xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 205d9d3cf8a8d6fa7a79b399315c61df859dd01d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_eth_ctrl.h>
19 #include <rte_ethdev.h>
20 #include <rte_byteorder.h>
21 #include <cmdline_parse.h>
22 #include <cmdline_parse_etheraddr.h>
23 #include <rte_flow.h>
24 
25 #include "testpmd.h"
26 
27 /** Parser token indices. */
28 enum index {
29 	/* Special tokens. */
30 	ZERO = 0,
31 	END,
32 
33 	/* Common tokens. */
34 	INTEGER,
35 	UNSIGNED,
36 	PREFIX,
37 	BOOLEAN,
38 	STRING,
39 	MAC_ADDR,
40 	IPV4_ADDR,
41 	IPV6_ADDR,
42 	RULE_ID,
43 	PORT_ID,
44 	GROUP_ID,
45 	PRIORITY_LEVEL,
46 
47 	/* Top-level command. */
48 	FLOW,
49 
50 	/* Sub-level commands. */
51 	VALIDATE,
52 	CREATE,
53 	DESTROY,
54 	FLUSH,
55 	QUERY,
56 	LIST,
57 	ISOLATE,
58 
59 	/* Destroy arguments. */
60 	DESTROY_RULE,
61 
62 	/* Query arguments. */
63 	QUERY_ACTION,
64 
65 	/* List arguments. */
66 	LIST_GROUP,
67 
68 	/* Validate/create arguments. */
69 	GROUP,
70 	PRIORITY,
71 	INGRESS,
72 	EGRESS,
73 	TRANSFER,
74 
75 	/* Validate/create pattern. */
76 	PATTERN,
77 	ITEM_PARAM_IS,
78 	ITEM_PARAM_SPEC,
79 	ITEM_PARAM_LAST,
80 	ITEM_PARAM_MASK,
81 	ITEM_PARAM_PREFIX,
82 	ITEM_NEXT,
83 	ITEM_END,
84 	ITEM_VOID,
85 	ITEM_INVERT,
86 	ITEM_ANY,
87 	ITEM_ANY_NUM,
88 	ITEM_PF,
89 	ITEM_VF,
90 	ITEM_VF_ID,
91 	ITEM_PHY_PORT,
92 	ITEM_PHY_PORT_INDEX,
93 	ITEM_PORT_ID,
94 	ITEM_PORT_ID_ID,
95 	ITEM_MARK,
96 	ITEM_MARK_ID,
97 	ITEM_RAW,
98 	ITEM_RAW_RELATIVE,
99 	ITEM_RAW_SEARCH,
100 	ITEM_RAW_OFFSET,
101 	ITEM_RAW_LIMIT,
102 	ITEM_RAW_PATTERN,
103 	ITEM_ETH,
104 	ITEM_ETH_DST,
105 	ITEM_ETH_SRC,
106 	ITEM_ETH_TYPE,
107 	ITEM_VLAN,
108 	ITEM_VLAN_TCI,
109 	ITEM_VLAN_PCP,
110 	ITEM_VLAN_DEI,
111 	ITEM_VLAN_VID,
112 	ITEM_VLAN_INNER_TYPE,
113 	ITEM_IPV4,
114 	ITEM_IPV4_TOS,
115 	ITEM_IPV4_TTL,
116 	ITEM_IPV4_PROTO,
117 	ITEM_IPV4_SRC,
118 	ITEM_IPV4_DST,
119 	ITEM_IPV6,
120 	ITEM_IPV6_TC,
121 	ITEM_IPV6_FLOW,
122 	ITEM_IPV6_PROTO,
123 	ITEM_IPV6_HOP,
124 	ITEM_IPV6_SRC,
125 	ITEM_IPV6_DST,
126 	ITEM_ICMP,
127 	ITEM_ICMP_TYPE,
128 	ITEM_ICMP_CODE,
129 	ITEM_UDP,
130 	ITEM_UDP_SRC,
131 	ITEM_UDP_DST,
132 	ITEM_TCP,
133 	ITEM_TCP_SRC,
134 	ITEM_TCP_DST,
135 	ITEM_TCP_FLAGS,
136 	ITEM_SCTP,
137 	ITEM_SCTP_SRC,
138 	ITEM_SCTP_DST,
139 	ITEM_SCTP_TAG,
140 	ITEM_SCTP_CKSUM,
141 	ITEM_VXLAN,
142 	ITEM_VXLAN_VNI,
143 	ITEM_E_TAG,
144 	ITEM_E_TAG_GRP_ECID_B,
145 	ITEM_NVGRE,
146 	ITEM_NVGRE_TNI,
147 	ITEM_MPLS,
148 	ITEM_MPLS_LABEL,
149 	ITEM_GRE,
150 	ITEM_GRE_PROTO,
151 	ITEM_FUZZY,
152 	ITEM_FUZZY_THRESH,
153 	ITEM_GTP,
154 	ITEM_GTP_TEID,
155 	ITEM_GTPC,
156 	ITEM_GTPU,
157 	ITEM_GENEVE,
158 	ITEM_GENEVE_VNI,
159 	ITEM_GENEVE_PROTO,
160 	ITEM_VXLAN_GPE,
161 	ITEM_VXLAN_GPE_VNI,
162 	ITEM_ARP_ETH_IPV4,
163 	ITEM_ARP_ETH_IPV4_SHA,
164 	ITEM_ARP_ETH_IPV4_SPA,
165 	ITEM_ARP_ETH_IPV4_THA,
166 	ITEM_ARP_ETH_IPV4_TPA,
167 	ITEM_IPV6_EXT,
168 	ITEM_IPV6_EXT_NEXT_HDR,
169 	ITEM_ICMP6,
170 	ITEM_ICMP6_TYPE,
171 	ITEM_ICMP6_CODE,
172 	ITEM_ICMP6_ND_NS,
173 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
174 	ITEM_ICMP6_ND_NA,
175 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
176 	ITEM_ICMP6_ND_OPT,
177 	ITEM_ICMP6_ND_OPT_TYPE,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH,
179 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH,
181 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
182 	ITEM_META,
183 	ITEM_META_DATA,
184 
185 	/* Validate/create actions. */
186 	ACTIONS,
187 	ACTION_NEXT,
188 	ACTION_END,
189 	ACTION_VOID,
190 	ACTION_PASSTHRU,
191 	ACTION_JUMP,
192 	ACTION_JUMP_GROUP,
193 	ACTION_MARK,
194 	ACTION_MARK_ID,
195 	ACTION_FLAG,
196 	ACTION_QUEUE,
197 	ACTION_QUEUE_INDEX,
198 	ACTION_DROP,
199 	ACTION_COUNT,
200 	ACTION_COUNT_SHARED,
201 	ACTION_COUNT_ID,
202 	ACTION_RSS,
203 	ACTION_RSS_FUNC,
204 	ACTION_RSS_LEVEL,
205 	ACTION_RSS_FUNC_DEFAULT,
206 	ACTION_RSS_FUNC_TOEPLITZ,
207 	ACTION_RSS_FUNC_SIMPLE_XOR,
208 	ACTION_RSS_TYPES,
209 	ACTION_RSS_TYPE,
210 	ACTION_RSS_KEY,
211 	ACTION_RSS_KEY_LEN,
212 	ACTION_RSS_QUEUES,
213 	ACTION_RSS_QUEUE,
214 	ACTION_PF,
215 	ACTION_VF,
216 	ACTION_VF_ORIGINAL,
217 	ACTION_VF_ID,
218 	ACTION_PHY_PORT,
219 	ACTION_PHY_PORT_ORIGINAL,
220 	ACTION_PHY_PORT_INDEX,
221 	ACTION_PORT_ID,
222 	ACTION_PORT_ID_ORIGINAL,
223 	ACTION_PORT_ID_ID,
224 	ACTION_METER,
225 	ACTION_METER_ID,
226 	ACTION_OF_SET_MPLS_TTL,
227 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
228 	ACTION_OF_DEC_MPLS_TTL,
229 	ACTION_OF_SET_NW_TTL,
230 	ACTION_OF_SET_NW_TTL_NW_TTL,
231 	ACTION_OF_DEC_NW_TTL,
232 	ACTION_OF_COPY_TTL_OUT,
233 	ACTION_OF_COPY_TTL_IN,
234 	ACTION_OF_POP_VLAN,
235 	ACTION_OF_PUSH_VLAN,
236 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
237 	ACTION_OF_SET_VLAN_VID,
238 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
239 	ACTION_OF_SET_VLAN_PCP,
240 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
241 	ACTION_OF_POP_MPLS,
242 	ACTION_OF_POP_MPLS_ETHERTYPE,
243 	ACTION_OF_PUSH_MPLS,
244 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
245 	ACTION_VXLAN_ENCAP,
246 	ACTION_VXLAN_DECAP,
247 	ACTION_NVGRE_ENCAP,
248 	ACTION_NVGRE_DECAP,
249 	ACTION_L2_ENCAP,
250 	ACTION_L2_DECAP,
251 	ACTION_MPLSOGRE_ENCAP,
252 	ACTION_MPLSOGRE_DECAP,
253 	ACTION_MPLSOUDP_ENCAP,
254 	ACTION_MPLSOUDP_DECAP,
255 	ACTION_SET_IPV4_SRC,
256 	ACTION_SET_IPV4_SRC_IPV4_SRC,
257 	ACTION_SET_IPV4_DST,
258 	ACTION_SET_IPV4_DST_IPV4_DST,
259 	ACTION_SET_IPV6_SRC,
260 	ACTION_SET_IPV6_SRC_IPV6_SRC,
261 	ACTION_SET_IPV6_DST,
262 	ACTION_SET_IPV6_DST_IPV6_DST,
263 	ACTION_SET_TP_SRC,
264 	ACTION_SET_TP_SRC_TP_SRC,
265 	ACTION_SET_TP_DST,
266 	ACTION_SET_TP_DST_TP_DST,
267 	ACTION_MAC_SWAP,
268 	ACTION_DEC_TTL,
269 	ACTION_SET_TTL,
270 	ACTION_SET_TTL_TTL,
271 	ACTION_SET_MAC_SRC,
272 	ACTION_SET_MAC_SRC_MAC_SRC,
273 	ACTION_SET_MAC_DST,
274 	ACTION_SET_MAC_DST_MAC_DST,
275 };
276 
277 /** Maximum size for pattern in struct rte_flow_item_raw. */
278 #define ITEM_RAW_PATTERN_SIZE 40
279 
280 /** Storage size for struct rte_flow_item_raw including pattern. */
281 #define ITEM_RAW_SIZE \
282 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
283 
284 /** Maximum number of queue indices in struct rte_flow_action_rss. */
285 #define ACTION_RSS_QUEUE_NUM 32
286 
287 /** Storage for struct rte_flow_action_rss including external data. */
288 struct action_rss_data {
289 	struct rte_flow_action_rss conf;
290 	uint8_t key[RSS_HASH_KEY_LENGTH];
291 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
292 };
293 
294 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
295 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
296 
297 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
298 struct action_vxlan_encap_data {
299 	struct rte_flow_action_vxlan_encap conf;
300 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
301 	struct rte_flow_item_eth item_eth;
302 	struct rte_flow_item_vlan item_vlan;
303 	union {
304 		struct rte_flow_item_ipv4 item_ipv4;
305 		struct rte_flow_item_ipv6 item_ipv6;
306 	};
307 	struct rte_flow_item_udp item_udp;
308 	struct rte_flow_item_vxlan item_vxlan;
309 };
310 
311 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
312 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
313 
314 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
315 struct action_nvgre_encap_data {
316 	struct rte_flow_action_nvgre_encap conf;
317 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
318 	struct rte_flow_item_eth item_eth;
319 	struct rte_flow_item_vlan item_vlan;
320 	union {
321 		struct rte_flow_item_ipv4 item_ipv4;
322 		struct rte_flow_item_ipv6 item_ipv6;
323 	};
324 	struct rte_flow_item_nvgre item_nvgre;
325 };
326 
327 /** Maximum data size in struct rte_flow_action_raw_encap. */
328 #define ACTION_RAW_ENCAP_MAX_DATA 128
329 
330 /** Storage for struct rte_flow_action_raw_encap including external data. */
331 struct action_raw_encap_data {
332 	struct rte_flow_action_raw_encap conf;
333 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
334 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
335 };
336 
337 /** Storage for struct rte_flow_action_raw_decap including external data. */
338 struct action_raw_decap_data {
339 	struct rte_flow_action_raw_decap conf;
340 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
341 };
342 
343 /** Maximum number of subsequent tokens and arguments on the stack. */
344 #define CTX_STACK_SIZE 16
345 
346 /** Parser context. */
347 struct context {
348 	/** Stack of subsequent token lists to process. */
349 	const enum index *next[CTX_STACK_SIZE];
350 	/** Arguments for stacked tokens. */
351 	const void *args[CTX_STACK_SIZE];
352 	enum index curr; /**< Current token index. */
353 	enum index prev; /**< Index of the last token seen. */
354 	int next_num; /**< Number of entries in next[]. */
355 	int args_num; /**< Number of entries in args[]. */
356 	uint32_t eol:1; /**< EOL has been detected. */
357 	uint32_t last:1; /**< No more arguments. */
358 	portid_t port; /**< Current port ID (for completions). */
359 	uint32_t objdata; /**< Object-specific data. */
360 	void *object; /**< Address of current object for relative offsets. */
361 	void *objmask; /**< Object a full mask must be written to. */
362 };
363 
364 /** Token argument. */
365 struct arg {
366 	uint32_t hton:1; /**< Use network byte ordering. */
367 	uint32_t sign:1; /**< Value is signed. */
368 	uint32_t bounded:1; /**< Value is bounded. */
369 	uintmax_t min; /**< Minimum value if bounded. */
370 	uintmax_t max; /**< Maximum value if bounded. */
371 	uint32_t offset; /**< Relative offset from ctx->object. */
372 	uint32_t size; /**< Field size. */
373 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
374 };
375 
376 /** Parser token definition. */
377 struct token {
378 	/** Type displayed during completion (defaults to "TOKEN"). */
379 	const char *type;
380 	/** Help displayed during completion (defaults to token name). */
381 	const char *help;
382 	/** Private data used by parser functions. */
383 	const void *priv;
384 	/**
385 	 * Lists of subsequent tokens to push on the stack. Each call to the
386 	 * parser consumes the last entry of that stack.
387 	 */
388 	const enum index *const *next;
389 	/** Arguments stack for subsequent tokens that need them. */
390 	const struct arg *const *args;
391 	/**
392 	 * Token-processing callback, returns -1 in case of error, the
393 	 * length of the matched string otherwise. If NULL, attempts to
394 	 * match the token name.
395 	 *
396 	 * If buf is not NULL, the result should be stored in it according
397 	 * to context. An error is returned if not large enough.
398 	 */
399 	int (*call)(struct context *ctx, const struct token *token,
400 		    const char *str, unsigned int len,
401 		    void *buf, unsigned int size);
402 	/**
403 	 * Callback that provides possible values for this token, used for
404 	 * completion. Returns -1 in case of error, the number of possible
405 	 * values otherwise. If NULL, the token name is used.
406 	 *
407 	 * If buf is not NULL, entry index ent is written to buf and the
408 	 * full length of the entry is returned (same behavior as
409 	 * snprintf()).
