_QUEUE_INDEX,
898 	ACTION_NEXT,
899 	ZERO,
900 };
901 
902 static const enum index action_count[] = {
903 	ACTION_COUNT_ID,
904 	ACTION_COUNT_SHARED,
905 	ACTION_NEXT,
906 	ZERO,
907 };
908 
909 static const enum index action_rss[] = {
910 	ACTION_RSS_FUNC,
911 	ACTION_RSS_LEVEL,
912 	ACTION_RSS_TYPES,
913 	ACTION_RSS_KEY,
914 	ACTION_RSS_KEY_LEN,
915 	ACTION_RSS_QUEUES,
916 	ACTION_NEXT,
917 	ZERO,
918 };
919 
920 static const enum index action_vf[] = {
921 	ACTION_VF_ORIGINAL,
922 	ACTION_VF_ID,
923 	ACTION_NEXT,
924 	ZERO,
925 };
926 
927 static const enum index action_phy_port[] = {
928 	ACTION_PHY_PORT_ORIGINAL,
929 	ACTION_PHY_PORT_INDEX,
930 	ACTION_NEXT,
931 	ZERO,
932 };
933 
934 static const enum index action_port_id[] = {
935 	ACTION_PORT_ID_ORIGINAL,
936 	ACTION_PORT_ID_ID,
937 	ACTION_NEXT,
938 	ZERO,
939 };
940 
941 static const enum index action_meter[] = {
942 	ACTION_METER_ID,
943 	ACTION_NEXT,
944 	ZERO,
945 };
946 
947 static const enum index action_of_set_mpls_ttl[] = {
948 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
949 	ACTION_NEXT,
950 	ZERO,
951 };
952 
953 static const enum index action_of_set_nw_ttl[] = {
954 	ACTION_OF_SET_NW_TTL_NW_TTL,
955 	ACTION_NEXT,
956 	ZERO,
957 };
958 
959 static const enum index action_of_push_vlan[] = {
960 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
961 	ACTION_NEXT,
962 	ZERO,
963 };
964 
965 static const enum index action_of_set_vlan_vid[] = {
966 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
967 	ACTION_NEXT,
968 	ZERO,
969 };
970 
971 static const enum index action_of_set_vlan_pcp[] = {
972 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
973 	ACTION_NEXT,
974 	ZERO,
975 };
976 
977 static const enum index action_of_pop_mpls[] = {
978 	ACTION_OF_POP_MPLS_ETHERTYPE,
979 	ACTION_NEXT,
980 	ZERO,
981 };
982 
983 static const enum index action_of_push_mpls[] = {
984 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
985 	ACTION_NEXT,
986 	ZERO,
987 };
988 
989 static const enum index action_set_ipv4_src[] = {
990 	ACTION_SET_IPV4_SRC_IPV4_SRC,
991 	ACTION_NEXT,
992 	ZERO,
993 };
994 
995 static const enum index action_set_mac_src[] = {
996 	ACTION_SET_MAC_SRC_MAC_SRC,
997 	ACTION_NEXT,
998 	ZERO,
999 };
1000 
1001 static const enum index action_set_ipv4_dst[] = {
1002 	ACTION_SET_IPV4_DST_IPV4_DST,
1003 	ACTION_NEXT,
1004 	ZERO,
1005 };
1006 
1007 static const enum index action_set_ipv6_src[] = {
1008 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1009 	ACTION_NEXT,
1010 	ZERO,
1011 };
1012 
1013 static const enum index action_set_ipv6_dst[] = {
1014 	ACTION_SET_IPV6_DST_IPV6_DST,
1015 	ACTION_NEXT,
1016 	ZERO,
1017 };
1018 
1019 static const enum index action_set_tp_src[] = {
1020 	ACTION_SET_TP_SRC_TP_SRC,
1021 	ACTION_NEXT,
1022 	ZERO,
1023 };
1024 
1025 static const enum index action_set_tp_dst[] = {
1026 	ACTION_SET_TP_DST_TP_DST,
1027 	ACTION_NEXT,
1028 	ZERO,
1029 };
1030 
1031 static const enum index action_set_ttl[] = {
1032 	ACTION_SET_TTL_TTL,
1033 	ACTION_NEXT,
1034 	ZERO,
1035 };
1036 
1037 static const enum index action_jump[] = {
1038 	ACTION_JUMP_GROUP,
1039 	ACTION_NEXT,
1040 	ZERO,
1041 };
1042 
1043 static const enum index action_set_mac_dst[] = {
1044 	ACTION_SET_MAC_DST_MAC_DST,
1045 	ACTION_NEXT,
1046 	ZERO,
1047 };
1048 
1049 static int parse_init(struct context *, const struct token *,
1050 		      const char *, unsigned int,
1051 		      void *, unsigned int);
1052 static int parse_vc(struct context *, const struct token *,
1053 		    const char *, unsigned int,
1054 		    void *, unsigned int);
1055 static int parse_vc_spec(struct context *, const struct token *,
1056 			 const char *, unsigned int, void *, unsigned int);
1057 static int parse_vc_conf(struct context *, const struct token *,
1058 			 const char *, unsigned int, void *, unsigned int);
1059 static int parse_vc_action_rss(struct context *, const struct token *,
1060 			       const char *, unsigned int, void *,
1061 			       unsigned int);
1062 static int parse_vc_action_rss_func(struct context *, const struct token *,
1063 				    const char *, unsigned int, void *,
1064 				    unsigned int);
1065 static int parse_vc_action_rss_type(struct context *, const struct token *,
1066 				    const char *, unsigned int, void *,
1067 				    unsigned int);
1068 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1069 				     const char *, unsigned int, void *,
1070 				     unsigned int);
1071 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1072 				       const char *, unsigned int, void *,
1073 				       unsigned int);
1074 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1075 				       const char *, unsigned int, void *,
1076 				       unsigned int);
1077 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1078 				    const char *, unsigned int, void *,
1079 				    unsigned int);
1080 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1081 				    const char *, unsigned int, void *,
1082 				    unsigned int);
1083 static int parse_vc_action_mplsogre_encap(struct context *,
1084 					  const struct token *, const char *,
1085 					  unsigned int, void *, unsigned int);
1086 static int parse_vc_action_mplsogre_decap(struct context *,
1087 					  const struct token *, const char *,
1088 					  unsigned int, void *, unsigned int);
1089 static int parse_vc_action_mplsoudp_encap(struct context *,
1090 					  const struct token *, const char *,
1091 					  unsigned int, void *, unsigned int);
1092 static int parse_vc_action_mplsoudp_decap(struct context *,
1093 					  const struct token *, const char *,
1094 					  unsigned int, void *, unsigned int);
1095 static int parse_destroy(struct context *, const struct token *,
1096 			 const char *, unsigned int,
1097 			 void *, unsigned int);
1098 static int parse_flush(struct context *, const struct token *,
1099 		       const char *, unsigned int,
1100 		       void *, unsigned int);
1101 static int parse_query(struct context *, const struct token *,
1102 		       const char *, unsigned int,
1103 		       void *, unsigned int);
1104 static int parse_action(struct context *, const struct token *,
1105 			const char *, unsigned int,
1106 			void *, unsigned int);
1107 static int parse_list(struct context *, const struct token *,
1108 		      const char *, unsigned int,
1109 		      void *, unsigned int);
1110 static int parse_isolate(struct context *, const struct token *,
1111 			 const char *, unsigned int,
1112 			 void *, unsigned int);
1113 static int parse_int(struct context *, const struct token *,
1114 		     const char *, unsigned int,
1115 		     void *, unsigned int);
1116 static int parse_prefix(struct context *, const struct token *,
1117 			const char *, unsigned int,
1118 			void *, unsigned int);
1119 static int parse_boolean(struct context *, const struct token *,
1120 			 const char *, unsigned int,
1121 			 void *, unsigned int);
1122 static int parse_string(struct context *, const struct token *,
1123 			const char *, unsigned int,
1124 			void *, unsigned int);
1125 static int parse_mac_addr(struct context *, const struct token *,
1126 			  const char *, unsigned int,
1127 			  void *, unsigned int);
1128 static int parse_ipv4_addr(struct context *, const struct token *,
1129 			   const char *, unsigned int,
1130 			   void *, unsigned int);
1131 static int parse_ipv6_addr(struct context *, const struct token *,
1132 			   const char *, unsigned int,
1133 			   void *, unsigned int);
1134 static int parse_port(struct context *, const struct token *,
1135 		      const char *, unsigned int,
1136 		      void *, unsigned int);
1137 static int comp_none(struct context *, const struct token *,
1138 		     unsigned int, char *, unsigned int);
1139 static int comp_boolean(struct context *, const struct token *,
1140 			unsigned int, char *, unsigned int);
1141 static int comp_action(struct context *, const struct token *,
1142 		       unsigned int, char *, unsigned int);
1143 static int comp_port(struct context *, const struct token *,
1144 		     unsigned int, char *, unsigned int);
1145 static int comp_rule_id(struct context *, const struct token *,
1146 			unsigned int, char *, unsigned int);
1147 static int comp_vc_action_rss_type(struct context *, const struct token *,
1148 				   unsigned int, char *, unsigned int);
1149 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1150 				    unsigned int, char *, unsigned int);
1151 
1152 /** Token definitions. */
1153 static const struct token token_list[] = {
1154 	/* Special tokens. */
1155 	[ZERO] = {
1156 		.name = "ZERO",
1157 		.help = "null entry, abused as the entry point",
1158 		.next = NEXT(NEXT_ENTRY(FLOW)),
1159 	},
1160 	[END] = {
1161 		.name = "",
1162 		.type = "RETURN",
1163 		.help = "command may end here",
1164 	},
1165 	/* Common tokens. */
1166 	[INTEGER] = {
1167 		.name = "{int}",
1168 		.type = "INTEGER",
1169 		.help = "integer value",
1170 		.call = parse_int,
1171 		.comp = comp_none,
1172 	},
1173 	[UNSIGNED] = {
1174 		.name = "{unsigned}",
1175 		.type = "UNSIGNED",
1176 		.help = "unsigned integer value",
1177 		.call = parse_int,
1178 		.comp = comp_none,
1179 	},
1180 	[PREFIX] = {
1181 		.name = "{prefix}",
1182 		.type = "PREFIX",
1183 		.help = "prefix length for bit-mask",
1184 		.call = parse_prefix,
1185 		.comp = comp_none,
1186 	},
1187 	[BOOLEAN] = {
1188 		.name = "{boolean}",
1189 		.type = "BOOLEAN",
1190 		.help = "any boolean value",
1191 		.call = parse_boolean,
1192 		.comp = comp_boolean,
1193 	},
1194 	[STRING] = {
1195 		.name = "{string}",
1196 		.type = "STRING",
1197 		.help = "fixed string",
1198 		.call = parse_string,
1199 		.comp = comp_none,
1200 	},
1201 	[MAC_ADDR] = {
1202 		.name = "{MAC address}",
1203 		.type = "MAC-48",
1204 		.help = "standard MAC address notation",
1205 		.call = parse_mac_addr,
1206 		.comp = comp_none,
1207 	},
1208 	[IPV4_ADDR] = {
1209 		.name = "{IPv4 address}",
1210 		.type = "IPV4 ADDRESS",
1211 		.help = "standard IPv4 address notation",
1212 		.call = parse_ipv4_addr,
1213 		.comp = comp_none,
1214 	},
1215 	[IPV6_ADDR] = {
1216 		.name = "{IPv6 address}",
1217 		.type = "IPV6 ADDRESS",
1218 		.help = "standard IPv6 address notation",
1219 		.call = parse_ipv6_addr,
1220 		.comp = comp_none,
1221 	},
1222 	[RULE_ID] = {
1223 		.name = "{rule id}",
1224 		.type = "RULE ID",
1225 		.help = "rule identifier",
1226 		.call = parse_int,
1227 		.comp = comp_rule_id,
1228 	},
1229 	[PORT_ID] = {
1230 		.name = "{port_id}",
1231 		.type = "PORT ID",
1232 		.help = "port identifier",
1233 		.call = parse_port,
1234 		.comp = comp_port,
1235 	},
1236 	[GROUP_ID] = {
1237 		.name = "{group_id}",
1238 		.type = "GROUP ID",
1239 		.help = "group identifier",
1240 		.call = parse_int,
1241 		.comp = comp_none,
1242 	},
1243 	[PRIORITY_LEVEL] = {
1244 		.name = "{level}",
1245 		.type = "PRIORITY",
1246 		.help = "priority level",
1247 		.call = parse_int,
1248 		.comp = comp_none,
1249 	},
1250 	/* Top-level command. */
1251 	[FLOW] = {
1252 		.name = "flow",
1253 		.type = "{command} {port_id} [{arg} [...]]",
1254 		.help = "manage ingress/egress flow rules",
1255 		.next = NEXT(NEXT_ENTRY
1256 			     (VALIDATE,
1257 			      CREATE,
1258 			      DESTROY,
1259 			      FLUSH,
1260 			      LIST,
1261 			      QUERY,
1262 			      ISOLATE)),
1263 		.call = parse_init,
1264 	},
1265 	/* Sub-level commands. */
1266 	[VALIDATE] = {
1267 		.name = "validate",
1268 		.help = "check whether a flow rule can be created",
1269 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1270 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1271 		.call = parse_vc,
1272 	},
1273 	[CREATE] = {
1274 		.name = "create",
1275 		.help = "create a flow rule",
1276 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1277 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1278 		.call = parse_vc,
1279 	},
1280 	[DESTROY] = {
1281 		.name = "destroy",
1282 		.help = "destroy specific flow rules",
1283 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1284 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1285 		.call = parse_destroy,
1286 	},
1287 	[FLUSH] = {
1288 		.name = "flush",
1289 		.help = "destroy all flow rules",
1290 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1291 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1292 		.call = parse_flush,
1293 	},
1294 	[QUERY] = {
1295 		.name = "query",
1296 		.help = "query an existing flow rule",
1297 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1298 			     NEXT_ENTRY(RULE_ID),
1299 			     NEXT_ENTRY(PORT_ID)),
1300 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1301 			     ARGS_ENTRY(struct buffer, args.query.rule),
1302 			     ARGS_ENTRY(struct buffer, port)),
1303 		.call = parse_query,
1304 	},
1305 	[LIST] = {
1306 		.name = "list",
1307 		.help = "list existing flow rules",
1308 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1309 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1310 		.call = parse_list,
1311 	},
1312 	[ISOLATE] = {
1313 		.name = "isolate",
1314 		.help = "restrict ingress traffic to the defined flow rules",
1315 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1316 			     NEXT_ENTRY(PORT_ID)),
1317 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1318 			     ARGS_ENTRY(struct buffer, port)),
1319 		.call = parse_isolate,
1320 	},
1321 	/* Destroy arguments. */
1322 	[DESTROY_RULE] = {
1323 		.name = "rule",
1324 		.help = "specify a rule identifier",
1325 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1326 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1327 		.call = parse_destroy,
1328 	},
1329 	/* Query arguments. */
1330 	[QUERY_ACTION] = {
1331 		.name = "{action}",
1332 		.type = "ACTION",
1333 		.help = "action to query, must be part of the rule",
1334 		.call = parse_action,
1335 		.comp = comp_action,
1336 	},
1337 	/* List arguments. */
1338 	[LIST_GROUP] = {
1339 		.name = "group",
1340 		.help = "specify a group",
1341 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1342 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1343 		.call = parse_list,
1344 	},
1345 	/* Validate/create attributes. */
1346 	[GROUP] = {
1347 		.name = "group",
1348 		.help = "specify a group",
1349 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1350 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1351 		.call = parse_vc,
1352 	},
1353 	[PRIORITY] = {
1354 		.name = "priority",
1355 		.help = "specify a priority level",
1356 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1357 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1358 		.call = parse_vc,
1359 	},
1360 	[INGRESS] = {
1361 		.name = "ingress",
1362 		.help = "affect rule to ingress",
1363 		.next = NEXT(next_vc_attr),
1364 		.call = parse_vc,
1365 	},
1366 	[EGRESS] = {
1367 		.name = "egress",
1368 		.help = "affect rule to egress",
1369 		.next = NEXT(next_vc_attr),
1370 		.call = parse_vc,
1371 	},
1372 	[TRANSFER] = {
1373 		.name = "transfer",
1374 		.help = "apply rule directly to endpoints found in pattern",
1375 		.next = NEXT(next_vc_attr),
1376 		.call = parse_vc,
1377 	},
1378 	/* Validate/create pattern. */
1379 	[PATTERN] = {
1380 		.name = "pattern",
1381 		.help = "submit a list of pattern items",
1382 		.next = NEXT(next_item),
1383 		.call = parse_vc,
1384 	},
1385 	[ITEM_PARAM_IS] = {
1386 		.name = "is",
1387 		.help = "match value perfectly (with full bit-mask)",
1388 		.call = parse_vc_spec,
1389 	},
1390 	[ITEM_PARAM_SPEC] = {
1391 		.name = "spec",
1392 		.help = "match value according to configured bit-mask",
1393 		.call = parse_vc_spec,
1394 	},
1395 	[ITEM_PARAM_LAST] = {
1396 		.name = "last",
1397 		.help = "specify upper bound to establish a range",
1398 		.call = parse_vc_spec,
1399 	},
1400 	[ITEM_PARAM_MASK] = {
1401 		.name = "mask",
1402 		.help = "specify bit-mask with relevant bits set to one",
1403 		.call = parse_vc_spec,
1404 	},
1405 	[ITEM_PARAM_PREFIX] = {
1406 		.name = "prefix",
1407 		.help = "generate bit-mask from a prefix length",
1408 		.call = parse_vc_spec,
1409 	},
1410 	[ITEM_NEXT] = {
1411 		.name = "/",
1412 		.help = "specify next pattern item",
1413 		.next = NEXT(next_item),
1414 	},
1415 	[ITEM_END] = {
1416 		.name = "end",
1417 		.help = "end list of pattern items",
1418 		.priv = PRIV_ITEM(END, 0),
1419 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1420 		.call = parse_vc,
1421 	},
1422 	[ITEM_VOID] = {
1423 		.name = "void",
1424 		.help = "no-op pattern item",
1425 		.priv = PRIV_ITEM(VOID, 0),
1426 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1427 		.call = parse_vc,
1428 	},
1429 	[ITEM_INVERT] = {
1430 		.name = "invert",
1431 		.help = "perform actions when pattern does not match",
1432 		.priv = PRIV_ITEM(INVERT, 0),
1433 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1434 		.call = parse_vc,
1435 	},
1436 	[ITEM_ANY] = {
1437 		.name = "any",
1438 		.help = "match any protocol for the current layer",
