xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 226c6e60c35b3491f612de00a7438a2d8f75a0ad)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 	START_SET,
32 	END_SET,
33 
34 	/* Common tokens. */
35 	INTEGER,
36 	UNSIGNED,
37 	PREFIX,
38 	BOOLEAN,
39 	STRING,
40 	HEX,
41 	MAC_ADDR,
42 	IPV4_ADDR,
43 	IPV6_ADDR,
44 	RULE_ID,
45 	PORT_ID,
46 	GROUP_ID,
47 	PRIORITY_LEVEL,
48 
49 	/* Top-level command. */
50 	SET,
51 	/* Sub-leve commands. */
52 	SET_RAW_ENCAP,
53 	SET_RAW_DECAP,
54 
55 	/* Top-level command. */
56 	FLOW,
57 	/* Sub-level commands. */
58 	VALIDATE,
59 	CREATE,
60 	DESTROY,
61 	FLUSH,
62 	QUERY,
63 	LIST,
64 	ISOLATE,
65 
66 	/* Destroy arguments. */
67 	DESTROY_RULE,
68 
69 	/* Query arguments. */
70 	QUERY_ACTION,
71 
72 	/* List arguments. */
73 	LIST_GROUP,
74 
75 	/* Validate/create arguments. */
76 	GROUP,
77 	PRIORITY,
78 	INGRESS,
79 	EGRESS,
80 	TRANSFER,
81 
82 	/* Validate/create pattern. */
83 	PATTERN,
84 	ITEM_PARAM_IS,
85 	ITEM_PARAM_SPEC,
86 	ITEM_PARAM_LAST,
87 	ITEM_PARAM_MASK,
88 	ITEM_PARAM_PREFIX,
89 	ITEM_NEXT,
90 	ITEM_END,
91 	ITEM_VOID,
92 	ITEM_INVERT,
93 	ITEM_ANY,
94 	ITEM_ANY_NUM,
95 	ITEM_PF,
96 	ITEM_VF,
97 	ITEM_VF_ID,
98 	ITEM_PHY_PORT,
99 	ITEM_PHY_PORT_INDEX,
100 	ITEM_PORT_ID,
101 	ITEM_PORT_ID_ID,
102 	ITEM_MARK,
103 	ITEM_MARK_ID,
104 	ITEM_RAW,
105 	ITEM_RAW_RELATIVE,
106 	ITEM_RAW_SEARCH,
107 	ITEM_RAW_OFFSET,
108 	ITEM_RAW_LIMIT,
109 	ITEM_RAW_PATTERN,
110 	ITEM_ETH,
111 	ITEM_ETH_DST,
112 	ITEM_ETH_SRC,
113 	ITEM_ETH_TYPE,
114 	ITEM_VLAN,
115 	ITEM_VLAN_TCI,
116 	ITEM_VLAN_PCP,
117 	ITEM_VLAN_DEI,
118 	ITEM_VLAN_VID,
119 	ITEM_VLAN_INNER_TYPE,
120 	ITEM_IPV4,
121 	ITEM_IPV4_TOS,
122 	ITEM_IPV4_TTL,
123 	ITEM_IPV4_PROTO,
124 	ITEM_IPV4_SRC,
125 	ITEM_IPV4_DST,
126 	ITEM_IPV6,
127 	ITEM_IPV6_TC,
128 	ITEM_IPV6_FLOW,
129 	ITEM_IPV6_PROTO,
130 	ITEM_IPV6_HOP,
131 	ITEM_IPV6_SRC,
132 	ITEM_IPV6_DST,
133 	ITEM_ICMP,
134 	ITEM_ICMP_TYPE,
135 	ITEM_ICMP_CODE,
136 	ITEM_UDP,
137 	ITEM_UDP_SRC,
138 	ITEM_UDP_DST,
139 	ITEM_TCP,
140 	ITEM_TCP_SRC,
141 	ITEM_TCP_DST,
142 	ITEM_TCP_FLAGS,
143 	ITEM_SCTP,
144 	ITEM_SCTP_SRC,
145 	ITEM_SCTP_DST,
146 	ITEM_SCTP_TAG,
147 	ITEM_SCTP_CKSUM,
148 	ITEM_VXLAN,
149 	ITEM_VXLAN_VNI,
150 	ITEM_E_TAG,
151 	ITEM_E_TAG_GRP_ECID_B,
152 	ITEM_NVGRE,
153 	ITEM_NVGRE_TNI,
154 	ITEM_MPLS,
155 	ITEM_MPLS_LABEL,
156 	ITEM_MPLS_TC,
157 	ITEM_MPLS_S,
158 	ITEM_GRE,
159 	ITEM_GRE_PROTO,
160 	ITEM_GRE_C_RSVD0_VER,
161 	ITEM_GRE_C_BIT,
162 	ITEM_GRE_K_BIT,
163 	ITEM_GRE_S_BIT,
164 	ITEM_FUZZY,
165 	ITEM_FUZZY_THRESH,
166 	ITEM_GTP,
167 	ITEM_GTP_TEID,
168 	ITEM_GTPC,
169 	ITEM_GTPU,
170 	ITEM_GENEVE,
171 	ITEM_GENEVE_VNI,
172 	ITEM_GENEVE_PROTO,
173 	ITEM_VXLAN_GPE,
174 	ITEM_VXLAN_GPE_VNI,
175 	ITEM_ARP_ETH_IPV4,
176 	ITEM_ARP_ETH_IPV4_SHA,
177 	ITEM_ARP_ETH_IPV4_SPA,
178 	ITEM_ARP_ETH_IPV4_THA,
179 	ITEM_ARP_ETH_IPV4_TPA,
180 	ITEM_IPV6_EXT,
181 	ITEM_IPV6_EXT_NEXT_HDR,
182 	ITEM_ICMP6,
183 	ITEM_ICMP6_TYPE,
184 	ITEM_ICMP6_CODE,
185 	ITEM_ICMP6_ND_NS,
186 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
187 	ITEM_ICMP6_ND_NA,
188 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
189 	ITEM_ICMP6_ND_OPT,
190 	ITEM_ICMP6_ND_OPT_TYPE,
191 	ITEM_ICMP6_ND_OPT_SLA_ETH,
192 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
193 	ITEM_ICMP6_ND_OPT_TLA_ETH,
194 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
195 	ITEM_META,
196 	ITEM_META_DATA,
197 	ITEM_GRE_KEY,
198 	ITEM_GRE_KEY_VALUE,
199 	ITEM_GTP_PSC,
200 	ITEM_GTP_PSC_QFI,
201 	ITEM_GTP_PSC_PDU_T,
202 	ITEM_PPPOES,
203 	ITEM_PPPOED,
204 	ITEM_PPPOE_SEID,
205 	ITEM_PPPOE_PROTO_ID,
206 
207 	/* Validate/create actions. */
208 	ACTIONS,
209 	ACTION_NEXT,
210 	ACTION_END,
211 	ACTION_VOID,
212 	ACTION_PASSTHRU,
213 	ACTION_JUMP,
214 	ACTION_JUMP_GROUP,
215 	ACTION_MARK,
216 	ACTION_MARK_ID,
217 	ACTION_FLAG,
218 	ACTION_QUEUE,
219 	ACTION_QUEUE_INDEX,
220 	ACTION_DROP,
221 	ACTION_COUNT,
222 	ACTION_COUNT_SHARED,
223 	ACTION_COUNT_ID,
224 	ACTION_RSS,
225 	ACTION_RSS_FUNC,
226 	ACTION_RSS_LEVEL,
227 	ACTION_RSS_FUNC_DEFAULT,
228 	ACTION_RSS_FUNC_TOEPLITZ,
229 	ACTION_RSS_FUNC_SIMPLE_XOR,
230 	ACTION_RSS_TYPES,
231 	ACTION_RSS_TYPE,
232 	ACTION_RSS_KEY,
233 	ACTION_RSS_KEY_LEN,
234 	ACTION_RSS_QUEUES,
235 	ACTION_RSS_QUEUE,
236 	ACTION_PF,
237 	ACTION_VF,
238 	ACTION_VF_ORIGINAL,
239 	ACTION_VF_ID,
240 	ACTION_PHY_PORT,
241 	ACTION_PHY_PORT_ORIGINAL,
242 	ACTION_PHY_PORT_INDEX,
243 	ACTION_PORT_ID,
244 	ACTION_PORT_ID_ORIGINAL,
245 	ACTION_PORT_ID_ID,
246 	ACTION_METER,
247 	ACTION_METER_ID,
248 	ACTION_OF_SET_MPLS_TTL,
249 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
250 	ACTION_OF_DEC_MPLS_TTL,
251 	ACTION_OF_SET_NW_TTL,
252 	ACTION_OF_SET_NW_TTL_NW_TTL,
253 	ACTION_OF_DEC_NW_TTL,
254 	ACTION_OF_COPY_TTL_OUT,
255 	ACTION_OF_COPY_TTL_IN,
256 	ACTION_OF_POP_VLAN,
257 	ACTION_OF_PUSH_VLAN,
258 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
259 	ACTION_OF_SET_VLAN_VID,
260 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
261 	ACTION_OF_SET_VLAN_PCP,
262 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
263 	ACTION_OF_POP_MPLS,
264 	ACTION_OF_POP_MPLS_ETHERTYPE,
265 	ACTION_OF_PUSH_MPLS,
266 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
267 	ACTION_VXLAN_ENCAP,
268 	ACTION_VXLAN_DECAP,
269 	ACTION_NVGRE_ENCAP,
270 	ACTION_NVGRE_DECAP,
271 	ACTION_L2_ENCAP,
272 	ACTION_L2_DECAP,
273 	ACTION_MPLSOGRE_ENCAP,
274 	ACTION_MPLSOGRE_DECAP,
275 	ACTION_MPLSOUDP_ENCAP,
276 	ACTION_MPLSOUDP_DECAP,
277 	ACTION_SET_IPV4_SRC,
278 	ACTION_SET_IPV4_SRC_IPV4_SRC,
279 	ACTION_SET_IPV4_DST,
280 	ACTION_SET_IPV4_DST_IPV4_DST,
281 	ACTION_SET_IPV6_SRC,
282 	ACTION_SET_IPV6_SRC_IPV6_SRC,
283 	ACTION_SET_IPV6_DST,
284 	ACTION_SET_IPV6_DST_IPV6_DST,
285 	ACTION_SET_TP_SRC,
286 	ACTION_SET_TP_SRC_TP_SRC,
287 	ACTION_SET_TP_DST,
288 	ACTION_SET_TP_DST_TP_DST,
289 	ACTION_MAC_SWAP,
290 	ACTION_DEC_TTL,
291 	ACTION_SET_TTL,
292 	ACTION_SET_TTL_TTL,
293 	ACTION_SET_MAC_SRC,
294 	ACTION_SET_MAC_SRC_MAC_SRC,
295 	ACTION_SET_MAC_DST,
296 	ACTION_SET_MAC_DST_MAC_DST,
297 	ACTION_INC_TCP_SEQ,
298 	ACTION_INC_TCP_SEQ_VALUE,
299 	ACTION_DEC_TCP_SEQ,
300 	ACTION_DEC_TCP_SEQ_VALUE,
301 	ACTION_INC_TCP_ACK,
302 	ACTION_INC_TCP_ACK_VALUE,
303 	ACTION_DEC_TCP_ACK,
304 	ACTION_DEC_TCP_ACK_VALUE,
305 	ACTION_RAW_ENCAP,
306 	ACTION_RAW_DECAP,
307 };
308 
309 /** Maximum size for pattern in struct rte_flow_item_raw. */
310 #define ITEM_RAW_PATTERN_SIZE 40
311 
312 /** Storage size for struct rte_flow_item_raw including pattern. */
313 #define ITEM_RAW_SIZE \
314 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
315 
316 /** Maximum number of queue indices in struct rte_flow_action_rss. */
317 #define ACTION_RSS_QUEUE_NUM 32
318 
319 /** Storage for struct rte_flow_action_rss including external data. */
320 struct action_rss_data {
321 	struct rte_flow_action_rss conf;
322 	uint8_t key[RSS_HASH_KEY_LENGTH];
323 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
324 };
325 
326 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
327 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
328 
329 #define ACTION_RAW_ENCAP_MAX_DATA 128
330 
331 /** Storage for struct rte_flow_action_raw_encap. */
332 struct raw_encap_conf {
333 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
334 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
335 	size_t size;
336 };
337 
338 struct raw_encap_conf raw_encap_conf = {.size = 0};
339 
340 /** Storage for struct rte_flow_action_raw_decap. */
341 struct raw_decap_conf {
342 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
343 	size_t size;
344 };
345 
346 struct raw_decap_conf raw_decap_conf = {.size = 0};
347 
348 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
349 struct action_vxlan_encap_data {
350 	struct rte_flow_action_vxlan_encap conf;
351 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
352 	struct rte_flow_item_eth item_eth;
353 	struct rte_flow_item_vlan item_vlan;
354 	union {
355 		struct rte_flow_item_ipv4 item_ipv4;
356 		struct rte_flow_item_ipv6 item_ipv6;
357 	};
358 	struct rte_flow_item_udp item_udp;
359 	struct rte_flow_item_vxlan item_vxlan;
360 };
361 
362 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
363 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
364 
365 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
366 struct action_nvgre_encap_data {
367 	struct rte_flow_action_nvgre_encap conf;
368 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
369 	struct rte_flow_item_eth item_eth;
370 	struct rte_flow_item_vlan item_vlan;
371 	union {
372 		struct rte_flow_item_ipv4 item_ipv4;
373 		struct rte_flow_item_ipv6 item_ipv6;
374 	};
375 	struct rte_flow_item_nvgre item_nvgre;
376 };
377 
378 /** Maximum data size in struct rte_flow_action_raw_encap. */
379 #define ACTION_RAW_ENCAP_MAX_DATA 128
380 
381 /** Storage for struct rte_flow_action_raw_encap including external data. */
382 struct action_raw_encap_data {
383 	struct rte_flow_action_raw_encap conf;
384 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
385 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
386 };
387 
388 /** Storage for struct rte_flow_action_raw_decap including external data. */
389 struct action_raw_decap_data {
390 	struct rte_flow_action_raw_decap conf;
391 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
392 };
393 
394 /** Maximum number of subsequent tokens and arguments on the stack. */
395 #define CTX_STACK_SIZE 16
396 
397 /** Parser context. */
398 struct context {
399 	/** Stack of subsequent token lists to process. */
400 	const enum index *next[CTX_STACK_SIZE];
401 	/** Arguments for stacked tokens. */
402 	const void *args[CTX_STACK_SIZE];
403 	enum index curr; /**< Current token index. */
404 	enum index prev; /**< Index of the last token seen. */
405 	int next_num; /**< Number of entries in next[]. */
406 	int args_num; /**< Number of entries in args[]. */
407 	uint32_t eol:1; /**< EOL has been detected. */
408 	uint32_t last:1; /**< No more arguments. */
409 	portid_t port; /**< Current port ID (for completions). */
410 	uint32_t objdata; /**< Object-specific data. */
411 	void *object; /**< Address of current object for relative offsets. */
412 	void *objmask; /**< Object a full mask must be written to. */
413 };
414 
415 /** Token argument. */
416 struct arg {
417 	uint32_t hton:1; /**< Use network byte ordering. */
418 	uint32_t sign:1; /**< Value is signed. */
419 	uint32_t bounded:1; /**< Value is bounded. */
420 	uintmax_t min; /**< Minimum value if bounded. */
421 	uintmax_t max; /**< Maximum value if bounded. */
422 	uint32_t offset; /**< Relative offset from ctx->object. */
423 	uint32_t size; /**< Field size. */
424 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
425 };
426 
427 /** Parser token definition. */
428 struct token {
429 	/** Type displayed during completion (defaults to "TOKEN"). */
430 	const char *type;
431 	/** Help displayed during completion (defaults to token name). */
432 	const char *help;
433 	/** Private data used by parser functions. */
434 	const void *priv;
435 	/**
436 	 * Lists of subsequent tokens to push on the stack. Each call to the
437 	 * parser consumes the last entry of that stack.
438 	 */
439 	const enum index *const *next;
440 	/** Arguments stack for subsequent tokens that need them. */
441 	const struct arg *const *args;
442 	/**
443 	 * Token-processing callback, returns -1 in case of error, the
444 	 * length of the matched string otherwise. If NULL, attempts to
445 	 * match the token name.
446 	 *
447 	 * If buf is not NULL, the result should be stored in it according
448 	 * to context. An error is returned if not large enough.
449 	 */
450 	int (*call)(struct context *ctx, const struct token *token,
451 		    const char *str, unsigned int len,
452 		    void *buf, unsigned int size);
453 	/**
454 	 * Callback that provides possible values for this token, used for
455 	 * completion. Returns -1 in case of error, the number of possible
456 	 * values otherwise. If NULL, the token name is used.
457 	 *
458 	 * If buf is not NULL, entry index ent is written to buf and the
459 	 * full length of the entry is returned (same behavior as
460 	 * snprintf()).
461 	 */
462 	int (*comp)(struct context *ctx, const struct token *token,
463 		    unsigned int ent, char *buf, unsigned int size);
464 	/** Mandatory token name, no default value. */
465 	const char *name;
466 };
467 
468 /** Static initializer for the next field. */
469 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
470 
471 /** Static initializer for a NEXT() entry. */
472 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
473 
474 /** Static initializer for the args field. */
475 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
476 
477 /** Static initializer for ARGS() to target a field. */
478 #define ARGS_ENTRY(s, f) \
479 	(&(const struct arg){ \
480 		.offset = offsetof(s, f), \
481 		.size = sizeof(((s *)0)->f), \
482 	})
483 
484 /** Static initializer for ARGS() to target a bit-field. */
485 #define ARGS_ENTRY_BF(s, f, b) \
486 	(&(const struct arg){ \
487 		.size = sizeof(s), \
488 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
489 	})
490 
491 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
492 #define ARGS_ENTRY_MASK(s, f, m) \
493 	(&(const struct arg){ \
494 		.offset = offsetof(s, f), \
495 		.size = sizeof(((s *)0)->f), \
496 		.mask = (const void *)(m), \
497 	})
498 
499 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
500 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
501 	(&(const struct arg){ \
502 		.hton = 1, \
503 		.offset = offsetof(s, f), \
504 		.size = sizeof(((s *)0)->f), \
505 		.mask = (const void *)(m), \
506 	})
507 
508 /** Static initializer for ARGS() to target a pointer. */
509 #define ARGS_ENTRY_PTR(s, f) \
510 	(&(const struct arg){ \
511 		.size = sizeof(*((s *)0)->f), \
512 	})
513 
514 /** Static initializer for ARGS() with arbitrary offset and size. */
515 #define ARGS_ENTRY_ARB(o, s) \
516 	(&(const struct arg){ \
517 		.offset = (o), \
518 		.size = (s), \
519 	})
520 
521 /** Same as ARGS_ENTRY_ARB() with bounded values. */
522 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
523 	(&(const struct arg){ \
524 		.bounded = 1, \
525 		.min = (i), \
526 		.max = (a), \
527 		.offset = (o), \
528 		.size = (s), \
529 	})
530 
531 /** Same as ARGS_ENTRY() using network byte ordering. */
532 #define ARGS_ENTRY_HTON(s, f) \
533 	(&(const struct arg){ \
534 		.hton = 1, \
535 		.offset = offsetof(s, f), \
536 		.size = sizeof(((s *)0)->f), \
537 	})
538 
539 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
540 #define ARG_ENTRY_HTON(s) \
541 	(&(const struct arg){ \
542 		.hton = 1, \
543 		.offset = 0, \
544 		.size = sizeof(s), \
545 	})
546 
547 /** Parser output buffer layout expected by cmd_flow_parsed(). */
548 struct buffer {
549 	enum index command; /**< Flow command. */
550 	portid_t port; /**< Affected port ID. */
551 	union {
552 		struct {
553 			struct rte_flow_attr attr;
554 			struct rte_flow_item *pattern;
555 			struct rte_flow_action *actions;
556 			uint32_t pattern_n;
557 			uint32_t actions_n;
558 			uint8_t *data;
559 		} vc; /**< Validate/create arguments. */
560 		struct {
561 			uint32_t *rule;
562 			uint32_t rule_n;
563 		} destroy; /**< Destroy arguments. */
564 		struct {
565 			uint32_t rule;
566 			struct rte_flow_action action;
567 		} query; /**< Query arguments. */
568 		struct {
569 			uint32_t *group;
570 			uint32_t group_n;
571 		} list; /**< List arguments. */
572 		struct {
573 			int set;
574 		} isolate; /**< Isolated mode arguments. */
575 	} args; /**< Command arguments. */
576 };
577 
578 /** Private data for pattern items. */
579 struct parse_item_priv {
580 	enum rte_flow_item_type type; /**< Item type. */
581 	uint32_t size; /**< Size of item specification structure. */
582 };
583 
584 #define PRIV_ITEM(t, s) \
585 	(&(const struct parse_item_priv){ \
586 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
587 		.size = s, \
588 	})
589 
590 /** Private data for actions. */
591 struct parse_action_priv {
592 	enum rte_flow_action_type type; /**< Action type. */
593 	uint32_t size; /**< Size of action configuration structure. */
594 };
595 
596 #define PRIV_ACTION(t, s) \
597 	(&(const struct parse_action_priv){ \
598 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
599 		.size = s, \
600 	})
601 
602 static const enum index next_vc_attr[] = {
603 	GROUP,
604 	PRIORITY,
605 	INGRESS,
606 	EGRESS,
607 	TRANSFER,
608 	PATTERN,
609 	ZERO,
610 };
611 
612 static const enum index next_destroy_attr[] = {
613 	DESTROY_RULE,
614 	END,
615 	ZERO,
616 };
617 
618 static const enum index next_list_attr[] = {
619 	LIST_GROUP,
620 	END,
621 	ZERO,
622 };
623 
624 static const enum index item_param[] = {
625 	ITEM_PARAM_IS,
626 	ITEM_PARAM_SPEC,
627 	ITEM_PARAM_LAST,
628 	ITEM_PARAM_MASK,
629 	ITEM_PARAM_PREFIX,
630 	ZERO,
631 };
632 
633 static const enum index next_item[] = {
634 	ITEM_END,
635 	ITEM_VOID,
636 	ITEM_INVERT,
637 	ITEM_ANY,
638 	ITEM_PF,
639 	ITEM_VF,
640 	ITEM_PHY_PORT,
641 	ITEM_PORT_ID,
642 	ITEM_MARK,
643 	ITEM_RAW,
644 	ITEM_ETH,
645 	ITEM_VLAN,
646 	ITEM_IPV4,
647 	ITEM_IPV6,
648 	ITEM_ICMP,
649 	ITEM_UDP,
650 	ITEM_TCP,
651 	ITEM_SCTP,
652 	ITEM_VXLAN,
653 	ITEM_E_TAG,
654 	ITEM_NVGRE,
655 	ITEM_MPLS,
656 	ITEM_GRE,
657 	ITEM_FUZZY,
658 	ITEM_GTP,
659 	ITEM_GTPC,
660 	ITEM_GTPU,
661 	ITEM_GENEVE,
662 	ITEM_VXLAN_GPE,
663 	ITEM_ARP_ETH_IPV4,
664 	ITEM_IPV6_EXT,
665 	ITEM_ICMP6,
666 	ITEM_ICMP6_ND_NS,
667 	ITEM_ICMP6_ND_NA,
668 	ITEM_ICMP6_ND_OPT,
669 	ITEM_ICMP6_ND_OPT_SLA_ETH,
670 	ITEM_ICMP6_ND_OPT_TLA_ETH,
671 	ITEM_META,
672 	ITEM_GRE_KEY,
673 	ITEM_GTP_PSC,
674 	ITEM_PPPOES,
675 	ITEM_PPPOED,
676 	ITEM_PPPOE_PROTO_ID,
677 	END_SET,
678 	ZERO,
679 };
680 
681 static const enum index item_fuzzy[] = {
682 	ITEM_FUZZY_THRESH,
683 	ITEM_NEXT,
684 	ZERO,
685 };
686 
687 static const enum index item_any[] = {
688 	ITEM_ANY_NUM,
689 	ITEM_NEXT,
690 	ZERO,
691 };
692 
693 static const enum index item_vf[] = {
694 	ITEM_VF_ID,
695 	ITEM_NEXT,
696 	ZERO,
697 };
698 
699 static const enum index item_phy_port[] = {
700 	ITEM_PHY_PORT_INDEX,
701 	ITEM_NEXT,
702 	ZERO,
703 };
704 
705 static const enum index item_port_id[] = {
706 	ITEM_PORT_ID_ID,
707 	ITEM_NEXT,
708 	ZERO,
709 };
710 
711 static const enum index item_mark[] = {
712 	ITEM_MARK_ID,
713 	ITEM_NEXT,
714 	ZERO,
715 };
716 
717 static const enum index item_raw[] = {
718 	ITEM_RAW_RELATIVE,
719 	ITEM_RAW_SEARCH,
720 	ITEM_RAW_OFFSET,
721 	ITEM_RAW_LIMIT,
722 	ITEM_RAW_PATTERN,
723 	ITEM_NEXT,
724 	ZERO,
725 };
726 
727 static const enum index item_eth[] = {
728 	ITEM_ETH_DST,
729 	ITEM_ETH_SRC,
730 	ITEM_ETH_TYPE,
731 	ITEM_NEXT,
732 	ZERO,
733 };
734 
735 static const enum index item_vlan[] = {
736 	ITEM_VLAN_TCI,
737 	ITEM_VLAN_PCP,
738 	ITEM_VLAN_DEI,
739 	ITEM_VLAN_VID,
740 	ITEM_VLAN_INNER_TYPE,
741 	ITEM_NEXT,
742 	ZERO,
743 };
744 
745 static const enum index item_ipv4[] = {
746 	ITEM_IPV4_TOS,
747 	ITEM_IPV4_TTL,
748 	ITEM_IPV4_PROTO,
749 	ITEM_IPV4_SRC,
750 	ITEM_IPV4_DST,
751 	ITEM_NEXT,
752 	ZERO,
753 };
754 
755 static const enum index item_ipv6[] = {
756 	ITEM_IPV6_TC,
757 	ITEM_IPV6_FLOW,
758 	ITEM_IPV6_PROTO,
759 	ITEM_IPV6_HOP,
760 	ITEM_IPV6_SRC,
761 	ITEM_IPV6_DST,
762 	ITEM_NEXT,
763 	ZERO,
764 };
765 
766 static const enum index item_icmp[] = {
767 	ITEM_ICMP_TYPE,
768 	ITEM_ICMP_CODE,
769 	ITEM_NEXT,
770 	ZERO,
771 };
772 
773 static const enum index item_udp[] = {
774 	ITEM_UDP_SRC,
775 	ITEM_UDP_DST,
776 	ITEM_NEXT,
777 	ZERO,
778 };
779 
780 static const enum index item_tcp[] = {
781 	ITEM_TCP_SRC,
782 	ITEM_TCP_DST,
783 	ITEM_TCP_FLAGS,
784 	ITEM_NEXT,
785 	ZERO,
786 };
787 
788 static const enum index item_sctp[] = {
789 	ITEM_SCTP_SRC,
790 	ITEM_SCTP_DST,
791 	ITEM_SCTP_TAG,
792 	ITEM_SCTP_CKSUM,
793 	ITEM_NEXT,
794 	ZERO,
795 };
796 
797 static const enum index item_vxlan[] = {
798 	ITEM_VXLAN_VNI,
799 	ITEM_NEXT,
800 	ZERO,
801 };
802 
803 static const enum index item_e_tag[] = {
804 	ITEM_E_TAG_GRP_ECID_B,
805 	ITEM_NEXT,
806 	ZERO,
807 };
808 
809 static const enum index item_nvgre[] = {
810 	ITEM_NVGRE_TNI,
811 	ITEM_NEXT,
812 	ZERO,
813 };
814 
815 static const enum index item_mpls[] = {
816 	ITEM_MPLS_LABEL,
817 	ITEM_MPLS_TC,
818 	ITEM_MPLS_S,
819 	ITEM_NEXT,
820 	ZERO,
821 };
822 
823 static const enum index item_gre[] = {
824 	ITEM_GRE_PROTO,
825 	ITEM_GRE_C_RSVD0_VER,
826 	ITEM_GRE_C_BIT,
827 	ITEM_GRE_K_BIT,
828 	ITEM_GRE_S_BIT,
829 	ITEM_NEXT,
830 	ZERO,
831 };
832 
833 static const enum index item_gre_key[] = {
834 	ITEM_GRE_KEY_VALUE,
835 	ITEM_NEXT,
836 	ZERO,
837 };
838 
839 static const enum index item_gtp[] = {
840 	ITEM_GTP_TEID,
841 	ITEM_NEXT,
842 	ZERO,
843 };
844 
845 static const enum index item_geneve[] = {
846 	ITEM_GENEVE_VNI,
847 	ITEM_GENEVE_PROTO,
848 	ITEM_NEXT,
849 	ZERO,
850 };
851 
852 static const enum index item_vxlan_gpe[] = {
853 	ITEM_VXLAN_GPE_VNI,
854 	ITEM_NEXT,
855 	ZERO,
856 };
857 
858 static const enum index item_arp_eth_ipv4[] = {
859 	ITEM_ARP_ETH_IPV4_SHA,
860 	ITEM_ARP_ETH_IPV4_SPA,
861 	ITEM_ARP_ETH_IPV4_THA,
862 	ITEM_ARP_ETH_IPV4_TPA,
863 	ITEM_NEXT,
864 	ZERO,
865 };
866 
867 static const enum index item_ipv6_ext[] = {
868 	ITEM_IPV6_EXT_NEXT_HDR,
869 	ITEM_NEXT,
870 	ZERO,
871 };
872 
873 static const enum index item_icmp6[] = {
874 	ITEM_ICMP6_TYPE,
875 	ITEM_ICMP6_CODE,
876 	ITEM_NEXT,
877 	ZERO,
878 };
879 
880 static const enum index item_icmp6_nd_ns[] = {
881 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
882 	ITEM_NEXT,
883 	ZERO,
884 };
885 
886 static const enum index item_icmp6_nd_na[] = {
887 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
888 	ITEM_NEXT,
889 	ZERO,
890 };
891 
892 static const enum index item_icmp6_nd_opt[] = {
893 	ITEM_ICMP6_ND_OPT_TYPE,
894 	ITEM_NEXT,
895 	ZERO,
896 };
897 
898 static const enum index item_icmp6_nd_opt_sla_eth[] = {
899 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
900 	ITEM_NEXT,
901 	ZERO,
902 };
903 
904 static const enum index item_icmp6_nd_opt_tla_eth[] = {
905 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
906 	ITEM_NEXT,
907 	ZERO,
908 };
909 
910 static const enum index item_meta[] = {
911 	ITEM_META_DATA,
912 	ITEM_NEXT,
913 	ZERO,
914 };
915 
916 static const enum index item_gtp_psc[] = {
917 	ITEM_GTP_PSC_QFI,
918 	ITEM_GTP_PSC_PDU_T,
919 	ITEM_NEXT,
920 	ZERO,
921 };
922 
923 static const enum index item_pppoed[] = {
924 	ITEM_PPPOE_SEID,
925 	ITEM_NEXT,
926 	ZERO,
927 };
928 
929 static const enum index item_pppoes[] = {
930 	ITEM_PPPOE_SEID,
931 	ITEM_NEXT,
932 	ZERO,
933 };
934 
935 static const enum index item_pppoe_proto_id[] = {
936 	ITEM_PPPOE_PROTO_ID,
937 	ITEM_NEXT,
938 	ZERO,
939 };
940 
941 static const enum index next_action[] = {
942 	ACTION_END,
943 	ACTION_VOID,
944 	ACTION_PASSTHRU,
945 	ACTION_JUMP,
946 	ACTION_MARK,
947 	ACTION_FLAG,
948 	ACTION_QUEUE,
949 	ACTION_DROP,
950 	ACTION_COUNT,