410 	 */
411 	int (*comp)(struct context *ctx, const struct token *token,
412 		    unsigned int ent, char *buf, unsigned int size);
413 	/** Mandatory token name, no default value. */
414 	const char *name;
415 };
416 
417 /** Static initializer for the next field. */
418 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
419 
420 /** Static initializer for a NEXT() entry. */
421 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
422 
423 /** Static initializer for the args field. */
424 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
425 
426 /** Static initializer for ARGS() to target a field. */
427 #define ARGS_ENTRY(s, f) \
428 	(&(const struct arg){ \
429 		.offset = offsetof(s, f), \
430 		.size = sizeof(((s *)0)->f), \
431 	})
432 
433 /** Static initializer for ARGS() to target a bit-field. */
434 #define ARGS_ENTRY_BF(s, f, b) \
435 	(&(const struct arg){ \
436 		.size = sizeof(s), \
437 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
438 	})
439 
440 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
441 #define ARGS_ENTRY_MASK(s, f, m) \
442 	(&(const struct arg){ \
443 		.offset = offsetof(s, f), \
444 		.size = sizeof(((s *)0)->f), \
445 		.mask = (const void *)(m), \
446 	})
447 
448 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
449 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
450 	(&(const struct arg){ \
451 		.hton = 1, \
452 		.offset = offsetof(s, f), \
453 		.size = sizeof(((s *)0)->f), \
454 		.mask = (const void *)(m), \
455 	})
456 
457 /** Static initializer for ARGS() to target a pointer. */
458 #define ARGS_ENTRY_PTR(s, f) \
459 	(&(const struct arg){ \
460 		.size = sizeof(*((s *)0)->f), \
461 	})
462 
463 /** Static initializer for ARGS() with arbitrary offset and size. */
464 #define ARGS_ENTRY_ARB(o, s) \
465 	(&(const struct arg){ \
466 		.offset = (o), \
467 		.size = (s), \
468 	})
469 
470 /** Same as ARGS_ENTRY_ARB() with bounded values. */
471 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
472 	(&(const struct arg){ \
473 		.bounded = 1, \
474 		.min = (i), \
475 		.max = (a), \
476 		.offset = (o), \
477 		.size = (s), \
478 	})
479 
480 /** Same as ARGS_ENTRY() using network byte ordering. */
481 #define ARGS_ENTRY_HTON(s, f) \
482 	(&(const struct arg){ \
483 		.hton = 1, \
484 		.offset = offsetof(s, f), \
485 		.size = sizeof(((s *)0)->f), \
486 	})
487 
488 /** Parser output buffer layout expected by cmd_flow_parsed(). */
489 struct buffer {
490 	enum index command; /**< Flow command. */
491 	portid_t port; /**< Affected port ID. */
492 	union {
493 		struct {
494 			struct rte_flow_attr attr;
495 			struct rte_flow_item *pattern;
496 			struct rte_flow_action *actions;
497 			uint32_t pattern_n;
498 			uint32_t actions_n;
499 			uint8_t *data;
500 		} vc; /**< Validate/create arguments. */
501 		struct {
502 			uint32_t *rule;
503 			uint32_t rule_n;
504 		} destroy; /**< Destroy arguments. */
505 		struct {
506 			uint32_t rule;
507 			struct rte_flow_action action;
508 		} query; /**< Query arguments. */
509 		struct {
510 			uint32_t *group;
511 			uint32_t group_n;
512 		} list; /**< List arguments. */
513 		struct {
514 			int set;
515 		} isolate; /**< Isolated mode arguments. */
516 	} args; /**< Command arguments. */
517 };
518 
519 /** Private data for pattern items. */
520 struct parse_item_priv {
521 	enum rte_flow_item_type type; /**< Item type. */
522 	uint32_t size; /**< Size of item specification structure. */
523 };
524 
525 #define PRIV_ITEM(t, s) \
526 	(&(const struct parse_item_priv){ \
527 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
528 		.size = s, \
529 	})
530 
531 /** Private data for actions. */
532 struct parse_action_priv {
533 	enum rte_flow_action_type type; /**< Action type. */
534 	uint32_t size; /**< Size of action configuration structure. */
535 };
536 
537 #define PRIV_ACTION(t, s) \
538 	(&(const struct parse_action_priv){ \
539 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
540 		.size = s, \
541 	})
542 
543 static const enum index next_vc_attr[] = {
544 	GROUP,
545 	PRIORITY,
546 	INGRESS,
547 	EGRESS,
548 	TRANSFER,
549 	PATTERN,
550 	ZERO,
551 };
552 
553 static const enum index next_destroy_attr[] = {
554 	DESTROY_RULE,
555 	END,
556 	ZERO,
557 };
558 
559 static const enum index next_list_attr[] = {
560 	LIST_GROUP,
561 	END,
562 	ZERO,
563 };
564 
565 static const enum index item_param[] = {
566 	ITEM_PARAM_IS,
567 	ITEM_PARAM_SPEC,
568 	ITEM_PARAM_LAST,
569 	ITEM_PARAM_MASK,
570 	ITEM_PARAM_PREFIX,
571 	ZERO,
572 };
573 
574 static const enum index next_item[] = {
575 	ITEM_END,
576 	ITEM_VOID,
577 	ITEM_INVERT,
578 	ITEM_ANY,
579 	ITEM_PF,
580 	ITEM_VF,
581 	ITEM_PHY_PORT,
582 	ITEM_PORT_ID,
583 	ITEM_MARK,
584 	ITEM_RAW,
585 	ITEM_ETH,
586 	ITEM_VLAN,
587 	ITEM_IPV4,
588 	ITEM_IPV6,
589 	ITEM_ICMP,
590 	ITEM_UDP,
591 	ITEM_TCP,
592 	ITEM_SCTP,
593 	ITEM_VXLAN,
594 	ITEM_E_TAG,
595 	ITEM_NVGRE,
596 	ITEM_MPLS,
597 	ITEM_GRE,
598 	ITEM_FUZZY,
599 	ITEM_GTP,
600 	ITEM_GTPC,
601 	ITEM_GTPU,
602 	ITEM_GENEVE,
603 	ITEM_VXLAN_GPE,
604 	ITEM_ARP_ETH_IPV4,
605 	ITEM_IPV6_EXT,
606 	ITEM_ICMP6,
607 	ITEM_ICMP6_ND_NS,
608 	ITEM_ICMP6_ND_NA,
609 	ITEM_ICMP6_ND_OPT,
610 	ITEM_ICMP6_ND_OPT_SLA_ETH,
611 	ITEM_ICMP6_ND_OPT_TLA_ETH,
612 	ITEM_META,
613 	ZERO,
614 };
615 
616 static const enum index item_fuzzy[] = {
617 	ITEM_FUZZY_THRESH,
618 	ITEM_NEXT,
619 	ZERO,
620 };
621 
622 static const enum index item_any[] = {
623 	ITEM_ANY_NUM,
624 	ITEM_NEXT,
625 	ZERO,
626 };
627 
628 static const enum index item_vf[] = {
629 	ITEM_VF_ID,
630 	ITEM_NEXT,
631 	ZERO,
632 };
633 
634 static const enum index item_phy_port[] = {
635 	ITEM_PHY_PORT_INDEX,
636 	ITEM_NEXT,
637 	ZERO,
638 };
639 
640 static const enum index item_port_id[] = {
641 	ITEM_PORT_ID_ID,
642 	ITEM_NEXT,
643 	ZERO,
644 };
645 
646 static const enum index item_mark[] = {
647 	ITEM_MARK_ID,
648 	ITEM_NEXT,
649 	ZERO,
650 };
651 
652 static const enum index item_raw[] = {
653 	ITEM_RAW_RELATIVE,
654 	ITEM_RAW_SEARCH,
655 	ITEM_RAW_OFFSET,
656 	ITEM_RAW_LIMIT,
657 	ITEM_RAW_PATTERN,
658 	ITEM_NEXT,
659 	ZERO,
660 };
661 
662 static const enum index item_eth[] = {
663 	ITEM_ETH_DST,
664 	ITEM_ETH_SRC,
665 	ITEM_ETH_TYPE,
666 	ITEM_NEXT,
667 	ZERO,
668 };
669 
670 static const enum index item_vlan[] = {
671 	ITEM_VLAN_TCI,
672 	ITEM_VLAN_PCP,
673 	ITEM_VLAN_DEI,
674 	ITEM_VLAN_VID,
675 	ITEM_VLAN_INNER_TYPE,
676 	ITEM_NEXT,
677 	ZERO,
678 };
679 
680 static const enum index item_ipv4[] = {
681 	ITEM_IPV4_TOS,
682 	ITEM_IPV4_TTL,
683 	ITEM_IPV4_PROTO,
684 	ITEM_IPV4_SRC,
685 	ITEM_IPV4_DST,
686 	ITEM_NEXT,
687 	ZERO,
688 };
689 
690 static const enum index item_ipv6[] = {
691 	ITEM_IPV6_TC,
692 	ITEM_IPV6_FLOW,
693 	ITEM_IPV6_PROTO,
694 	ITEM_IPV6_HOP,
695 	ITEM_IPV6_SRC,
696 	ITEM_IPV6_DST,
697 	ITEM_NEXT,
698 	ZERO,
699 };
700 
701 static const enum index item_icmp[] = {
702 	ITEM_ICMP_TYPE,
703 	ITEM_ICMP_CODE,
704 	ITEM_NEXT,
705 	ZERO,
706 };
707 
708 static const enum index item_udp[] = {
709 	ITEM_UDP_SRC,
710 	ITEM_UDP_DST,
711 	ITEM_NEXT,
712 	ZERO,
713 };
714 
715 static const enum index item_tcp[] = {
716 	ITEM_TCP_SRC,
717 	ITEM_TCP_DST,
718 	ITEM_TCP_FLAGS,
719 	ITEM_NEXT,
720 	ZERO,
721 };
722 
723 static const enum index item_sctp[] = {
724 	ITEM_SCTP_SRC,
725 	ITEM_SCTP_DST,
726 	ITEM_SCTP_TAG,
727 	ITEM_SCTP_CKSUM,
728 	ITEM_NEXT,
729 	ZERO,
730 };
731 
732 static const enum index item_vxlan[] = {
733 	ITEM_VXLAN_VNI,
734 	ITEM_NEXT,
735 	ZERO,
736 };
737 
738 static const enum index item_e_tag[] = {
739 	ITEM_E_TAG_GRP_ECID_B,
740 	ITEM_NEXT,
741 	ZERO,
742 };
743 
744 static const enum index item_nvgre[] = {
745 	ITEM_NVGRE_TNI,
746 	ITEM_NEXT,
747 	ZERO,
748 };
749 
750 static const enum index item_mpls[] = {
751 	ITEM_MPLS_LABEL,
752 	ITEM_NEXT,
753 	ZERO,
754 };
755 
756 static const enum index item_gre[] = {
757 	ITEM_GRE_PROTO,
758 	ITEM_NEXT,
759 	ZERO,
760 };
761 
762 static const enum index item_gtp[] = {
763 	ITEM_GTP_TEID,
764 	ITEM_NEXT,
765 	ZERO,
766 };
767 
768 static const enum index item_geneve[] = {
769 	ITEM_GENEVE_VNI,
770 	ITEM_GENEVE_PROTO,
771 	ITEM_NEXT,
772 	ZERO,
773 };
774 
775 static const enum index item_vxlan_gpe[] = {
776 	ITEM_VXLAN_GPE_VNI,
777 	ITEM_NEXT,
778 	ZERO,
779 };
780 
781 static const enum index item_arp_eth_ipv4[] = {
782 	ITEM_ARP_ETH_IPV4_SHA,
783 	ITEM_ARP_ETH_IPV4_SPA,
784 	ITEM_ARP_ETH_IPV4_THA,
785 	ITEM_ARP_ETH_IPV4_TPA,
786 	ITEM_NEXT,
787 	ZERO,
788 };
789 
790 static const enum index item_ipv6_ext[] = {
791 	ITEM_IPV6_EXT_NEXT_HDR,
792 	ITEM_NEXT,
793 	ZERO,
794 };
795 
796 static const enum index item_icmp6[] = {
797 	ITEM_ICMP6_TYPE,
798 	ITEM_ICMP6_CODE,
799 	ITEM_NEXT,
800 	ZERO,
801 };
802 
803 static const enum index item_icmp6_nd_ns[] = {
804 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
805 	ITEM_NEXT,
806 	ZERO,
807 };
808 
809 static const enum index item_icmp6_nd_na[] = {
810 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
811 	ITEM_NEXT,
812 	ZERO,
813 };
814 
815 static const enum index item_icmp6_nd_opt[] = {
816 	ITEM_ICMP6_ND_OPT_TYPE,
817 	ITEM_NEXT,
818 	ZERO,
819 };
820 
821 static const enum index item_icmp6_nd_opt_sla_eth[] = {
822 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
823 	ITEM_NEXT,
824 	ZERO,
825 };
826 
827 static const enum index item_icmp6_nd_opt_tla_eth[] = {
828 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
829 	ITEM_NEXT,
830 	ZERO,
831 };
832 
833 static const enum index item_meta[] = {
834 	ITEM_META_DATA,
835 	ITEM_NEXT,
836 	ZERO,
837 };
838 
839 static const enum index next_action[] = {
840 	ACTION_END,
841 	ACTION_VOID,
842 	ACTION_PASSTHRU,
843 	ACTION_JUMP,
844 	ACTION_MARK,
845 	ACTION_FLAG,
846 	ACTION_QUEUE,
847 	ACTION_DROP,
848 	ACTION_COUNT,
849 	ACTION_RSS,
850 	ACTION_PF,
851 	ACTION_VF,
852 	ACTION_PHY_PORT,
853 	ACTION_PORT_ID,
854 	ACTION_METER,
855 	ACTION_OF_SET_MPLS_TTL,
856 	ACTION_OF_DEC_MPLS_TTL,
857 	ACTION_OF_SET_NW_TTL,
858 	ACTION_OF_DEC_NW_TTL,
859 	ACTION_OF_COPY_TTL_OUT,
860 	ACTION_OF_COPY_TTL_IN,
861 	ACTION_OF_POP_VLAN,
862 	ACTION_OF_PUSH_VLAN,
863 	ACTION_OF_SET_VLAN_VID,
864 	ACTION_OF_SET_VLAN_PCP,
865 	ACTION_OF_POP_MPLS,
866 	ACTION_OF_PUSH_MPLS,
867 	ACTION_VXLAN_ENCAP,
868 	ACTION_VXLAN_DECAP,
869 	ACTION_NVGRE_ENCAP,
870 	ACTION_NVGRE_DECAP,
871 	ACTION_L2_ENCAP,
872 	ACTION_L2_DECAP,
873 	ACTION_MPLSOGRE_ENCAP,
874 	ACTION_MPLSOGRE_DECAP,
875 	ACTION_MPLSOUDP_ENCAP,
876 	ACTION_MPLSOUDP_DECAP,
877 	ACTION_SET_IPV4_SRC,
878 	ACTION_SET_IPV4_DST,
879 	ACTION_SET_IPV6_SRC,
880 	ACTION_SET_IPV6_DST,
881 	ACTION_SET_TP_SRC,
882 	ACTION_SET_TP_DST,
883 	ACTION_MAC_SWAP,
884 	ACTION_DEC_TTL,
885 	ACTION_SET_TTL,
886 	ACTION_SET_MAC_SRC,
887 	ACTION_SET_MAC_DST,
888 	ZERO,
889 };
890 
891 static const enum index action_mark[] = {
892 	ACTION_MARK_ID,
893 	ACTION_NEXT,
894 	ZERO,
895 };
896 
897 static const enum index action_queue[] = {
898 	ACTION_QUEUE_INDEX,
899 	ACTION_NEXT,
900 	ZERO,
901 };
902 
903 static const enum index action_count[] = {
904 	ACTION_COUNT_ID,
905 	ACTION_COUNT_SHARED,
906 	ACTION_NEXT,
907 	ZERO,
908 };
909 
910 static const enum index action_rss[] = {
911 	ACTION_RSS_FUNC,
912 	ACTION_RSS_LEVEL,
913 	ACTION_RSS_TYPES,
914 	ACTION_RSS_KEY,
915 	ACTION_RSS_KEY_LEN,
916 	ACTION_RSS_QUEUES,
917 	ACTION_NEXT,
918 	ZERO,
919 };
920 
921 static const enum index action_vf[] = {
922 	ACTION_VF_ORIGINAL,
923 	ACTION_VF_ID,
924 	ACTION_NEXT,
925 	ZERO,
926 };
927 
928 static const enum index action_phy_port[] = {
929 	ACTION_PHY_PORT_ORIGINAL,
930 	ACTION_PHY_PORT_INDEX,
931 	ACTION_NEXT,
932 	ZERO,
933 };
934 
935 static const enum index action_port_id[] = {
936 	ACTION_PORT_ID_ORIGINAL,
937 	ACTION_PORT_ID_ID,
938 	ACTION_NEXT,
939 	ZERO,
940 };
941 
942 static const enum index action_meter[] = {
943 	ACTION_METER_ID,
944 	ACTION_NEXT,
945 	ZERO,
946 };
947 
948 static const enum index action_of_set_mpls_ttl[] = {
949 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
950 	ACTION_NEXT,
951 	ZERO,
952 };
953 
954 static const enum index action_of_set_nw_ttl[] = {
955 	ACTION_OF_SET_NW_TTL_NW_TTL,
956 	ACTION_NEXT,
957 	ZERO,
958 };
959 
960 static const enum index action_of_push_vlan[] = {
961 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
962 	ACTION_NEXT,
963 	ZERO,
964 };
965 
966 static const enum index action_of_set_vlan_vid[] = {
967 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
968 	ACTION_NEXT,
969 	ZERO,
970 };
971 
972 static const enum index action_of_set_vlan_pcp[] = {
973 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
974 	ACTION_NEXT,
975 	ZERO,
976 };
977 
978 static const enum index action_of_pop_mpls[] = {
979 	ACTION_OF_POP_MPLS_ETHERTYPE,
980 	ACTION_NEXT,
981 	ZERO,
982 };
983 
984 static const enum index action_of_push_mpls[] = {
985 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
986 	ACTION_NEXT,
987 	ZERO,
988 };
989 
990 static const enum index action_set_ipv4_src[] = {
991 	ACTION_SET_IPV4_SRC_IPV4_SRC,
992 	ACTION_NEXT,
993 	ZERO,
994 };
995 
996 static const enum index action_set_mac_src[] = {
997 	ACTION_SET_MAC_SRC_MAC_SRC,
998 	ACTION_NEXT,
999 	ZERO,
1000 };
1001 
1002 static const enum index action_set_ipv4_dst[] = {
1003 	ACTION_SET_IPV4_DST_IPV4_DST,
1004 	ACTION_NEXT,
1005 	ZERO,
1006 };
1007 
1008 static const enum index action_set_ipv6_src[] = {
1009 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1010 	ACTION_NEXT,
1011 	ZERO,
1012 };
1013 
1014 static const enum index action_set_ipv6_dst[] = {
1015 	ACTION_SET_IPV6_DST_IPV6_DST,
1016 	ACTION_NEXT,
1017 	ZERO,
1018 };
1019 
1020 static const enum index action_set_tp_src[] = {
1021 	ACTION_SET_TP_SRC_TP_SRC,
1022 	ACTION_NEXT,
1023 	ZERO,
1024 };
1025 
1026 static const enum index action_set_tp_dst[] = {
1027 	ACTION_SET_TP_DST_TP_DST,
1028 	ACTION_NEXT,
1029 	ZERO,
1030 };
1031 
1032 static const enum index action_set_ttl[] = {
1033 	ACTION_SET_TTL_TTL,
1034 	ACTION_NEXT,
1035 	ZERO,
1036 };
1037 
1038 static const enum index action_jump[] = {
1039 	ACTION_JUMP_GROUP,
1040 	ACTION_NEXT,
1041 	ZERO,
1042 };
1043 
1044 static const enum index action_set_mac_dst[] = {
1045 	ACTION_SET_MAC_DST_MAC_DST,
1046 	ACTION_NEXT,
1047 	ZERO,
1048 };
1049 
1050 static int parse_init(struct context *, const struct token *,
1051 		      const char *, unsigned int,
1052 		      void *, unsigned int);
1053 static int parse_vc(struct context *, const struct token *,
1054 		    const char *, unsigned int,
1055 		    void *, unsigned int);
1056 static int parse_vc_spec(struct context *, const struct token *,
1057 			 const char *, unsigned int, void *, unsigned int);
1058 static int parse_vc_conf(struct context *, const struct token *,
1059 			 const char *, unsigned int, void *, unsigned int);
1060 static int parse_vc_action_rss(struct context *, const struct token *,
1061 			       const char *, unsigned int, void *,
1062 			       unsigned int);
1063 static int parse_vc_action_rss_func(struct context *, const struct token *,
1064 				    const char *, unsigned int, void *,
1065 				    unsigned int);
1066 static int parse_vc_action_rss_type(struct context *, const struct token *,
1067 				    const char *, unsigned int, void *,
1068 				    unsigned int);
1069 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1070 				     const char *, unsigned int, void *,
1071 				     unsigned int);
1072 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1073 				       const char *, unsigned int, void *,
1074 				       unsigned int);
1075 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1076 				       const char *, unsigned int, void *,
1077 				       unsigned int);
1078 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1079 				    const char *, unsigned int, void *,
1080 				    unsigned int);
1081 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1082 				    const char *, unsigned int, void *,
1083 				    unsigned int);
1084 static int parse_vc_action_mplsogre_encap(struct context *,
1085 					  const struct token *, const char *,
1086 					  unsigned int, void *, unsigned int);
1087 static int parse_vc_action_mplsogre_decap(struct context *,
1088 					  const struct token *, const char *,
1089 					  unsigned int, void *, unsigned int);
1090 static int parse_vc_action_mplsoudp_encap(struct context *,
1091 					  const struct token *, const char *,
1092 					  unsigned int, void *, unsigned int);
1093 static int parse_vc_action_mplsoudp_decap(struct context *,
1094 					  const struct token *, const char *,
1095 					  unsigned int, void *, unsigned int);
1096 static int parse_destroy(struct context *, const struct token *,
1097 			 const char *, unsigned int,
1098 			 void *, unsigned int);
1099 static int parse_flush(struct context *, const struct token *,
1100 		       const char *, unsigned int,
1101 		       void *, unsigned int);
1102 static int parse_query(struct context *, const struct token *,
1103 		       const char *, unsigned int,
1104 		       void *, unsigned int);
1105 static int parse_action(struct context *, const struct token *,
1106 			const char *, unsigned int,
1107 			void *, unsigned int);
1108 static int parse_list(struct context *, const struct token *,
1109 		      const char *, unsigned int,
1110 		      void *, unsigned int);
1111 static int parse_isolate(struct context *, const struct token *,
1112 			 const char *, unsigned int,
1113 			 void *, unsigned int);
1114 static int parse_int(struct context *, const struct token *,
1115 		     const char *, unsigned int,
1116 		     void *, unsigned int);
1117 static int parse_prefix(struct context *, const struct token *,
1118 			const char *, unsigned int,
1119 			void *, unsigned int);
1120 static int parse_boolean(struct context *, const struct token *,
1121 			 const char *, unsigned int,
1122 			 void *, unsigned int);
1123 static int parse_string(struct context *, const struct token *,
1124 			const char *, unsigned int,
1125 			void *, unsigned int);
1126 static int parse_mac_addr(struct context *, const struct token *,
1127 			  const char *, unsigned int,
1128 			  void *, unsigned int);
1129 static int parse_ipv4_addr(struct context *, const struct token *,
1130 			   const char *, unsigned int,
1131 			   void *, unsigned int);
1132 static int parse_ipv6_addr(struct context *, const struct token *,
1133 			   const char *, unsigned int,
1134 			   void *, unsigned int);
1135 static int parse_port(struct context *, const struct token *,
1136 		      const char *, unsigned int,
1137 		      void *, unsigned int);
1138 static int comp_none(struct context *, const struct token *,
1139 		     unsigned int, char *, unsigned int);
1140 static int comp_boolean(struct context *, const struct token *,
1141 			unsigned int, char *, unsigned int);
1142 static int comp_action(struct context *, const struct token *,
1143 		       unsigned int, char *, unsigned int);
1144 static int comp_port(struct context *, const struct token *,
1145 		     unsigned int, char *, unsigned int);
1146 static int comp_rule_id(struct context *, const struct token *,
1147 			unsigned int, char *, unsigned int);
1148 static int comp_vc_action_rss_type(struct context *, const struct token *,
1149 				   unsigned int, char *, unsigned int);
1150 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1151 				    unsigned int, char *, unsigned int);
1152 
1153 /** Token definitions. */
1154 static const struct token token_list[] = {
1155 	/* Special tokens. */
1156 	[ZERO] = {
1157 		.name = "ZERO",
1158 		.help = "null entry, abused as the entry point",
1159 		.next = NEXT(NEXT_ENTRY(FLOW)),
1160 	},
1161 	[END] = {
1162 		.name = "",
1163 		.type = "RETURN",
1164 		.help = "command may end here",
1165 	},
1166 	/* Common tokens. */
1167 	[INTEGER] = {
1168 		.name = "{int}",
1169 		.type = "INTEGER",
1170 		.help = "integer value",
1171 		.call = parse_int,
1172 		.comp = comp_none,
1173 	},
1174 	[UNSIGNED] = {
1175 		.name = "{unsigned}",
1176 		.type = "UNSIGNED",
1177 		.help = "unsigned integer value",
1178 		.call = parse_int,
1179 		.comp = comp_none,
1180 	},
1181 	[PREFIX] = {
1182 		.name = "{prefix}",
1183 		.type = "PREFIX",
1184 		.help = "prefix length for bit-mask",
1185 		.call = parse_prefix,
1186 		.comp = comp_none,
1187 	},
1188 	[BOOLEAN] = {
1189 		.name = "{boolean}",
1190 		.type = "BOOLEAN",
1191 		.help = "any boolean value",
1192 		.call = parse_boolean,
1193 		.comp = comp_boolean,
1194 	},
1195 	[STRING] = {
1196 		.name = "{string}",
1197 		.type = "STRING",
1198 		.help = "fixed string",
1199 		.call = parse_string,
1200 		.comp = comp_none,
1201 	},
1202 	[MAC_ADDR] = {
1203 		.name = "{MAC address}",
1204 		.type = "MAC-48",
1205 		.help = "standard MAC address notation",
1206 		.call = parse_mac_addr,
1207 		.comp = comp_none,
1208 	},
1209 	[IPV4_ADDR] = {
1210 		.name = "{IPv4 address}",
1211 		.type = "IPV4 ADDRESS",
1212 		.help = "standard IPv4 address notation",
1213 		.call = parse_ipv4_addr,
1214 		.comp = comp_none,
1215 	},
1216 	[IPV6_ADDR] = {
1217 		.name = "{IPv6 address}",
1218 		.type = "IPV6 ADDRESS",
1219 		.help = "standard IPv6 address notation",
1220 		.call = parse_ipv6_addr,
1221 		.comp = comp_none,
1222 	},
1223 	[RULE_ID] = {
1224 		.name = "{rule id}",
1225 		.type = "RULE ID",
1226 		.help = "rule identifier",
1227 		.call = parse_int,
1228 		.comp = comp_rule_id,
1229 	},
1230 	[PORT_ID] = {
1231 		.name = "{port_id}",
1232 		.type = "PORT ID",
1233 		.help = "port identifier",
1234 		.call = parse_port,
1235 		.comp = comp_port,
1236 	},
1237 	[GROUP_ID] = {
1238 		.name = "{group_id}",
1239 		.type = "GROUP ID",
1240 		.help = "group identifier",
1241 		.call = parse_int,
1242 		.comp = comp_none,
1243 	},
1244 	[PRIORITY_LEVEL] = {
1245 		.name = "{level}",
1246 		.type = "PRIORITY",
1247 		.help = "priority level",
1248 		.call = parse_int,
1249 		.comp = comp_none,
1250 	},
1251 	/* Top-level command. */
1252 	[FLOW] = {
1253 		.name = "flow",
1254 		.type = "{command} {port_id} [{arg} [...]]",
1255 		.help = "manage ingress/egress flow rules",
1256 		.next = NEXT(NEXT_ENTRY
1257 			     (VALIDATE,
1258 			      CREATE,
1259 			      DESTROY,
1260 			      FLUSH,
1261 			      LIST,
1262 			      QUERY,
1263 			      ISOLATE)),
1264 		.call = parse_init,
1265 	},
1266 	/* Sub-level commands. */
1267 	[VALIDATE] = {
1268 		.name = "validate",
1269 		.help = "check whether a flow rule can be created",