1439 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1440 		.next = NEXT(item_any),
1441 		.call = parse_vc,
1442 	},
1443 	[ITEM_ANY_NUM] = {
1444 		.name = "num",
1445 		.help = "number of layers covered",
1446 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1447 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1448 	},
1449 	[ITEM_PF] = {
1450 		.name = "pf",
1451 		.help = "match traffic from/to the physical function",
1452 		.priv = PRIV_ITEM(PF, 0),
1453 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1454 		.call = parse_vc,
1455 	},
1456 	[ITEM_VF] = {
1457 		.name = "vf",
1458 		.help = "match traffic from/to a virtual function ID",
1459 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1460 		.next = NEXT(item_vf),
1461 		.call = parse_vc,
1462 	},
1463 	[ITEM_VF_ID] = {
1464 		.name = "id",
1465 		.help = "VF ID",
1466 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1467 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1468 	},
1469 	[ITEM_PHY_PORT] = {
1470 		.name = "phy_port",
1471 		.help = "match traffic from/to a specific physical port",
1472 		.priv = PRIV_ITEM(PHY_PORT,
1473 				  sizeof(struct rte_flow_item_phy_port)),
1474 		.next = NEXT(item_phy_port),
1475 		.call = parse_vc,
1476 	},
1477 	[ITEM_PHY_PORT_INDEX] = {
1478 		.name = "index",
1479 		.help = "physical port index",
1480 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1481 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1482 	},
1483 	[ITEM_PORT_ID] = {
1484 		.name = "port_id",
1485 		.help = "match traffic from/to a given DPDK port ID",
1486 		.priv = PRIV_ITEM(PORT_ID,
1487 				  sizeof(struct rte_flow_item_port_id)),
1488 		.next = NEXT(item_port_id),
1489 		.call = parse_vc,
1490 	},
1491 	[ITEM_PORT_ID_ID] = {
1492 		.name = "id",
1493 		.help = "DPDK port ID",
1494 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1495 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1496 	},
1497 	[ITEM_MARK] = {
1498 		.name = "mark",
1499 		.help = "match traffic against value set in previously matched rule",
1500 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1501 		.next = NEXT(item_mark),
1502 		.call = parse_vc,
1503 	},
1504 	[ITEM_MARK_ID] = {
1505 		.name = "id",
1506 		.help = "Integer value to match against",
1507 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1508 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1509 	},
1510 	[ITEM_RAW] = {
1511 		.name = "raw",
1512 		.help = "match an arbitrary byte string",
1513 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1514 		.next = NEXT(item_raw),
1515 		.call = parse_vc,
1516 	},
1517 	[ITEM_RAW_RELATIVE] = {
1518 		.name = "relative",
1519 		.help = "look for pattern after the previous item",
1520 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1521 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1522 					   relative, 1)),
1523 	},
1524 	[ITEM_RAW_SEARCH] = {
1525 		.name = "search",
1526 		.help = "search pattern from offset (see also limit)",
1527 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1528 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1529 					   search, 1)),
1530 	},
1531 	[ITEM_RAW_OFFSET] = {
1532 		.name = "offset",
1533 		.help = "absolute or relative offset for pattern",
1534 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1535 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1536 	},
1537 	[ITEM_RAW_LIMIT] = {
1538 		.name = "limit",
1539 		.help = "search area limit for start of pattern",
1540 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1541 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1542 	},
1543 	[ITEM_RAW_PATTERN] = {
1544 		.name = "pattern",
1545 		.help = "byte string to look for",
1546 		.next = NEXT(item_raw,
1547 			     NEXT_ENTRY(STRING),
1548 			     NEXT_ENTRY(ITEM_PARAM_IS,
1549 					ITEM_PARAM_SPEC,
1550 					ITEM_PARAM_MASK)),
1551 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1552 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1553 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1554 					    ITEM_RAW_PATTERN_SIZE)),
1555 	},
1556 	[ITEM_ETH] = {
1557 		.name = "eth",
1558 		.help = "match Ethernet header",
1559 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1560 		.next = NEXT(item_eth),
1561 		.call = parse_vc,
1562 	},
1563 	[ITEM_ETH_DST] = {
1564 		.name = "dst",
1565 		.help = "destination MAC",
1566 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1567 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1568 	},
1569 	[ITEM_ETH_SRC] = {
1570 		.name = "src",
1571 		.help = "source MAC",
1572 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1573 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1574 	},
1575 	[ITEM_ETH_TYPE] = {
1576 		.name = "type",
1577 		.help = "EtherType",
1578 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1579 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1580 	},
1581 	[ITEM_VLAN] = {
1582 		.name = "vlan",
1583 		.help = "match 802.1Q/ad VLAN tag",
1584 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1585 		.next = NEXT(item_vlan),
1586 		.call = parse_vc,
1587 	},
1588 	[ITEM_VLAN_TCI] = {
1589 		.name = "tci",
1590 		.help = "tag control information",
1591 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1592 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1593 	},
1594 	[ITEM_VLAN_PCP] = {
1595 		.name = "pcp",
1596 		.help = "priority code point",
1597 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1598 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1599 						  tci, "\xe0\x00")),
1600 	},
1601 	[ITEM_VLAN_DEI] = {
1602 		.name = "dei",
1603 		.help = "drop eligible indicator",
1604 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1605 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1606 						  tci, "\x10\x00")),
1607 	},
1608 	[ITEM_VLAN_VID] = {
1609 		.name = "vid",
1610 		.help = "VLAN identifier",
1611 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1612 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1613 						  tci, "\x0f\xff")),
1614 	},
1615 	[ITEM_VLAN_INNER_TYPE] = {
1616 		.name = "inner_type",
1617 		.help = "inner EtherType",
1618 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1619 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1620 					     inner_type)),
1621 	},
1622 	[ITEM_IPV4] = {
1623 		.name = "ipv4",
1624 		.help = "match IPv4 header",
1625 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1626 		.next = NEXT(item_ipv4),
1627 		.call = parse_vc,
1628 	},
1629 	[ITEM_IPV4_TOS] = {
1630 		.name = "tos",
1631 		.help = "type of service",
1632 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1633 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1634 					     hdr.type_of_service)),
1635 	},
1636 	[ITEM_IPV4_TTL] = {
1637 		.name = "ttl",
1638 		.help = "time to live",
1639 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1640 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1641 					     hdr.time_to_live)),
1642 	},
1643 	[ITEM_IPV4_PROTO] = {
1644 		.name = "proto",
1645 		.help = "next protocol ID",
1646 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1647 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1648 					     hdr.next_proto_id)),
1649 	},
1650 	[ITEM_IPV4_SRC] = {
1651 		.name = "src",
1652 		.help = "source address",
1653 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1654 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1655 					     hdr.src_addr)),
1656 	},
1657 	[ITEM_IPV4_DST] = {
1658 		.name = "dst",
1659 		.help = "destination address",
1660 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1661 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1662 					     hdr.dst_addr)),
1663 	},
1664 	[ITEM_IPV6] = {
1665 		.name = "ipv6",
1666 		.help = "match IPv6 header",
1667 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1668 		.next = NEXT(item_ipv6),
1669 		.call = parse_vc,
1670 	},
1671 	[ITEM_IPV6_TC] = {
1672 		.name = "tc",
1673 		.help = "traffic class",
1674 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1675 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1676 						  hdr.vtc_flow,
1677 						  "\x0f\xf0\x00\x00")),
1678 	},
1679 	[ITEM_IPV6_FLOW] = {
1680 		.name = "flow",
1681 		.help = "flow label",
1682 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1683 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1684 						  hdr.vtc_flow,
1685 						  "\x00\x0f\xff\xff")),
1686 	},
1687 	[ITEM_IPV6_PROTO] = {
1688 		.name = "proto",
1689 		.help = "protocol (next header)",
1690 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1691 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1692 					     hdr.proto)),
1693 	},
1694 	[ITEM_IPV6_HOP] = {
1695 		.name = "hop",
1696 		.help = "hop limit",
1697 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1698 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1699 					     hdr.hop_limits)),
1700 	},
1701 	[ITEM_IPV6_SRC] = {
1702 		.name = "src",
1703 		.help = "source address",
1704 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1705 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1706 					     hdr.src_addr)),
1707 	},
1708 	[ITEM_IPV6_DST] = {
1709 		.name = "dst",
1710 		.help = "destination address",
1711 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1712 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1713 					     hdr.dst_addr)),
1714 	},
1715 	[ITEM_ICMP] = {
1716 		.name = "icmp",
1717 		.help = "match ICMP header",
1718 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1719 		.next = NEXT(item_icmp),
1720 		.call = parse_vc,
1721 	},
1722 	[ITEM_ICMP_TYPE] = {
1723 		.name = "type",
1724 		.help = "ICMP packet type",
1725 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1726 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1727 					     hdr.icmp_type)),
1728 	},
1729 	[ITEM_ICMP_CODE] = {
1730 		.name = "code",
1731 		.help = "ICMP packet code",
1732 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1733 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1734 					     hdr.icmp_code)),
1735 	},
1736 	[ITEM_UDP] = {
1737 		.name = "udp",
1738 		.help = "match UDP header",
1739 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1740 		.next = NEXT(item_udp),
1741 		.call = parse_vc,
1742 	},
1743 	[ITEM_UDP_SRC] = {
1744 		.name = "src",
1745 		.help = "UDP source port",
1746 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1747 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1748 					     hdr.src_port)),
1749 	},
1750 	[ITEM_UDP_DST] = {
1751 		.name = "dst",
1752 		.help = "UDP destination port",
1753 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1754 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1755 					     hdr.dst_port)),
1756 	},
1757 	[ITEM_TCP] = {
1758 		.name = "tcp",
1759 		.help = "match TCP header",
1760 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1761 		.next = NEXT(item_tcp),
1762 		.call = parse_vc,
1763 	},
1764 	[ITEM_TCP_SRC] = {
1765 		.name = "src",
1766 		.help = "TCP source port",
1767 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1768 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1769 					     hdr.src_port)),
1770 	},
1771 	[ITEM_TCP_DST] = {
1772 		.name = "dst",
1773 		.help = "TCP destination port",
1774 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1775 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1776 					     hdr.dst_port)),
1777 	},
1778 	[ITEM_TCP_FLAGS] = {
1779 		.name = "flags",
1780 		.help = "TCP flags",
1781 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1782 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1783 					     hdr.tcp_flags)),
1784 	},
1785 	[ITEM_SCTP] = {
1786 		.name = "sctp",
1787 		.help = "match SCTP header",
1788 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1789 		.next = NEXT(item_sctp),
1790 		.call = parse_vc,
1791 	},
1792 	[ITEM_SCTP_SRC] = {
1793 		.name = "src",
1794 		.help = "SCTP source port",
1795 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1796 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1797 					     hdr.src_port)),
1798 	},
1799 	[ITEM_SCTP_DST] = {
1800 		.name = "dst",
1801 		.help = "SCTP destination port",
1802 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1803 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1804 					     hdr.dst_port)),
1805 	},
1806 	[ITEM_SCTP_TAG] = {
1807 		.name = "tag",
1808 		.help = "validation tag",
1809 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1810 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1811 					     hdr.tag)),
1812 	},
1813 	[ITEM_SCTP_CKSUM] = {
1814 		.name = "cksum",
1815 		.help = "checksum",
1816 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1817 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1818 					     hdr.cksum)),
1819 	},
1820 	[ITEM_VXLAN] = {
1821 		.name = "vxlan",
1822 		.help = "match VXLAN header",
1823 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1824 		.next = NEXT(item_vxlan),
1825 		.call = parse_vc,
1826 	},
1827 	[ITEM_VXLAN_VNI] = {
1828 		.name = "vni",
1829 		.help = "VXLAN identifier",
1830 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1831 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1832 	},
1833 	[ITEM_E_TAG] = {
1834 		.name = "e_tag",
1835 		.help = "match E-Tag header",
1836 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1837 		.next = NEXT(item_e_tag),
1838 		.call = parse_vc,
1839 	},
1840 	[ITEM_E_TAG_GRP_ECID_B] = {
1841 		.name = "grp_ecid_b",
1842 		.help = "GRP and E-CID base",
1843 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1844 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1845 						  rsvd_grp_ecid_b,
1846 						  "\x3f\xff")),
1847 	},
1848 	[ITEM_NVGRE] = {
1849 		.name = "nvgre",
1850 		.help = "match NVGRE header",
1851 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1852 		.next = NEXT(item_nvgre),
1853 		.call = parse_vc,
1854 	},
1855 	[ITEM_NVGRE_TNI] = {
1856 		.name = "tni",
1857 		.help = "virtual subnet ID",
1858 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1859 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1860 	},
1861 	[ITEM_MPLS] = {
1862 		.name = "mpls",
1863 		.help = "match MPLS header",
1864 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1865 		.next = NEXT(item_mpls),
1866 		.call = parse_vc,
1867 	},
1868 	[ITEM_MPLS_LABEL] = {
1869 		.name = "label",
1870 		.help = "MPLS label",
1871 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1872 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1873 						  label_tc_s,
1874 						  "\xff\xff\xf0")),
1875 	},
1876 	[ITEM_GRE] = {
1877 		.name = "gre",
1878 		.help = "match GRE header",
1879 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1880 		.next = NEXT(item_gre),
1881 		.call = parse_vc,
1882 	},
1883 	[ITEM_GRE_PROTO] = {
1884 		.name = "protocol",
1885 		.help = "GRE protocol type",
1886 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1887 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1888 					     protocol)),
1889 	},
1890 	[ITEM_FUZZY] = {
1891 		.name = "fuzzy",
1892 		.help = "fuzzy pattern match, expect faster than default",
1893 		.priv = PRIV_ITEM(FUZZY,
1894 				sizeof(struct rte_flow_item_fuzzy)),
1895 		.next = NEXT(item_fuzzy),
1896 		.call = parse_vc,
1897 	},
1898 	[ITEM_FUZZY_THRESH] = {
1899 		.name = "thresh",
1900 		.help = "match accuracy threshold",
1901 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1902 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1903 					thresh)),
1904 	},
1905 	[ITEM_GTP] = {
1906 		.name = "gtp",
1907 		.help = "match GTP header",
1908 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1909 		.next = NEXT(item_gtp),
1910 		.call = parse_vc,
1911 	},
1912 	[ITEM_GTP_TEID] = {
1913 		.name = "teid",
1914 		.help = "tunnel endpoint identifier",
1915 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1916 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1917 	},
1918 	[ITEM_GTPC] = {
1919 		.name = "gtpc",
1920 		.help = "match GTP header",
1921 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1922 		.next = NEXT(item_gtp),
1923 		.call = parse_vc,
1924 	},
1925 	[ITEM_GTPU] = {
1926 		.name = "gtpu",
1927 		.help = "match GTP header",
1928 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1929 		.next = NEXT(item_gtp),
1930 		.call = parse_vc,
1931 	},
1932 	[ITEM_GENEVE] = {
1933 		.name = "geneve",
1934 		.help = "match GENEVE header",
1935 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1936 		.next = NEXT(item_geneve),
1937 		.call = parse_vc,
1938 	},
1939 	[ITEM_GENEVE_VNI] = {
1940 		.name = "vni",
1941 		.help = "virtual network identifier",
1942 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1943 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1944 	},
1945 	[ITEM_GENEVE_PROTO] = {
1946 		.name = "protocol",
1947 		.help = "GENEVE protocol type",
1948 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1949 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1950 					     protocol)),