951 	ACTION_RSS,
952 	ACTION_PF,
953 	ACTION_VF,
954 	ACTION_PHY_PORT,
955 	ACTION_PORT_ID,
956 	ACTION_METER,
957 	ACTION_OF_SET_MPLS_TTL,
958 	ACTION_OF_DEC_MPLS_TTL,
959 	ACTION_OF_SET_NW_TTL,
960 	ACTION_OF_DEC_NW_TTL,
961 	ACTION_OF_COPY_TTL_OUT,
962 	ACTION_OF_COPY_TTL_IN,
963 	ACTION_OF_POP_VLAN,
964 	ACTION_OF_PUSH_VLAN,
965 	ACTION_OF_SET_VLAN_VID,
966 	ACTION_OF_SET_VLAN_PCP,
967 	ACTION_OF_POP_MPLS,
968 	ACTION_OF_PUSH_MPLS,
969 	ACTION_VXLAN_ENCAP,
970 	ACTION_VXLAN_DECAP,
971 	ACTION_NVGRE_ENCAP,
972 	ACTION_NVGRE_DECAP,
973 	ACTION_L2_ENCAP,
974 	ACTION_L2_DECAP,
975 	ACTION_MPLSOGRE_ENCAP,
976 	ACTION_MPLSOGRE_DECAP,
977 	ACTION_MPLSOUDP_ENCAP,
978 	ACTION_MPLSOUDP_DECAP,
979 	ACTION_SET_IPV4_SRC,
980 	ACTION_SET_IPV4_DST,
981 	ACTION_SET_IPV6_SRC,
982 	ACTION_SET_IPV6_DST,
983 	ACTION_SET_TP_SRC,
984 	ACTION_SET_TP_DST,
985 	ACTION_MAC_SWAP,
986 	ACTION_DEC_TTL,
987 	ACTION_SET_TTL,
988 	ACTION_SET_MAC_SRC,
989 	ACTION_SET_MAC_DST,
990 	ACTION_INC_TCP_SEQ,
991 	ACTION_DEC_TCP_SEQ,
992 	ACTION_INC_TCP_ACK,
993 	ACTION_DEC_TCP_ACK,
994 	ACTION_RAW_ENCAP,
995 	ACTION_RAW_DECAP,
996 	ZERO,
997 };
998 
999 static const enum index action_mark[] = {
1000 	ACTION_MARK_ID,
1001 	ACTION_NEXT,
1002 	ZERO,
1003 };
1004 
1005 static const enum index action_queue[] = {
1006 	ACTION_QUEUE_INDEX,
1007 	ACTION_NEXT,
1008 	ZERO,
1009 };
1010 
1011 static const enum index action_count[] = {
1012 	ACTION_COUNT_ID,
1013 	ACTION_COUNT_SHARED,
1014 	ACTION_NEXT,
1015 	ZERO,
1016 };
1017 
1018 static const enum index action_rss[] = {
1019 	ACTION_RSS_FUNC,
1020 	ACTION_RSS_LEVEL,
1021 	ACTION_RSS_TYPES,
1022 	ACTION_RSS_KEY,
1023 	ACTION_RSS_KEY_LEN,
1024 	ACTION_RSS_QUEUES,
1025 	ACTION_NEXT,
1026 	ZERO,
1027 };
1028 
1029 static const enum index action_vf[] = {
1030 	ACTION_VF_ORIGINAL,
1031 	ACTION_VF_ID,
1032 	ACTION_NEXT,
1033 	ZERO,
1034 };
1035 
1036 static const enum index action_phy_port[] = {
1037 	ACTION_PHY_PORT_ORIGINAL,
1038 	ACTION_PHY_PORT_INDEX,
1039 	ACTION_NEXT,
1040 	ZERO,
1041 };
1042 
1043 static const enum index action_port_id[] = {
1044 	ACTION_PORT_ID_ORIGINAL,
1045 	ACTION_PORT_ID_ID,
1046 	ACTION_NEXT,
1047 	ZERO,
1048 };
1049 
1050 static const enum index action_meter[] = {
1051 	ACTION_METER_ID,
1052 	ACTION_NEXT,
1053 	ZERO,
1054 };
1055 
1056 static const enum index action_of_set_mpls_ttl[] = {
1057 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1058 	ACTION_NEXT,
1059 	ZERO,
1060 };
1061 
1062 static const enum index action_of_set_nw_ttl[] = {
1063 	ACTION_OF_SET_NW_TTL_NW_TTL,
1064 	ACTION_NEXT,
1065 	ZERO,
1066 };
1067 
1068 static const enum index action_of_push_vlan[] = {
1069 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1070 	ACTION_NEXT,
1071 	ZERO,
1072 };
1073 
1074 static const enum index action_of_set_vlan_vid[] = {
1075 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1076 	ACTION_NEXT,
1077 	ZERO,
1078 };
1079 
1080 static const enum index action_of_set_vlan_pcp[] = {
1081 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1082 	ACTION_NEXT,
1083 	ZERO,
1084 };
1085 
1086 static const enum index action_of_pop_mpls[] = {
1087 	ACTION_OF_POP_MPLS_ETHERTYPE,
1088 	ACTION_NEXT,
1089 	ZERO,
1090 };
1091 
1092 static const enum index action_of_push_mpls[] = {
1093 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1094 	ACTION_NEXT,
1095 	ZERO,
1096 };
1097 
1098 static const enum index action_set_ipv4_src[] = {
1099 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1100 	ACTION_NEXT,
1101 	ZERO,
1102 };
1103 
1104 static const enum index action_set_mac_src[] = {
1105 	ACTION_SET_MAC_SRC_MAC_SRC,
1106 	ACTION_NEXT,
1107 	ZERO,
1108 };
1109 
1110 static const enum index action_set_ipv4_dst[] = {
1111 	ACTION_SET_IPV4_DST_IPV4_DST,
1112 	ACTION_NEXT,
1113 	ZERO,
1114 };
1115 
1116 static const enum index action_set_ipv6_src[] = {
1117 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1118 	ACTION_NEXT,
1119 	ZERO,
1120 };
1121 
1122 static const enum index action_set_ipv6_dst[] = {
1123 	ACTION_SET_IPV6_DST_IPV6_DST,
1124 	ACTION_NEXT,
1125 	ZERO,
1126 };
1127 
1128 static const enum index action_set_tp_src[] = {
1129 	ACTION_SET_TP_SRC_TP_SRC,
1130 	ACTION_NEXT,
1131 	ZERO,
1132 };
1133 
1134 static const enum index action_set_tp_dst[] = {
1135 	ACTION_SET_TP_DST_TP_DST,
1136 	ACTION_NEXT,
1137 	ZERO,
1138 };
1139 
1140 static const enum index action_set_ttl[] = {
1141 	ACTION_SET_TTL_TTL,
1142 	ACTION_NEXT,
1143 	ZERO,
1144 };
1145 
1146 static const enum index action_jump[] = {
1147 	ACTION_JUMP_GROUP,
1148 	ACTION_NEXT,
1149 	ZERO,
1150 };
1151 
1152 static const enum index action_set_mac_dst[] = {
1153 	ACTION_SET_MAC_DST_MAC_DST,
1154 	ACTION_NEXT,
1155 	ZERO,
1156 };
1157 
1158 static const enum index action_inc_tcp_seq[] = {
1159 	ACTION_INC_TCP_SEQ_VALUE,
1160 	ACTION_NEXT,
1161 	ZERO,
1162 };
1163 
1164 static const enum index action_dec_tcp_seq[] = {
1165 	ACTION_DEC_TCP_SEQ_VALUE,
1166 	ACTION_NEXT,
1167 	ZERO,
1168 };
1169 
1170 static const enum index action_inc_tcp_ack[] = {
1171 	ACTION_INC_TCP_ACK_VALUE,
1172 	ACTION_NEXT,
1173 	ZERO,
1174 };
1175 
1176 static const enum index action_dec_tcp_ack[] = {
1177 	ACTION_DEC_TCP_ACK_VALUE,
1178 	ACTION_NEXT,
1179 	ZERO,
1180 };
1181 
1182 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1183 				     const char *, unsigned int,
1184 				     void *, unsigned int);
1185 static int parse_set_init(struct context *, const struct token *,
1186 			  const char *, unsigned int,
1187 			  void *, unsigned int);
1188 static int parse_init(struct context *, const struct token *,
1189 		      const char *, unsigned int,
1190 		      void *, unsigned int);
1191 static int parse_vc(struct context *, const struct token *,
1192 		    const char *, unsigned int,
1193 		    void *, unsigned int);
1194 static int parse_vc_spec(struct context *, const struct token *,
1195 			 const char *, unsigned int, void *, unsigned int);
1196 static int parse_vc_conf(struct context *, const struct token *,
1197 			 const char *, unsigned int, void *, unsigned int);
1198 static int parse_vc_action_rss(struct context *, const struct token *,
1199 			       const char *, unsigned int, void *,
1200 			       unsigned int);
1201 static int parse_vc_action_rss_func(struct context *, const struct token *,
1202 				    const char *, unsigned int, void *,
1203 				    unsigned int);
1204 static int parse_vc_action_rss_type(struct context *, const struct token *,
1205 				    const char *, unsigned int, void *,
1206 				    unsigned int);
1207 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1208 				     const char *, unsigned int, void *,
1209 				     unsigned int);
1210 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1211 				       const char *, unsigned int, void *,
1212 				       unsigned int);
1213 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1214 				       const char *, unsigned int, void *,
1215 				       unsigned int);
1216 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1217 				    const char *, unsigned int, void *,
1218 				    unsigned int);
1219 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1220 				    const char *, unsigned int, void *,
1221 				    unsigned int);
1222 static int parse_vc_action_mplsogre_encap(struct context *,
1223 					  const struct token *, const char *,
1224 					  unsigned int, void *, unsigned int);
1225 static int parse_vc_action_mplsogre_decap(struct context *,
1226 					  const struct token *, const char *,
1227 					  unsigned int, void *, unsigned int);
1228 static int parse_vc_action_mplsoudp_encap(struct context *,
1229 					  const struct token *, const char *,
1230 					  unsigned int, void *, unsigned int);
1231 static int parse_vc_action_mplsoudp_decap(struct context *,
1232 					  const struct token *, const char *,
1233 					  unsigned int, void *, unsigned int);
1234 static int parse_vc_action_raw_encap(struct context *,
1235 				     const struct token *, const char *,
1236 				     unsigned int, void *, unsigned int);
1237 static int parse_vc_action_raw_decap(struct context *,
1238 				     const struct token *, const char *,
1239 				     unsigned int, void *, unsigned int);
1240 static int parse_destroy(struct context *, const struct token *,
1241 			 const char *, unsigned int,
1242 			 void *, unsigned int);
1243 static int parse_flush(struct context *, const struct token *,
1244 		       const char *, unsigned int,
1245 		       void *, unsigned int);
1246 static int parse_query(struct context *, const struct token *,
1247 		       const char *, unsigned int,
1248 		       void *, unsigned int);
1249 static int parse_action(struct context *, const struct token *,
1250 			const char *, unsigned int,
1251 			void *, unsigned int);
1252 static int parse_list(struct context *, const struct token *,
1253 		      const char *, unsigned int,
1254 		      void *, unsigned int);
1255 static int parse_isolate(struct context *, const struct token *,
1256 			 const char *, unsigned int,
1257 			 void *, unsigned int);
1258 static int parse_int(struct context *, const struct token *,
1259 		     const char *, unsigned int,
1260 		     void *, unsigned int);
1261 static int parse_prefix(struct context *, const struct token *,
1262 			const char *, unsigned int,
1263 			void *, unsigned int);
1264 static int parse_boolean(struct context *, const struct token *,
1265 			 const char *, unsigned int,
1266 			 void *, unsigned int);
1267 static int parse_string(struct context *, const struct token *,
1268 			const char *, unsigned int,
1269 			void *, unsigned int);
1270 static int parse_hex(struct context *ctx, const struct token *token,
1271 			const char *str, unsigned int len,
1272 			void *buf, unsigned int size);
1273 static int parse_mac_addr(struct context *, const struct token *,
1274 			  const char *, unsigned int,
1275 			  void *, unsigned int);
1276 static int parse_ipv4_addr(struct context *, const struct token *,
1277 			   const char *, unsigned int,
1278 			   void *, unsigned int);
1279 static int parse_ipv6_addr(struct context *, const struct token *,
1280 			   const char *, unsigned int,
1281 			   void *, unsigned int);
1282 static int parse_port(struct context *, const struct token *,
1283 		      const char *, unsigned int,
1284 		      void *, unsigned int);
1285 static int comp_none(struct context *, const struct token *,
1286 		     unsigned int, char *, unsigned int);
1287 static int comp_boolean(struct context *, const struct token *,
1288 			unsigned int, char *, unsigned int);
1289 static int comp_action(struct context *, const struct token *,
1290 		       unsigned int, char *, unsigned int);
1291 static int comp_port(struct context *, const struct token *,
1292 		     unsigned int, char *, unsigned int);
1293 static int comp_rule_id(struct context *, const struct token *,
1294 			unsigned int, char *, unsigned int);
1295 static int comp_vc_action_rss_type(struct context *, const struct token *,
1296 				   unsigned int, char *, unsigned int);
1297 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1298 				    unsigned int, char *, unsigned int);
1299 
1300 /** Token definitions. */
1301 static const struct token token_list[] = {
1302 	/* Special tokens. */
1303 	[ZERO] = {
1304 		.name = "ZERO",
1305 		.help = "null entry, abused as the entry point",
1306 		.next = NEXT(NEXT_ENTRY(FLOW)),
1307 	},
1308 	[END] = {
1309 		.name = "",
1310 		.type = "RETURN",
1311 		.help = "command may end here",
1312 	},
1313 	[START_SET] = {
1314 		.name = "START_SET",
1315 		.help = "null entry, abused as the entry point for set",
1316 		.next = NEXT(NEXT_ENTRY(SET)),
1317 	},
1318 	[END_SET] = {
1319 		.name = "end_set",
1320 		.type = "RETURN",
1321 		.help = "set command may end here",
1322 	},
1323 	/* Common tokens. */
1324 	[INTEGER] = {
1325 		.name = "{int}",
1326 		.type = "INTEGER",
1327 		.help = "integer value",
1328 		.call = parse_int,
1329 		.comp = comp_none,
1330 	},
1331 	[UNSIGNED] = {
1332 		.name = "{unsigned}",
1333 		.type = "UNSIGNED",
1334 		.help = "unsigned integer value",
1335 		.call = parse_int,
1336 		.comp = comp_none,
1337 	},
1338 	[PREFIX] = {
1339 		.name = "{prefix}",
1340 		.type = "PREFIX",
1341 		.help = "prefix length for bit-mask",
1342 		.call = parse_prefix,
1343 		.comp = comp_none,
1344 	},
1345 	[BOOLEAN] = {
1346 		.name = "{boolean}",
1347 		.type = "BOOLEAN",
1348 		.help = "any boolean value",
1349 		.call = parse_boolean,
1350 		.comp = comp_boolean,
1351 	},
1352 	[STRING] = {
1353 		.name = "{string}",
1354 		.type = "STRING",
1355 		.help = "fixed string",
1356 		.call = parse_string,
1357 		.comp = comp_none,
1358 	},
1359 	[HEX] = {
1360 		.name = "{hex}",
1361 		.type = "HEX",
1362 		.help = "fixed string",
1363 		.call = parse_hex,
1364 		.comp = comp_none,
1365 	},
1366 	[MAC_ADDR] = {
1367 		.name = "{MAC address}",
1368 		.type = "MAC-48",
1369 		.help = "standard MAC address notation",
1370 		.call = parse_mac_addr,
1371 		.comp = comp_none,
1372 	},
1373 	[IPV4_ADDR] = {
1374 		.name = "{IPv4 address}",
1375 		.type = "IPV4 ADDRESS",
1376 		.help = "standard IPv4 address notation",
1377 		.call = parse_ipv4_addr,
1378 		.comp = comp_none,
1379 	},
1380 	[IPV6_ADDR] = {
1381 		.name = "{IPv6 address}",
1382 		.type = "IPV6 ADDRESS",
1383 		.help = "standard IPv6 address notation",
1384 		.call = parse_ipv6_addr,
1385 		.comp = comp_none,
1386 	},
1387 	[RULE_ID] = {
1388 		.name = "{rule id}",
1389 		.type = "RULE ID",
1390 		.help = "rule identifier",
1391 		.call = parse_int,
1392 		.comp = comp_rule_id,
1393 	},
1394 	[PORT_ID] = {
1395 		.name = "{port_id}",
1396 		.type = "PORT ID",
1397 		.help = "port identifier",
1398 		.call = parse_port,
1399 		.comp = comp_port,
1400 	},
1401 	[GROUP_ID] = {
1402 		.name = "{group_id}",
1403 		.type = "GROUP ID",
1404 		.help = "group identifier",
1405 		.call = parse_int,
1406 		.comp = comp_none,
1407 	},
1408 	[PRIORITY_LEVEL] = {
1409 		.name = "{level}",
1410 		.type = "PRIORITY",
1411 		.help = "priority level",
1412 		.call = parse_int,
1413 		.comp = comp_none,
1414 	},
1415 	/* Top-level command. */
1416 	[FLOW] = {
1417 		.name = "flow",
1418 		.type = "{command} {port_id} [{arg} [...]]",
1419 		.help = "manage ingress/egress flow rules",
1420 		.next = NEXT(NEXT_ENTRY
1421 			     (VALIDATE,
1422 			      CREATE,
1423 			      DESTROY,
1424 			      FLUSH,
1425 			      LIST,
1426 			      QUERY,
1427 			      ISOLATE)),
1428 		.call = parse_init,
1429 	},
1430 	/* Sub-level commands. */
1431 	[VALIDATE] = {
1432 		.name = "validate",
1433 		.help = "check whether a flow rule can be created",
1434 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1435 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1436 		.call = parse_vc,
1437 	},
1438 	[CREATE] = {
1439 		.name = "create",
1440 		.help = "create a flow rule",
1441 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1442 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1443 		.call = parse_vc,
1444 	},
1445 	[DESTROY] = {
1446 		.name = "destroy",
1447 		.help = "destroy specific flow rules",
1448 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1449 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1450 		.call = parse_destroy,
1451 	},
1452 	[FLUSH] = {
1453 		.name = "flush",
1454 		.help = "destroy all flow rules",
1455 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1456 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1457 		.call = parse_flush,
1458 	},
1459 	[QUERY] = {
1460 		.name = "query",
1461 		.help = "query an existing flow rule",
1462 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1463 			     NEXT_ENTRY(RULE_ID),
1464 			     NEXT_ENTRY(PORT_ID)),
1465 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1466 			     ARGS_ENTRY(struct buffer, args.query.rule),
1467 			     ARGS_ENTRY(struct buffer, port)),
1468 		.call = parse_query,
1469 	},
1470 	[LIST] = {
1471 		.name = "list",
1472 		.help = "list existing flow rules",
1473 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1474 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1475 		.call = parse_list,
1476 	},
1477 	[ISOLATE] = {
1478 		.name = "isolate",
1479 		.help = "restrict ingress traffic to the defined flow rules",
1480 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1481 			     NEXT_ENTRY(PORT_ID)),
1482 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1483 			     ARGS_ENTRY(struct buffer, port)),
1484 		.call = parse_isolate,
1485 	},
1486 	/* Destroy arguments. */
1487 	[DESTROY_RULE] = {
1488 		.name = "rule",
1489 		.help = "specify a rule identifier",
1490 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1491 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1492 		.call = parse_destroy,
1493 	},
1494 	/* Query arguments. */
1495 	[QUERY_ACTION] = {
1496 		.name = "{action}",
1497 		.type = "ACTION",
1498 		.help = "action to query, must be part of the rule",
1499 		.call = parse_action,
1500 		.comp = comp_action,
1501 	},
1502 	/* List arguments. */
1503 	[LIST_GROUP] = {
1504 		.name = "group",
1505 		.help = "specify a group",
1506 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1507 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1508 		.call = parse_list,
1509 	},
1510 	/* Validate/create attributes. */
1511 	[GROUP] = {
1512 		.name = "group",
1513 		.help = "specify a group",
1514 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1515 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1516 		.call = parse_vc,
1517 	},
1518 	[PRIORITY] = {
1519 		.name = "priority",
1520 		.help = "specify a priority level",
1521 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1522 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1523 		.call = parse_vc,
1524 	},
1525 	[INGRESS] = {
1526 		.name = "ingress",
1527 		.help = "affect rule to ingress",
1528 		.next = NEXT(next_vc_attr),
1529 		.call = parse_vc,
1530 	},
1531 	[EGRESS] = {
1532 		.name = "egress",
1533 		.help = "affect rule to egress",
1534 		.next = NEXT(next_vc_attr),
1535 		.call = parse_vc,
1536 	},
1537 	[TRANSFER] = {
1538 		.name = "transfer",
1539 		.help = "apply rule directly to endpoints found in pattern",
1540 		.next = NEXT(next_vc_attr),
1541 		.call = parse_vc,
1542 	},
1543 	/* Validate/create pattern. */
1544 	[PATTERN] = {
1545 		.name = "pattern",
1546 		.help = "submit a list of pattern items",
1547 		.next = NEXT(next_item),
1548 		.call = parse_vc,
1549 	},
1550 	[ITEM_PARAM_IS] = {
1551 		.name = "is",
1552 		.help = "match value perfectly (with full bit-mask)",
1553 		.call = parse_vc_spec,
1554 	},
1555 	[ITEM_PARAM_SPEC] = {
1556 		.name = "spec",
1557 		.help = "match value according to configured bit-mask",
1558 		.call = parse_vc_spec,
1559 	},
1560 	[ITEM_PARAM_LAST] = {
1561 		.name = "last",
1562 		.help = "specify upper bound to establish a range",
1563 		.call = parse_vc_spec,
1564 	},
1565 	[ITEM_PARAM_MASK] = {
1566 		.name = "mask",
1567 		.help = "specify bit-mask with relevant bits set to one",
1568 		.call = parse_vc_spec,
1569 	},
1570 	[ITEM_PARAM_PREFIX] = {
1571 		.name = "prefix",
1572 		.help = "generate bit-mask from a prefix length",
1573 		.call = parse_vc_spec,
1574 	},
1575 	[ITEM_NEXT] = {
1576 		.name = "/",
1577 		.help = "specify next pattern item",
1578 		.next = NEXT(next_item),
1579 	},
1580 	[ITEM_END] = {
1581 		.name = "end",
1582 		.help = "end list of pattern items",
1583 		.priv = PRIV_ITEM(END, 0),
1584 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1585 		.call = parse_vc,
1586 	},
1587 	[ITEM_VOID] = {
1588 		.name = "void",
1589 		.help = "no-op pattern item",
1590 		.priv = PRIV_ITEM(VOID, 0),
1591 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1592 		.call = parse_vc,
1593 	},
1594 	[ITEM_INVERT] = {
1595 		.name = "invert",
1596 		.help = "perform actions when pattern does not match",
1597 		.priv = PRIV_ITEM(INVERT, 0),
1598 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1599 		.call = parse_vc,
1600 	},
1601 	[ITEM_ANY] = {
1602 		.name = "any",
1603 		.help = "match any protocol for the current layer",
1604 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1605 		.next = NEXT(item_any),
1606 		.call = parse_vc,
1607 	},
1608 	[ITEM_ANY_NUM] = {
1609 		.name = "num",
1610 		.help = "number of layers covered",
1611 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1612 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1613 	},
1614 	[ITEM_PF] = {
1615 		.name = "pf",
1616 		.help = "match traffic from/to the physical function",
1617 		.priv = PRIV_ITEM(PF, 0),
1618 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1619 		.call = parse_vc,
1620 	},
1621 	[ITEM_VF] = {
1622 		.name = "vf",
1623 		.help = "match traffic from/to a virtual function ID",
1624 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1625 		.next = NEXT(item_vf),
1626 		.call = parse_vc,
1627 	},
1628 	[ITEM_VF_ID] = {
1629 		.name = "id",
1630 		.help = "VF ID",
1631 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1632 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1633 	},
1634 	[ITEM_PHY_PORT] = {
1635 		.name = "phy_port",
1636 		.help = "match traffic from/to a specific physical port",
1637 		.priv = PRIV_ITEM(PHY_PORT,
1638 				  sizeof(struct rte_flow_item_phy_port)),
1639 		.next = NEXT(item_phy_port),
1640 		.call = parse_vc,
1641 	},
1642 	[ITEM_PHY_PORT_INDEX] = {
1643 		.name = "index",
1644 		.help = "physical port index",
1645 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1646 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1647 	},
1648 	[ITEM_PORT_ID] = {
1649 		.name = "port_id",
1650 		.help = "match traffic from/to a given DPDK port ID",
1651 		.priv = PRIV_ITEM(PORT_ID,
1652 				  sizeof(struct rte_flow_item_port_id)),
1653 		.next = NEXT(item_port_id),
1654 		.call = parse_vc,
1655 	},
1656 	[ITEM_PORT_ID_ID] = {
1657 		.name = "id",
1658 		.help = "DPDK port ID",
1659 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1660 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1661 	},
1662 	[ITEM_MARK] = {
1663 		.name = "mark",
1664 		.help = "match traffic against value set in previously matched rule",
1665 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1666 		.next = NEXT(item_mark),
1667 		.call = parse_vc,
1668 	},
1669 	[ITEM_MARK_ID] = {
1670 		.name = "id",
1671 		.help = "Integer value to match against",
1672 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1673 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1674 	},
1675 	[ITEM_RAW] = {
1676 		.name = "raw",
1677 		.help = "match an arbitrary byte string",
1678 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1679 		.next = NEXT(item_raw),
1680 		.call = parse_vc,
1681 	},
1682 	[ITEM_RAW_RELATIVE] = {
1683 		.name = "relative",
1684 		.help = "look for pattern after the previous item",
1685 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1686 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1687 					   relative, 1)),