1270 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1271 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1272 		.call = parse_vc,
1273 	},
1274 	[CREATE] = {
1275 		.name = "create",
1276 		.help = "create a flow rule",
1277 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1278 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1279 		.call = parse_vc,
1280 	},
1281 	[DESTROY] = {
1282 		.name = "destroy",
1283 		.help = "destroy specific flow rules",
1284 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1285 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1286 		.call = parse_destroy,
1287 	},
1288 	[FLUSH] = {
1289 		.name = "flush",
1290 		.help = "destroy all flow rules",
1291 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1292 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1293 		.call = parse_flush,
1294 	},
1295 	[QUERY] = {
1296 		.name = "query",
1297 		.help = "query an existing flow rule",
1298 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1299 			     NEXT_ENTRY(RULE_ID),
1300 			     NEXT_ENTRY(PORT_ID)),
1301 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1302 			     ARGS_ENTRY(struct buffer, args.query.rule),
1303 			     ARGS_ENTRY(struct buffer, port)),
1304 		.call = parse_query,
1305 	},
1306 	[LIST] = {
1307 		.name = "list",
1308 		.help = "list existing flow rules",
1309 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1310 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1311 		.call = parse_list,
1312 	},
1313 	[ISOLATE] = {
1314 		.name = "isolate",
1315 		.help = "restrict ingress traffic to the defined flow rules",
1316 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1317 			     NEXT_ENTRY(PORT_ID)),
1318 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1319 			     ARGS_ENTRY(struct buffer, port)),
1320 		.call = parse_isolate,
1321 	},
1322 	/* Destroy arguments. */
1323 	[DESTROY_RULE] = {
1324 		.name = "rule",
1325 		.help = "specify a rule identifier",
1326 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1327 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1328 		.call = parse_destroy,
1329 	},
1330 	/* Query arguments. */
1331 	[QUERY_ACTION] = {
1332 		.name = "{action}",
1333 		.type = "ACTION",
1334 		.help = "action to query, must be part of the rule",
1335 		.call = parse_action,
1336 		.comp = comp_action,
1337 	},
1338 	/* List arguments. */
1339 	[LIST_GROUP] = {
1340 		.name = "group",
1341 		.help = "specify a group",
1342 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1343 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1344 		.call = parse_list,
1345 	},
1346 	/* Validate/create attributes. */
1347 	[GROUP] = {
1348 		.name = "group",
1349 		.help = "specify a group",
1350 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1351 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1352 		.call = parse_vc,
1353 	},
1354 	[PRIORITY] = {
1355 		.name = "priority",
1356 		.help = "specify a priority level",
1357 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1358 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1359 		.call = parse_vc,
1360 	},
1361 	[INGRESS] = {
1362 		.name = "ingress",
1363 		.help = "affect rule to ingress",
1364 		.next = NEXT(next_vc_attr),
1365 		.call = parse_vc,
1366 	},
1367 	[EGRESS] = {
1368 		.name = "egress",
1369 		.help = "affect rule to egress",
1370 		.next = NEXT(next_vc_attr),
1371 		.call = parse_vc,
1372 	},
1373 	[TRANSFER] = {
1374 		.name = "transfer",
1375 		.help = "apply rule directly to endpoints found in pattern",
1376 		.next = NEXT(next_vc_attr),
1377 		.call = parse_vc,
1378 	},
1379 	/* Validate/create pattern. */
1380 	[PATTERN] = {
1381 		.name = "pattern",
1382 		.help = "submit a list of pattern items",
1383 		.next = NEXT(next_item),
1384 		.call = parse_vc,
1385 	},
1386 	[ITEM_PARAM_IS] = {
1387 		.name = "is",
1388 		.help = "match value perfectly (with full bit-mask)",
1389 		.call = parse_vc_spec,
1390 	},
1391 	[ITEM_PARAM_SPEC] = {
1392 		.name = "spec",
1393 		.help = "match value according to configured bit-mask",
1394 		.call = parse_vc_spec,
1395 	},
1396 	[ITEM_PARAM_LAST] = {
1397 		.name = "last",
1398 		.help = "specify upper bound to establish a range",
1399 		.call = parse_vc_spec,
1400 	},
1401 	[ITEM_PARAM_MASK] = {
1402 		.name = "mask",
1403 		.help = "specify bit-mask with relevant bits set to one",
1404 		.call = parse_vc_spec,
1405 	},
1406 	[ITEM_PARAM_PREFIX] = {
1407 		.name = "prefix",
1408 		.help = "generate bit-mask from a prefix length",
1409 		.call = parse_vc_spec,
1410 	},
1411 	[ITEM_NEXT] = {
1412 		.name = "/",
1413 		.help = "specify next pattern item",
1414 		.next = NEXT(next_item),
1415 	},
1416 	[ITEM_END] = {
1417 		.name = "end",
1418 		.help = "end list of pattern items",
1419 		.priv = PRIV_ITEM(END, 0),
1420 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1421 		.call = parse_vc,
1422 	},
1423 	[ITEM_VOID] = {
1424 		.name = "void",
1425 		.help = "no-op pattern item",
1426 		.priv = PRIV_ITEM(VOID, 0),
1427 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1428 		.call = parse_vc,
1429 	},
1430 	[ITEM_INVERT] = {
1431 		.name = "invert",
1432 		.help = "perform actions when pattern does not match",
1433 		.priv = PRIV_ITEM(INVERT, 0),
1434 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1435 		.call = parse_vc,
1436 	},
1437 	[ITEM_ANY] = {
1438 		.name = "any",
1439 		.help = "match any protocol for the current layer",
1440 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1441 		.next = NEXT(item_any),
1442 		.call = parse_vc,
1443 	},
1444 	[ITEM_ANY_NUM] = {
1445 		.name = "num",
1446 		.help = "number of layers covered",
1447 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1448 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1449 	},
1450 	[ITEM_PF] = {
1451 		.name = "pf",
1452 		.help = "match traffic from/to the physical function",
1453 		.priv = PRIV_ITEM(PF, 0),
1454 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1455 		.call = parse_vc,
1456 	},
1457 	[ITEM_VF] = {
1458 		.name = "vf",
1459 		.help = "match traffic from/to a virtual function ID",
1460 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1461 		.next = NEXT(item_vf),
1462 		.call = parse_vc,
1463 	},
1464 	[ITEM_VF_ID] = {
1465 		.name = "id",
1466 		.help = "VF ID",
1467 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1468 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1469 	},
1470 	[ITEM_PHY_PORT] = {
1471 		.name = "phy_port",
1472 		.help = "match traffic from/to a specific physical port",
1473 		.priv = PRIV_ITEM(PHY_PORT,
1474 				  sizeof(struct rte_flow_item_phy_port)),
1475 		.next = NEXT(item_phy_port),
1476 		.call = parse_vc,
1477 	},
1478 	[ITEM_PHY_PORT_INDEX] = {
1479 		.name = "index",
1480 		.help = "physical port index",
1481 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1482 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1483 	},
1484 	[ITEM_PORT_ID] = {
1485 		.name = "port_id",
1486 		.help = "match traffic from/to a given DPDK port ID",
1487 		.priv = PRIV_ITEM(PORT_ID,
1488 				  sizeof(struct rte_flow_item_port_id)),
1489 		.next = NEXT(item_port_id),
1490 		.call = parse_vc,
1491 	},
1492 	[ITEM_PORT_ID_ID] = {
1493 		.name = "id",
1494 		.help = "DPDK port ID",
1495 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1496 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1497 	},
1498 	[ITEM_MARK] = {
1499 		.name = "mark",
1500 		.help = "match traffic against value set in previously matched rule",
1501 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1502 		.next = NEXT(item_mark),
1503 		.call = parse_vc,
1504 	},
1505 	[ITEM_MARK_ID] = {
1506 		.name = "id",
1507 		.help = "Integer value to match against",
1508 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1509 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1510 	},
1511 	[ITEM_RAW] = {
1512 		.name = "raw",
1513 		.help = "match an arbitrary byte string",
1514 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1515 		.next = NEXT(item_raw),
1516 		.call = parse_vc,
1517 	},
1518 	[ITEM_RAW_RELATIVE] = {
1519 		.name = "relative",
1520 		.help = "look for pattern after the previous item",
1521 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1522 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1523 					   relative, 1)),
1524 	},
1525 	[ITEM_RAW_SEARCH] = {
1526 		.name = "search",
1527 		.help = "search pattern from offset (see also limit)",
1528 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1529 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1530 					   search, 1)),
1531 	},
1532 	[ITEM_RAW_OFFSET] = {
1533 		.name = "offset",
1534 		.help = "absolute or relative offset for pattern",
1535 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1536 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1537 	},
1538 	[ITEM_RAW_LIMIT] = {
1539 		.name = "limit",
1540 		.help = "search area limit for start of pattern",
1541 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1542 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1543 	},
1544 	[ITEM_RAW_PATTERN] = {
1545 		.name = "pattern",
1546 		.help = "byte string to look for",
1547 		.next = NEXT(item_raw,
1548 			     NEXT_ENTRY(STRING),
1549 			     NEXT_ENTRY(ITEM_PARAM_IS,
1550 					ITEM_PARAM_SPEC,
1551 					ITEM_PARAM_MASK)),
1552 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1553 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1554 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1555 					    ITEM_RAW_PATTERN_SIZE)),
1556 	},
1557 	[ITEM_ETH] = {
1558 		.name = "eth",
1559 		.help = "match Ethernet header",
1560 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1561 		.next = NEXT(item_eth),
1562 		.call = parse_vc,
1563 	},
1564 	[ITEM_ETH_DST] = {
1565 		.name = "dst",
1566 		.help = "destination MAC",
1567 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1568 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1569 	},
1570 	[ITEM_ETH_SRC] = {
1571 		.name = "src",
1572 		.help = "source MAC",
1573 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1574 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1575 	},
1576 	[ITEM_ETH_TYPE] = {
1577 		.name = "type",
1578 		.help = "EtherType",
1579 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1580 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1581 	},
1582 	[ITEM_VLAN] = {
1583 		.name = "vlan",
1584 		.help = "match 802.1Q/ad VLAN tag",
1585 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1586 		.next = NEXT(item_vlan),
1587 		.call = parse_vc,
1588 	},
1589 	[ITEM_VLAN_TCI] = {
1590 		.name = "tci",
1591 		.help = "tag control information",
1592 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1593 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1594 	},
1595 	[ITEM_VLAN_PCP] = {
1596 		.name = "pcp",
1597 		.help = "priority code point",
1598 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1599 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1600 						  tci, "\xe0\x00")),
1601 	},
1602 	[ITEM_VLAN_DEI] = {
1603 		.name = "dei",
1604 		.help = "drop eligible indicator",
1605 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1606 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1607 						  tci, "\x10\x00")),
1608 	},
1609 	[ITEM_VLAN_VID] = {
1610 		.name = "vid",
1611 		.help = "VLAN identifier",
1612 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1613 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1614 						  tci, "\x0f\xff")),
1615 	},
1616 	[ITEM_VLAN_INNER_TYPE] = {
1617 		.name = "inner_type",
1618 		.help = "inner EtherType",
1619 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1620 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1621 					     inner_type)),
1622 	},
1623 	[ITEM_IPV4] = {
1624 		.name = "ipv4",
1625 		.help = "match IPv4 header",
1626 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1627 		.next = NEXT(item_ipv4),
1628 		.call = parse_vc,
1629 	},
1630 	[ITEM_IPV4_TOS] = {
1631 		.name = "tos",
1632 		.help = "type of service",
1633 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1634 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1635 					     hdr.type_of_service)),
1636 	},
1637 	[ITEM_IPV4_TTL] = {
1638 		.name = "ttl",
1639 		.help = "time to live",
1640 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1641 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1642 					     hdr.time_to_live)),
1643 	},
1644 	[ITEM_IPV4_PROTO] = {
1645 		.name = "proto",
1646 		.help = "next protocol ID",
1647 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1648 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1649 					     hdr.next_proto_id)),
1650 	},
1651 	[ITEM_IPV4_SRC] = {
1652 		.name = "src",
1653 		.help = "source address",
1654 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1655 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1656 					     hdr.src_addr)),
1657 	},
1658 	[ITEM_IPV4_DST] = {
1659 		.name = "dst",
1660 		.help = "destination address",
1661 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1662 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1663 					     hdr.dst_addr)),
1664 	},
1665 	[ITEM_IPV6] = {
1666 		.name = "ipv6",
1667 		.help = "match IPv6 header",
1668 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1669 		.next = NEXT(item_ipv6),
1670 		.call = parse_vc,
1671 	},
1672 	[ITEM_IPV6_TC] = {
1673 		.name = "tc",
1674 		.help = "traffic class",
1675 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1676 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1677 						  hdr.vtc_flow,
1678 						  "\x0f\xf0\x00\x00")),
1679 	},
1680 	[ITEM_IPV6_FLOW] = {
1681 		.name = "flow",
1682 		.help = "flow label",
1683 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1684 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1685 						  hdr.vtc_flow,
1686 						  "\x00\x0f\xff\xff")),
1687 	},
1688 	[ITEM_IPV6_PROTO] = {
1689 		.name = "proto",
1690 		.help = "protocol (next header)",
1691 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1692 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1693 					     hdr.proto)),
1694 	},
1695 	[ITEM_IPV6_HOP] = {
1696 		.name = "hop",
1697 		.help = "hop limit",
1698 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1699 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1700 					     hdr.hop_limits)),
1701 	},
1702 	[ITEM_IPV6_SRC] = {
1703 		.name = "src",
1704 		.help = "source address",
1705 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1706 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1707 					     hdr.src_addr)),
1708 	},
1709 	[ITEM_IPV6_DST] = {
1710 		.name = "dst",
1711 		.help = "destination address",
1712 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1713 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1714 					     hdr.dst_addr)),
1715 	},
1716 	[ITEM_ICMP] = {
1717 		.name = "icmp",
1718 		.help = "match ICMP header",
1719 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1720 		.next = NEXT(item_icmp),
1721 		.call = parse_vc,
1722 	},
1723 	[ITEM_ICMP_TYPE] = {
1724 		.name = "type",
1725 		.help = "ICMP packet type",
1726 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1727 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1728 					     hdr.icmp_type)),
1729 	},
1730 	[ITEM_ICMP_CODE] = {
1731 		.name = "code",
1732 		.help = "ICMP packet code",
1733 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1734 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1735 					     hdr.icmp_code)),
1736 	},
1737 	[ITEM_UDP] = {
1738 		.name = "udp",
1739 		.help = "match UDP header",
1740 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1741 		.next = NEXT(item_udp),
1742 		.call = parse_vc,
1743 	},
1744 	[ITEM_UDP_SRC] = {
1745 		.name = "src",
1746 		.help = "UDP source port",
1747 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1748 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1749 					     hdr.src_port)),
1750 	},
1751 	[ITEM_UDP_DST] = {
1752 		.name = "dst",
1753 		.help = "UDP destination port",
1754 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1755 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1756 					     hdr.dst_port)),
1757 	},
1758 	[ITEM_TCP] = {
1759 		.name = "tcp",
1760 		.help = "match TCP header",
1761 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1762 		.next = NEXT(item_tcp),
1763 		.call = parse_vc,
1764 	},
1765 	[ITEM_TCP_SRC] = {
1766 		.name = "src",
1767 		.help = "TCP source port",
1768 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1769 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1770 					     hdr.src_port)),
1771 	},
1772 	[ITEM_TCP_DST] = {
1773 		.name = "dst",
1774 		.help = "TCP destination port",
1775 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1776 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1777 					     hdr.dst_port)),
1778 	},
1779 	[ITEM_TCP_FLAGS] = {
1780 		.name = "flags",
1781 		.help = "TCP flags",
1782 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1783 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1784 					     hdr.tcp_flags)),
1785 	},
1786 	[ITEM_SCTP] = {
1787 		.name = "sctp",
1788 		.help = "match SCTP header",
1789 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1790 		.next = NEXT(item_sctp),
1791 		.call = parse_vc,
1792 	},
1793 	[ITEM_SCTP_SRC] = {
1794 		.name = "src",
1795 		.help = "SCTP source port",
1796 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1797 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1798 					     hdr.src_port)),
1799 	},
1800 	[ITEM_SCTP_DST] = {
1801 		.name = "dst",
1802 		.help = "SCTP destination port",
1803 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1804 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1805 					     hdr.dst_port)),
1806 	},
1807 	[ITEM_SCTP_TAG] = {
1808 		.name = "tag",
1809 		.help = "validation tag",
1810 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1811 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1812 					     hdr.tag)),
1813 	},
1814 	[ITEM_SCTP_CKSUM] = {
1815 		.name = "cksum",
1816 		.help = "checksum",
1817 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1818 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1819 					     hdr.cksum)),
1820 	},
1821 	[ITEM_VXLAN] = {
1822 		.name = "vxlan",
1823 		.help = "match VXLAN header",
1824 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1825 		.next = NEXT(item_vxlan),
1826 		.call = parse_vc,
1827 	},
1828 	[ITEM_VXLAN_VNI] = {
1829 		.name = "vni",
1830 		.help = "VXLAN identifier",
1831 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1832 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1833 	},
1834 	[ITEM_E_TAG] = {
1835 		.name = "e_tag",
1836 		.help = "match E-Tag header",
1837 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1838 		.next = NEXT(item_e_tag),
1839 		.call = parse_vc,
1840 	},
1841 	[ITEM_E_TAG_GRP_ECID_B] = {
1842 		.name = "grp_ecid_b",
1843 		.help = "GRP and E-CID base",
1844 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1845 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1846 						  rsvd_grp_ecid_b,
1847 						  "\x3f\xff")),
1848 	},
1849 	[ITEM_NVGRE] = {
1850 		.name = "nvgre",
1851 		.help = "match NVGRE header",
1852 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1853 		.next = NEXT(item_nvgre),
1854 		.call = parse_vc,
1855 	},
1856 	[ITEM_NVGRE_TNI] = {
1857 		.name = "tni",
1858 		.help = "virtual subnet ID",
1859 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1860 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1861 	},
1862 	[ITEM_MPLS] = {
1863 		.name = "mpls",
1864 		.help = "match MPLS header",
1865 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1866 		.next = NEXT(item_mpls),
1867 		.call = parse_vc,
1868 	},
1869 	[ITEM_MPLS_LABEL] = {
1870 		.name = "label",
1871 		.help = "MPLS label",
1872 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1873 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1874 						  label_tc_s,
1875 						  "\xff\xff\xf0")),
1876 	},
1877 	[ITEM_GRE] = {
1878 		.name = "gre",
1879 		.help = "match GRE header",
1880 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1881 		.next = NEXT(item_gre),
1882 		.call = parse_vc,
1883 	},
1884 	[ITEM_GRE_PROTO] = {
1885 		.name = "protocol",
1886 		.help = "GRE protocol type",
1887 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1888 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1889 					     protocol)),
1890 	},
1891 	[ITEM_FUZZY] = {
1892 		.name = "fuzzy",
1893 		.help = "fuzzy pattern match, expect faster than default",
1894 		.priv = PRIV_ITEM(FUZZY,
1895 				sizeof(struct rte_flow_item_fuzzy)),
1896 		.next = NEXT(item_fuzzy),
1897 		.call = parse_vc,
1898 	},
1899 	[ITEM_FUZZY_THRESH] = {
1900 		.name = "thresh",
1901 		.help = "match accuracy threshold",
1902 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1903 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1904 					thresh)),
1905 	},
1906 	[ITEM_GTP] = {
1907 		.name = "gtp",
1908 		.help = "match GTP header",
1909 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1910 		.next = NEXT(item_gtp),
1911 		.call = parse_vc,
1912 	},
1913 	[ITEM_GTP_TEID] = {
1914 		.name = "teid",
1915 		.help = "tunnel endpoint identifier",
1916 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1917 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1918 	},
1919 	[ITEM_GTPC] = {
1920 		.name = "gtpc",
1921 		.help = "match GTP header",
1922 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1923 		.next = NEXT(item_gtp),
1924 		.call = parse_vc,
1925 	},
1926 	[ITEM_GTPU] = {
1927 		.name = "gtpu",
1928 		.help = "match GTP header",
1929 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1930 		.next = NEXT(item_gtp),
1931 		.call = parse_vc,
1932 	},
1933 	[ITEM_GENEVE] = {
1934 		.name = "geneve",
1935 		.help = "match GENEVE header",
1936 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1937 		.next = NEXT(item_geneve),
1938 		.call = parse_vc,
1939 	},
1940 	[ITEM_GENEVE_VNI] = {
1941 		.name = "vni",
1942 		.help = "virtual network identifier",
1943 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1944 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1945 	},
1946 	[ITEM_GENEVE_PROTO] = {
1947 		.name = "protocol",
1948 		.help = "GENEVE protocol type",