1951 	},
1952 	[ITEM_VXLAN_GPE] = {
1953 		.name = "vxlan-gpe",
1954 		.help = "match VXLAN-GPE header",
1955 		.priv = PRIV_ITEM(VXLAN_GPE,
1956 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1957 		.next = NEXT(item_vxlan_gpe),
1958 		.call = parse_vc,
1959 	},
1960 	[ITEM_VXLAN_GPE_VNI] = {
1961 		.name = "vni",
1962 		.help = "VXLAN-GPE identifier",
1963 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1964 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1965 					     vni)),
1966 	},
1967 	[ITEM_ARP_ETH_IPV4] = {
1968 		.name = "arp_eth_ipv4",
1969 		.help = "match ARP header for Ethernet/IPv4",
1970 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1971 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1972 		.next = NEXT(item_arp_eth_ipv4),
1973 		.call = parse_vc,
1974 	},
1975 	[ITEM_ARP_ETH_IPV4_SHA] = {
1976 		.name = "sha",
1977 		.help = "sender hardware address",
1978 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1979 			     item_param),
1980 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1981 					     sha)),
1982 	},
1983 	[ITEM_ARP_ETH_IPV4_SPA] = {
1984 		.name = "spa",
1985 		.help = "sender IPv4 address",
1986 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1987 			     item_param),
1988 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1989 					     spa)),
1990 	},
1991 	[ITEM_ARP_ETH_IPV4_THA] = {
1992 		.name = "tha",
1993 		.help = "target hardware address",
1994 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1995 			     item_param),
1996 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1997 					     tha)),
1998 	},
1999 	[ITEM_ARP_ETH_IPV4_TPA] = {
2000 		.name = "tpa",
2001 		.help = "target IPv4 address",
2002 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2003 			     item_param),
2004 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2005 					     tpa)),
2006 	},
2007 	[ITEM_IPV6_EXT] = {
2008 		.name = "ipv6_ext",
2009 		.help = "match presence of any IPv6 extension header",
2010 		.priv = PRIV_ITEM(IPV6_EXT,
2011 				  sizeof(struct rte_flow_item_ipv6_ext)),
2012 		.next = NEXT(item_ipv6_ext),
2013 		.call = parse_vc,
2014 	},
2015 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2016 		.name = "next_hdr",
2017 		.help = "next header",
2018 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2019 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2020 					     next_hdr)),
2021 	},
2022 	[ITEM_ICMP6] = {
2023 		.name = "icmp6",
2024 		.help = "match any ICMPv6 header",
2025 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2026 		.next = NEXT(item_icmp6),
2027 		.call = parse_vc,
2028 	},
2029 	[ITEM_ICMP6_TYPE] = {
2030 		.name = "type",
2031 		.help = "ICMPv6 type",
2032 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2033 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2034 					     type)),
2035 	},
2036 	[ITEM_ICMP6_CODE] = {
2037 		.name = "code",
2038 		.help = "ICMPv6 code",
2039 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2040 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2041 					     code)),
2042 	},
2043 	[ITEM_ICMP6_ND_NS] = {
2044 		.name = "icmp6_nd_ns",
2045 		.help = "match ICMPv6 neighbor discovery solicitation",
2046 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2047 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2048 		.next = NEXT(item_icmp6_nd_ns),
2049 		.call = parse_vc,
2050 	},
2051 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2052 		.name = "target_addr",
2053 		.help = "target address",
2054 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2055 			     item_param),
2056 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2057 					     target_addr)),
2058 	},
2059 	[ITEM_ICMP6_ND_NA] = {
2060 		.name = "icmp6_nd_na",
2061 		.help = "match ICMPv6 neighbor discovery advertisement",
2062 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2063 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2064 		.next = NEXT(item_icmp6_nd_na),
2065 		.call = parse_vc,
2066 	},
2067 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2068 		.name = "target_addr",
2069 		.help = "target address",
2070 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2071 			     item_param),
2072 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2073 					     target_addr)),
2074 	},
2075 	[ITEM_ICMP6_ND_OPT] = {
2076 		.name = "icmp6_nd_opt",
2077 		.help = "match presence of any ICMPv6 neighbor discovery"
2078 			" option",
2079 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2080 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2081 		.next = NEXT(item_icmp6_nd_opt),
2082 		.call = parse_vc,
2083 	},
2084 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2085 		.name = "type",
2086 		.help = "ND option type",
2087 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2088 			     item_param),
2089 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2090 					     type)),
2091 	},
2092 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2093 		.name = "icmp6_nd_opt_sla_eth",
2094 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2095 			" link-layer address option",
2096 		.priv = PRIV_ITEM
2097 			(ICMP6_ND_OPT_SLA_ETH,
2098 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2099 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2100 		.call = parse_vc,
2101 	},
2102 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2103 		.name = "sla",
2104 		.help = "source Ethernet LLA",
2105 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2106 			     item_param),
2107 		.args = ARGS(ARGS_ENTRY_HTON
2108 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2109 	},
2110 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2111 		.name = "icmp6_nd_opt_tla_eth",
2112 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2113 			" link-layer address option",
2114 		.priv = PRIV_ITEM
2115 			(ICMP6_ND_OPT_TLA_ETH,
2116 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2117 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2118 		.call = parse_vc,
2119 	},
2120 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2121 		.name = "tla",
2122 		.help = "target Ethernet LLA",
2123 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2124 			     item_param),
2125 		.args = ARGS(ARGS_ENTRY_HTON
2126 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2127 	},
2128 	[ITEM_META] = {
2129 		.name = "meta",
2130 		.help = "match metadata header",
2131 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2132 		.next = NEXT(item_meta),
2133 		.call = parse_vc,
2134 	},
2135 	[ITEM_META_DATA] = {
2136 		.name = "data",
2137 		.help = "metadata value",
2138 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2139 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2140 						  data, "\xff\xff\xff\xff")),
2141 	},
2142 
2143 	/* Validate/create actions. */
2144 	[ACTIONS] = {
2145 		.name = "actions",
2146 		.help = "submit a list of associated actions",
2147 		.next = NEXT(next_action),
2148 		.call = parse_vc,
2149 	},
2150 	[ACTION_NEXT] = {
2151 		.name = "/",
2152 		.help = "specify next action",
2153 		.next = NEXT(next_action),
2154 	},
2155 	[ACTION_END] = {
2156 		.name = "end",
2157 		.help = "end list of actions",
2158 		.priv = PRIV_ACTION(END, 0),
2159 		.call = parse_vc,
2160 	},
2161 	[ACTION_VOID] = {
2162 		.name = "void",
2163 		.help = "no-op action",
2164 		.priv = PRIV_ACTION(VOID, 0),
2165 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2166 		.call = parse_vc,
2167 	},
2168 	[ACTION_PASSTHRU] = {
2169 		.name = "passthru",
2170 		.help = "let subsequent rule process matched packets",
2171 		.priv = PRIV_ACTION(PASSTHRU, 0),
2172 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2173 		.call = parse_vc,
2174 	},
2175 	[ACTION_JUMP] = {
2176 		.name = "jump",
2177 		.help = "redirect traffic to a given group",
2178 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2179 		.next = NEXT(action_jump),
2180 		.call = parse_vc,
2181 	},
2182 	[ACTION_JUMP_GROUP] = {
2183 		.name = "group",
2184 		.help = "group to redirect traffic to",
2185 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2186 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2187 		.call = parse_vc_conf,
2188 	},
2189 	[ACTION_MARK] = {
2190 		.name = "mark",
2191 		.help = "attach 32 bit value to packets",
2192 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2193 		.next = NEXT(action_mark),
2194 		.call = parse_vc,
2195 	},
2196 	[ACTION_MARK_ID] = {
2197 		.name = "id",
2198 		.help = "32 bit value to return with packets",
2199 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2200 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2201 		.call = parse_vc_conf,
2202 	},
2203 	[ACTION_FLAG] = {
2204 		.name = "flag",
2205 		.help = "flag packets",
2206 		.priv = PRIV_ACTION(FLAG, 0),
2207 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2208 		.call = parse_vc,
2209 	},
2210 	[ACTION_QUEUE] = {
2211 		.name = "queue",
2212 		.help = "assign packets to a given queue index",
2213 		.priv = PRIV_ACTION(QUEUE,
2214 				    sizeof(struct rte_flow_action_queue)),
2215 		.next = NEXT(action_queue),
2216 		.call = parse_vc,
2217 	},
2218 	[ACTION_QUEUE_INDEX] = {
2219 		.name = "index",
2220 		.help = "queue index to use",
2221 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2222 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2223 		.call = parse_vc_conf,
2224 	},
2225 	[ACTION_DROP] = {
2226 		.name = "drop",
2227 		.help = "drop packets (note: passthru has priority)",
2228 		.priv = PRIV_ACTION(DROP, 0),
2229 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2230 		.call = parse_vc,
2231 	},
2232 	[ACTION_COUNT] = {
2233 		.name = "count",
2234 		.help = "enable counters for this rule",
2235 		.priv = PRIV_ACTION(COUNT,
2236 				    sizeof(struct rte_flow_action_count)),
2237 		.next = NEXT(action_count),
2238 		.call = parse_vc,
2239 	},
2240 	[ACTION_COUNT_ID] = {
2241 		.name = "identifier",
2242 		.help = "counter identifier to use",
2243 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2244 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2245 		.call = parse_vc_conf,
2246 	},
2247 	[ACTION_COUNT_SHARED] = {
2248 		.name = "shared",
2249 		.help = "shared counter",
2250 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2251 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2252 					   shared, 1)),
2253 		.call = parse_vc_conf,
2254 	},
2255 	[ACTION_RSS] = {
2256 		.name = "rss",
2257 		.help = "spread packets among several queues",
2258 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2259 		.next = NEXT(action_rss),
2260 		.call = parse_vc_action_rss,
2261 	},
2262 	[ACTION_RSS_FUNC] = {
2263 		.name = "func",
2264 		.help = "RSS hash function to apply",
2265 		.next = NEXT(action_rss,
2266 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2267 					ACTION_RSS_FUNC_TOEPLITZ,
2268 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2269 	},
2270 	[ACTION_RSS_FUNC_DEFAULT] = {
2271 		.name = "default",
2272 		.help = "default hash function",
2273 		.call = parse_vc_action_rss_func,
2274 	},
2275 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2276 		.name = "toeplitz",
2277 		.help = "Toeplitz hash function",
2278 		.call = parse_vc_action_rss_func,
2279 	},
2280 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2281 		.name = "simple_xor",
2282 		.help = "simple XOR hash function",
2283 		.call = parse_vc_action_rss_func,
2284 	},
2285 	[ACTION_RSS_LEVEL] = {
2286 		.name = "level",
2287 		.help = "encapsulation level for \"types\"",
2288 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2289 		.args = ARGS(ARGS_ENTRY_ARB
2290 			     (offsetof(struct action_rss_data, conf) +
2291 			      offsetof(struct rte_flow_action_rss, level),
2292 			      sizeof(((struct rte_flow_action_rss *)0)->
2293 				     level))),
2294 	},
2295 	[ACTION_RSS_TYPES] = {
2296 		.name = "types",
2297 		.help = "specific RSS hash types",
2298 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2299 	},
2300 	[ACTION_RSS_TYPE] = {
2301 		.name = "{type}",
2302 		.help = "RSS hash type",
2303 		.call = parse_vc_action_rss_type,
2304 		.comp = comp_vc_action_rss_type,
2305 	},
2306 	[ACTION_RSS_KEY] = {
2307 		.name = "key",
2308 		.help = "RSS hash key",
2309 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
2310 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2311 			     ARGS_ENTRY_ARB
2312 			     (offsetof(struct action_rss_data, conf) +
2313 			      offsetof(struct rte_flow_action_rss, key_len),
2314 			      sizeof(((struct rte_flow_action_rss *)0)->
2315 				     key_len)),
2316 			     ARGS_ENTRY(struct action_rss_data, key)),
2317 	},
2318 	[ACTION_RSS_KEY_LEN] = {
2319 		.name = "key_len",
2320 		.help = "RSS hash key length in bytes",
2321 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2322 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2323 			     (offsetof(struct action_rss_data, conf) +
2324 			      offsetof(struct rte_flow_action_rss, key_len),
2325 			      sizeof(((struct rte_flow_action_rss *)0)->
2326 				     key_len),
2327 			      0,
2328 			      RSS_HASH_KEY_LENGTH)),
2329 	},
2330 	[ACTION_RSS_QUEUES] = {
2331 		.name = "queues",
2332 		.help = "queue indices to use",
2333 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2334 		.call = parse_vc_conf,
2335 	},
2336 	[ACTION_RSS_QUEUE] = {
2337 		.name = "{queue}",
2338 		.help = "queue index",
2339 		.call = parse_vc_action_rss_queue,
2340 		.comp = comp_vc_action_rss_queue,
2341 	},
2342 	[ACTION_PF] = {
2343 		.name = "pf",
2344 		.help = "direct traffic to physical function",
2345 		.priv = PRIV_ACTION(PF, 0),
2346 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2347 		.call = parse_vc,
2348 	},
2349 	[ACTION_VF] = {
2350 		.name = "vf",
2351 		.help = "direct traffic to a virtual function ID",
2352 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2353 		.next = NEXT(action_vf),
2354 		.call = parse_vc,
2355 	},
2356 	[ACTION_VF_ORIGINAL] = {
2357 		.name = "original",
2358 		.help = "use original VF ID if possible",
2359 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2360 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2361 					   original, 1)),
2362 		.call = parse_vc_conf,
2363 	},
2364 	[ACTION_VF_ID] = {
2365 		.name = "id",
2366 		.help = "VF ID",
2367 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2368 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2369 		.call = parse_vc_conf,
2370 	},
2371 	[ACTION_PHY_PORT] = {
2372 		.name = "phy_port",
2373 		.help = "direct packets to physical port index",
2374 		.priv = PRIV_ACTION(PHY_PORT,
2375 				    sizeof(struct rte_flow_action_phy_port)),
2376 		.next = NEXT(action_phy_port),
2377 		.call = parse_vc,
2378 	},
2379 	[ACTION_PHY_PORT_ORIGINAL] = {
2380 		.name = "original",
2381 		.help = "use original port index if possible",
2382 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2383 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2384 					   original, 1)),
2385 		.call = parse_vc_conf,
2386 	},
2387 	[ACTION_PHY_PORT_INDEX] = {
2388 		.name = "index",
2389 		.help = "physical port index",
2390 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2391 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2392 					index)),
2393 		.call = parse_vc_conf,
2394 	},
2395 	[ACTION_PORT_ID] = {
2396 		.name = "port_id",
2397 		.help = "direct matching traffic to a given DPDK port ID",
2398 		.priv = PRIV_ACTION(PORT_ID,
2399 				    sizeof(struct rte_flow_action_port_id)),
2400 		.next = NEXT(action_port_id),
2401 		.call = parse_vc,
2402 	},
2403 	[ACTION_PORT_ID_ORIGINAL] = {
2404 		.name = "original",
2405 		.help = "use original DPDK port ID if possible",
2406 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2407 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2408 					   original, 1)),
2409 		.call = parse_vc_conf,
2410 	},
2411 	[ACTION_PORT_ID_ID] = {
2412 		.name = "id",
2413 		.help = "DPDK port ID",
2414 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2415 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2416 		.call = parse_vc_conf,
2417 	},
2418 	[ACTION_METER] = {
2419 		.name = "meter",
2420 		.help = "meter the directed packets at given id",
2421 		.priv = PRIV_ACTION(METER,
2422 				    sizeof(struct rte_flow_action_meter)),
2423 		.next = NEXT(action_meter),
2424 		.call = parse_vc,
2425 	},
2426 	[ACTION_METER_ID] = {
2427 		.name = "mtr_id",
2428 		.help = "meter id to use",
2429 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2430 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2431 		.call = parse_vc_conf,
2432 	},
2433 	[ACTION_OF_SET_MPLS_TTL] = {
2434 		.name = "of_set_mpls_ttl",
2435 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2436 		.priv = PRIV_ACTION
2437 			(OF_SET_MPLS_TTL,
2438 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2439 		.next = NEXT(action_of_set_mpls_ttl),
2440 		.call = parse_vc,
2441 	},