1688 	},
1689 	[ITEM_RAW_SEARCH] = {
1690 		.name = "search",
1691 		.help = "search pattern from offset (see also limit)",
1692 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1693 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1694 					   search, 1)),
1695 	},
1696 	[ITEM_RAW_OFFSET] = {
1697 		.name = "offset",
1698 		.help = "absolute or relative offset for pattern",
1699 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1700 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1701 	},
1702 	[ITEM_RAW_LIMIT] = {
1703 		.name = "limit",
1704 		.help = "search area limit for start of pattern",
1705 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1706 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1707 	},
1708 	[ITEM_RAW_PATTERN] = {
1709 		.name = "pattern",
1710 		.help = "byte string to look for",
1711 		.next = NEXT(item_raw,
1712 			     NEXT_ENTRY(STRING),
1713 			     NEXT_ENTRY(ITEM_PARAM_IS,
1714 					ITEM_PARAM_SPEC,
1715 					ITEM_PARAM_MASK)),
1716 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1717 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1718 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1719 					    ITEM_RAW_PATTERN_SIZE)),
1720 	},
1721 	[ITEM_ETH] = {
1722 		.name = "eth",
1723 		.help = "match Ethernet header",
1724 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1725 		.next = NEXT(item_eth),
1726 		.call = parse_vc,
1727 	},
1728 	[ITEM_ETH_DST] = {
1729 		.name = "dst",
1730 		.help = "destination MAC",
1731 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1732 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1733 	},
1734 	[ITEM_ETH_SRC] = {
1735 		.name = "src",
1736 		.help = "source MAC",
1737 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1738 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1739 	},
1740 	[ITEM_ETH_TYPE] = {
1741 		.name = "type",
1742 		.help = "EtherType",
1743 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1744 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1745 	},
1746 	[ITEM_VLAN] = {
1747 		.name = "vlan",
1748 		.help = "match 802.1Q/ad VLAN tag",
1749 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1750 		.next = NEXT(item_vlan),
1751 		.call = parse_vc,
1752 	},
1753 	[ITEM_VLAN_TCI] = {
1754 		.name = "tci",
1755 		.help = "tag control information",
1756 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1757 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1758 	},
1759 	[ITEM_VLAN_PCP] = {
1760 		.name = "pcp",
1761 		.help = "priority code point",
1762 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1763 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1764 						  tci, "\xe0\x00")),
1765 	},
1766 	[ITEM_VLAN_DEI] = {
1767 		.name = "dei",
1768 		.help = "drop eligible indicator",
1769 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1770 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1771 						  tci, "\x10\x00")),
1772 	},
1773 	[ITEM_VLAN_VID] = {
1774 		.name = "vid",
1775 		.help = "VLAN identifier",
1776 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1777 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1778 						  tci, "\x0f\xff")),
1779 	},
1780 	[ITEM_VLAN_INNER_TYPE] = {
1781 		.name = "inner_type",
1782 		.help = "inner EtherType",
1783 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1784 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1785 					     inner_type)),
1786 	},
1787 	[ITEM_IPV4] = {
1788 		.name = "ipv4",
1789 		.help = "match IPv4 header",
1790 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1791 		.next = NEXT(item_ipv4),
1792 		.call = parse_vc,
1793 	},
1794 	[ITEM_IPV4_TOS] = {
1795 		.name = "tos",
1796 		.help = "type of service",
1797 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1798 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1799 					     hdr.type_of_service)),
1800 	},
1801 	[ITEM_IPV4_TTL] = {
1802 		.name = "ttl",
1803 		.help = "time to live",
1804 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1805 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1806 					     hdr.time_to_live)),
1807 	},
1808 	[ITEM_IPV4_PROTO] = {
1809 		.name = "proto",
1810 		.help = "next protocol ID",
1811 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1812 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1813 					     hdr.next_proto_id)),
1814 	},
1815 	[ITEM_IPV4_SRC] = {
1816 		.name = "src",
1817 		.help = "source address",
1818 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1819 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1820 					     hdr.src_addr)),
1821 	},
1822 	[ITEM_IPV4_DST] = {
1823 		.name = "dst",
1824 		.help = "destination address",
1825 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1826 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1827 					     hdr.dst_addr)),
1828 	},
1829 	[ITEM_IPV6] = {
1830 		.name = "ipv6",
1831 		.help = "match IPv6 header",
1832 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1833 		.next = NEXT(item_ipv6),
1834 		.call = parse_vc,
1835 	},
1836 	[ITEM_IPV6_TC] = {
1837 		.name = "tc",
1838 		.help = "traffic class",
1839 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1840 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1841 						  hdr.vtc_flow,
1842 						  "\x0f\xf0\x00\x00")),
1843 	},
1844 	[ITEM_IPV6_FLOW] = {
1845 		.name = "flow",
1846 		.help = "flow label",
1847 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1848 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1849 						  hdr.vtc_flow,
1850 						  "\x00\x0f\xff\xff")),
1851 	},
1852 	[ITEM_IPV6_PROTO] = {
1853 		.name = "proto",
1854 		.help = "protocol (next header)",
1855 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1856 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1857 					     hdr.proto)),
1858 	},
1859 	[ITEM_IPV6_HOP] = {
1860 		.name = "hop",
1861 		.help = "hop limit",
1862 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1863 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1864 					     hdr.hop_limits)),
1865 	},
1866 	[ITEM_IPV6_SRC] = {
1867 		.name = "src",
1868 		.help = "source address",
1869 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1870 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1871 					     hdr.src_addr)),
1872 	},
1873 	[ITEM_IPV6_DST] = {
1874 		.name = "dst",
1875 		.help = "destination address",
1876 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1877 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1878 					     hdr.dst_addr)),
1879 	},
1880 	[ITEM_ICMP] = {
1881 		.name = "icmp",
1882 		.help = "match ICMP header",
1883 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1884 		.next = NEXT(item_icmp),
1885 		.call = parse_vc,
1886 	},
1887 	[ITEM_ICMP_TYPE] = {
1888 		.name = "type",
1889 		.help = "ICMP packet type",
1890 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1891 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1892 					     hdr.icmp_type)),
1893 	},
1894 	[ITEM_ICMP_CODE] = {
1895 		.name = "code",
1896 		.help = "ICMP packet code",
1897 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1898 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1899 					     hdr.icmp_code)),
1900 	},
1901 	[ITEM_UDP] = {
1902 		.name = "udp",
1903 		.help = "match UDP header",
1904 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1905 		.next = NEXT(item_udp),
1906 		.call = parse_vc,
1907 	},
1908 	[ITEM_UDP_SRC] = {
1909 		.name = "src",
1910 		.help = "UDP source port",
1911 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1912 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1913 					     hdr.src_port)),
1914 	},
1915 	[ITEM_UDP_DST] = {
1916 		.name = "dst",
1917 		.help = "UDP destination port",
1918 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1919 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1920 					     hdr.dst_port)),
1921 	},
1922 	[ITEM_TCP] = {
1923 		.name = "tcp",
1924 		.help = "match TCP header",
1925 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1926 		.next = NEXT(item_tcp),
1927 		.call = parse_vc,
1928 	},
1929 	[ITEM_TCP_SRC] = {
1930 		.name = "src",
1931 		.help = "TCP source port",
1932 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1933 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1934 					     hdr.src_port)),
1935 	},
1936 	[ITEM_TCP_DST] = {
1937 		.name = "dst",
1938 		.help = "TCP destination port",
1939 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1940 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1941 					     hdr.dst_port)),
1942 	},
1943 	[ITEM_TCP_FLAGS] = {
1944 		.name = "flags",
1945 		.help = "TCP flags",
1946 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1947 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1948 					     hdr.tcp_flags)),
1949 	},
1950 	[ITEM_SCTP] = {
1951 		.name = "sctp",
1952 		.help = "match SCTP header",
1953 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1954 		.next = NEXT(item_sctp),
1955 		.call = parse_vc,
1956 	},
1957 	[ITEM_SCTP_SRC] = {
1958 		.name = "src",
1959 		.help = "SCTP source port",
1960 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1961 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1962 					     hdr.src_port)),
1963 	},
1964 	[ITEM_SCTP_DST] = {
1965 		.name = "dst",
1966 		.help = "SCTP destination port",
1967 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1968 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1969 					     hdr.dst_port)),
1970 	},
1971 	[ITEM_SCTP_TAG] = {
1972 		.name = "tag",
1973 		.help = "validation tag",
1974 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1975 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1976 					     hdr.tag)),
1977 	},
1978 	[ITEM_SCTP_CKSUM] = {
1979 		.name = "cksum",
1980 		.help = "checksum",
1981 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1982 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1983 					     hdr.cksum)),
1984 	},
1985 	[ITEM_VXLAN] = {
1986 		.name = "vxlan",
1987 		.help = "match VXLAN header",
1988 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1989 		.next = NEXT(item_vxlan),
1990 		.call = parse_vc,
1991 	},
1992 	[ITEM_VXLAN_VNI] = {
1993 		.name = "vni",
1994 		.help = "VXLAN identifier",
1995 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1996 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1997 	},
1998 	[ITEM_E_TAG] = {
1999 		.name = "e_tag",
2000 		.help = "match E-Tag header",
2001 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2002 		.next = NEXT(item_e_tag),
2003 		.call = parse_vc,
2004 	},
2005 	[ITEM_E_TAG_GRP_ECID_B] = {
2006 		.name = "grp_ecid_b",
2007 		.help = "GRP and E-CID base",
2008 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2009 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2010 						  rsvd_grp_ecid_b,
2011 						  "\x3f\xff")),
2012 	},
2013 	[ITEM_NVGRE] = {
2014 		.name = "nvgre",
2015 		.help = "match NVGRE header",
2016 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2017 		.next = NEXT(item_nvgre),
2018 		.call = parse_vc,
2019 	},
2020 	[ITEM_NVGRE_TNI] = {
2021 		.name = "tni",
2022 		.help = "virtual subnet ID",
2023 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2024 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2025 	},
2026 	[ITEM_MPLS] = {
2027 		.name = "mpls",
2028 		.help = "match MPLS header",
2029 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2030 		.next = NEXT(item_mpls),
2031 		.call = parse_vc,
2032 	},
2033 	[ITEM_MPLS_LABEL] = {
2034 		.name = "label",
2035 		.help = "MPLS label",
2036 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2037 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2038 						  label_tc_s,
2039 						  "\xff\xff\xf0")),
2040 	},
2041 	[ITEM_MPLS_TC] = {
2042 		.name = "tc",
2043 		.help = "MPLS Traffic Class",
2044 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2045 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2046 						  label_tc_s,
2047 						  "\x00\x00\x0e")),
2048 	},
2049 	[ITEM_MPLS_S] = {
2050 		.name = "s",
2051 		.help = "MPLS Bottom-of-Stack",
2052 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2053 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2054 						  label_tc_s,
2055 						  "\x00\x00\x01")),
2056 	},
2057 	[ITEM_GRE] = {
2058 		.name = "gre",
2059 		.help = "match GRE header",
2060 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2061 		.next = NEXT(item_gre),
2062 		.call = parse_vc,
2063 	},
2064 	[ITEM_GRE_PROTO] = {
2065 		.name = "protocol",
2066 		.help = "GRE protocol type",
2067 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2068 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2069 					     protocol)),
2070 	},
2071 	[ITEM_GRE_C_RSVD0_VER] = {
2072 		.name = "c_rsvd0_ver",
2073 		.help =
2074 			"checksum (1b), undefined (1b), key bit (1b),"
2075 			" sequence number (1b), reserved 0 (9b),"
2076 			" version (3b)",
2077 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2078 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2079 					     c_rsvd0_ver)),
2080 	},
2081 	[ITEM_GRE_C_BIT] = {
2082 		.name = "c_bit",
2083 		.help = "checksum bit (C)",
2084 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2085 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2086 						  c_rsvd0_ver,
2087 						  "\x80\x00\x00\x00")),
2088 	},
2089 	[ITEM_GRE_S_BIT] = {
2090 		.name = "s_bit",
2091 		.help = "sequence number bit (S)",
2092 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2093 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2094 						  c_rsvd0_ver,
2095 						  "\x10\x00\x00\x00")),
2096 	},
2097 	[ITEM_GRE_K_BIT] = {
2098 		.name = "k_bit",
2099 		.help = "key bit (K)",
2100 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2101 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2102 						  c_rsvd0_ver,
2103 						  "\x20\x00\x00\x00")),
2104 	},
2105 	[ITEM_FUZZY] = {
2106 		.name = "fuzzy",
2107 		.help = "fuzzy pattern match, expect faster than default",
2108 		.priv = PRIV_ITEM(FUZZY,
2109 				sizeof(struct rte_flow_item_fuzzy)),
2110 		.next = NEXT(item_fuzzy),
2111 		.call = parse_vc,
2112 	},
2113 	[ITEM_FUZZY_THRESH] = {
2114 		.name = "thresh",
2115 		.help = "match accuracy threshold",
2116 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2117 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2118 					thresh)),
2119 	},
2120 	[ITEM_GTP] = {
2121 		.name = "gtp",
2122 		.help = "match GTP header",
2123 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2124 		.next = NEXT(item_gtp),
2125 		.call = parse_vc,
2126 	},
2127 	[ITEM_GTP_TEID] = {
2128 		.name = "teid",
2129 		.help = "tunnel endpoint identifier",
2130 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2131 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2132 	},
2133 	[ITEM_GTPC] = {
2134 		.name = "gtpc",
2135 		.help = "match GTP header",
2136 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2137 		.next = NEXT(item_gtp),
2138 		.call = parse_vc,
2139 	},
2140 	[ITEM_GTPU] = {
2141 		.name = "gtpu",
2142 		.help = "match GTP header",
2143 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2144 		.next = NEXT(item_gtp),
2145 		.call = parse_vc,
2146 	},
2147 	[ITEM_GENEVE] = {
2148 		.name = "geneve",
2149 		.help = "match GENEVE header",
2150 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2151 		.next = NEXT(item_geneve),
2152 		.call = parse_vc,
2153 	},
2154 	[ITEM_GENEVE_VNI] = {
2155 		.name = "vni",
2156 		.help = "virtual network identifier",
2157 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2158 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2159 	},
2160 	[ITEM_GENEVE_PROTO] = {
2161 		.name = "protocol",
2162 		.help = "GENEVE protocol type",
2163 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2164 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2165 					     protocol)),
2166 	},
2167 	[ITEM_VXLAN_GPE] = {
2168 		.name = "vxlan-gpe",
2169 		.help = "match VXLAN-GPE header",
2170 		.priv = PRIV_ITEM(VXLAN_GPE,
2171 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2172 		.next = NEXT(item_vxlan_gpe),
2173 		.call = parse_vc,
2174 	},
2175 	[ITEM_VXLAN_GPE_VNI] = {
2176 		.name = "vni",
2177 		.help = "VXLAN-GPE identifier",
2178 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2179 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2180 					     vni)),
2181 	},
2182 	[ITEM_ARP_ETH_IPV4] = {
2183 		.name = "arp_eth_ipv4",
2184 		.help = "match ARP header for Ethernet/IPv4",
2185 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2186 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2187 		.next = NEXT(item_arp_eth_ipv4),
2188 		.call = parse_vc,
2189 	},
2190 	[ITEM_ARP_ETH_IPV4_SHA] = {
2191 		.name = "sha",
2192 		.help = "sender hardware address",
2193 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2194 			     item_param),
2195 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2196 					     sha)),
2197 	},
2198 	[ITEM_ARP_ETH_IPV4_SPA] = {
2199 		.name = "spa",
2200 		.help = "sender IPv4 address",
2201 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2202 			     item_param),
2203 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2204 					     spa)),
2205 	},
2206 	[ITEM_ARP_ETH_IPV4_THA] = {
2207 		.name = "tha",
2208 		.help = "target hardware address",
2209 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2210 			     item_param),
2211 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2212 					     tha)),
2213 	},
2214 	[ITEM_ARP_ETH_IPV4_TPA] = {
2215 		.name = "tpa",
2216 		.help = "target IPv4 address",
2217 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2218 			     item_param),
2219 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2220 					     tpa)),
2221 	},
2222 	[ITEM_IPV6_EXT] = {
2223 		.name = "ipv6_ext",
2224 		.help = "match presence of any IPv6 extension header",
2225 		.priv = PRIV_ITEM(IPV6_EXT,
2226 				  sizeof(struct rte_flow_item_ipv6_ext)),
2227 		.next = NEXT(item_ipv6_ext),
2228 		.call = parse_vc,
2229 	},
2230 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2231 		.name = "next_hdr",
2232 		.help = "next header",
2233 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2234 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2235 					     next_hdr)),
2236 	},
2237 	[ITEM_ICMP6] = {
2238 		.name = "icmp6",
2239 		.help = "match any ICMPv6 header",
2240 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2241 		.next = NEXT(item_icmp6),
2242 		.call = parse_vc,
2243 	},
2244 	[ITEM_ICMP6_TYPE] = {
2245 		.name = "type",
2246 		.help = "ICMPv6 type",
2247 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2248 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2249 					     type)),
2250 	},
2251 	[ITEM_ICMP6_CODE] = {
2252 		.name = "code",
2253 		.help = "ICMPv6 code",
2254 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2255 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2256 					     code)),
2257 	},
2258 	[ITEM_ICMP6_ND_NS] = {
2259 		.name = "icmp6_nd_ns",
2260 		.help = "match ICMPv6 neighbor discovery solicitation",
2261 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2262 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2263 		.next = NEXT(item_icmp6_nd_ns),
2264 		.call = parse_vc,
2265 	},
2266 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2267 		.name = "target_addr",
2268 		.help = "target address",
2269 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2270 			     item_param),
2271 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2272 					     target_addr)),
2273 	},
2274 	[ITEM_ICMP6_ND_NA] = {
2275 		.name = "icmp6_nd_na",
2276 		.help = "match ICMPv6 neighbor discovery advertisement",
2277 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2278 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2279 		.next = NEXT(item_icmp6_nd_na),
2280 		.call = parse_vc,
2281 	},
2282 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2283 		.name = "target_addr",
2284 		.help = "target address",
2285 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2286 			     item_param),
2287 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2288 					     target_addr)),
2289 	},
2290 	[ITEM_ICMP6_ND_OPT] = {
2291 		.name = "icmp6_nd_opt",
2292 		.help = "match presence of any ICMPv6 neighbor discovery"
2293 			" option",
2294 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2295 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2296 		.next = NEXT(item_icmp6_nd_opt),
2297 		.call = parse_vc,
2298 	},
2299 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2300 		.name = "type",
2301 		.help = "ND option type",
2302 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2303 			     item_param),
2304 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2305 					     type)),
2306 	},
2307 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2308 		.name = "icmp6_nd_opt_sla_eth",
2309 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2310 			" link-layer address option",
2311 		.priv = PRIV_ITEM
2312 			(ICMP6_ND_OPT_SLA_ETH,
2313 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2314 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2315 		.call = parse_vc,
2316 	},
2317 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2318 		.name = "sla",
2319 		.help = "source Ethernet LLA",
2320 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2321 			     item_param),
2322 		.args = ARGS(ARGS_ENTRY_HTON
2323 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2324 	},
2325 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2326 		.name = "icmp6_nd_opt_tla_eth",
2327 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2328 			" link-layer address option",
2329 		.priv = PRIV_ITEM
2330 			(ICMP6_ND_OPT_TLA_ETH,
2331 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2332 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2333 		.call = parse_vc,
2334 	},
2335 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2336 		.name = "tla",
2337 		.help = "target Ethernet LLA",
2338 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2339 			     item_param),
2340 		.args = ARGS(ARGS_ENTRY_HTON
2341 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2342 	},
2343 	[ITEM_META] = {
2344 		.name = "meta",
2345 		.help = "match metadata header",
2346 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2347 		.next = NEXT(item_meta),
2348 		.call = parse_vc,
2349 	},
2350 	[ITEM_META_DATA] = {
2351 		.name = "data",
2352 		.help = "metadata value",
2353 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2354 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2355 						  data, "\xff\xff\xff\xff")),
2356 	},
2357 	[ITEM_GRE_KEY] = {
2358 		.name = "gre_key",
2359 		.help = "match GRE key",
2360 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2361 		.next = NEXT(item_gre_key),