1949 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1950 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1951 					     protocol)),
1952 	},
1953 	[ITEM_VXLAN_GPE] = {
1954 		.name = "vxlan-gpe",
1955 		.help = "match VXLAN-GPE header",
1956 		.priv = PRIV_ITEM(VXLAN_GPE,
1957 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1958 		.next = NEXT(item_vxlan_gpe),
1959 		.call = parse_vc,
1960 	},
1961 	[ITEM_VXLAN_GPE_VNI] = {
1962 		.name = "vni",
1963 		.help = "VXLAN-GPE identifier",
1964 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1965 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1966 					     vni)),
1967 	},
1968 	[ITEM_ARP_ETH_IPV4] = {
1969 		.name = "arp_eth_ipv4",
1970 		.help = "match ARP header for Ethernet/IPv4",
1971 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1972 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1973 		.next = NEXT(item_arp_eth_ipv4),
1974 		.call = parse_vc,
1975 	},
1976 	[ITEM_ARP_ETH_IPV4_SHA] = {
1977 		.name = "sha",
1978 		.help = "sender hardware address",
1979 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1980 			     item_param),
1981 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1982 					     sha)),
1983 	},
1984 	[ITEM_ARP_ETH_IPV4_SPA] = {
1985 		.name = "spa",
1986 		.help = "sender IPv4 address",
1987 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1988 			     item_param),
1989 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1990 					     spa)),
1991 	},
1992 	[ITEM_ARP_ETH_IPV4_THA] = {
1993 		.name = "tha",
1994 		.help = "target hardware address",
1995 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1996 			     item_param),
1997 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1998 					     tha)),
1999 	},
2000 	[ITEM_ARP_ETH_IPV4_TPA] = {
2001 		.name = "tpa",
2002 		.help = "target IPv4 address",
2003 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2004 			     item_param),
2005 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2006 					     tpa)),
2007 	},
2008 	[ITEM_IPV6_EXT] = {
2009 		.name = "ipv6_ext",
2010 		.help = "match presence of any IPv6 extension header",
2011 		.priv = PRIV_ITEM(IPV6_EXT,
2012 				  sizeof(struct rte_flow_item_ipv6_ext)),
2013 		.next = NEXT(item_ipv6_ext),
2014 		.call = parse_vc,
2015 	},
2016 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2017 		.name = "next_hdr",
2018 		.help = "next header",
2019 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2020 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2021 					     next_hdr)),
2022 	},
2023 	[ITEM_ICMP6] = {
2024 		.name = "icmp6",
2025 		.help = "match any ICMPv6 header",
2026 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2027 		.next = NEXT(item_icmp6),
2028 		.call = parse_vc,
2029 	},
2030 	[ITEM_ICMP6_TYPE] = {
2031 		.name = "type",
2032 		.help = "ICMPv6 type",
2033 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2034 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2035 					     type)),
2036 	},
2037 	[ITEM_ICMP6_CODE] = {
2038 		.name = "code",
2039 		.help = "ICMPv6 code",
2040 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2041 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2042 					     code)),
2043 	},
2044 	[ITEM_ICMP6_ND_NS] = {
2045 		.name = "icmp6_nd_ns",
2046 		.help = "match ICMPv6 neighbor discovery solicitation",
2047 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2048 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2049 		.next = NEXT(item_icmp6_nd_ns),
2050 		.call = parse_vc,
2051 	},
2052 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2053 		.name = "target_addr",
2054 		.help = "target address",
2055 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2056 			     item_param),
2057 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2058 					     target_addr)),
2059 	},
2060 	[ITEM_ICMP6_ND_NA] = {
2061 		.name = "icmp6_nd_na",
2062 		.help = "match ICMPv6 neighbor discovery advertisement",
2063 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2064 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2065 		.next = NEXT(item_icmp6_nd_na),
2066 		.call = parse_vc,
2067 	},
2068 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2069 		.name = "target_addr",
2070 		.help = "target address",
2071 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2072 			     item_param),
2073 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2074 					     target_addr)),
2075 	},
2076 	[ITEM_ICMP6_ND_OPT] = {
2077 		.name = "icmp6_nd_opt",
2078 		.help = "match presence of any ICMPv6 neighbor discovery"
2079 			" option",
2080 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2081 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2082 		.next = NEXT(item_icmp6_nd_opt),
2083 		.call = parse_vc,
2084 	},
2085 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2086 		.name = "type",
2087 		.help = "ND option type",
2088 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2089 			     item_param),
2090 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2091 					     type)),
2092 	},
2093 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2094 		.name = "icmp6_nd_opt_sla_eth",
2095 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2096 			" link-layer address option",
2097 		.priv = PRIV_ITEM
2098 			(ICMP6_ND_OPT_SLA_ETH,
2099 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2100 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2101 		.call = parse_vc,
2102 	},
2103 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2104 		.name = "sla",
2105 		.help = "source Ethernet LLA",
2106 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2107 			     item_param),
2108 		.args = ARGS(ARGS_ENTRY_HTON
2109 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2110 	},
2111 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2112 		.name = "icmp6_nd_opt_tla_eth",
2113 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2114 			" link-layer address option",
2115 		.priv = PRIV_ITEM
2116 			(ICMP6_ND_OPT_TLA_ETH,
2117 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2118 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2119 		.call = parse_vc,
2120 	},
2121 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2122 		.name = "tla",
2123 		.help = "target Ethernet LLA",
2124 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2125 			     item_param),
2126 		.args = ARGS(ARGS_ENTRY_HTON
2127 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2128 	},
2129 	[ITEM_META] = {
2130 		.name = "meta",
2131 		.help = "match metadata header",
2132 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2133 		.next = NEXT(item_meta),
2134 		.call = parse_vc,
2135 	},
2136 	[ITEM_META_DATA] = {
2137 		.name = "data",
2138 		.help = "metadata value",
2139 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2140 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2141 						  data, "\xff\xff\xff\xff")),
2142 	},
2143 
2144 	/* Validate/create actions. */
2145 	[ACTIONS] = {
2146 		.name = "actions",
2147 		.help = "submit a list of associated actions",
2148 		.next = NEXT(next_action),
2149 		.call = parse_vc,
2150 	},
2151 	[ACTION_NEXT] = {
2152 		.name = "/",
2153 		.help = "specify next action",
2154 		.next = NEXT(next_action),
2155 	},
2156 	[ACTION_END] = {
2157 		.name = "end",
2158 		.help = "end list of actions",
2159 		.priv = PRIV_ACTION(END, 0),
2160 		.call = parse_vc,
2161 	},
2162 	[ACTION_VOID] = {
2163 		.name = "void",
2164 		.help = "no-op action",
2165 		.priv = PRIV_ACTION(VOID, 0),
2166 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2167 		.call = parse_vc,
2168 	},
2169 	[ACTION_PASSTHRU] = {
2170 		.name = "passthru",
2171 		.help = "let subsequent rule process matched packets",
2172 		.priv = PRIV_ACTION(PASSTHRU, 0),
2173 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2174 		.call = parse_vc,
2175 	},
2176 	[ACTION_JUMP] = {
2177 		.name = "jump",
2178 		.help = "redirect traffic to a given group",
2179 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2180 		.next = NEXT(action_jump),
2181 		.call = parse_vc,
2182 	},
2183 	[ACTION_JUMP_GROUP] = {
2184 		.name = "group",
2185 		.help = "group to redirect traffic to",
2186 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2187 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2188 		.call = parse_vc_conf,
2189 	},
2190 	[ACTION_MARK] = {
2191 		.name = "mark",
2192 		.help = "attach 32 bit value to packets",
2193 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2194 		.next = NEXT(action_mark),
2195 		.call = parse_vc,
2196 	},
2197 	[ACTION_MARK_ID] = {
2198 		.name = "id",
2199 		.help = "32 bit value to return with packets",
2200 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2201 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2202 		.call = parse_vc_conf,
2203 	},
2204 	[ACTION_FLAG] = {
2205 		.name = "flag",
2206 		.help = "flag packets",
2207 		.priv = PRIV_ACTION(FLAG, 0),
2208 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2209 		.call = parse_vc,
2210 	},
2211 	[ACTION_QUEUE] = {
2212 		.name = "queue",
2213 		.help = "assign packets to a given queue index",
2214 		.priv = PRIV_ACTION(QUEUE,
2215 				    sizeof(struct rte_flow_action_queue)),
2216 		.next = NEXT(action_queue),
2217 		.call = parse_vc,
2218 	},
2219 	[ACTION_QUEUE_INDEX] = {
2220 		.name = "index",
2221 		.help = "queue index to use",
2222 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2223 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2224 		.call = parse_vc_conf,
2225 	},
2226 	[ACTION_DROP] = {
2227 		.name = "drop",
2228 		.help = "drop packets (note: passthru has priority)",
2229 		.priv = PRIV_ACTION(DROP, 0),
2230 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2231 		.call = parse_vc,
2232 	},
2233 	[ACTION_COUNT] = {
2234 		.name = "count",
2235 		.help = "enable counters for this rule",
2236 		.priv = PRIV_ACTION(COUNT,
2237 				    sizeof(struct rte_flow_action_count)),
2238 		.next = NEXT(action_count),
2239 		.call = parse_vc,
2240 	},
2241 	[ACTION_COUNT_ID] = {
2242 		.name = "identifier",
2243 		.help = "counter identifier to use",
2244 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2245 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2246 		.call = parse_vc_conf,
2247 	},
2248 	[ACTION_COUNT_SHARED] = {
2249 		.name = "shared",
2250 		.help = "shared counter",
2251 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2252 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2253 					   shared, 1)),
2254 		.call = parse_vc_conf,
2255 	},
2256 	[ACTION_RSS] = {
2257 		.name = "rss",
2258 		.help = "spread packets among several queues",
2259 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2260 		.next = NEXT(action_rss),
2261 		.call = parse_vc_action_rss,
2262 	},
2263 	[ACTION_RSS_FUNC] = {
2264 		.name = "func",
2265 		.help = "RSS hash function to apply",
2266 		.next = NEXT(action_rss,
2267 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2268 					ACTION_RSS_FUNC_TOEPLITZ,
2269 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2270 	},
2271 	[ACTION_RSS_FUNC_DEFAULT] = {
2272 		.name = "default",
2273 		.help = "default hash function",
2274 		.call = parse_vc_action_rss_func,
2275 	},
2276 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2277 		.name = "toeplitz",
2278 		.help = "Toeplitz hash function",
2279 		.call = parse_vc_action_rss_func,
2280 	},
2281 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2282 		.name = "simple_xor",
2283 		.help = "simple XOR hash function",
2284 		.call = parse_vc_action_rss_func,
2285 	},
2286 	[ACTION_RSS_LEVEL] = {
2287 		.name = "level",
2288 		.help = "encapsulation level for \"types\"",
2289 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2290 		.args = ARGS(ARGS_ENTRY_ARB
2291 			     (offsetof(struct action_rss_data, conf) +
2292 			      offsetof(struct rte_flow_action_rss, level),
2293 			      sizeof(((struct rte_flow_action_rss *)0)->
2294 				     level))),
2295 	},
2296 	[ACTION_RSS_TYPES] = {
2297 		.name = "types",
2298 		.help = "specific RSS hash types",
2299 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2300 	},
2301 	[ACTION_RSS_TYPE] = {
2302 		.name = "{type}",
2303 		.help = "RSS hash type",
2304 		.call = parse_vc_action_rss_type,
2305 		.comp = comp_vc_action_rss_type,
2306 	},
2307 	[ACTION_RSS_KEY] = {
2308 		.name = "key",
2309 		.help = "RSS hash key",
2310 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
2311 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2312 			     ARGS_ENTRY_ARB
2313 			     (offsetof(struct action_rss_data, conf) +
2314 			      offsetof(struct rte_flow_action_rss, key_len),
2315 			      sizeof(((struct rte_flow_action_rss *)0)->
2316 				     key_len)),
2317 			     ARGS_ENTRY(struct action_rss_data, key)),
2318 	},
2319 	[ACTION_RSS_KEY_LEN] = {
2320 		.name = "key_len",
2321 		.help = "RSS hash key length in bytes",
2322 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2323 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2324 			     (offsetof(struct action_rss_data, conf) +
2325 			      offsetof(struct rte_flow_action_rss, key_len),
2326 			      sizeof(((struct rte_flow_action_rss *)0)->
2327 				     key_len),
2328 			      0,
2329 			      RSS_HASH_KEY_LENGTH)),
2330 	},
2331 	[ACTION_RSS_QUEUES] = {
2332 		.name = "queues",
2333 		.help = "queue indices to use",
2334 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2335 		.call = parse_vc_conf,
2336 	},
2337 	[ACTION_RSS_QUEUE] = {
2338 		.name = "{queue}",
2339 		.help = "queue index",
2340 		.call = parse_vc_action_rss_queue,
2341 		.comp = comp_vc_action_rss_queue,
2342 	},
2343 	[ACTION_PF] = {
2344 		.name = "pf",
2345 		.help = "direct traffic to physical function",
2346 		.priv = PRIV_ACTION(PF, 0),
2347 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2348 		.call = parse_vc,
2349 	},
2350 	[ACTION_VF] = {
2351 		.name = "vf",
2352 		.help = "direct traffic to a virtual function ID",
2353 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2354 		.next = NEXT(action_vf),
2355 		.call = parse_vc,
2356 	},
2357 	[ACTION_VF_ORIGINAL] = {
2358 		.name = "original",
2359 		.help = "use original VF ID if possible",
2360 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2361 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2362 					   original, 1)),
2363 		.call = parse_vc_conf,
2364 	},
2365 	[ACTION_VF_ID] = {
2366 		.name = "id",
2367 		.help = "VF ID",
2368 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2369 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2370 		.call = parse_vc_conf,
2371 	},
2372 	[ACTION_PHY_PORT] = {
2373 		.name = "phy_port",
2374 		.help = "direct packets to physical port index",
2375 		.priv = PRIV_ACTION(PHY_PORT,
2376 				    sizeof(struct rte_flow_action_phy_port)),
2377 		.next = NEXT(action_phy_port),
2378 		.call = parse_vc,
2379 	},
2380 	[ACTION_PHY_PORT_ORIGINAL] = {
2381 		.name = "original",
2382 		.help = "use original port index if possible",
2383 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2384 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2385 					   original, 1)),
2386 		.call = parse_vc_conf,
2387 	},
2388 	[ACTION_PHY_PORT_INDEX] = {
2389 		.name = "index",
2390 		.help = "physical port index",
2391 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2392 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2393 					index)),
2394 		.call = parse_vc_conf,
2395 	},
2396 	[ACTION_PORT_ID] = {
2397 		.name = "port_id",
2398 		.help = "direct matching traffic to a given DPDK port ID",
2399 		.priv = PRIV_ACTION(PORT_ID,
2400 				    sizeof(struct rte_flow_action_port_id)),
2401 		.next = NEXT(action_port_id),
2402 		.call = parse_vc,
2403 	},
2404 	[ACTION_PORT_ID_ORIGINAL] = {
2405 		.name = "original",
2406 		.help = "use original DPDK port ID if possible",
2407 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2408 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2409 					   original, 1)),
2410 		.call = parse_vc_conf,
2411 	},
2412 	[ACTION_PORT_ID_ID] = {
2413 		.name = "id",
2414 		.help = "DPDK port ID",
2415 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2416 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2417 		.call = parse_vc_conf,
2418 	},
2419 	[ACTION_METER] = {
2420 		.name = "meter",
2421 		.help = "meter the directed packets at given id",
2422 		.priv = PRIV_ACTION(METER,
2423 				    sizeof(struct rte_flow_action_meter)),
2424 		.next = NEXT(action_meter),
2425 		.call = parse_vc,
2426 	},
2427 	[ACTION_METER_ID] = {
2428 		.name = "mtr_id",
2429 		.help = "meter id to use",
2430 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2431 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2432 		.call = parse_vc_conf,
2433 	},
2434 	[ACTION_OF_SET_MPLS_TTL] = {
2435 		.name = "of_set_mpls_ttl",
2436 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2437 		.priv = PRIV_ACTION
2438 			(OF_SET_MPLS_TTL,
2439 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2440 		.next = NEXT(action_of_set_mpls_ttl),
2441 		.call = parse_vc,
2442 	},
2443 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2444 		.name = "mpls_ttl",
2445 		.help = "MPLS TTL",
2446 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2447 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2448 					mpls_ttl)),
2449 		.call = parse_vc_conf,
2450 	},
2451 	[ACTION_OF_DEC_MPLS_TTL] = {
2452 		.name = "of_dec_mpls_ttl",
2453 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2454 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2455 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2456 		.call = parse_vc,
2457 	},
2458 	[ACTION_OF_SET_NW_TTL] = {
2459 		.name = "of_set_nw_ttl",
2460 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2461 		.priv = PRIV_ACTION
2462 			(OF_SET_NW_TTL,
2463 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2464 		.next = NEXT(action_of_set_nw_ttl),
2465 		.call = parse_vc,
2466 	},
2467 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2468 		.name = "nw_ttl",
2469 		.help = "IP TTL",
2470 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2471 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2472 					nw_ttl)),
2473 		.call = parse_vc_conf,
2474 	},
2475 	[ACTION_OF_DEC_NW_TTL] = {
2476 		.name = "of_dec_nw_ttl",
2477 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2478 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2479 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2480 		.call = parse_vc,
2481 	},
2482 	[ACTION_OF_COPY_TTL_OUT] = {
2483 		.name = "of_copy_ttl_out",
2484 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2485 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2486 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2487 		.call = parse_vc,
2488 	},
2489 	[ACTION_OF_COPY_TTL_IN] = {
2490 		.name = "of_copy_ttl_in",
2491 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2492 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2493 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2494 		.call = parse_vc,
2495 	},
2496 	[ACTION_OF_POP_VLAN] = {
2497 		.name = "of_pop_vlan",
2498 		.help = "OpenFlow's OFPAT_POP_VLAN",
2499 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2500 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2501 		.call = parse_vc,
2502 	},
2503 	[ACTION_OF_PUSH_VLAN] = {
2504 		.name = "of_push_vlan",
2505 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2506 		.priv = PRIV_ACTION
2507 			(OF_PUSH_VLAN,
2508 			 sizeof(struct rte_flow_action_of_push_vlan)),
2509 		.next = NEXT(action_of_push_vlan),
2510 		.call = parse_vc,
2511 	},
2512 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2513 		.name = "ethertype",
2514 		.help = "EtherType",
2515 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2516 		.args = ARGS(ARGS_ENTRY_HTON
2517 			     (struct rte_flow_action_of_push_vlan,
2518 			      ethertype)),
2519 		.call = parse_vc_conf,
2520 	},
2521 	[ACTION_OF_SET_VLAN_VID] = {
2522 		.name = "of_set_vlan_vid",
2523 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2524 		.priv = PRIV_ACTION
2525 			(OF_SET_VLAN_VID,
2526 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2527 		.next = NEXT(action_of_set_vlan_vid),
2528 		.call = parse_vc,
2529 	},
2530 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2531 		.name = "vlan_vid",
2532 		.help = "VLAN id",
2533 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2534 		.args = ARGS(ARGS_ENTRY_HTON
2535 			     (struct rte_flow_action_of_set_vlan_vid,
2536 			      vlan_vid)),
2537 		.call = parse_vc_conf,
2538 	},
2539 	[ACTION_OF_SET_VLAN_PCP] = {
2540 		.name = "of_set_vlan_pcp",
2541 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2542 		.priv = PRIV_ACTION
2543 			(OF_SET_VLAN_PCP,
2544 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2545 		.next = NEXT(action_of_set_vlan_pcp),
2546 		.call = parse_vc,
2547 	},
2548 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2549 		.name = "vlan_pcp",
2550 		.help = "VLAN priority",
2551 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2552 		.args = ARGS(ARGS_ENTRY_HTON
2553 			     (struct rte_flow_action_of_set_vlan_pcp,
2554 			      vlan_pcp)),
2555 		.call = parse_vc_conf,
2556 	},
2557 	[ACTION_OF_POP_MPLS] = {
2558 		.name = "of_pop_mpls",
2559 		.help = "OpenFlow's OFPAT_POP_MPLS",
2560 		.priv = PRIV_ACTION(OF_POP_MPLS,
2561 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2562 		.next = NEXT(action_of_pop_mpls),
2563 		.call = parse_vc,
2564 	},
2565 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2566 		.name = "ethertype",
2567 		.help = "EtherType",
2568 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2569 		.args = ARGS(ARGS_ENTRY_HTON
2570 			     (struct rte_flow_action_of_pop_mpls,
2571 			      ethertype)),
2572 		.call = parse_vc_conf,
2573 	},
2574 	[ACTION_OF_PUSH_MPLS] = {
2575 		.name = "of_push_mpls",
2576 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2577 		.priv = PRIV_ACTION
2578 			(OF_PUSH_MPLS,
2579 			 sizeof(struct rte_flow_action_of_push_mpls)),
2580 		.next = NEXT(action_of_push_mpls),
2581 		.call = parse_vc,
2582 	},
2583 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2584 		.name = "ethertype",
2585 		.help = "EtherType",
2586 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2587 		.args = ARGS(ARGS_ENTRY_HTON
2588 			     (struct rte_flow_action_of_push_mpls,