2442 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2443 		.name = "mpls_ttl",
2444 		.help = "MPLS TTL",
2445 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2446 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2447 					mpls_ttl)),
2448 		.call = parse_vc_conf,
2449 	},
2450 	[ACTION_OF_DEC_MPLS_TTL] = {
2451 		.name = "of_dec_mpls_ttl",
2452 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2453 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2454 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2455 		.call = parse_vc,
2456 	},
2457 	[ACTION_OF_SET_NW_TTL] = {
2458 		.name = "of_set_nw_ttl",
2459 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2460 		.priv = PRIV_ACTION
2461 			(OF_SET_NW_TTL,
2462 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2463 		.next = NEXT(action_of_set_nw_ttl),
2464 		.call = parse_vc,
2465 	},
2466 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2467 		.name = "nw_ttl",
2468 		.help = "IP TTL",
2469 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2470 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2471 					nw_ttl)),
2472 		.call = parse_vc_conf,
2473 	},
2474 	[ACTION_OF_DEC_NW_TTL] = {
2475 		.name = "of_dec_nw_ttl",
2476 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2477 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2478 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2479 		.call = parse_vc,
2480 	},
2481 	[ACTION_OF_COPY_TTL_OUT] = {
2482 		.name = "of_copy_ttl_out",
2483 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2484 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2485 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2486 		.call = parse_vc,
2487 	},
2488 	[ACTION_OF_COPY_TTL_IN] = {
2489 		.name = "of_copy_ttl_in",
2490 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2491 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2492 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2493 		.call = parse_vc,
2494 	},
2495 	[ACTION_OF_POP_VLAN] = {
2496 		.name = "of_pop_vlan",
2497 		.help = "OpenFlow's OFPAT_POP_VLAN",
2498 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2499 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2500 		.call = parse_vc,
2501 	},
2502 	[ACTION_OF_PUSH_VLAN] = {
2503 		.name = "of_push_vlan",
2504 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2505 		.priv = PRIV_ACTION
2506 			(OF_PUSH_VLAN,
2507 			 sizeof(struct rte_flow_action_of_push_vlan)),
2508 		.next = NEXT(action_of_push_vlan),
2509 		.call = parse_vc,
2510 	},
2511 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2512 		.name = "ethertype",
2513 		.help = "EtherType",
2514 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2515 		.args = ARGS(ARGS_ENTRY_HTON
2516 			     (struct rte_flow_action_of_push_vlan,
2517 			      ethertype)),
2518 		.call = parse_vc_conf,
2519 	},
2520 	[ACTION_OF_SET_VLAN_VID] = {
2521 		.name = "of_set_vlan_vid",
2522 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2523 		.priv = PRIV_ACTION
2524 			(OF_SET_VLAN_VID,
2525 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2526 		.next = NEXT(action_of_set_vlan_vid),
2527 		.call = parse_vc,
2528 	},
2529 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2530 		.name = "vlan_vid",
2531 		.help = "VLAN id",
2532 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2533 		.args = ARGS(ARGS_ENTRY_HTON
2534 			     (struct rte_flow_action_of_set_vlan_vid,
2535 			      vlan_vid)),
2536 		.call = parse_vc_conf,
2537 	},
2538 	[ACTION_OF_SET_VLAN_PCP] = {
2539 		.name = "of_set_vlan_pcp",
2540 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2541 		.priv = PRIV_ACTION
2542 			(OF_SET_VLAN_PCP,
2543 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2544 		.next = NEXT(action_of_set_vlan_pcp),
2545 		.call = parse_vc,
2546 	},
2547 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2548 		.name = "vlan_pcp",
2549 		.help = "VLAN priority",
2550 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2551 		.args = ARGS(ARGS_ENTRY_HTON
2552 			     (struct rte_flow_action_of_set_vlan_pcp,
2553 			      vlan_pcp)),
2554 		.call = parse_vc_conf,
2555 	},
2556 	[ACTION_OF_POP_MPLS] = {
2557 		.name = "of_pop_mpls",
2558 		.help = "OpenFlow's OFPAT_POP_MPLS",
2559 		.priv = PRIV_ACTION(OF_POP_MPLS,
2560 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2561 		.next = NEXT(action_of_pop_mpls),
2562 		.call = parse_vc,
2563 	},
2564 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2565 		.name = "ethertype",
2566 		.help = "EtherType",
2567 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2568 		.args = ARGS(ARGS_ENTRY_HTON
2569 			     (struct rte_flow_action_of_pop_mpls,
2570 			      ethertype)),
2571 		.call = parse_vc_conf,
2572 	},
2573 	[ACTION_OF_PUSH_MPLS] = {
2574 		.name = "of_push_mpls",
2575 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2576 		.priv = PRIV_ACTION
2577 			(OF_PUSH_MPLS,
2578 			 sizeof(struct rte_flow_action_of_push_mpls)),
2579 		.next = NEXT(action_of_push_mpls),
2580 		.call = parse_vc,
2581 	},
2582 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2583 		.name = "ethertype",
2584 		.help = "EtherType",
2585 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2586 		.args = ARGS(ARGS_ENTRY_HTON
2587 			     (struct rte_flow_action_of_push_mpls,
2588 			      ethertype)),
2589 		.call = parse_vc_conf,
2590 	},
2591 	[ACTION_VXLAN_ENCAP] = {
2592 		.name = "vxlan_encap",
2593 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2594 			" vxlan\"",
2595 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2596 				    sizeof(struct action_vxlan_encap_data)),
2597 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2598 		.call = parse_vc_action_vxlan_encap,
2599 	},
2600 	[ACTION_VXLAN_DECAP] = {
2601 		.name = "vxlan_decap",
2602 		.help = "Performs a decapsulation action by stripping all"
2603 			" headers of the VXLAN tunnel network overlay from the"
2604 			" matched flow.",
2605 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2606 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2607 		.call = parse_vc,
2608 	},
2609 	[ACTION_NVGRE_ENCAP] = {
2610 		.name = "nvgre_encap",
2611 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2612 			" nvgre\"",
2613 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2614 				    sizeof(struct action_nvgre_encap_data)),
2615 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2616 		.call = parse_vc_action_nvgre_encap,
2617 	},
2618 	[ACTION_NVGRE_DECAP] = {
2619 		.name = "nvgre_decap",
2620 		.help = "Performs a decapsulation action by stripping all"
2621 			" headers of the NVGRE tunnel network overlay from the"
2622 			" matched flow.",
2623 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2624 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2625 		.call = parse_vc,
2626 	},
2627 	[ACTION_L2_ENCAP] = {
2628 		.name = "l2_encap",
2629 		.help = "l2 encap, uses configuration set by"
2630 			" \"set l2_encap\"",
2631 		.priv = PRIV_ACTION(RAW_ENCAP,
2632 				    sizeof(struct action_raw_encap_data)),
2633 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2634 		.call = parse_vc_action_l2_encap,
2635 	},
2636 	[ACTION_L2_DECAP] = {
2637 		.name = "l2_decap",
2638 		.help = "l2 decap, uses configuration set by"
2639 			" \"set l2_decap\"",
2640 		.priv = PRIV_ACTION(RAW_DECAP,
2641 				    sizeof(struct action_raw_decap_data)),
2642 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2643 		.call = parse_vc_action_l2_decap,
2644 	},
2645 	[ACTION_MPLSOGRE_ENCAP] = {
2646 		.name = "mplsogre_encap",
2647 		.help = "mplsogre encapsulation, uses configuration set by"
2648 			" \"set mplsogre_encap\"",
2649 		.priv = PRIV_ACTION(RAW_ENCAP,
2650 				    sizeof(struct action_raw_encap_data)),
2651 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2652 		.call = parse_vc_action_mplsogre_encap,
2653 	},
2654 	[ACTION_MPLSOGRE_DECAP] = {
2655 		.name = "mplsogre_decap",
2656 		.help = "mplsogre decapsulation, uses configuration set by"
2657 			" \"set mplsogre_decap\"",
2658 		.priv = PRIV_ACTION(RAW_DECAP,
2659 				    sizeof(struct action_raw_decap_data)),
2660 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2661 		.call = parse_vc_action_mplsogre_decap,
2662 	},
2663 	[ACTION_MPLSOUDP_ENCAP] = {
2664 		.name = "mplsoudp_encap",
2665 		.help = "mplsoudp encapsulation, uses configuration set by"
2666 			" \"set mplsoudp_encap\"",
2667 		.priv = PRIV_ACTION(RAW_ENCAP,
2668 				    sizeof(struct action_raw_encap_data)),
2669 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2670 		.call = parse_vc_action_mplsoudp_encap,
2671 	},
2672 	[ACTION_MPLSOUDP_DECAP] = {
2673 		.name = "mplsoudp_decap",
2674 		.help = "mplsoudp decapsulation, uses configuration set by"
2675 			" \"set mplsoudp_decap\"",
2676 		.priv = PRIV_ACTION(RAW_DECAP,
2677 				    sizeof(struct action_raw_decap_data)),
2678 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2679 		.call = parse_vc_action_mplsoudp_decap,
2680 	},
2681 	[ACTION_SET_IPV4_SRC] = {
2682 		.name = "set_ipv4_src",
2683 		.help = "Set a new IPv4 source address in the outermost"
2684 			" IPv4 header",
2685 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2686 			sizeof(struct rte_flow_action_set_ipv4)),
2687 		.next = NEXT(action_set_ipv4_src),
2688 		.call = parse_vc,
2689 	},
2690 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2691 		.name = "ipv4_addr",
2692 		.help = "new IPv4 source address to set",
2693 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2694 		.args = ARGS(ARGS_ENTRY_HTON
2695 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2696 		.call = parse_vc_conf,
2697 	},
2698 	[ACTION_SET_IPV4_DST] = {
2699 		.name = "set_ipv4_dst",
2700 		.help = "Set a new IPv4 destination address in the outermost"
2701 			" IPv4 header",
2702 		.priv = PRIV_ACTION(SET_IPV4_DST,
2703 			sizeof(struct rte_flow_action_set_ipv4)),
2704 		.next = NEXT(action_set_ipv4_dst),
2705 		.call = parse_vc,
2706 	},
2707 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2708 		.name = "ipv4_addr",
2709 		.help = "new IPv4 destination address to set",
2710 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2711 		.args = ARGS(ARGS_ENTRY_HTON
2712 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2713 		.call = parse_vc_conf,
2714 	},
2715 	[ACTION_SET_IPV6_SRC] = {
2716 		.name = "set_ipv6_src",
2717 		.help = "Set a new IPv6 source address in the outermost"
2718 			" IPv6 header",
2719 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2720 			sizeof(struct rte_flow_action_set_ipv6)),
2721 		.next = NEXT(action_set_ipv6_src),
2722 		.call = parse_vc,
2723 	},
2724 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2725 		.name = "ipv6_addr",
2726 		.help = "new IPv6 source address to set",
2727 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2728 		.args = ARGS(ARGS_ENTRY_HTON
2729 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2730 		.call = parse_vc_conf,
2731 	},
2732 	[ACTION_SET_IPV6_DST] = {
2733 		.name = "set_ipv6_dst",
2734 		.help = "Set a new IPv6 destination address in the outermost"
2735 			" IPv6 header",
2736 		.priv = PRIV_ACTION(SET_IPV6_DST,
2737 			sizeof(struct rte_flow_action_set_ipv6)),
2738 		.next = NEXT(action_set_ipv6_dst),
2739 		.call = parse_vc,
2740 	},
2741 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2742 		.name = "ipv6_addr",
2743 		.help = "new IPv6 destination address to set",
2744 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2745 		.args = ARGS(ARGS_ENTRY_HTON
2746 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2747 		.call = parse_vc_conf,
2748 	},
2749 	[ACTION_SET_TP_SRC] = {
2750 		.name = "set_tp_src",
2751 		.help = "set a new source port number in the outermost"
2752 			" TCP/UDP header",
2753 		.priv = PRIV_ACTION(SET_TP_SRC,
2754 			sizeof(struct rte_flow_action_set_tp)),
2755 		.next = NEXT(action_set_tp_src),
2756 		.call = parse_vc,
2757 	},
2758 	[ACTION_SET_TP_SRC_TP_SRC] = {
2759 		.name = "port",
2760 		.help = "new source port number to set",
2761 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2762 		.args = ARGS(ARGS_ENTRY_HTON
2763 			     (struct rte_flow_action_set_tp, port)),
2764 		.call = parse_vc_conf,
2765 	},
2766 	[ACTION_SET_TP_DST] = {
2767 		.name = "set_tp_dst",
2768 		.help = "set a new destination port number in the outermost"
2769 			" TCP/UDP header",
2770 		.priv = PRIV_ACTION(SET_TP_DST,
2771 			sizeof(struct rte_flow_action_set_tp)),
2772 		.next = NEXT(action_set_tp_dst),
2773 		.call = parse_vc,
2774 	},
2775 	[ACTION_SET_TP_DST_TP_DST] = {
2776 		.name = "port",
2777 		.help = "new destination port number to set",
2778 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2779 		.args = ARGS(ARGS_ENTRY_HTON
2780 			     (struct rte_flow_action_set_tp, port)),
2781 		.call = parse_vc_conf,
2782 	},
2783 	[ACTION_MAC_SWAP] = {
2784 		.name = "mac_swap",
2785 		.help = "Swap the source and destination MAC addresses"
2786 			" in the outermost Ethernet header",
2787 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2788 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2789 		.call = parse_vc,
2790 	},
2791 	[ACTION_DEC_TTL] = {
2792 		.name = "dec_ttl",
2793 		.help = "decrease network TTL if available",
2794 		.priv = PRIV_ACTION(DEC_TTL, 0),
2795 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2796 		.call = parse_vc,
2797 	},
2798 	[ACTION_SET_TTL] = {
2799 		.name = "set_ttl",
2800 		.help = "set ttl value",
2801 		.priv = PRIV_ACTION(SET_TTL,
2802 			sizeof(struct rte_flow_action_set_ttl)),
2803 		.next = NEXT(action_set_ttl),
2804 		.call = parse_vc,
2805 	},
2806 	[ACTION_SET_TTL_TTL] = {
2807 		.name = "ttl_value",
2808 		.help = "new ttl value to set",
2809 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2810 		.args = ARGS(ARGS_ENTRY_HTON
2811 			     (struct rte_flow_action_set_ttl, ttl_value)),
2812 		.call = parse_vc_conf,
2813 	},
2814 	[ACTION_SET_MAC_SRC] = {
2815 		.name = "set_mac_src",
2816 		.help = "set source mac address",
2817 		.priv = PRIV_ACTION(SET_MAC_SRC,
2818 			sizeof(struct rte_flow_action_set_mac)),
2819 		.next = NEXT(action_set_mac_src),
2820 		.call = parse_vc,
2821 	},
2822 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2823 		.name = "mac_addr",
2824 		.help = "new source mac address",
2825 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2826 		.args = ARGS(ARGS_ENTRY_HTON
2827 			     (struct rte_flow_action_set_mac, mac_addr)),
2828 		.call = parse_vc_conf,
2829 	},
2830 	[ACTION_SET_MAC_DST] = {
2831 		.name = "set_mac_dst",
2832 		.help = "set destination mac address",
2833 		.priv = PRIV_ACTION(SET_MAC_DST,
2834 			sizeof(struct rte_flow_action_set_mac)),
2835 		.next = NEXT(action_set_mac_dst),
2836 		.call = parse_vc,
2837 	},
2838 	[ACTION_SET_MAC_DST_MAC_DST] = {
2839 		.name = "mac_addr",
2840 		.help = "new destination mac address to set",
2841 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2842 		.args = ARGS(ARGS_ENTRY_HTON
2843 			     (struct rte_flow_action_set_mac, mac_addr)),
2844 		.call = parse_vc_conf,
2845 	},
2846 };
2847 
2848 /** Remove and return last entry from argument stack. */
2849 static const struct arg *
2850 pop_args(struct context *ctx)
2851 {
2852 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2853 }
2854 
2855 /** Add entry on top of the argument stack. */
2856 static int
2857 push_args(struct context *ctx, const struct arg *arg)
2858 {
2859 	if (ctx->args_num == CTX_STACK_SIZE)
2860 		return -1;
2861 	ctx->args[ctx->args_num++] = arg;
2862 	return 0;
2863 }
2864 
2865 /** Spread value into buffer according to bit-mask. */
2866 static size_t
2867 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2868 {
2869 	uint32_t i = arg->size;
2870 	uint32_t end = 0;
2871 	int sub = 1;
2872 	int add = 0;
2873 	size_t len = 0;
2874 
2875 	if (!arg->mask)
2876 		return 0;
2877 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2878 	if (!arg->hton) {
2879 		i = 0;
2880 		end = arg->size;
2881 		sub = 0;
2882 		add = 1;
2883 	}
2884 #endif
2885 	while (i != end) {
2886 		unsigned int shift = 0;
2887 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2888 
2889 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2890 			if (!(arg->mask[i] & (1 << shift)))
2891 				continue;
2892 			++len;
2893 			if (!dst)
2894 				continue;
2895 			*buf &= ~(1 << shift);
2896 			*buf |= (val & 1) << shift;
2897 			val >>= 1;
2898 		}
2899 		i += add;
2900 	}
2901 	return len;
2902 }
2903 
2904 /** Compare a string with a partial one of a given length. */
2905 static int
2906 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2907 {
2908 	int r = strncmp(full, partial, partial_len);
2909 
2910 	if (r)
2911 		return r;
2912 	if (strlen(full) <= partial_len)
2913 		return 0;
2914 	return full[partial_len];
2915 }
2916 
2917 /**
2918  * Parse a prefix length and generate a bit-mask.
2919  *
2920  * Last argument (ctx->args) is retrieved to determine mask size, storage
2921  * location and whether the result must use network byte ordering.