2362 		.call = parse_vc,
2363 	},
2364 	[ITEM_GRE_KEY_VALUE] = {
2365 		.name = "value",
2366 		.help = "key value",
2367 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2368 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2369 	},
2370 	[ITEM_GTP_PSC] = {
2371 		.name = "gtp_psc",
2372 		.help = "match GTP extension header with type 0x85",
2373 		.priv = PRIV_ITEM(GTP_PSC,
2374 				sizeof(struct rte_flow_item_gtp_psc)),
2375 		.next = NEXT(item_gtp_psc),
2376 		.call = parse_vc,
2377 	},
2378 	[ITEM_GTP_PSC_QFI] = {
2379 		.name = "qfi",
2380 		.help = "QoS flow identifier",
2381 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2382 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2383 					qfi)),
2384 	},
2385 	[ITEM_GTP_PSC_PDU_T] = {
2386 		.name = "pdu_t",
2387 		.help = "PDU type",
2388 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2389 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2390 					pdu_type)),
2391 	},
2392 	[ITEM_PPPOES] = {
2393 		.name = "pppoes",
2394 		.help = "match PPPoE session header",
2395 		.priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
2396 		.next = NEXT(item_pppoes),
2397 		.call = parse_vc,
2398 	},
2399 	[ITEM_PPPOED] = {
2400 		.name = "pppoed",
2401 		.help = "match PPPoE discovery header",
2402 		.priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
2403 		.next = NEXT(item_pppoed),
2404 		.call = parse_vc,
2405 	},
2406 	[ITEM_PPPOE_SEID] = {
2407 		.name = "seid",
2408 		.help = "session identifier",
2409 		.next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
2410 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
2411 					session_id)),
2412 	},
2413 	[ITEM_PPPOE_PROTO_ID] = {
2414 		.name = "proto_id",
2415 		.help = "match PPPoE session protocol identifier",
2416 		.priv = PRIV_ITEM(PPPOE_PROTO_ID,
2417 				sizeof(struct rte_flow_item_pppoe_proto_id)),
2418 		.next = NEXT(item_pppoe_proto_id),
2419 		.call = parse_vc,
2420 	},
2421 	/* Validate/create actions. */
2422 	[ACTIONS] = {
2423 		.name = "actions",
2424 		.help = "submit a list of associated actions",
2425 		.next = NEXT(next_action),
2426 		.call = parse_vc,
2427 	},
2428 	[ACTION_NEXT] = {
2429 		.name = "/",
2430 		.help = "specify next action",
2431 		.next = NEXT(next_action),
2432 	},
2433 	[ACTION_END] = {
2434 		.name = "end",
2435 		.help = "end list of actions",
2436 		.priv = PRIV_ACTION(END, 0),
2437 		.call = parse_vc,
2438 	},
2439 	[ACTION_VOID] = {
2440 		.name = "void",
2441 		.help = "no-op action",
2442 		.priv = PRIV_ACTION(VOID, 0),
2443 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2444 		.call = parse_vc,
2445 	},
2446 	[ACTION_PASSTHRU] = {
2447 		.name = "passthru",
2448 		.help = "let subsequent rule process matched packets",
2449 		.priv = PRIV_ACTION(PASSTHRU, 0),
2450 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2451 		.call = parse_vc,
2452 	},
2453 	[ACTION_JUMP] = {
2454 		.name = "jump",
2455 		.help = "redirect traffic to a given group",
2456 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2457 		.next = NEXT(action_jump),
2458 		.call = parse_vc,
2459 	},
2460 	[ACTION_JUMP_GROUP] = {
2461 		.name = "group",
2462 		.help = "group to redirect traffic to",
2463 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2464 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2465 		.call = parse_vc_conf,
2466 	},
2467 	[ACTION_MARK] = {
2468 		.name = "mark",
2469 		.help = "attach 32 bit value to packets",
2470 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2471 		.next = NEXT(action_mark),
2472 		.call = parse_vc,
2473 	},
2474 	[ACTION_MARK_ID] = {
2475 		.name = "id",
2476 		.help = "32 bit value to return with packets",
2477 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2478 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2479 		.call = parse_vc_conf,
2480 	},
2481 	[ACTION_FLAG] = {
2482 		.name = "flag",
2483 		.help = "flag packets",
2484 		.priv = PRIV_ACTION(FLAG, 0),
2485 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2486 		.call = parse_vc,
2487 	},
2488 	[ACTION_QUEUE] = {
2489 		.name = "queue",
2490 		.help = "assign packets to a given queue index",
2491 		.priv = PRIV_ACTION(QUEUE,
2492 				    sizeof(struct rte_flow_action_queue)),
2493 		.next = NEXT(action_queue),
2494 		.call = parse_vc,
2495 	},
2496 	[ACTION_QUEUE_INDEX] = {
2497 		.name = "index",
2498 		.help = "queue index to use",
2499 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2500 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2501 		.call = parse_vc_conf,
2502 	},
2503 	[ACTION_DROP] = {
2504 		.name = "drop",
2505 		.help = "drop packets (note: passthru has priority)",
2506 		.priv = PRIV_ACTION(DROP, 0),
2507 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2508 		.call = parse_vc,
2509 	},
2510 	[ACTION_COUNT] = {
2511 		.name = "count",
2512 		.help = "enable counters for this rule",
2513 		.priv = PRIV_ACTION(COUNT,
2514 				    sizeof(struct rte_flow_action_count)),
2515 		.next = NEXT(action_count),
2516 		.call = parse_vc,
2517 	},
2518 	[ACTION_COUNT_ID] = {
2519 		.name = "identifier",
2520 		.help = "counter identifier to use",
2521 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2522 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2523 		.call = parse_vc_conf,
2524 	},
2525 	[ACTION_COUNT_SHARED] = {
2526 		.name = "shared",
2527 		.help = "shared counter",
2528 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2529 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2530 					   shared, 1)),
2531 		.call = parse_vc_conf,
2532 	},
2533 	[ACTION_RSS] = {
2534 		.name = "rss",
2535 		.help = "spread packets among several queues",
2536 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2537 		.next = NEXT(action_rss),
2538 		.call = parse_vc_action_rss,
2539 	},
2540 	[ACTION_RSS_FUNC] = {
2541 		.name = "func",
2542 		.help = "RSS hash function to apply",
2543 		.next = NEXT(action_rss,
2544 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2545 					ACTION_RSS_FUNC_TOEPLITZ,
2546 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2547 	},
2548 	[ACTION_RSS_FUNC_DEFAULT] = {
2549 		.name = "default",
2550 		.help = "default hash function",
2551 		.call = parse_vc_action_rss_func,
2552 	},
2553 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2554 		.name = "toeplitz",
2555 		.help = "Toeplitz hash function",
2556 		.call = parse_vc_action_rss_func,
2557 	},
2558 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2559 		.name = "simple_xor",
2560 		.help = "simple XOR hash function",
2561 		.call = parse_vc_action_rss_func,
2562 	},
2563 	[ACTION_RSS_LEVEL] = {
2564 		.name = "level",
2565 		.help = "encapsulation level for \"types\"",
2566 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2567 		.args = ARGS(ARGS_ENTRY_ARB
2568 			     (offsetof(struct action_rss_data, conf) +
2569 			      offsetof(struct rte_flow_action_rss, level),
2570 			      sizeof(((struct rte_flow_action_rss *)0)->
2571 				     level))),
2572 	},
2573 	[ACTION_RSS_TYPES] = {
2574 		.name = "types",
2575 		.help = "specific RSS hash types",
2576 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2577 	},
2578 	[ACTION_RSS_TYPE] = {
2579 		.name = "{type}",
2580 		.help = "RSS hash type",
2581 		.call = parse_vc_action_rss_type,
2582 		.comp = comp_vc_action_rss_type,
2583 	},
2584 	[ACTION_RSS_KEY] = {
2585 		.name = "key",
2586 		.help = "RSS hash key",
2587 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2588 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2589 			     ARGS_ENTRY_ARB
2590 			     (offsetof(struct action_rss_data, conf) +
2591 			      offsetof(struct rte_flow_action_rss, key_len),
2592 			      sizeof(((struct rte_flow_action_rss *)0)->
2593 				     key_len)),
2594 			     ARGS_ENTRY(struct action_rss_data, key)),
2595 	},
2596 	[ACTION_RSS_KEY_LEN] = {
2597 		.name = "key_len",
2598 		.help = "RSS hash key length in bytes",
2599 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2600 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2601 			     (offsetof(struct action_rss_data, conf) +
2602 			      offsetof(struct rte_flow_action_rss, key_len),
2603 			      sizeof(((struct rte_flow_action_rss *)0)->
2604 				     key_len),
2605 			      0,
2606 			      RSS_HASH_KEY_LENGTH)),
2607 	},
2608 	[ACTION_RSS_QUEUES] = {
2609 		.name = "queues",
2610 		.help = "queue indices to use",
2611 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2612 		.call = parse_vc_conf,
2613 	},
2614 	[ACTION_RSS_QUEUE] = {
2615 		.name = "{queue}",
2616 		.help = "queue index",
2617 		.call = parse_vc_action_rss_queue,
2618 		.comp = comp_vc_action_rss_queue,
2619 	},
2620 	[ACTION_PF] = {
2621 		.name = "pf",
2622 		.help = "direct traffic to physical function",
2623 		.priv = PRIV_ACTION(PF, 0),
2624 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2625 		.call = parse_vc,
2626 	},
2627 	[ACTION_VF] = {
2628 		.name = "vf",
2629 		.help = "direct traffic to a virtual function ID",
2630 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2631 		.next = NEXT(action_vf),
2632 		.call = parse_vc,
2633 	},
2634 	[ACTION_VF_ORIGINAL] = {
2635 		.name = "original",
2636 		.help = "use original VF ID if possible",
2637 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2638 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2639 					   original, 1)),
2640 		.call = parse_vc_conf,
2641 	},
2642 	[ACTION_VF_ID] = {
2643 		.name = "id",
2644 		.help = "VF ID",
2645 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2646 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2647 		.call = parse_vc_conf,
2648 	},
2649 	[ACTION_PHY_PORT] = {
2650 		.name = "phy_port",
2651 		.help = "direct packets to physical port index",
2652 		.priv = PRIV_ACTION(PHY_PORT,
2653 				    sizeof(struct rte_flow_action_phy_port)),
2654 		.next = NEXT(action_phy_port),
2655 		.call = parse_vc,
2656 	},
2657 	[ACTION_PHY_PORT_ORIGINAL] = {
2658 		.name = "original",
2659 		.help = "use original port index if possible",
2660 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2661 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2662 					   original, 1)),
2663 		.call = parse_vc_conf,
2664 	},
2665 	[ACTION_PHY_PORT_INDEX] = {
2666 		.name = "index",
2667 		.help = "physical port index",
2668 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2669 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2670 					index)),
2671 		.call = parse_vc_conf,
2672 	},
2673 	[ACTION_PORT_ID] = {
2674 		.name = "port_id",
2675 		.help = "direct matching traffic to a given DPDK port ID",
2676 		.priv = PRIV_ACTION(PORT_ID,
2677 				    sizeof(struct rte_flow_action_port_id)),
2678 		.next = NEXT(action_port_id),
2679 		.call = parse_vc,
2680 	},
2681 	[ACTION_PORT_ID_ORIGINAL] = {
2682 		.name = "original",
2683 		.help = "use original DPDK port ID if possible",
2684 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2685 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2686 					   original, 1)),
2687 		.call = parse_vc_conf,
2688 	},
2689 	[ACTION_PORT_ID_ID] = {
2690 		.name = "id",
2691 		.help = "DPDK port ID",
2692 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2693 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2694 		.call = parse_vc_conf,
2695 	},
2696 	[ACTION_METER] = {
2697 		.name = "meter",
2698 		.help = "meter the directed packets at given id",
2699 		.priv = PRIV_ACTION(METER,
2700 				    sizeof(struct rte_flow_action_meter)),
2701 		.next = NEXT(action_meter),
2702 		.call = parse_vc,
2703 	},
2704 	[ACTION_METER_ID] = {
2705 		.name = "mtr_id",
2706 		.help = "meter id to use",
2707 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2708 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2709 		.call = parse_vc_conf,
2710 	},
2711 	[ACTION_OF_SET_MPLS_TTL] = {
2712 		.name = "of_set_mpls_ttl",
2713 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2714 		.priv = PRIV_ACTION
2715 			(OF_SET_MPLS_TTL,
2716 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2717 		.next = NEXT(action_of_set_mpls_ttl),
2718 		.call = parse_vc,
2719 	},
2720 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2721 		.name = "mpls_ttl",
2722 		.help = "MPLS TTL",
2723 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2724 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2725 					mpls_ttl)),
2726 		.call = parse_vc_conf,
2727 	},
2728 	[ACTION_OF_DEC_MPLS_TTL] = {
2729 		.name = "of_dec_mpls_ttl",
2730 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2731 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2732 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2733 		.call = parse_vc,
2734 	},
2735 	[ACTION_OF_SET_NW_TTL] = {
2736 		.name = "of_set_nw_ttl",
2737 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2738 		.priv = PRIV_ACTION
2739 			(OF_SET_NW_TTL,
2740 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2741 		.next = NEXT(action_of_set_nw_ttl),
2742 		.call = parse_vc,
2743 	},
2744 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2745 		.name = "nw_ttl",
2746 		.help = "IP TTL",
2747 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2748 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2749 					nw_ttl)),
2750 		.call = parse_vc_conf,
2751 	},
2752 	[ACTION_OF_DEC_NW_TTL] = {
2753 		.name = "of_dec_nw_ttl",
2754 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2755 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2756 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2757 		.call = parse_vc,
2758 	},
2759 	[ACTION_OF_COPY_TTL_OUT] = {
2760 		.name = "of_copy_ttl_out",
2761 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2762 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2763 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2764 		.call = parse_vc,
2765 	},
2766 	[ACTION_OF_COPY_TTL_IN] = {
2767 		.name = "of_copy_ttl_in",
2768 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2769 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2770 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2771 		.call = parse_vc,
2772 	},
2773 	[ACTION_OF_POP_VLAN] = {
2774 		.name = "of_pop_vlan",
2775 		.help = "OpenFlow's OFPAT_POP_VLAN",
2776 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2777 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2778 		.call = parse_vc,
2779 	},
2780 	[ACTION_OF_PUSH_VLAN] = {
2781 		.name = "of_push_vlan",
2782 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2783 		.priv = PRIV_ACTION
2784 			(OF_PUSH_VLAN,
2785 			 sizeof(struct rte_flow_action_of_push_vlan)),
2786 		.next = NEXT(action_of_push_vlan),
2787 		.call = parse_vc,
2788 	},
2789 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2790 		.name = "ethertype",
2791 		.help = "EtherType",
2792 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2793 		.args = ARGS(ARGS_ENTRY_HTON
2794 			     (struct rte_flow_action_of_push_vlan,
2795 			      ethertype)),
2796 		.call = parse_vc_conf,
2797 	},
2798 	[ACTION_OF_SET_VLAN_VID] = {
2799 		.name = "of_set_vlan_vid",
2800 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2801 		.priv = PRIV_ACTION
2802 			(OF_SET_VLAN_VID,
2803 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2804 		.next = NEXT(action_of_set_vlan_vid),
2805 		.call = parse_vc,
2806 	},
2807 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2808 		.name = "vlan_vid",
2809 		.help = "VLAN id",
2810 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2811 		.args = ARGS(ARGS_ENTRY_HTON
2812 			     (struct rte_flow_action_of_set_vlan_vid,
2813 			      vlan_vid)),
2814 		.call = parse_vc_conf,
2815 	},
2816 	[ACTION_OF_SET_VLAN_PCP] = {
2817 		.name = "of_set_vlan_pcp",
2818 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2819 		.priv = PRIV_ACTION
2820 			(OF_SET_VLAN_PCP,
2821 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2822 		.next = NEXT(action_of_set_vlan_pcp),
2823 		.call = parse_vc,
2824 	},
2825 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2826 		.name = "vlan_pcp",
2827 		.help = "VLAN priority",
2828 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2829 		.args = ARGS(ARGS_ENTRY_HTON
2830 			     (struct rte_flow_action_of_set_vlan_pcp,
2831 			      vlan_pcp)),
2832 		.call = parse_vc_conf,
2833 	},
2834 	[ACTION_OF_POP_MPLS] = {
2835 		.name = "of_pop_mpls",
2836 		.help = "OpenFlow's OFPAT_POP_MPLS",
2837 		.priv = PRIV_ACTION(OF_POP_MPLS,
2838 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2839 		.next = NEXT(action_of_pop_mpls),
2840 		.call = parse_vc,
2841 	},
2842 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2843 		.name = "ethertype",
2844 		.help = "EtherType",
2845 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2846 		.args = ARGS(ARGS_ENTRY_HTON
2847 			     (struct rte_flow_action_of_pop_mpls,
2848 			      ethertype)),
2849 		.call = parse_vc_conf,
2850 	},
2851 	[ACTION_OF_PUSH_MPLS] = {
2852 		.name = "of_push_mpls",
2853 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2854 		.priv = PRIV_ACTION
2855 			(OF_PUSH_MPLS,
2856 			 sizeof(struct rte_flow_action_of_push_mpls)),
2857 		.next = NEXT(action_of_push_mpls),
2858 		.call = parse_vc,
2859 	},
2860 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2861 		.name = "ethertype",
2862 		.help = "EtherType",
2863 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2864 		.args = ARGS(ARGS_ENTRY_HTON
2865 			     (struct rte_flow_action_of_push_mpls,
2866 			      ethertype)),
2867 		.call = parse_vc_conf,
2868 	},
2869 	[ACTION_VXLAN_ENCAP] = {
2870 		.name = "vxlan_encap",
2871 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2872 			" vxlan\"",
2873 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2874 				    sizeof(struct action_vxlan_encap_data)),
2875 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2876 		.call = parse_vc_action_vxlan_encap,
2877 	},
2878 	[ACTION_VXLAN_DECAP] = {
2879 		.name = "vxlan_decap",
2880 		.help = "Performs a decapsulation action by stripping all"
2881 			" headers of the VXLAN tunnel network overlay from the"
2882 			" matched flow.",
2883 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2884 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2885 		.call = parse_vc,
2886 	},
2887 	[ACTION_NVGRE_ENCAP] = {
2888 		.name = "nvgre_encap",
2889 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2890 			" nvgre\"",
2891 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2892 				    sizeof(struct action_nvgre_encap_data)),
2893 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2894 		.call = parse_vc_action_nvgre_encap,
2895 	},
2896 	[ACTION_NVGRE_DECAP] = {
2897 		.name = "nvgre_decap",
2898 		.help = "Performs a decapsulation action by stripping all"
2899 			" headers of the NVGRE tunnel network overlay from the"
2900 			" matched flow.",
2901 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2902 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2903 		.call = parse_vc,
2904 	},
2905 	[ACTION_L2_ENCAP] = {
2906 		.name = "l2_encap",
2907 		.help = "l2 encap, uses configuration set by"
2908 			" \"set l2_encap\"",
2909 		.priv = PRIV_ACTION(RAW_ENCAP,
2910 				    sizeof(struct action_raw_encap_data)),
2911 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2912 		.call = parse_vc_action_l2_encap,
2913 	},
2914 	[ACTION_L2_DECAP] = {
2915 		.name = "l2_decap",
2916 		.help = "l2 decap, uses configuration set by"
2917 			" \"set l2_decap\"",
2918 		.priv = PRIV_ACTION(RAW_DECAP,
2919 				    sizeof(struct action_raw_decap_data)),
2920 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2921 		.call = parse_vc_action_l2_decap,
2922 	},
2923 	[ACTION_MPLSOGRE_ENCAP] = {
2924 		.name = "mplsogre_encap",
2925 		.help = "mplsogre encapsulation, uses configuration set by"
2926 			" \"set mplsogre_encap\"",
2927 		.priv = PRIV_ACTION(RAW_ENCAP,
2928 				    sizeof(struct action_raw_encap_data)),
2929 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2930 		.call = parse_vc_action_mplsogre_encap,
2931 	},
2932 	[ACTION_MPLSOGRE_DECAP] = {
2933 		.name = "mplsogre_decap",
2934 		.help = "mplsogre decapsulation, uses configuration set by"
2935 			" \"set mplsogre_decap\"",
2936 		.priv = PRIV_ACTION(RAW_DECAP,
2937 				    sizeof(struct action_raw_decap_data)),
2938 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2939 		.call = parse_vc_action_mplsogre_decap,
2940 	},
2941 	[ACTION_MPLSOUDP_ENCAP] = {
2942 		.name = "mplsoudp_encap",
2943 		.help = "mplsoudp encapsulation, uses configuration set by"
2944 			" \"set mplsoudp_encap\"",
2945 		.priv = PRIV_ACTION(RAW_ENCAP,
2946 				    sizeof(struct action_raw_encap_data)),
2947 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2948 		.call = parse_vc_action_mplsoudp_encap,
2949 	},
2950 	[ACTION_MPLSOUDP_DECAP] = {
2951 		.name = "mplsoudp_decap",
2952 		.help = "mplsoudp decapsulation, uses configuration set by"
2953 			" \"set mplsoudp_decap\"",
2954 		.priv = PRIV_ACTION(RAW_DECAP,
2955 				    sizeof(struct action_raw_decap_data)),
2956 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2957 		.call = parse_vc_action_mplsoudp_decap,
2958 	},
2959 	[ACTION_SET_IPV4_SRC] = {
2960 		.name = "set_ipv4_src",
2961 		.help = "Set a new IPv4 source address in the outermost"
2962 			" IPv4 header",
2963 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2964 			sizeof(struct rte_flow_action_set_ipv4)),
2965 		.next = NEXT(action_set_ipv4_src),
2966 		.call = parse_vc,
2967 	},
2968 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2969 		.name = "ipv4_addr",
2970 		.help = "new IPv4 source address to set",
2971 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2972 		.args = ARGS(ARGS_ENTRY_HTON
2973 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2974 		.call = parse_vc_conf,
2975 	},
2976 	[ACTION_SET_IPV4_DST] = {
2977 		.name = "set_ipv4_dst",
2978 		.help = "Set a new IPv4 destination address in the outermost"
2979 			" IPv4 header",
2980 		.priv = PRIV_ACTION(SET_IPV4_DST,
2981 			sizeof(struct rte_flow_action_set_ipv4)),
2982 		.next = NEXT(action_set_ipv4_dst),
2983 		.call = parse_vc,
2984 	},
2985 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2986 		.name = "ipv4_addr",
2987 		.help = "new IPv4 destination address to set",
2988 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2989 		.args = ARGS(ARGS_ENTRY_HTON
2990 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2991 		.call = parse_vc_conf,
2992 	},
2993 	[ACTION_SET_IPV6_SRC] = {
2994 		.name = "set_ipv6_src",
2995 		.help = "Set a new IPv6 source address in the outermost"
2996 			" IPv6 header",
2997 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2998 			sizeof(struct rte_flow_action_set_ipv6)),
2999 		.next = NEXT(action_set_ipv6_src),
3000 		.call = parse_vc,
3001 	},
3002 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3003 		.name = "ipv6_addr",
3004 		.help = "new IPv6 source address to set",