2589 			      ethertype)),
2590 		.call = parse_vc_conf,
2591 	},
2592 	[ACTION_VXLAN_ENCAP] = {
2593 		.name = "vxlan_encap",
2594 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2595 			" vxlan\"",
2596 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2597 				    sizeof(struct action_vxlan_encap_data)),
2598 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2599 		.call = parse_vc_action_vxlan_encap,
2600 	},
2601 	[ACTION_VXLAN_DECAP] = {
2602 		.name = "vxlan_decap",
2603 		.help = "Performs a decapsulation action by stripping all"
2604 			" headers of the VXLAN tunnel network overlay from the"
2605 			" matched flow.",
2606 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2607 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2608 		.call = parse_vc,
2609 	},
2610 	[ACTION_NVGRE_ENCAP] = {
2611 		.name = "nvgre_encap",
2612 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2613 			" nvgre\"",
2614 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2615 				    sizeof(struct action_nvgre_encap_data)),
2616 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2617 		.call = parse_vc_action_nvgre_encap,
2618 	},
2619 	[ACTION_NVGRE_DECAP] = {
2620 		.name = "nvgre_decap",
2621 		.help = "Performs a decapsulation action by stripping all"
2622 			" headers of the NVGRE tunnel network overlay from the"
2623 			" matched flow.",
2624 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2625 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2626 		.call = parse_vc,
2627 	},
2628 	[ACTION_L2_ENCAP] = {
2629 		.name = "l2_encap",
2630 		.help = "l2 encap, uses configuration set by"
2631 			" \"set l2_encap\"",
2632 		.priv = PRIV_ACTION(RAW_ENCAP,
2633 				    sizeof(struct action_raw_encap_data)),
2634 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2635 		.call = parse_vc_action_l2_encap,
2636 	},
2637 	[ACTION_L2_DECAP] = {
2638 		.name = "l2_decap",
2639 		.help = "l2 decap, uses configuration set by"
2640 			" \"set l2_decap\"",
2641 		.priv = PRIV_ACTION(RAW_DECAP,
2642 				    sizeof(struct action_raw_decap_data)),
2643 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2644 		.call = parse_vc_action_l2_decap,
2645 	},
2646 	[ACTION_MPLSOGRE_ENCAP] = {
2647 		.name = "mplsogre_encap",
2648 		.help = "mplsogre encapsulation, uses configuration set by"
2649 			" \"set mplsogre_encap\"",
2650 		.priv = PRIV_ACTION(RAW_ENCAP,
2651 				    sizeof(struct action_raw_encap_data)),
2652 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2653 		.call = parse_vc_action_mplsogre_encap,
2654 	},
2655 	[ACTION_MPLSOGRE_DECAP] = {
2656 		.name = "mplsogre_decap",
2657 		.help = "mplsogre decapsulation, uses configuration set by"
2658 			" \"set mplsogre_decap\"",
2659 		.priv = PRIV_ACTION(RAW_DECAP,
2660 				    sizeof(struct action_raw_decap_data)),
2661 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2662 		.call = parse_vc_action_mplsogre_decap,
2663 	},
2664 	[ACTION_MPLSOUDP_ENCAP] = {
2665 		.name = "mplsoudp_encap",
2666 		.help = "mplsoudp encapsulation, uses configuration set by"
2667 			" \"set mplsoudp_encap\"",
2668 		.priv = PRIV_ACTION(RAW_ENCAP,
2669 				    sizeof(struct action_raw_encap_data)),
2670 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2671 		.call = parse_vc_action_mplsoudp_encap,
2672 	},
2673 	[ACTION_MPLSOUDP_DECAP] = {
2674 		.name = "mplsoudp_decap",
2675 		.help = "mplsoudp decapsulation, uses configuration set by"
2676 			" \"set mplsoudp_decap\"",
2677 		.priv = PRIV_ACTION(RAW_DECAP,
2678 				    sizeof(struct action_raw_decap_data)),
2679 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2680 		.call = parse_vc_action_mplsoudp_decap,
2681 	},
2682 	[ACTION_SET_IPV4_SRC] = {
2683 		.name = "set_ipv4_src",
2684 		.help = "Set a new IPv4 source address in the outermost"
2685 			" IPv4 header",
2686 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2687 			sizeof(struct rte_flow_action_set_ipv4)),
2688 		.next = NEXT(action_set_ipv4_src),
2689 		.call = parse_vc,
2690 	},
2691 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2692 		.name = "ipv4_addr",
2693 		.help = "new IPv4 source address to set",
2694 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2695 		.args = ARGS(ARGS_ENTRY_HTON
2696 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2697 		.call = parse_vc_conf,
2698 	},
2699 	[ACTION_SET_IPV4_DST] = {
2700 		.name = "set_ipv4_dst",
2701 		.help = "Set a new IPv4 destination address in the outermost"
2702 			" IPv4 header",
2703 		.priv = PRIV_ACTION(SET_IPV4_DST,
2704 			sizeof(struct rte_flow_action_set_ipv4)),
2705 		.next = NEXT(action_set_ipv4_dst),
2706 		.call = parse_vc,
2707 	},
2708 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2709 		.name = "ipv4_addr",
2710 		.help = "new IPv4 destination address to set",
2711 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2712 		.args = ARGS(ARGS_ENTRY_HTON
2713 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2714 		.call = parse_vc_conf,
2715 	},
2716 	[ACTION_SET_IPV6_SRC] = {
2717 		.name = "set_ipv6_src",
2718 		.help = "Set a new IPv6 source address in the outermost"
2719 			" IPv6 header",
2720 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2721 			sizeof(struct rte_flow_action_set_ipv6)),
2722 		.next = NEXT(action_set_ipv6_src),
2723 		.call = parse_vc,
2724 	},
2725 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2726 		.name = "ipv6_addr",
2727 		.help = "new IPv6 source address to set",
2728 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2729 		.args = ARGS(ARGS_ENTRY_HTON
2730 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2731 		.call = parse_vc_conf,
2732 	},
2733 	[ACTION_SET_IPV6_DST] = {
2734 		.name = "set_ipv6_dst",
2735 		.help = "Set a new IPv6 destination address in the outermost"
2736 			" IPv6 header",
2737 		.priv = PRIV_ACTION(SET_IPV6_DST,
2738 			sizeof(struct rte_flow_action_set_ipv6)),
2739 		.next = NEXT(action_set_ipv6_dst),
2740 		.call = parse_vc,
2741 	},
2742 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2743 		.name = "ipv6_addr",
2744 		.help = "new IPv6 destination address to set",
2745 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2746 		.args = ARGS(ARGS_ENTRY_HTON
2747 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2748 		.call = parse_vc_conf,
2749 	},
2750 	[ACTION_SET_TP_SRC] = {
2751 		.name = "set_tp_src",
2752 		.help = "set a new source port number in the outermost"
2753 			" TCP/UDP header",
2754 		.priv = PRIV_ACTION(SET_TP_SRC,
2755 			sizeof(struct rte_flow_action_set_tp)),
2756 		.next = NEXT(action_set_tp_src),
2757 		.call = parse_vc,
2758 	},
2759 	[ACTION_SET_TP_SRC_TP_SRC] = {
2760 		.name = "port",
2761 		.help = "new source port number to set",
2762 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2763 		.args = ARGS(ARGS_ENTRY_HTON
2764 			     (struct rte_flow_action_set_tp, port)),
2765 		.call = parse_vc_conf,
2766 	},
2767 	[ACTION_SET_TP_DST] = {
2768 		.name = "set_tp_dst",
2769 		.help = "set a new destination port number in the outermost"
2770 			" TCP/UDP header",
2771 		.priv = PRIV_ACTION(SET_TP_DST,
2772 			sizeof(struct rte_flow_action_set_tp)),
2773 		.next = NEXT(action_set_tp_dst),
2774 		.call = parse_vc,
2775 	},
2776 	[ACTION_SET_TP_DST_TP_DST] = {
2777 		.name = "port",
2778 		.help = "new destination port number to set",
2779 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2780 		.args = ARGS(ARGS_ENTRY_HTON
2781 			     (struct rte_flow_action_set_tp, port)),
2782 		.call = parse_vc_conf,
2783 	},
2784 	[ACTION_MAC_SWAP] = {
2785 		.name = "mac_swap",
2786 		.help = "Swap the source and destination MAC addresses"
2787 			" in the outermost Ethernet header",
2788 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2789 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2790 		.call = parse_vc,
2791 	},
2792 	[ACTION_DEC_TTL] = {
2793 		.name = "dec_ttl",
2794 		.help = "decrease network TTL if available",
2795 		.priv = PRIV_ACTION(DEC_TTL, 0),
2796 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2797 		.call = parse_vc,
2798 	},
2799 	[ACTION_SET_TTL] = {
2800 		.name = "set_ttl",
2801 		.help = "set ttl value",
2802 		.priv = PRIV_ACTION(SET_TTL,
2803 			sizeof(struct rte_flow_action_set_ttl)),
2804 		.next = NEXT(action_set_ttl),
2805 		.call = parse_vc,
2806 	},
2807 	[ACTION_SET_TTL_TTL] = {
2808 		.name = "ttl_value",
2809 		.help = "new ttl value to set",
2810 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2811 		.args = ARGS(ARGS_ENTRY_HTON
2812 			     (struct rte_flow_action_set_ttl, ttl_value)),
2813 		.call = parse_vc_conf,
2814 	},
2815 	[ACTION_SET_MAC_SRC] = {
2816 		.name = "set_mac_src",
2817 		.help = "set source mac address",
2818 		.priv = PRIV_ACTION(SET_MAC_SRC,
2819 			sizeof(struct rte_flow_action_set_mac)),
2820 		.next = NEXT(action_set_mac_src),
2821 		.call = parse_vc,
2822 	},
2823 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2824 		.name = "mac_addr",
2825 		.help = "new source mac address",
2826 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2827 		.args = ARGS(ARGS_ENTRY_HTON
2828 			     (struct rte_flow_action_set_mac, mac_addr)),
2829 		.call = parse_vc_conf,
2830 	},
2831 	[ACTION_SET_MAC_DST] = {
2832 		.name = "set_mac_dst",
2833 		.help = "set destination mac address",
2834 		.priv = PRIV_ACTION(SET_MAC_DST,
2835 			sizeof(struct rte_flow_action_set_mac)),
2836 		.next = NEXT(action_set_mac_dst),
2837 		.call = parse_vc,
2838 	},
2839 	[ACTION_SET_MAC_DST_MAC_DST] = {
2840 		.name = "mac_addr",
2841 		.help = "new destination mac address to set",
2842 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2843 		.args = ARGS(ARGS_ENTRY_HTON
2844 			     (struct rte_flow_action_set_mac, mac_addr)),
2845 		.call = parse_vc_conf,
2846 	},
2847 };
2848 
2849 /** Remove and return last entry from argument stack. */
2850 static const struct arg *
2851 pop_args(struct context *ctx)
2852 {
2853 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2854 }
2855 
2856 /** Add entry on top of the argument stack. */
2857 static int
2858 push_args(struct context *ctx, const struct arg *arg)
2859 {
2860 	if (ctx->args_num == CTX_STACK_SIZE)
2861 		return -1;
2862 	ctx->args[ctx->args_num++] = arg;
2863 	return 0;
2864 }
2865 
2866 /** Spread value into buffer according to bit-mask. */
2867 static size_t
2868 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2869 {
2870 	uint32_t i = arg->size;
2871 	uint32_t end = 0;
2872 	int sub = 1;
2873 	int add = 0;
2874 	size_t len = 0;
2875 
2876 	if (!arg->mask)
2877 		return 0;
2878 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2879 	if (!arg->hton) {
2880 		i = 0;
2881 		end = arg->size;
2882 		sub = 0;
2883 		add = 1;
2884 	}
2885 #endif
2886 	while (i != end) {
2887 		unsigned int shift = 0;
2888 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2889 
2890 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2891 			if (!(arg->mask[i] & (1 << shift)))
2892 				continue;
2893 			++len;
2894 			if (!dst)
2895 				continue;
2896 			*buf &= ~(1 << shift);
2897 			*buf |= (val & 1) << shift;
2898 			val >>= 1;
2899 		}
2900 		i += add;
2901 	}
2902 	return len;
2903 }
2904 
2905 /** Compare a string with a partial one of a given length. */
2906 static int
2907 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2908 {
2909 	int r = strncmp(full, partial, partial_len);
2910 
2911 	if (r)
2912 		return r;
2913 	if (strlen(full) <= partial_len)
2914 		return 0;
2915 	return full[partial_len];
2916 }
2917 
2918 /**
2919  * Parse a prefix length and generate a bit-mask.
2920  *
2921  * Last argument (ctx->args) is retrieved to determine mask size, storage
2922  * location and whether the result must use network byte ordering.
2923  */
2924 static int
2925 parse_prefix(struct context *ctx, const struct token *token,
2926 	     const char *str, unsigned int len,
2927 	     void *buf, unsigned int size)
2928 {
2929 	const struct arg *arg = pop_args(ctx);
2930 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2931 	char *end;
2932 	uintmax_t u;
2933 	unsigned int bytes;
2934 	unsigned int extra;
2935 
2936 	(void)token;
2937 	/* Argument is expected. */
2938 	if (!arg)
2939 		return -1;
2940 	errno = 0;
2941 	u = strtoumax(str, &end, 0);
2942 	if (errno || (size_t)(end - str) != len)
2943 		goto error;
2944 	if (arg->mask) {
2945 		uintmax_t v = 0;
2946 
2947 		extra = arg_entry_bf_fill(NULL, 0, arg);
2948 		if (u > extra)
2949 			goto error;
2950 		if (!ctx->object)
2951 			return len;
2952 		extra -= u;
2953 		while (u--)
2954 			(v <<= 1, v |= 1);
2955 		v <<= extra;
2956 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2957 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2958 			goto error;
2959 		return len;
2960 	}
2961 	bytes = u / 8;
2962 	extra = u % 8;
2963 	size = arg->size;
2964 	if (bytes > size || bytes + !!extra > size)
2965 		goto error;
2966 	if (!ctx->object)
2967 		return len;
2968 	buf = (uint8_t *)ctx->object + arg->offset;
2969 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2970 	if (!arg->hton) {
2971 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2972 		memset(buf, 0x00, size - bytes);
2973 		if (extra)
2974 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2975 	} else
2976 #endif
2977 	{
2978 		memset(buf, 0xff, bytes);
2979 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2980 		if (extra)
2981 			((uint8_t *)buf)[bytes] = conv[extra];
2982 	}
2983 	if (ctx->objmask)
2984 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2985 	return len;
2986 error:
2987 	push_args(ctx, arg);
2988 	return -1;
2989 }
2990 
2991 /** Default parsing function for token name matching. */
2992 static int
2993 parse_default(struct context *ctx, const struct token *token,
2994 	      const char *str, unsigned int len,
2995 	      void *buf, unsigned int size)
2996 {
2997 	(void)ctx;
2998 	(void)buf;
2999 	(void)size;
3000 	if (strcmp_partial(token->name, str, len))
3001 		return -1;
3002 	return len;
3003 }
3004 
3005 /** Parse flow command, initialize output buffer for subsequent tokens. */
3006 static int
3007 parse_init(struct context *ctx, const struct token *token,
3008 	   const char *str, unsigned int len,
3009 	   void *buf, unsigned int size)
3010 {
3011 	struct buffer *out = buf;
3012 
3013 	/* Token name must match. */
3014 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3015 		return -1;
3016 	/* Nothing else to do if there is no buffer. */
3017 	if (!out)
3018 		return len;
3019 	/* Make sure buffer is large enough. */
3020 	if (size < sizeof(*out))
3021 		return -1;
3022 	/* Initialize buffer. */
3023 	memset(out, 0x00, sizeof(*out));
3024 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3025 	ctx->objdata = 0;
3026 	ctx->object = out;
3027 	ctx->objmask = NULL;
3028 	return len;
3029 }
3030 
3031 /** Parse tokens for validate/create commands. */
3032 static int
3033 parse_vc(struct context *ctx, const struct token *token,
3034 	 const char *str, unsigned int len,
3035 	 void *buf, unsigned int size)
3036 {
3037 	struct buffer *out = buf;
3038 	uint8_t *data;
3039 	uint32_t data_size;
3040 
3041 	/* Token name must match. */
3042 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3043 		return -1;
3044 	/* Nothing else to do if there is no buffer. */
3045 	if (!out)
3046 		return len;
3047 	if (!out->command) {
3048 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3049 			return -1;
3050 		if (sizeof(*out) > size)
3051 			return -1;
3052 		out->command = ctx->curr;
3053 		ctx->objdata = 0;
3054 		ctx->object = out;
3055 		ctx->objmask = NULL;
3056 		out->args.vc.data = (uint8_t *)out + size;
3057 		return len;
3058 	}
3059 	ctx->objdata = 0;
3060 	ctx->object = &out->args.vc.attr;
3061 	ctx->objmask = NULL;
3062 	switch (ctx->curr) {
3063 	case GROUP:
3064 	case PRIORITY:
3065 		return len;
3066 	case INGRESS:
3067 		out->args.vc.attr.ingress = 1;
3068 		return len;
3069 	case EGRESS:
3070 		out->args.vc.attr.egress = 1;
3071 		return len;
3072 	case TRANSFER:
3073 		out->args.vc.attr.transfer = 1;
3074 		return len;
3075 	case PATTERN:
3076 		out->args.vc.pattern =
3077 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3078 					       sizeof(double));
3079 		ctx->object = out->args.vc.pattern;
3080 		ctx->objmask = NULL;
3081 		return len;
3082 	case ACTIONS:
3083 		out->args.vc.actions =
3084 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3085 					       (out->args.vc.pattern +
3086 						out->args.vc.pattern_n),
3087 					       sizeof(double));
3088 		ctx->object = out->args.vc.actions;
3089 		ctx->objmask = NULL;
3090 		return len;
3091 	default:
3092 		if (!token->priv)
3093 			return -1;
3094 		break;
3095 	}
3096 	if (!out->args.vc.actions) {
3097 		const struct parse_item_priv *priv = token->priv;
3098 		struct rte_flow_item *item =
3099 			out->args.vc.pattern + out->args.vc.pattern_n;
3100 
3101 		data_size = priv->size * 3; /* spec, last, mask */
3102 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3103 					       (out->args.vc.data - data_size),
3104 					       sizeof(double));
3105 		if ((uint8_t *)item + sizeof(*item) > data)
3106 			return -1;
3107 		*item = (struct rte_flow_item){
3108 			.type = priv->type,
3109 		};
3110 		++out->args.vc.pattern_n;
3111 		ctx->object = item;
3112 		ctx->objmask = NULL;
3113 	} else {
3114 		const struct parse_action_priv *priv = token->priv;
3115 		struct rte_flow_action *action =
3116 			out->args.vc.actions + out->args.vc.actions_n;
3117 
3118 		data_size = priv->size; /* configuration */
3119 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3120 					       (out->args.vc.data - data_size),
3121 					       sizeof(double));
3122 		if ((uint8_t *)action + sizeof(*action) > data)
3123 			return -1;
3124 		*action = (struct rte_flow_action){
3125 			.type = priv->type,
3126 			.conf = data_size ? data : NULL,
3127 		};
3128 		++out->args.vc.actions_n;
3129 		ctx->object = action;
3130 		ctx->objmask = NULL;
3131 	}
3132 	memset(data, 0, data_size);
3133 	out->args.vc.data = data;
3134 	ctx->objdata = data_size;
3135 	return len;
3136 }
3137 
3138 /** Parse pattern item parameter type. */
3139 static int
3140 parse_vc_spec(struct context *ctx, const struct token *token,
3141 	      const char *str, unsigned int len,
3142 	      void *buf, unsigned int size)
3143 {
3144 	struct buffer *out = buf;
3145 	struct rte_flow_item *item;
3146 	uint32_t data_size;
3147 	int index;
3148 	int objmask = 0;
3149 
3150 	(void)size;
3151 	/* Token name must match. */
3152 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3153 		return -1;
3154 	/* Parse parameter types. */
3155 	switch (ctx->curr) {
3156 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3157 
3158 	case ITEM_PARAM_IS:
3159 		index = 0;
3160 		objmask = 1;
3161 		break;
3162 	case ITEM_PARAM_SPEC:
3163 		index = 0;
3164 		break;
3165 	case ITEM_PARAM_LAST:
3166 		index = 1;
3167 		break;
3168 	case ITEM_PARAM_PREFIX:
3169 		/* Modify next token to expect a prefix. */
3170 		if (ctx->next_num < 2)
3171 			return -1;
3172 		ctx->next[ctx->next_num - 2] = prefix;
3173 		/* Fall through. */
3174 	case ITEM_PARAM_MASK:
3175 		index = 2;
3176 		break;
3177 	default:
3178 		return -1;
3179 	}
3180 	/* Nothing else to do if there is no buffer. */
3181 	if (!out)
3182 		return len;
3183 	if (!out->args.vc.pattern_n)
3184 		return -1;
3185 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3186 	data_size = ctx->objdata / 3; /* spec, last, mask */
3187 	/* Point to selected object. */
3188 	ctx->object = out->args.vc.data + (data_size * index);
3189 	if (objmask) {
3190 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3191 		item->mask = ctx->objmask;
3192 	} else
3193 		ctx->objmask = NULL;
3194 	/* Update relevant item pointer. */
3195 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3196 		ctx->object;
3197 	return len;
3198 }
3199 
3200 /** Parse action configuration field. */
3201 static int
3202 parse_vc_conf(struct context *ctx, const struct token *token,
3203 	      const char *str, unsigned int len,
3204 	      void *buf, unsigned int size)
3205 {
3206 	struct buffer *out = buf;
3207 
3208 	(void)size;
3209 	/* Token name must match. */
3210 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3211 		return -1;
3212 	/* Nothing else to do if there is no buffer. */
3213 	if (!out)
3214 		return len;
3215 	/* Point to selected object. */
3216 	ctx->object = out->args.vc.data;
3217 	ctx->objmask = NULL;
3218 	return len;
3219 }
3220 
3221 /** Parse RSS action. */
3222 static int
3223 parse_vc_action_rss(struct context *ctx, const struct token *token,
3224 		    const char *str, unsigned int len,
3225 		    void *buf, unsigned int size)
3226 {
3227 	struct buffer *out = buf;
3228 	struct rte_flow_action *action;
3229 	struct action_rss_data *action_rss_data;
3230 	unsigned int i;
3231 	int ret;
3232 
3233 	ret = parse_vc(ctx, token, str, len, buf, size);
3234 	if (ret < 0)
3235 		return ret;
3236 	/* Nothing else to do if there is no buffer. */
3237 	if (!out)
3238 		return ret;
3239 	if (!out->args.vc.actions_n)
3240 		return -1;
3241 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3242 	/* Point to selected object. */
3243 	ctx->object = out->args.vc.data;
3244 	ctx->objmask = NULL;
3245 	/* Set up default configuration. */
3246 	action_rss_data = ctx->object;
3247 	*action_rss_data = (struct action_rss_data){
3248 		.conf = (struct rte_flow_action_rss){
3249 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3250 			.level = 0,
3251 			.types = rss_hf,
3252 			.key_len = sizeof(action_rss_data->key),
3253 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3254 			.key = action_rss_data->key,
3255 			.queue = action_rss_data->queue,
3256 		},
3257 		.key = "testpmd's default RSS hash key, "
3258 			"override it for better balancing",
3259 		.queue = { 0 },
3260 	};
3261 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3262 		action_rss_data->queue[i] = i;
3263 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3264 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3265 		struct rte_eth_dev_info info;
3266 
3267 		rte_eth_dev_info_get(ctx->port, &info);
3268 		action_rss_data->conf.key_len =
3269 			RTE_MIN(sizeof(action_rss_data->key),
3270 				info.hash_key_size);
3271 	}
3272 	action->conf = &action_rss_data->conf;
3273 	return ret;
3274 }
3275 
3276 /**
3277  * Parse func field for RSS action.