2922  */
2923 static int
2924 parse_prefix(struct context *ctx, const struct token *token,
2925 	     const char *str, unsigned int len,
2926 	     void *buf, unsigned int size)
2927 {
2928 	const struct arg *arg = pop_args(ctx);
2929 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2930 	char *end;
2931 	uintmax_t u;
2932 	unsigned int bytes;
2933 	unsigned int extra;
2934 
2935 	(void)token;
2936 	/* Argument is expected. */
2937 	if (!arg)
2938 		return -1;
2939 	errno = 0;
2940 	u = strtoumax(str, &end, 0);
2941 	if (errno || (size_t)(end - str) != len)
2942 		goto error;
2943 	if (arg->mask) {
2944 		uintmax_t v = 0;
2945 
2946 		extra = arg_entry_bf_fill(NULL, 0, arg);
2947 		if (u > extra)
2948 			goto error;
2949 		if (!ctx->object)
2950 			return len;
2951 		extra -= u;
2952 		while (u--)
2953 			(v <<= 1, v |= 1);
2954 		v <<= extra;
2955 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2956 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2957 			goto error;
2958 		return len;
2959 	}
2960 	bytes = u / 8;
2961 	extra = u % 8;
2962 	size = arg->size;
2963 	if (bytes > size || bytes + !!extra > size)
2964 		goto error;
2965 	if (!ctx->object)
2966 		return len;
2967 	buf = (uint8_t *)ctx->object + arg->offset;
2968 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2969 	if (!arg->hton) {
2970 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2971 		memset(buf, 0x00, size - bytes);
2972 		if (extra)
2973 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2974 	} else
2975 #endif
2976 	{
2977 		memset(buf, 0xff, bytes);
2978 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2979 		if (extra)
2980 			((uint8_t *)buf)[bytes] = conv[extra];
2981 	}
2982 	if (ctx->objmask)
2983 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2984 	return len;
2985 error:
2986 	push_args(ctx, arg);
2987 	return -1;
2988 }
2989 
2990 /** Default parsing function for token name matching. */
2991 static int
2992 parse_default(struct context *ctx, const struct token *token,
2993 	      const char *str, unsigned int len,
2994 	      void *buf, unsigned int size)
2995 {
2996 	(void)ctx;
2997 	(void)buf;
2998 	(void)size;
2999 	if (strcmp_partial(token->name, str, len))
3000 		return -1;
3001 	return len;
3002 }
3003 
3004 /** Parse flow command, initialize output buffer for subsequent tokens. */
3005 static int
3006 parse_init(struct context *ctx, const struct token *token,
3007 	   const char *str, unsigned int len,
3008 	   void *buf, unsigned int size)
3009 {
3010 	struct buffer *out = buf;
3011 
3012 	/* Token name must match. */
3013 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3014 		return -1;
3015 	/* Nothing else to do if there is no buffer. */
3016 	if (!out)
3017 		return len;
3018 	/* Make sure buffer is large enough. */
3019 	if (size < sizeof(*out))
3020 		return -1;
3021 	/* Initialize buffer. */
3022 	memset(out, 0x00, sizeof(*out));
3023 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3024 	ctx->objdata = 0;
3025 	ctx->object = out;
3026 	ctx->objmask = NULL;
3027 	return len;
3028 }
3029 
3030 /** Parse tokens for validate/create commands. */
3031 static int
3032 parse_vc(struct context *ctx, const struct token *token,
3033 	 const char *str, unsigned int len,
3034 	 void *buf, unsigned int size)
3035 {
3036 	struct buffer *out = buf;
3037 	uint8_t *data;
3038 	uint32_t data_size;
3039 
3040 	/* Token name must match. */
3041 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3042 		return -1;
3043 	/* Nothing else to do if there is no buffer. */
3044 	if (!out)
3045 		return len;
3046 	if (!out->command) {
3047 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3048 			return -1;
3049 		if (sizeof(*out) > size)
3050 			return -1;
3051 		out->command = ctx->curr;
3052 		ctx->objdata = 0;
3053 		ctx->object = out;
3054 		ctx->objmask = NULL;
3055 		out->args.vc.data = (uint8_t *)out + size;
3056 		return len;
3057 	}
3058 	ctx->objdata = 0;
3059 	ctx->object = &out->args.vc.attr;
3060 	ctx->objmask = NULL;
3061 	switch (ctx->curr) {
3062 	case GROUP:
3063 	case PRIORITY:
3064 		return len;
3065 	case INGRESS:
3066 		out->args.vc.attr.ingress = 1;
3067 		return len;
3068 	case EGRESS:
3069 		out->args.vc.attr.egress = 1;
3070 		return len;
3071 	case TRANSFER:
3072 		out->args.vc.attr.transfer = 1;
3073 		return len;
3074 	case PATTERN:
3075 		out->args.vc.pattern =
3076 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3077 					       sizeof(double));
3078 		ctx->object = out->args.vc.pattern;
3079 		ctx->objmask = NULL;
3080 		return len;
3081 	case ACTIONS:
3082 		out->args.vc.actions =
3083 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3084 					       (out->args.vc.pattern +
3085 						out->args.vc.pattern_n),
3086 					       sizeof(double));
3087 		ctx->object = out->args.vc.actions;
3088 		ctx->objmask = NULL;
3089 		return len;
3090 	default:
3091 		if (!token->priv)
3092 			return -1;
3093 		break;
3094 	}
3095 	if (!out->args.vc.actions) {
3096 		const struct parse_item_priv *priv = token->priv;
3097 		struct rte_flow_item *item =
3098 			out->args.vc.pattern + out->args.vc.pattern_n;
3099 
3100 		data_size = priv->size * 3; /* spec, last, mask */
3101 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3102 					       (out->args.vc.data - data_size),
3103 					       sizeof(double));
3104 		if ((uint8_t *)item + sizeof(*item) > data)
3105 			return -1;
3106 		*item = (struct rte_flow_item){
3107 			.type = priv->type,
3108 		};
3109 		++out->args.vc.pattern_n;
3110 		ctx->object = item;
3111 		ctx->objmask = NULL;
3112 	} else {
3113 		const struct parse_action_priv *priv = token->priv;
3114 		struct rte_flow_action *action =
3115 			out->args.vc.actions + out->args.vc.actions_n;
3116 
3117 		data_size = priv->size; /* configuration */
3118 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3119 					       (out->args.vc.data - data_size),
3120 					       sizeof(double));
3121 		if ((uint8_t *)action + sizeof(*action) > data)
3122 			return -1;
3123 		*action = (struct rte_flow_action){
3124 			.type = priv->type,
3125 			.conf = data_size ? data : NULL,
3126 		};
3127 		++out->args.vc.actions_n;
3128 		ctx->object = action;
3129 		ctx->objmask = NULL;
3130 	}
3131 	memset(data, 0, data_size);
3132 	out->args.vc.data = data;
3133 	ctx->objdata = data_size;
3134 	return len;
3135 }
3136 
3137 /** Parse pattern item parameter type. */
3138 static int
3139 parse_vc_spec(struct context *ctx, const struct token *token,
3140 	      const char *str, unsigned int len,
3141 	      void *buf, unsigned int size)
3142 {
3143 	struct buffer *out = buf;
3144 	struct rte_flow_item *item;
3145 	uint32_t data_size;
3146 	int index;
3147 	int objmask = 0;
3148 
3149 	(void)size;
3150 	/* Token name must match. */
3151 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3152 		return -1;
3153 	/* Parse parameter types. */
3154 	switch (ctx->curr) {
3155 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3156 
3157 	case ITEM_PARAM_IS:
3158 		index = 0;
3159 		objmask = 1;
3160 		break;
3161 	case ITEM_PARAM_SPEC:
3162 		index = 0;
3163 		break;
3164 	case ITEM_PARAM_LAST:
3165 		index = 1;
3166 		break;
3167 	case ITEM_PARAM_PREFIX:
3168 		/* Modify next token to expect a prefix. */
3169 		if (ctx->next_num < 2)
3170 			return -1;
3171 		ctx->next[ctx->next_num - 2] = prefix;
3172 		/* Fall through. */
3173 	case ITEM_PARAM_MASK:
3174 		index = 2;
3175 		break;
3176 	default:
3177 		return -1;
3178 	}
3179 	/* Nothing else to do if there is no buffer. */
3180 	if (!out)
3181 		return len;
3182 	if (!out->args.vc.pattern_n)
3183 		return -1;
3184 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3185 	data_size = ctx->objdata / 3; /* spec, last, mask */
3186 	/* Point to selected object. */
3187 	ctx->object = out->args.vc.data + (data_size * index);
3188 	if (objmask) {
3189 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3190 		item->mask = ctx->objmask;
3191 	} else
3192 		ctx->objmask = NULL;
3193 	/* Update relevant item pointer. */
3194 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3195 		ctx->object;
3196 	return len;
3197 }
3198 
3199 /** Parse action configuration field. */
3200 static int
3201 parse_vc_conf(struct context *ctx, const struct token *token,
3202 	      const char *str, unsigned int len,
3203 	      void *buf, unsigned int size)
3204 {
3205 	struct buffer *out = buf;
3206 
3207 	(void)size;
3208 	/* Token name must match. */
3209 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3210 		return -1;
3211 	/* Nothing else to do if there is no buffer. */
3212 	if (!out)
3213 		return len;
3214 	/* Point to selected object. */
3215 	ctx->object = out->args.vc.data;
3216 	ctx->objmask = NULL;
3217 	return len;
3218 }
3219 
3220 /** Parse RSS action. */
3221 static int
3222 parse_vc_action_rss(struct context *ctx, const struct token *token,
3223 		    const char *str, unsigned int len,
3224 		    void *buf, unsigned int size)
3225 {
3226 	struct buffer *out = buf;
3227 	struct rte_flow_action *action;
3228 	struct action_rss_data *action_rss_data;
3229 	unsigned int i;
3230 	int ret;
3231 
3232 	ret = parse_vc(ctx, token, str, len, buf, size);
3233 	if (ret < 0)
3234 		return ret;
3235 	/* Nothing else to do if there is no buffer. */
3236 	if (!out)
3237 		return ret;
3238 	if (!out->args.vc.actions_n)
3239 		return -1;
3240 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3241 	/* Point to selected object. */
3242 	ctx->object = out->args.vc.data;
3243 	ctx->objmask = NULL;
3244 	/* Set up default configuration. */
3245 	action_rss_data = ctx->object;
3246 	*action_rss_data = (struct action_rss_data){
3247 		.conf = (struct rte_flow_action_rss){
3248 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3249 			.level = 0,
3250 			.types = rss_hf,
3251 			.key_len = sizeof(action_rss_data->key),
3252 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3253 			.key = action_rss_data->key,
3254 			.queue = action_rss_data->queue,
3255 		},
3256 		.key = "testpmd's default RSS hash key, "
3257 			"override it for better balancing",
3258 		.queue = { 0 },
3259 	};
3260 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3261 		action_rss_data->queue[i] = i;
3262 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3263 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3264 		struct rte_eth_dev_info info;
3265 
3266 		rte_eth_dev_info_get(ctx->port, &info);
3267 		action_rss_data->conf.key_len =
3268 			RTE_MIN(sizeof(action_rss_data->key),
3269 				info.hash_key_size);
3270 	}
3271 	action->conf = &action_rss_data->conf;
3272 	return ret;
3273 }
3274 
3275 /**
3276  * Parse func field for RSS action.
3277  *
3278  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3279  * ACTION_RSS_FUNC_* index that called this function.
3280  */
3281 static int
3282 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3283 			 const char *str, unsigned int len,
3284 			 void *buf, unsigned int size)
3285 {
3286 	struct action_rss_data *action_rss_data;
3287 	enum rte_eth_hash_function func;
3288 
3289 	(void)buf;
3290 	(void)size;
3291 	/* Token name must match. */
3292 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3293 		return -1;
3294 	switch (ctx->curr) {
3295 	case ACTION_RSS_FUNC_DEFAULT:
3296 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3297 		break;
3298 	case ACTION_RSS_FUNC_TOEPLITZ:
3299 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3300 		break;
3301 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3302 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3303 		break;
3304 	default:
3305 		return -1;
3306 	}
3307 	if (!ctx->object)
3308 		return len;
3309 	action_rss_data = ctx->object;
3310 	action_rss_data->conf.func = func;
3311 	return len;
3312 }
3313 
3314 /**
3315  * Parse type field for RSS action.
3316  *
3317  * Valid tokens are type field names and the "end" token.
3318  */
3319 static int
3320 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3321 			  const char *str, unsigned int len,
3322 			  void *buf, unsigned int size)
3323 {
3324 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3325 	struct action_rss_data *action_rss_data;
3326 	unsigned int i;
3327 
3328 	(void)token;
3329 	(void)buf;
3330 	(void)size;
3331 	if (ctx->curr != ACTION_RSS_TYPE)
3332 		return -1;
3333 	if (!(ctx->objdata >> 16) && ctx->object) {
3334 		action_rss_data = ctx->object;
3335 		action_rss_data->conf.types = 0;
3336 	}
3337 	if (!strcmp_partial("end", str, len)) {
3338 		ctx->objdata &= 0xffff;
3339 		return len;
3340 	}
3341 	for (i = 0; rss_type_table[i].str; ++i)
3342 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3343 			break;
3344 	if (!rss_type_table[i].str)
3345 		return -1;
3346 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3347 	/* Repeat token. */
3348 	if (ctx->next_num == RTE_DIM(ctx->next))
3349 		return -1;
3350 	ctx->next[ctx->next_num++] = next;
3351 	if (!ctx->object)
3352 		return len;
3353 	action_rss_data = ctx->object;
3354 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3355 	return len;
3356 }
3357 
3358 /**
3359  * Parse queue field for RSS action.
3360  *
3361  * Valid tokens are queue indices and the "end" token.
3362  */
3363 static int
3364 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3365 			  const char *str, unsigned int len,
3366 			  void *buf, unsigned int size)
3367 {
3368 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3369 	struct action_rss_data *action_rss_data;
3370 	int ret;
3371 	int i;
3372 
3373 	(void)token;
3374 	(void)buf;
3375 	(void)size;
3376 	if (ctx->curr != ACTION_RSS_QUEUE)
3377 		return -1;
3378 	i = ctx->objdata >> 16;
3379 	if (!strcmp_partial("end", str, len)) {
3380 		ctx->objdata &= 0xffff;
3381 		goto end;
3382 	}
3383 	if (i >= ACTION_RSS_QUEUE_NUM)
3384 		return -1;
3385 	if (push_args(ctx,
3386 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3387 				     i * sizeof(action_rss_data->queue[i]),
3388 				     sizeof(action_rss_data->queue[i]))))
3389 		return -1;
3390 	ret = parse_int(ctx, token, str, len, NULL, 0);
3391 	if (ret < 0) {
3392 		pop_args(ctx);
3393 		return -1;
3394 	}
3395 	++i;
3396 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3397 	/* Repeat token. */
3398 	if (ctx->next_num == RTE_DIM(ctx->next))
3399 		return -1;
3400 	ctx->next[ctx->next_num++] = next;
3401 end:
3402 	if (!ctx->object)
3403 		return len;
3404 	action_rss_data = ctx->object;
3405 	action_rss_data->conf.queue_num = i;
3406 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3407 	return len;
3408 }
3409 
3410 /** Parse VXLAN encap action. */
3411 static int
3412 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3413 			    const char *str, unsigned int len,
3414 			    void *buf, unsigned int size)
3415 {
3416 	struct buffer *out = buf;
3417 	struct rte_flow_action *action;
3418 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3419 	int ret;
3420 
3421 	ret = parse_vc(ctx, token, str, len, buf, size);
3422 	if (ret < 0)
3423 		return ret;
3424 	/* Nothing else to do if there is no buffer. */
3425 	if (!out)
3426 		return ret;
3427 	if (!out->args.vc.actions_n)
3428 		return -1;
3429 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3430 	/* Point to selected object. */
3431 	ctx->object = out->args.vc.data;
3432 	ctx->objmask = NULL;
3433 	/* Set up default configuration. */
3434 	action_vxlan_encap_data = ctx->object;
3435 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3436 		.conf = (struct rte_flow_action_vxlan_encap){
3437 			.definition = action_vxlan_encap_data->items,
3438 		},
3439 		.items = {
3440 			{
3441 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3442 				.spec = &action_vxlan_encap_data->item_eth,
3443 				.mask = &rte_flow_item_eth_mask,
3444 			},
3445 			{
3446 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3447 				.spec = &action_vxlan_encap_data->item_vlan,
3448 				.mask = &rte_flow_item_vlan_mask,
3449 			},
3450 			{
3451 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3452 				.spec = &action_vxlan_encap_data->item_ipv4,
3453 				.mask = &rte_flow_item_ipv4_mask,
3454 			},
3455 			{
3456 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3457 				.spec = &action_vxlan_encap_data->item_udp,
3458 				.mask = &rte_flow_item_udp_mask,
3459 			},
3460 			{
3461 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3462 				.spec = &action_vxlan_encap_data->item_vxlan,
3463 				.mask = &rte_flow_item_vxlan_mask,
3464 			},
3465 			{
3466 				.type = RTE_FLOW_ITEM_TYPE_END,
3467 			},
3468 		},
3469 		.item_eth.type = 0,
3470 		.item_vlan = {
3471 			.tci = vxlan_encap_conf.vlan_tci,
3472 			.inner_type = 0,
3473 		},
3474 		.item_ipv4.hdr = {
3475 			.src_addr = vxlan_encap_conf.ipv4_src,
3476 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3477 		},
3478 		.item_udp.hdr = {
3479 			.src_port = vxlan_encap_conf.udp_src,
3480 			.dst_port = vxlan_encap_conf.udp_dst,
3481 		},