3005 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3006 		.args = ARGS(ARGS_ENTRY_HTON
3007 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3008 		.call = parse_vc_conf,
3009 	},
3010 	[ACTION_SET_IPV6_DST] = {
3011 		.name = "set_ipv6_dst",
3012 		.help = "Set a new IPv6 destination address in the outermost"
3013 			" IPv6 header",
3014 		.priv = PRIV_ACTION(SET_IPV6_DST,
3015 			sizeof(struct rte_flow_action_set_ipv6)),
3016 		.next = NEXT(action_set_ipv6_dst),
3017 		.call = parse_vc,
3018 	},
3019 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
3020 		.name = "ipv6_addr",
3021 		.help = "new IPv6 destination address to set",
3022 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
3023 		.args = ARGS(ARGS_ENTRY_HTON
3024 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3025 		.call = parse_vc_conf,
3026 	},
3027 	[ACTION_SET_TP_SRC] = {
3028 		.name = "set_tp_src",
3029 		.help = "set a new source port number in the outermost"
3030 			" TCP/UDP header",
3031 		.priv = PRIV_ACTION(SET_TP_SRC,
3032 			sizeof(struct rte_flow_action_set_tp)),
3033 		.next = NEXT(action_set_tp_src),
3034 		.call = parse_vc,
3035 	},
3036 	[ACTION_SET_TP_SRC_TP_SRC] = {
3037 		.name = "port",
3038 		.help = "new source port number to set",
3039 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
3040 		.args = ARGS(ARGS_ENTRY_HTON
3041 			     (struct rte_flow_action_set_tp, port)),
3042 		.call = parse_vc_conf,
3043 	},
3044 	[ACTION_SET_TP_DST] = {
3045 		.name = "set_tp_dst",
3046 		.help = "set a new destination port number in the outermost"
3047 			" TCP/UDP header",
3048 		.priv = PRIV_ACTION(SET_TP_DST,
3049 			sizeof(struct rte_flow_action_set_tp)),
3050 		.next = NEXT(action_set_tp_dst),
3051 		.call = parse_vc,
3052 	},
3053 	[ACTION_SET_TP_DST_TP_DST] = {
3054 		.name = "port",
3055 		.help = "new destination port number to set",
3056 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
3057 		.args = ARGS(ARGS_ENTRY_HTON
3058 			     (struct rte_flow_action_set_tp, port)),
3059 		.call = parse_vc_conf,
3060 	},
3061 	[ACTION_MAC_SWAP] = {
3062 		.name = "mac_swap",
3063 		.help = "Swap the source and destination MAC addresses"
3064 			" in the outermost Ethernet header",
3065 		.priv = PRIV_ACTION(MAC_SWAP, 0),
3066 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3067 		.call = parse_vc,
3068 	},
3069 	[ACTION_DEC_TTL] = {
3070 		.name = "dec_ttl",
3071 		.help = "decrease network TTL if available",
3072 		.priv = PRIV_ACTION(DEC_TTL, 0),
3073 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3074 		.call = parse_vc,
3075 	},
3076 	[ACTION_SET_TTL] = {
3077 		.name = "set_ttl",
3078 		.help = "set ttl value",
3079 		.priv = PRIV_ACTION(SET_TTL,
3080 			sizeof(struct rte_flow_action_set_ttl)),
3081 		.next = NEXT(action_set_ttl),
3082 		.call = parse_vc,
3083 	},
3084 	[ACTION_SET_TTL_TTL] = {
3085 		.name = "ttl_value",
3086 		.help = "new ttl value to set",
3087 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3088 		.args = ARGS(ARGS_ENTRY_HTON
3089 			     (struct rte_flow_action_set_ttl, ttl_value)),
3090 		.call = parse_vc_conf,
3091 	},
3092 	[ACTION_SET_MAC_SRC] = {
3093 		.name = "set_mac_src",
3094 		.help = "set source mac address",
3095 		.priv = PRIV_ACTION(SET_MAC_SRC,
3096 			sizeof(struct rte_flow_action_set_mac)),
3097 		.next = NEXT(action_set_mac_src),
3098 		.call = parse_vc,
3099 	},
3100 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
3101 		.name = "mac_addr",
3102 		.help = "new source mac address",
3103 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3104 		.args = ARGS(ARGS_ENTRY_HTON
3105 			     (struct rte_flow_action_set_mac, mac_addr)),
3106 		.call = parse_vc_conf,
3107 	},
3108 	[ACTION_SET_MAC_DST] = {
3109 		.name = "set_mac_dst",
3110 		.help = "set destination mac address",
3111 		.priv = PRIV_ACTION(SET_MAC_DST,
3112 			sizeof(struct rte_flow_action_set_mac)),
3113 		.next = NEXT(action_set_mac_dst),
3114 		.call = parse_vc,
3115 	},
3116 	[ACTION_SET_MAC_DST_MAC_DST] = {
3117 		.name = "mac_addr",
3118 		.help = "new destination mac address to set",
3119 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3120 		.args = ARGS(ARGS_ENTRY_HTON
3121 			     (struct rte_flow_action_set_mac, mac_addr)),
3122 		.call = parse_vc_conf,
3123 	},
3124 	[ACTION_INC_TCP_SEQ] = {
3125 		.name = "inc_tcp_seq",
3126 		.help = "increase TCP sequence number",
3127 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3128 		.next = NEXT(action_inc_tcp_seq),
3129 		.call = parse_vc,
3130 	},
3131 	[ACTION_INC_TCP_SEQ_VALUE] = {
3132 		.name = "value",
3133 		.help = "the value to increase TCP sequence number by",
3134 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3135 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3136 		.call = parse_vc_conf,
3137 	},
3138 	[ACTION_DEC_TCP_SEQ] = {
3139 		.name = "dec_tcp_seq",
3140 		.help = "decrease TCP sequence number",
3141 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3142 		.next = NEXT(action_dec_tcp_seq),
3143 		.call = parse_vc,
3144 	},
3145 	[ACTION_DEC_TCP_SEQ_VALUE] = {
3146 		.name = "value",
3147 		.help = "the value to decrease TCP sequence number by",
3148 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3149 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3150 		.call = parse_vc_conf,
3151 	},
3152 	[ACTION_INC_TCP_ACK] = {
3153 		.name = "inc_tcp_ack",
3154 		.help = "increase TCP acknowledgment number",
3155 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3156 		.next = NEXT(action_inc_tcp_ack),
3157 		.call = parse_vc,
3158 	},
3159 	[ACTION_INC_TCP_ACK_VALUE] = {
3160 		.name = "value",
3161 		.help = "the value to increase TCP acknowledgment number by",
3162 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3163 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3164 		.call = parse_vc_conf,
3165 	},
3166 	[ACTION_DEC_TCP_ACK] = {
3167 		.name = "dec_tcp_ack",
3168 		.help = "decrease TCP acknowledgment number",
3169 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3170 		.next = NEXT(action_dec_tcp_ack),
3171 		.call = parse_vc,
3172 	},
3173 	[ACTION_DEC_TCP_ACK_VALUE] = {
3174 		.name = "value",
3175 		.help = "the value to decrease TCP acknowledgment number by",
3176 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3177 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3178 		.call = parse_vc_conf,
3179 	},
3180 	[ACTION_RAW_ENCAP] = {
3181 		.name = "raw_encap",
3182 		.help = "encapsulation data, defined by set raw_encap",
3183 		.priv = PRIV_ACTION(RAW_ENCAP,
3184 			sizeof(struct rte_flow_action_raw_encap)),
3185 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3186 		.call = parse_vc_action_raw_encap,
3187 	},
3188 	[ACTION_RAW_DECAP] = {
3189 		.name = "raw_decap",
3190 		.help = "decapsulation data, defined by set raw_encap",
3191 		.priv = PRIV_ACTION(RAW_DECAP,
3192 			sizeof(struct rte_flow_action_raw_decap)),
3193 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3194 		.call = parse_vc_action_raw_decap,
3195 	},
3196 	/* Top level command. */
3197 	[SET] = {
3198 		.name = "set",
3199 		.help = "set raw encap/decap data",
3200 		.type = "set raw_encap|raw_decap <pattern>",
3201 		.next = NEXT(NEXT_ENTRY
3202 			     (SET_RAW_ENCAP,
3203 			      SET_RAW_DECAP)),
3204 		.call = parse_set_init,
3205 	},
3206 	/* Sub-level commands. */
3207 	[SET_RAW_ENCAP] = {
3208 		.name = "raw_encap",
3209 		.help = "set raw encap data",
3210 		.next = NEXT(next_item),
3211 		.call = parse_set_raw_encap_decap,
3212 	},
3213 	[SET_RAW_DECAP] = {
3214 		.name = "raw_decap",
3215 		.help = "set raw decap data",
3216 		.next = NEXT(next_item),
3217 		.call = parse_set_raw_encap_decap,
3218 	}
3219 };
3220 
3221 /** Remove and return last entry from argument stack. */
3222 static const struct arg *
3223 pop_args(struct context *ctx)
3224 {
3225 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3226 }
3227 
3228 /** Add entry on top of the argument stack. */
3229 static int
3230 push_args(struct context *ctx, const struct arg *arg)
3231 {
3232 	if (ctx->args_num == CTX_STACK_SIZE)
3233 		return -1;
3234 	ctx->args[ctx->args_num++] = arg;
3235 	return 0;
3236 }
3237 
3238 /** Spread value into buffer according to bit-mask. */
3239 static size_t
3240 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3241 {
3242 	uint32_t i = arg->size;
3243 	uint32_t end = 0;
3244 	int sub = 1;
3245 	int add = 0;
3246 	size_t len = 0;
3247 
3248 	if (!arg->mask)
3249 		return 0;
3250 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3251 	if (!arg->hton) {
3252 		i = 0;
3253 		end = arg->size;
3254 		sub = 0;
3255 		add = 1;
3256 	}
3257 #endif
3258 	while (i != end) {
3259 		unsigned int shift = 0;
3260 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3261 
3262 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
3263 			if (!(arg->mask[i] & (1 << shift)))
3264 				continue;
3265 			++len;
3266 			if (!dst)
3267 				continue;
3268 			*buf &= ~(1 << shift);
3269 			*buf |= (val & 1) << shift;
3270 			val >>= 1;
3271 		}
3272 		i += add;
3273 	}
3274 	return len;
3275 }
3276 
3277 /** Compare a string with a partial one of a given length. */
3278 static int
3279 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3280 {
3281 	int r = strncmp(full, partial, partial_len);
3282 
3283 	if (r)
3284 		return r;
3285 	if (strlen(full) <= partial_len)
3286 		return 0;
3287 	return full[partial_len];
3288 }
3289 
3290 /**
3291  * Parse a prefix length and generate a bit-mask.
3292  *
3293  * Last argument (ctx->args) is retrieved to determine mask size, storage
3294  * location and whether the result must use network byte ordering.
3295  */
3296 static int
3297 parse_prefix(struct context *ctx, const struct token *token,
3298 	     const char *str, unsigned int len,
3299 	     void *buf, unsigned int size)
3300 {
3301 	const struct arg *arg = pop_args(ctx);
3302 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3303 	char *end;
3304 	uintmax_t u;
3305 	unsigned int bytes;
3306 	unsigned int extra;
3307 
3308 	(void)token;
3309 	/* Argument is expected. */
3310 	if (!arg)
3311 		return -1;
3312 	errno = 0;
3313 	u = strtoumax(str, &end, 0);
3314 	if (errno || (size_t)(end - str) != len)
3315 		goto error;
3316 	if (arg->mask) {
3317 		uintmax_t v = 0;
3318 
3319 		extra = arg_entry_bf_fill(NULL, 0, arg);
3320 		if (u > extra)
3321 			goto error;
3322 		if (!ctx->object)
3323 			return len;
3324 		extra -= u;
3325 		while (u--)
3326 			(v <<= 1, v |= 1);
3327 		v <<= extra;
3328 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3329 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3330 			goto error;
3331 		return len;
3332 	}
3333 	bytes = u / 8;
3334 	extra = u % 8;
3335 	size = arg->size;
3336 	if (bytes > size || bytes + !!extra > size)
3337 		goto error;
3338 	if (!ctx->object)
3339 		return len;
3340 	buf = (uint8_t *)ctx->object + arg->offset;
3341 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3342 	if (!arg->hton) {
3343 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3344 		memset(buf, 0x00, size - bytes);
3345 		if (extra)
3346 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3347 	} else
3348 #endif
3349 	{
3350 		memset(buf, 0xff, bytes);
3351 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3352 		if (extra)
3353 			((uint8_t *)buf)[bytes] = conv[extra];
3354 	}
3355 	if (ctx->objmask)
3356 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3357 	return len;
3358 error:
3359 	push_args(ctx, arg);
3360 	return -1;
3361 }
3362 
3363 /** Default parsing function for token name matching. */
3364 static int
3365 parse_default(struct context *ctx, const struct token *token,
3366 	      const char *str, unsigned int len,
3367 	      void *buf, unsigned int size)
3368 {
3369 	(void)ctx;
3370 	(void)buf;
3371 	(void)size;
3372 	if (strcmp_partial(token->name, str, len))
3373 		return -1;
3374 	return len;
3375 }
3376 
3377 /** Parse flow command, initialize output buffer for subsequent tokens. */
3378 static int
3379 parse_init(struct context *ctx, const struct token *token,
3380 	   const char *str, unsigned int len,
3381 	   void *buf, unsigned int size)
3382 {
3383 	struct buffer *out = buf;
3384 
3385 	/* Token name must match. */
3386 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3387 		return -1;
3388 	/* Nothing else to do if there is no buffer. */
3389 	if (!out)
3390 		return len;
3391 	/* Make sure buffer is large enough. */
3392 	if (size < sizeof(*out))
3393 		return -1;
3394 	/* Initialize buffer. */
3395 	memset(out, 0x00, sizeof(*out));
3396 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3397 	ctx->objdata = 0;
3398 	ctx->object = out;
3399 	ctx->objmask = NULL;
3400 	return len;
3401 }
3402 
3403 /** Parse tokens for validate/create commands. */
3404 static int
3405 parse_vc(struct context *ctx, const struct token *token,
3406 	 const char *str, unsigned int len,
3407 	 void *buf, unsigned int size)
3408 {
3409 	struct buffer *out = buf;
3410 	uint8_t *data;
3411 	uint32_t data_size;
3412 
3413 	/* Token name must match. */
3414 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3415 		return -1;
3416 	/* Nothing else to do if there is no buffer. */
3417 	if (!out)
3418 		return len;
3419 	if (!out->command) {
3420 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3421 			return -1;
3422 		if (sizeof(*out) > size)
3423 			return -1;
3424 		out->command = ctx->curr;
3425 		ctx->objdata = 0;
3426 		ctx->object = out;
3427 		ctx->objmask = NULL;
3428 		out->args.vc.data = (uint8_t *)out + size;
3429 		return len;
3430 	}
3431 	ctx->objdata = 0;
3432 	ctx->object = &out->args.vc.attr;
3433 	ctx->objmask = NULL;
3434 	switch (ctx->curr) {
3435 	case GROUP:
3436 	case PRIORITY:
3437 		return len;
3438 	case INGRESS:
3439 		out->args.vc.attr.ingress = 1;
3440 		return len;
3441 	case EGRESS:
3442 		out->args.vc.attr.egress = 1;
3443 		return len;
3444 	case TRANSFER:
3445 		out->args.vc.attr.transfer = 1;
3446 		return len;
3447 	case PATTERN:
3448 		out->args.vc.pattern =
3449 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3450 					       sizeof(double));
3451 		ctx->object = out->args.vc.pattern;
3452 		ctx->objmask = NULL;
3453 		return len;
3454 	case ACTIONS:
3455 		out->args.vc.actions =
3456 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3457 					       (out->args.vc.pattern +
3458 						out->args.vc.pattern_n),
3459 					       sizeof(double));
3460 		ctx->object = out->args.vc.actions;
3461 		ctx->objmask = NULL;
3462 		return len;
3463 	default:
3464 		if (!token->priv)
3465 			return -1;
3466 		break;
3467 	}
3468 	if (!out->args.vc.actions) {
3469 		const struct parse_item_priv *priv = token->priv;
3470 		struct rte_flow_item *item =
3471 			out->args.vc.pattern + out->args.vc.pattern_n;
3472 
3473 		data_size = priv->size * 3; /* spec, last, mask */
3474 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3475 					       (out->args.vc.data - data_size),
3476 					       sizeof(double));
3477 		if ((uint8_t *)item + sizeof(*item) > data)
3478 			return -1;
3479 		*item = (struct rte_flow_item){
3480 			.type = priv->type,
3481 		};
3482 		++out->args.vc.pattern_n;
3483 		ctx->object = item;
3484 		ctx->objmask = NULL;
3485 	} else {
3486 		const struct parse_action_priv *priv = token->priv;
3487 		struct rte_flow_action *action =
3488 			out->args.vc.actions + out->args.vc.actions_n;
3489 
3490 		data_size = priv->size; /* configuration */
3491 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3492 					       (out->args.vc.data - data_size),
3493 					       sizeof(double));
3494 		if ((uint8_t *)action + sizeof(*action) > data)
3495 			return -1;
3496 		*action = (struct rte_flow_action){
3497 			.type = priv->type,
3498 			.conf = data_size ? data : NULL,
3499 		};
3500 		++out->args.vc.actions_n;
3501 		ctx->object = action;
3502 		ctx->objmask = NULL;
3503 	}
3504 	memset(data, 0, data_size);
3505 	out->args.vc.data = data;
3506 	ctx->objdata = data_size;
3507 	return len;
3508 }
3509 
3510 /** Parse pattern item parameter type. */
3511 static int
3512 parse_vc_spec(struct context *ctx, const struct token *token,
3513 	      const char *str, unsigned int len,
3514 	      void *buf, unsigned int size)
3515 {
3516 	struct buffer *out = buf;
3517 	struct rte_flow_item *item;
3518 	uint32_t data_size;
3519 	int index;
3520 	int objmask = 0;
3521 
3522 	(void)size;
3523 	/* Token name must match. */
3524 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3525 		return -1;
3526 	/* Parse parameter types. */
3527 	switch (ctx->curr) {
3528 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3529 
3530 	case ITEM_PARAM_IS:
3531 		index = 0;
3532 		objmask = 1;
3533 		break;
3534 	case ITEM_PARAM_SPEC:
3535 		index = 0;
3536 		break;
3537 	case ITEM_PARAM_LAST:
3538 		index = 1;
3539 		break;
3540 	case ITEM_PARAM_PREFIX:
3541 		/* Modify next token to expect a prefix. */
3542 		if (ctx->next_num < 2)
3543 			return -1;
3544 		ctx->next[ctx->next_num - 2] = prefix;
3545 		/* Fall through. */
3546 	case ITEM_PARAM_MASK:
3547 		index = 2;
3548 		break;
3549 	default:
3550 		return -1;
3551 	}
3552 	/* Nothing else to do if there is no buffer. */
3553 	if (!out)
3554 		return len;
3555 	if (!out->args.vc.pattern_n)
3556 		return -1;
3557 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3558 	data_size = ctx->objdata / 3; /* spec, last, mask */
3559 	/* Point to selected object. */
3560 	ctx->object = out->args.vc.data + (data_size * index);
3561 	if (objmask) {
3562 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3563 		item->mask = ctx->objmask;
3564 	} else
3565 		ctx->objmask = NULL;
3566 	/* Update relevant item pointer. */
3567 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3568 		ctx->object;
3569 	return len;
3570 }
3571 
3572 /** Parse action configuration field. */
3573 static int
3574 parse_vc_conf(struct context *ctx, const struct token *token,
3575 	      const char *str, unsigned int len,
3576 	      void *buf, unsigned int size)
3577 {
3578 	struct buffer *out = buf;
3579 
3580 	(void)size;
3581 	/* Token name must match. */
3582 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3583 		return -1;
3584 	/* Nothing else to do if there is no buffer. */
3585 	if (!out)
3586 		return len;
3587 	/* Point to selected object. */
3588 	ctx->object = out->args.vc.data;
3589 	ctx->objmask = NULL;
3590 	return len;
3591 }
3592 
3593 /** Parse RSS action. */
3594 static int
3595 parse_vc_action_rss(struct context *ctx, const struct token *token,
3596 		    const char *str, unsigned int len,
3597 		    void *buf, unsigned int size)
3598 {
3599 	struct buffer *out = buf;
3600 	struct rte_flow_action *action;
3601 	struct action_rss_data *action_rss_data;
3602 	unsigned int i;
3603 	int ret;
3604 
3605 	ret = parse_vc(ctx, token, str, len, buf, size);
3606 	if (ret < 0)
3607 		return ret;
3608 	/* Nothing else to do if there is no buffer. */
3609 	if (!out)
3610 		return ret;
3611 	if (!out->args.vc.actions_n)
3612 		return -1;
3613 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3614 	/* Point to selected object. */
3615 	ctx->object = out->args.vc.data;
3616 	ctx->objmask = NULL;
3617 	/* Set up default configuration. */
3618 	action_rss_data = ctx->object;
3619 	*action_rss_data = (struct action_rss_data){
3620 		.conf = (struct rte_flow_action_rss){
3621 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3622 			.level = 0,
3623 			.types = rss_hf,
3624 			.key_len = sizeof(action_rss_data->key),
3625 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3626 			.key = action_rss_data->key,
3627 			.queue = action_rss_data->queue,
3628 		},
3629 		.key = "testpmd's default RSS hash key, "
3630 			"override it for better balancing",
3631 		.queue = { 0 },
3632 	};
3633 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3634 		action_rss_data->queue[i] = i;
3635 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3636 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3637 		struct rte_eth_dev_info info;
3638 		int ret2;
3639 
3640 		ret2 = rte_eth_dev_info_get(ctx->port, &info);
3641 		if (ret2 != 0)
3642 			return ret2;
3643 
3644 		action_rss_data->conf.key_len =
3645 			RTE_MIN(sizeof(action_rss_data->key),
3646 				info.hash_key_size);
3647 	}
3648 	action->conf = &action_rss_data->conf;
3649 	return ret;
3650 }
3651 
3652 /**
3653  * Parse func field for RSS action.
3654  *
3655  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3656  * ACTION_RSS_FUNC_* index that called this function.
3657  */
3658 static int
3659 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3660 			 const char *str, unsigned int len,
3661 			 void *buf, unsigned int size)
3662 {
3663 	struct action_rss_data *action_rss_data;
3664 	enum rte_eth_hash_function func;
3665 
3666 	(void)buf;
3667 	(void)size;
3668 	/* Token name must match. */
3669 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3670 		return -1;
3671 	switch (ctx->curr) {
3672 	case ACTION_RSS_FUNC_DEFAULT:
3673 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3674 		break;
3675 	case ACTION_RSS_FUNC_TOEPLITZ:
3676 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3677 		break;
3678 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3679 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3680 		break;
3681 	default:
3682 		return -1;
3683 	}
3684 	if (!ctx->object)
3685 		return len;
3686 	action_rss_data = ctx->object;
3687 	action_rss_data->conf.func = func;
3688 	return len;
3689 }
3690 
3691 /**
3692  * Parse type field for RSS action.
3693  *
3694  * Valid tokens are type field names and the "end" token.
3695  */
3696 static int
3697 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3698 			  const char *str, unsigned int len,
3699 			  void *buf, unsigned int size)
3700 {
3701 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3702 	struct action_rss_data *action_rss_data;
3703 	unsigned int i;
3704 
3705 	(void)token;
3706 	(void)buf;
3707 	(void)size;
3708 	if (ctx->curr != ACTION_RSS_TYPE)
3709 		return -1;
3710 	if (!(ctx->objdata >> 16) && ctx->object) {
3711 		action_rss_data = ctx->object;
3712 		action_rss_data->conf.types = 0;
3713 	}
3714 	if (!strcmp_partial("end", str, len)) {
3715 		ctx->objdata &= 0xffff;
3716 		return len;
3717 	}
3718 	for (i = 0; rss_type_table[i].str; ++i)
3719 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3720 			break;
3721 	if (!rss_type_table[i].str)
3722 		return -1;
3723 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3724 	/* Repeat token. */
3725 	if (ctx->next_num == RTE_DIM(ctx->next))
3726 		return -1;
3727 	ctx->next[ctx->next_num++] = next;
3728 	if (!ctx->object)
3729 		return len;
3730 	action_rss_data = ctx->object;
3731 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3732 	return len;
3733 }
3734 
3735 /**
3736  * Parse queue field for RSS action.
3737  *
3738  * Valid tokens are queue indices and the "end" token.