3278  *
3279  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3280  * ACTION_RSS_FUNC_* index that called this function.
3281  */
3282 static int
3283 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3284 			 const char *str, unsigned int len,
3285 			 void *buf, unsigned int size)
3286 {
3287 	struct action_rss_data *action_rss_data;
3288 	enum rte_eth_hash_function func;
3289 
3290 	(void)buf;
3291 	(void)size;
3292 	/* Token name must match. */
3293 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3294 		return -1;
3295 	switch (ctx->curr) {
3296 	case ACTION_RSS_FUNC_DEFAULT:
3297 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3298 		break;
3299 	case ACTION_RSS_FUNC_TOEPLITZ:
3300 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3301 		break;
3302 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3303 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3304 		break;
3305 	default:
3306 		return -1;
3307 	}
3308 	if (!ctx->object)
3309 		return len;
3310 	action_rss_data = ctx->object;
3311 	action_rss_data->conf.func = func;
3312 	return len;
3313 }
3314 
3315 /**
3316  * Parse type field for RSS action.
3317  *
3318  * Valid tokens are type field names and the "end" token.
3319  */
3320 static int
3321 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3322 			  const char *str, unsigned int len,
3323 			  void *buf, unsigned int size)
3324 {
3325 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3326 	struct action_rss_data *action_rss_data;
3327 	unsigned int i;
3328 
3329 	(void)token;
3330 	(void)buf;
3331 	(void)size;
3332 	if (ctx->curr != ACTION_RSS_TYPE)
3333 		return -1;
3334 	if (!(ctx->objdata >> 16) && ctx->object) {
3335 		action_rss_data = ctx->object;
3336 		action_rss_data->conf.types = 0;
3337 	}
3338 	if (!strcmp_partial("end", str, len)) {
3339 		ctx->objdata &= 0xffff;
3340 		return len;
3341 	}
3342 	for (i = 0; rss_type_table[i].str; ++i)
3343 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3344 			break;
3345 	if (!rss_type_table[i].str)
3346 		return -1;
3347 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3348 	/* Repeat token. */
3349 	if (ctx->next_num == RTE_DIM(ctx->next))
3350 		return -1;
3351 	ctx->next[ctx->next_num++] = next;
3352 	if (!ctx->object)
3353 		return len;
3354 	action_rss_data = ctx->object;
3355 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3356 	return len;
3357 }
3358 
3359 /**
3360  * Parse queue field for RSS action.
3361  *
3362  * Valid tokens are queue indices and the "end" token.
3363  */
3364 static int
3365 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3366 			  const char *str, unsigned int len,
3367 			  void *buf, unsigned int size)
3368 {
3369 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3370 	struct action_rss_data *action_rss_data;
3371 	int ret;
3372 	int i;
3373 
3374 	(void)token;
3375 	(void)buf;
3376 	(void)size;
3377 	if (ctx->curr != ACTION_RSS_QUEUE)
3378 		return -1;
3379 	i = ctx->objdata >> 16;
3380 	if (!strcmp_partial("end", str, len)) {
3381 		ctx->objdata &= 0xffff;
3382 		goto end;
3383 	}
3384 	if (i >= ACTION_RSS_QUEUE_NUM)
3385 		return -1;
3386 	if (push_args(ctx,
3387 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3388 				     i * sizeof(action_rss_data->queue[i]),
3389 				     sizeof(action_rss_data->queue[i]))))
3390 		return -1;
3391 	ret = parse_int(ctx, token, str, len, NULL, 0);
3392 	if (ret < 0) {
3393 		pop_args(ctx);
3394 		return -1;
3395 	}
3396 	++i;
3397 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3398 	/* Repeat token. */
3399 	if (ctx->next_num == RTE_DIM(ctx->next))
3400 		return -1;
3401 	ctx->next[ctx->next_num++] = next;
3402 end:
3403 	if (!ctx->object)
3404 		return len;
3405 	action_rss_data = ctx->object;
3406 	action_rss_data->conf.queue_num = i;
3407 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3408 	return len;
3409 }
3410 
3411 /** Parse VXLAN encap action. */
3412 static int
3413 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3414 			    const char *str, unsigned int len,
3415 			    void *buf, unsigned int size)
3416 {
3417 	struct buffer *out = buf;
3418 	struct rte_flow_action *action;
3419 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3420 	int ret;
3421 
3422 	ret = parse_vc(ctx, token, str, len, buf, size);
3423 	if (ret < 0)
3424 		return ret;
3425 	/* Nothing else to do if there is no buffer. */
3426 	if (!out)
3427 		return ret;
3428 	if (!out->args.vc.actions_n)
3429 		return -1;
3430 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3431 	/* Point to selected object. */
3432 	ctx->object = out->args.vc.data;
3433 	ctx->objmask = NULL;
3434 	/* Set up default configuration. */
3435 	action_vxlan_encap_data = ctx->object;
3436 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3437 		.conf = (struct rte_flow_action_vxlan_encap){
3438 			.definition = action_vxlan_encap_data->items,
3439 		},
3440 		.items = {
3441 			{
3442 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3443 				.spec = &action_vxlan_encap_data->item_eth,
3444 				.mask = &rte_flow_item_eth_mask,
3445 			},
3446 			{
3447 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3448 				.spec = &action_vxlan_encap_data->item_vlan,
3449 				.mask = &rte_flow_item_vlan_mask,
3450 			},
3451 			{
3452 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3453 				.spec = &action_vxlan_encap_data->item_ipv4,
3454 				.mask = &rte_flow_item_ipv4_mask,
3455 			},
3456 			{
3457 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3458 				.spec = &action_vxlan_encap_data->item_udp,
3459 				.mask = &rte_flow_item_udp_mask,
3460 			},
3461 			{
3462 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3463 				.spec = &action_vxlan_encap_data->item_vxlan,
3464 				.mask = &rte_flow_item_vxlan_mask,
3465 			},
3466 			{
3467 				.type = RTE_FLOW_ITEM_TYPE_END,
3468 			},
3469 		},
3470 		.item_eth.type = 0,
3471 		.item_vlan = {
3472 			.tci = vxlan_encap_conf.vlan_tci,
3473 			.inner_type = 0,
3474 		},
3475 		.item_ipv4.hdr = {
3476 			.src_addr = vxlan_encap_conf.ipv4_src,
3477 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3478 		},
3479 		.item_udp.hdr = {
3480 			.src_port = vxlan_encap_conf.udp_src,
3481 			.dst_port = vxlan_encap_conf.udp_dst,
3482 		},
3483 		.item_vxlan.flags = 0,
3484 	};
3485 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3486 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3487 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3488 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3489 	if (!vxlan_encap_conf.select_ipv4) {
3490 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3491 		       &vxlan_encap_conf.ipv6_src,
3492 		       sizeof(vxlan_encap_conf.ipv6_src));
3493 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3494 		       &vxlan_encap_conf.ipv6_dst,
3495 		       sizeof(vxlan_encap_conf.ipv6_dst));
3496 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3497 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3498 			.spec = &action_vxlan_encap_data->item_ipv6,
3499 			.mask = &rte_flow_item_ipv6_mask,
3500 		};
3501 	}
3502 	if (!vxlan_encap_conf.select_vlan)
3503 		action_vxlan_encap_data->items[1].type =
3504 			RTE_FLOW_ITEM_TYPE_VOID;
3505 	if (vxlan_encap_conf.select_tos_ttl) {
3506 		if (vxlan_encap_conf.select_ipv4) {
3507 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3508 
3509 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3510 			       sizeof(ipv4_mask_tos));
3511 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3512 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3513 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3514 					vxlan_encap_conf.ip_tos;
3515 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3516 					vxlan_encap_conf.ip_ttl;
3517 			action_vxlan_encap_data->items[2].mask =
3518 							&ipv4_mask_tos;
3519 		} else {
3520 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3521 
3522 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3523 			       sizeof(ipv6_mask_tos));
3524 			ipv6_mask_tos.hdr.vtc_flow |=
3525 				RTE_BE32(0xfful << IPV6_HDR_TC_SHIFT);
3526 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3527 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3528 				rte_cpu_to_be_32
3529 					((uint32_t)vxlan_encap_conf.ip_tos <<
3530 					 IPV6_HDR_TC_SHIFT);
3531 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3532 					vxlan_encap_conf.ip_ttl;
3533 			action_vxlan_encap_data->items[2].mask =
3534 							&ipv6_mask_tos;
3535 		}
3536 	}
3537 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3538 	       RTE_DIM(vxlan_encap_conf.vni));
3539 	action->conf = &action_vxlan_encap_data->conf;
3540 	return ret;
3541 }
3542 
3543 /** Parse NVGRE encap action. */
3544 static int
3545 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3546 			    const char *str, unsigned int len,
3547 			    void *buf, unsigned int size)
3548 {
3549 	struct buffer *out = buf;
3550 	struct rte_flow_action *action;
3551 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3552 	int ret;
3553 
3554 	ret = parse_vc(ctx, token, str, len, buf, size);
3555 	if (ret < 0)
3556 		return ret;
3557 	/* Nothing else to do if there is no buffer. */
3558 	if (!out)
3559 		return ret;
3560 	if (!out->args.vc.actions_n)
3561 		return -1;
3562 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3563 	/* Point to selected object. */
3564 	ctx->object = out->args.vc.data;
3565 	ctx->objmask = NULL;
3566 	/* Set up default configuration. */
3567 	action_nvgre_encap_data = ctx->object;
3568 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3569 		.conf = (struct rte_flow_action_nvgre_encap){
3570 			.definition = action_nvgre_encap_data->items,
3571 		},
3572 		.items = {
3573 			{
3574 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3575 				.spec = &action_nvgre_encap_data->item_eth,
3576 				.mask = &rte_flow_item_eth_mask,
3577 			},
3578 			{
3579 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3580 				.spec = &action_nvgre_encap_data->item_vlan,
3581 				.mask = &rte_flow_item_vlan_mask,
3582 			},
3583 			{
3584 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3585 				.spec = &action_nvgre_encap_data->item_ipv4,
3586 				.mask = &rte_flow_item_ipv4_mask,
3587 			},
3588 			{
3589 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3590 				.spec = &action_nvgre_encap_data->item_nvgre,
3591 				.mask = &rte_flow_item_nvgre_mask,
3592 			},
3593 			{
3594 				.type = RTE_FLOW_ITEM_TYPE_END,
3595 			},
3596 		},
3597 		.item_eth.type = 0,
3598 		.item_vlan = {
3599 			.tci = nvgre_encap_conf.vlan_tci,
3600 			.inner_type = 0,
3601 		},
3602 		.item_ipv4.hdr = {
3603 		       .src_addr = nvgre_encap_conf.ipv4_src,
3604 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3605 		},
3606 		.item_nvgre.flow_id = 0,
3607 	};
3608 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3609 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3610 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3611 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3612 	if (!nvgre_encap_conf.select_ipv4) {
3613 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3614 		       &nvgre_encap_conf.ipv6_src,
3615 		       sizeof(nvgre_encap_conf.ipv6_src));
3616 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3617 		       &nvgre_encap_conf.ipv6_dst,
3618 		       sizeof(nvgre_encap_conf.ipv6_dst));
3619 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3620 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3621 			.spec = &action_nvgre_encap_data->item_ipv6,
3622 			.mask = &rte_flow_item_ipv6_mask,
3623 		};
3624 	}
3625 	if (!nvgre_encap_conf.select_vlan)
3626 		action_nvgre_encap_data->items[1].type =
3627 			RTE_FLOW_ITEM_TYPE_VOID;
3628 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3629 	       RTE_DIM(nvgre_encap_conf.tni));
3630 	action->conf = &action_nvgre_encap_data->conf;
3631 	return ret;
3632 }
3633 
3634 /** Parse l2 encap action. */
3635 static int
3636 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3637 			 const char *str, unsigned int len,
3638 			 void *buf, unsigned int size)
3639 {
3640 	struct buffer *out = buf;
3641 	struct rte_flow_action *action;
3642 	struct action_raw_encap_data *action_encap_data;
3643 	struct rte_flow_item_eth eth = { .type = 0, };
3644 	struct rte_flow_item_vlan vlan = {
3645 		.tci = mplsoudp_encap_conf.vlan_tci,
3646 		.inner_type = 0,
3647 	};
3648 	uint8_t *header;
3649 	int ret;
3650 
3651 	ret = parse_vc(ctx, token, str, len, buf, size);
3652 	if (ret < 0)
3653 		return ret;
3654 	/* Nothing else to do if there is no buffer. */
3655 	if (!out)
3656 		return ret;
3657 	if (!out->args.vc.actions_n)
3658 		return -1;
3659 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3660 	/* Point to selected object. */
3661 	ctx->object = out->args.vc.data;
3662 	ctx->objmask = NULL;
3663 	/* Copy the headers to the buffer. */
3664 	action_encap_data = ctx->object;
3665 	*action_encap_data = (struct action_raw_encap_data) {
3666 		.conf = (struct rte_flow_action_raw_encap){
3667 			.data = action_encap_data->data,
3668 		},
3669 		.data = {},
3670 	};
3671 	header = action_encap_data->data;
3672 	if (l2_encap_conf.select_vlan)
3673 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3674 	else if (l2_encap_conf.select_ipv4)
3675 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3676 	else
3677 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3678 	memcpy(eth.dst.addr_bytes,
3679 	       l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
3680 	memcpy(eth.src.addr_bytes,
3681 	       l2_encap_conf.eth_src, ETHER_ADDR_LEN);
3682 	memcpy(header, &eth, sizeof(eth));
3683 	header += sizeof(eth);
3684 	if (l2_encap_conf.select_vlan) {
3685 		if (l2_encap_conf.select_ipv4)
3686 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3687 		else
3688 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3689 		memcpy(header, &vlan, sizeof(vlan));
3690 		header += sizeof(vlan);
3691 	}
3692 	action_encap_data->conf.size = header -
3693 		action_encap_data->data;
3694 	action->conf = &action_encap_data->conf;
3695 	return ret;
3696 }
3697 
3698 /** Parse l2 decap action. */
3699 static int
3700 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3701 			 const char *str, unsigned int len,
3702 			 void *buf, unsigned int size)
3703 {
3704 	struct buffer *out = buf;
3705 	struct rte_flow_action *action;
3706 	struct action_raw_decap_data *action_decap_data;
3707 	struct rte_flow_item_eth eth = { .type = 0, };
3708 	struct rte_flow_item_vlan vlan = {
3709 		.tci = mplsoudp_encap_conf.vlan_tci,
3710 		.inner_type = 0,
3711 	};
3712 	uint8_t *header;
3713 	int ret;
3714 
3715 	ret = parse_vc(ctx, token, str, len, buf, size);
3716 	if (ret < 0)
3717 		return ret;
3718 	/* Nothing else to do if there is no buffer. */
3719 	if (!out)
3720 		return ret;
3721 	if (!out->args.vc.actions_n)
3722 		return -1;
3723 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3724 	/* Point to selected object. */
3725 	ctx->object = out->args.vc.data;
3726 	ctx->objmask = NULL;
3727 	/* Copy the headers to the buffer. */
3728 	action_decap_data = ctx->object;
3729 	*action_decap_data = (struct action_raw_decap_data) {
3730 		.conf = (struct rte_flow_action_raw_decap){
3731 			.data = action_decap_data->data,
3732 		},
3733 		.data = {},
3734 	};
3735 	header = action_decap_data->data;
3736 	if (l2_decap_conf.select_vlan)
3737 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3738 	memcpy(header, &eth, sizeof(eth));
3739 	header += sizeof(eth);
3740 	if (l2_decap_conf.select_vlan) {
3741 		memcpy(header, &vlan, sizeof(vlan));
3742 		header += sizeof(vlan);
3743 	}
3744 	action_decap_data->conf.size = header -
3745 		action_decap_data->data;
3746 	action->conf = &action_decap_data->conf;
3747 	return ret;
3748 }
3749 
3750 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3751 
3752 /** Parse MPLSOGRE encap action. */
3753 static int
3754 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3755 			       const char *str, unsigned int len,
3756 			       void *buf, unsigned int size)
3757 {
3758 	struct buffer *out = buf;
3759 	struct rte_flow_action *action;
3760 	struct action_raw_encap_data *action_encap_data;
3761 	struct rte_flow_item_eth eth = { .type = 0, };
3762 	struct rte_flow_item_vlan vlan = {
3763 		.tci = mplsogre_encap_conf.vlan_tci,
3764 		.inner_type = 0,
3765 	};
3766 	struct rte_flow_item_ipv4 ipv4 = {
3767 		.hdr =  {
3768 			.src_addr = mplsogre_encap_conf.ipv4_src,
3769 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3770 			.next_proto_id = IPPROTO_GRE,
3771 		},
3772 	};
3773 	struct rte_flow_item_ipv6 ipv6 = {
3774 		.hdr =  {
3775 			.proto = IPPROTO_GRE,
3776 		},
3777 	};
3778 	struct rte_flow_item_gre gre = {
3779 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3780 	};
3781 	struct rte_flow_item_mpls mpls;
3782 	uint8_t *header;
3783 	int ret;
3784 
3785 	ret = parse_vc(ctx, token, str, len, buf, size);
3786 	if (ret < 0)
3787 		return ret;
3788 	/* Nothing else to do if there is no buffer. */
3789 	if (!out)
3790 		return ret;
3791 	if (!out->args.vc.actions_n)
3792 		return -1;
3793 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3794 	/* Point to selected object. */
3795 	ctx->object = out->args.vc.data;
3796 	ctx->objmask = NULL;
3797 	/* Copy the headers to the buffer. */
3798 	action_encap_data = ctx->object;
3799 	*action_encap_data = (struct action_raw_encap_data) {
3800 		.conf = (struct rte_flow_action_raw_encap){
3801 			.data = action_encap_data->data,
3802 		},
3803 		.data = {},
3804 		.preserve = {},
3805 	};
3806 	header = action_encap_data->data;
3807 	if (mplsogre_encap_conf.select_vlan)
3808 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3809 	else if (mplsogre_encap_conf.select_ipv4)
3810 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3811 	else
3812 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3813 	memcpy(eth.dst.addr_bytes,
3814 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3815 	memcpy(eth.src.addr_bytes,
3816 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3817 	memcpy(header, &eth, sizeof(eth));
3818 	header += sizeof(eth);
3819 	if (mplsogre_encap_conf.select_vlan) {
3820 		if (mplsogre_encap_conf.select_ipv4)
3821 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3822 		else
3823 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3824 		memcpy(header, &vlan, sizeof(vlan));