3482 		.item_vxlan.flags = 0,
3483 	};
3484 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3485 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3486 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3487 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3488 	if (!vxlan_encap_conf.select_ipv4) {
3489 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3490 		       &vxlan_encap_conf.ipv6_src,
3491 		       sizeof(vxlan_encap_conf.ipv6_src));
3492 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3493 		       &vxlan_encap_conf.ipv6_dst,
3494 		       sizeof(vxlan_encap_conf.ipv6_dst));
3495 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3496 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3497 			.spec = &action_vxlan_encap_data->item_ipv6,
3498 			.mask = &rte_flow_item_ipv6_mask,
3499 		};
3500 	}
3501 	if (!vxlan_encap_conf.select_vlan)
3502 		action_vxlan_encap_data->items[1].type =
3503 			RTE_FLOW_ITEM_TYPE_VOID;
3504 	if (vxlan_encap_conf.select_tos_ttl) {
3505 		if (vxlan_encap_conf.select_ipv4) {
3506 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3507 
3508 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3509 			       sizeof(ipv4_mask_tos));
3510 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3511 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3512 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3513 					vxlan_encap_conf.ip_tos;
3514 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3515 					vxlan_encap_conf.ip_ttl;
3516 			action_vxlan_encap_data->items[2].mask =
3517 							&ipv4_mask_tos;
3518 		} else {
3519 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3520 
3521 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3522 			       sizeof(ipv6_mask_tos));
3523 			ipv6_mask_tos.hdr.vtc_flow |=
3524 				RTE_BE32(0xfful << IPV6_HDR_TC_SHIFT);
3525 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3526 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3527 				rte_cpu_to_be_32
3528 					((uint32_t)vxlan_encap_conf.ip_tos <<
3529 					 IPV6_HDR_TC_SHIFT);
3530 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3531 					vxlan_encap_conf.ip_ttl;
3532 			action_vxlan_encap_data->items[2].mask =
3533 							&ipv6_mask_tos;
3534 		}
3535 	}
3536 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3537 	       RTE_DIM(vxlan_encap_conf.vni));
3538 	action->conf = &action_vxlan_encap_data->conf;
3539 	return ret;
3540 }
3541 
3542 /** Parse NVGRE encap action. */
3543 static int
3544 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3545 			    const char *str, unsigned int len,
3546 			    void *buf, unsigned int size)
3547 {
3548 	struct buffer *out = buf;
3549 	struct rte_flow_action *action;
3550 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3551 	int ret;
3552 
3553 	ret = parse_vc(ctx, token, str, len, buf, size);
3554 	if (ret < 0)
3555 		return ret;
3556 	/* Nothing else to do if there is no buffer. */
3557 	if (!out)
3558 		return ret;
3559 	if (!out->args.vc.actions_n)
3560 		return -1;
3561 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3562 	/* Point to selected object. */
3563 	ctx->object = out->args.vc.data;
3564 	ctx->objmask = NULL;
3565 	/* Set up default configuration. */
3566 	action_nvgre_encap_data = ctx->object;
3567 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3568 		.conf = (struct rte_flow_action_nvgre_encap){
3569 			.definition = action_nvgre_encap_data->items,
3570 		},
3571 		.items = {
3572 			{
3573 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3574 				.spec = &action_nvgre_encap_data->item_eth,
3575 				.mask = &rte_flow_item_eth_mask,
3576 			},
3577 			{
3578 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3579 				.spec = &action_nvgre_encap_data->item_vlan,
3580 				.mask = &rte_flow_item_vlan_mask,
3581 			},
3582 			{
3583 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3584 				.spec = &action_nvgre_encap_data->item_ipv4,
3585 				.mask = &rte_flow_item_ipv4_mask,
3586 			},
3587 			{
3588 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3589 				.spec = &action_nvgre_encap_data->item_nvgre,
3590 				.mask = &rte_flow_item_nvgre_mask,
3591 			},
3592 			{
3593 				.type = RTE_FLOW_ITEM_TYPE_END,
3594 			},
3595 		},
3596 		.item_eth.type = 0,
3597 		.item_vlan = {
3598 			.tci = nvgre_encap_conf.vlan_tci,
3599 			.inner_type = 0,
3600 		},
3601 		.item_ipv4.hdr = {
3602 		       .src_addr = nvgre_encap_conf.ipv4_src,
3603 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3604 		},
3605 		.item_nvgre.flow_id = 0,
3606 	};
3607 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3608 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3609 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3610 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3611 	if (!nvgre_encap_conf.select_ipv4) {
3612 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3613 		       &nvgre_encap_conf.ipv6_src,
3614 		       sizeof(nvgre_encap_conf.ipv6_src));
3615 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3616 		       &nvgre_encap_conf.ipv6_dst,
3617 		       sizeof(nvgre_encap_conf.ipv6_dst));
3618 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3619 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3620 			.spec = &action_nvgre_encap_data->item_ipv6,
3621 			.mask = &rte_flow_item_ipv6_mask,
3622 		};
3623 	}
3624 	if (!nvgre_encap_conf.select_vlan)
3625 		action_nvgre_encap_data->items[1].type =
3626 			RTE_FLOW_ITEM_TYPE_VOID;
3627 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3628 	       RTE_DIM(nvgre_encap_conf.tni));
3629 	action->conf = &action_nvgre_encap_data->conf;
3630 	return ret;
3631 }
3632 
3633 /** Parse l2 encap action. */
3634 static int
3635 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3636 			 const char *str, unsigned int len,
3637 			 void *buf, unsigned int size)
3638 {
3639 	struct buffer *out = buf;
3640 	struct rte_flow_action *action;
3641 	struct action_raw_encap_data *action_encap_data;
3642 	struct rte_flow_item_eth eth = { .type = 0, };
3643 	struct rte_flow_item_vlan vlan = {
3644 		.tci = mplsoudp_encap_conf.vlan_tci,
3645 		.inner_type = 0,
3646 	};
3647 	uint8_t *header;
3648 	int ret;
3649 
3650 	ret = parse_vc(ctx, token, str, len, buf, size);
3651 	if (ret < 0)
3652 		return ret;
3653 	/* Nothing else to do if there is no buffer. */
3654 	if (!out)
3655 		return ret;
3656 	if (!out->args.vc.actions_n)
3657 		return -1;
3658 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3659 	/* Point to selected object. */
3660 	ctx->object = out->args.vc.data;
3661 	ctx->objmask = NULL;
3662 	/* Copy the headers to the buffer. */
3663 	action_encap_data = ctx->object;
3664 	*action_encap_data = (struct action_raw_encap_data) {
3665 		.conf = (struct rte_flow_action_raw_encap){
3666 			.data = action_encap_data->data,
3667 		},
3668 		.data = {},
3669 	};
3670 	header = action_encap_data->data;
3671 	if (l2_encap_conf.select_vlan)
3672 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3673 	else if (l2_encap_conf.select_ipv4)
3674 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3675 	else
3676 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3677 	memcpy(eth.dst.addr_bytes,
3678 	       l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
3679 	memcpy(eth.src.addr_bytes,
3680 	       l2_encap_conf.eth_src, ETHER_ADDR_LEN);
3681 	memcpy(header, &eth, sizeof(eth));
3682 	header += sizeof(eth);
3683 	if (l2_encap_conf.select_vlan) {
3684 		if (l2_encap_conf.select_ipv4)
3685 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3686 		else
3687 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3688 		memcpy(header, &vlan, sizeof(vlan));
3689 		header += sizeof(vlan);
3690 	}
3691 	action_encap_data->conf.size = header -
3692 		action_encap_data->data;
3693 	action->conf = &action_encap_data->conf;
3694 	return ret;
3695 }
3696 
3697 /** Parse l2 decap action. */
3698 static int
3699 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3700 			 const char *str, unsigned int len,
3701 			 void *buf, unsigned int size)
3702 {
3703 	struct buffer *out = buf;
3704 	struct rte_flow_action *action;
3705 	struct action_raw_decap_data *action_decap_data;
3706 	struct rte_flow_item_eth eth = { .type = 0, };
3707 	struct rte_flow_item_vlan vlan = {
3708 		.tci = mplsoudp_encap_conf.vlan_tci,
3709 		.inner_type = 0,
3710 	};
3711 	uint8_t *header;
3712 	int ret;
3713 
3714 	ret = parse_vc(ctx, token, str, len, buf, size);
3715 	if (ret < 0)
3716 		return ret;
3717 	/* Nothing else to do if there is no buffer. */
3718 	if (!out)
3719 		return ret;
3720 	if (!out->args.vc.actions_n)
3721 		return -1;
3722 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3723 	/* Point to selected object. */
3724 	ctx->object = out->args.vc.data;
3725 	ctx->objmask = NULL;
3726 	/* Copy the headers to the buffer. */
3727 	action_decap_data = ctx->object;
3728 	*action_decap_data = (struct action_raw_decap_data) {
3729 		.conf = (struct rte_flow_action_raw_decap){
3730 			.data = action_decap_data->data,
3731 		},
3732 		.data = {},
3733 	};
3734 	header = action_decap_data->data;
3735 	if (l2_decap_conf.select_vlan)
3736 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3737 	memcpy(header, &eth, sizeof(eth));
3738 	header += sizeof(eth);
3739 	if (l2_decap_conf.select_vlan) {
3740 		memcpy(header, &vlan, sizeof(vlan));
3741 		header += sizeof(vlan);
3742 	}
3743 	action_decap_data->conf.size = header -
3744 		action_decap_data->data;
3745 	action->conf = &action_decap_data->conf;
3746 	return ret;
3747 }
3748 
3749 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3750 
3751 /** Parse MPLSOGRE encap action. */
3752 static int
3753 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3754 			       const char *str, unsigned int len,
3755 			       void *buf, unsigned int size)
3756 {
3757 	struct buffer *out = buf;
3758 	struct rte_flow_action *action;
3759 	struct action_raw_encap_data *action_encap_data;
3760 	struct rte_flow_item_eth eth = { .type = 0, };
3761 	struct rte_flow_item_vlan vlan = {
3762 		.tci = mplsogre_encap_conf.vlan_tci,
3763 		.inner_type = 0,
3764 	};
3765 	struct rte_flow_item_ipv4 ipv4 = {
3766 		.hdr =  {
3767 			.src_addr = mplsogre_encap_conf.ipv4_src,
3768 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3769 			.next_proto_id = IPPROTO_GRE,
3770 		},
3771 	};
3772 	struct rte_flow_item_ipv6 ipv6 = {
3773 		.hdr =  {
3774 			.proto = IPPROTO_GRE,
3775 		},
3776 	};
3777 	struct rte_flow_item_gre gre = {
3778 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3779 	};
3780 	struct rte_flow_item_mpls mpls;
3781 	uint8_t *header;
3782 	int ret;
3783 
3784 	ret = parse_vc(ctx, token, str, len, buf, size);
3785 	if (ret < 0)
3786 		return ret;
3787 	/* Nothing else to do if there is no buffer. */
3788 	if (!out)
3789 		return ret;
3790 	if (!out->args.vc.actions_n)
3791 		return -1;
3792 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3793 	/* Point to selected object. */
3794 	ctx->object = out->args.vc.data;
3795 	ctx->objmask = NULL;
3796 	/* Copy the headers to the buffer. */
3797 	action_encap_data = ctx->object;
3798 	*action_encap_data = (struct action_raw_encap_data) {
3799 		.conf = (struct rte_flow_action_raw_encap){
3800 			.data = action_encap_data->data,
3801 		},
3802 		.data = {},
3803 		.preserve = {},
3804 	};
3805 	header = action_encap_data->data;
3806 	if (mplsogre_encap_conf.select_vlan)
3807 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3808 	else if (mplsogre_encap_conf.select_ipv4)
3809 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3810 	else
3811 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3812 	memcpy(eth.dst.addr_bytes,
3813 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3814 	memcpy(eth.src.addr_bytes,
3815 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3816 	memcpy(header, &eth, sizeof(eth));
3817 	header += sizeof(eth);
3818 	if (mplsogre_encap_conf.select_vlan) {
3819 		if (mplsogre_encap_conf.select_ipv4)
3820 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3821 		else
3822 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3823 		memcpy(header, &vlan, sizeof(vlan));
3824 		header += sizeof(vlan);
3825 	}
3826 	if (mplsogre_encap_conf.select_ipv4) {
3827 		memcpy(header, &ipv4, sizeof(ipv4));
3828 		header += sizeof(ipv4);
3829 	} else {
3830 		memcpy(&ipv6.hdr.src_addr,
3831 		       &mplsogre_encap_conf.ipv6_src,
3832 		       sizeof(mplsogre_encap_conf.ipv6_src));
3833 		memcpy(&ipv6.hdr.dst_addr,
3834 		       &mplsogre_encap_conf.ipv6_dst,
3835 		       sizeof(mplsogre_encap_conf.ipv6_dst));
3836 		memcpy(header, &ipv6, sizeof(ipv6));
3837 		header += sizeof(ipv6);
3838 	}
3839 	memcpy(header, &gre, sizeof(gre));
3840 	header += sizeof(gre);
3841 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3842 	       RTE_DIM(mplsogre_encap_conf.label));
3843 	mpls.label_tc_s[2] |= 0x1;
3844 	memcpy(header, &mpls, sizeof(mpls));
3845 	header += sizeof(mpls);
3846 	action_encap_data->conf.size = header -
3847 		action_encap_data->data;
3848 	action->conf = &action_encap_data->conf;
3849 	return ret;
3850 }
3851 
3852 /** Parse MPLSOGRE decap action. */
3853 static int
3854 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3855 			       const char *str, unsigned int len,
3856 			       void *buf, unsigned int size)
3857 {
3858 	struct buffer *out = buf;
3859 	struct rte_flow_action *action;
3860 	struct action_raw_decap_data *action_decap_data;
3861 	struct rte_flow_item_eth eth = { .type = 0, };
3862 	struct rte_flow_item_vlan vlan = {.tci = 0};
3863 	struct rte_flow_item_ipv4 ipv4 = {
3864 		.hdr =  {
3865 			.next_proto_id = IPPROTO_GRE,
3866 		},
3867 	};
3868 	struct rte_flow_item_ipv6 ipv6 = {
3869 		.hdr =  {
3870 			.proto = IPPROTO_GRE,
3871 		},
3872 	};
3873 	struct rte_flow_item_gre gre = {
3874 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3875 	};
3876 	struct rte_flow_item_mpls mpls;
3877 	uint8_t *header;
3878 	int ret;
3879 
3880 	ret = parse_vc(ctx, token, str, len, buf, size);
3881 	if (ret < 0)
3882 		return ret;
3883 	/* Nothing else to do if there is no buffer. */
3884 	if (!out)
3885 		return ret;
3886 	if (!out->args.vc.actions_n)
3887 		return -1;
3888 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3889 	/* Point to selected object. */
3890 	ctx->object = out->args.vc.data;
3891 	ctx->objmask = NULL;
3892 	/* Copy the headers to the buffer. */
3893 	action_decap_data = ctx->object;
3894 	*action_decap_data = (struct action_raw_decap_data) {
3895 		.conf = (struct rte_flow_action_raw_decap){
3896 			.data = action_decap_data->data,
3897 		},
3898 		.data = {},
3899 	};
3900 	header = action_decap_data->data;
3901 	if (mplsogre_decap_conf.select_vlan)
3902 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3903 	else if (mplsogre_encap_conf.select_ipv4)
3904 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3905 	else
3906 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3907 	memcpy(eth.dst.addr_bytes,
3908 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3909 	memcpy(eth.src.addr_bytes,
3910 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3911 	memcpy(header, &eth, sizeof(eth));
3912 	header += sizeof(eth);
3913 	if (mplsogre_encap_conf.select_vlan) {
3914 		if (mplsogre_encap_conf.select_ipv4)
3915 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3916 		else
3917 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3918 		memcpy(header, &vlan, sizeof(vlan));
3919 		header += sizeof(vlan);
3920 	}
3921 	if (mplsogre_encap_conf.select_ipv4) {
3922 		memcpy(header, &ipv4, sizeof(ipv4));
3923 		header += sizeof(ipv4);
3924 	} else {
3925 		memcpy(header, &ipv6, sizeof(ipv6));
3926 		header += sizeof(ipv6);
3927 	}
3928 	memcpy(header, &gre, sizeof(gre));
3929 	header += sizeof(gre);
3930 	memset(&mpls, 0, sizeof(mpls));
3931 	memcpy(header, &mpls, sizeof(mpls));
3932 	header += sizeof(mpls);
3933 	action_decap_data->conf.size = header -
3934 		action_decap_data->data;
3935 	action->conf = &action_decap_data->conf;
3936 	return ret;
3937 }
3938 
3939 /** Parse MPLSOUDP encap action. */
3940 static int
3941 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
3942 			       const char *str, unsigned int len,
3943 			       void *buf, unsigned int size)
3944 {
3945 	struct buffer *out = buf;
3946 	struct rte_flow_action *action;
3947 	struct action_raw_encap_data *action_encap_data;
3948 	struct rte_flow_item_eth eth = { .type = 0, };
3949 	struct rte_flow_item_vlan vlan = {
3950 		.tci = mplsoudp_encap_conf.vlan_tci,
3951 		.inner_type = 0,
3952 	};
3953 	struct rte_flow_item_ipv4 ipv4 = {
3954 		.hdr =  {
3955 			.src_addr = mplsoudp_encap_conf.ipv4_src,
3956 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
3957 			.next_proto_id = IPPROTO_UDP,
3958 		},
3959 	};
3960 	struct rte_flow_item_ipv6 ipv6 = {
3961 		.hdr =  {
3962 			.proto = IPPROTO_UDP,
3963 		},
3964 	};
3965 	struct rte_flow_item_udp udp = {