3739  */
3740 static int
3741 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3742 			  const char *str, unsigned int len,
3743 			  void *buf, unsigned int size)
3744 {
3745 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3746 	struct action_rss_data *action_rss_data;
3747 	const struct arg *arg;
3748 	int ret;
3749 	int i;
3750 
3751 	(void)token;
3752 	(void)buf;
3753 	(void)size;
3754 	if (ctx->curr != ACTION_RSS_QUEUE)
3755 		return -1;
3756 	i = ctx->objdata >> 16;
3757 	if (!strcmp_partial("end", str, len)) {
3758 		ctx->objdata &= 0xffff;
3759 		goto end;
3760 	}
3761 	if (i >= ACTION_RSS_QUEUE_NUM)
3762 		return -1;
3763 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3764 			     i * sizeof(action_rss_data->queue[i]),
3765 			     sizeof(action_rss_data->queue[i]));
3766 	if (push_args(ctx, arg))
3767 		return -1;
3768 	ret = parse_int(ctx, token, str, len, NULL, 0);
3769 	if (ret < 0) {
3770 		pop_args(ctx);
3771 		return -1;
3772 	}
3773 	++i;
3774 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3775 	/* Repeat token. */
3776 	if (ctx->next_num == RTE_DIM(ctx->next))
3777 		return -1;
3778 	ctx->next[ctx->next_num++] = next;
3779 end:
3780 	if (!ctx->object)
3781 		return len;
3782 	action_rss_data = ctx->object;
3783 	action_rss_data->conf.queue_num = i;
3784 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3785 	return len;
3786 }
3787 
3788 /** Parse VXLAN encap action. */
3789 static int
3790 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3791 			    const char *str, unsigned int len,
3792 			    void *buf, unsigned int size)
3793 {
3794 	struct buffer *out = buf;
3795 	struct rte_flow_action *action;
3796 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3797 	int ret;
3798 
3799 	ret = parse_vc(ctx, token, str, len, buf, size);
3800 	if (ret < 0)
3801 		return ret;
3802 	/* Nothing else to do if there is no buffer. */
3803 	if (!out)
3804 		return ret;
3805 	if (!out->args.vc.actions_n)
3806 		return -1;
3807 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3808 	/* Point to selected object. */
3809 	ctx->object = out->args.vc.data;
3810 	ctx->objmask = NULL;
3811 	/* Set up default configuration. */
3812 	action_vxlan_encap_data = ctx->object;
3813 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3814 		.conf = (struct rte_flow_action_vxlan_encap){
3815 			.definition = action_vxlan_encap_data->items,
3816 		},
3817 		.items = {
3818 			{
3819 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3820 				.spec = &action_vxlan_encap_data->item_eth,
3821 				.mask = &rte_flow_item_eth_mask,
3822 			},
3823 			{
3824 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3825 				.spec = &action_vxlan_encap_data->item_vlan,
3826 				.mask = &rte_flow_item_vlan_mask,
3827 			},
3828 			{
3829 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3830 				.spec = &action_vxlan_encap_data->item_ipv4,
3831 				.mask = &rte_flow_item_ipv4_mask,
3832 			},
3833 			{
3834 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3835 				.spec = &action_vxlan_encap_data->item_udp,
3836 				.mask = &rte_flow_item_udp_mask,
3837 			},
3838 			{
3839 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3840 				.spec = &action_vxlan_encap_data->item_vxlan,
3841 				.mask = &rte_flow_item_vxlan_mask,
3842 			},
3843 			{
3844 				.type = RTE_FLOW_ITEM_TYPE_END,
3845 			},
3846 		},
3847 		.item_eth.type = 0,
3848 		.item_vlan = {
3849 			.tci = vxlan_encap_conf.vlan_tci,
3850 			.inner_type = 0,
3851 		},
3852 		.item_ipv4.hdr = {
3853 			.src_addr = vxlan_encap_conf.ipv4_src,
3854 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3855 		},
3856 		.item_udp.hdr = {
3857 			.src_port = vxlan_encap_conf.udp_src,
3858 			.dst_port = vxlan_encap_conf.udp_dst,
3859 		},
3860 		.item_vxlan.flags = 0,
3861 	};
3862 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3863 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3864 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3865 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3866 	if (!vxlan_encap_conf.select_ipv4) {
3867 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3868 		       &vxlan_encap_conf.ipv6_src,
3869 		       sizeof(vxlan_encap_conf.ipv6_src));
3870 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3871 		       &vxlan_encap_conf.ipv6_dst,
3872 		       sizeof(vxlan_encap_conf.ipv6_dst));
3873 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3874 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3875 			.spec = &action_vxlan_encap_data->item_ipv6,
3876 			.mask = &rte_flow_item_ipv6_mask,
3877 		};
3878 	}
3879 	if (!vxlan_encap_conf.select_vlan)
3880 		action_vxlan_encap_data->items[1].type =
3881 			RTE_FLOW_ITEM_TYPE_VOID;
3882 	if (vxlan_encap_conf.select_tos_ttl) {
3883 		if (vxlan_encap_conf.select_ipv4) {
3884 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3885 
3886 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3887 			       sizeof(ipv4_mask_tos));
3888 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3889 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3890 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3891 					vxlan_encap_conf.ip_tos;
3892 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3893 					vxlan_encap_conf.ip_ttl;
3894 			action_vxlan_encap_data->items[2].mask =
3895 							&ipv4_mask_tos;
3896 		} else {
3897 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3898 
3899 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3900 			       sizeof(ipv6_mask_tos));
3901 			ipv6_mask_tos.hdr.vtc_flow |=
3902 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3903 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3904 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3905 				rte_cpu_to_be_32
3906 					((uint32_t)vxlan_encap_conf.ip_tos <<
3907 					 RTE_IPV6_HDR_TC_SHIFT);
3908 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3909 					vxlan_encap_conf.ip_ttl;
3910 			action_vxlan_encap_data->items[2].mask =
3911 							&ipv6_mask_tos;
3912 		}
3913 	}
3914 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3915 	       RTE_DIM(vxlan_encap_conf.vni));
3916 	action->conf = &action_vxlan_encap_data->conf;
3917 	return ret;
3918 }
3919 
3920 /** Parse NVGRE encap action. */
3921 static int
3922 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3923 			    const char *str, unsigned int len,
3924 			    void *buf, unsigned int size)
3925 {
3926 	struct buffer *out = buf;
3927 	struct rte_flow_action *action;
3928 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3929 	int ret;
3930 
3931 	ret = parse_vc(ctx, token, str, len, buf, size);
3932 	if (ret < 0)
3933 		return ret;
3934 	/* Nothing else to do if there is no buffer. */
3935 	if (!out)
3936 		return ret;
3937 	if (!out->args.vc.actions_n)
3938 		return -1;
3939 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3940 	/* Point to selected object. */
3941 	ctx->object = out->args.vc.data;
3942 	ctx->objmask = NULL;
3943 	/* Set up default configuration. */
3944 	action_nvgre_encap_data = ctx->object;
3945 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3946 		.conf = (struct rte_flow_action_nvgre_encap){
3947 			.definition = action_nvgre_encap_data->items,
3948 		},
3949 		.items = {
3950 			{
3951 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3952 				.spec = &action_nvgre_encap_data->item_eth,
3953 				.mask = &rte_flow_item_eth_mask,
3954 			},
3955 			{
3956 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3957 				.spec = &action_nvgre_encap_data->item_vlan,
3958 				.mask = &rte_flow_item_vlan_mask,
3959 			},
3960 			{
3961 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3962 				.spec = &action_nvgre_encap_data->item_ipv4,
3963 				.mask = &rte_flow_item_ipv4_mask,
3964 			},
3965 			{
3966 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3967 				.spec = &action_nvgre_encap_data->item_nvgre,
3968 				.mask = &rte_flow_item_nvgre_mask,
3969 			},
3970 			{
3971 				.type = RTE_FLOW_ITEM_TYPE_END,
3972 			},
3973 		},
3974 		.item_eth.type = 0,
3975 		.item_vlan = {
3976 			.tci = nvgre_encap_conf.vlan_tci,
3977 			.inner_type = 0,
3978 		},
3979 		.item_ipv4.hdr = {
3980 		       .src_addr = nvgre_encap_conf.ipv4_src,
3981 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3982 		},
3983 		.item_nvgre.flow_id = 0,
3984 	};
3985 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3986 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3987 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3988 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3989 	if (!nvgre_encap_conf.select_ipv4) {
3990 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3991 		       &nvgre_encap_conf.ipv6_src,
3992 		       sizeof(nvgre_encap_conf.ipv6_src));
3993 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3994 		       &nvgre_encap_conf.ipv6_dst,
3995 		       sizeof(nvgre_encap_conf.ipv6_dst));
3996 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3997 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3998 			.spec = &action_nvgre_encap_data->item_ipv6,
3999 			.mask = &rte_flow_item_ipv6_mask,
4000 		};
4001 	}
4002 	if (!nvgre_encap_conf.select_vlan)
4003 		action_nvgre_encap_data->items[1].type =
4004 			RTE_FLOW_ITEM_TYPE_VOID;
4005 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
4006 	       RTE_DIM(nvgre_encap_conf.tni));
4007 	action->conf = &action_nvgre_encap_data->conf;
4008 	return ret;
4009 }
4010 
4011 /** Parse l2 encap action. */
4012 static int
4013 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
4014 			 const char *str, unsigned int len,
4015 			 void *buf, unsigned int size)
4016 {
4017 	struct buffer *out = buf;
4018 	struct rte_flow_action *action;
4019 	struct action_raw_encap_data *action_encap_data;
4020 	struct rte_flow_item_eth eth = { .type = 0, };
4021 	struct rte_flow_item_vlan vlan = {
4022 		.tci = mplsoudp_encap_conf.vlan_tci,
4023 		.inner_type = 0,
4024 	};
4025 	uint8_t *header;
4026 	int ret;
4027 
4028 	ret = parse_vc(ctx, token, str, len, buf, size);
4029 	if (ret < 0)
4030 		return ret;
4031 	/* Nothing else to do if there is no buffer. */
4032 	if (!out)
4033 		return ret;
4034 	if (!out->args.vc.actions_n)
4035 		return -1;
4036 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4037 	/* Point to selected object. */
4038 	ctx->object = out->args.vc.data;
4039 	ctx->objmask = NULL;
4040 	/* Copy the headers to the buffer. */
4041 	action_encap_data = ctx->object;
4042 	*action_encap_data = (struct action_raw_encap_data) {
4043 		.conf = (struct rte_flow_action_raw_encap){
4044 			.data = action_encap_data->data,
4045 		},
4046 		.data = {},
4047 	};
4048 	header = action_encap_data->data;
4049 	if (l2_encap_conf.select_vlan)
4050 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4051 	else if (l2_encap_conf.select_ipv4)
4052 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4053 	else
4054 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4055 	memcpy(eth.dst.addr_bytes,
4056 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4057 	memcpy(eth.src.addr_bytes,
4058 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4059 	memcpy(header, &eth, sizeof(eth));
4060 	header += sizeof(eth);
4061 	if (l2_encap_conf.select_vlan) {
4062 		if (l2_encap_conf.select_ipv4)
4063 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4064 		else
4065 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4066 		memcpy(header, &vlan, sizeof(vlan));
4067 		header += sizeof(vlan);
4068 	}
4069 	action_encap_data->conf.size = header -
4070 		action_encap_data->data;
4071 	action->conf = &action_encap_data->conf;
4072 	return ret;
4073 }
4074 
4075 /** Parse l2 decap action. */
4076 static int
4077 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
4078 			 const char *str, unsigned int len,
4079 			 void *buf, unsigned int size)
4080 {
4081 	struct buffer *out = buf;
4082 	struct rte_flow_action *action;
4083 	struct action_raw_decap_data *action_decap_data;
4084 	struct rte_flow_item_eth eth = { .type = 0, };
4085 	struct rte_flow_item_vlan vlan = {
4086 		.tci = mplsoudp_encap_conf.vlan_tci,
4087 		.inner_type = 0,
4088 	};
4089 	uint8_t *header;
4090 	int ret;
4091 
4092 	ret = parse_vc(ctx, token, str, len, buf, size);
4093 	if (ret < 0)
4094 		return ret;
4095 	/* Nothing else to do if there is no buffer. */
4096 	if (!out)
4097 		return ret;
4098 	if (!out->args.vc.actions_n)
4099 		return -1;
4100 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4101 	/* Point to selected object. */
4102 	ctx->object = out->args.vc.data;
4103 	ctx->objmask = NULL;
4104 	/* Copy the headers to the buffer. */
4105 	action_decap_data = ctx->object;
4106 	*action_decap_data = (struct action_raw_decap_data) {
4107 		.conf = (struct rte_flow_action_raw_decap){
4108 			.data = action_decap_data->data,
4109 		},
4110 		.data = {},
4111 	};
4112 	header = action_decap_data->data;
4113 	if (l2_decap_conf.select_vlan)
4114 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4115 	memcpy(header, &eth, sizeof(eth));
4116 	header += sizeof(eth);
4117 	if (l2_decap_conf.select_vlan) {
4118 		memcpy(header, &vlan, sizeof(vlan));
4119 		header += sizeof(vlan);
4120 	}
4121 	action_decap_data->conf.size = header -
4122 		action_decap_data->data;
4123 	action->conf = &action_decap_data->conf;
4124 	return ret;
4125 }
4126 
4127 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4128 
4129 /** Parse MPLSOGRE encap action. */
4130 static int
4131 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4132 			       const char *str, unsigned int len,
4133 			       void *buf, unsigned int size)
4134 {
4135 	struct buffer *out = buf;
4136 	struct rte_flow_action *action;
4137 	struct action_raw_encap_data *action_encap_data;
4138 	struct rte_flow_item_eth eth = { .type = 0, };
4139 	struct rte_flow_item_vlan vlan = {
4140 		.tci = mplsogre_encap_conf.vlan_tci,
4141 		.inner_type = 0,
4142 	};
4143 	struct rte_flow_item_ipv4 ipv4 = {
4144 		.hdr =  {
4145 			.src_addr = mplsogre_encap_conf.ipv4_src,
4146 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
4147 			.next_proto_id = IPPROTO_GRE,
4148 			.version_ihl = RTE_IPV4_VHL_DEF,
4149 			.time_to_live = IPDEFTTL,
4150 		},
4151 	};
4152 	struct rte_flow_item_ipv6 ipv6 = {
4153 		.hdr =  {
4154 			.proto = IPPROTO_GRE,
4155 			.hop_limits = IPDEFTTL,
4156 		},
4157 	};
4158 	struct rte_flow_item_gre gre = {
4159 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4160 	};
4161 	struct rte_flow_item_mpls mpls;
4162 	uint8_t *header;
4163 	int ret;
4164 
4165 	ret = parse_vc(ctx, token, str, len, buf, size);
4166 	if (ret < 0)
4167 		return ret;
4168 	/* Nothing else to do if there is no buffer. */
4169 	if (!out)
4170 		return ret;
4171 	if (!out->args.vc.actions_n)
4172 		return -1;
4173 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4174 	/* Point to selected object. */
4175 	ctx->object = out->args.vc.data;
4176 	ctx->objmask = NULL;
4177 	/* Copy the headers to the buffer. */
4178 	action_encap_data = ctx->object;
4179 	*action_encap_data = (struct action_raw_encap_data) {
4180 		.conf = (struct rte_flow_action_raw_encap){
4181 			.data = action_encap_data->data,
4182 		},
4183 		.data = {},
4184 		.preserve = {},
4185 	};
4186 	header = action_encap_data->data;
4187 	if (mplsogre_encap_conf.select_vlan)
4188 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4189 	else if (mplsogre_encap_conf.select_ipv4)
4190 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4191 	else
4192 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4193 	memcpy(eth.dst.addr_bytes,
4194 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4195 	memcpy(eth.src.addr_bytes,
4196 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4197 	memcpy(header, &eth, sizeof(eth));
4198 	header += sizeof(eth);
4199 	if (mplsogre_encap_conf.select_vlan) {
4200 		if (mplsogre_encap_conf.select_ipv4)
4201 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4202 		else
4203 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4204 		memcpy(header, &vlan, sizeof(vlan));
4205 		header += sizeof(vlan);
4206 	}
4207 	if (mplsogre_encap_conf.select_ipv4) {
4208 		memcpy(header, &ipv4, sizeof(ipv4));
4209 		header += sizeof(ipv4);
4210 	} else {
4211 		memcpy(&ipv6.hdr.src_addr,
4212 		       &mplsogre_encap_conf.ipv6_src,
4213 		       sizeof(mplsogre_encap_conf.ipv6_src));
4214 		memcpy(&ipv6.hdr.dst_addr,
4215 		       &mplsogre_encap_conf.ipv6_dst,
4216 		       sizeof(mplsogre_encap_conf.ipv6_dst));
4217 		memcpy(header, &ipv6, sizeof(ipv6));
4218 		header += sizeof(ipv6);
4219 	}
4220 	memcpy(header, &gre, sizeof(gre));
4221 	header += sizeof(gre);
4222 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4223 	       RTE_DIM(mplsogre_encap_conf.label));
4224 	mpls.label_tc_s[2] |= 0x1;
4225 	memcpy(header, &mpls, sizeof(mpls));
4226 	header += sizeof(mpls);
4227 	action_encap_data->conf.size = header -
4228 		action_encap_data->data;
4229 	action->conf = &action_encap_data->conf;
4230 	return ret;
4231 }
4232 
4233 /** Parse MPLSOGRE decap action. */
4234 static int
4235 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4236 			       const char *str, unsigned int len,
4237 			       void *buf, unsigned int size)
4238 {
4239 	struct buffer *out = buf;
4240 	struct rte_flow_action *action;
4241 	struct action_raw_decap_data *action_decap_data;
4242 	struct rte_flow_item_eth eth = { .type = 0, };
4243 	struct rte_flow_item_vlan vlan = {.tci = 0};
4244 	struct rte_flow_item_ipv4 ipv4 = {
4245 		.hdr =  {
4246 			.next_proto_id = IPPROTO_GRE,
4247 		},
4248 	};
4249 	struct rte_flow_item_ipv6 ipv6 = {
4250 		.hdr =  {
4251 			.proto = IPPROTO_GRE,
4252 		},
4253 	};
4254 	struct rte_flow_item_gre gre = {
4255 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4256 	};
4257 	struct rte_flow_item_mpls mpls;
4258 	uint8_t *header;
4259 	int ret;
4260 
4261 	ret = parse_vc(ctx, token, str, len, buf, size);
4262 	if (ret < 0)
4263 		return ret;
4264 	/* Nothing else to do if there is no buffer. */
4265 	if (!out)
4266 		return ret;
4267 	if (!out->args.vc.actions_n)
4268 		return -1;
4269 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4270 	/* Point to selected object. */
4271 	ctx->object = out->args.vc.data;
4272 	ctx->objmask = NULL;
4273 	/* Copy the headers to the buffer. */
4274 	action_decap_data = ctx->object;
4275 	*action_decap_data = (struct action_raw_decap_data) {
4276 		.conf = (struct rte_flow_action_raw_decap){
4277 			.data = action_decap_data->data,
4278 		},
4279 		.data = {},
4280 	};
4281 	header = action_decap_data->data;
4282 	if (mplsogre_decap_conf.select_vlan)
4283 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4284 	else if (mplsogre_encap_conf.select_ipv4)
4285 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4286 	else
4287 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4288 	memcpy(eth.dst.addr_bytes,
4289 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4290 	memcpy(eth.src.addr_bytes,
4291 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4292 	memcpy(header, &eth, sizeof(eth));
4293 	header += sizeof(eth);
4294 	if (mplsogre_encap_conf.select_vlan) {
4295 		if (mplsogre_encap_conf.select_ipv4)
4296 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4297 		else
4298 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4299 		memcpy(header, &vlan, sizeof(vlan));
4300 		header += sizeof(vlan);
4301 	}
4302 	if (mplsogre_encap_conf.select_ipv4) {
4303 		memcpy(header, &ipv4, sizeof(ipv4));
4304 		header += sizeof(ipv4);
4305 	} else {
4306 		memcpy(header, &ipv6, sizeof(ipv6));
4307 		header += sizeof(ipv6);
4308 	}
4309 	memcpy(header, &gre, sizeof(gre));
4310 	header += sizeof(gre);
4311 	memset(&mpls, 0, sizeof(mpls));
4312 	memcpy(header, &mpls, sizeof(mpls));
4313 	header += sizeof(mpls);
4314 	action_decap_data->conf.size = header -
4315 		action_decap_data->data;
4316 	action->conf = &action_decap_data->conf;
4317 	return ret;
4318 }
4319 
4320 /** Parse MPLSOUDP encap action. */
4321 static int
4322 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4323 			       const char *str, unsigned int len,
4324 			       void *buf, unsigned int size)
4325 {
4326 	struct buffer *out = buf;
4327 	struct rte_flow_action *action;
4328 	struct action_raw_encap_data *action_encap_data;
4329 	struct rte_flow_item_eth eth = { .type = 0, };
4330 	struct rte_flow_item_vlan vlan = {
4331 		.tci = mplsoudp_encap_conf.vlan_tci,
4332 		.inner_type = 0,
4333 	};
4334 	struct rte_flow_item_ipv4 ipv4 = {
4335 		.hdr =  {
4336 			.src_addr = mplsoudp_encap_conf.ipv4_src,
4337 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
4338 			.next_proto_id = IPPROTO_UDP,
4339 			.version_ihl = RTE_IPV4_VHL_DEF,
4340 			.time_to_live = IPDEFTTL,
4341 		},
4342 	};
4343 	struct rte_flow_item_ipv6 ipv6 = {
4344 		.hdr =  {
4345 			.proto = IPPROTO_UDP,
4346 			.hop_limits = IPDEFTTL,
4347 		},
4348 	};
4349 	struct rte_flow_item_udp udp = {
4350 		.hdr = {
4351 			.src_port = mplsoudp_encap_conf.udp_src,
4352 			.dst_port = mplsoudp_encap_conf.udp_dst,
4353 		},
4354 	};
4355 	struct rte_flow_item_mpls mpls;
4356 	uint8_t *header;
4357 	int ret;
4358 
4359 	ret = parse_vc(ctx, token, str, len, buf, size);
4360 	if (ret < 0)
4361 		return ret;
4362 	/* Nothing else to do if there is no buffer. */
4363 	if (!out)
4364 		return ret;
4365 	if (!out->args.vc.actions_n)
4366 		return -1;
4367 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4368 	/* Point to selected object. */
4369 	ctx->object = out->args.vc.data;
4370 	ctx->objmask = NULL;
4371 	/* Copy the headers to the buffer. */
4372 	action_encap_data = ctx->object;
4373 	*action_encap_data = (struct action_raw_encap_data) {
4374 		.conf = (struct rte_flow_action_raw_encap){
4375 			.data = action_encap_data->data,
4376 		},
4377 		.data = {},
4378 		.preserve = {},
4379 	};
4380 	header = action_encap_data->data;
4381 	if (mplsoudp_encap_conf.select_vlan)
4382 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4383 	else if (mplsoudp_encap_conf.select_ipv4)
4384 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4385 	else
4386 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4387 	memcpy(eth.dst.addr_bytes,
4388 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4389 	memcpy(eth.src.addr_bytes,
4390 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4391 	memcpy(header, &eth, sizeof(eth));
4392 	header += sizeof(eth);
4393 	if (mplsoudp_encap_conf.select_vlan) {
4394 		if (mplsoudp_encap_conf.select_ipv4)
4395 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4396 		else
4397 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4398 		memcpy(header, &vlan, sizeof(vlan));
4399 		header += sizeof(vlan);
4400 	}
4401 	if (mplsoudp_encap_conf.select_ipv4) {
4402 		memcpy(header, &ipv4, sizeof(ipv4));
4403 		header += sizeof(ipv4);
4404 	} else {
4405 		memcpy(&ipv6.hdr.src_addr,
4406 		       &mplsoudp_encap_conf.ipv6_src,
4407 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4408 		memcpy(&ipv6.hdr.dst_addr,
4409 		       &mplsoudp_encap_conf.ipv6_dst,
4410 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4411 		memcpy(header, &ipv6, sizeof(ipv6));
4412 		header += sizeof(ipv6);
4413 	}
4414 	memcpy(header, &udp, sizeof(udp));
4415 	header += sizeof(udp);
4416 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4417 	       RTE_DIM(mplsoudp_encap_conf.label));
4418 	mpls.label_tc_s[2] |= 0x1;
4419 	memcpy(header, &mpls, sizeof(mpls));
4420 	header += sizeof(mpls);
4421 	action_encap_data->conf.size = header -
4422 		action_encap_data->data;
4423 	action->conf = &action_encap_data->conf;
4424 	return ret;
4425 }
4426 
4427 /** Parse MPLSOUDP decap action. */
4428 static int
4429 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4430 			       const char *str, unsigned int len,
4431 			       void *buf, unsigned int size)
4432 {
4433 	struct buffer *out = buf;
4434 	struct rte_flow_action *action;
4435 	struct action_raw_decap_data *action_decap_data;
4436 	struct rte_flow_item_eth eth = { .type = 0, };
4437 	struct rte_flow_item_vlan vlan = {.tci = 0};