3825 		header += sizeof(vlan);
3826 	}
3827 	if (mplsogre_encap_conf.select_ipv4) {
3828 		memcpy(header, &ipv4, sizeof(ipv4));
3829 		header += sizeof(ipv4);
3830 	} else {
3831 		memcpy(&ipv6.hdr.src_addr,
3832 		       &mplsogre_encap_conf.ipv6_src,
3833 		       sizeof(mplsogre_encap_conf.ipv6_src));
3834 		memcpy(&ipv6.hdr.dst_addr,
3835 		       &mplsogre_encap_conf.ipv6_dst,
3836 		       sizeof(mplsogre_encap_conf.ipv6_dst));
3837 		memcpy(header, &ipv6, sizeof(ipv6));
3838 		header += sizeof(ipv6);
3839 	}
3840 	memcpy(header, &gre, sizeof(gre));
3841 	header += sizeof(gre);
3842 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3843 	       RTE_DIM(mplsogre_encap_conf.label));
3844 	mpls.label_tc_s[2] |= 0x1;
3845 	memcpy(header, &mpls, sizeof(mpls));
3846 	header += sizeof(mpls);
3847 	action_encap_data->conf.size = header -
3848 		action_encap_data->data;
3849 	action->conf = &action_encap_data->conf;
3850 	return ret;
3851 }
3852 
3853 /** Parse MPLSOGRE decap action. */
3854 static int
3855 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3856 			       const char *str, unsigned int len,
3857 			       void *buf, unsigned int size)
3858 {
3859 	struct buffer *out = buf;
3860 	struct rte_flow_action *action;
3861 	struct action_raw_decap_data *action_decap_data;
3862 	struct rte_flow_item_eth eth = { .type = 0, };
3863 	struct rte_flow_item_vlan vlan = {.tci = 0};
3864 	struct rte_flow_item_ipv4 ipv4 = {
3865 		.hdr =  {
3866 			.next_proto_id = IPPROTO_GRE,
3867 		},
3868 	};
3869 	struct rte_flow_item_ipv6 ipv6 = {
3870 		.hdr =  {
3871 			.proto = IPPROTO_GRE,
3872 		},
3873 	};
3874 	struct rte_flow_item_gre gre = {
3875 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3876 	};
3877 	struct rte_flow_item_mpls mpls;
3878 	uint8_t *header;
3879 	int ret;
3880 
3881 	ret = parse_vc(ctx, token, str, len, buf, size);
3882 	if (ret < 0)
3883 		return ret;
3884 	/* Nothing else to do if there is no buffer. */
3885 	if (!out)
3886 		return ret;
3887 	if (!out->args.vc.actions_n)
3888 		return -1;
3889 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3890 	/* Point to selected object. */
3891 	ctx->object = out->args.vc.data;
3892 	ctx->objmask = NULL;
3893 	/* Copy the headers to the buffer. */
3894 	action_decap_data = ctx->object;
3895 	*action_decap_data = (struct action_raw_decap_data) {
3896 		.conf = (struct rte_flow_action_raw_decap){
3897 			.data = action_decap_data->data,
3898 		},
3899 		.data = {},
3900 	};
3901 	header = action_decap_data->data;
3902 	if (mplsogre_decap_conf.select_vlan)
3903 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3904 	else if (mplsogre_encap_conf.select_ipv4)
3905 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3906 	else
3907 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3908 	memcpy(eth.dst.addr_bytes,
3909 	       mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3910 	memcpy(eth.src.addr_bytes,
3911 	       mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3912 	memcpy(header, &eth, sizeof(eth));
3913 	header += sizeof(eth);
3914 	if (mplsogre_encap_conf.select_vlan) {
3915 		if (mplsogre_encap_conf.select_ipv4)
3916 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3917 		else
3918 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3919 		memcpy(header, &vlan, sizeof(vlan));
3920 		header += sizeof(vlan);
3921 	}
3922 	if (mplsogre_encap_conf.select_ipv4) {
3923 		memcpy(header, &ipv4, sizeof(ipv4));
3924 		header += sizeof(ipv4);
3925 	} else {
3926 		memcpy(header, &ipv6, sizeof(ipv6));
3927 		header += sizeof(ipv6);
3928 	}
3929 	memcpy(header, &gre, sizeof(gre));
3930 	header += sizeof(gre);
3931 	memset(&mpls, 0, sizeof(mpls));
3932 	memcpy(header, &mpls, sizeof(mpls));
3933 	header += sizeof(mpls);
3934 	action_decap_data->conf.size = header -
3935 		action_decap_data->data;
3936 	action->conf = &action_decap_data->conf;
3937 	return ret;
3938 }
3939 
3940 /** Parse MPLSOUDP encap action. */
3941 static int
3942 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
3943 			       const char *str, unsigned int len,
3944 			       void *buf, unsigned int size)
3945 {
3946 	struct buffer *out = buf;
3947 	struct rte_flow_action *action;
3948 	struct action_raw_encap_data *action_encap_data;
3949 	struct rte_flow_item_eth eth = { .type = 0, };
3950 	struct rte_flow_item_vlan vlan = {
3951 		.tci = mplsoudp_encap_conf.vlan_tci,
3952 		.inner_type = 0,
3953 	};
3954 	struct rte_flow_item_ipv4 ipv4 = {
3955 		.hdr =  {
3956 			.src_addr = mplsoudp_encap_conf.ipv4_src,
3957 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
3958 			.next_proto_id = IPPROTO_UDP,
3959 		},
3960 	};
3961 	struct rte_flow_item_ipv6 ipv6 = {
3962 		.hdr =  {
3963 			.proto = IPPROTO_UDP,
3964 		},
3965 	};
3966 	struct rte_flow_item_udp udp = {
3967 		.hdr = {
3968 			.src_port = mplsoudp_encap_conf.udp_src,
3969 			.dst_port = mplsoudp_encap_conf.udp_dst,
3970 		},
3971 	};
3972 	struct rte_flow_item_mpls mpls;
3973 	uint8_t *header;
3974 	int ret;
3975 
3976 	ret = parse_vc(ctx, token, str, len, buf, size);
3977 	if (ret < 0)
3978 		return ret;
3979 	/* Nothing else to do if there is no buffer. */
3980 	if (!out)
3981 		return ret;
3982 	if (!out->args.vc.actions_n)
3983 		return -1;
3984 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3985 	/* Point to selected object. */
3986 	ctx->object = out->args.vc.data;
3987 	ctx->objmask = NULL;
3988 	/* Copy the headers to the buffer. */
3989 	action_encap_data = ctx->object;
3990 	*action_encap_data = (struct action_raw_encap_data) {
3991 		.conf = (struct rte_flow_action_raw_encap){
3992 			.data = action_encap_data->data,
3993 		},
3994 		.data = {},
3995 		.preserve = {},
3996 	};
3997 	header = action_encap_data->data;
3998 	if (mplsoudp_encap_conf.select_vlan)
3999 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4000 	else if (mplsoudp_encap_conf.select_ipv4)
4001 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4002 	else
4003 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4004 	memcpy(eth.dst.addr_bytes,
4005 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4006 	memcpy(eth.src.addr_bytes,
4007 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4008 	memcpy(header, &eth, sizeof(eth));
4009 	header += sizeof(eth);
4010 	if (mplsoudp_encap_conf.select_vlan) {
4011 		if (mplsoudp_encap_conf.select_ipv4)
4012 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4013 		else
4014 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4015 		memcpy(header, &vlan, sizeof(vlan));
4016 		header += sizeof(vlan);
4017 	}
4018 	if (mplsoudp_encap_conf.select_ipv4) {
4019 		memcpy(header, &ipv4, sizeof(ipv4));
4020 		header += sizeof(ipv4);
4021 	} else {
4022 		memcpy(&ipv6.hdr.src_addr,
4023 		       &mplsoudp_encap_conf.ipv6_src,
4024 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4025 		memcpy(&ipv6.hdr.dst_addr,
4026 		       &mplsoudp_encap_conf.ipv6_dst,
4027 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4028 		memcpy(header, &ipv6, sizeof(ipv6));
4029 		header += sizeof(ipv6);
4030 	}
4031 	memcpy(header, &udp, sizeof(udp));
4032 	header += sizeof(udp);
4033 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4034 	       RTE_DIM(mplsoudp_encap_conf.label));
4035 	mpls.label_tc_s[2] |= 0x1;
4036 	memcpy(header, &mpls, sizeof(mpls));
4037 	header += sizeof(mpls);
4038 	action_encap_data->conf.size = header -
4039 		action_encap_data->data;
4040 	action->conf = &action_encap_data->conf;
4041 	return ret;
4042 }
4043 
4044 /** Parse MPLSOUDP decap action. */
4045 static int
4046 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4047 			       const char *str, unsigned int len,
4048 			       void *buf, unsigned int size)
4049 {
4050 	struct buffer *out = buf;
4051 	struct rte_flow_action *action;
4052 	struct action_raw_decap_data *action_decap_data;
4053 	struct rte_flow_item_eth eth = { .type = 0, };
4054 	struct rte_flow_item_vlan vlan = {.tci = 0};
4055 	struct rte_flow_item_ipv4 ipv4 = {
4056 		.hdr =  {
4057 			.next_proto_id = IPPROTO_UDP,
4058 		},
4059 	};
4060 	struct rte_flow_item_ipv6 ipv6 = {
4061 		.hdr =  {
4062 			.proto = IPPROTO_UDP,
4063 		},
4064 	};
4065 	struct rte_flow_item_udp udp = {
4066 		.hdr = {
4067 			.dst_port = rte_cpu_to_be_16(6635),
4068 		},
4069 	};
4070 	struct rte_flow_item_mpls mpls;
4071 	uint8_t *header;
4072 	int ret;
4073 
4074 	ret = parse_vc(ctx, token, str, len, buf, size);
4075 	if (ret < 0)
4076 		return ret;
4077 	/* Nothing else to do if there is no buffer. */
4078 	if (!out)
4079 		return ret;
4080 	if (!out->args.vc.actions_n)
4081 		return -1;
4082 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4083 	/* Point to selected object. */
4084 	ctx->object = out->args.vc.data;
4085 	ctx->objmask = NULL;
4086 	/* Copy the headers to the buffer. */
4087 	action_decap_data = ctx->object;
4088 	*action_decap_data = (struct action_raw_decap_data) {
4089 		.conf = (struct rte_flow_action_raw_decap){
4090 			.data = action_decap_data->data,
4091 		},
4092 		.data = {},
4093 	};
4094 	header = action_decap_data->data;
4095 	if (mplsoudp_decap_conf.select_vlan)
4096 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4097 	else if (mplsoudp_encap_conf.select_ipv4)
4098 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4099 	else
4100 		eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4101 	memcpy(eth.dst.addr_bytes,
4102 	       mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4103 	memcpy(eth.src.addr_bytes,
4104 	       mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4105 	memcpy(header, &eth, sizeof(eth));
4106 	header += sizeof(eth);
4107 	if (mplsoudp_encap_conf.select_vlan) {
4108 		if (mplsoudp_encap_conf.select_ipv4)
4109 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4110 		else
4111 			vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4112 		memcpy(header, &vlan, sizeof(vlan));
4113 		header += sizeof(vlan);
4114 	}
4115 	if (mplsoudp_encap_conf.select_ipv4) {
4116 		memcpy(header, &ipv4, sizeof(ipv4));
4117 		header += sizeof(ipv4);
4118 	} else {
4119 		memcpy(header, &ipv6, sizeof(ipv6));
4120 		header += sizeof(ipv6);
4121 	}
4122 	memcpy(header, &udp, sizeof(udp));
4123 	header += sizeof(udp);
4124 	memset(&mpls, 0, sizeof(mpls));
4125 	memcpy(header, &mpls, sizeof(mpls));
4126 	header += sizeof(mpls);
4127 	action_decap_data->conf.size = header -
4128 		action_decap_data->data;
4129 	action->conf = &action_decap_data->conf;
4130 	return ret;
4131 }
4132 
4133 /** Parse tokens for destroy command. */
4134 static int
4135 parse_destroy(struct context *ctx, const struct token *token,
4136 	      const char *str, unsigned int len,
4137 	      void *buf, unsigned int size)
4138 {
4139 	struct buffer *out = buf;
4140 
4141 	/* Token name must match. */
4142 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4143 		return -1;
4144 	/* Nothing else to do if there is no buffer. */
4145 	if (!out)
4146 		return len;
4147 	if (!out->command) {
4148 		if (ctx->curr != DESTROY)
4149 			return -1;
4150 		if (sizeof(*out) > size)
4151 			return -1;
4152 		out->command = ctx->curr;
4153 		ctx->objdata = 0;
4154 		ctx->object = out;
4155 		ctx->objmask = NULL;
4156 		out->args.destroy.rule =
4157 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4158 					       sizeof(double));
4159 		return len;
4160 	}
4161 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4162 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4163 		return -1;
4164 	ctx->objdata = 0;
4165 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4166 	ctx->objmask = NULL;
4167 	return len;
4168 }
4169 
4170 /** Parse tokens for flush command. */
4171 static int
4172 parse_flush(struct context *ctx, const struct token *token,
4173 	    const char *str, unsigned int len,
4174 	    void *buf, unsigned int size)
4175 {
4176 	struct buffer *out = buf;
4177 
4178 	/* Token name must match. */
4179 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4180 		return -1;
4181 	/* Nothing else to do if there is no buffer. */
4182 	if (!out)
4183 		return len;
4184 	if (!out->command) {
4185 		if (ctx->curr != FLUSH)
4186 			return -1;
4187 		if (sizeof(*out) > size)
4188 			return -1;
4189 		out->command = ctx->curr;
4190 		ctx->objdata = 0;
4191 		ctx->object = out;
4192 		ctx->objmask = NULL;
4193 	}
4194 	return len;
4195 }
4196 
4197 /** Parse tokens for query command. */
4198 static int
4199 parse_query(struct context *ctx, const struct token *token,
4200 	    const char *str, unsigned int len,
4201 	    void *buf, unsigned int size)
4202 {
4203 	struct buffer *out = buf;
4204 
4205 	/* Token name must match. */
4206 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4207 		return -1;
4208 	/* Nothing else to do if there is no buffer. */
4209 	if (!out)
4210 		return len;
4211 	if (!out->command) {
4212 		if (ctx->curr != QUERY)
4213 			return -1;
4214 		if (sizeof(*out) > size)
4215 			return -1;
4216 		out->command = ctx->curr;
4217 		ctx->objdata = 0;
4218 		ctx->object = out;
4219 		ctx->objmask = NULL;
4220 	}
4221 	return len;
4222 }
4223 
4224 /** Parse action names. */
4225 static int
4226 parse_action(struct context *ctx, const struct token *token,
4227 	     const char *str, unsigned int len,
4228 	     void *buf, unsigned int size)
4229 {
4230 	struct buffer *out = buf;
4231 	const struct arg *arg = pop_args(ctx);
4232 	unsigned int i;
4233 
4234 	(void)size;
4235 	/* Argument is expected. */
4236 	if (!arg)
4237 		return -1;
4238 	/* Parse action name. */
4239 	for (i = 0; next_action[i]; ++i) {
4240 		const struct parse_action_priv *priv;
4241 
4242 		token = &token_list[next_action[i]];
4243 		if (strcmp_partial(token->name, str, len))
4244 			continue;
4245 		priv = token->priv;
4246 		if (!priv)
4247 			goto error;
4248 		if (out)
4249 			memcpy((uint8_t *)ctx->object + arg->offset,
4250 			       &priv->type,
4251 			       arg->size);
4252 		return len;
4253 	}
4254 error:
4255 	push_args(ctx, arg);
4256 	return -1;
4257 }
4258 
4259 /** Parse tokens for list command. */
4260 static int
4261 parse_list(struct context *ctx, const struct token *token,
4262 	   const char *str, unsigned int len,
4263 	   void *buf, unsigned int size)
4264 {
4265 	struct buffer *out = buf;
4266 
4267 	/* Token name must match. */
4268 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4269 		return -1;
4270 	/* Nothing else to do if there is no buffer. */
4271 	if (!out)
4272 		return len;
4273 	if (!out->command) {
4274 		if (ctx->curr != LIST)
4275 			return -1;
4276 		if (sizeof(*out) > size)
4277 			return -1;
4278 		out->command = ctx->curr;
4279 		ctx->objdata = 0;
4280 		ctx->object = out;
4281 		ctx->objmask = NULL;
4282 		out->args.list.group =
4283 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4284 					       sizeof(double));
4285 		return len;
4286 	}
4287 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4288 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4289 		return -1;
4290 	ctx->objdata = 0;
4291 	ctx->object = out->args.list.group + out->args.list.group_n++;
4292 	ctx->objmask = NULL;
4293 	return len;
4294 }
4295 
4296 /** Parse tokens for isolate command. */
4297 static int
4298 parse_isolate(struct context *ctx, const struct token *token,
4299 	      const char *str, unsigned int len,
4300 	      void *buf, unsigned int size)
4301 {
4302 	struct buffer *out = buf;
4303 
4304 	/* Token name must match. */
4305 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4306 		return -1;
4307 	/* Nothing else to do if there is no buffer. */
4308 	if (!out)
4309 		return len;
4310 	if (!out->command) {
4311 		if (ctx->curr != ISOLATE)
4312 			return -1;
4313 		if (sizeof(*out) > size)
4314 			return -1;
4315 		out->command = ctx->curr;
4316 		ctx->objdata = 0;
4317 		ctx->object = out;
4318 		ctx->objmask = NULL;
4319 	}
4320 	return len;
4321 }
4322 
4323 /**
4324  * Parse signed/unsigned integers 8 to 64-bit long.
4325  *
4326  * Last argument (ctx->args) is retrieved to determine integer type and
4327  * storage location.
4328  */
4329 static int
4330 parse_int(struct context *ctx, const struct token *token,
4331 	  const char *str, unsigned int len,
4332 	  void *buf, unsigned int size)
4333 {
4334 	const struct arg *arg = pop_args(ctx);
4335 	uintmax_t u;
4336 	char *end;
4337 
4338 	(void)token;
4339 	/* Argument is expected. */
4340 	if (!arg)
4341 		return -1;
4342 	errno = 0;
4343 	u = arg->sign ?
4344 		(uintmax_t)strtoimax(str, &end, 0) :
4345 		strtoumax(str, &end, 0);
4346 	if (errno || (size_t)(end - str) != len)
4347 		goto error;
4348 	if (arg->bounded &&
4349 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4350 			    (intmax_t)u > (intmax_t)arg->max)) ||
4351 	     (!arg->sign && (u < arg->min || u > arg->max))))
4352 		goto error;
4353 	if (!ctx->object)
4354 		return len;
4355 	if (arg->mask) {
4356 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4357 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4358 			goto error;
4359 		return len;
4360 	}
4361 	buf = (uint8_t *)ctx->object + arg->offset;
4362 	size = arg->size;
4363 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4364 		return -1;
4365 objmask:
4366 	switch (size) {
4367 	case sizeof(uint8_t):
4368 		*(uint8_t *)buf = u;
4369 		break;
4370 	case sizeof(uint16_t):
4371 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4372 		break;
4373 	case sizeof(uint8_t [3]):
4374 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4375 		if (!arg->hton) {
4376 			((uint8_t *)buf)[0] = u;
4377 			((uint8_t *)buf)[1] = u >> 8;
4378 			((uint8_t *)buf)[2] = u >> 16;
4379 			break;
4380 		}
4381 #endif
4382 		((uint8_t *)buf)[0] = u >> 16;
4383 		((uint8_t *)buf)[1] = u >> 8;
4384 		((uint8_t *)buf)[2] = u;
4385 		break;
4386 	case sizeof(uint32_t):
4387 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4388 		break;
4389 	case sizeof(uint64_t):
4390 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4391 		break;
4392 	default:
4393 		goto error;
4394 	}
4395 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4396 		u = -1;
4397 		buf = (uint8_t *)ctx->objmask + arg->offset;
4398 		goto objmask;
4399 	}
4400 	return len;
4401 error:
4402 	push_args(ctx, arg);
4403 	return -1;
4404 }
4405 
4406 /**
4407  * Parse a string.
4408  *
4409  * Three arguments (ctx->args) are retrieved from the stack to store data,
4410  * its actual length and address (in that order).