3966 		.hdr = {
3967 			.src_port = mplsoudp_encap_conf.udp_src,
3968 			.dst_port = mplsoudp_encap_conf.udp_dst,
3969 		},
3970 	};
3971 	struct rte_flow_item_mpls mpls;
3972 	uint8_t *header;
3973 	int ret;
3974 
3975 	ret = parse_vc(ctx, token, str, len, buf, size);
3976 	if (ret < 0)
3977 		return ret;
3978 	/* Nothing else to do if there is no buffer. */
3979 	if (!out)
3980 		return ret;
3981 	if (!out->args.vc.actions_n)
3982 		return -1;
3983 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3984 	/* Point to selected object. */
3985 	ctx->object = out->args.vc.data;
3986 	ctx->objmask = NULL;
3987 	/* Copy the headers to the buffer. */
3988 	action_encap_data = ctx->object;
3989 	*action_encap_data = (struct action_raw_encap_data) {
3990 		.conf = (struct rte_flow_action_raw_encap){
3991 			.data = action_encap_data->data,
3992 		},
3993 		.data = {},
3994 		.preserve = {},
3995 	};
3996 	header = action_encap_data->data;
3997 	if (mplsoudp_encap_conf.select_vlan)
3998 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3999 	else if (mplsoudp_encap_conf.select_ipv4)
4000 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4001 	else
4002 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4003 	memcpy(eth.dst.addr_bytes,
4004 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4005 	memcpy(eth.src.addr_bytes,
4006 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4007 	memcpy(header, &eth, sizeof(eth));
4008 	header += sizeof(eth);
4009 	if (mplsoudp_encap_conf.select_vlan) {
4010 		if (mplsoudp_encap_conf.select_ipv4)
4011 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4012 		else
4013 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4014 		memcpy(header, &vlan, sizeof(vlan));
4015 		header += sizeof(vlan);
4016 	}
4017 	if (mplsoudp_encap_conf.select_ipv4) {
4018 		memcpy(header, &ipv4, sizeof(ipv4));
4019 		header += sizeof(ipv4);
4020 	} else {
4021 		memcpy(&ipv6.hdr.src_addr,
4022 		       &mplsoudp_encap_conf.ipv6_src,
4023 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4024 		memcpy(&ipv6.hdr.dst_addr,
4025 		       &mplsoudp_encap_conf.ipv6_dst,
4026 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4027 		memcpy(header, &ipv6, sizeof(ipv6));
4028 		header += sizeof(ipv6);
4029 	}
4030 	memcpy(header, &udp, sizeof(udp));
4031 	header += sizeof(udp);
4032 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4033 	       RTE_DIM(mplsoudp_encap_conf.label));
4034 	mpls.label_tc_s[2] |= 0x1;
4035 	memcpy(header, &mpls, sizeof(mpls));
4036 	header += sizeof(mpls);
4037 	action_encap_data->conf.size = header -
4038 		action_encap_data->data;
4039 	action->conf = &action_encap_data->conf;
4040 	return ret;
4041 }
4042 
4043 /** Parse MPLSOUDP decap action. */
4044 static int
4045 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4046 			       const char *str, unsigned int len,
4047 			       void *buf, unsigned int size)
4048 {
4049 	struct buffer *out = buf;
4050 	struct rte_flow_action *action;
4051 	struct action_raw_decap_data *action_decap_data;
4052 	struct rte_flow_item_eth eth = { .type = 0, };
4053 	struct rte_flow_item_vlan vlan = {.tci = 0};
4054 	struct rte_flow_item_ipv4 ipv4 = {
4055 		.hdr =  {
4056 			.next_proto_id = IPPROTO_UDP,
4057 		},
4058 	};
4059 	struct rte_flow_item_ipv6 ipv6 = {
4060 		.hdr =  {
4061 			.proto = IPPROTO_UDP,
4062 		},
4063 	};
4064 	struct rte_flow_item_udp udp = {
4065 		.hdr = {
4066 			.dst_port = rte_cpu_to_be_16(6635),
4067 		},
4068 	};
4069 	struct rte_flow_item_mpls mpls;
4070 	uint8_t *header;
4071 	int ret;
4072 
4073 	ret = parse_vc(ctx, token, str, len, buf, size);
4074 	if (ret < 0)
4075 		return ret;
4076 	/* Nothing else to do if there is no buffer. */
4077 	if (!out)
4078 		return ret;
4079 	if (!out->args.vc.actions_n)
4080 		return -1;
4081 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4082 	/* Point to selected object. */
4083 	ctx->object = out->args.vc.data;
4084 	ctx->objmask = NULL;
4085 	/* Copy the headers to the buffer. */
4086 	action_decap_data = ctx->object;
4087 	*action_decap_data = (struct action_raw_decap_data) {
4088 		.conf = (struct rte_flow_action_raw_decap){
4089 			.data = action_decap_data->data,
4090 		},
4091 		.data = {},
4092 	};
4093 	header = action_decap_data->data;
4094 	if (mplsoudp_decap_conf.select_vlan)
4095 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4096 	else if (mplsoudp_encap_conf.select_ipv4)
4097 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4098 	else
4099 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4100 	memcpy(eth.dst.addr_bytes,
4101 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4102 	memcpy(eth.src.addr_bytes,
4103 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4104 	memcpy(header, &eth, sizeof(eth));
4105 	header += sizeof(eth);
4106 	if (mplsoudp_encap_conf.select_vlan) {
4107 		if (mplsoudp_encap_conf.select_ipv4)
4108 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4109 		else
4110 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4111 		memcpy(header, &vlan, sizeof(vlan));
4112 		header += sizeof(vlan);
4113 	}
4114 	if (mplsoudp_encap_conf.select_ipv4) {
4115 		memcpy(header, &ipv4, sizeof(ipv4));
4116 		header += sizeof(ipv4);
4117 	} else {
4118 		memcpy(header, &ipv6, sizeof(ipv6));
4119 		header += sizeof(ipv6);
4120 	}
4121 	memcpy(header, &udp, sizeof(udp));
4122 	header += sizeof(udp);
4123 	memset(&mpls, 0, sizeof(mpls));
4124 	memcpy(header, &mpls, sizeof(mpls));
4125 	header += sizeof(mpls);
4126 	action_decap_data->conf.size = header -
4127 		action_decap_data->data;
4128 	action->conf = &action_decap_data->conf;
4129 	return ret;
4130 }
4131 
4132 /** Parse tokens for destroy command. */
4133 static int
4134 parse_destroy(struct context *ctx, const struct token *token,
4135 	      const char *str, unsigned int len,
4136 	      void *buf, unsigned int size)
4137 {
4138 	struct buffer *out = buf;
4139 
4140 	/* Token name must match. */
4141 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4142 		return -1;
4143 	/* Nothing else to do if there is no buffer. */
4144 	if (!out)
4145 		return len;
4146 	if (!out->command) {
4147 		if (ctx->curr != DESTROY)
4148 			return -1;
4149 		if (sizeof(*out) > size)
4150 			return -1;
4151 		out->command = ctx->curr;
4152 		ctx->objdata = 0;
4153 		ctx->object = out;
4154 		ctx->objmask = NULL;
4155 		out->args.destroy.rule =
4156 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4157 					       sizeof(double));
4158 		return len;
4159 	}
4160 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4161 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4162 		return -1;
4163 	ctx->objdata = 0;
4164 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4165 	ctx->objmask = NULL;
4166 	return len;
4167 }
4168 
4169 /** Parse tokens for flush command. */
4170 static int
4171 parse_flush(struct context *ctx, const struct token *token,
4172 	    const char *str, unsigned int len,
4173 	    void *buf, unsigned int size)
4174 {
4175 	struct buffer *out = buf;
4176 
4177 	/* Token name must match. */
4178 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4179 		return -1;
4180 	/* Nothing else to do if there is no buffer. */
4181 	if (!out)
4182 		return len;
4183 	if (!out->command) {
4184 		if (ctx->curr != FLUSH)
4185 			return -1;
4186 		if (sizeof(*out) > size)
4187 			return -1;
4188 		out->command = ctx->curr;
4189 		ctx->objdata = 0;
4190 		ctx->object = out;
4191 		ctx->objmask = NULL;
4192 	}
4193 	return len;
4194 }
4195 
4196 /** Parse tokens for query command. */
4197 static int
4198 parse_query(struct context *ctx, const struct token *token,
4199 	    const char *str, unsigned int len,
4200 	    void *buf, unsigned int size)
4201 {
4202 	struct buffer *out = buf;
4203 
4204 	/* Token name must match. */
4205 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4206 		return -1;
4207 	/* Nothing else to do if there is no buffer. */
4208 	if (!out)
4209 		return len;
4210 	if (!out->command) {
4211 		if (ctx->curr != QUERY)
4212 			return -1;
4213 		if (sizeof(*out) > size)
4214 			return -1;
4215 		out->command = ctx->curr;
4216 		ctx->objdata = 0;
4217 		ctx->object = out;
4218 		ctx->objmask = NULL;
4219 	}
4220 	return len;
4221 }
4222 
4223 /** Parse action names. */
4224 static int
4225 parse_action(struct context *ctx, const struct token *token,
4226 	     const char *str, unsigned int len,
4227 	     void *buf, unsigned int size)
4228 {
4229 	struct buffer *out = buf;
4230 	const struct arg *arg = pop_args(ctx);
4231 	unsigned int i;
4232 
4233 	(void)size;
4234 	/* Argument is expected. */
4235 	if (!arg)
4236 		return -1;
4237 	/* Parse action name. */
4238 	for (i = 0; next_action[i]; ++i) {
4239 		const struct parse_action_priv *priv;
4240 
4241 		token = &token_list[next_action[i]];
4242 		if (strcmp_partial(token->name, str, len))
4243 			continue;
4244 		priv = token->priv;
4245 		if (!priv)
4246 			goto error;
4247 		if (out)
4248 			memcpy((uint8_t *)ctx->object + arg->offset,
4249 			       &priv->type,
4250 			       arg->size);
4251 		return len;
4252 	}
4253 error:
4254 	push_args(ctx, arg);
4255 	return -1;
4256 }
4257 
4258 /** Parse tokens for list command. */
4259 static int
4260 parse_list(struct context *ctx, const struct token *token,
4261 	   const char *str, unsigned int len,
4262 	   void *buf, unsigned int size)
4263 {
4264 	struct buffer *out = buf;
4265 
4266 	/* Token name must match. */
4267 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4268 		return -1;
4269 	/* Nothing else to do if there is no buffer. */
4270 	if (!out)
4271 		return len;
4272 	if (!out->command) {
4273 		if (ctx->curr != LIST)
4274 			return -1;
4275 		if (sizeof(*out) > size)
4276 			return -1;
4277 		out->command = ctx->curr;
4278 		ctx->objdata = 0;
4279 		ctx->object = out;
4280 		ctx->objmask = NULL;
4281 		out->args.list.group =
4282 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4283 					       sizeof(double));
4284 		return len;
4285 	}
4286 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4287 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4288 		return -1;
4289 	ctx->objdata = 0;
4290 	ctx->object = out->args.list.group + out->args.list.group_n++;
4291 	ctx->objmask = NULL;
4292 	return len;
4293 }
4294 
4295 /** Parse tokens for isolate command. */
4296 static int
4297 parse_isolate(struct context *ctx, const struct token *token,
4298 	      const char *str, unsigned int len,
4299 	      void *buf, unsigned int size)
4300 {
4301 	struct buffer *out = buf;
4302 
4303 	/* Token name must match. */
4304 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4305 		return -1;
4306 	/* Nothing else to do if there is no buffer. */
4307 	if (!out)
4308 		return len;
4309 	if (!out->command) {
4310 		if (ctx->curr != ISOLATE)
4311 			return -1;
4312 		if (sizeof(*out) > size)
4313 			return -1;
4314 		out->command = ctx->curr;
4315 		ctx->objdata = 0;
4316 		ctx->object = out;
4317 		ctx->objmask = NULL;
4318 	}
4319 	return len;
4320 }
4321 
4322 /**
4323  * Parse signed/unsigned integers 8 to 64-bit long.
4324  *
4325  * Last argument (ctx->args) is retrieved to determine integer type and
4326  * storage location.
4327  */
4328 static int
4329 parse_int(struct context *ctx, const struct token *token,
4330 	  const char *str, unsigned int len,
4331 	  void *buf, unsigned int size)
4332 {
4333 	const struct arg *arg = pop_args(ctx);
4334 	uintmax_t u;
4335 	char *end;
4336 
4337 	(void)token;
4338 	/* Argument is expected. */
4339 	if (!arg)
4340 		return -1;
4341 	errno = 0;
4342 	u = arg->sign ?
4343 		(uintmax_t)strtoimax(str, &end, 0) :
4344 		strtoumax(str, &end, 0);
4345 	if (errno || (size_t)(end - str) != len)
4346 		goto error;
4347 	if (arg->bounded &&
4348 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4349 			    (intmax_t)u > (intmax_t)arg->max)) ||
4350 	     (!arg->sign && (u < arg->min || u > arg->max))))
4351 		goto error;
4352 	if (!ctx->object)
4353 		return len;
4354 	if (arg->mask) {
4355 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4356 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4357 			goto error;
4358 		return len;
4359 	}
4360 	buf = (uint8_t *)ctx->object + arg->offset;
4361 	size = arg->size;
4362 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4363 		return -1;
4364 objmask:
4365 	switch (size) {
4366 	case sizeof(uint8_t):
4367 		*(uint8_t *)buf = u;
4368 		break;
4369 	case sizeof(uint16_t):
4370 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4371 		break;
4372 	case sizeof(uint8_t [3]):
4373 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4374 		if (!arg->hton) {
4375 			((uint8_t *)buf)[0] = u;
4376 			((uint8_t *)buf)[1] = u >> 8;
4377 			((uint8_t *)buf)[2] = u >> 16;
4378 			break;
4379 		}
4380 #endif
4381 		((uint8_t *)buf)[0] = u >> 16;
4382 		((uint8_t *)buf)[1] = u >> 8;
4383 		((uint8_t *)buf)[2] = u;
4384 		break;
4385 	case sizeof(uint32_t):
4386 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4387 		break;
4388 	case sizeof(uint64_t):
4389 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4390 		break;
4391 	default:
4392 		goto error;
4393 	}
4394 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4395 		u = -1;
4396 		buf = (uint8_t *)ctx->objmask + arg->offset;
4397 		goto objmask;
4398 	}
4399 	return len;
4400 error:
4401 	push_args(ctx, arg);
4402 	return -1;
4403 }
4404 
4405 /**
4406  * Parse a string.
4407  *
4408  * Three arguments (ctx->args) are retrieved from the stack to store data,
4409  * its actual length and address (in that order).
4410  */
4411 static int
4412 parse_string(struct context *ctx, const struct token *token,
4413 	     const char *str, unsigned int len,
4414 	     void *buf, unsigned int size)
4415 {
4416 	const struct arg *arg_data = pop_args(ctx);
4417 	const struct arg *arg_len = pop_args(ctx);
4418 	const struct arg *arg_addr = pop_args(ctx);
4419 	char tmp[16]; /* Ought to be enough. */
4420 	int ret;
4421 
4422 	/* Arguments are expected. */
4423 	if (!arg_data)
4424 		return -1;
4425 	if (!arg_len) {
4426 		push_args(ctx, arg_data);
4427 		return -1;
4428 	}
4429 	if (!arg_addr) {
4430 		push_args(ctx, arg_len);
4431 		push_args(ctx, arg_data);
4432 		return -1;
4433 	}
4434 	size = arg_data->size;
4435 	/* Bit-mask fill is not supported. */
4436 	if (arg_data->mask || size < len)
4437 		goto error;
4438 	if (!ctx->object)
4439 		return len;
4440 	/* Let parse_int() fill length information first. */
4441 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4442 	if (ret < 0)
4443 		goto error;
4444 	push_args(ctx, arg_len);
4445 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4446 	if (ret < 0) {
4447 		pop_args(ctx);
4448 		goto error;
4449 	}
4450 	buf = (uint8_t *)ctx->object + arg_data->offset;
4451 	/* Output buffer is not necessarily NUL-terminated. */
4452 	memcpy(buf, str, len);
4453 	memset((uint8_t *)buf + len, 0x00, size - len);
4454 	if (ctx->objmask)
4455 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4456 	/* Save address if requested. */
4457 	if (arg_addr->size) {
4458 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4459 		       (void *[]){
4460 			(uint8_t *)ctx->object + arg_data->offset
4461 		       },
4462 		       arg_addr->size);
4463 		if (ctx->objmask)
4464 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4465 			       (void *[]){
4466 				(uint8_t *)ctx->objmask + arg_data->offset
4467 			       },
4468 			       arg_addr->size);
4469 	}
4470 	return len;
4471 error:
4472 	push_args(ctx, arg_addr);
4473 	push_args(ctx, arg_len);
4474 	push_args(ctx, arg_data);
4475 	return -1;
4476 }
4477 
4478 /**
4479  * Parse a MAC address.
4480  *
4481  * Last argument (ctx->args) is retrieved to determine storage size and
4482  * location.
4483  */
4484 static int
4485 parse_mac_addr(struct context *ctx, const struct token *token,
4486 	       const char *str, unsigned int len,
4487 	       void *buf, unsigned int size)
4488 {
4489 	const struct arg *arg = pop_args(ctx);
4490 	struct ether_addr tmp;
4491 	int ret;
4492 
4493 	(void)token;
4494 	/* Argument is expected. */
4495 	if (!arg)
4496 		return -1;
4497 	size = arg->size;
4498 	/* Bit-mask fill is not supported. */
4499 	if (arg->mask || size != sizeof(tmp))
4500 		goto error;
4501 	/* Only network endian is supported. */
4502 	if (!arg->hton)
4503 		goto error;
4504 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4505 	if (ret < 0 || (unsigned int)ret != len)
4506 		goto error;
4507 	if (!ctx->object)
4508 		return len;
4509 	buf = (uint8_t *)ctx->object + arg->offset;
4510 	memcpy(buf, &tmp, size);
4511 	if (ctx->objmask)
4512 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4513 	return len;
4514 error:
4515 	push_args(ctx, arg);
4516 	return -1;
4517 }
4518 
4519 /**
4520  * Parse an IPv4 address.
4521  *
4522  * Last argument (ctx->args) is retrieved to determine storage size and
4523  * location.