4438 	struct rte_flow_item_ipv4 ipv4 = {
4439 		.hdr =  {
4440 			.next_proto_id = IPPROTO_UDP,
4441 		},
4442 	};
4443 	struct rte_flow_item_ipv6 ipv6 = {
4444 		.hdr =  {
4445 			.proto = IPPROTO_UDP,
4446 		},
4447 	};
4448 	struct rte_flow_item_udp udp = {
4449 		.hdr = {
4450 			.dst_port = rte_cpu_to_be_16(6635),
4451 		},
4452 	};
4453 	struct rte_flow_item_mpls mpls;
4454 	uint8_t *header;
4455 	int ret;
4456 
4457 	ret = parse_vc(ctx, token, str, len, buf, size);
4458 	if (ret < 0)
4459 		return ret;
4460 	/* Nothing else to do if there is no buffer. */
4461 	if (!out)
4462 		return ret;
4463 	if (!out->args.vc.actions_n)
4464 		return -1;
4465 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4466 	/* Point to selected object. */
4467 	ctx->object = out->args.vc.data;
4468 	ctx->objmask = NULL;
4469 	/* Copy the headers to the buffer. */
4470 	action_decap_data = ctx->object;
4471 	*action_decap_data = (struct action_raw_decap_data) {
4472 		.conf = (struct rte_flow_action_raw_decap){
4473 			.data = action_decap_data->data,
4474 		},
4475 		.data = {},
4476 	};
4477 	header = action_decap_data->data;
4478 	if (mplsoudp_decap_conf.select_vlan)
4479 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4480 	else if (mplsoudp_encap_conf.select_ipv4)
4481 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4482 	else
4483 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4484 	memcpy(eth.dst.addr_bytes,
4485 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4486 	memcpy(eth.src.addr_bytes,
4487 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4488 	memcpy(header, &eth, sizeof(eth));
4489 	header += sizeof(eth);
4490 	if (mplsoudp_encap_conf.select_vlan) {
4491 		if (mplsoudp_encap_conf.select_ipv4)
4492 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4493 		else
4494 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4495 		memcpy(header, &vlan, sizeof(vlan));
4496 		header += sizeof(vlan);
4497 	}
4498 	if (mplsoudp_encap_conf.select_ipv4) {
4499 		memcpy(header, &ipv4, sizeof(ipv4));
4500 		header += sizeof(ipv4);
4501 	} else {
4502 		memcpy(header, &ipv6, sizeof(ipv6));
4503 		header += sizeof(ipv6);
4504 	}
4505 	memcpy(header, &udp, sizeof(udp));
4506 	header += sizeof(udp);
4507 	memset(&mpls, 0, sizeof(mpls));
4508 	memcpy(header, &mpls, sizeof(mpls));
4509 	header += sizeof(mpls);
4510 	action_decap_data->conf.size = header -
4511 		action_decap_data->data;
4512 	action->conf = &action_decap_data->conf;
4513 	return ret;
4514 }
4515 
4516 static int
4517 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
4518 			  const char *str, unsigned int len, void *buf,
4519 			  unsigned int size)
4520 {
4521 	struct buffer *out = buf;
4522 	struct rte_flow_action *action;
4523 	struct rte_flow_action_raw_encap *action_raw_encap_conf = NULL;
4524 	uint8_t *data = NULL;
4525 	int ret;
4526 
4527 	ret = parse_vc(ctx, token, str, len, buf, size);
4528 	if (ret < 0)
4529 		return ret;
4530 	/* Nothing else to do if there is no buffer. */
4531 	if (!out)
4532 		return ret;
4533 	if (!out->args.vc.actions_n)
4534 		return -1;
4535 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4536 	/* Point to selected object. */
4537 	ctx->object = out->args.vc.data;
4538 	ctx->objmask = NULL;
4539 	/* Copy the headers to the buffer. */
4540 	action_raw_encap_conf = ctx->object;
4541 	/* data stored from tail of data buffer */
4542 	data = (uint8_t *)&(raw_encap_conf.data) +
4543 		ACTION_RAW_ENCAP_MAX_DATA - raw_encap_conf.size;
4544 	action_raw_encap_conf->data = data;
4545 	action_raw_encap_conf->preserve = NULL;
4546 	action_raw_encap_conf->size = raw_encap_conf.size;
4547 	action->conf = action_raw_encap_conf;
4548 	return ret;
4549 }
4550 
4551 static int
4552 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
4553 			  const char *str, unsigned int len, void *buf,
4554 			  unsigned int size)
4555 {
4556 	struct buffer *out = buf;
4557 	struct rte_flow_action *action;
4558 	struct rte_flow_action_raw_decap *action_raw_decap_conf = NULL;
4559 	uint8_t *data = NULL;
4560 	int ret;
4561 
4562 	ret = parse_vc(ctx, token, str, len, buf, size);
4563 	if (ret < 0)
4564 		return ret;
4565 	/* Nothing else to do if there is no buffer. */
4566 	if (!out)
4567 		return ret;
4568 	if (!out->args.vc.actions_n)
4569 		return -1;
4570 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4571 	/* Point to selected object. */
4572 	ctx->object = out->args.vc.data;
4573 	ctx->objmask = NULL;
4574 	/* Copy the headers to the buffer. */
4575 	action_raw_decap_conf = ctx->object;
4576 	/* data stored from tail of data buffer */
4577 	data = (uint8_t *)&(raw_decap_conf.data) +
4578 		ACTION_RAW_ENCAP_MAX_DATA - raw_decap_conf.size;
4579 	action_raw_decap_conf->data = data;
4580 	action_raw_decap_conf->size = raw_decap_conf.size;
4581 	action->conf = action_raw_decap_conf;
4582 	return ret;
4583 }
4584 
4585 /** Parse tokens for destroy command. */
4586 static int
4587 parse_destroy(struct context *ctx, const struct token *token,
4588 	      const char *str, unsigned int len,
4589 	      void *buf, unsigned int size)
4590 {
4591 	struct buffer *out = buf;
4592 
4593 	/* Token name must match. */
4594 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4595 		return -1;
4596 	/* Nothing else to do if there is no buffer. */
4597 	if (!out)
4598 		return len;
4599 	if (!out->command) {
4600 		if (ctx->curr != DESTROY)
4601 			return -1;
4602 		if (sizeof(*out) > size)
4603 			return -1;
4604 		out->command = ctx->curr;
4605 		ctx->objdata = 0;
4606 		ctx->object = out;
4607 		ctx->objmask = NULL;
4608 		out->args.destroy.rule =
4609 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4610 					       sizeof(double));
4611 		return len;
4612 	}
4613 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4614 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4615 		return -1;
4616 	ctx->objdata = 0;
4617 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4618 	ctx->objmask = NULL;
4619 	return len;
4620 }
4621 
4622 /** Parse tokens for flush command. */
4623 static int
4624 parse_flush(struct context *ctx, const struct token *token,
4625 	    const char *str, unsigned int len,
4626 	    void *buf, unsigned int size)
4627 {
4628 	struct buffer *out = buf;
4629 
4630 	/* Token name must match. */
4631 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4632 		return -1;
4633 	/* Nothing else to do if there is no buffer. */
4634 	if (!out)
4635 		return len;
4636 	if (!out->command) {
4637 		if (ctx->curr != FLUSH)
4638 			return -1;
4639 		if (sizeof(*out) > size)
4640 			return -1;
4641 		out->command = ctx->curr;
4642 		ctx->objdata = 0;
4643 		ctx->object = out;
4644 		ctx->objmask = NULL;
4645 	}
4646 	return len;
4647 }
4648 
4649 /** Parse tokens for query command. */
4650 static int
4651 parse_query(struct context *ctx, const struct token *token,
4652 	    const char *str, unsigned int len,
4653 	    void *buf, unsigned int size)
4654 {
4655 	struct buffer *out = buf;
4656 
4657 	/* Token name must match. */
4658 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4659 		return -1;
4660 	/* Nothing else to do if there is no buffer. */
4661 	if (!out)
4662 		return len;
4663 	if (!out->command) {
4664 		if (ctx->curr != QUERY)
4665 			return -1;
4666 		if (sizeof(*out) > size)
4667 			return -1;
4668 		out->command = ctx->curr;
4669 		ctx->objdata = 0;
4670 		ctx->object = out;
4671 		ctx->objmask = NULL;
4672 	}
4673 	return len;
4674 }
4675 
4676 /** Parse action names. */
4677 static int
4678 parse_action(struct context *ctx, const struct token *token,
4679 	     const char *str, unsigned int len,
4680 	     void *buf, unsigned int size)
4681 {
4682 	struct buffer *out = buf;
4683 	const struct arg *arg = pop_args(ctx);
4684 	unsigned int i;
4685 
4686 	(void)size;
4687 	/* Argument is expected. */
4688 	if (!arg)
4689 		return -1;
4690 	/* Parse action name. */
4691 	for (i = 0; next_action[i]; ++i) {
4692 		const struct parse_action_priv *priv;
4693 
4694 		token = &token_list[next_action[i]];
4695 		if (strcmp_partial(token->name, str, len))
4696 			continue;
4697 		priv = token->priv;
4698 		if (!priv)
4699 			goto error;
4700 		if (out)
4701 			memcpy((uint8_t *)ctx->object + arg->offset,
4702 			       &priv->type,
4703 			       arg->size);
4704 		return len;
4705 	}
4706 error:
4707 	push_args(ctx, arg);
4708 	return -1;
4709 }
4710 
4711 /** Parse tokens for list command. */
4712 static int
4713 parse_list(struct context *ctx, const struct token *token,
4714 	   const char *str, unsigned int len,
4715 	   void *buf, unsigned int size)
4716 {
4717 	struct buffer *out = buf;
4718 
4719 	/* Token name must match. */
4720 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4721 		return -1;
4722 	/* Nothing else to do if there is no buffer. */
4723 	if (!out)
4724 		return len;
4725 	if (!out->command) {
4726 		if (ctx->curr != LIST)
4727 			return -1;
4728 		if (sizeof(*out) > size)
4729 			return -1;
4730 		out->command = ctx->curr;
4731 		ctx->objdata = 0;
4732 		ctx->object = out;
4733 		ctx->objmask = NULL;
4734 		out->args.list.group =
4735 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4736 					       sizeof(double));
4737 		return len;
4738 	}
4739 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4740 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4741 		return -1;
4742 	ctx->objdata = 0;
4743 	ctx->object = out->args.list.group + out->args.list.group_n++;
4744 	ctx->objmask = NULL;
4745 	return len;
4746 }
4747 
4748 /** Parse tokens for isolate command. */
4749 static int
4750 parse_isolate(struct context *ctx, const struct token *token,
4751 	      const char *str, unsigned int len,
4752 	      void *buf, unsigned int size)
4753 {
4754 	struct buffer *out = buf;
4755 
4756 	/* Token name must match. */
4757 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4758 		return -1;
4759 	/* Nothing else to do if there is no buffer. */
4760 	if (!out)
4761 		return len;
4762 	if (!out->command) {
4763 		if (ctx->curr != ISOLATE)
4764 			return -1;
4765 		if (sizeof(*out) > size)
4766 			return -1;
4767 		out->command = ctx->curr;
4768 		ctx->objdata = 0;
4769 		ctx->object = out;
4770 		ctx->objmask = NULL;
4771 	}
4772 	return len;
4773 }
4774 
4775 /**
4776  * Parse signed/unsigned integers 8 to 64-bit long.
4777  *
4778  * Last argument (ctx->args) is retrieved to determine integer type and
4779  * storage location.
4780  */
4781 static int
4782 parse_int(struct context *ctx, const struct token *token,
4783 	  const char *str, unsigned int len,
4784 	  void *buf, unsigned int size)
4785 {
4786 	const struct arg *arg = pop_args(ctx);
4787 	uintmax_t u;
4788 	char *end;
4789 
4790 	(void)token;
4791 	/* Argument is expected. */
4792 	if (!arg)
4793 		return -1;
4794 	errno = 0;
4795 	u = arg->sign ?
4796 		(uintmax_t)strtoimax(str, &end, 0) :
4797 		strtoumax(str, &end, 0);
4798 	if (errno || (size_t)(end - str) != len)
4799 		goto error;
4800 	if (arg->bounded &&
4801 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4802 			    (intmax_t)u > (intmax_t)arg->max)) ||
4803 	     (!arg->sign && (u < arg->min || u > arg->max))))
4804 		goto error;
4805 	if (!ctx->object)
4806 		return len;
4807 	if (arg->mask) {
4808 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4809 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4810 			goto error;
4811 		return len;
4812 	}
4813 	buf = (uint8_t *)ctx->object + arg->offset;
4814 	size = arg->size;
4815 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4816 		return -1;
4817 objmask:
4818 	switch (size) {
4819 	case sizeof(uint8_t):
4820 		*(uint8_t *)buf = u;
4821 		break;
4822 	case sizeof(uint16_t):
4823 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4824 		break;
4825 	case sizeof(uint8_t [3]):
4826 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4827 		if (!arg->hton) {
4828 			((uint8_t *)buf)[0] = u;
4829 			((uint8_t *)buf)[1] = u >> 8;
4830 			((uint8_t *)buf)[2] = u >> 16;
4831 			break;
4832 		}
4833 #endif
4834 		((uint8_t *)buf)[0] = u >> 16;
4835 		((uint8_t *)buf)[1] = u >> 8;
4836 		((uint8_t *)buf)[2] = u;
4837 		break;
4838 	case sizeof(uint32_t):
4839 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4840 		break;
4841 	case sizeof(uint64_t):
4842 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4843 		break;
4844 	default:
4845 		goto error;
4846 	}
4847 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4848 		u = -1;
4849 		buf = (uint8_t *)ctx->objmask + arg->offset;
4850 		goto objmask;
4851 	}
4852 	return len;
4853 error:
4854 	push_args(ctx, arg);
4855 	return -1;
4856 }
4857 
4858 /**
4859  * Parse a string.
4860  *
4861  * Three arguments (ctx->args) are retrieved from the stack to store data,
4862  * its actual length and address (in that order).
4863  */
4864 static int
4865 parse_string(struct context *ctx, const struct token *token,
4866 	     const char *str, unsigned int len,
4867 	     void *buf, unsigned int size)
4868 {
4869 	const struct arg *arg_data = pop_args(ctx);
4870 	const struct arg *arg_len = pop_args(ctx);
4871 	const struct arg *arg_addr = pop_args(ctx);
4872 	char tmp[16]; /* Ought to be enough. */
4873 	int ret;
4874 
4875 	/* Arguments are expected. */
4876 	if (!arg_data)
4877 		return -1;
4878 	if (!arg_len) {
4879 		push_args(ctx, arg_data);
4880 		return -1;
4881 	}
4882 	if (!arg_addr) {
4883 		push_args(ctx, arg_len);
4884 		push_args(ctx, arg_data);
4885 		return -1;
4886 	}
4887 	size = arg_data->size;
4888 	/* Bit-mask fill is not supported. */
4889 	if (arg_data->mask || size < len)
4890 		goto error;
4891 	if (!ctx->object)
4892 		return len;
4893 	/* Let parse_int() fill length information first. */
4894 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4895 	if (ret < 0)
4896 		goto error;
4897 	push_args(ctx, arg_len);
4898 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4899 	if (ret < 0) {
4900 		pop_args(ctx);
4901 		goto error;
4902 	}
4903 	buf = (uint8_t *)ctx->object + arg_data->offset;
4904 	/* Output buffer is not necessarily NUL-terminated. */
4905 	memcpy(buf, str, len);
4906 	memset((uint8_t *)buf + len, 0x00, size - len);
4907 	if (ctx->objmask)
4908 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4909 	/* Save address if requested. */
4910 	if (arg_addr->size) {
4911 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4912 		       (void *[]){
4913 			(uint8_t *)ctx->object + arg_data->offset
4914 		       },
4915 		       arg_addr->size);
4916 		if (ctx->objmask)
4917 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4918 			       (void *[]){
4919 				(uint8_t *)ctx->objmask + arg_data->offset
4920 			       },
4921 			       arg_addr->size);
4922 	}
4923 	return len;
4924 error:
4925 	push_args(ctx, arg_addr);
4926 	push_args(ctx, arg_len);
4927 	push_args(ctx, arg_data);
4928 	return -1;
4929 }
4930 
4931 static int
4932 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4933 {
4934 	char *c = NULL;
4935 	uint32_t i, len;
4936 	char tmp[3];
4937 
4938 	/* Check input parameters */
4939 	if ((src == NULL) ||
4940 		(dst == NULL) ||
4941 		(size == NULL) ||
4942 		(*size == 0))
4943 		return -1;
4944 
4945 	/* Convert chars to bytes */
4946 	for (i = 0, len = 0; i < *size; i += 2) {
4947 		snprintf(tmp, 3, "%s", src + i);
4948 		dst[len++] = strtoul(tmp, &c, 16);
4949 		if (*c != 0) {
4950 			len--;
4951 			dst[len] = 0;
4952 			*size = len;
4953 			return -1;
4954 		}
4955 	}
4956 	dst[len] = 0;
4957 	*size = len;
4958 
4959 	return 0;
4960 }
4961 
4962 static int
4963 parse_hex(struct context *ctx, const struct token *token,
4964 		const char *str, unsigned int len,
4965 		void *buf, unsigned int size)
4966 {
4967 	const struct arg *arg_data = pop_args(ctx);
4968 	const struct arg *arg_len = pop_args(ctx);
4969 	const struct arg *arg_addr = pop_args(ctx);
4970 	char tmp[16]; /* Ought to be enough. */
4971 	int ret;
4972 	unsigned int hexlen = len;
4973 	unsigned int length = 256;
4974 	uint8_t hex_tmp[length];
4975 
4976 	/* Arguments are expected. */
4977 	if (!arg_data)
4978 		return -1;
4979 	if (!arg_len) {
4980 		push_args(ctx, arg_data);
4981 		return -1;
4982 	}
4983 	if (!arg_addr) {
4984 		push_args(ctx, arg_len);
4985 		push_args(ctx, arg_data);
4986 		return -1;
4987 	}
4988 	size = arg_data->size;
4989 	/* Bit-mask fill is not supported. */
4990 	if (arg_data->mask)
4991 		goto error;
4992 	if (!ctx->object)
4993 		return len;
4994 
4995 	/* translate bytes string to array. */
4996 	if (str[0] == '0' && ((str[1] == 'x') ||
4997 			(str[1] == 'X'))) {
4998 		str += 2;
4999 		hexlen -= 2;
5000 	}
5001 	if (hexlen > length)
5002 		return -1;
5003 	ret = parse_hex_string(str, hex_tmp, &hexlen);
5004 	if (ret < 0)
5005 		goto error;
5006 	/* Let parse_int() fill length information first. */
5007 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
5008 	if (ret < 0)
5009 		goto error;
5010 	push_args(ctx, arg_len);
5011 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5012 	if (ret < 0) {
5013 		pop_args(ctx);
5014 		goto error;
5015 	}
5016 	buf = (uint8_t *)ctx->object + arg_data->offset;
5017 	/* Output buffer is not necessarily NUL-terminated. */
5018 	memcpy(buf, hex_tmp, hexlen);
5019 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
5020 	if (ctx->objmask)
5021 		memset((uint8_t *)ctx->objmask + arg_data->offset,
5022 					0xff, hexlen);
5023 	/* Save address if requested. */
5024 	if (arg_addr->size) {
5025 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
5026 		       (void *[]){
5027 			(uint8_t *)ctx->object + arg_data->offset
5028 		       },
5029 		       arg_addr->size);
5030 		if (ctx->objmask)
5031 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5032 			       (void *[]){
5033 				(uint8_t *)ctx->objmask + arg_data->offset
5034 			       },
5035 			       arg_addr->size);
5036 	}
5037 	return len;
5038 error:
5039 	push_args(ctx, arg_addr);
5040 	push_args(ctx, arg_len);
5041 	push_args(ctx, arg_data);
5042 	return -1;
5043 
5044 }
5045 
5046 /**
5047  * Parse a MAC address.
5048  *
5049  * Last argument (ctx->args) is retrieved to determine storage size and
5050  * location.
5051  */
5052 static int
5053 parse_mac_addr(struct context *ctx, const struct token *token,
5054 	       const char *str, unsigned int len,
5055 	       void *buf, unsigned int size)
5056 {
5057 	const struct arg *arg = pop_args(ctx);
5058 	struct rte_ether_addr tmp;
5059 	int ret;
5060 
5061 	(void)token;
5062 	/* Argument is expected. */
5063 	if (!arg)
5064 		return -1;
5065 	size = arg->size;
5066 	/* Bit-mask fill is not supported. */
5067 	if (arg->mask || size != sizeof(tmp))
5068 		goto error;
5069 	/* Only network endian is supported. */
5070 	if (!arg->hton)
5071 		goto error;
5072 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
5073 	if (ret < 0 || (unsigned int)ret != len)
5074 		goto error;
5075 	if (!ctx->object)
5076 		return len;
5077 	buf = (uint8_t *)ctx->object + arg->offset;
5078 	memcpy(buf, &tmp, size);
5079 	if (ctx->objmask)
5080 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5081 	return len;
5082 error:
5083 	push_args(ctx, arg);
5084 	return -1;
5085 }
5086 
5087 /**
5088  * Parse an IPv4 address.
5089  *
5090  * Last argument (ctx->args) is retrieved to determine storage size and
5091  * location.
5092  */
5093 static int
5094 parse_ipv4_addr(struct context *ctx, const struct token *token,
5095 		const char *str, unsigned int len,
5096 		void *buf, unsigned int size)
5097 {
5098 	const struct arg *arg = pop_args(ctx);
5099 	char str2[len + 1];
5100 	struct in_addr tmp;
5101 	int ret;
5102 
5103 	/* Argument is expected. */
5104 	if (!arg)
5105 		return -1;
5106 	size = arg->size;
5107 	/* Bit-mask fill is not supported. */
5108 	if (arg->mask || size != sizeof(tmp))
5109 		goto error;
5110 	/* Only network endian is supported. */
5111 	if (!arg->hton)
5112 		goto error;
5113 	memcpy(str2, str, len);
5114 	str2[len] = '\0';
5115 	ret = inet_pton(AF_INET, str2, &tmp);
5116 	if (ret != 1) {
5117 		/* Attempt integer parsing. */
5118 		push_args(ctx, arg);
5119 		return parse_int(ctx, token, str, len, buf, size);
5120 	}
5121 	if (!ctx->object)
5122 		return len;
5123 	buf = (uint8_t *)ctx->object + arg->offset;
5124 	memcpy(buf, &tmp, size);
5125 	if (ctx->objmask)
5126 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5127 	return len;
5128 error:
5129 	push_args(ctx, arg);
5130 	return -1;
5131 }
5132 
5133 /**
5134  * Parse an IPv6 address.
5135  *
5136  * Last argument (ctx->args) is retrieved to determine storage size and
5137  * location.
5138  */
5139 static int
5140 parse_ipv6_addr(struct context *ctx, const struct token *token,
5141 		const char *str, unsigned int len,
5142 		void *buf, unsigned int size)
5143 {
5144 	const struct arg *arg = pop_args(ctx);
5145 	char str2[len + 1];
5146 	struct in6_addr tmp;
5147 	int ret;
5148 
5149 	(void)token;
5150 	/* Argument is expected. */
5151 	if (!arg)
5152 		return -1;
5153 	size = arg->size;
5154 	/* Bit-mask fill is not supported. */
5155 	if (arg->mask || size != sizeof(tmp))
5156 		goto error;
5157 	/* Only network endian is supported. */
5158 	if (!arg->hton)
5159 		goto error;
5160 	memcpy(str2, str, len);
5161 	str2[len] = '\0';
5162 	ret = inet_pton(AF_INET6, str2, &tmp);
5163 	if (ret != 1)
5164 		goto error;
5165 	if (!ctx->object)
5166 		return len;
5167 	buf = (uint8_t *)ctx->object + arg->offset;
5168 	memcpy(buf, &tmp, size);
5169 	if (ctx->objmask)
5170 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5171 	return len;
5172 error:
5173 	push_args(ctx, arg);
5174 	return -1;
5175 }
5176 
5177 /** Boolean values (even indices stand for false). */
5178 static const char *const boolean_name[] = {
5179 	"0", "1",
5180 	"false", "true",
5181 	"no", "yes",
5182 	"N", "Y",
5183 	"off", "on",
5184 	NULL,
5185 };
5186 
5187 /**
5188  * Parse a boolean value.
5189  *
5190  * Last argument (ctx->args) is retrieved to determine storage size and
5191  * location.
5192  */
5193 static int
5194 parse_boolean(struct context *ctx, const struct token *token,
5195 	      const char *str, unsigned int len,
5196 	      void *buf, unsigned int size)
5197 {
5198 	const struct arg *arg = pop_args(ctx);
5199 	unsigned int i;
5200 	int ret;
5201 
5202 	/* Argument is expected. */
5203 	if (!arg)
5204 		return -1;
5205 	for (i = 0; boolean_name[i]; ++i)
5206 		if (!strcmp_partial(boolean_name[i], str, len))
5207 			break;
5208 	/* Process token as integer. */
5209 	if (boolean_name[i])
5210 		str = i & 1 ? "1" : "0";
5211 	push_args(ctx, arg);
5212 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
5213 	return ret > 0 ? (int)len : ret;
5214 }
5215 
5216 /** Parse port and update context. */
5217 static int
5218 parse_port(struct context *ctx, const struct token *token,
5219 	   const char *str, unsigned int len,
5220 	   void *buf, unsigned int size)
5221 {
5222 	struct buffer *out = &(struct buffer){ .port = 0 };
5223 	int ret;
5224 
5225 	if (buf)
5226 		out = buf;
5227 	else {
5228 		ctx->objdata = 0;
5229 		ctx->object = out;
5230 		ctx->objmask = NULL;
5231 		size = sizeof(*out);
5232 	}
5233 	ret = parse_int(ctx, token, str, len, out, size);
5234 	if (ret >= 0)
5235 		ctx->port = out->port;
5236 	if (!buf)
5237 		ctx->object = NULL;
5238 	return ret;
5239 }
5240 
5241 /** Parse set command, initialize output buffer for subsequent tokens. */
5242 static int
5243 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5244 			  const char *str, unsigned int len,
5245 			  void *buf, unsigned int size)
5246 {
5247 	struct buffer *out = buf;
5248 
5249 	/* Token name must match. */
5250 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5251 		return -1;
5252 	/* Nothing else to do if there is no buffer. */
5253 	if (!out)
5254 		return len;
5255 	/* Make sure buffer is large enough. */
5256 	if (size < sizeof(*out))
5257 		return -1;
5258 	ctx->objdata = 0;
5259 	ctx->objmask = NULL;
5260 	if (!out->command)
5261 		return -1;
5262 	out->command = ctx->curr;
5263 	return len;
5264 }
5265 
5266 /**
5267  * Parse set raw_encap/raw_decap command,
5268  * initialize output buffer for subsequent tokens.