4411  */
4412 static int
4413 parse_string(struct context *ctx, const struct token *token,
4414 	     const char *str, unsigned int len,
4415 	     void *buf, unsigned int size)
4416 {
4417 	const struct arg *arg_data = pop_args(ctx);
4418 	const struct arg *arg_len = pop_args(ctx);
4419 	const struct arg *arg_addr = pop_args(ctx);
4420 	char tmp[16]; /* Ought to be enough. */
4421 	int ret;
4422 
4423 	/* Arguments are expected. */
4424 	if (!arg_data)
4425 		return -1;
4426 	if (!arg_len) {
4427 		push_args(ctx, arg_data);
4428 		return -1;
4429 	}
4430 	if (!arg_addr) {
4431 		push_args(ctx, arg_len);
4432 		push_args(ctx, arg_data);
4433 		return -1;
4434 	}
4435 	size = arg_data->size;
4436 	/* Bit-mask fill is not supported. */
4437 	if (arg_data->mask || size < len)
4438 		goto error;
4439 	if (!ctx->object)
4440 		return len;
4441 	/* Let parse_int() fill length information first. */
4442 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4443 	if (ret < 0)
4444 		goto error;
4445 	push_args(ctx, arg_len);
4446 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4447 	if (ret < 0) {
4448 		pop_args(ctx);
4449 		goto error;
4450 	}
4451 	buf = (uint8_t *)ctx->object + arg_data->offset;
4452 	/* Output buffer is not necessarily NUL-terminated. */
4453 	memcpy(buf, str, len);
4454 	memset((uint8_t *)buf + len, 0x00, size - len);
4455 	if (ctx->objmask)
4456 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4457 	/* Save address if requested. */
4458 	if (arg_addr->size) {
4459 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4460 		       (void *[]){
4461 			(uint8_t *)ctx->object + arg_data->offset
4462 		       },
4463 		       arg_addr->size);
4464 		if (ctx->objmask)
4465 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4466 			       (void *[]){
4467 				(uint8_t *)ctx->objmask + arg_data->offset
4468 			       },
4469 			       arg_addr->size);
4470 	}
4471 	return len;
4472 error:
4473 	push_args(ctx, arg_addr);
4474 	push_args(ctx, arg_len);
4475 	push_args(ctx, arg_data);
4476 	return -1;
4477 }
4478 
4479 /**
4480  * Parse a MAC address.
4481  *
4482  * Last argument (ctx->args) is retrieved to determine storage size and
4483  * location.
4484  */
4485 static int
4486 parse_mac_addr(struct context *ctx, const struct token *token,
4487 	       const char *str, unsigned int len,
4488 	       void *buf, unsigned int size)
4489 {
4490 	const struct arg *arg = pop_args(ctx);
4491 	struct ether_addr tmp;
4492 	int ret;
4493 
4494 	(void)token;
4495 	/* Argument is expected. */
4496 	if (!arg)
4497 		return -1;
4498 	size = arg->size;
4499 	/* Bit-mask fill is not supported. */
4500 	if (arg->mask || size != sizeof(tmp))
4501 		goto error;
4502 	/* Only network endian is supported. */
4503 	if (!arg->hton)
4504 		goto error;
4505 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4506 	if (ret < 0 || (unsigned int)ret != len)
4507 		goto error;
4508 	if (!ctx->object)
4509 		return len;
4510 	buf = (uint8_t *)ctx->object + arg->offset;
4511 	memcpy(buf, &tmp, size);
4512 	if (ctx->objmask)
4513 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4514 	return len;
4515 error:
4516 	push_args(ctx, arg);
4517 	return -1;
4518 }
4519 
4520 /**
4521  * Parse an IPv4 address.
4522  *
4523  * Last argument (ctx->args) is retrieved to determine storage size and
4524  * location.
4525  */
4526 static int
4527 parse_ipv4_addr(struct context *ctx, const struct token *token,
4528 		const char *str, unsigned int len,
4529 		void *buf, unsigned int size)
4530 {
4531 	const struct arg *arg = pop_args(ctx);
4532 	char str2[len + 1];
4533 	struct in_addr tmp;
4534 	int ret;
4535 
4536 	/* Argument is expected. */
4537 	if (!arg)
4538 		return -1;
4539 	size = arg->size;
4540 	/* Bit-mask fill is not supported. */
4541 	if (arg->mask || size != sizeof(tmp))
4542 		goto error;
4543 	/* Only network endian is supported. */
4544 	if (!arg->hton)
4545 		goto error;
4546 	memcpy(str2, str, len);
4547 	str2[len] = '\0';
4548 	ret = inet_pton(AF_INET, str2, &tmp);
4549 	if (ret != 1) {
4550 		/* Attempt integer parsing. */
4551 		push_args(ctx, arg);
4552 		return parse_int(ctx, token, str, len, buf, size);
4553 	}
4554 	if (!ctx->object)
4555 		return len;
4556 	buf = (uint8_t *)ctx->object + arg->offset;
4557 	memcpy(buf, &tmp, size);
4558 	if (ctx->objmask)
4559 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4560 	return len;
4561 error:
4562 	push_args(ctx, arg);
4563 	return -1;
4564 }
4565 
4566 /**
4567  * Parse an IPv6 address.
4568  *
4569  * Last argument (ctx->args) is retrieved to determine storage size and
4570  * location.
4571  */
4572 static int
4573 parse_ipv6_addr(struct context *ctx, const struct token *token,
4574 		const char *str, unsigned int len,
4575 		void *buf, unsigned int size)
4576 {
4577 	const struct arg *arg = pop_args(ctx);
4578 	char str2[len + 1];
4579 	struct in6_addr tmp;
4580 	int ret;
4581 
4582 	(void)token;
4583 	/* Argument is expected. */
4584 	if (!arg)
4585 		return -1;
4586 	size = arg->size;
4587 	/* Bit-mask fill is not supported. */
4588 	if (arg->mask || size != sizeof(tmp))
4589 		goto error;
4590 	/* Only network endian is supported. */
4591 	if (!arg->hton)
4592 		goto error;
4593 	memcpy(str2, str, len);
4594 	str2[len] = '\0';
4595 	ret = inet_pton(AF_INET6, str2, &tmp);
4596 	if (ret != 1)
4597 		goto error;
4598 	if (!ctx->object)
4599 		return len;
4600 	buf = (uint8_t *)ctx->object + arg->offset;
4601 	memcpy(buf, &tmp, size);
4602 	if (ctx->objmask)
4603 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4604 	return len;
4605 error:
4606 	push_args(ctx, arg);
4607 	return -1;
4608 }
4609 
4610 /** Boolean values (even indices stand for false). */
4611 static const char *const boolean_name[] = {
4612 	"0", "1",
4613 	"false", "true",
4614 	"no", "yes",
4615 	"N", "Y",
4616 	"off", "on",
4617 	NULL,
4618 };
4619 
4620 /**
4621  * Parse a boolean value.
4622  *
4623  * Last argument (ctx->args) is retrieved to determine storage size and
4624  * location.
4625  */
4626 static int
4627 parse_boolean(struct context *ctx, const struct token *token,
4628 	      const char *str, unsigned int len,
4629 	      void *buf, unsigned int size)
4630 {
4631 	const struct arg *arg = pop_args(ctx);
4632 	unsigned int i;
4633 	int ret;
4634 
4635 	/* Argument is expected. */
4636 	if (!arg)
4637 		return -1;
4638 	for (i = 0; boolean_name[i]; ++i)
4639 		if (!strcmp_partial(boolean_name[i], str, len))
4640 			break;
4641 	/* Process token as integer. */
4642 	if (boolean_name[i])
4643 		str = i & 1 ? "1" : "0";
4644 	push_args(ctx, arg);
4645 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4646 	return ret > 0 ? (int)len : ret;
4647 }
4648 
4649 /** Parse port and update context. */
4650 static int
4651 parse_port(struct context *ctx, const struct token *token,
4652 	   const char *str, unsigned int len,
4653 	   void *buf, unsigned int size)
4654 {
4655 	struct buffer *out = &(struct buffer){ .port = 0 };
4656 	int ret;
4657 
4658 	if (buf)
4659 		out = buf;
4660 	else {
4661 		ctx->objdata = 0;
4662 		ctx->object = out;
4663 		ctx->objmask = NULL;
4664 		size = sizeof(*out);
4665 	}
4666 	ret = parse_int(ctx, token, str, len, out, size);
4667 	if (ret >= 0)
4668 		ctx->port = out->port;
4669 	if (!buf)
4670 		ctx->object = NULL;
4671 	return ret;
4672 }
4673 
4674 /** No completion. */
4675 static int
4676 comp_none(struct context *ctx, const struct token *token,
4677 	  unsigned int ent, char *buf, unsigned int size)
4678 {
4679 	(void)ctx;
4680 	(void)token;
4681 	(void)ent;
4682 	(void)buf;
4683 	(void)size;
4684 	return 0;
4685 }
4686 
4687 /** Complete boolean values. */
4688 static int
4689 comp_boolean(struct context *ctx, const struct token *token,
4690 	     unsigned int ent, char *buf, unsigned int size)
4691 {
4692 	unsigned int i;
4693 
4694 	(void)ctx;
4695 	(void)token;
4696 	for (i = 0; boolean_name[i]; ++i)
4697 		if (buf && i == ent)
4698 			return strlcpy(buf, boolean_name[i], size);
4699 	if (buf)
4700 		return -1;
4701 	return i;
4702 }
4703 
4704 /** Complete action names. */
4705 static int
4706 comp_action(struct context *ctx, const struct token *token,
4707 	    unsigned int ent, char *buf, unsigned int size)
4708 {
4709 	unsigned int i;
4710 
4711 	(void)ctx;
4712 	(void)token;
4713 	for (i = 0; next_action[i]; ++i)
4714 		if (buf && i == ent)
4715 			return strlcpy(buf, token_list[next_action[i]].name,
4716 				       size);
4717 	if (buf)
4718 		return -1;
4719 	return i;
4720 }
4721 
4722 /** Complete available ports. */
4723 static int
4724 comp_port(struct context *ctx, const struct token *token,
4725 	  unsigned int ent, char *buf, unsigned int size)
4726 {
4727 	unsigned int i = 0;
4728 	portid_t p;
4729 
4730 	(void)ctx;
4731 	(void)token;
4732 	RTE_ETH_FOREACH_DEV(p) {
4733 		if (buf && i == ent)
4734 			return snprintf(buf, size, "%u", p);
4735 		++i;
4736 	}
4737 	if (buf)
4738 		return -1;
4739 	return i;
4740 }
4741 
4742 /** Complete available rule IDs. */
4743 static int
4744 comp_rule_id(struct context *ctx, const struct token *token,
4745 	     unsigned int ent, char *buf, unsigned int size)
4746 {
4747 	unsigned int i = 0;
4748 	struct rte_port *port;
4749 	struct port_flow *pf;
4750 
4751 	(void)token;
4752 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4753 	    ctx->port == (portid_t)RTE_PORT_ALL)
4754 		return -1;
4755 	port = &ports[ctx->port];
4756 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4757 		if (buf && i == ent)
4758 			return snprintf(buf, size, "%u", pf->id);
4759 		++i;
4760 	}
4761 	if (buf)
4762 		return -1;
4763 	return i;
4764 }
4765 
4766 /** Complete type field for RSS action. */
4767 static int
4768 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4769 			unsigned int ent, char *buf, unsigned int size)
4770 {
4771 	unsigned int i;
4772 
4773 	(void)ctx;
4774 	(void)token;
4775 	for (i = 0; rss_type_table[i].str; ++i)
4776 		;
4777 	if (!buf)
4778 		return i + 1;
4779 	if (ent < i)
4780 		return strlcpy(buf, rss_type_table[ent].str, size);
4781 	if (ent == i)
4782 		return snprintf(buf, size, "end");
4783 	return -1;
4784 }
4785 
4786 /** Complete queue field for RSS action. */
4787 static int
4788 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4789 			 unsigned int ent, char *buf, unsigned int size)
4790 {
4791 	(void)ctx;
4792 	(void)token;
4793 	if (!buf)
4794 		return nb_rxq + 1;
4795 	if (ent < nb_rxq)
4796 		return snprintf(buf, size, "%u", ent);
4797 	if (ent == nb_rxq)
4798 		return snprintf(buf, size, "end");
4799 	return -1;
4800 }
4801 
4802 /** Internal context. */
4803 static struct context cmd_flow_context;
4804 
4805 /** Global parser instance (cmdline API). */
4806 cmdline_parse_inst_t cmd_flow;
4807 
4808 /** Initialize context. */
4809 static void
4810 cmd_flow_context_init(struct context *ctx)
4811 {
4812 	/* A full memset() is not necessary. */
4813 	ctx->curr = ZERO;
4814 	ctx->prev = ZERO;
4815 	ctx->next_num = 0;
4816 	ctx->args_num = 0;
4817 	ctx->eol = 0;
4818 	ctx->last = 0;
4819 	ctx->port = 0;
4820 	ctx->objdata = 0;
4821 	ctx->object = NULL;
4822 	ctx->objmask = NULL;
4823 }
4824 
4825 /** Parse a token (cmdline API). */
4826 static int
4827 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4828 	       unsigned int size)
4829 {
4830 	struct context *ctx = &cmd_flow_context;
4831 	const struct token *token;
4832 	const enum index *list;
4833 	int len;
4834 	int i;
4835 
4836 	(void)hdr;
4837 	token = &token_list[ctx->curr];
4838 	/* Check argument length. */
4839 	ctx->eol = 0;
4840 	ctx->last = 1;
4841 	for (len = 0; src[len]; ++len)
4842 		if (src[len] == '#' || isspace(src[len]))
4843 			break;
4844 	if (!len)
4845 		return -1;
4846 	/* Last argument and EOL detection. */
4847 	for (i = len; src[i]; ++i)
4848 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4849 			break;
4850 		else if (!isspace(src[i])) {
4851 			ctx->last = 0;
4852 			break;
4853 		}
4854 	for (; src[i]; ++i)
4855 		if (src[i] == '\r' || src[i] == '\n') {
4856 			ctx->eol = 1;
4857 			break;
4858 		}
4859 	/* Initialize context if necessary. */
4860 	if (!ctx->next_num) {
4861 		if (!token->next)
4862 			return 0;
4863 		ctx->next[ctx->next_num++] = token->next[0];
4864 	}
4865 	/* Process argument through candidates. */
4866 	ctx->prev = ctx->curr;
4867 	list = ctx->next[ctx->next_num - 1];
4868 	for (i = 0; list[i]; ++i) {
4869 		const struct token *next = &token_list[list[i]];
4870 		int tmp;
4871 
4872 		ctx->curr = list[i];
4873 		if (next->call)
4874 			tmp = next->call(ctx, next, src, len, result, size);
4875 		else
4876 			tmp = parse_default(ctx, next, src, len, result, size);
4877 		if (tmp == -1 || tmp != len)
4878 			continue;
4879 		token = next;
4880 		break;
4881 	}
4882 	if (!list[i])
4883 		return -1;
4884 	--ctx->next_num;
4885 	/* Push subsequent tokens if any. */
4886 	if (token->next)
4887 		for (i = 0; token->next[i]; ++i) {
4888 			if (ctx->next_num == RTE_DIM(ctx->next))
4889 				return -1;
4890 			ctx->next[ctx->next_num++] = token->next[i];
4891 		}
4892 	/* Push arguments if any. */
4893 	if (token->args)
4894 		for (i = 0; token->args[i]; ++i) {
4895 			if (ctx->args_num == RTE_DIM(ctx->args))
4896 				return -1;
4897 			ctx->args[ctx->args_num++] = token->args[i];
4898 		}
4899 	return len;
4900 }
4901 
4902 /** Return number of completion entries (cmdline API). */
4903 static int
4904 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
4905 {
4906 	struct context *ctx = &cmd_flow_context;
4907 	const struct token *token = &token_list[ctx->curr];
4908 	const enum index *list;
4909 	int i;
4910 
4911 	(void)hdr;
4912 	/* Count number of tokens in current list. */
4913 	if (ctx->next_num)
4914 		list = ctx->next[ctx->next_num - 1];
4915 	else
4916 		list = token->next[0];
4917 	for (i = 0; list[i]; ++i)
4918 		;
4919 	if (!i)
4920 		return 0;
4921 	/*
4922 	 * If there is a single token, use its completion callback, otherwise
4923 	 * return the number of entries.
4924 	 */
4925 	token = &token_list[list[0]];
4926 	if (i == 1 && token->comp) {
4927 		/* Save index for cmd_flow_get_help(). */
4928 		ctx->prev = list[0];
4929 		return token->comp(ctx, token, 0, NULL, 0);
4930 	}
4931 	return i;
4932 }
4933 
4934 /** Return a completion entry (cmdline API). */
4935 static int
4936 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
4937 			  char *dst, unsigned int size)
4938 {
4939 	struct context *ctx = &cmd_flow_context;
4940 	const struct token *token = &token_list[ctx->curr];
4941 	const enum index *list;
4942 	int i;
4943 
4944 	(void)hdr;
4945 	/* Count number of tokens in current list. */
4946 	if (ctx->next_num)
4947 		list = ctx->next[ctx->next_num - 1];
4948 	else
4949 		list = token->next[0];
4950 	for (i = 0; list[i]; ++i)
4951 		;
4952 	if (!i)
4953 		return -1;
4954 	/* If there is a single token, use its completion callback. */
4955 	token = &token_list[list[0]];
4956 	if (i == 1 && token->comp) {
4957 		/* Save index for cmd_flow_get_help(). */
4958 		ctx->prev = list[0];
4959 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
4960 	}
4961 	/* Otherwise make sure the index is valid and use defaults. */
4962 	if (index >= i)
4963 		return -1;
4964 	token = &token_list[list[index]];
4965 	strlcpy(dst, token->name, size);
4966 	/* Save index for cmd_flow_get_help(). */
4967 	ctx->prev = list[index];
4968 	return 0;
4969 }
4970 
4971 /** Populate help strings for current token (cmdline API). */
4972 static int
4973 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
4974 {
4975 	struct context *ctx = &cmd_flow_context;
4976 	const struct token *token = &token_list[ctx->prev];
4977 
4978 	(void)hdr;
4979 	if (!size)
4980 		return -1;
4981 	/* Set token type and update global help with details. */
4982 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
4983 	if (token->help)
4984 		cmd_flow.help_str = token->help;
4985 	else
4986 		cmd_flow.help_str = token->name;
4987 	return 0;
4988 }
4989 
4990 /** Token definition template (cmdline API). */
4991 static struct cmdline_token_hdr cmd_flow_token_hdr = {
4992 	.ops = &(struct cmdline_token_ops){
4993 		.parse = cmd_flow_parse,
4994 		.complete_get_nb = cmd_flow_complete_get_nb,
4995 		.complete_get_elt = cmd_flow_complete_get_elt,
4996 		.get_help = cmd_flow_get_help,
4997 	},
4998 	.offset = 0,
4999 };
5000 
5001 /** Populate the next dynamic token. */
5002 static void
5003 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5004 	     cmdline_parse_token_hdr_t **hdr_inst)
5005 {
5006 	struct context *ctx = &cmd_flow_context;
5007 
5008 	/* Always reinitialize context before requesting the first token. */
5009 	if (!(hdr_inst - cmd_flow.tokens))
5010 		cmd_flow_context_init(ctx);
5011 	/* Return NULL when no more tokens are expected. */
5012 	if (!ctx->next_num && ctx->curr) {
5013 		*hdr = NULL;
5014 		return;
5015 	}
5016 	/* Determine if command should end here. */
5017 	if (ctx->eol && ctx->last && ctx->next_num) {
5018 		const enum index *list = ctx->next[ctx->next_num - 1];
5019 		int i;
5020 
5021 		for (i = 0; list[i]; ++i) {
5022 			if (list[i] != END)
5023 				continue;
5024 			*hdr = NULL;
5025 			return;
5026 		}
5027 	}
5028 	*hdr = &cmd_flow_token_hdr;
5029 }
5030 
5031 /** Dispatch parsed buffer to function calls. */
5032 static void
5033 cmd_flow_parsed(const struct buffer *in)
5034 {
5035 	switch (in->command) {
5036 	case VALIDATE:
5037 		port_flow_validate(in->port, &in->args.vc.attr,
5038 				   in->args.vc.pattern, in->args.vc.actions);
5039 		break;
5040 	case CREATE:
5041 		port_flow_create(in->port, &in->args.vc.attr,
5042 				 in->args.vc.pattern, in->args.vc.actions);
5043 		break;
5044 	case DESTROY:
5045 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5046 				  in->args.destroy.rule);
5047 		break;
5048 	case FLUSH:
5049 		port_flow_flush(in->port);
5050 		break;
5051 	case QUERY:
5052 		port_flow_query(in->port, in->args.query.rule,
5053 				&in->args.query.action);
5054 		break;
5055 	case LIST:
5056 		port_flow_list(in->port, in->args.list.group_n,
5057 			       in->args.list.group);
5058 		break;
5059 	case ISOLATE:
5060 		port_flow_isolate(in->port, in->args.isolate.set);
5061 		break;
5062 	default:
5063 		break;
5064 	}
5065 }
5066 
5067 /** Token generator and output processing callback (cmdline API). */
5068 static void
5069 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5070 {
5071 	if (cl == NULL)
5072 		cmd_flow_tok(arg0, arg2);
5073 	else
5074 		cmd_flow_parsed(arg0);
5075 }
5076 
5077 /** Global parser instance (cmdline API). */
5078 cmdline_parse_inst_t cmd_flow = {
5079 	.f = cmd_flow_cb,
5080 	.data = NULL, /**< Unused. */
5081 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5082 	.tokens = {
5083 		NULL,
5084 	}, /**< Tokens are returned by cmd_flow_tok(). */
5085 };
5086