4524  */
4525 static int
4526 parse_ipv4_addr(struct context *ctx, const struct token *token,
4527 		const char *str, unsigned int len,
4528 		void *buf, unsigned int size)
4529 {
4530 	const struct arg *arg = pop_args(ctx);
4531 	char str2[len + 1];
4532 	struct in_addr tmp;
4533 	int ret;
4534 
4535 	/* Argument is expected. */
4536 	if (!arg)
4537 		return -1;
4538 	size = arg->size;
4539 	/* Bit-mask fill is not supported. */
4540 	if (arg->mask || size != sizeof(tmp))
4541 		goto error;
4542 	/* Only network endian is supported. */
4543 	if (!arg->hton)
4544 		goto error;
4545 	memcpy(str2, str, len);
4546 	str2[len] = '\0';
4547 	ret = inet_pton(AF_INET, str2, &tmp);
4548 	if (ret != 1) {
4549 		/* Attempt integer parsing. */
4550 		push_args(ctx, arg);
4551 		return parse_int(ctx, token, str, len, buf, size);
4552 	}
4553 	if (!ctx->object)
4554 		return len;
4555 	buf = (uint8_t *)ctx->object + arg->offset;
4556 	memcpy(buf, &tmp, size);
4557 	if (ctx->objmask)
4558 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4559 	return len;
4560 error:
4561 	push_args(ctx, arg);
4562 	return -1;
4563 }
4564 
4565 /**
4566  * Parse an IPv6 address.
4567  *
4568  * Last argument (ctx->args) is retrieved to determine storage size and
4569  * location.
4570  */
4571 static int
4572 parse_ipv6_addr(struct context *ctx, const struct token *token,
4573 		const char *str, unsigned int len,
4574 		void *buf, unsigned int size)
4575 {
4576 	const struct arg *arg = pop_args(ctx);
4577 	char str2[len + 1];
4578 	struct in6_addr tmp;
4579 	int ret;
4580 
4581 	(void)token;
4582 	/* Argument is expected. */
4583 	if (!arg)
4584 		return -1;
4585 	size = arg->size;
4586 	/* Bit-mask fill is not supported. */
4587 	if (arg->mask || size != sizeof(tmp))
4588 		goto error;
4589 	/* Only network endian is supported. */
4590 	if (!arg->hton)
4591 		goto error;
4592 	memcpy(str2, str, len);
4593 	str2[len] = '\0';
4594 	ret = inet_pton(AF_INET6, str2, &tmp);
4595 	if (ret != 1)
4596 		goto error;
4597 	if (!ctx->object)
4598 		return len;
4599 	buf = (uint8_t *)ctx->object + arg->offset;
4600 	memcpy(buf, &tmp, size);
4601 	if (ctx->objmask)
4602 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4603 	return len;
4604 error:
4605 	push_args(ctx, arg);
4606 	return -1;
4607 }
4608 
4609 /** Boolean values (even indices stand for false). */
4610 static const char *const boolean_name[] = {
4611 	"0", "1",
4612 	"false", "true",
4613 	"no", "yes",
4614 	"N", "Y",
4615 	"off", "on",
4616 	NULL,
4617 };
4618 
4619 /**
4620  * Parse a boolean value.
4621  *
4622  * Last argument (ctx->args) is retrieved to determine storage size and
4623  * location.
4624  */
4625 static int
4626 parse_boolean(struct context *ctx, const struct token *token,
4627 	      const char *str, unsigned int len,
4628 	      void *buf, unsigned int size)
4629 {
4630 	const struct arg *arg = pop_args(ctx);
4631 	unsigned int i;
4632 	int ret;
4633 
4634 	/* Argument is expected. */
4635 	if (!arg)
4636 		return -1;
4637 	for (i = 0; boolean_name[i]; ++i)
4638 		if (!strcmp_partial(boolean_name[i], str, len))
4639 			break;
4640 	/* Process token as integer. */
4641 	if (boolean_name[i])
4642 		str = i & 1 ? "1" : "0";
4643 	push_args(ctx, arg);
4644 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4645 	return ret > 0 ? (int)len : ret;
4646 }
4647 
4648 /** Parse port and update context. */
4649 static int
4650 parse_port(struct context *ctx, const struct token *token,
4651 	   const char *str, unsigned int len,
4652 	   void *buf, unsigned int size)
4653 {
4654 	struct buffer *out = &(struct buffer){ .port = 0 };
4655 	int ret;
4656 
4657 	if (buf)
4658 		out = buf;
4659 	else {
4660 		ctx->objdata = 0;
4661 		ctx->object = out;
4662 		ctx->objmask = NULL;
4663 		size = sizeof(*out);
4664 	}
4665 	ret = parse_int(ctx, token, str, len, out, size);
4666 	if (ret >= 0)
4667 		ctx->port = out->port;
4668 	if (!buf)
4669 		ctx->object = NULL;
4670 	return ret;
4671 }
4672 
4673 /** No completion. */
4674 static int
4675 comp_none(struct context *ctx, const struct token *token,
4676 	  unsigned int ent, char *buf, unsigned int size)
4677 {
4678 	(void)ctx;
4679 	(void)token;
4680 	(void)ent;
4681 	(void)buf;
4682 	(void)size;
4683 	return 0;
4684 }
4685 
4686 /** Complete boolean values. */
4687 static int
4688 comp_boolean(struct context *ctx, const struct token *token,
4689 	     unsigned int ent, char *buf, unsigned int size)
4690 {
4691 	unsigned int i;
4692 
4693 	(void)ctx;
4694 	(void)token;
4695 	for (i = 0; boolean_name[i]; ++i)
4696 		if (buf && i == ent)
4697 			return snprintf(buf, size, "%s", boolean_name[i]);
4698 	if (buf)
4699 		return -1;
4700 	return i;
4701 }
4702 
4703 /** Complete action names. */
4704 static int
4705 comp_action(struct context *ctx, const struct token *token,
4706 	    unsigned int ent, char *buf, unsigned int size)
4707 {
4708 	unsigned int i;
4709 
4710 	(void)ctx;
4711 	(void)token;
4712 	for (i = 0; next_action[i]; ++i)
4713 		if (buf && i == ent)
4714 			return snprintf(buf, size, "%s",
4715 					token_list[next_action[i]].name);
4716 	if (buf)
4717 		return -1;
4718 	return i;
4719 }
4720 
4721 /** Complete available ports. */
4722 static int
4723 comp_port(struct context *ctx, const struct token *token,
4724 	  unsigned int ent, char *buf, unsigned int size)
4725 {
4726 	unsigned int i = 0;
4727 	portid_t p;
4728 
4729 	(void)ctx;
4730 	(void)token;
4731 	RTE_ETH_FOREACH_DEV(p) {
4732 		if (buf && i == ent)
4733 			return snprintf(buf, size, "%u", p);
4734 		++i;
4735 	}
4736 	if (buf)
4737 		return -1;
4738 	return i;
4739 }
4740 
4741 /** Complete available rule IDs. */
4742 static int
4743 comp_rule_id(struct context *ctx, const struct token *token,
4744 	     unsigned int ent, char *buf, unsigned int size)
4745 {
4746 	unsigned int i = 0;
4747 	struct rte_port *port;
4748 	struct port_flow *pf;
4749 
4750 	(void)token;
4751 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4752 	    ctx->port == (portid_t)RTE_PORT_ALL)
4753 		return -1;
4754 	port = &ports[ctx->port];
4755 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4756 		if (buf && i == ent)
4757 			return snprintf(buf, size, "%u", pf->id);
4758 		++i;
4759 	}
4760 	if (buf)
4761 		return -1;
4762 	return i;
4763 }
4764 
4765 /** Complete type field for RSS action. */
4766 static int
4767 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4768 			unsigned int ent, char *buf, unsigned int size)
4769 {
4770 	unsigned int i;
4771 
4772 	(void)ctx;
4773 	(void)token;
4774 	for (i = 0; rss_type_table[i].str; ++i)
4775 		;
4776 	if (!buf)
4777 		return i + 1;
4778 	if (ent < i)
4779 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
4780 	if (ent == i)
4781 		return snprintf(buf, size, "end");
4782 	return -1;
4783 }
4784 
4785 /** Complete queue field for RSS action. */
4786 static int
4787 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4788 			 unsigned int ent, char *buf, unsigned int size)
4789 {
4790 	(void)ctx;
4791 	(void)token;
4792 	if (!buf)
4793 		return nb_rxq + 1;
4794 	if (ent < nb_rxq)
4795 		return snprintf(buf, size, "%u", ent);
4796 	if (ent == nb_rxq)
4797 		return snprintf(buf, size, "end");
4798 	return -1;
4799 }
4800 
4801 /** Internal context. */
4802 static struct context cmd_flow_context;
4803 
4804 /** Global parser instance (cmdline API). */
4805 cmdline_parse_inst_t cmd_flow;
4806 
4807 /** Initialize context. */
4808 static void
4809 cmd_flow_context_init(struct context *ctx)
4810 {
4811 	/* A full memset() is not necessary. */
4812 	ctx->curr = ZERO;
4813 	ctx->prev = ZERO;
4814 	ctx->next_num = 0;
4815 	ctx->args_num = 0;
4816 	ctx->eol = 0;
4817 	ctx->last = 0;
4818 	ctx->port = 0;
4819 	ctx->objdata = 0;
4820 	ctx->object = NULL;
4821 	ctx->objmask = NULL;
4822 }
4823 
4824 /** Parse a token (cmdline API). */
4825 static int
4826 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4827 	       unsigned int size)
4828 {
4829 	struct context *ctx = &cmd_flow_context;
4830 	const struct token *token;
4831 	const enum index *list;
4832 	int len;
4833 	int i;
4834 
4835 	(void)hdr;
4836 	token = &token_list[ctx->curr];
4837 	/* Check argument length. */
4838 	ctx->eol = 0;
4839 	ctx->last = 1;
4840 	for (len = 0; src[len]; ++len)
4841 		if (src[len] == '#' || isspace(src[len]))
4842 			break;
4843 	if (!len)
4844 		return -1;
4845 	/* Last argument and EOL detection. */
4846 	for (i = len; src[i]; ++i)
4847 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4848 			break;
4849 		else if (!isspace(src[i])) {
4850 			ctx->last = 0;
4851 			break;
4852 		}
4853 	for (; src[i]; ++i)
4854 		if (src[i] == '\r' || src[i] == '\n') {
4855 			ctx->eol = 1;
4856 			break;
4857 		}
4858 	/* Initialize context if necessary. */
4859 	if (!ctx->next_num) {
4860 		if (!token->next)
4861 			return 0;
4862 		ctx->next[ctx->next_num++] = token->next[0];
4863 	}
4864 	/* Process argument through candidates. */
4865 	ctx->prev = ctx->curr;
4866 	list = ctx->next[ctx->next_num - 1];
4867 	for (i = 0; list[i]; ++i) {
4868 		const struct token *next = &token_list[list[i]];
4869 		int tmp;
4870 
4871 		ctx->curr = list[i];
4872 		if (next->call)
4873 			tmp = next->call(ctx, next, src, len, result, size);
4874 		else
4875 			tmp = parse_default(ctx, next, src, len, result, size);
4876 		if (tmp == -1 || tmp != len)
4877 			continue;
4878 		token = next;
4879 		break;
4880 	}
4881 	if (!list[i])
4882 		return -1;
4883 	--ctx->next_num;
4884 	/* Push subsequent tokens if any. */
4885 	if (token->next)
4886 		for (i = 0; token->next[i]; ++i) {
4887 			if (ctx->next_num == RTE_DIM(ctx->next))
4888 				return -1;
4889 			ctx->next[ctx->next_num++] = token->next[i];
4890 		}
4891 	/* Push arguments if any. */
4892 	if (token->args)
4893 		for (i = 0; token->args[i]; ++i) {
4894 			if (ctx->args_num == RTE_DIM(ctx->args))
4895 				return -1;
4896 			ctx->args[ctx->args_num++] = token->args[i];
4897 		}
4898 	return len;
4899 }
4900 
4901 /** Return number of completion entries (cmdline API). */
4902 static int
4903 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
4904 {
4905 	struct context *ctx = &cmd_flow_context;
4906 	const struct token *token = &token_list[ctx->curr];
4907 	const enum index *list;
4908 	int i;
4909 
4910 	(void)hdr;
4911 	/* Count number of tokens in current list. */
4912 	if (ctx->next_num)
4913 		list = ctx->next[ctx->next_num - 1];
4914 	else
4915 		list = token->next[0];
4916 	for (i = 0; list[i]; ++i)
4917 		;
4918 	if (!i)
4919 		return 0;
4920 	/*
4921 	 * If there is a single token, use its completion callback, otherwise
4922 	 * return the number of entries.
4923 	 */
4924 	token = &token_list[list[0]];
4925 	if (i == 1 && token->comp) {
4926 		/* Save index for cmd_flow_get_help(). */
4927 		ctx->prev = list[0];
4928 		return token->comp(ctx, token, 0, NULL, 0);
4929 	}
4930 	return i;
4931 }
4932 
4933 /** Return a completion entry (cmdline API). */
4934 static int
4935 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
4936 			  char *dst, unsigned int size)
4937 {
4938 	struct context *ctx = &cmd_flow_context;
4939 	const struct token *token = &token_list[ctx->curr];
4940 	const enum index *list;
4941 	int i;
4942 
4943 	(void)hdr;
4944 	/* Count number of tokens in current list. */
4945 	if (ctx->next_num)
4946 		list = ctx->next[ctx->next_num - 1];
4947 	else
4948 		list = token->next[0];
4949 	for (i = 0; list[i]; ++i)
4950 		;
4951 	if (!i)
4952 		return -1;
4953 	/* If there is a single token, use its completion callback. */
4954 	token = &token_list[list[0]];
4955 	if (i == 1 && token->comp) {
4956 		/* Save index for cmd_flow_get_help(). */
4957 		ctx->prev = list[0];
4958 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
4959 	}
4960 	/* Otherwise make sure the index is valid and use defaults. */
4961 	if (index >= i)
4962 		return -1;
4963 	token = &token_list[list[index]];
4964 	snprintf(dst, size, "%s", token->name);
4965 	/* Save index for cmd_flow_get_help(). */
4966 	ctx->prev = list[index];
4967 	return 0;
4968 }
4969 
4970 /** Populate help strings for current token (cmdline API). */
4971 static int
4972 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
4973 {
4974 	struct context *ctx = &cmd_flow_context;
4975 	const struct token *token = &token_list[ctx->prev];
4976 
4977 	(void)hdr;
4978 	if (!size)
4979 		return -1;
4980 	/* Set token type and update global help with details. */
4981 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
4982 	if (token->help)
4983 		cmd_flow.help_str = token->help;
4984 	else
4985 		cmd_flow.help_str = token->name;
4986 	return 0;
4987 }
4988 
4989 /** Token definition template (cmdline API). */
4990 static struct cmdline_token_hdr cmd_flow_token_hdr = {
4991 	.ops = &(struct cmdline_token_ops){
4992 		.parse = cmd_flow_parse,
4993 		.complete_get_nb = cmd_flow_complete_get_nb,
4994 		.complete_get_elt = cmd_flow_complete_get_elt,
4995 		.get_help = cmd_flow_get_help,
4996 	},
4997 	.offset = 0,
4998 };
4999 
5000 /** Populate the next dynamic token. */
5001 static void
5002 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5003 	     cmdline_parse_token_hdr_t **hdr_inst)
5004 {
5005 	struct context *ctx = &cmd_flow_context;
5006 
5007 	/* Always reinitialize context before requesting the first token. */
5008 	if (!(hdr_inst - cmd_flow.tokens))
5009 		cmd_flow_context_init(ctx);
5010 	/* Return NULL when no more tokens are expected. */
5011 	if (!ctx->next_num && ctx->curr) {
5012 		*hdr = NULL;
5013 		return;
5014 	}
5015 	/* Determine if command should end here. */
5016 	if (ctx->eol && ctx->last && ctx->next_num) {
5017 		const enum index *list = ctx->next[ctx->next_num - 1];
5018 		int i;
5019 
5020 		for (i = 0; list[i]; ++i) {
5021 			if (list[i] != END)
5022 				continue;
5023 			*hdr = NULL;
5024 			return;
5025 		}
5026 	}
5027 	*hdr = &cmd_flow_token_hdr;
5028 }
5029 
5030 /** Dispatch parsed buffer to function calls. */
5031 static void
5032 cmd_flow_parsed(const struct buffer *in)
5033 {
5034 	switch (in->command) {
5035 	case VALIDATE:
5036 		port_flow_validate(in->port, &in->args.vc.attr,
5037 				   in->args.vc.pattern, in->args.vc.actions);
5038 		break;
5039 	case CREATE:
5040 		port_flow_create(in->port, &in->args.vc.attr,
5041 				 in->args.vc.pattern, in->args.vc.actions);
5042 		break;
5043 	case DESTROY:
5044 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5045 				  in->args.destroy.rule);
5046 		break;
5047 	case FLUSH:
5048 		port_flow_flush(in->port);
5049 		break;
5050 	case QUERY:
5051 		port_flow_query(in->port, in->args.query.rule,
5052 				&in->args.query.action);
5053 		break;
5054 	case LIST:
5055 		port_flow_list(in->port, in->args.list.group_n,
5056 			       in->args.list.group);
5057 		break;
5058 	case ISOLATE:
5059 		port_flow_isolate(in->port, in->args.isolate.set);
5060 		break;
5061 	default:
5062 		break;
5063 	}
5064 }
5065 
5066 /** Token generator and output processing callback (cmdline API). */
5067 static void
5068 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5069 {
5070 	if (cl == NULL)
5071 		cmd_flow_tok(arg0, arg2);
5072 	else
5073 		cmd_flow_parsed(arg0);
5074 }
5075 
5076 /** Global parser instance (cmdline API). */
5077 cmdline_parse_inst_t cmd_flow = {
5078 	.f = cmd_flow_cb,
5079 	.data = NULL, /**< Unused. */
5080 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5081 	.tokens = {
5082 		NULL,
5083 	}, /**< Tokens are returned by cmd_flow_tok(). */
5084 };
5085