5269  */
5270 static int
5271 parse_set_init(struct context *ctx, const struct token *token,
5272 	       const char *str, unsigned int len,
5273 	       void *buf, unsigned int size)
5274 {
5275 	struct buffer *out = buf;
5276 
5277 	/* Token name must match. */
5278 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5279 		return -1;
5280 	/* Nothing else to do if there is no buffer. */
5281 	if (!out)
5282 		return len;
5283 	/* Make sure buffer is large enough. */
5284 	if (size < sizeof(*out))
5285 		return -1;
5286 	/* Initialize buffer. */
5287 	memset(out, 0x00, sizeof(*out));
5288 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5289 	ctx->objdata = 0;
5290 	ctx->object = out;
5291 	ctx->objmask = NULL;
5292 	if (!out->command) {
5293 		if (ctx->curr != SET)
5294 			return -1;
5295 		if (sizeof(*out) > size)
5296 			return -1;
5297 		out->command = ctx->curr;
5298 		out->args.vc.data = (uint8_t *)out + size;
5299 		/* All we need is pattern */
5300 		out->args.vc.pattern =
5301 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5302 					       sizeof(double));
5303 		ctx->object = out->args.vc.pattern;
5304 	}
5305 	return len;
5306 }
5307 
5308 /** No completion. */
5309 static int
5310 comp_none(struct context *ctx, const struct token *token,
5311 	  unsigned int ent, char *buf, unsigned int size)
5312 {
5313 	(void)ctx;
5314 	(void)token;
5315 	(void)ent;
5316 	(void)buf;
5317 	(void)size;
5318 	return 0;
5319 }
5320 
5321 /** Complete boolean values. */
5322 static int
5323 comp_boolean(struct context *ctx, const struct token *token,
5324 	     unsigned int ent, char *buf, unsigned int size)
5325 {
5326 	unsigned int i;
5327 
5328 	(void)ctx;
5329 	(void)token;
5330 	for (i = 0; boolean_name[i]; ++i)
5331 		if (buf && i == ent)
5332 			return strlcpy(buf, boolean_name[i], size);
5333 	if (buf)
5334 		return -1;
5335 	return i;
5336 }
5337 
5338 /** Complete action names. */
5339 static int
5340 comp_action(struct context *ctx, const struct token *token,
5341 	    unsigned int ent, char *buf, unsigned int size)
5342 {
5343 	unsigned int i;
5344 
5345 	(void)ctx;
5346 	(void)token;
5347 	for (i = 0; next_action[i]; ++i)
5348 		if (buf && i == ent)
5349 			return strlcpy(buf, token_list[next_action[i]].name,
5350 				       size);
5351 	if (buf)
5352 		return -1;
5353 	return i;
5354 }
5355 
5356 /** Complete available ports. */
5357 static int
5358 comp_port(struct context *ctx, const struct token *token,
5359 	  unsigned int ent, char *buf, unsigned int size)
5360 {
5361 	unsigned int i = 0;
5362 	portid_t p;
5363 
5364 	(void)ctx;
5365 	(void)token;
5366 	RTE_ETH_FOREACH_DEV(p) {
5367 		if (buf && i == ent)
5368 			return snprintf(buf, size, "%u", p);
5369 		++i;
5370 	}
5371 	if (buf)
5372 		return -1;
5373 	return i;
5374 }
5375 
5376 /** Complete available rule IDs. */
5377 static int
5378 comp_rule_id(struct context *ctx, const struct token *token,
5379 	     unsigned int ent, char *buf, unsigned int size)
5380 {
5381 	unsigned int i = 0;
5382 	struct rte_port *port;
5383 	struct port_flow *pf;
5384 
5385 	(void)token;
5386 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5387 	    ctx->port == (portid_t)RTE_PORT_ALL)
5388 		return -1;
5389 	port = &ports[ctx->port];
5390 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5391 		if (buf && i == ent)
5392 			return snprintf(buf, size, "%u", pf->id);
5393 		++i;
5394 	}
5395 	if (buf)
5396 		return -1;
5397 	return i;
5398 }
5399 
5400 /** Complete type field for RSS action. */
5401 static int
5402 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5403 			unsigned int ent, char *buf, unsigned int size)
5404 {
5405 	unsigned int i;
5406 
5407 	(void)ctx;
5408 	(void)token;
5409 	for (i = 0; rss_type_table[i].str; ++i)
5410 		;
5411 	if (!buf)
5412 		return i + 1;
5413 	if (ent < i)
5414 		return strlcpy(buf, rss_type_table[ent].str, size);
5415 	if (ent == i)
5416 		return snprintf(buf, size, "end");
5417 	return -1;
5418 }
5419 
5420 /** Complete queue field for RSS action. */
5421 static int
5422 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5423 			 unsigned int ent, char *buf, unsigned int size)
5424 {
5425 	(void)ctx;
5426 	(void)token;
5427 	if (!buf)
5428 		return nb_rxq + 1;
5429 	if (ent < nb_rxq)
5430 		return snprintf(buf, size, "%u", ent);
5431 	if (ent == nb_rxq)
5432 		return snprintf(buf, size, "end");
5433 	return -1;
5434 }
5435 
5436 /** Internal context. */
5437 static struct context cmd_flow_context;
5438 
5439 /** Global parser instance (cmdline API). */
5440 cmdline_parse_inst_t cmd_flow;
5441 cmdline_parse_inst_t cmd_set_raw;
5442 
5443 /** Initialize context. */
5444 static void
5445 cmd_flow_context_init(struct context *ctx)
5446 {
5447 	/* A full memset() is not necessary. */
5448 	ctx->curr = ZERO;
5449 	ctx->prev = ZERO;
5450 	ctx->next_num = 0;
5451 	ctx->args_num = 0;
5452 	ctx->eol = 0;
5453 	ctx->last = 0;
5454 	ctx->port = 0;
5455 	ctx->objdata = 0;
5456 	ctx->object = NULL;
5457 	ctx->objmask = NULL;
5458 }
5459 
5460 /** Parse a token (cmdline API). */
5461 static int
5462 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5463 	       unsigned int size)
5464 {
5465 	struct context *ctx = &cmd_flow_context;
5466 	const struct token *token;
5467 	const enum index *list;
5468 	int len;
5469 	int i;
5470 
5471 	(void)hdr;
5472 	token = &token_list[ctx->curr];
5473 	/* Check argument length. */
5474 	ctx->eol = 0;
5475 	ctx->last = 1;
5476 	for (len = 0; src[len]; ++len)
5477 		if (src[len] == '#' || isspace(src[len]))
5478 			break;
5479 	if (!len)
5480 		return -1;
5481 	/* Last argument and EOL detection. */
5482 	for (i = len; src[i]; ++i)
5483 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5484 			break;
5485 		else if (!isspace(src[i])) {
5486 			ctx->last = 0;
5487 			break;
5488 		}
5489 	for (; src[i]; ++i)
5490 		if (src[i] == '\r' || src[i] == '\n') {
5491 			ctx->eol = 1;
5492 			break;
5493 		}
5494 	/* Initialize context if necessary. */
5495 	if (!ctx->next_num) {
5496 		if (!token->next)
5497 			return 0;
5498 		ctx->next[ctx->next_num++] = token->next[0];
5499 	}
5500 	/* Process argument through candidates. */
5501 	ctx->prev = ctx->curr;
5502 	list = ctx->next[ctx->next_num - 1];
5503 	for (i = 0; list[i]; ++i) {
5504 		const struct token *next = &token_list[list[i]];
5505 		int tmp;
5506 
5507 		ctx->curr = list[i];
5508 		if (next->call)
5509 			tmp = next->call(ctx, next, src, len, result, size);
5510 		else
5511 			tmp = parse_default(ctx, next, src, len, result, size);
5512 		if (tmp == -1 || tmp != len)
5513 			continue;
5514 		token = next;
5515 		break;
5516 	}
5517 	if (!list[i])
5518 		return -1;
5519 	--ctx->next_num;
5520 	/* Push subsequent tokens if any. */
5521 	if (token->next)
5522 		for (i = 0; token->next[i]; ++i) {
5523 			if (ctx->next_num == RTE_DIM(ctx->next))
5524 				return -1;
5525 			ctx->next[ctx->next_num++] = token->next[i];
5526 		}
5527 	/* Push arguments if any. */
5528 	if (token->args)
5529 		for (i = 0; token->args[i]; ++i) {
5530 			if (ctx->args_num == RTE_DIM(ctx->args))
5531 				return -1;
5532 			ctx->args[ctx->args_num++] = token->args[i];
5533 		}
5534 	return len;
5535 }
5536 
5537 /** Return number of completion entries (cmdline API). */
5538 static int
5539 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5540 {
5541 	struct context *ctx = &cmd_flow_context;
5542 	const struct token *token = &token_list[ctx->curr];
5543 	const enum index *list;
5544 	int i;
5545 
5546 	(void)hdr;
5547 	/* Count number of tokens in current list. */
5548 	if (ctx->next_num)
5549 		list = ctx->next[ctx->next_num - 1];
5550 	else
5551 		list = token->next[0];
5552 	for (i = 0; list[i]; ++i)
5553 		;
5554 	if (!i)
5555 		return 0;
5556 	/*
5557 	 * If there is a single token, use its completion callback, otherwise
5558 	 * return the number of entries.
5559 	 */
5560 	token = &token_list[list[0]];
5561 	if (i == 1 && token->comp) {
5562 		/* Save index for cmd_flow_get_help(). */
5563 		ctx->prev = list[0];
5564 		return token->comp(ctx, token, 0, NULL, 0);
5565 	}
5566 	return i;
5567 }
5568 
5569 /** Return a completion entry (cmdline API). */
5570 static int
5571 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5572 			  char *dst, unsigned int size)
5573 {
5574 	struct context *ctx = &cmd_flow_context;
5575 	const struct token *token = &token_list[ctx->curr];
5576 	const enum index *list;
5577 	int i;
5578 
5579 	(void)hdr;
5580 	/* Count number of tokens in current list. */
5581 	if (ctx->next_num)
5582 		list = ctx->next[ctx->next_num - 1];
5583 	else
5584 		list = token->next[0];
5585 	for (i = 0; list[i]; ++i)
5586 		;
5587 	if (!i)
5588 		return -1;
5589 	/* If there is a single token, use its completion callback. */
5590 	token = &token_list[list[0]];
5591 	if (i == 1 && token->comp) {
5592 		/* Save index for cmd_flow_get_help(). */
5593 		ctx->prev = list[0];
5594 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5595 	}
5596 	/* Otherwise make sure the index is valid and use defaults. */
5597 	if (index >= i)
5598 		return -1;
5599 	token = &token_list[list[index]];
5600 	strlcpy(dst, token->name, size);
5601 	/* Save index for cmd_flow_get_help(). */
5602 	ctx->prev = list[index];
5603 	return 0;
5604 }
5605 
5606 /** Populate help strings for current token (cmdline API). */
5607 static int
5608 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5609 {
5610 	struct context *ctx = &cmd_flow_context;
5611 	const struct token *token = &token_list[ctx->prev];
5612 
5613 	(void)hdr;
5614 	if (!size)
5615 		return -1;
5616 	/* Set token type and update global help with details. */
5617 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5618 	if (token->help)
5619 		cmd_flow.help_str = token->help;
5620 	else
5621 		cmd_flow.help_str = token->name;
5622 	return 0;
5623 }
5624 
5625 /** Token definition template (cmdline API). */
5626 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5627 	.ops = &(struct cmdline_token_ops){
5628 		.parse = cmd_flow_parse,
5629 		.complete_get_nb = cmd_flow_complete_get_nb,
5630 		.complete_get_elt = cmd_flow_complete_get_elt,
5631 		.get_help = cmd_flow_get_help,
5632 	},
5633 	.offset = 0,
5634 };
5635 
5636 /** Populate the next dynamic token. */
5637 static void
5638 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5639 	     cmdline_parse_token_hdr_t **hdr_inst)
5640 {
5641 	struct context *ctx = &cmd_flow_context;
5642 
5643 	/* Always reinitialize context before requesting the first token. */
5644 	if (!(hdr_inst - cmd_flow.tokens))
5645 		cmd_flow_context_init(ctx);
5646 	/* Return NULL when no more tokens are expected. */
5647 	if (!ctx->next_num && ctx->curr) {
5648 		*hdr = NULL;
5649 		return;
5650 	}
5651 	/* Determine if command should end here. */
5652 	if (ctx->eol && ctx->last && ctx->next_num) {
5653 		const enum index *list = ctx->next[ctx->next_num - 1];
5654 		int i;
5655 
5656 		for (i = 0; list[i]; ++i) {
5657 			if (list[i] != END)
5658 				continue;
5659 			*hdr = NULL;
5660 			return;
5661 		}
5662 	}
5663 	*hdr = &cmd_flow_token_hdr;
5664 }
5665 
5666 /** Dispatch parsed buffer to function calls. */
5667 static void
5668 cmd_flow_parsed(const struct buffer *in)
5669 {
5670 	switch (in->command) {
5671 	case VALIDATE:
5672 		port_flow_validate(in->port, &in->args.vc.attr,
5673 				   in->args.vc.pattern, in->args.vc.actions);
5674 		break;
5675 	case CREATE:
5676 		port_flow_create(in->port, &in->args.vc.attr,
5677 				 in->args.vc.pattern, in->args.vc.actions);
5678 		break;
5679 	case DESTROY:
5680 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5681 				  in->args.destroy.rule);
5682 		break;
5683 	case FLUSH:
5684 		port_flow_flush(in->port);
5685 		break;
5686 	case QUERY:
5687 		port_flow_query(in->port, in->args.query.rule,
5688 				&in->args.query.action);
5689 		break;
5690 	case LIST:
5691 		port_flow_list(in->port, in->args.list.group_n,
5692 			       in->args.list.group);
5693 		break;
5694 	case ISOLATE:
5695 		port_flow_isolate(in->port, in->args.isolate.set);
5696 		break;
5697 	default:
5698 		break;
5699 	}
5700 }
5701 
5702 /** Token generator and output processing callback (cmdline API). */
5703 static void
5704 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5705 {
5706 	if (cl == NULL)
5707 		cmd_flow_tok(arg0, arg2);
5708 	else
5709 		cmd_flow_parsed(arg0);
5710 }
5711 
5712 /** Global parser instance (cmdline API). */
5713 cmdline_parse_inst_t cmd_flow = {
5714 	.f = cmd_flow_cb,
5715 	.data = NULL, /**< Unused. */
5716 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5717 	.tokens = {
5718 		NULL,
5719 	}, /**< Tokens are returned by cmd_flow_tok(). */
5720 };
5721 
5722 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
5723 
5724 static void
5725 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
5726 {
5727 	struct rte_flow_item_ipv4 *ipv4;
5728 	struct rte_flow_item_eth *eth;
5729 	struct rte_flow_item_ipv6 *ipv6;
5730 	struct rte_flow_item_vxlan *vxlan;
5731 	struct rte_flow_item_vxlan_gpe *gpe;
5732 	struct rte_flow_item_nvgre *nvgre;
5733 	uint32_t ipv6_vtc_flow;
5734 
5735 	switch (item->type) {
5736 	case RTE_FLOW_ITEM_TYPE_ETH:
5737 		eth = (struct rte_flow_item_eth *)buf;
5738 		if (next_proto)
5739 			eth->type = rte_cpu_to_be_16(next_proto);
5740 		break;
5741 	case RTE_FLOW_ITEM_TYPE_IPV4:
5742 		ipv4 = (struct rte_flow_item_ipv4 *)buf;
5743 		ipv4->hdr.version_ihl = 0x45;
5744 		ipv4->hdr.next_proto_id = (uint8_t)next_proto;
5745 		break;
5746 	case RTE_FLOW_ITEM_TYPE_IPV6:
5747 		ipv6 = (struct rte_flow_item_ipv6 *)buf;
5748 		ipv6->hdr.proto = (uint8_t)next_proto;
5749 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
5750 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
5751 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
5752 		ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
5753 		break;
5754 	case RTE_FLOW_ITEM_TYPE_VXLAN:
5755 		vxlan = (struct rte_flow_item_vxlan *)buf;
5756 		vxlan->flags = 0x08;
5757 		break;
5758 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5759 		gpe = (struct rte_flow_item_vxlan_gpe *)buf;
5760 		gpe->flags = 0x0C;
5761 		break;
5762 	case RTE_FLOW_ITEM_TYPE_NVGRE:
5763 		nvgre = (struct rte_flow_item_nvgre *)buf;
5764 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
5765 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
5766 		break;
5767 	default:
5768 		break;
5769 	}
5770 }
5771 
5772 /** Helper of get item's default mask. */
5773 static const void *
5774 flow_item_default_mask(const struct rte_flow_item *item)
5775 {
5776 	const void *mask = NULL;
5777 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
5778 
5779 	switch (item->type) {
5780 	case RTE_FLOW_ITEM_TYPE_ANY:
5781 		mask = &rte_flow_item_any_mask;
5782 		break;
5783 	case RTE_FLOW_ITEM_TYPE_VF:
5784 		mask = &rte_flow_item_vf_mask;
5785 		break;
5786 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
5787 		mask = &rte_flow_item_port_id_mask;
5788 		break;
5789 	case RTE_FLOW_ITEM_TYPE_RAW:
5790 		mask = &rte_flow_item_raw_mask;
5791 		break;
5792 	case RTE_FLOW_ITEM_TYPE_ETH:
5793 		mask = &rte_flow_item_eth_mask;
5794 		break;
5795 	case RTE_FLOW_ITEM_TYPE_VLAN:
5796 		mask = &rte_flow_item_vlan_mask;
5797 		break;
5798 	case RTE_FLOW_ITEM_TYPE_IPV4:
5799 		mask = &rte_flow_item_ipv4_mask;
5800 		break;
5801 	case RTE_FLOW_ITEM_TYPE_IPV6:
5802 		mask = &rte_flow_item_ipv6_mask;
5803 		break;
5804 	case RTE_FLOW_ITEM_TYPE_ICMP:
5805 		mask = &rte_flow_item_icmp_mask;
5806 		break;
5807 	case RTE_FLOW_ITEM_TYPE_UDP:
5808 		mask = &rte_flow_item_udp_mask;
5809 		break;
5810 	case RTE_FLOW_ITEM_TYPE_TCP:
5811 		mask = &rte_flow_item_tcp_mask;
5812 		break;
5813 	case RTE_FLOW_ITEM_TYPE_SCTP:
5814 		mask = &rte_flow_item_sctp_mask;
5815 		break;
5816 	case RTE_FLOW_ITEM_TYPE_VXLAN:
5817 		mask = &rte_flow_item_vxlan_mask;
5818 		break;
5819 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5820 		mask = &rte_flow_item_vxlan_gpe_mask;
5821 		break;
5822 	case RTE_FLOW_ITEM_TYPE_E_TAG:
5823 		mask = &rte_flow_item_e_tag_mask;
5824 		break;
5825 	case RTE_FLOW_ITEM_TYPE_NVGRE:
5826 		mask = &rte_flow_item_nvgre_mask;
5827 		break;
5828 	case RTE_FLOW_ITEM_TYPE_MPLS:
5829 		mask = &rte_flow_item_mpls_mask;
5830 		break;
5831 	case RTE_FLOW_ITEM_TYPE_GRE:
5832 		mask = &rte_flow_item_gre_mask;
5833 		break;
5834 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5835 		mask = &gre_key_default_mask;
5836 		break;
5837 	case RTE_FLOW_ITEM_TYPE_META:
5838 		mask = &rte_flow_item_meta_mask;
5839 		break;
5840 	case RTE_FLOW_ITEM_TYPE_FUZZY:
5841 		mask = &rte_flow_item_fuzzy_mask;
5842 		break;
5843 	case RTE_FLOW_ITEM_TYPE_GTP:
5844 		mask = &rte_flow_item_gtp_mask;
5845 		break;
5846 	case RTE_FLOW_ITEM_TYPE_ESP:
5847 		mask = &rte_flow_item_esp_mask;
5848 		break;
5849 	case RTE_FLOW_ITEM_TYPE_GTP_PSC:
5850 		mask = &rte_flow_item_gtp_psc_mask;
5851 		break;
5852 	case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
5853 		mask = &rte_flow_item_pppoe_proto_id_mask;
5854 	default:
5855 		break;
5856 	}
5857 	return mask;
5858 }
5859 
5860 
5861 
5862 /** Dispatch parsed buffer to function calls. */
5863 static void
5864 cmd_set_raw_parsed(const struct buffer *in)
5865 {
5866 	uint32_t n = in->args.vc.pattern_n;
5867 	int i = 0;
5868 	struct rte_flow_item *item = NULL;
5869 	size_t size = 0;
5870 	uint8_t *data = NULL;
5871 	uint8_t *data_tail = NULL;
5872 	size_t *total_size = NULL;
5873 	uint16_t upper_layer = 0;
5874 	uint16_t proto = 0;
5875 
5876 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
5877 		   in->command == SET_RAW_DECAP);
5878 	if (in->command == SET_RAW_ENCAP) {
5879 		total_size = &raw_encap_conf.size;
5880 		data = (uint8_t *)&raw_encap_conf.data;
5881 	} else {
5882 		total_size = &raw_decap_conf.size;
5883 		data = (uint8_t *)&raw_decap_conf.data;
5884 	}
5885 	*total_size = 0;
5886 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5887 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
5888 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
5889 	for (i = n - 1 ; i >= 0; --i) {
5890 		item = in->args.vc.pattern + i;
5891 		if (item->spec == NULL)
5892 			item->spec = flow_item_default_mask(item);
5893 		switch (item->type) {
5894 		case RTE_FLOW_ITEM_TYPE_ETH:
5895 			size = sizeof(struct rte_flow_item_eth);
5896 			break;
5897 		case RTE_FLOW_ITEM_TYPE_VLAN:
5898 			size = sizeof(struct rte_flow_item_vlan);
5899 			proto = RTE_ETHER_TYPE_VLAN;
5900 			break;
5901 		case RTE_FLOW_ITEM_TYPE_IPV4:
5902 			size = sizeof(struct rte_flow_item_ipv4);
5903 			proto = RTE_ETHER_TYPE_IPV4;
5904 			break;
5905 		case RTE_FLOW_ITEM_TYPE_IPV6:
5906 			size = sizeof(struct rte_flow_item_ipv6);
5907 			proto = RTE_ETHER_TYPE_IPV6;
5908 			break;
5909 		case RTE_FLOW_ITEM_TYPE_UDP:
5910 			size = sizeof(struct rte_flow_item_udp);
5911 			proto = 0x11;
5912 			break;
5913 		case RTE_FLOW_ITEM_TYPE_TCP:
5914 			size = sizeof(struct rte_flow_item_tcp);
5915 			proto = 0x06;
5916 			break;
5917 		case RTE_FLOW_ITEM_TYPE_VXLAN:
5918 			size = sizeof(struct rte_flow_item_vxlan);
5919 			break;
5920 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5921 			size = sizeof(struct rte_flow_item_vxlan_gpe);
5922 			break;
5923 		case RTE_FLOW_ITEM_TYPE_GRE:
5924 			size = sizeof(struct rte_flow_item_gre);
5925 			proto = 0x2F;
5926 			break;
5927 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5928 			size = sizeof(rte_be32_t);
5929 			break;
5930 		case RTE_FLOW_ITEM_TYPE_MPLS:
5931 			size = sizeof(struct rte_flow_item_mpls);
5932 			break;
5933 		case RTE_FLOW_ITEM_TYPE_NVGRE:
5934 			size = sizeof(struct rte_flow_item_nvgre);
5935 			proto = 0x2F;
5936 			break;
5937 		default:
5938 			printf("Error - Not supported item\n");
5939 			*total_size = 0;
5940 			memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5941 			return;
5942 		}
5943 		*total_size += size;
5944 		rte_memcpy(data_tail - (*total_size), item->spec, size);
5945 		/* update some fields which cannot be set by cmdline */
5946 		update_fields((data_tail - (*total_size)), item,
5947 			      upper_layer);
5948 		upper_layer = proto;
5949 	}
5950 	if (verbose_level & 0x1)
5951 		printf("total data size is %zu\n", (*total_size));
5952 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
5953 }
5954 
5955 /** Populate help strings for current token (cmdline API). */
5956 static int
5957 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
5958 		     unsigned int size)
5959 {
5960 	struct context *ctx = &cmd_flow_context;
5961 	const struct token *token = &token_list[ctx->prev];
5962 
5963 	(void)hdr;
5964 	if (!size)
5965 		return -1;
5966 	/* Set token type and update global help with details. */
5967 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
5968 	if (token->help)
5969 		cmd_set_raw.help_str = token->help;
5970 	else
5971 		cmd_set_raw.help_str = token->name;
5972 	return 0;
5973 }
5974 
5975 /** Token definition template (cmdline API). */
5976 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
5977 	.ops = &(struct cmdline_token_ops){
5978 		.parse = cmd_flow_parse,
5979 		.complete_get_nb = cmd_flow_complete_get_nb,
5980 		.complete_get_elt = cmd_flow_complete_get_elt,
5981 		.get_help = cmd_set_raw_get_help,
5982 	},
5983 	.offset = 0,
5984 };
5985 
5986 /** Populate the next dynamic token. */
5987 static void
5988 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
5989 	     cmdline_parse_token_hdr_t **hdr_inst)
5990 {
5991 	struct context *ctx = &cmd_flow_context;
5992 
5993 	/* Always reinitialize context before requesting the first token. */
5994 	if (!(hdr_inst - cmd_set_raw.tokens)) {
5995 		cmd_flow_context_init(ctx);
5996 		ctx->curr = START_SET;
5997 	}
5998 	/* Return NULL when no more tokens are expected. */
5999 	if (!ctx->next_num && (ctx->curr != START_SET)) {
6000 		*hdr = NULL;
6001 		return;
6002 	}
6003 	/* Determine if command should end here. */
6004 	if (ctx->eol && ctx->last && ctx->next_num) {
6005 		const enum index *list = ctx->next[ctx->next_num - 1];
6006 		int i;
6007 
6008 		for (i = 0; list[i]; ++i) {
6009 			if (list[i] != END)
6010 				continue;
6011 			*hdr = NULL;
6012 			return;
6013 		}
6014 	}
6015 	*hdr = &cmd_set_raw_token_hdr;
6016 }
6017 
6018 /** Token generator and output processing callback (cmdline API). */
6019 static void
6020 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
6021 {
6022 	if (cl == NULL)
6023 		cmd_set_raw_tok(arg0, arg2);
6024 	else
6025 		cmd_set_raw_parsed(arg0);
6026 }
6027 
6028 /** Global parser instance (cmdline API). */
6029 cmdline_parse_inst_t cmd_set_raw = {
6030 	.f = cmd_set_raw_cb,
6031 	.data = NULL, /**< Unused. */
6032 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6033 	.tokens = {
6034 		NULL,
6035 	}, /**< Tokens are returned by cmd_flow_tok(). */
6036 };
6037